
Received 1 August 2022, accepted 27 August 2022, date of publication 5 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204056

Improving Pairs Trading Strategies Using
Two-Stage Deep Learning Methods and
Analyses of Time (In)variant Inputs
for Trading Performance
WEI-LUN KUO1, WEI-CHE CHANG2, TIAN-SHYR DAI 3,4, YING-PING CHEN 5, (Member, IEEE),
AND HAO-HAN CHANG 3
1Institute of Data Science and Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan
2Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan
3Department of Information Management and Finance, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan
4Insurance Research Center, National Chengchi University, Taipei 11605, Taiwan
5Department of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan

Corresponding author: Tian-Shyr Dai (cameldai@mail.nctu.edu.tw)

This work was supported by the Ministry of Science and Technology (MOST) under Grant 109-2622-H-009-001-CC3, Grant MOST
110-2622-H-A49-001-, and Grant MOST 110-2634-F-A49-004-.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

ABSTRACT A pairs trading strategy (PTS) constructs and monitors a stationary portfolio by shorting
(longing) when the portfolio is adequately over- (under-)priced measured by a predetermined open threshold.
We close this position to earn the price differences when the portfolio’s value reverts back to the mean
level. When the portfolio is significantly over- (under-)priced measured by another predetermined stop-
loss threshold, we close the position to stop loss. This paper develops a two-stage deep learning method to
improve the investment performance of a PTS. Note that the literature executes a PTS by selecting the best
trigger threshold (a combination of open and stop-loss thresholds) from a restricted, heuristically-determined
set of trigger thresholds. Such a design significantly degrades investment performance. However, selecting
the best threshold from all possible thresholds yields a non-converged training problem. To resolve this
dilemma, we propose in the first stage of our method a representative label mechanism by which to construct
a set of candidate trigger thresholds based on all possible thresholds and then train a deep learning (DL)
model to select the best from the set. Experiments demonstrate that the proposed first-stagemethod avoids the
non-converged training problem and outperformsmost state-of-the-art methods. To further reduce the trading
risk, the second stage trains another DL with the profitability of each trade labeled by executing the PTS
with trigger thresholds recommended in the first-stage mechanism to remove unprofitable trades. Compared
to models that indirectly judge profitability by price movement similarity without considering the quality of
the recommended trigger thresholds, our model produces higher win rates and average profits. Furthermore,
we find that training with the PTS portfolio value process exhibiting time invariance clearly outperforms
training with only time-varying stock/return processes, even though the latter training set contains more
information. This is because unpredictable changes in market trends cause the model to learn time-varying
patterns from the training set that may not apply to the testing set.

22 INDEX TERMS Pairs trading strategy, representative labeling, time (in)variant data, two-stage deep learning.

I. INTRODUCTION23

A pairs trading strategy (PTS) is a popular, statistical arbi-24

trage investment strategy that forms and tradesmarket-neutral25

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

portfolios [1]. Rather than guessing hard-to-predict trends in 26

financial markets, a PTS eliminates the risk of market ten- 27

dency by longing (or shorting) several assets at the same time, 28

according to specified investment weight ratios determined 29

by various statistical methods [2]. The value of this portfolio, 30

or ‘‘spread,’’ oscillates around a mean price level and has a 31
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low correlation with the tendency of financial markets. That32

is why the portfolio processes the market-neutral property.33

To construct a portfolio with this property, we need to find34

a group of assets (e.g., stocks in this paper) whose price pro-35

cesses cointegrate, as identified by the Johansen cointegration36

test [3]. Our PTS strategy longs (shorts) the portfolio when37

the spread significantly deviates from the mean price level to38

fall below a lower (exceed a higher) open threshold. Then the39

portfolio gets closed when the spread converges to the mean40

price level. The resulting earnings equal the price difference41

between the open threshold and the mean price level.42

Appropriate customized, open thresholds for each stock43

pair thus determine PTS profitability. If the open threshold44

is too far from the mean price level, the portfolio is unlikely45

to open; if it is too close to the mean though, the resulting46

earning might be insufficient to cover the costs of transaction47

and price slippage. Furthermore, the statistical arbitrage prop-48

erty entails that the spread may occasionally fail to revert to49

the mean price level; such failures result in significant losses,50

as stated in Vidyamurthy [1]. Adding a stop-loss threshold51

creates a price level at which the portfolio closes once the52

spread diverges too far from the mean level. Here again,53

determining a proper threshold for each stock pair is critical54

because their spreads show different price patterns that vary55

with changes in financial markets.56

In prior efforts to set the thresholds, referred to as57

actions in a reinforcement learning (RL) framework,58

Fallahpour et al. [4] and Kim and Kim [5] use a limited59

action set with 6 or 39 actions, respectively, which repre-60

sent significant limits on investment performance. There-61

fore, we consider a much larger set of about 2800 open62

and stop-loss threshold recommendations determined by the63

maximum price deviations during the training set to cover64

all possible trading scenarios. Then we label each stock pair65

in the training set with one of 2800 thresholds that maxi-66

mize PTS profits. In this effort though, methods based on67

regression- or classification-based deep learning (DL) fail to68

converge. To address this non-convergence problem, a repre-69

sentative labeling mechanism to select the recommendation70

threshold from 251 representative thresholds determined by71

the most frequently chosen thresholds or a k-means method72

is proposed in our previous conference work [6] and then73

further improved in this paper. We can relabel each stock74

pair with a representative threshold. Instead of learning from75

2800-label stock pairs, we rely on 25-relabeled stock pairs.76

If we train a multi-scale residual network (abbreviated77

ResNet), as proposed by Li et al. [7], with the relabeled78

stock pairs, we achieve smooth, quick convergence. Our later79

experiments confirm that the investment performance of our80

representative labeling mechanism outperforms the options81

offered in prior research.82

To further enhance PTS investment quality, Sarmento and83

Horta [8] and Lu et al. [9] indirectly predict and remove84

unprofitable stock pairs from trading without taking into85

1This value is determined by the elbow method.

account the quality of the recommended trigger thresh- 86

olds. Sarmento and Horta [8] group stocks according to the 87

OPTICS algorithm, then remove pairs whose stocks come 88

from different groups. Furthermore, Lu et al. [9] use long 89

short-term memory (LSTM) and wavelet convolutional neu- 90

ral network (CNN) to predict time-series anomaly properties. 91

But these mechanisms do not necessarily determine unprof- 92

itability, so they can result in the removal of many profitable 93

trades, which significantly reduces overall profits. Instead, 94

this paper proposes a two-stage model to remove unprofitable 95

trades without significantly sacrificing overall profits; the 96

training data set comprises two parts. The first stage trains a 97

ResNet model on the first part of the training data, labeled by 98

the representative thresholds, to recommend open and stop- 99

loss thresholds. Then to remove unprofitable pairs, the second 100

part of the training data is first inputted into the first-stage 101

model to obtain the recommended thresholds. We then trade 102

each stock pair with the recommended threshold to obtain 103

the profit/loss signal, as a label for the stock pair to train 104

the second-stage model. For each stock pair in the testing 105

set, we also use the first model to recommend an open and 106

stop-loss threshold and the second model to remove unprof- 107

itable pairs from trading. This two-stage model yields better 108

win rates and higher Sharpe ratios across all our experiments. 109

Because frequent dramatic changes in financial markets 110

alter patterns of stock price and return processes, it becomes 111

difficult for machine learning algorithms to capture changing 112

patterns, even when using many features and various data 113

lengths [10]. Thus, researchers tend to train their models 114

using a limited amount of the most recent historical market 115

data; ancient data and corresponding embedded informa- 116

tion get discarded. But the cointegration test proposed by 117

Johansen [3] guarantees that the statistical properties of the 118

spread process do not vary with time. This feature effectively 119

improves the performance of the PTS model if we prolong 120

the training period, such that we do not need to tune the 121

hyperparameter that controls the length of the training period. 122

Even if the spread process contains less information than 123

the price processes of stock pairs,2 models trained on spread 124

process data still outperform those trained on stock pair data. 125

In Section II-A, we review prior PTS research that relies 126

on quantitative and machine learning models. Section II-B 127

outlines how we construct stock pairs that possess coin- 128

tegration properties and provide the definitions of PTS 129

reward functions. With Section III, we detail the construc- 130

tion of the optimal combination of the open and stop-loss 131

thresholds (referred to as the ‘‘trigger threshold’’) and the 132

representative labeling mechanism adopted to address the 133

non-convergence training problem. Then in Sections IV-A 134

and IV-B, we describe how we incorporate the multi-scale 135

ResNet into our PTS model, as well as the design of the two- 136

stage model. The experimental results in Section V confirm 137

the superiority of our two-stage models; as we explain, the 138

2The spread process can be derived from the price processes of stock pairs,
as in Equation (2).
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time-invariant property provided by cointegration resolves139

the problem of changing data patterns due to varying financial140

markets. Section VI concludes.141

II. PRIOR LITERATURE AND REQUIRED BACKGROUND142

KNOWLEDGE143

In this section, we review previous applications of PTS and144

provide a brief survey of the cointegration method we use to145

construct stock pairs eligible for PTS, together with the corre-146

sponding investment ratios. We also describe the motivation147

behind the proposed two-stage model.148

A. PRIOR LITERATURE149

Krauss [11] classifies techniques for finding stock pairs eligi-150

ble for PTS and improvements for PTS strategies into several151

approaches, including the distance approach, the cointegra-152

tion approach, time-series models, stochastic control theory,153

and other techniques. Our stock pair generation method is154

based on the cointegration approach, which Rad et al. [12]155

and Huck and Afawubo [13] identify as preferable. In addi-156

tion, Engle and Granger [14] and Johansen [15] develop157

different statistical tests to determine whether the price158

processes of a logarithmic stock pair possess cointegration159

properties. That is, a linear combination of two logarithmic160

price processes of constitute stocks makes the resulting value161

process of this two-stock portfolio into a stationary process.162

The stationary property ensures that statistical properties,163

such as the value’s mean and variance, do not change with164

time. Thus it is possible to buy (sell) the portfolio when165

its value is below (above) the mean, then close the position166

to cash out when the value converges back to the mean.167

Vidyamurthy [1] and Rad et al. [12] use these tests to detect168

stock pairs eligible for PTS. An effective PTS also be applied169

to reduce the variance (or risk) in investment portfolios [16],170

establish optimal asset allocations [17], and support trades of171

new financial products like cryptocurrency [18], [19].172

Machine learning techniques, as first proposed by [20],173

promise to improve PTS performance. In particular, rein-174

forcement learning (RL) can determine open and stop-loss175

thresholds for PTS. Fallahpour et al. [4] enumerate 39 actions176

(i.e., 39 trigger thresholds), which enables them to reduce the177

threshold selection problem to a multi-armed bandit problem,178

solved using a single-state RL model. However, this naive179

mechanism cannot capture various properties of different180

stock pairs, so it is outperformed by other approaches, in181

terms of our experimental results. Kim and Kim [5] instead182

use a deep Q-network (DQN) and heuristically set six overly183

simplistic actions, which significantly limits the profitability184

of their approach. In addition, they train each PTS-eligible185

stock pair with a DQN, which necessitates a large number186

of DQNs. But in line with their observations, we find that187

cointegration properties for most stock pairs are not durable188

over a long period; very few stock pairs contain enough189

data to train the DQN. Therefore, we train our machine190

learning model instead on trading data from all stock pairs,191

which produces recommended thresholds for all stock pairs.192

Some variations of PTS include a double DQN proposed by 193

Brim [21], with three actions (hold, buy, sell), that seeks to 194

predict the trend of the spread, though a low win rate limits 195

their model’s applicability. Instead of using open and stop- 196

loss thresholds, Xu and Tan [22] predict open and stop-loss 197

timing for PTS, which they use to form a return-maximized 198

portfolio with a deterministic policy gradientmethod. In addi- 199

tion, Hsu et al. [23] take advantage of opinions from social 200

media to predict spread price movements. 201

To reduce PTS risk, Sarmento and Horta [8] use the 202

OPTICS algorithm and divide the stocks into groups, accord- 203

ing to their average return processes. They then remove PTS 204

pairs with stocks from different groups. In our experiments, 205

their approach slightly improves the win rate and reduces the 206

maximum drawdown; however, it discards many profitable 207

trades, such that it significantly reduces overall investment 208

performance. When Lu et al. [9] use the time-series anomaly 209

detection mechanism proposed by Huang et al. [24] to label 210

anomalies of the price processes, they can combine LSTM 211

and continuous wavelet CNN to predict structural breaks, 212

which they interpret as losing cointegration properties. But 213

errors in labeling anomalies are difficult to avoid, which 214

biases training efforts to detect structural breaks. Therefore, 215

we propose a two-stage model that determines the optimal 216

open and stop-loss thresholds in the first stage, then detects 217

and removes unprofitable pairs in the second stage. With 218

experiments, we show that this two-stage approach achieves 219

a better win rate, higher trading opportunities, and greater 220

overall profits than filtering pairs with theOPTICS algorithm. 221

Our approach also incurs fewer risks of negative returns 222

than the structural break detection approach. Rather than 223

using RL, we adopt DL with representative labeling mech- 224

anisms to find recommended open and stop-loss thresholds. 225

To capture complex features or patterns in financial markets, 226

we adopt the residual network (ResNet) model proposed by 227

He et al. [25]; their extensive empirical data affirm that 228

ResNets are simpler to optimize and also achieve higher 229

learning precision because ResNets include more hidden 230

layers. ResNet is extended by Li et al. [7] from a single 231

scale to multiple scales by adding convolution kernels of 232

various sizes to adaptively detect data features from different 233

aspects. By combining representative labeling with multi- 234

scale ResNet, our proposed method yields superior invest- 235

ment performance. 236

Financial markets constantly change with time, mainly due 237

to black swan events such as the COVID-19 pandemic and 238

quantitative easing, which caused stock markets to plum- 239

met and then soar during the first half of 2020. Such time- 240

based heterogeneity causes trading patterns to vary over 241

time and creates difficulties for DL algorithms, even with 242

many features and long window sizes [10]. Prior literature 243

[26], [27], [28], [29], [30], [31], [32] often limits the length 244

of the most recent historical trading data, to train machine 245

learning models to predict contemporary future market pat- 246

terns; for example, they might use January 2021 trading data 247

to train the model to forecast February 2021 markets, use 248
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February data to train the model to predict the March market,249

and so on. But this approach junks information of ancient250

historical data and still occasionally yields unstable invest-251

ment performance because it fails to consider whether market252

tendencies change during the training or the testing period.253

Zhang et al. [33] address this problem by decomposing stock254

price series into high- versus low-frequency waves with dis-255

crete Fourier transforms. As an alternative approach, we train256

the proposed model with stationary spread processes (i.e., the257

trends of the spreads do not change with time), as confirmed258

by cointegration tests [34]. Our experiments accordingly259

show that extending the length of the training period allows260

our model to capture more trading patterns and improve PTS261

performance, without creating vulnerability to drastic market262

changes. Furthermore, due to the stationary property, even263

when a spread process contains less information than the264

return or price processes of a stock pair, training the model265

on spread process data still outperforms models trained on266

returns or price processes.267

B. CONSTRUCTING PTS WITH COINTEGRATION268

APPRPAOCHES269

We divide a trading duration—a business day to fit the intra-270

day trading setting in this paper— into a formation period271

and a trading period, as illustrated in Figure 1. During the272

formation period, the stock tick data is used to generate stock273

pairs eligible for PTS. Then we use our machine learning274

model (introduced later) to predict feasible open and stop-loss275

thresholds for each PTS-eligible stock pair for trading in the276

trading period. With a cointegration approach [1], [8], [12],277

[35], [36], we identify PTS-eligible stock pairs from a stock278

pool, such as 0050. TW constituent stocks from the Taiwan279

stock market. If we let the i-th pair be composed of stocks280

S i1 and S i2, and the capital invested in these two stocks to281

be β i1 : β
i
2 (if the stock pair is eligible), we can extract282

logarithmic stock price processes ln S i1(t) and ln S i2(t) from283

the formation period to form a two-dimensional vector y(t) ≡284

(ln S i1(t), ln S
i
2(t))

′. The test of the cointegration property of285

y(t) relies on the Johansen cointegration test [3], with the286

following vector error correction model (VECM)287

4y(t) = 5y(t − 1)+
p−1∑
i=1

Di4y(t − i)+ εt , (1)288

where4y(t) ≡ y(t)− y(t−1), the rank of the 2×2 matrix5289

denotes the number of cointegration relations, p− 1 denotes290

the VECM order, Di is a 2 × 2 matrix, and εt denotes a291

2 × 1 white noise vector. We follow Lütkepohl et al. [37]292

and use a power test, which decomposes 5 into αβ ′, where293

the 2 × 1 cointegration vector β ≡ (β i1, β
i
2)
′ determines the294

ratios of the capital invested in the two stocks. If the i-th stock295

pair S i1 and S i2 passes the cointegration test, we construct a296

portfolio by investing the two stocks, according to the ratio297

β i1 : β
i
2. The spread process of this portfolio,298

Pi(t) ≡ β i1 ln S
i
1(t)+ β

i
2 ln S

i
2(t), (2)299

FIGURE 1. Real example for cointegration model calibrations. This figure
illustrates real cointegration calibration for Cheng Shin Tyre (with ticker
number 2105) and Shin Kong Financial Holdings (2888) on May 20th,
2016. The x-axis denotes the elapsed time from the opening of the stock
market. The time span for a trading day is divided into the formation and
trading periods. The blue curve reflects the change in the spread process
defined in Equation (2). The orange line denotes the mean level
of −10.15. The investment weight ratio β is (1, −7.9)’. The green (red) dash
line denotes the value of the mean level plus (minus) a standard
deviation of the spread process.

is mean-reverting; that is, it oscillates around the mean level 300

of the spread, E(Pi(t)). We could also measure the Pi(t) 301

variation by calculating its standard deviation σ i. A sample 302

cointegration calibration of two 0050.TW constituent stocks, 303

Cheng Shin Tyre (2105) and Shin Kong Financial Holdings 304

(2888), are illustrated in Figure 1. We use the stock trading 305

data during the formation period to calibrate the VECM for 306

determining the trigger threshold for each stock pair. Then 307

we use the threshold to trade the stock pair during the trading 308

period. The mean-reverting property of the spread defined in 309

Equation (2) is illustrated by the blue curve moving around 310

the mean level of −10.15. The magnitude of σ i, denoted by 311

the distance between the mean level and the green (or red) 312

dashed line, will be used to tune the open and stop-loss 313

thresholds described as follows. 314

The profit (or loss) to purchase the aforementioned stock 315

pair portfolio at time τ and sell it at τ ′ can be expressed as 316

the product of the investment amount c and the difference of 317

the spread: 318

c×
(
Pi(τ ′)− Pi(τ )

)
319

= c×

(
β i1 ln

S i1(τ
′)

S i1(τ )
+ β i2 ln

S i2(τ
′)

S i2(τ )

)
320

∼=
cβ i1
S i1(τ )

[
S i1(τ

′)− S i1(τ )
]
+

cβ i2
S i2(τ )

[
S i2(τ

′)− S i2(τ )
]

321

(3) 322

where ln
S ij (τ

′)

S ij (τ )
denotes the return rate for investing S ij over the 323

time period [τ, τ ′], and
cβ ij
S ij (τ )

denotes the number of shares for 324

trading S ij at time τ .3 325

Due to the mean-reverting nature of Equation (2), we can 326

short (long) the portfolio when the spread Pi(t) soars (falls) 327

3We long (short) Sij if the number of shares is positive (negative).
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FIGURE 2. Trading period scenarios. The red, purple, and black lines
denote the mean of P i (t), the thresholds for opening the portfolio, and
the thresholds for stopping losses, respectively. The values are listed to
the right of the lines. The orange and green curves denote the change of
spread processes over the trading period. We would long (short) the
portfolio if the spread process begun from A goes down (up) to reach
E(B), as denoted by the green (orange) curves. With solid and dashed
curves, we indicate actions that close the portfolio to gain profit or to
stop loss, respectively. The dotted curve indicates that the portfolio is
forced to close at the end of the trading period.

to reach the upper (lower) open threshold (denoted by purple328

lines), then close the position when it converges to reach329

the mean price level (denoted by the red line) to earn the330

profit, as illustrated in Figure 2. To increase the profit in331

Equation (3) and cover the transaction cost without signif-332

icantly reducing trading opportunities, we find a suitable333

open threshold, defined as the product of a scalar ξ ′O and334

the spread process’s volatility σi. Then we find another stop-335

loss threshold, defined as the product of a scalar ξ ′S and σi,336

to prevent occasional failures of the mean-reverting property337

from seriously eroding profits. The intersection of the spread338

Pi(t) with either element of the trigger threshold (ξ ′O, ξ
′
S )339

determines the timing to long/short the portfolio or to stop340

loss, respectively. Specifically, if the spread Pi(t) reaches341

the upper open threshold (denoted by node B), we short the342

portfolio with the value investment ratio β i1 : β
i
2 for stocks S

i
1343

and S i2. After shorting the portfolio, Pi(t) may still reach344

node C , in which case we close the portfolio to stop loss.345

Otherwise, it may fall to node D, in which case we close346

the portfolio to gain a profit. If Pi(t) falls to the lower open347

threshold (denoted by node E), we instead long the portfolio,348

after which Pi(t) may still fall to node H , in which case349

we close the portfolio to stop loss. Otherwise, it may reach350

node F , prompting us to close the portfolio to earn a profit.351

Finally, the portfolio may remain open at the end of the352

trading period, say, nodeG. In this case, the portfolio is forced353

to close to avoid incurring risks related to keeping cross-day354

positions.355

Note that the situation of simultaneously longing and short-356

ing the portfolio cannot occur under our pairs trading strategy.357

Recall that we long the portfolio when the spread reaches358

the lower opening threshold. For the action to short the port-359

folio, the spread process must increase to reach the upper360

opening threshold. However, the spread process should come 361

across the mean price level to close the long position before 362

reaching the upper opening threshold. This means that we 363

cannot short the portfolio before closing the previously open 364

position. Similarly, we cannot long the position before clos- 365

ing the previously shorted position. In addition, we cannot 366

simultaneously long and short the portfolio since a spread 367

cannot be simultaneously smaller than the lower open thresh- 368

old and larger than the upper threshold because the upper 369

threshold is larger than the lower one. 370

C. MOTIVATIONS 371

In the above survey, we find that many studies select trigger 372

thresholds from a heuristic and limited set of thresholds. 373

While searching from such a limited set clearly limits PTS 374

investment performance, searching from all possible thresh- 375

olds results in unconverged training. The motivation of our 376

proposed RLM is that it reduces the number of candidate 377

thresholds to eliminate unconverged training without sig- 378

nificantly harming the investment performance. In addition, 379

Fallahpour et al. [4], Kim and Kim [5], Brim [21], and 380

Kim et al. [38] train each reinforcement learning model with 381

the sequential trading data of a specific stock pair. Such a 382

design causes these papers to focus on trading on selected 383

stock pairs since it is impractical to train the many models 384

needed to cover all possible PTS-eligible stock pairs. Our 385

paper uses deep learning to learn simultaneously occurring 386

trading data of different stock pairs, and thus predicts trigger 387

thresholds for all PTS-eligible stock pairs. To improve PTS 388

performance by reducing unprofitable stock pairs, the litera- 389

ture indirectly judges profitability by the similarity of stock 390

price processes of a stock pair [8] or the occurrence of struc- 391

tural breaks [9]. Our second-stage model directly predicts 392

profitability by learning the investment performance obtained 393

from executing PTSwith the trigger thresholds recommended 394

in the first stage. Numerical experiments in Tables 5 and 6 395

confirm the superiority of our two-stage model. 396

III. REPRESENTATION LABELING 397

It is challenging to train naive DL methods to obtain fea- 398

sible open and stop-loss thresholds for PTS. Generating 399

candidate trigger thresholds heuristically, as exemplified by 400

Fallahpour et al. [4] and Kim and Kim [5], harms PTS invest- 401

ment performance, as we detail in Section V. But considering 402

all possible trigger thresholdswould cause a non-convergence 403

training problem. To improve trading profits without increas- 404

ing training difficulty too much, a representation labeling 405

mechanism (RLM), as depicted in Figure 3, is first proposed 406

in our previous conference work [6]. For clarity, our current 407

paper describes the details implementations of RLM with 408

our revisions for generating representative trigger thresholds 409

based on the statistics for the PTS profits obtained from 410

training set data. In Section III-A, we explain how we divide 411

daily data into formation and trading periods and perform 412

data preprocessing (step 1). To obtain information on eligible 413

stock pairs and investment ratios, we apply the Johansen 414
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FIGURE 3. Recommending PTS thresholds on the basis of RLM.

cointegration test to the formation period of a trading day D,415

as described in Section II-B (step 2). Then we label the416

optimal trigger threshold for each stock pair, as described in417

Section III-B (step 3); relabel each pair with a representative418

threshold, as described in Section III-D (step 4); and train the419

DLmodel with stock pairs and representative labels retrieved420

from each trading day in the training period, as described in421

Section IV-A (step 5).422

A. PREPROCESSING OF DATA SET423

We use tick data for the constituent stocks of the Taiwan424

Top 50 ETF (0050.TW) between 2013 and 2018. We choose425

the constituent stocks of Taiwan Top 50 ETF (0050.TW) since426

these stocks have better liquidity, thus preventing higher price427

slippage and bid-ask spread from eroding the PTS profits.428

We update the list of constituent stocks for each trading day429

so that the pairs eligible for pairs trading on each trading day430

are selected from the up-to-date list of 0050.TW constituent431

stocks via the Johansen cointegration test. However, unlike432

our paper, Endres and Stübinger [39] and Liu et al. [40] that433

adopt high-frequency day trading, many other PTS studies434

use non-day trading. Note that the dramatic changes in finan-435

cial markets that make stock pairs feasible for pairs trading436

in one day may not continue to the next trading day. This437

instability and frequent stock price jumps at the beginning438

of trading days typically lead to significant trading losses for439

non-day trading strategies. We found that using day trading440

instead significantly increases the profits and Sharpe ratios.4441

Our strategy does not hold positions overnight to avoid the442

4Also, as much of the PTS literature uses easily obtained daily close price
data to determine trading decisions, their models cannot consider day trading
due to data limitations. We are not limited by this constraint since we instead
use intra-day tick data.

breaking events that usually occur during the closing of the 443

market from eroding PTS profits.5 444

Step 1 in Figure 3 describes the data preprocess- 445

ing, in which we divide the 2013-2018 period into 446

non-overlapping training and testing periods. The stock tick 447

data for each business day D in the training period generates 448

the labels and spread features required to train the RLM 449

model, whose performance can then be verified on each 450

business day of the testing period. Daily trading takes place 451

from 9:00 a.m. to 1:30 p.m. each business day, divided into 452

the formation period (the first 166 minutes, ignoring the 453

beginning of the first 16 minutes) and the trading period (rest 454

of the business day), as illustrated in Figure 1. We cut the 455

first 16 minutes of trading data since the high volatility of the 456

stock price influences the effectiveness of the cointegration 457

test. As this test also requires sufficiently long time series data 458

to ensure its robustness, we follow [9] by setting the length of 459

the formation period to 150 minutes for the cointegration test, 460

and use the remaining time to execute the PTS. We use tick 461

data from the formation period to calculate each half-minute’s 462

weighted average stock price. As described in Section II-B, 463

we examine whether the resultant time series possesses the 464

mean-reverting property by the Johansen cointegration test. 465

Then we derive corresponding investment ratios β defined in 466

Equation (2) for each PTS-eligible stock pair by calibrating 467

Equation (1). The spread process of the i-th stock pair PiF 468

(PiT ) is constructed by substituting the price processes of 469

its constituent stocks S i1 and S i2 during the formation period 470

(trading period) into Equation (2). Note that the spread pro- 471

cess is stationary; that is, statistical properties such as the 472

mean and variance of the spread process do not change with 473

market trends. Increasing the length of the training period in 474

this way makes it possible for machine learning algorithms 475

to capture more time-invariant features, which improves PTS 476

performance.6 477

B. LABELING: SEARCHING THE OPTIMAL TRIGGER 478

THRESHOLD OVER ALL POSSIBLE THRESHOLDS 479

We label the i-th stock pair with the spread process in 480

the formation period PiF by the optimal trigger threshold 481

(ξ iO, ξ
i
S ) that maximizes PTS profits by trading the stock pair’s 482

spread PiT during the trading period. Specifically, we long 483

(short) the portfolio when PiT falls to E(Pi(t)) − ξ iOσi (rises 484

to E(Pi(t)) + ξ iOσi) and close the portfolio to earn profits 485

when the spread reverts to E(Pi(t)). We impose a stop-loss 486

when the process continuously plummets to E(Pi(t)) − ξ iSσi 487

(or soars to E(Pi(t)) + ξ iSσi ), as illustrated in Figure 2. 488

The profit for executing PTS with PiT during the trading 489

period can be evaluated based on Equation (3). Note that 490

the search space composed of all possible trigger thresholds 491

5The transaction cost also falls from 0.3% to 0.15% for day trading in the
Taiwan Stock Exchange.

6The statistical characteristics of training features used in many extant
machine learning algorithms [e.g., 33] vary with market trends. Thus training
periods of heuristically selected lengths may significantly influence invest-
ment performance.
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is huge since the threshold ξ iO (or ξ iS ) can be an arbitrary492

positive real number. This makes searching for the optimal493

trigger threshold (or the labeling process) intractable. Prior494

literature [4], [5] either uses fixed trigger thresholds or finds495

optimal trigger thresholds from a limited set, determined496

heuristically, which significantly deteriorates investment per-497

formance, as we verify subsequently. To search for the opti-498

mal trigger threshold over the whole solution space without499

incurring excessive computational resources, we first collect500

all the spread processes of all business days in the training501

period. Then, we define the maximum standardized deviation502

for all spread processes during the formation period by mim-503

icking the z-score formula as504

Ma≡ max
i∈all spreads

(
max

t∈formation period

(∣∣∣PiF (t)−E (PiF (t))∣∣∣)/σi) .505

(4)506

Similarly, we can also calculate Mc, the maximum standard-507

ized deviation for the processes that converge to the mean508

level before the market close by replacing ‘‘all spreads’’ in509

Equation (4) with ‘‘all converged spreads.’’ To construct a510

feasible stop-loss threshold set S, we discretely enumerate511

equal space samples from the range determined byMa In turn,512

S is defined as {1.5, 1.5+ 1× 0.5, 1.5+ 2× 0.5, . . . , dMae}.513

To ensure that the estimated profit (proportional to the dis-514

tance between the mean price level and the open thresh-515

old ξ iOσi) covers the transaction cost, the open threshold516

should generally be greater than 0.5σi. Thus, we construct517

the open threshold set O by enumerating samples from the518

range determined by 0.5 and Mc. The set O is defined as519

{0.5, 0.5 + 0.5, 0.5 + 2 × 0.5, . . . , dMce}, and all trigger520

thresholds (ξ ′o, ξ
′
s) are generated by separately selecting the521

open threshold ξ ′o from set O and the stop-loss threshold ξ ′S522

from set S. In addition, we enforce condition 1.5 × ξ ′o < ξ ′s523

to prevent the open threshold from coming too close to the524

stop-loss threshold, which would increase the chance to close525

the portfolio to stop the loss right after opening the portfolio,526

thereby deteriorating the investment performance. To filter527

out stock pairs unsuitable for PTS, we add one more trigger528

threshold (10, 25) with extremely high open and stop-loss529

thresholds to reflect no trading actions. Then we trade the530

stock pairs S i1 and S i2 by using the spread in the trading531

period PiT and the trigger threshold (ξ ′O, ξ
′
S ) to determine the532

timing for opening and closing the portfolio, as illustrated533

in Figure 2. The trading profit can then be calculated by534

Equation (3). The optimal trigger threshold that maximizes535

PTS profit is536

(ξ iO, ξ
i
S ) ≡ argmaxξ ′O∈O,ξ ′S∈S

[
Profit

(
PiT , ξ

′
O, ξ
′
S

)]
. (5)537

We label the i-th stock pair with the spread PiF by the538

optimal trigger threshold (ξ iO, ξ
i
S ) defined above to train the539

proposed machine learning models. About N (≈ 300) out of540

2800 trigger thresholds7 have been selected by at least one541

7N changes with the training set data.

stock pair during different training periods in our later exper- 542

iments. Note that many trigger thresholds enumerated by the 543

procedure mentioned above are never chosen as the optimal 544

threshold by any stock pair, probably because the stock price 545

is quoted as integral multiples of basic units (i.e., ticks) rather 546

than continuously. Many trigger thresholds do not fit discrete 547

changes of the spread process defined in Equation (2), due 548

to discrete stock price quotes, and therefore will never be 549

selected as optimal trigger thresholds. This rationale explains 550

why heuristically selecting trigger thresholds (e.g., [5]) might 551

significantly deteriorate investment performance. Deriving 552

feasible trigger thresholds from discrete changes in the spread 553

process can be very hard, so we discretely enumerate many 554

thresholds and use Equation (3) to calculate profits to filter 555

unprofitable thresholds. 556

C. NON-CONVERGENT TRAINING OF NAIVE 557

REGRESSION-/CLASSIFICATION-BASED DL 558

Since feasible open and stop-loss thresholds form a range 559

[0.5,Mc] and [1.5,Ma], it is natural to use a regression-based 560

deep neural network (RDNN) to predict an optimal trigger 561

threshold (ξ iO, ξ
i
S ). We optimize the training of RDNN by 562

defining the loss as the mean square error (MSE) between 563

the predicted trigger threshold and the optimal one defined in 564

Equation (5). To achieve convergent training results, we have 565

tried different combinations of inputs like the stock price, 566

return, and the spread processes extracted from the formation 567

period. We have also attempted many popular solutions to 568

solve the non-convergent training problems, such as tuning 569

learning rates, changing activation functions, and optimizers. 570

Still, all fail. It seems that RDNN fails to capture discon- 571

tinuous relationships between open and stop-loss thresholds 572

and profits. Specifically, a minor shift in either threshold can 573

significantly change the profit, as illustrated in Figure 2. For 574

example, shifting the upper open threshold from the upper 575

purple solid line to the dashed one removes the chance to 576

short the portfolio at point B for the solid orange spread and 577

sacrifices the corresponding profit. 578

Instead of adopting the regression-based method, we could 579

select an optimal trigger threshold for each PTS-eligible stock 580

pair from all possible trigger thresholds using classification- 581

based approaches. Here we use cross-entropy as the loss 582

function and train with different combinations of inputs and 583

techniques to resolve non-convergence problems as we exam- 584

ine the regression-based method. Part of our experimental 585

results8 are illustrated in Figure 4. It can be observed from 586

Figure 4(a) that the training losses oscillate significantly 587

regardless of the changes in DL models and optimizers. 588

Figure 4(b) also illustrates the highest training accuracy could 589

only achieve around 30%. In the next subsection, we address 590

this non-convergent training problem with RLM, which sig- 591

nificantly reduces the number of labels without sacrificing 592

the quality of trigger thresholds. Our experiments show that 593

8Other non-convergent training results like changing activation functions
and tuning learning rates are not illustrated for simplicity.
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FIGURE 4. CNN and ResNet training losses.

RLM improves training accuracy and resulting PTS invest-594

ment performance.595

D. REPRESENTATION LABELING MECHANISM596

Unlike past RL-based works such as Kim and Kim [5]597

and Fallahpour et al. [4] that merely learn 6 to 39 actions598

(i.e., trigger thresholds), we combine deep learning models599

with an RLM to train 25 representative labels (determined by600

the elbow method) that represent all 2800 trigger thresholds,601

as specified in Section III-B, to resolve the non-convergent602

training problem. Section V shows that training with RLM603

outperforms an RL approach with heuristically selected trig-604

ger thresholds.605

The RLM maintains trading performance by ensuring606

properly selected representations, and it resolves the train-607

ing convergence problem by reducing the number of labels.608

Specifically, the i-th spread process defined in Equation (2)609

can be divided into PiF (belonging to the formation period)610

andPiT (trading period).We substitutePiT into Equation (5) to611

extract the optimal trigger threshold (ξ iO, ξ
i
S ) that maximizes612

the benefit of trading the i-th stock pair. Then (ξ iO, ξ
i
S ) can be613

viewed as the label for PiF ; the trigger threshold distributions614

are illustrated in Figure 5(a). We use pink, yellow, green,615

and blue nodes to reflect the magnitudes of the probability616

of choosing a corresponding trigger threshold as the optimal617

one. By excluding trigger thresholds with probabilities lower618

than 0.1% and 0.5%, we obtain Figures 5(b) and 5(c), respec-619

tively. The trigger threshold distribution clearly is widespread620

and far from uniform. Moreover, the probability of select-621

ing some trigger thresholds (like pink or yellow nodes) as622

optimal ones is much higher than that of other thresholds.623

This significant lack of smoothness could explain why the624

training of regression-based DL fails to converge discussed625

in Section III-C.626

We address the lack of training convergence problem by 627

setting representation trigger thresholds, according to either 628

k-means or thresholds with the top-k highest probabilities. 629

With the former method, we partition all trigger thresholds 630

into a reasonable number of clusters by the k-means algo- 631

rithm; the cluster number 25 is determined by the elbow 632

approach. The set of representation trigger thresholds R is 633

defined as the centers of the previously mentioned clus- 634

ter, which we call Kmeans(0). The optimal trigger thresh- 635

old for the i-th spread process is relabeled by picking one 636

of the representation thresholds that maximizes profit, as 637

follows: 638

(ξ iKO, ξ
i
KS ) ≡ argmax(ξ ′O,ξ ′S )∈R

[
Profit

(
PiT , ξ

′
O, ξ
′
S

)]
. (6) 639

Note that each representation threshold selected by 640

Kmeans(0) (black nodes) basically does not coincide with 641

any trigger threshold because each cluster center is calcu- 642

lated as the averaging of nearby trigger thresholds belonging 643

to the same cluster. However, a slight shift in the thresh- 644

old, like moving from the upper purple solid line to the 645

dashed one in Figure 2, could significantly change the invest- 646

ment profit as mentioned above. To prevent disturbances in 647

low-probability trigger thresholds from degrading the quality 648

of representation labels, k-means can be applied to trigger 649

thresholds with probabilities larger than 0.1% and 0.5%, 650

as illustrated in Figures 5(b) and 5(c), respectively. The 651

resulting representation label settings are named Kmeans(1) 652

andKmeans(2), respectively. Besides, to ensure that each rep- 653

resentative label coincides with a trigger threshold, we could 654

choose, as representation trigger thresholds, those trigger 655

thresholds with the top 25 highest probabilities, as shown 656

in Figure 5(d), which we refer to as the HighFreq label 657

setting. Section V compares these RLMs to find the best 658

one. 659
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FIGURE 5. Trigger threshold distributions and representation thresholds. The x and the y axes denote the open and the stop-loss thresholds, respectively.
Pink, yellow, and green nodes denote the trigger thresholds selected with probabilities larger than 1%, 0.5%, and 0.1%, respectively. Blue and black nodes
denote other low-probability trigger thresholds and representative thresholds, respectively. Here we illustrate the trigger thresholds distribution for the
year 2016. The distributions of other years are similar, so we ignore them for simplicity.

IV. CONSTRUCTIONS OF TWO-STAGE LEARNING660

MODELS661

Given the stock/spread prices processes and representative662

thresholds recommended by different RLMs in Section III-D663

as inputs, we can compare the training effectiveness of RLMs664

and deep learning models to select the best to use in step 5665

of Figure 3, as described in Section IV-A. To improve the666

win rate and reduce PTS risk, we train the second-stage667

model on the basis of the aforementioned threshold selection668

model, which prevents unprofitable pairs from trading (see669

Section IV-B). By combining DL with RLM (first stage) and670

then unprofitability detection and removals (second stage),671

we construct a two-stage model that can more effectively672

reduce PTS risk than [8] and [9] do.673

A. MODELS FOR SELECTING PROPER REPRESENTATIVE674

TRIGGER THRESHOLDS675

Here we construct the trigger threshold selection mechanism676

(step 5 of Figure 3). The inputted features for the i-th stock677

pair, xi, can be formed by the pair’s stock price processes,678

return processes, and (or) the spread process. For exam-679

ple, we can define xi ≡
[
S i1, S

i
2,P

i
F

]
, such that the input680

is formed by the stock price processes of the i-th pair S i1681

and S i2 during the formation period, plus the corresponding682

spread process PiF determined in Equation (2). The input xi683

with length 300 (i.e., the number of half-minute data in the684

150-minute formation period) gets extended to 512 by685

padding the remaining positions with zeros. We number each686

of the 25 representative thresholds with a unique integer687

within the range [1, 25]. The label of the stock pair i, yi,688

is the number of the representative threshold that maximizes689

the trading profit, as illustrated in Equation (6). We train690

the plain CNN, a single-scale ResNet [25], and a multi-scale691

ResNet [41] with input xi and ground truth yi for each stock692

pair i from the training period. The input xi can have three693

channels (e.g., spread and the two stock price (or return)694

processes), two channels (e.g., two stock price (or return)695

processes), or one channel (e.g., the spread process).696

The CNN includes a one-dimensional convolutional layer697

with 25 1× 5 kernel maps. The output gets sent to the batch698

normalization layer [42] to stabilize and speed up the training699

process; we select Leaky-ReLU after trying different activa- 700

tion functions. The results pass through a one-dimensional 701

convolutional layer with 50 kernel maps, a layer with 100 ker- 702

nel maps, and a layer with 200 kernel maps, sequentially; 703

the final outputs are then sent to a fully connected layer. The 704

single-scale ResNet uses a single size-3 convolution kernel, 705

which applies to one chain of residual blocks. The three-scale 706

ResNet adds size-5 and size-7 convolution kernels, as well as 707

two corresponding chains of blocks.9 The features extracted 708

by the three convolution kernels (i.e., outputs from the three 709

chains of residual blocks) are concatenated to form a feature 710

vector, which gets sent to a fully connected network. 711

To find the optimal settings to achieve the best training 712

results, we have attempted different settings of optimizers 713

and activation functions; training accuracy and loss for part 714

of our experiments that use different kinds of optimizers 715

are illustrated in Figure 6. Training accuracy refers to the 716

percentage of correct predictions of all pairs in the training 717

set; training loss is measured according to cross-entropy. 718

The training accuracy for the CNN model, denoted by the 719

orange curve, increases slowly; the training loss oscillates 720

significantly. Thus we use a residual network, which employs 721

more hidden layers to capture various features embedded in 722

complex financial markets. Although the three-scale ResNet 723

with AMSGrad, RMSprop, and SGD optimizers and the 724

single-scale one achieve almost 100% accuracy and 0% loss 725

after large enough training epochs, we select the three-scale 726

ResNet with AMSGrad since it converges the most smoothly 727

and quickly. By repeating the above comparison, our later 728

experiments choose the three-scale ResNet with AMSGrad 729

optimizer, Leaky-ReLU activation function, and the three- 730

channel input. The inputs are formed by the spread and the 731

two stock return processes unless stated otherwise in our later 732

experiments. 733

We divide the data into the training and the validation set 734

to determine the number of training epochs. We first train 735

the model on the training set data and then run the resulting 736

model on the validation data set to calculate the accuracy 737

and loss. To retrieve useful information from the training data 738

9We adopt the structure of ResNet and the convolution kernel sizes 3, 5,
and 7 that were proposed by [41].
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FIGURE 6. Training accuracies and losses of CNN and ResNet under different settings. We illustrate part of our experiments (denoted by the
legends) for finding the optimized settings to achieve the best training results. The activation function used here is Leaky-ReLU. The input
has three channels: the spread and the two stock return processes.

set without incurring overfitting, we halt the training process739

when the win rate of the validation set reaches a maximum.740

We illustrate part of our experiments (denoted by the leg-741

ends) for finding the optimized settings to achieve the best742

training results. The activation function used here is Leaky-743

ReLU. The input has three channels: the spread and the two744

stock return processes.745

B. TWO-STAGE MODEL746

To improve the win rate and reduce trading risk further,747

we produce a two-stage model. The first-stage model recom-748

mends a proper representative threshold for each stock pair,749

as described in the previous sections; the second stage then750

predicts and prevents unprofitable pairs from trading. The751

training of the second-stage model is illustrated in Figure 7.752

Here, we divide the training set data into set 1 to train the first-753

stage mechanism and set 2 for the second-stage mechanism.754

In the first stage, the trigger threshold for each pair is deter-755

mined by the optimal threshold selection from Equation (5),756

then processed by the representative labeling mechanism757

discussed in Section III-D. The high training accuracy in758

Figure 6 indicates that the profit of almost every pair from759

training set 1, given the trigger threshold recommended by the760

first-stage model, is positive, an outcome that is of no use if761

we seek to distinguish unprofitable pairs from profitable ones.762

We address this issue by using the first-stage mechanism763

to predict a trigger threshold y for each pair x in training764

set 2, as in Figure 7. Next, we apply the PTS with the open765

and stop-loss thresholds y on x to generate the win or loss766

label, after which we use the features of x, according to the767

spread and stock price processes, as the input; the win/loss768

label functions as the ground truth to train the second-stage769

mechanism in the three-scale ResNet. The trigger threshold770

recommendation model with RLM, developed in the first771

stage, and the unprofitability detection mechanism trained in772

the second stage together execute the PTS on the testing data,773

as illustrated in Figure 8. Thus, for each stock pair in the test774

data set, a proper representative threshold gets identified and 775

recommended by the first-stage model, and the pair together 776

with recommended thresholds are examined to determine 777

whether they are profitable or not by the second-stage model. 778

In contrast with the single-stage model, the two-stage model 779

trades only those pairs that are predicted to be profitable. Our 780

experiments show that this design improves the win rate and 781

reduces risk. 782

V. EMPIRICAL TESTS 783

We conduct experiments on the constituent stocks of the 784

Taiwan Top 50 ETF (0050.TW) from 2013 to 2018 to 785

back-test improvements in PTS investment performance due 786

to the proposed RLM and the two-stage model. To evaluate 787

the trading performance, we first extract intra-day trading 788

information from each trading dayD1 from the testing period, 789

as illustrated in Figure 3. Then we retrieve stock pairs fea- 790

sible for PTS by applying the Johansen cointegration test 791

to the formation period data of day D1. Next, we predict 792

each pair’s optimal representative trigger threshold using the 793

trained three-scale ResNet described in Section IV-A. With 794

the retrieved stock pair and the corresponding trigger thresh- 795

old, we execute tick-by-tick pairs trading in the D′1s trading 796

period. We execute all trades one tick later than the spread 797

process hits the trigger threshold to simulate price slippage 798

effects. 799

We compare the investment performance of different 800

PTS by analyzing the following financial indicators: the 801

(overall) profit, the win rate, the normal close rate, the number 802

of trades, the Sharpe ratio (SR) calculated on a daily or 803

pair basis, the maximum drawdown (MDD), the maximum 804

required capital, and the average profit (per trade), as listed 805

in the first column of Table 1. To facilitate the performance 806

comparison in the following tables, we set in boldface the 807

best performance for each indicator (except for the number 808

of trades and the maximum required capital) to easily iden- 809

tify the best methods or settings. The (overall) profit sums 810
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FIGURE 7. Training the second-stage mechanism.

FIGURE 8. Applying the two-stage model for trading.

up the profit or loss for all trading days during the testing811

period, where the profit of day D is the lump sum profits812

earned by trading all PTS-eligible stock pairs on that day. The813

profit for trading each PTS-eligible stock pair is calculated814

in Equation (3). We measure the required capital for day D815

as the sum of the capital required to execute each PTS on816

that day. The maximum required capital is defined as the817

maximum required capital for each trading day in the testing818

period. The daily (pair) return is calculated as the daily (pair)819

profit divided by the required capital for that day (trade).820

The Sharpe ratio, which estimates the average excess trading821

return divided by the corresponding risk, can be estimated on822

either a daily basis, as823

Average daily return− Risk-free rate
Standard deviation of daily return

, (7)824

or else a pair basis, as825

Average pair return− Risk-free rate
Standard deviation of pair return

.826

The maximum drawdown (MDD) is defined as the maximum827

cumulative daily loss during the testing period. Thewin rate is828

defined as the number of profit-making trades divided by the829

total number of trades during the testing period. The normal830

close rate reflects the number of trades whose spread process831

converges to the mean level10 divided by the total number of 832

trades. 833

Section V-A compares various representative labeling 834

methods discussed in Sections IV-A and III-D. Because 835

combining multi-scale ResNet with the settings described 836

in Figure 6 and HighFreq (or KMeans(0)) yields the best 837

performance, these settings are adopted in our subsequent 838

experiments. Section V-B demonstrates that the proposed 839

RLM outperforms existing trigger threshold selection mech- 840

anisms. Section V-C shows that training a machine learn- 841

ing model with the spread process defined in Equation (2), 842

whose patterns are time-invariant, prevents changes in finan- 843

cial markets from harming the model’s predictability. Finally, 844

Section V-D illustrates how the two-stage model developed 845

in Section IV-B can effectively reduce PTS risk than existing 846

methods do. 847

A. SELECTION OF RLMs 848

To improve PTS investment performance, we select the best 849

DL and corresponding settings as in Section IV-A and proper 850

RLM in this section to ensure the efficiency of the training 851

described in step 5 of Figure 3. Table 1 compares the differ- 852

ent RLM proposed in Section III-D. In row 4, KMeans(0), 853

10That is, the spread process should converges to the red line like nodes
F and D, as illustrated in Figure 2.
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KMeans(1), and KMeans(2) denote representative label set-854

tings that apply k-means to the total trigger thresholds (see855

Figure 5(a)), trigger thresholds with probabilities greater than856

0.1% (see Figure 5(b)), and trigger thresholds with prob-857

abilities greater than 0.5% (see Figure 5(c)), respectively.858

HighFreq picks the trigger thresholds with the top-25 highest859

probabilities, as illustrated in Figure 5(d).860

Both the win rate and the normal close rate are high for861

these label mechanisms because the spread processes selected862

by the cointegration test described in Section II-B likely863

havemean-reverting properties. Therefore, a mechanismwith864

larger total opening numbers likely yields higher profits865

and Sharpe ratios. KMeans(0) has the highest number of866

trades among the four mechanisms probably because it does867

not exclude information from other trigger thresholds with868

lower probabilities. However, unlike representative thresh-869

olds produced by k-means, which typically do not coincide870

with trigger thresholds due to the average calculation, every871

threshold recommended by HighFreq is directly a trigger872

threshold with the highest 25 probabilities. Without distur-873

bances in the open and stop-loss thresholds, HighFreq pro-874

duces better pair-based investment results (i.e., SR (pair) and875

average profit (per trade)) than the other k-mean-basedmech-876

anisms. Because KMeans(0) and HighFreq possess distinct877

advantages, as illustrated by the best result set in boldface,878

we include either KMeans(0) or HighFreq for comparisons879

in our later experiments.880

B. COMPARISONS WITH THRESHOLD SELECTION881

METHODS882

Table 2 compares existing trigger threshold selection mech-883

anisms with our RLM (i.e., method 2). Fallahpour et al. [4]884

(method 1) reduce the threshold selection problem to a multi-885

armed bandit problem and solve it using a reinforcement886

learning model with 39 actions (i.e., trigger thresholds),887

extracted from a much narrower set O ∈ {0.5, 1, · · · 3} and888

S ∈ {0.5, 1, · · · 5}. Kim and Kim [5] (method 4) use deep889

reinforcement learning (DRL) to select one of six heuristi-890

cally generated actions for trading. Because the number of891

actions (threshold choices) is relatively small, these models892

do not suffer from the training non-convergence problem893

described in Section III-C. However, limiting the number of894

actions (or the choices of trigger thresholds) likely deterio-895

rates the PTS investment performance.896

For a fair comparison with the six actions of the DRL897

method proposed by [5], we add the HighFreq mechanism898

with six representative trigger thresholds (method 3). We find899

that HighFreq outperforms DRL in almost every aspect,900

even though DRL recommends more trading opportunities901

(i.e., more number of trades). However, the low win rate for902

DRL results in lower overall profits and SR metrics than903

HighFreq with six representative trigger thresholds. Increas-904

ing the number of representative trigger thresholds from 6 to905

25 increases the number of trades and win rate, improves906

profit and SR, and reduces risk (reflected by MDD). The907

best performance terms set in boldface also suggest that908

the proposed methods 2 and 3 generally outperform other 909

methods. The quarterly pair-based Sharpe ratios illustrated in 910

the upper panel in Figure 9 also show that a well-designed 911

PTS yields absolute positive returns regardless of changes in 912

the market trend shown in the lower panel. Methods 2 and 3 913

also outperform other methods irrespective of stock market 914

changes. Besides, the naive reinforcement learning model 915

proposed by Fallahpour et al. [4] performs poorly, with a win 916

rate below 50% and negative profits. However, if transaction 917

costs are ignored, as mentioned in their papers, the profits of 918

their model become positive. This implies that their model 919

fails to find a proper solution to filter out unprofitable trades 920

due to transaction costs. 921

C. TRAINING WITH TIME-(IN) VARIANT DATA 922

Market trends vary with time, and the non-stable nature of 923

a stock price/return process makes it difficult for machine 924

learning models to capture and predict stable patterns of trad- 925

ing data [10]. Thus model performances vary significantly, 926

depending on whether there are turning points during the 927

training or testing periods. Therefore, a proper hyperparame- 928

ter setting that controls the length of training and testing peri- 929

ods could be challenging to identify [33]. However, spread 930

processes (Equation (2)) generated by the cointegration test 931

are stationary; their statistical properties do not change when 932

shifted in time. This valuable property allows us to extend 933

the training period to capture more patterns to improve PTS 934

profitability, without exposing the model to changes in finan- 935

cial markets. In Table 3, lengthened training periods generally 936

coincide with increases in win rate, SR, trading opportunities 937

(i.e., number of trades), and overall profit. In contrast, using 938

only non-stationary series, such as stock prices and stock 939

returns, as training data yields unstable performance with 940

each increment of the training period. The spread process also 941

can be expressed as the non-invertible function of the pair 942

of stocks’ prices, as in Equation (2). These two stock price 943

processes thus contain broader information than is available 944

in the spread process. Even if the spread process contains less 945

information though, its stationary property makes it easier 946

for machine learning algorithms to capture time-invariant 947

patterns, rather than the time-variant patterns of the stock 948

return and price processes. 949

Next, we proceed to analyze the impacts of combin- 950

ing different types of processes as inputs. Combining the 951

stationary process with the non-stationary one as inputs 952

(i.e., ‘‘S + R’’ and ‘‘S + P’’ cases) provides stable invest- 953

ment performance that grows with the increment of the 954

training period. In addition, their performances are better 955

than those generated by training with just the spread process 956

(i.e., ‘‘S’’ case). But investment performance generated by 957

training with non-stationary return and stock price processes 958

(i.e., ‘‘R + P’’) is unstable. This result again confirms the 959

value of the time-invariant property. 960

To strengthen our arguments, we extend the experiment 961

in Table 3 to different testing periods across 2016–2018, 962

as shown in Table 4. We observe the same phenomena. 963
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TABLE 1. Comparing different representative labeling mechanisms. We list the training period, validation period, and testing period in the first, second,
and third rows. The fourth row lists RLMs to generate representative trigger thresholds. The investment performance indicators used to measure
performance are in the first column. For each indicator, we set in boldface the best of the four RLMs.

TABLE 2. Comparisons among different trigger threshold selection methods. The performance indicators (first column) for different trigger threshold
settings proposed by Fallahpour et al. [4] with 39 actions (method 1), our HighFreq with 25 representative thresholds (method 2), our HighFreq with
6 representative thresholds (method 3), and the deep reinforcement method proposed by Kim and Kim [5] with 6 heuristic actions (method 4) are listed
for comparison. For each indicator, we set in boldface the best of the four methods.

FIGURE 9. Comparisons with quarterly pair-based sharpe ratios among different methods. The upper panel illustrates the quarterly pair-based Sharpe
ratios for executing PTSs with the trigger threshold selection methods mentioned in Table 2. The lower panel shows the price trend of the Taiwan
Capitalization Weighted Stock Index (TAIEX) for the corresponding period.

The investment performance generated by training with both964

time-invariant and variant data (i.e., ‘‘S + R’’ or ‘‘S + P’’965

cases) is better than that generated by training with966

time-invariant data (i.e., ‘‘S’’ case), which in turn is bet-967

ter than those generated by training with time-variant data968

(i.e., ‘‘R’’ or ‘‘P’’ cases). Moreover, the distribution of the969

stock return process is more stable than that of the stock price, 970

as the former process is evaluated by applying the difference 971

operators on the logarithm of the latter process. Specifically, 972

the return for stock S ij over the period [τ , τ
′] can be evaluated 973

by ln
S ij (τ

′)

S ij (τ )
, as in Equation (3). Thus, the machine learning 974
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TABLE 3. Impact of different lengths of training periods and inputs on PTS performance. The input data can be the spread process (S), prices (P), and/or
return (R) processes of stocks. For example, ‘‘R + P’’ indicates that the input data are composed of the stocks’ returns and price processes. The validation
period is Oct. 2016-Dec. 2016, and the testing period is 2017. The length of the training period ranges from 0.25 to 1.75 years. For example, the training
period Jan. 2015-Sep. 2016 pertains to the 1.75-year case.

TABLE 4. Comprehensive examination of different inputs for PTS performance. The training, validation, and testing periods are listed in the first three
rows. The PTS performances of HighFreq with different input data are compared for the period from 2016 to 2018. For each indicator, we set in boldface
the best of the different input data sources.

algorithm better captures patterns in the stock return process,975

yielding PTS performance that is generally better than that of976

stock prices. Observing the best performances set in boldface977

shows that training with a time-invariant spread process (S) is978

better than training with time-varying stock returns (R) or979

prices (P) in the upper panel of Table 4. Training with data980

containing time-invariant processes (i.e., S + R or S + P) is981

better than training with only time-varying data (R + P) in982

the lower panel.983

D. TWO-STAGE LEARNING MODEL984

It is hard to prevent unprofitable stock pairs from trading, no985

matter the level of sophistication achieved by the pair and986

trigger threshold selection methods (e.g., cointegration test987

andHighFreq adopted herein). To reduce PTS risk (or loss) by988

avoiding trading unprofitable pairs, Sarmento and Horta [8]989

use OPTICS to group stocks by their 5-minute moving990

average returns; they prevent trading a stock pair if the991

stocks of the pair belong to different groups. We combine 992

their OPTICS-based risk-reduction into our first-stage RLM 993

mechanism, illustrated in Figure 3, and thereby compare their 994

risk-reduction model and our second-stage model that detects 995

and removes unprofitable trades, as in Figure 7. Comparisons 996

of the one-stage model (i.e., adopting only the RLM mecha- 997

nism for trading) and the combinations of RLMwith different 998

risk-reduction methods are listed in Table 5. 999

Detecting and removing unprofitable pairs may erro- 1000

neously remove profitable transactions, which would reduce 1001

overall profits and the daily Sharpe ratio. But our removal 1002

mechanism also improves the win/normal close rate and 1003

significantly enhances pair-based SR and the average profit 1004

(per trade) by up to 40%. In addition,MDD falls significantly, 1005

attesting to the effectiveness of our second-stage approach 1006

to protect investors from unexpected significant loss. The 1007

OPTICS-based approach [8] achieves similar effects, but our 1008

proposed two-stagemodel outperforms their model on almost 1009
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TABLE 5. Comparison with the optics-based risk-reduction algorithm. The training data set 1 and validation data used to train the first-stage model in
Figure 3 are listed in the first two rows. The training data set 2 used to train our or Sarmento and Horta [8] risk-reduction methods is listed in the third
row. ‘‘O-S’’ and ‘‘T-S’’ denote our proposed one-stage and two-stage models, respectively. ‘‘5 min-M’’ indicates the OPTICS grouping based on the
5-minute moving average returns. The performance when we use Kmeans(0) or HighFreq to select representative thresholds appears in subsequent rows.
For each indicator, we set in boldface the best of the three methods.

TABLE 6. Comparison with Lu et al. [9]. All experimental results (except
the last row) are retrieved from Table 4 in Lu et al. [9]. The experimental
settings also match their paper. For each financial indicator, we set in
boldface the best of the methods listed in the first column.

all financial indicators, according to the direct comparisons.1010

Observing the best performances set in boldface shows that1011

our first-stage model affords more trading opportunities and1012

aggregated profits. However, our two-stage model has better1013

average profitability and lower risk per trade.1014

Lu et al. [9] design a ‘‘structural break aware pair trading’’1015

strategy (SAPT) that stops losses by detecting ‘‘structural1016

breaks’’, or the loss of cointegrating properties, as illustrated1017

in the first column of Table 6. In their two-phase frame-1018

work, DL first serves to detect the probability of a struc-1019

tural break. Then second phase trains a deep reinforcement1020

learning model to select heuristically generated thresholds.1021

We extend their experiment by inserting our two stage model1022

with 25 representative thresholds selected byHighFreq, in the1023

last row of the table. Although the Sharpe ratio of HighFreq1024

performs worse than the first four versions of SAPT, it signif-1025

icantly outperforms all different versions of SAPT in terms1026

of the Sortino ratio. This is because the denominator of the 1027

Sharpe ratio (Equation (7)) is the standard deviation of all 1028

returns, regardless of positive or negative signs. In contrast, 1029

the Sortino ratio is the standard deviation of negative returns. 1030

Therefore, we can deduce that the risk of negative returns in 1031

HighFreq is much smaller than in SAPT. 1032

VI. CONCLUSION 1033

This paper proposes a novel two-stage model to improve PTS 1034

investment performance and reduce trading risk by optimally 1035

selecting trigger thresholds and removing unprofitable stock 1036

pairs. In the first stage, we train a multi-scale ResNet with the 1037

proposed RLM to select optimal thresholds without incurring 1038

the non-convergence training problem. Our approach outper- 1039

forms other approaches that heuristically generate a set of 1040

thresholds for selections. To remove unprofitable stock pairs 1041

in the second stage, we train another multi-scale ResNet with 1042

the profitability of each stock pair obtained by executing the 1043

PTS with trigger thresholds recommended in the first stage. 1044

Therefore, our second-stage model outperforms models that 1045

indirectly predict stock pair profitability by the similarity of 1046

stock price processes [8] and the occurrence of structural 1047

breaks [9]. We also find that the time invariance of the 1048

spread process (i.e., portfolio value process) makes it eas- 1049

ier for machine-learning algorithms to capture features and 1050

hence improve investment performance. Indeed, as in much 1051

of the financial-market-prediction literature, training with 1052

time-varying patterns such as stock prices or returns yields 1053

unstable investment performance as the patterns learned 1054

from the training set may change in the testing set. Thus, 1055

changing the training period length influences investment 1056
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performance in an unstable way due to unpredictable1057

changes in financial markets. However, training with the1058

time-invariant spread process monotonically improves the1059

performance with prolonged training periods and outper-1060

forms training with time-variant stock prices and returns,1061

even though the spread process contains less information than1062

the stock price or return data.1063

Our work yields meaningful insights for further develop-1064

ments in financial market prediction and investment. To avoid1065

unpredictable changes in financial markets due to outbreaks1066

of pandemics and wars from harming the predictability1067

of machine learning models for PTS, we can train with1068

time-invariant spread processes to eliminate unstable perfor-1069

mance. The high profitability and the low-risk properties also1070

render our two-stage model a good PTS candidate for appli-1071

cations such as reducing the variance (or risk) in investment1072

portfolios [16] and establishing optimal asset allocations [17].1073

REFERENCES1074

[1] G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis,1075

vol. 217. Hoboken, NJ, USA: Wiley, 2004.1076

[2] C. Krauss and J. Stübinger, ‘‘Non-linear dependencemodellingwith bivari-1077

ate copulas: Statistical arbitrage pairs trading on the S&P 100,’’ Appl.1078

Econ., vol. 49, no. 52, pp. 5352–5369, Nov. 2017.1079

[3] S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autore-1080

gressive Models. Oxford, U.K.: Oxford Univ. Press, 1995.1081

[4] S. Fallahpour, H. Hakimian, K. Taheri, and E. Ramezanifar, ‘‘Pairs1082

trading strategy optimization using the reinforcement learning method:1083

A cointegration approach,’’ Soft Comput., vol. 20, no. 12, pp. 5051–5066,1084

Dec. 2016.1085

[5] T. Kim and H. Y. Kim, ‘‘Optimizing the pairs-trading strategy using deep1086

reinforcement learning with trading and stop-loss boundaries,’’ Complex-1087

ity, vol. 2019, pp. 1–20, Nov. 2019.1088

[6] W.-L. Kuo, T.-S. Dai, andW.-C. Chang, ‘‘Solving unconverged learning of1089

pairs trading strategies with representation labeling mechanism,’’ in Proc.1090

CIKM Workshops, vol. 3052, 2021, pp. 1–11.1091

[7] J. Li, F. Fang, K. Mei, and G. Zhang, ‘‘Multi-scale residual network1092

for image super-resolution,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),1093

Sep. 2018, pp. 517–532.1094

[8] S. M. Sarmento and N. Horta, ‘‘Enhancing a pairs trading strategy with the1095

application of machine learning,’’ Expert Syst. Appl., vol. 158, Nov. 2020,1096

Art. no. 113490.1097

[9] J.-Y. Lu, H.-C. Lai, W.-Y. Shih, Y.-F. Chen, S.-H. Huang, H.-H. Chang,1098

J.-Z. Wang, J.-L. Huang, and T.-S. Dai, ‘‘Structural break-aware pairs trad-1099

ing strategy using deep reinforcement learning,’’ J. Supercomput., vol. 78,1100

no. 3, pp. 3843–3882, Feb. 2022.1101

[10] R. Singh and S. Srivastava, ‘‘Stock prediction using deep learning,’’ Mul-1102

timedia Tools Appl., vol. 76, no. 18, pp. 18569–18584, 2017.1103

[11] C. Krauss, ‘‘Statistical arbitrage pairs trading strategies: Review and out-1104

look,’’ J. Econ. Surv., vol. 31, no. 2, pp. 513–545, Apr. 2017.1105

[12] H. Rad, R. K. Y. Low, and R. Faff, ‘‘The profitability of pairs trading1106

strategies: Distance, cointegration and copula methods,’’ Quant. Finance,1107

vol. 16, no. 10, pp. 1541–1558, Oct. 2016.1108

[13] N. Huck and K. Afawubo, ‘‘Pairs trading and selection methods: Is coin-1109

tegration superior?’’ Appl. Econ., vol. 47, no. 6, pp. 599–613, Feb. 2015.1110

[14] R. F. Engle and C. W. J. Granger, ‘‘Co-integration and error correction:1111

Representation, estimation, and testing,’’ Econometrica, vol. 55, no. 2,1112

pp. 251–276, Mar. 1987.1113

[15] S. Johansen, ‘‘Statistical analysis of cointegration vectors,’’ J. Econ. Dyn.1114

Control, vol. 12, nos. 2–3, pp. 231–254, Jun. 1988.1115

[16] J. Giner, ‘‘Orthant-based variance decomposition in investment portfo-1116

lios,’’ Eur. J. Oper. Res., vol. 291, no. 2, pp. 497–511, Jun. 2021.1117

[17] S. C. P. Yam, H. Yang, and F. L. Yuen, ‘‘Optimal asset allocation: Risk and1118

information uncertainty,’’ Eur. J. Oper. Res., vol. 251, no. 2, pp. 554–561,1119

Jun. 2016.1120

[18] M. Fil and L. Kristoufek, ‘‘Pairs trading in cryptocurrency markets,’’ IEEE1121

Access, vol. 8, pp. 172644–172651, 2020.1122

[19] P. S. Lintilhac and A. Tourin, ‘‘Model-based pairs trading in the bitcoin 1123

markets,’’ Quant. Finance, vol. 17, no. 5, pp. 703–716, May 2017. 1124

[20] N. Huck, ‘‘Pairs trading and outranking: The multi-step-ahead fore- 1125

casting case,’’ Eur. J. Oper. Res., vol. 207, no. 3, pp. 1702–1716, 1126

Dec. 2010. 1127

[21] A. Brim, ‘‘Deep reinforcement learning pairs trading with a double deep 1128

Q-network,’’ in Proc. 10th Annu. Comput. Commun. Workshop Conf. 1129

(CCWC), Jan. 2020, pp. 0222–0227. 1130

[22] F. Xu and S. Tan, ‘‘Dynamic portfolio management based on pair trading 1131

and deep reinforcement learning,’’ in Proc. 3rd Int. Conf. Comput. Intell. 1132

Intell. Syst., Nov. 2020, pp. 50–55. 1133

[23] T.-W. Hsu, C.-C. Chen, H.-H. Huang, M. C. Chen, and H.-H. Chen, 1134

‘‘Hedging via opinion-based pair trading strategy,’’ in Proc. Companion 1135

Web Conf., 2020, pp. 69–70. 1136

[24] C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang, ‘‘Time series 1137

anomaly detection for trustworthy services in cloud computing systems,’’ 1138

IEEE Trans. Big Data, vol. 8, no. 1, pp. 60–72, Feb. 2022. 1139

[25] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image 1140

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 1141

Jan. 2016, pp. 770–778. 1142

[26] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and 1143

K. P. Soman, ‘‘Stock price prediction using LSTM, RNN and CNN-sliding 1144

window model,’’ in Proc. Int. Conf. Adv. Comput., Commun. Informat. 1145

(ICACCI), 2017, pp. 1643–1647. 1146

[27] M. S. Hegde, G. Krishna, and R. Srinath, ‘‘An ensemble stock predictor 1147

and recommender system,’’ in Proc. Int. Conf. Adv. Comput., Commun. 1148

Informat. (ICACCI), Sep. 2018, pp. 1981–1985. 1149

[28] K. Khare, O. Darekar, P. Gupta, and V. Z. Attar, ‘‘Short term stock 1150

price prediction using deep learning,’’ in Proc. 2nd IEEE Int. Conf. 1151

Recent Trends Electron., Inf. Commun. Technol. (RTEICT), May 2017, 1152

pp. 482–486. 1153

[29] S. Jain, R. Gupta, and A. A. Moghe, ‘‘Stock price prediction on daily 1154

stock data using deep neural networks,’’ in Proc. Int. Conf. Adv. Comput. 1155

Telecommun. (ICACAT), Dec. 2018, pp. 1–13. 1156

[30] C. Peng, Z. Yin, X. Wei, and A. Zhu, ‘‘Stock price prediction based on 1157

recurrent neural network with long short-term memory units,’’ in Proc. Int. 1158

Conf. Eng., Sci., Ind. Appl. (ICESI), 2019, pp. 1–5. 1159

[31] M. Wen, P. Li, L. Zhang, and Y. Chen, ‘‘Stock market trend predic- 1160

tion using high-order information of time series,’’ IEEE Access, vol. 7, 1161

pp. 28299–28308, 2019. 1162

[32] Y. Gu, D. Yan, S. Yan, and Z. Jiang, ‘‘Price forecast with high-frequency 1163

finance data: An autoregressive recurrent neural network model with 1164

technical indicators,’’ in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage., 1165

Oct. 2020, pp. 2485–2492. 1166

[33] L. Zhang, C. Aggarwal, and G.-J. Qi, ‘‘Stock price prediction via discov- 1167

ering multi-frequency trading patterns,’’ in Proc. 23rd ACM SIGKDD Int. 1168

Conf. Knowl. Discovery Data Mining, Aug. 2017, pp. 2141–2149. 1169

[34] S. Johansen, ‘‘Identifying restrictions of linear equations with applications 1170

to simultaneous equations and cointegration,’’ J. Econometrics, vol. 69, 1171

no. 1, pp. 111–132, Sep. 1995. 1172

[35] J. Rudy, C. Dunis, G. Giorgioni, and J. Laws, ‘‘Statistical arbitrage and 1173

high-frequency data with an application to Eurostoxx 50 equities,’’ Social 1174

Sci. Res. Netw., 2010. 1175

[36] S. Broumandi and T. Reuber, ‘‘Statistical arbitrage and FX exposure with 1176

south American ADRs listed on the NYSE,’’ Financial Assets Investing, 1177

vol. 3, no. 2, pp. 5–18, May 2012. 1178

[37] H. Lütkepohl, P. Saikkonen, and C. Trenkler, ‘‘Maximum eigenvalue ver- 1179

sus trace tests for the cointegrating rank of a VAR process,’’ Econometrics 1180

J., vol. 4, no. 2, pp. 287–310, 2001. 1181

[38] S.-H. Kim, D.-Y. Park, and K.-H. Lee, ‘‘Hybrid deep reinforcement learn- 1182

ing for pairs trading,’’ Appl. Sci., vol. 12, no. 3, p. 944, Jan. 2022. 1183

[39] S. Endres and J. Stübinger, ‘‘A flexible regime switching model with pairs 1184

trading application to the S&P 500 high-frequency stock returns,’’ Quant. 1185

Finance, vol. 19, no. 10, pp. 1727–1740, Oct. 2019. 1186

[40] B. Liu, L.-B. Chang, and H. Geman, ‘‘Intraday pairs trading strategies on 1187

high frequency data: The case of oil companies,’’ Quant. Finance, vol. 17, 1188

no. 1, pp. 87–100, Jan. 2017. 1189

[41] R. Liu, F. Wang, B. Yang, and S. J. Qin, ‘‘Multiscale kernel based residual 1190

convolutional neural network for motor fault diagnosis under nonstationary 1191

conditions,’’ IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3797–3806, 1192

Jun. 2019. 1193

[42] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network 1194

training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf. 1195

Mach. Learn., 2015, pp. 448–456. 1196

VOLUME 10, 2022 97045



W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

WEI-LUN KUO received the B.S. degree in com-1197

puter science from the National Taiwan Normal1198

University, Taipei, Taiwan, in 2019, and the M.S.1199

degree in computer science from the National1200

Yang Ming Chiao Tung University (NYCU),1201

Hsinchu, Taiwan, in 2021. His research interest1202

includes deep learning in finance.1203

WEI-CHE CHANG received the B.S. degree in1204

computer science from the National Yang Ming1205

Chiao TungUniversity (NYCU), Hsinchu, Taiwan,1206

in 2020, where he is currently pursuing the M.S.1207

degree in computer science. His research interest1208

includes reinforcement learning in finance.1209

TIAN-SHYR DAI received the Ph.D. degree from1210

the Department of Computer Science, National1211

Taiwan University. He was the Chairperson of1212

the Department of Information Management and1213

Finance, from 2016 to 2019, and the Director1214

of the Taiwan Association of Business School,1215

from 2018 to 2020. He is currently a Full Professor1216

at theDepartment of InformationManagement and1217

Finance, National Yang Ming Chiao Tung Univer-1218

sity (NYCU). He is also a ResearchMember of the1219

Risk and Insurance Research Center, NCCU. He has been a Senior Fellow of1220

AdvanceHE and a Faculty Member of Beta Gamma Sigma, since 2021. His1221

research interests include financial engineering and financial technology.1222

YING-PING CHEN (Member, IEEE) received 1223

the B.S. and M.S. degrees in computer science 1224

and information engineering from the National 1225

Taiwan University, Taiwan, in 1995 and 1997, 1226

respectively, and the Ph.D. degree from theDepart- 1227

ment of Computer Science, University of Illinois 1228

at Urbana–Champaign, Champaign, IL, USA, 1229

in 2004. He is currently a Full Professor with the 1230

Department of Computer Science, National Yang 1231

Ming Chiao Tung University (NYCU), Taiwan. 1232

His research interests include understanding intelligence from computational 1233

perspectives and via computational mechanisms, novel, emerging computa- 1234

tional technologies, and theories, working principles, and dimensional/facet- 1235

wise models in genetic and evolutionary computation. 1236

HAO-HAN CHANG is currently pursuing the 1237

Ph.D. degree with the Institute of Finance, 1238

National Yang Ming Chiao Tung University 1239

(NYCU). His research interests include statistical 1240

arbitrage and valuation employee stock options 1241

with forest model. 1242

1243

97046 VOLUME 10, 2022


