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ABSTRACT As a necessary component in intelligent transportation systems (ITS), traffic flow-based
prediction can accurately estimate the traffic flow in a certain period and area in the future. However, despite
the success of traditional research and current machine learning methods, traffic flow prediction models
have limitations in terms of prediction accuracy and efficiency. In this work, we propose a novel traffic flow
prediction model named Graph Convolution and Generative Adversative Neural Network (GCN-GAN),
which leverages Graph Convolution Neural Network (GCN) module and Generative Adversative Neural
Network (GAN) module to predict urban traffic flow. Firstly, the GCN module extracts historical traffic
flow information in the graph structure. Secondly, the GAN module generates reliable traffic flow prediction
results by adversative training. Additionally, GCN-GAN can parallelly generate prediction results rather
than traditional one by one. Through experiments on the traffic flow dataset at multiple intersections, our
GCN-GAN model outperforms the baseline methods by over 30.54% and has apparent advantages in multi-
step prediction.

INDEX TERMS Intelligent transport system, GCN-GAN, graph machine learning, time series prediction.

I. INTRODUCTION considerably avoided. Thus, it is necessary to propose an

Due to the development of technology and the economy, the
number of vehicles on the road grows each year, leading to
urban congestion. At the same time, the incomplete urban
road planning and inadequate traffic facilities have exacer-
bated this situation, resulting in a huge amount of energy
waste and pollution emissions [1]. Many methods have been
proposed to solve the problem of traffic congestion, such
as increasing infrastructure construction [2], increasing the
number of traffic officers [3] and restricting travel according
to the license plate number [4], [5]. Compared with invest-
ing a lot of costs in control, if we can predict the traffic
flow in advance, the occurrence of traffic congestion can be
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accurate prediction method suitable for modern governance.

Due to the disruptive impact of computing and commu-
nication in the field of transportation, several professionals
jointly proposed the term Intelligent Transportation Systems
(ITS) in the 1980s [6]. ITS is a system that attempts to solve
various road traffic problems using information and commu-
nication technology [7]. Specifically, by integrating sensors,
traffic signals, and personnel information, ITS can achieve
precise prediction and control of traffic. In the process of
using ITS, traffic prediction can effectively improve the effect
of traffic information regulation [8].

Time series prediction is a method to extract valuable
information and predict the next trend of the system by
analyzing the past data [9]. As one of the typical time series
problems, urban traffic flow forecast is essential in ITS.
For example, driving routes can be dynamically planned
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by predicting traffic flow, thus effectively reducing traffic
congestion. Randomness, periodicity, and Spatio-temporal
characteristics are the challenges in traffic flow forecast.
In addition, the deepening of urbanization also expands the
urban road network and dramatically increases the computa-
tional complexity of predictions.

At present, many models have been put forward and
applied in the field of traffic flow prediction. The disadvan-
tages of these methods are insufficient prediction accuracy
[10], short prediction step length [11], difficulty in paral-
lel prediction [12], and inability to deal with irregular and
unexpected traffic conditions [13].

Therefore, to obtain a model with a good prediction effect,
we must overcome the above problems.

In this paper, we propose a new prediction model based
on time series (GCN-GAN), which combines Graph Convo-
lution Neural Network (GCN) and Generative Adversative
Neural Network (GAN) to forecast traffic flow. The main
contributions are as follows.

o GCN-GAN leverages Graph Convolution Neural Net-
work (GCN) module and Generative Adversative Neural
Network (GAN) module to predict urban traffic flow.

¢ GCN-GAN can generate prediction results in parallel
instead of the traditional one by one, so it has obvious
advantages in multi-step prediction.

o GCN-GAN model outperforms the baseline methods by
over 30.54%.

Our proposed model significantly improves the accuracy of
traffic flow prediction and performs well in multi-step predic-
tion. The aggregation analysis function based on graph neural
network improves the robustness of the model and reduces
the negative impact of special situations in traffic flow on
the prediction results. The organization of the article is as
follows. In Section II, the research progress of traffic flow
prediction methods is presented. In Section III, we briefly
introduce basic knowledge and define the traffic flow pre-
diction problem. In Section IV, we illustrate the specific
architecture and algorithm of the GCN-GAN. In Section V,
we discuss experimental design and experimental results.
Future work is prospected in Section VI.

Il. RELATED WORKS
In this paper, we can divide traffic flow prediction into statis-
tical methods and machine learning methods.

A. STATISTICAL METHODS

As one of the statistical methods, the autoregressive
integrated moving average model (ARIMA) is specified by
various training data. We test the model at each stage with
completely different data to make the model more accurate
and general. The results in [14] suggest that ARIMA models
trained on time-series data can achieve better results than
those trained on non-time-series data. When the non-linear
GARCH model is added to the ARIMA model, both the
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conditional mean of the traffic flow sequence and the het-
eroscedasticity can be calculated.

Conditional mean and conditional variance contained
in the data can be predicted simultaneously by the
ARIMA-GARCH model [15], thus a continuous time-varying
confidence interval can be calculated. These calculated
time-variant confidence intervals are more temporally deter-
ministic than the consistent confidence intervals provided by
standard ARIMA.

In addition to being suitable for traffic flow prediction,
ARIMA is also effective for flow prediction in subways [16],
scenic spots, and other places.

However, using the ARIMA model to achieve high-
accuracy prediction of traffic flow requires a large amount of
traffic data for model training. Therefore, ARIMA does not
perform well when the amount of data is insufficient. Kalman
filter [17] is a state-space method in the time domain, which
regards the signal as the output of the linear system under
the action of white noise. It has the advantages of a flexible
selection factor and short prediction time. In view of the
problem that the performance of the classical Kalman filter
and the extended Kalman filter degrades when dealing with
non-Gaussian noise, many improved Kalman filter models
have been proposed in recent years [18], [19], [20]. In addi-
tion to the above models, statistical methods also include the
Grey prediction method [21], [22] and Exponential smooth-
ing method [23].

The statistical methods have the advantages of simple
parameters and easy calculation. However, the model’s per-
formance highly depends on the stationarity of the data. They
can not reflect the uncertainty and non-linear characteristics
of dynamic traffic flow and can not overcome the influence
of random disturbance factors.

B. MACHINE LEARNING METHODS

In the field of Machine Learning Methods, Castro-Neto et al.
[24] applied Support Vector Regression (SVR) to the field of
traffic prediction as early as 2009.

Luo et al. [25] proposed a high-accuracy predictive model
that combines SVR and Discrete Fourier Transform (DFT).
Compared with ARIMA, EMD-SVR and other models,
DFT-SVR has outstanding performance in short-term predic-
tion. Due to the development of computing power in recent
years, deep learning [26], as a new non-linear method, has
attracted great attention and use by researchers and business
people. A Deep learning network is a complex perceptron
with multiple layers, each containing a large number of
neurons. It implements the complex calculation by learning
the weights in the non-linear network structure and finally
realizes the purpose of high-precision traffic flow predic-
tion. Kumar et al. [27] applied ANN to achieve short-term
predictions for the future based on traffic data from past
periods. Their experimental results indicated that when the
time interval of traffic flow prediction is increased to 300%
of the original, the prediction accuracy of the neural network
remains consistent.
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To realize the prediction of traffic flow in different time
steps, Chen et al. [28] added Ensemble Ensemble Empiri-
cal Mode Decomposition (EEMD) on the basis of Artificial
Neural Network (ANN). They found that this ensemble
framework model significantly outperformed classical neural
network models in prediction. However, these methods are
mainly single-step predictions, which can not effectively
avoid cumulative error in the multi-step forecast. To solve
this problem, the time series prediction method incorporating
long short-term memory network (LSTM) has achieved con-
siderable results [29], [30], [31]. However, LSTM has disad-
vantages (1) limited historical data mining ability and (2) low
computational efficiency. More importantly, the above model
only considers the temporal characteristics of traffic data but
ignores the spatial features, which will undoubtedly lead to
the model’s prediction not being restricted by the standard
urban traffic structure, thus reducing the accuracy of the
prediction results. In addition, the prediction methods based
on Graph Convolutional Neural Network are also gradually
applied in traffic.

Zhao et al. [32] proposed the method of constructing a
neural network from the graph and used it in traffic flow fore-
casting for the first time. This model is called Temporal Graph
Convolutional Network (T-GCN). It innovatively adds a gated
recurrent unit (GRU) structure to the graph convolutional
network (GCN). Experiments show that the spatiotemporal
correlations implicit in traffic data can be well captured and
learned by the T-GCN model. The trained model outperforms
all previously proposed baseline methods in the prediction
results on real-world traffic datasets. T-GCN tries to combine
spatial features and temporal features for prediction and has
made significant progress, but there is still room for improve-
ment in prediction accuracy. The features and limitations of
the above-mentioned methods are summarized in Table 1.

Ill. PRELIMINARY
A. GRAPH CONVOLUTIONAL NEURAL NETWORK (GCN)
Traditional deep learning neural networks (DNN) cannot
represent the relational data of vertices and edges. Hence,
graph neural network (GNN) appears to solve this graph data
representation problem.

The process of GNN can be divided into two steps: the
first step is the propagation process, which refers to the
updating of nodes over time. The second step is the output
process, which is obtaining the target output (such as the
category of each node) based on the final node representation.
GNN learning is achieved by Almeida-Pineda algorithm [33].
The characteristic of the algorithm is that the whole graph
converges through the propagation process, and then the cor-
responding gradient is calculated on the convergent solution.
This way, we do not need to store the intermediate states
needed for the gradient calculation process. But the mapping
of the whole graph must be compressed to ensure a conver-
gent solution for the propagation process. The disadvantages
of GNN are as follows: (1) The fixed point hidden state update
method is very inefficient. (2) Using the same parameters in
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the process of iteration. (3) Some edge information features
cannot be effectively modelled.

GCN belongs to a kind of GNN. GCN differs from ordinary
GNN because it introduces a convolution function to learn by
extracting spatial features. The most significant innovation of
GCN based on GNN lies in using a convolution operator for
information aggregation.

1) BASIC KNOWLEDGE

As a linear function transform, Fourier transform [34] can
convert the signal between the time domain and the frequency
domain. The specific formula is as follows.

F(u) = / - Fx)e gy 1)

where the independent variable x represents the time in sec-
onds, and the transformation variable u represents frequency
(to Hertz units).

We define an acyclic graph G with vertices NV, its Laplacian
matrix My can be defined as M = —My + Mp, where Mp
is the degree (in-degree and out-degree) matrix, and My is
the adjacency matrix. The specific calculation formula of the
element of M, is as follows:

-1 while j # i && vj is contiguous with v;
My, = {deg(vj) whilej=i
0 else
(2)

2) CORE CONCEPT OF GCN
The GCN model [35] usually generates a new node repre-
sentation by aggregating the node itself and the surrounding
information of the node.

After essential spectrum convolution and Layer-wise linear
model processing [36], the expression of GNN is as follows:

PR B §
MgH)za(MD 2 MaMp 2M}PM§Q> 3)

In the above formula, the input of layer / network is M’ 111 €
RN*D (inijtial input is My (0) = X), and D represents the
dimension of each node vector. X represent the matrices input
into the GCN. My = My + Iy is the self-joined adjacent
matrix, MD is the degree matrix of MA, Ml(,ll,) e RDPxDig
the training parameter.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)

In 2014, Generative Adversarial Network (GAN) [37] was
proposed by Goodfellow and has been widely applied in
the field of computer vision. The basic idea of GAN is
that the inputs (randomly distributed vectors) pass through
a generator composed of neural networks to generate struc-
tured high-dimensional data. When the GAN network is
trained, the discriminant network will continuously improve
the recognition ability. In contrast, the generative network
will continuously improve the generative ability and reduce
the discriminant network’s discriminant ability. In the process
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TABLE 1. Two major approaches for traffic flow prediction.

Methods Features Limitations
e The time series data is required to be
stable.

e ARIMA e The model parameters are simple, and no e To achieve high-accuracy prediction of

eKalman filter

additional variables need to be added.

traffic flow requires a large amount of traffic

f}gglfls(;%SAL oGrey prediction method e They can solve the problem of traffic flow  data for model training.
eExponential smoothing  change in different time and period to a e They can not reflect the uncertainty and
method certain extent. non-linear characteristics of dynamic traffic
flow and can not overcome the influence of
random disturbance factors.
° M.a chine ]earl}m_g met]_10ds can learn dy- e The high precision parallel prediction is
namic characteristics during traffic and pre- .
*SVR dict possible emergencies not well realized.
MACHINE LEARN- eANN o The > are more owe;léul than the tradi-  ® A large amount of data is needed for
ING METHODS oL.STM tional Ztatistical mert)ho ds and can efficient] training, and the generalization ability of the
oT-GCN Y model depends on the quality of the data.

capture the spatial and temporal information
of the traffic system.

eThe ability to aggregate spatial information
still needs to be strengthened.

of competition between the two networks, the ability of GAN
to generate new samples will be improved.

1) DEFINITION OF GENERATIVE AND

ADVERSARIAL PROBLEM

The probability density function of the target high-
dimensional data is Ty,,(x), and the probability density
function of the Generator is set as Tg(x; 6), where 6 is
the parameter of the learned distribution. By optimizing 6,
let Tg(x; 0) is infinitely close to T us,(x). Our purpose is
to extract m data x1, x2, x3...x™ from Tgu.(x), and then
optimize parameter L = [[, T (xi ; 9) to maximize the
maximum likelihood function L. In fact, it is classified as the
problem of calculating the minimum KL distance between
Tyara(x) and TG (x; 6).

2) GENERATOR AND DISCRIMINATOR
Generator is a neural network whose goal is to find the set

of parameters 6 that minimizes the distance between 7 j,;,(x)
and Tg(x; 0).

G" =arg m(i;n Div (TG(x; 6), Tiara(x)) “

The goal of the discriminator is to be a “quality inspector’ by
distinguishing as much as possible between real data from the
dataset and mock data from the generator, but also to improve
performance in correcting errors.

D* = arg mDax V(D, G) (5)
Assuming G is a fixed value in the above formula, then:
V = Ex~Tyy, log D(x) 4+ Ex~1; log(—D(x) + 1)
= / [Tdma (x)log D(x) + Tg(x, 8) log(—D(x) + 1)] dx
) ®)
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If we want to find the best discriminator D, we need to
maximize the following formula

Tdata (x) log D(x) + T (x, 6) log(—D(x) + 1) (N

C. RNN, LSTM AND BI-LSTM

The time series prediction task needs to handle serialization
information well, which means our model needs to capture
the relationship between the inputs in the time series. The
recurrent neural network (RNN) [38] appears to solve the
time series prediction problem. However, since backpropa-
gation is based on the chain rule principle, RNNs exhibit
the hidden dangers of vanishing gradients and exploding
gradients with the increasing complexity of neural networks
[39]. Long Short-Term Memory (LSTM) [40] is a special
RNN (threshold RNN), which adds threshold selection to
solve the gradient problem encountered in long sequence
training. LSTM has better performance than common RNN
models on longer sequence predictions. LSTM consists of
a threshold for input, an output threshold, and a forgetting
threshold, establishing a self-loop connection. The LSTM
memory unit can remember values at any time interval and
control the flow of information inside and outside the unit
through three thresholds. LSTM networks are suitable for
extracting features and making predictions from time series
data of unknown length. The classical LSTM model formula
is as follows:

fr=0(z)

ir = 0 (%)

or = 0 (20)

¢, = tanh(z) © iy + ¢,—1 O f;

h; = tanh (¢;) © o; 8)

The unavoidable problem of the traditional RNN model
and LSTM model (Figure 1) is that information can only be
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FIGURE 2. Bi-directional LSTM model.

propagated forward. That is to say, the state of time ¢ only
depends on the previous sequence information.

Bidirectional Long Short-Term Memory (Bi-LSTM) [41]
is widely used in sequence processing to capture the
information before and after a sequence. It is obtained
by combining forward-propagated LSTM and backward-
propagated LSTM, which can analyze sequence information
equally (Figure 2).

D. TRAFFIC FLOW PREDICTION PROBLEM

Traffic flow prediction is a typical problem of Spatio-temporal
data prediction. Different kinds of traffic data are embedded
in continuous and dynamically changing space and time.
Therefore, obtaining reasonable time and space features from
past data is the key to achieving accurate prediction. The
specific problem of traffic flow prediction is defined as
follows: we know the traffic graph G = (V, E) (where the
node set is represented by V, and the edge set is represented
by E) and the historical SE (Source-End) matrices of urban
traffic flow (Flowy;; = Flowi, Flow,, ..., Flow;), which
are the source point-end vehicle flow matrices, and carry
out multi-intersection urban traffic flow prediction through
Flowp;s information. For each node, an eigenvector of fixed
length is generated every minute as follows.

Flow; 4+ = Predict [Flowp;s] ©)]

where k(k >= 1) is the step size of prediction, Predict is the
prediction method we need to seek.
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IV. METHOD

The traditional traffic flow forecast is a single-step forecast,
and the result is not ideal. A hybrid model network structure
(GCN-GAN) based on GCN and GAN is proposed in this
section to improve the accuracy of traffic flow prediction and
increase the step length of traffic flow prediction. GCN-GAN
is designed to jointly predict the traffic flow at multiple
intersections within a single step or multiple steps (as shown
in Figure 3). The general idea is to apply graph convolution
directly to historical traffic flow data Flowp;s (graph structure
data represented by matrix). GCN extracts patterns and fea-
tures in the frequency domain, and the extracted information
is used for time series prediction.

It is complicated to calculate with graph information, so we
convert it into SE matrices of traffic flow. In the SE matrix,
when the nodes are connected, the position corresponding
to a particular row and column is marked as 1. Otherwise,
it is marked as 0. Then a filter is constructed in the Fourier
domain, and GCN is used to extract the spatial information
features of multiple urban traffic intersections and their adja-
cent regions in the SE matrix.

1 1
f (M M) = (MD‘ZMAMD_ZM;?M%)) (10)
In the above formula, Mé‘l,) is the parameter matrix of the /
layer GCN neural network for traffic information extraction,
which will be optimized in each iteration.

A. GAN STRUCTURE

The design of the GAN network in this section is inspired by
Conditional Generative Adversarial Nets (C-GAN) [42]. The
structure contains Generator and Discriminator, respectively.

1) GENERATOR DESIGN
The generator is internally composed of DNN, as shown in
Figure 5, and the input conditions are:

o History traffic flow SE matrices Flowy, Flows, ...,
Flow;

o Flowgen,, Flowgen,, ... and Flowge,, are obtained by
feature extraction of historical traffic flow SE matrices
using GCN

o The step size k that needs to be predicted

« Normally distributed data z

Here, we input the SE matrices of historical traffic flow
Flowy, Flowy, . .., Flow, and the matrices extracted by GCN
Flowgen,, Flowgen, , - . ., Flowgey,, into the generator together.
Our idea is based on residual connection [43], aiming to
combine linear and nonlinear features in traffic flow data. The
generator needs to find a parameter set 6 that minimizes the
distance between TG(x; 6) and Ty,,(x) under the conditions
of historical data, graph convolution and prediction steps.

G* = arg mén Div (Tg(x, 0), Taata(x)) (11)
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FIGURE 4. Convolution diagram of urban traffic flow according to time
series.
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FIGURE 5. Generator network structure.

B. DISCRIMINATOR DESIGN

In the GAN model designed in this paper, the real and
predicted data are input into the discriminator, and the
discriminator outputs the judgment result of the input
data. The discriminator distinguishes between the generated
data T (x; 0) and the real data T4,,(x). The score of real data
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FIGURE 6. Discriminator network structure.

tends to be 1, and the score of generated data tends to be 0.
Tyara(x) log D(x) + Tg(x, 0)log(—D(x) + 1) (12)

The Algorithm process of GCN-GAN is shown as
Algorithm 1.

V. EXPERIMENTS

A. DataSet

We used surveillance video data at 27 intersections in a
city in China within two months. Due to the influence of
irresistible factors, the video resolution obtained at each inter-
section has a certain degree of acceptable difference, and
the full size of our data is about 1.3TB. Image frames were
extracted from the video at the frequency of two frames per
second, and the resolution of image frames was modified to
128*128, which were named according to the intersection
number and time. The traffic flow time-series image data
set contains 34.99 million images. After target detection and
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Algorithm 1 The Algorithm Process of GCN-GAN

Input: Urban traffic SE matrices of multi-intersection traffic
flow Flowq, ..., Flow;

Output: Traffic flow prediction result matrix Flow;

1: Use double-layer GCN to capture position information
in SE matrices to get Flowgey,, . .., Flowgs,, based on
Equation 10

2: Initialize state generator G and discriminator D

3: Feed Flowgen,, ..., Flowgen,, Flowy, ..., Flow,, num-
ber of prediction steps k (k = 1, 3, 5), normal distribu-
tion z (3, 0.52) into generator G

4: repeat

Extract m data x1, x2, x3 ... x™ from Taata(x)
Fix G, optimize D by computing the gradient of D

1
Vo f [T (x) log D(x) + T(x, 8)log(1 — D(x)]

7. Fix D, optimize G by computing the gradient of G

1
Vggn—1 / [To(x, 6)log(—D(x) + 1)]

8: until The gradient of the D is approximately equal to 0
9: End of training
10: Convert the new Flowy, ..., Flow; to Flowge,, ...,
Flowgcy,, and input them into the generator G together
with the number of predicted steps k, and output the
predicted traffic flow.

text information extraction, a real-world multi-road traffic
Flow time-series text data set (Multi-Road Traffic Dataset,
MTD) is generated. The vehicle types in the MTD dataset
include trucks, cars, and buses. The MTD dataset is designed
in Jason-type text format, and the MTD of each intersec-
tion contains the following field information (as shown in
Table 2).

For the obtained MTD dataset, we first calculate the traffic
flow of all 27 intersections in units of minutes to generate the
traffic flow SE matrices Flow. For the minute-by-minute data
at each intersection for a month, there are 43200 SE matrices,
that is, T, = 43200. In the experimental process, S-fold cross-
validation is used to obtain model data and avoid the influence
of algorithm randomness to the greatest extent.

B. PARAMETER SETTINGS

Our experimental environment is listed here: the software
environment is PyCharm 2022.1.2; The deep learning frame-
work used is TensorFlow2.0.0. The operating system is
Winl0. The training device was dictated by the 11th Gen
Intel(R) Core(TM) 17-11800h @ 2.30GHz. The graphics card
configuration used for the calculations is the Tesla V100.
The prediction accuracy will inevitably decrease gradually
with the increase of the prediction step. To ensure the better
practicability of our model, we set the prediction step k as 1,
3, and 5, which were compared with the baseline algorithm.
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TABLE 2. MTD dataset field information.

Field Name Description

cross_roadid intersection number
West2East_W_Straight
West2East_E_Straight
West2East_W_Left
West2East_ W_Right
East2West_W_Straight
East2West_E_Straight
East2West_E_Left
East2West_E_Right
North2South_N_Straight
North2South_S_Straight
North2South_N_Left
North2South_N_Right Turn right from north2south (turn right on the north side)
South2North_N_Straight
South2North_S_Straight
South2North_S_Left
South2North_S_Right Turn right from south2north (turn right on the south side)

Go straight from west2east (west side)
Go straight from west2east (east side)

Turn left from west2east (turn left on the west side)
Turn right from west2east (turn right on the west side)
Go straight from east2west (west side)

Go straight from east2west (east side)

Turn left from east2west (turn left on the east side)
Turn right from east2west (turn right on the east side)
Go straight from north2south (north side)

Go straight from north2south (south side)

Turn left from north2south (turn left on the north side)

Go straight from South2North (north side)
Go straight from South2Northt (south side)

Turn left from south2north (turn left on the south side)

The dimension of the Bi-LSTM of the generator is designed
to be 27*%27. The number of layers of the DNN is 3, so the
dimension of the DNN is (27 x 128) x (128 x 128) x (128 x
k). Depending on the value of k, the generator generates
prediction data of dimension (1 x k) at a point in time.
In the discriminator, we set the dimension of Bi-LSTM to be
27 x 27. The number of layers of the DNN is three layers,
so the dimension is (27 x 128) x (128 x 64) x (64 x 1),
and the activation function of the last layer is Sigmoid. The
discriminator outputs a score for judging the authenticity of
the data.

C. BASELINE ALGORITHMS

This section uses ARIMA, SVR, DNN, and LSTM as the
baseline algorithms for comparative experiments.

o Autoregressive Integrated Moving Average model
(ARIMA) [44]:

The basic idea of ARIMA is to use the features of current
and past moments in a time series to predict possible
future values.

o Support Vactor Regression (SVR) [45]: The ultimate
goal of SVR optimization is to minimize the maximum
distance between the sample points and the hyperplane
so that the model’s predicted value is as close to the true
value as possible and has excellent generalization ability
in the face of unknown data.

o Deep Neural Network (DNN) [46]: A Deep neural
network realizes complex prediction and calculation
through connections and nesting among neurons.

o Long short-term memory (LSTM) [47]: LSTM consists
of a forgetting mechanism, an input mechanism, and an
output mechanism and is mainly used to solve the prob-
lems of memory retention and gradient disappearance in
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TABLE 3. Prediction results of traffic flow at multiple intersections when

the step size k = 1.

Algorithm  MAE,,y MSEq,y RMSEq,
ARIMA [39] 18.16 77451 27.83
SVR [40] 14.32 504.90 2247
DNN [41] 14.01 398.80 19.97
LSTM [42] 13.55 359.10 18.95
T-GCN [32] 11.20 266.02 1631
GCN-GAN 10.44 240.87 15.52

TABLE 4. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 1.

Algorithm  MAE,,, MSEqyy RMSEq.,
ARIMA [39] 0% 0% 0%
SVR [40] 21.15% 34.81% 19.26%
DNN [41] 2285%  48.51% 28.24%
LSTM [42]  25.39% 53.64% 31.91%
T-GCN[32]  3832% 65.65% 41.39%
GCN-GAN ~ 4493%  68.90% 44.23%

TABLE 5. Prediction results of traffic flow at multiple intersections when

the step size k = 3.

Algorithm  MAE,,;, MSEq,y RMSEq.,
ARIMA [39]  24.60 1246.09 3530
SVR [40] 19.95 830.02 28.81
DNN [41] 19.58 665.12 25.79
LSTM [42] 19.02 602.70 24.55
T-GCN [32] 17.74 454.12 21.31
GCN-GAN 15.04 339.66 18.43

TABLE 6. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 3.

Algorithm MAFE.,qg MSE.g RMSEq.uq
ARIMA [39] 0% 0% 0%

SVR [40] 18.90% 33.38% 18.39%

DNN [41] 20.41% 46.62% 26.94%
LSTM [42] 22.68% 51.63% 30.45%
T-GCN [32] 27.89% 63.56% 41.39%
GCN-GAN 38.86% 72.74% 47.79 %

TABLE 7. Prediction results of traffic flow at multiple intersections when

the step size k = 5.

Algorithm MAE.,g MSEq.g RMSEq.uq
ARIMA [39] 40.70 2713.37 52.09

SVR [40] 34.14 1781.68 4221

DNN [41] 33.62 1489.96 38.60
LSTM [42] 32.83 1348.36 36.72
T-GCN [32] 24.14 986.59 31.41
GCN-GAN 20.27 724.69 26.92

long-term sequence training. Through practical parame-

ter design, traffic flow can be effectively predicted.

o Temporal Graph Convolutional Network (T-GCN) [32]:
T-GCN innovatively adds a gated recurrent unit (GRU)
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FIGURE 7. Prediction results of traffic flow at multiple intersections when
the step size k = 1.
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FIGURE 8. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 1.

TABLE 8. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 5.

Algorithm  MAFE,,, MGSE.;; RMSEqu,

ARIMA [39] 0% 0% 0%
SVR [40] 16.12% 34.34% 18.97%
DNN [41] 17.40% 45.09% 25.90%

LSTM [42] 19.34% 50.31% 29.51%

T-GCN [32] 40.69% 63.64% 39.70%

GCN-GAN 50.20% 73.29% 48.32%

structure to the graph convolutional network (GCN).
The model can learn the temporal and spatial character-
istics of traffic data.

D. EXPERIMENT PROCESS

We input the training data Flowy, ..., Flow; into the
GCN-GAN network and obtain the Flowgey,, . .., Flowgcy,
through GCN. Feed the training data, Flowgey, , . . ., Flowgey,,

and k value into the generator. We conducted three sets of
experiments under three prediction steps (k = 1, 3, 5), and
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FIGURE 10. The improvement of SVR, DNN, LSTM and GCN-GAN in prediction results compared with ARIMA when the step size k = 5.

prediction results compared with ARIMA when the step size k = 3.

k=1 k=3 k=5

TABLE 9. The improvement of GCN-GAN's prediction result compared
with the average prediction results of the other four baseline algorithms o 60 60
under three step sizes.

)
=3

30 30

50 50 50
Index Stepk=1 Stepk=3 Stepk=>5  Average
MAEquq 26.73% 25.46% 38.74% 30.31% <40 4 4
MSFEquvg 47.71% 55.28% 56.45% 53.15% g
RMSEauvq 26.47% 32.12% 33.04% 30.54% 5
H

%}
S

20 20

each group was trained for epoch=10000 times. Training and
testing are based on the principle of 5-fold cross-validation.

E. EVALUATION METRICS
Some evaluation metrics should be selected to measure
the discrepancy between the predicted results and observed . , L

FIGURE 13. The improvement of GCN-GAN's prediction result compared
values to evaluate the GCN-GAN model performance for with the average prediction results of the other four baseline algorithms
traffic flow. In general, we specify the model predic- under three step sizes.
tive results as x, x(z), x®  x the true value is
yD y@ 3y the prediction function is A(x). The m 1) MEAN ABSOLUTE ERROR (MAE)
value here is determined by the 5-fold cross-validation. In this As one of the most classic regression loss functions, MAE
paper, we use the following metrics. represents the mean of the absolute error between the true

0 \I\P& §h§> @cﬁ/ 0 \I\P& §h§> @5?/ 0 }I\?’% §h§> @5?,
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TABLE 10. Symbol notation and definition.

Symbol Description
T The time domain variable in the Fourier formula
u The frequency domain variable in the Fourier formula
My, Laplace matrix of traffic flow graph
M4 Adjacency matrix of traffic flow graph

Mp Degree (in-degree and out-degree) matrix of traffic flow graph

N Number of nodes in the graph
D The dimension of each node vector
Ma Self-joined adjacent matrix of traffic flow graph
M D The degree matrix of M A
M g) The input of layer 1 network (initial input M gn = Flow;)
(1) The parameter matrix of the 1 layer GCN neural network for
w traffic information extraction
Flow; History traffic flow SE matrices (i = 1, ...t)
Fl ~ Features extracted from SE matrices of historical traffic flow
OWgen_i using GCN (G = 1, ..., £)
k Step size (k = 1, 3, 5)
z Normally distributed data
The probability density function of the target high-dimensional
Tdata (I ) data
Tc(z,0) The probability density function of the Generator

value and the observed value.

1 & . .
MAE(X, h) = — 3 |h(x?) =y (13)
n i=1

2) MEAN SQUARED ERROR (MSE)

MSE calculates the average value of squared errors between
predicted and true values. MSE can measure the gap between
different data to some extent. The higher the accuracy of the
model to experimental data, the smaller the value of MSE.

MSE(X, h) = % D (h(x) — y 0y (14)
i=1

3) ROOT MEAN SQUARED ERROR (RMSE)

RMSE is the square root of the mean squared deviation
of the predicted value from the true value over n predic-
tions. Through RMSE, we can visually observe the deviation
between the actual and predicted value.

RMSE(X, h) = nl/l Z(h(x(i)) _ y(i))Z (15)
i=1

where x® represents one of the 27 multi-roads’ traffic flow.

According to the error formula, we can calculate the
respective averages of the three metrics at each intersection
under 5-fold cross-validation. Meanwhile, we need complete
SE matrices for the model outcome. Thus, we compute
the accumulation average for 27 multi-roads MAE, MSE,
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and RMSE.
MAE;
MAE g, = Z 27 (16)
MSE;
MSEnyy = it MSE: o a7)
il RMSE;
RMSE 4, = 27 (18)

F. RESULTS AND DISCUSSION

To better demonstrate the superiority of the GCN-GAN,
we make predictions based on MTD test sets under three step
sizes (k = 1, 3,5). By computing the MAE,,;, MSE,,; and
RMSE , of the 27 intersections (as shown in Table 3, Table 5
and Table 7), we can see that GCN-GAN has a significant
improvement in the overall prediction effect. To demonstrate
the superiority of our model in traffic flow prediction more
clearly, we take the ARIMA algorithm as the benchmark
to calculate the improvement of SVR, DNN, LSTM, and
GCN-GAN in prediction results compared with ARIMA (as
shown in Table 4, Table 6, Table 8). The above prediction
results and improvement are visualized for further analy-
sis (as shown in Figure 7, Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12).

As shown in Table 3, Table 5 and Table 7, regardless of the
prediction step size, GCN-GAN achieves better performance
than other baseline algorithms on all four indexes. Since MSE
is more sensitive to the fluctuation of outliers than MSE, the
value of MSE,,, is much larger than MAE,,, and MSE,,,
in terms of error. MAE,,, showed the intuitive accuracy of
GAN-GAN algorithm’s prediction, which reached the lowest
values of 10.44 (k = 1), 15.04 (k = 3) and 20.27 (k = 5) in
the three-step sizes. With the increase in predicted step size,
the results of MSE,,, and RMSE,,, revealed the stability of
GCN-GAN. While the improvement of other baseline algo-
rithms decreased with the increase of predicted step size, the
improvement of GCN-GAN still increased. When k=5, the
improvement of RMSE was 48.32%. Although the prediction
accuracy will decrease with the step size increase for all
prediction models, GCN-GAN shows the best characteristics
compared with other baseline methods. The decline rate is
slow and stable for GCN-GAN.

To more intuitively show the influence of step size changes
on the prediction error of the GCN-GAN model, we calcu-
lated the average error of ARIMA, SVR, DNN, LSTM and
T-GCN algorithms under three steps and further calculated
the improvement of the GCN-GAN’s prediction error relative
to the average error (as shown in Table 9). As shown in
Figure 13, with the increase of the predicted step length, the
overall improvement of the three indicators of the GCN-GAN
model is gradually improving, even though the absolute error
is increasing. This phenomenon shows that our model per-
forms better than other baseline algorithms in multi-step
prediction. That is, the rate of accuracy decline is relatively
gentle and stable. It is worth noting that GCN-GAN’s predic-
tion of the traffic flow at multiple intersections generates the
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traffic flow at all intersections at one time instead of running
a prediction model program at each intersection in turn or at
the same time greatly accelerates the prediction speed.

VI. CONCLUSION

Aiming at the problem that most of the traditional traffic
flow prediction methods are single-step prediction models
and the prediction accuracy is low, we propose a novel traf-
fic flow prediction model GCN-GAN, combining the Graph
Convolution Neural Network (GCN) module and Generative
Adversative Neural Network (GAN) module to predict urban
traffic flow in this paper. It is a multi-step prediction of traffic
flow at multi-intersections.

Compared with ARIMA, SVR, DNN and LSTM, we find
that the GCN-GAN model has an obvious advantage in
multi-step prediction, and its prediction performance is about
30.54% (average value of RMSE,,,) higher than the bench-
mark time series prediction model.

Our method first uses GCN to extract spatial features of
traffic data and further utilizes GAN and Bi-LSTM structures
for time series prediction. Due to the consideration of the
spatial topological relationship between intersections in the
whole traffic network, GCN-GAN can achieve more accurate
results than the traditional timing prediction methods. On the
other hand, it can be seen from Table 9 and Figure 13 that
with the increase of the prediction step, the improvement
of the average value of the GCN-GAN model compared
with other baseline methods does not decrease but increases.
This situation shows that the model still has specific stability
when the prediction steps size increases. We mainly solve the
problem of low accuracy of multi-step prediction in traffic
flow prediction and provide a new idea for Spatio-temporal
data integration.

This promising result will encourage us to continue to use
the model for large-scale traffic flow prediction problems.

In the following study, we will consider adding a
self-attention mechanism to the GCN-GAN model to achieve
more optimized prediction results for timing information.
Meanwhile, the experimental results are based on MTD data
sets, and the superiority of the model will be verified on
multiple data sets in the future.
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