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ABSTRACT As a necessary component in intelligent transportation systems (ITS), traffic flow-based
prediction can accurately estimate the traffic flow in a certain period and area in the future. However, despite
the success of traditional research and current machine learning methods, traffic flow prediction models
have limitations in terms of prediction accuracy and efficiency. In this work, we propose a novel traffic flow
prediction model named Graph Convolution and Generative Adversative Neural Network (GCN-GAN),
which leverages Graph Convolution Neural Network (GCN) module and Generative Adversative Neural
Network (GAN) module to predict urban traffic flow. Firstly, the GCN module extracts historical traffic
flow information in the graph structure. Secondly, the GANmodule generates reliable traffic flow prediction
results by adversative training. Additionally, GCN-GAN can parallelly generate prediction results rather
than traditional one by one. Through experiments on the traffic flow dataset at multiple intersections, our
GCN-GAN model outperforms the baseline methods by over 30.54% and has apparent advantages in multi-
step prediction.

13 INDEX TERMS Intelligent transport system, GCN-GAN, graph machine learning, time series prediction.

I. INTRODUCTION14

Due to the development of technology and the economy, the15

number of vehicles on the road grows each year, leading to16

urban congestion. At the same time, the incomplete urban17

road planning and inadequate traffic facilities have exacer-18

bated this situation, resulting in a huge amount of energy19

waste and pollution emissions [1]. Many methods have been20

proposed to solve the problem of traffic congestion, such21

as increasing infrastructure construction [2], increasing the22

number of traffic officers [3] and restricting travel according23

to the license plate number [4], [5]. Compared with invest-24

ing a lot of costs in control, if we can predict the traffic25

flow in advance, the occurrence of traffic congestion can be26
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approving it for publication was Joey Tianyi Zhou.

considerably avoided. Thus, it is necessary to propose an 27

accurate prediction method suitable for modern governance. 28

Due to the disruptive impact of computing and commu- 29

nication in the field of transportation, several professionals 30

jointly proposed the term Intelligent Transportation Systems 31

(ITS) in the 1980s [6]. ITS is a system that attempts to solve 32

various road traffic problems using information and commu- 33

nication technology [7]. Specifically, by integrating sensors, 34

traffic signals, and personnel information, ITS can achieve 35

precise prediction and control of traffic. In the process of 36

using ITS, traffic prediction can effectively improve the effect 37

of traffic information regulation [8]. 38

Time series prediction is a method to extract valuable 39

information and predict the next trend of the system by 40

analyzing the past data [9]. As one of the typical time series 41

problems, urban traffic flow forecast is essential in ITS. 42

For example, driving routes can be dynamically planned 43
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by predicting traffic flow, thus effectively reducing traffic44

congestion. Randomness, periodicity, and Spatio-temporal45

characteristics are the challenges in traffic flow forecast.46

In addition, the deepening of urbanization also expands the47

urban road network and dramatically increases the computa-48

tional complexity of predictions.49

At present, many models have been put forward and50

applied in the field of traffic flow prediction. The disadvan-51

tages of these methods are insufficient prediction accuracy52

[10], short prediction step length [11], difficulty in paral-53

lel prediction [12], and inability to deal with irregular and54

unexpected traffic conditions [13].55

Therefore, to obtain a model with a good prediction effect,56

we must overcome the above problems.57

In this paper, we propose a new prediction model based58

on time series (GCN-GAN), which combines Graph Convo-59

lution Neural Network (GCN) and Generative Adversative60

Neural Network (GAN) to forecast traffic flow. The main61

contributions are as follows.62

• GCN-GAN leverages Graph Convolution Neural Net-63

work (GCN)module and Generative Adversative Neural64

Network (GAN) module to predict urban traffic flow.65

• GCN-GAN can generate prediction results in parallel66

instead of the traditional one by one, so it has obvious67

advantages in multi-step prediction.68

• GCN-GAN model outperforms the baseline methods by69

over 30.54%.70

Our proposedmodel significantly improves the accuracy of71

traffic flow prediction and performs well in multi-step predic-72

tion. The aggregation analysis function based on graph neural73

network improves the robustness of the model and reduces74

the negative impact of special situations in traffic flow on75

the prediction results. The organization of the article is as76

follows. In Section II, the research progress of traffic flow77

prediction methods is presented. In Section III, we briefly78

introduce basic knowledge and define the traffic flow pre-79

diction problem. In Section IV, we illustrate the specific80

architecture and algorithm of the GCN-GAN. In Section V,81

we discuss experimental design and experimental results.82

Future work is prospected in Section VI.83

II. RELATED WORKS84

In this paper, we can divide traffic flow prediction into statis-85

tical methods and machine learning methods.86

A. STATISTICAL METHODS87

As one of the statistical methods, the autoregressive88

integrated moving average model (ARIMA) is specified by89

various training data. We test the model at each stage with90

completely different data to make the model more accurate91

and general. The results in [14] suggest that ARIMA models92

trained on time-series data can achieve better results than93

those trained on non-time-series data. When the non-linear94

GARCH model is added to the ARIMA model, both the95

conditional mean of the traffic flow sequence and the het- 96

eroscedasticity can be calculated. 97

Conditional mean and conditional variance contained 98

in the data can be predicted simultaneously by the 99

ARIMA-GARCHmodel [15], thus a continuous time-varying 100

confidence interval can be calculated. These calculated 101

time-variant confidence intervals are more temporally deter- 102

ministic than the consistent confidence intervals provided by 103

standard ARIMA. 104

In addition to being suitable for traffic flow prediction, 105

ARIMA is also effective for flow prediction in subways [16], 106

scenic spots, and other places. 107

However, using the ARIMA model to achieve high- 108

accuracy prediction of traffic flow requires a large amount of 109

traffic data for model training. Therefore, ARIMA does not 110

perform well when the amount of data is insufficient. Kalman 111

filter [17] is a state-space method in the time domain, which 112

regards the signal as the output of the linear system under 113

the action of white noise. It has the advantages of a flexible 114

selection factor and short prediction time. In view of the 115

problem that the performance of the classical Kalman filter 116

and the extended Kalman filter degrades when dealing with 117

non-Gaussian noise, many improved Kalman filter models 118

have been proposed in recent years [18], [19], [20]. In addi- 119

tion to the above models, statistical methods also include the 120

Grey prediction method [21], [22] and Exponential smooth- 121

ing method [23]. 122

The statistical methods have the advantages of simple 123

parameters and easy calculation. However, the model’s per- 124

formance highly depends on the stationarity of the data. They 125

can not reflect the uncertainty and non-linear characteristics 126

of dynamic traffic flow and can not overcome the influence 127

of random disturbance factors. 128

B. MACHINE LEARNING METHODS 129

In the field of Machine Learning Methods, Castro-Neto et al. 130

[24] applied Support Vector Regression (SVR) to the field of 131

traffic prediction as early as 2009. 132

Luo et al. [25] proposed a high-accuracy predictive model 133

that combines SVR and Discrete Fourier Transform (DFT). 134

Compared with ARIMA, EMD-SVR and other models, 135

DFT-SVR has outstanding performance in short-term predic- 136

tion. Due to the development of computing power in recent 137

years, deep learning [26], as a new non-linear method, has 138

attracted great attention and use by researchers and business 139

people. A Deep learning network is a complex perceptron 140

with multiple layers, each containing a large number of 141

neurons. It implements the complex calculation by learning 142

the weights in the non-linear network structure and finally 143

realizes the purpose of high-precision traffic flow predic- 144

tion. Kumar et al. [27] applied ANN to achieve short-term 145

predictions for the future based on traffic data from past 146

periods. Their experimental results indicated that when the 147

time interval of traffic flow prediction is increased to 300% 148

of the original, the prediction accuracy of the neural network 149

remains consistent. 150
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To realize the prediction of traffic flow in different time151

steps, Chen et al. [28] added Ensemble Ensemble Empiri-152

cal Mode Decomposition (EEMD) on the basis of Artificial153

Neural Network (ANN). They found that this ensemble154

framework model significantly outperformed classical neural155

network models in prediction. However, these methods are156

mainly single-step predictions, which can not effectively157

avoid cumulative error in the multi-step forecast. To solve158

this problem, the time series prediction method incorporating159

long short-term memory network (LSTM) has achieved con-160

siderable results [29], [30], [31]. However, LSTM has disad-161

vantages (1) limited historical data mining ability and (2) low162

computational efficiency. More importantly, the above model163

only considers the temporal characteristics of traffic data but164

ignores the spatial features, which will undoubtedly lead to165

the model’s prediction not being restricted by the standard166

urban traffic structure, thus reducing the accuracy of the167

prediction results. In addition, the prediction methods based168

on Graph Convolutional Neural Network are also gradually169

applied in traffic.170

Zhao et al. [32] proposed the method of constructing a171

neural network from the graph and used it in traffic flow fore-172

casting for the first time. Thismodel is called Temporal Graph173

Convolutional Network (T-GCN). It innovatively adds a gated174

recurrent unit (GRU) structure to the graph convolutional175

network (GCN). Experiments show that the spatiotemporal176

correlations implicit in traffic data can be well captured and177

learned by the T-GCNmodel. The trained model outperforms178

all previously proposed baseline methods in the prediction179

results on real-world traffic datasets. T-GCN tries to combine180

spatial features and temporal features for prediction and has181

made significant progress, but there is still room for improve-182

ment in prediction accuracy. The features and limitations of183

the above-mentioned methods are summarized in Table 1.184

III. PRELIMINARY185

A. GRAPH CONVOLUTIONAL NEURAL NETWORK (GCN)186

Traditional deep learning neural networks (DNN) cannot187

represent the relational data of vertices and edges. Hence,188

graph neural network (GNN) appears to solve this graph data189

representation problem.190

The process of GNN can be divided into two steps: the191

first step is the propagation process, which refers to the192

updating of nodes over time. The second step is the output193

process, which is obtaining the target output (such as the194

category of each node) based on the final node representation.195

GNN learning is achieved by Almeida-Pineda algorithm [33].196

The characteristic of the algorithm is that the whole graph197

converges through the propagation process, and then the cor-198

responding gradient is calculated on the convergent solution.199

This way, we do not need to store the intermediate states200

needed for the gradient calculation process. But the mapping201

of the whole graph must be compressed to ensure a conver-202

gent solution for the propagation process. The disadvantages203

ofGNNare as follows: (1) The fixed point hidden state update204

method is very inefficient. (2) Using the same parameters in205

the process of iteration. (3) Some edge information features 206

cannot be effectively modelled. 207

GCNbelongs to a kind of GNN.GCNdiffers from ordinary 208

GNN because it introduces a convolution function to learn by 209

extracting spatial features. The most significant innovation of 210

GCN based on GNN lies in using a convolution operator for 211

information aggregation. 212

1) BASIC KNOWLEDGE 213

As a linear function transform, Fourier transform [34] can 214

convert the signal between the time domain and the frequency 215

domain. The specific formula is as follows. 216

F(u) =
∫
∞

−∞

f (x)e−2π ixudx (1) 217

where the independent variable x represents the time in sec- 218

onds, and the transformation variable u represents frequency 219

(to Hertz units). 220

We define an acyclic graphGwith verticesN , its Laplacian 221

matrix ML can be defined as ML = −MA + MD, where MD 222

is the degree (in-degree and out-degree) matrix, and MA is 223

the adjacency matrix. The specific calculation formula of the 224

element ofML is as follows: 225

MLj,i =


−1 while j 6= i && vj is contiguous with vi
deg

(
vj
)

while j = i
0 else

226

(2) 227

2) CORE CONCEPT OF GCN 228

The GCN model [35] usually generates a new node repre- 229

sentation by aggregating the node itself and the surrounding 230

information of the node. 231

After essential spectrum convolution and Layer-wise linear 232

model processing [36], the expression of GNN is as follows: 233

M (l+1)
H = σ

(
M̂D
−

1
2 M̂AM̂D

−
1
2M (l)

H M (l)
W

)
(3) 234

In the above formula, the input of layer l network isM l
H ∈ 235

RN×D (initial input is MH (0) = X ), and D represents the 236

dimension of each node vector. X represent the matrices input 237

into the GCN. M̂A = MA + IN is the self-joined adjacent 238

matrix, M̂D is the degree matrix of M̂A, M
(l)
W ∈ RD×Dis 239

the training parameter. 240

B. GENERATIVE ADVERSARIAL NETWORK (GAN) 241

In 2014, Generative Adversarial Network (GAN) [37] was 242

proposed by Goodfellow and has been widely applied in 243

the field of computer vision. The basic idea of GAN is 244

that the inputs (randomly distributed vectors) pass through 245

a generator composed of neural networks to generate struc- 246

tured high-dimensional data. When the GAN network is 247

trained, the discriminant network will continuously improve 248

the recognition ability. In contrast, the generative network 249

will continuously improve the generative ability and reduce 250

the discriminant network’s discriminant ability. In the process 251
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TABLE 1. Two major approaches for traffic flow prediction.

of competition between the two networks, the ability of GAN252

to generate new samples will be improved.253

1) DEFINITION OF GENERATIVE AND254

ADVERSARIAL PROBLEM255

The probability density function of the target high-256

dimensional data is Tdata(x), and the probability density257

function of the Generator is set as TG(x; θ ), where θ is258

the parameter of the learned distribution. By optimizing θ ,259

let TG(x; θ) is infinitely close to Tdata(x). Our purpose is260

to extract m data x1, x2, x3 . . . xm from Tdata(x), and then261

optimize parameter L =
∏m

i=1 TG
(
x i; θ

)
to maximize the262

maximum likelihood function L. In fact, it is classified as the263

problem of calculating the minimum KL distance between264

Tdata(x) and TG(x; θ ).265

2) GENERATOR AND DISCRIMINATOR266

Generator is a neural network whose goal is to find the set267

of parameters θ that minimizes the distance between Tdata(x)268

and TG(x; θ ).269

G∗ = argmin
G

Div (TG(x; θ),Tdata(x)) (4)270

The goal of the discriminator is to be a ‘‘quality inspector’’ by271

distinguishing as much as possible between real data from the272

dataset and mock data from the generator, but also to improve273

performance in correcting errors.274

D∗ = argmax
D

V (D,G) (5)275

Assuming G is a fixed value in the above formula, then:276

V = Ex∼Tdata logD(x)+ Ex∼TG log(−D(x)+ 1)277

=

∫
x

[
Tdata (x) logD(x)+ TG(x, θ) log(−D(x)+ 1)

]
dx278

(6)279

If we want to find the best discriminator D, we need to 280

maximize the following formula 281

Tdata (x) logD(x)+ TG(x, θ) log(−D(x)+ 1) (7) 282

C. RNN, LSTM AND BI-LSTM 283

The time series prediction task needs to handle serialization 284

information well, which means our model needs to capture 285

the relationship between the inputs in the time series. The 286

recurrent neural network (RNN) [38] appears to solve the 287

time series prediction problem. However, since backpropa- 288

gation is based on the chain rule principle, RNNs exhibit 289

the hidden dangers of vanishing gradients and exploding 290

gradients with the increasing complexity of neural networks 291

[39]. Long Short-Term Memory (LSTM) [40] is a special 292

RNN (threshold RNN), which adds threshold selection to 293

solve the gradient problem encountered in long sequence 294

training. LSTM has better performance than common RNN 295

models on longer sequence predictions. LSTM consists of 296

a threshold for input, an output threshold, and a forgetting 297

threshold, establishing a self-loop connection. The LSTM 298

memory unit can remember values at any time interval and 299

control the flow of information inside and outside the unit 300

through three thresholds. LSTM networks are suitable for 301

extracting features and making predictions from time series 302

data of unknown length. The classical LSTM model formula 303

is as follows: 304

ft = σ
(
zf
)

305

it = σ (zi) 306

ot = σ (z0) 307

ct = tanh(z)� it + ct−1 � ft 308

ht = tanh (ct)� ot (8) 309

The unavoidable problem of the traditional RNN model 310

and LSTM model (Figure 1) is that information can only be 311
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FIGURE 1. Internal structure of LSTM.

FIGURE 2. Bi-directional LSTM model.

propagated forward. That is to say, the state of time t only312

depends on the previous sequence information.313

Bidirectional Long Short-Term Memory (Bi-LSTM) [41]314

is widely used in sequence processing to capture the315

information before and after a sequence. It is obtained316

by combining forward-propagated LSTM and backward-317

propagated LSTM, which can analyze sequence information318

equally (Figure 2).319

D. TRAFFIC FLOW PREDICTION PROBLEM320

Traffic flowprediction is a typical problem of Spatio-temporal321

data prediction. Different kinds of traffic data are embedded322

in continuous and dynamically changing space and time.323

Therefore, obtaining reasonable time and space features from324

past data is the key to achieving accurate prediction. The325

specific problem of traffic flow prediction is defined as326

follows: we know the traffic graph G = (V ,E) (where the327

node set is represented by V , and the edge set is represented328

by E) and the historical SE (Source-End) matrices of urban329

traffic flow (Flowhis = Flow1,Flow2, . . . ,Flowt ), which330

are the source point-end vehicle flow matrices, and carry331

out multi-intersection urban traffic flow prediction through332

Flowhis information. For each node, an eigenvector of fixed333

length is generated every minute as follows.334

Flowt+k = Predict [Flowhis] (9)335

where k(k >= 1) is the step size of prediction, Predict is the336

prediction method we need to seek.337

IV. METHOD 338

The traditional traffic flow forecast is a single-step forecast, 339

and the result is not ideal. A hybrid model network structure 340

(GCN-GAN) based on GCN and GAN is proposed in this 341

section to improve the accuracy of traffic flow prediction and 342

increase the step length of traffic flow prediction. GCN-GAN 343

is designed to jointly predict the traffic flow at multiple 344

intersections within a single step or multiple steps (as shown 345

in Figure 3). The general idea is to apply graph convolution 346

directly to historical traffic flow data Flowhis (graph structure 347

data represented by matrix). GCN extracts patterns and fea- 348

tures in the frequency domain, and the extracted information 349

is used for time series prediction. 350

It is complicated to calculate with graph information, so we 351

convert it into SE matrices of traffic flow. In the SE matrix, 352

when the nodes are connected, the position corresponding 353

to a particular row and column is marked as 1. Otherwise, 354

it is marked as 0. Then a filter is constructed in the Fourier 355

domain, and GCN is used to extract the spatial information 356

features of multiple urban traffic intersections and their adja- 357

cent regions in the SE matrix. 358

f
(
M (l)
H ,MA

)
= σ

(
M̂D
−

1
2 M̂AM̂D

−
1
2M (l)

H M (l)
W

)
(10) 359

In the above formula, M (l)
W is the parameter matrix of the l 360

layer GCN neural network for traffic information extraction, 361

which will be optimized in each iteration. 362

A. GAN STRUCTURE 363

The design of the GAN network in this section is inspired by 364

Conditional Generative Adversarial Nets (C-GAN) [42]. The 365

structure contains Generator and Discriminator, respectively. 366

1) GENERATOR DESIGN 367

The generator is internally composed of DNN, as shown in 368

Figure 5, and the input conditions are: 369

• History traffic flow SE matrices Flow1,Flow2, . . . , 370

Flowt 371

• Flowgcn1 ,Flowgcn2 , . . . and Flowgcnt are obtained by 372

feature extraction of historical traffic flow SE matrices 373

using GCN 374

• The step size k that needs to be predicted 375

• Normally distributed data z 376

Here, we input the SE matrices of historical traffic flow 377

Flow1,Flow2, . . . ,Flowt and the matrices extracted by GCN 378

Flowgcn1 ,Flowgcn2 , . . . ,Flowgcnt into the generator together. 379

Our idea is based on residual connection [43], aiming to 380

combine linear and nonlinear features in traffic flow data. The 381

generator needs to find a parameter set θ that minimizes the 382

distance between TG(x; θ ) and Tdata(x) under the conditions 383

of historical data, graph convolution and prediction steps. 384

G∗ = argmin
G

Div (TG(x, θ),Tdata(x)) (11) 385
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FIGURE 3. GCN-GAN structure.

FIGURE 4. Convolution diagram of urban traffic flow according to time
series.

FIGURE 5. Generator network structure.

B. DISCRIMINATOR DESIGN386

In the GAN model designed in this paper, the real and387

predicted data are input into the discriminator, and the388

discriminator outputs the judgment result of the input389

data. The discriminator distinguishes between the generated390

data TG(x; θ ) and the real data Tdata(x). The score of real data391

FIGURE 6. Discriminator network structure.

tends to be 1, and the score of generated data tends to be 0. 392

Tdata(x) logD(x)+ TG(x, θ) log(−D(x)+ 1) (12) 393

The Algorithm process of GCN-GAN is shown as 394

Algorithm 1. 395

V. EXPERIMENTS 396

A. DataSet 397

We used surveillance video data at 27 intersections in a 398

city in China within two months. Due to the influence of 399

irresistible factors, the video resolution obtained at each inter- 400

section has a certain degree of acceptable difference, and 401

the full size of our data is about 1.3TB. Image frames were 402

extracted from the video at the frequency of two frames per 403

second, and the resolution of image frames was modified to 404

128*128, which were named according to the intersection 405

number and time. The traffic flow time-series image data 406

set contains 34.99 million images. After target detection and 407
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Algorithm 1 The Algorithm Process of GCN-GAN
Input: Urban traffic SEmatrices of multi-intersection traffic

flow Flow1, . . . ,Flowt
Output: Traffic flow prediction result matrix Flowt+k
1: Use double-layer GCN to capture position information

in SE matrices to get Flowgcn1 , . . . ,Flowgcnt based on
Equation 10

2: Initialize state generator G and discriminator D
3: Feed Flowgcn1 , . . . ,Flowgcnt , Flow1, . . . ,Flowt , num-

ber of prediction steps k (k = 1, 3, 5), normal distribu-
tion z (3, 0.52) into generator G

4: repeat
5: Extract m data x1, x2, x3 . . . xm from Tdata(x)
6: Fix G, optimize D by computing the gradient of D

∇θd

1
m

∫
x

[
Tdata (x) logD(x)+ TG(x, θ) log(1− D(x))

]
7: Fix D, optimize G by computing the gradient of G

∇θg
1
m

∫
x

[
TG(x, θ) log(−D(x)+ 1)

]
8: until The gradient of the D is approximately equal to 0
9: End of training

10: Convert the new Flow1, . . . ,Flowt to Flowgcn1 , . . . ,
Flowgcnt , and input them into the generator G together
with the number of predicted steps k , and output the
predicted traffic flow.

text information extraction, a real-world multi-road traffic408

Flow time-series text data set (Multi-Road Traffic Dataset,409

MTD) is generated. The vehicle types in the MTD dataset410

include trucks, cars, and buses. The MTD dataset is designed411

in Jason-type text format, and the MTD of each intersec-412

tion contains the following field information (as shown in413

Table 2).414

For the obtained MTD dataset, we first calculate the traffic415

flow of all 27 intersections in units of minutes to generate the416

traffic flow SEmatrices Flow. For the minute-by-minute data417

at each intersection for a month, there are 43200 SE matrices,418

that is, Tm = 43200. In the experimental process, 5-fold cross-419

validation is used to obtainmodel data and avoid the influence420

of algorithm randomness to the greatest extent.421

B. PARAMETER SETTINGS422

Our experimental environment is listed here: the software423

environment is PyCharm 2022.1.2; The deep learning frame-424

work used is TensorFlow2.0.0. The operating system is425

Win10. The training device was dictated by the 11th Gen426

Intel(R) Core(TM) i7-11800h@ 2.30GHz. The graphics card427

configuration used for the calculations is the Tesla V100.428

The prediction accuracy will inevitably decrease gradually429

with the increase of the prediction step. To ensure the better430

practicability of our model, we set the prediction step k as 1,431

3, and 5, which were compared with the baseline algorithm.432

TABLE 2. MTD dataset field information.

The dimension of the Bi-LSTM of the generator is designed 433

to be 27*27. The number of layers of the DNN is 3, so the 434

dimension of the DNN is (27× 128)× (128× 128)× (128× 435

k). Depending on the value of k , the generator generates 436

prediction data of dimension (1 × k) at a point in time. 437

In the discriminator, we set the dimension of Bi-LSTM to be 438

27 × 27. The number of layers of the DNN is three layers, 439

so the dimension is (27 × 128) × (128 × 64) × (64 × 1), 440

and the activation function of the last layer is Sigmoid. The 441

discriminator outputs a score for judging the authenticity of 442

the data. 443

C. BASELINE ALGORITHMS 444

This section uses ARIMA, SVR, DNN, and LSTM as the 445

baseline algorithms for comparative experiments. 446

• Autoregressive Integrated Moving Average model 447

(ARIMA) [44]: 448

The basic idea of ARIMA is to use the features of current 449

and past moments in a time series to predict possible 450

future values. 451

• Support Vactor Regression (SVR) [45]: The ultimate 452

goal of SVR optimization is to minimize the maximum 453

distance between the sample points and the hyperplane 454

so that the model’s predicted value is as close to the true 455

value as possible and has excellent generalization ability 456

in the face of unknown data. 457

• Deep Neural Network (DNN) [46]: A Deep neural 458

network realizes complex prediction and calculation 459

through connections and nesting among neurons. 460

• Long short-term memory (LSTM) [47]: LSTM consists 461

of a forgetting mechanism, an input mechanism, and an 462

output mechanism and is mainly used to solve the prob- 463

lems of memory retention and gradient disappearance in 464
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TABLE 3. Prediction results of traffic flow at multiple intersections when
the step size k = 1.

TABLE 4. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 1.

TABLE 5. Prediction results of traffic flow at multiple intersections when
the step size k = 3.

TABLE 6. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 3.

TABLE 7. Prediction results of traffic flow at multiple intersections when
the step size k = 5.

long-term sequence training. Through practical parame-465

ter design, traffic flow can be effectively predicted.466

• Temporal Graph Convolutional Network (T-GCN) [32]:467

T-GCN innovatively adds a gated recurrent unit (GRU)468

FIGURE 7. Prediction results of traffic flow at multiple intersections when
the step size k = 1.

FIGURE 8. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 1.

TABLE 8. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 5.

structure to the graph convolutional network (GCN). 469

The model can learn the temporal and spatial character- 470

istics of traffic data. 471

D. EXPERIMENT PROCESS 472

We input the training data Flow1, . . . ,Flowt into the 473

GCN-GAN network and obtain the Flowgcn1 , . . . ,Flowgcnt 474

throughGCN. Feed the training data,Flowgcn1 , . . . ,Flowgcnt , 475

and k value into the generator. We conducted three sets of 476

experiments under three prediction steps (k = 1, 3, 5), and 477
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FIGURE 9. Prediction results of traffic flow at multiple intersections when
the step size k = 3.

FIGURE 10. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 3.

TABLE 9. The improvement of GCN-GAN’s prediction result compared
with the average prediction results of the other four baseline algorithms
under three step sizes.

each group was trained for epoch=10000 times. Training and478

testing are based on the principle of 5-fold cross-validation.479

E. EVALUATION METRICS480

Some evaluation metrics should be selected to measure481

the discrepancy between the predicted results and observed482

values to evaluate the GCN-GAN model performance for483

traffic flow. In general, we specify the model predic-484

tive results as x(1), x(2), x(3) . . . , x(m), the true value is485

y(1), y(2), y(3) . . . , y(m), the prediction function is h(x). The m486

value here is determined by the 5-fold cross-validation. In this487

paper, we use the following metrics.488

FIGURE 11. Prediction results of traffic flow at multiple intersections
when the step size k = 5.

FIGURE 12. The improvement of SVR, DNN, LSTM and GCN-GAN in
prediction results compared with ARIMA when the step size k = 5.

FIGURE 13. The improvement of GCN-GAN’s prediction result compared
with the average prediction results of the other four baseline algorithms
under three step sizes.

1) MEAN ABSOLUTE ERROR (MAE) 489

As one of the most classic regression loss functions, MAE 490

represents the mean of the absolute error between the true 491
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TABLE 10. Symbol notation and definition.

value and the observed value.492

MAE(X , h) =
1
m

m∑
i=1

|h(x(i))− y(i)| (13)493

2) MEAN SQUARED ERROR (MSE)494

MSE calculates the average value of squared errors between495

predicted and true values. MSE can measure the gap between496

different data to some extent. The higher the accuracy of the497

model to experimental data, the smaller the value of MSE.498

MSE(X , h) =
1
m

m∑
i=1

(h(x(i))− y(i))2 (14)499

3) ROOT MEAN SQUARED ERROR (RMSE)500

RMSE is the square root of the mean squared deviation501

of the predicted value from the true value over n predic-502

tions. Through RMSE, we can visually observe the deviation503

between the actual and predicted value.504

RMSE(X , h) =

√√√√ 1
m

m∑
i=1

(h(x(i))− y(i))2 (15)505

where x(i) represents one of the 27 multi-roads’ traffic flow.506

According to the error formula, we can calculate the507

respective averages of the three metrics at each intersection508

under 5-fold cross-validation. Meanwhile, we need complete509

SE matrices for the model outcome. Thus, we compute510

the accumulation average for 27 multi-roads MAE, MSE,511

and RMSE. 512

MAEavg =

∑27
i=1MAEi
27

(16) 513

MSEavg =

∑27
i=1MSEi
27

(17) 514

RMSEavg =

∑27
i=1 RMSEi

27
(18) 515

F. RESULTS AND DISCUSSION 516

To better demonstrate the superiority of the GCN-GAN, 517

we make predictions based on MTD test sets under three step 518

sizes (k = 1, 3, 5). By computing the MAEavg, MSEavg and 519

RMSEavg of the 27 intersections (as shown in Table 3, Table 5 520

and Table 7), we can see that GCN-GAN has a significant 521

improvement in the overall prediction effect. To demonstrate 522

the superiority of our model in traffic flow prediction more 523

clearly, we take the ARIMA algorithm as the benchmark 524

to calculate the improvement of SVR, DNN, LSTM, and 525

GCN-GAN in prediction results compared with ARIMA (as 526

shown in Table 4, Table 6, Table 8). The above prediction 527

results and improvement are visualized for further analy- 528

sis (as shown in Figure 7, Figure 8, Figure 9, Figure 10, 529

Figure 11, Figure 12). 530

As shown in Table 3, Table 5 and Table 7, regardless of the 531

prediction step size, GCN-GAN achieves better performance 532

than other baseline algorithms on all four indexes. SinceMSE 533

is more sensitive to the fluctuation of outliers than MSE, the 534

value of MSEavg is much larger than MAEavg and MSEavg 535

in terms of error. MAEavg showed the intuitive accuracy of 536

GAN-GAN algorithm’s prediction, which reached the lowest 537

values of 10.44 (k = 1), 15.04 (k = 3) and 20.27 (k = 5) in 538

the three-step sizes. With the increase in predicted step size, 539

the results of MSEavg and RMSEavg revealed the stability of 540

GCN-GAN. While the improvement of other baseline algo- 541

rithms decreased with the increase of predicted step size, the 542

improvement of GCN-GAN still increased. When k=5, the 543

improvement of RMSE was 48.32%. Although the prediction 544

accuracy will decrease with the step size increase for all 545

prediction models, GCN-GAN shows the best characteristics 546

compared with other baseline methods. The decline rate is 547

slow and stable for GCN-GAN. 548

Tomore intuitively show the influence of step size changes 549

on the prediction error of the GCN-GAN model, we calcu- 550

lated the average error of ARIMA, SVR, DNN, LSTM and 551

T-GCN algorithms under three steps and further calculated 552

the improvement of the GCN-GAN’s prediction error relative 553

to the average error (as shown in Table 9). As shown in 554

Figure 13, with the increase of the predicted step length, the 555

overall improvement of the three indicators of the GCN-GAN 556

model is gradually improving, even though the absolute error 557

is increasing. This phenomenon shows that our model per- 558

forms better than other baseline algorithms in multi-step 559

prediction. That is, the rate of accuracy decline is relatively 560

gentle and stable. It is worth noting that GCN-GAN’s predic- 561

tion of the traffic flow at multiple intersections generates the 562
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traffic flow at all intersections at one time instead of running563

a prediction model program at each intersection in turn or at564

the same time greatly accelerates the prediction speed.565

VI. CONCLUSION566

Aiming at the problem that most of the traditional traffic567

flow prediction methods are single-step prediction models568

and the prediction accuracy is low, we propose a novel traf-569

fic flow prediction model GCN-GAN, combining the Graph570

Convolution Neural Network (GCN) module and Generative571

Adversative Neural Network (GAN) module to predict urban572

traffic flow in this paper. It is a multi-step prediction of traffic573

flow at multi-intersections.574

Compared with ARIMA, SVR, DNN and LSTM, we find575

that the GCN-GAN model has an obvious advantage in576

multi-step prediction, and its prediction performance is about577

30.54% (average value of RMSEavg) higher than the bench-578

mark time series prediction model.579

Our method first uses GCN to extract spatial features of580

traffic data and further utilizes GAN and Bi-LSTM structures581

for time series prediction. Due to the consideration of the582

spatial topological relationship between intersections in the583

whole traffic network, GCN-GAN can achieve more accurate584

results than the traditional timing prediction methods. On the585

other hand, it can be seen from Table 9 and Figure 13 that586

with the increase of the prediction step, the improvement587

of the average value of the GCN-GAN model compared588

with other baseline methods does not decrease but increases.589

This situation shows that the model still has specific stability590

when the prediction steps size increases. We mainly solve the591

problem of low accuracy of multi-step prediction in traffic592

flow prediction and provide a new idea for Spatio-temporal593

data integration.594

This promising result will encourage us to continue to use595

the model for large-scale traffic flow prediction problems.596

In the following study, we will consider adding a597

self-attention mechanism to the GCN-GANmodel to achieve598

more optimized prediction results for timing information.599

Meanwhile, the experimental results are based on MTD data600

sets, and the superiority of the model will be verified on601

multiple data sets in the future.602
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