IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 1 August 2022, accepted 27 August 2022, date of publication 5 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204056

==l APPLIED RESEARCH

Improving Pairs Trading Strategies Using
Two-Stage Deep Learning Methods and
Analyses of Time (In)variant Inputs

for Trading Performance

WEI-LUN KUO', WEI-CHE CHANG?2, TIAN-SHYR DAI’34, YING-PING CHEN "5, (Member, IEEE),

AND HAO-HAN CHANG 3

UInstitute of Data Science and Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan
2Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan
3Department of Information Management and Finance, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan

“4Insurance Research Center, National Chengchi University, Taipei 11605, Taiwan

SDepartment of Computer Science, National Yang Ming Chiao Tung University (NYCU), Hsinchu 300093, Taiwan

Corresponding author: Tian-Shyr Dai (cameldai @mail.nctu.edu.tw)

This work was supported by the Ministry of Science and Technology (MOST) under Grant 109-2622-H-009-001-CC3, Grant MOST

110-2622-H-A49-001-, and Grant MOST 110-2634-F-A49-004-.

ABSTRACT A pairs trading strategy (PTS) constructs and monitors a stationary portfolio by shorting
(longing) when the portfolio is adequately over- (under-)priced measured by a predetermined open threshold.
We close this position to earn the price differences when the portfolio’s value reverts back to the mean
level. When the portfolio is significantly over- (under-)priced measured by another predetermined stop-
loss threshold, we close the position to stop loss. This paper develops a two-stage deep learning method to
improve the investment performance of a PTS. Note that the literature executes a PTS by selecting the best
trigger threshold (a combination of open and stop-loss thresholds) from a restricted, heuristically-determined
set of trigger thresholds. Such a design significantly degrades investment performance. However, selecting
the best threshold from all possible thresholds yields a non-converged training problem. To resolve this
dilemma, we propose in the first stage of our method a representative label mechanism by which to construct
a set of candidate trigger thresholds based on all possible thresholds and then train a deep learning (DL)
model to select the best from the set. Experiments demonstrate that the proposed first-stage method avoids the
non-converged training problem and outperforms most state-of-the-art methods. To further reduce the trading
risk, the second stage trains another DL with the profitability of each trade labeled by executing the PTS
with trigger thresholds recommended in the first-stage mechanism to remove unprofitable trades. Compared
to models that indirectly judge profitability by price movement similarity without considering the quality of
the recommended trigger thresholds, our model produces higher win rates and average profits. Furthermore,
we find that training with the PTS portfolio value process exhibiting time invariance clearly outperforms
training with only time-varying stock/return processes, even though the latter training set contains more
information. This is because unpredictable changes in market trends cause the model to learn time-varying
patterns from the training set that may not apply to the testing set.

INDEX TERMS Pairs trading strategy, representative labeling, time (in)variant data, two-stage deep learning.

I. INTRODUCTION
A pairs trading strategy (PTS) is a popular, statistical arbi-
trage investment strategy that forms and trades market-neutral

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao

97030 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

portfolios [1]. Rather than guessing hard-to-predict trends in
financial markets, a PTS eliminates the risk of market ten-
dency by longing (or shorting) several assets at the same time,
according to specified investment weight ratios determined
by various statistical methods [2]. The value of this portfolio,
or “‘spread,” oscillates around a mean price level and has a

VOLUME 10, 2022

https://orcid.org/0000-0002-9226-3056
https://orcid.org/0000-0002-5979-6926
https://orcid.org/0000-0003-2064-5941
https://orcid.org/0000-0003-0381-4360

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

low correlation with the tendency of financial markets. That
is why the portfolio processes the market-neutral property.
To construct a portfolio with this property, we need to find
a group of assets (e.g., stocks in this paper) whose price pro-
cesses cointegrate, as identified by the Johansen cointegration
test [3]. Our PTS strategy longs (shorts) the portfolio when
the spread significantly deviates from the mean price level to
fall below a lower (exceed a higher) open threshold. Then the
portfolio gets closed when the spread converges to the mean
price level. The resulting earnings equal the price difference
between the open threshold and the mean price level.

Appropriate customized, open thresholds for each stock
pair thus determine PTS profitability. If the open threshold
is too far from the mean price level, the portfolio is unlikely
to open,; if it is too close to the mean though, the resulting
earning might be insufficient to cover the costs of transaction
and price slippage. Furthermore, the statistical arbitrage prop-
erty entails that the spread may occasionally fail to revert to
the mean price level; such failures result in significant losses,
as stated in Vidyamurthy [1]. Adding a stop-loss threshold
creates a price level at which the portfolio closes once the
spread diverges too far from the mean level. Here again,
determining a proper threshold for each stock pair is critical
because their spreads show different price patterns that vary
with changes in financial markets.

In prior efforts to set the thresholds, referred to as
actions in a reinforcement learning (RL) framework,
Fallahpour et al. [4] and Kim and Kim [5] use a limited
action set with 6 or 39 actions, respectively, which repre-
sent significant limits on investment performance. There-
fore, we consider a much larger set of about 2800 open
and stop-loss threshold recommendations determined by the
maximum price deviations during the training set to cover
all possible trading scenarios. Then we label each stock pair
in the training set with one of 2800 thresholds that maxi-
mize PTS profits. In this effort though, methods based on
regression- or classification-based deep learning (DL) fail to
converge. To address this non-convergence problem, a repre-
sentative labeling mechanism to select the recommendation
threshold from 25' representative thresholds determined by
the most frequently chosen thresholds or a k-means method
is proposed in our previous conference work [6] and then
further improved in this paper. We can relabel each stock
pair with a representative threshold. Instead of learning from
2800-label stock pairs, we rely on 25-relabeled stock pairs.
If we train a multi-scale residual network (abbreviated
ResNet), as proposed by Li et al. [7], with the relabeled
stock pairs, we achieve smooth, quick convergence. Our later
experiments confirm that the investment performance of our
representative labeling mechanism outperforms the options
offered in prior research.

To further enhance PTS investment quality, Sarmento and
Horta [8] and Lu et al. [9] indirectly predict and remove
unprofitable stock pairs from trading without taking into

IThis value is determined by the elbow method.

VOLUME 10, 2022

account the quality of the recommended trigger thresh-
olds. Sarmento and Horta [8] group stocks according to the
OPTICS algorithm, then remove pairs whose stocks come
from different groups. Furthermore, Lu ez al. [9] use long
short-term memory (LSTM) and wavelet convolutional neu-
ral network (CNN) to predict time-series anomaly properties.
But these mechanisms do not necessarily determine unprof-
itability, so they can result in the removal of many profitable
trades, which significantly reduces overall profits. Instead,
this paper proposes a two-stage model to remove unprofitable
trades without significantly sacrificing overall profits; the
training data set comprises two parts. The first stage trains a
ResNet model on the first part of the training data, labeled by
the representative thresholds, to recommend open and stop-
loss thresholds. Then to remove unprofitable pairs, the second
part of the training data is first inputted into the first-stage
model to obtain the recommended thresholds. We then trade
each stock pair with the recommended threshold to obtain
the profit/loss signal, as a label for the stock pair to train
the second-stage model. For each stock pair in the testing
set, we also use the first model to recommend an open and
stop-loss threshold and the second model to remove unprof-
itable pairs from trading. This two-stage model yields better
win rates and higher Sharpe ratios across all our experiments.

Because frequent dramatic changes in financial markets
alter patterns of stock price and return processes, it becomes
difficult for machine learning algorithms to capture changing
patterns, even when using many features and various data
lengths [10]. Thus, researchers tend to train their models
using a limited amount of the most recent historical market
data; ancient data and corresponding embedded informa-
tion get discarded. But the cointegration test proposed by
Johansen [3] guarantees that the statistical properties of the
spread process do not vary with time. This feature effectively
improves the performance of the PTS model if we prolong
the training period, such that we do not need to tune the
hyperparameter that controls the length of the training period.
Even if the spread process contains less information than
the price processes of stock pairs,” models trained on spread
process data still outperform those trained on stock pair data.

In Section II-A, we review prior PTS research that relies
on quantitative and machine learning models. Section II-B
outlines how we construct stock pairs that possess coin-
tegration properties and provide the definitions of PTS
reward functions. With Section III, we detail the construc-
tion of the optimal combination of the open and stop-loss
thresholds (referred to as the “trigger threshold”) and the
representative labeling mechanism adopted to address the
non-convergence training problem. Then in Sections IV-A
and IV-B, we describe how we incorporate the multi-scale
ResNet into our PTS model, as well as the design of the two-
stage model. The experimental results in Section V confirm
the superiority of our two-stage models; as we explain, the

2The spread process can be derived from the price processes of stock pairs,
as in Equation (2).

97031

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

time-invariant property provided by cointegration resolves
the problem of changing data patterns due to varying financial
markets. Section VI concludes.

Il. PRIOR LITERATURE AND REQUIRED BACKGROUND
KNOWLEDGE

In this section, we review previous applications of PTS and
provide a brief survey of the cointegration method we use to
construct stock pairs eligible for PTS, together with the corre-
sponding investment ratios. We also describe the motivation
behind the proposed two-stage model.

A. PRIOR LITERATURE
Krauss [11] classifies techniques for finding stock pairs eligi-
ble for PTS and improvements for PTS strategies into several
approaches, including the distance approach, the cointegra-
tion approach, time-series models, stochastic control theory,
and other techniques. Our stock pair generation method is
based on the cointegration approach, which Rad et al. [12]
and Huck and Afawubo [13] identify as preferable. In addi-
tion, Engle and Granger [14] and Johansen [15] develop
different statistical tests to determine whether the price
processes of a logarithmic stock pair possess cointegration
properties. That is, a linear combination of two logarithmic
price processes of constitute stocks makes the resulting value
process of this two-stock portfolio into a stationary process.
The stationary property ensures that statistical properties,
such as the value’s mean and variance, do not change with
time. Thus it is possible to buy (sell) the portfolio when
its value is below (above) the mean, then close the position
to cash out when the value converges back to the mean.
Vidyamurthy [1] and Rad et al. [12] use these tests to detect
stock pairs eligible for PTS. An effective PTS also be applied
to reduce the variance (or risk) in investment portfolios [16],
establish optimal asset allocations [17], and support trades of
new financial products like cryptocurrency [18], [19].
Machine learning techniques, as first proposed by [20],
promise to improve PTS performance. In particular, rein-
forcement learning (RL) can determine open and stop-loss
thresholds for PTS. Fallahpour et al. [4] enumerate 39 actions
(i.e., 39 trigger thresholds), which enables them to reduce the
threshold selection problem to a multi-armed bandit problem,
solved using a single-state RL model. However, this naive
mechanism cannot capture various properties of different
stock pairs, so it is outperformed by other approaches, in
terms of our experimental results. Kim and Kim [5] instead
use a deep Q-network (DQN) and heuristically set six overly
simplistic actions, which significantly limits the profitability
of their approach. In addition, they train each PTS-eligible
stock pair with a DQN, which necessitates a large number
of DQNs. But in line with their observations, we find that
cointegration properties for most stock pairs are not durable
over a long period; very few stock pairs contain enough
data to train the DQN. Therefore, we train our machine
learning model instead on trading data from all stock pairs,
which produces recommended thresholds for all stock pairs.

97032

Some variations of PTS include a double DQN proposed by
Brim [21], with three actions (hold, buy, sell), that seeks to
predict the trend of the spread, though a low win rate limits
their model’s applicability. Instead of using open and stop-
loss thresholds, Xu and Tan [22] predict open and stop-loss
timing for PTS, which they use to form a return-maximized
portfolio with a deterministic policy gradient method. In addi-
tion, Hsu et al. [23] take advantage of opinions from social
media to predict spread price movements.

To reduce PTS risk, Sarmento and Horta [8] use the
OPTICS algorithm and divide the stocks into groups, accord-
ing to their average return processes. They then remove PTS
pairs with stocks from different groups. In our experiments,
their approach slightly improves the win rate and reduces the
maximum drawdown; however, it discards many profitable
trades, such that it significantly reduces overall investment
performance. When Lu et al. [9] use the time-series anomaly
detection mechanism proposed by Huang et al. [24] to label
anomalies of the price processes, they can combine LSTM
and continuous wavelet CNN to predict structural breaks,
which they interpret as losing cointegration properties. But
errors in labeling anomalies are difficult to avoid, which
biases training efforts to detect structural breaks. Therefore,
we propose a two-stage model that determines the optimal
open and stop-loss thresholds in the first stage, then detects
and removes unprofitable pairs in the second stage. With
experiments, we show that this two-stage approach achieves
a better win rate, higher trading opportunities, and greater
overall profits than filtering pairs with the OPTICS algorithm.
Our approach also incurs fewer risks of negative returns
than the structural break detection approach. Rather than
using RL, we adopt DL with representative labeling mech-
anisms to find recommended open and stop-loss thresholds.
To capture complex features or patterns in financial markets,
we adopt the residual network (ResNet) model proposed by
He et al. [25]; their extensive empirical data affirm that
ResNets are simpler to optimize and also achieve higher
learning precision because ResNets include more hidden
layers. ResNet is extended by Li ef al. [7] from a single
scale to multiple scales by adding convolution kernels of
various sizes to adaptively detect data features from different
aspects. By combining representative labeling with multi-
scale ResNet, our proposed method yields superior invest-
ment performance.

Financial markets constantly change with time, mainly due
to black swan events such as the COVID-19 pandemic and
quantitative easing, which caused stock markets to plum-
met and then soar during the first half of 2020. Such time-
based heterogeneity causes trading patterns to vary over
time and creates difficulties for DL algorithms, even with
many features and long window sizes [10]. Prior literature
[26], [27], [28], [29], [30], [31], [32] often limits the length
of the most recent historical trading data, to train machine
learning models to predict contemporary future market pat-
terns; for example, they might use January 2021 trading data
to train the model to forecast February 2021 markets, use

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

February data to train the model to predict the March market,
and so on. But this approach junks information of ancient
historical data and still occasionally yields unstable invest-
ment performance because it fails to consider whether market
tendencies change during the training or the testing period.
Zhang et al. [33] address this problem by decomposing stock
price series into high- versus low-frequency waves with dis-
crete Fourier transforms. As an alternative approach, we train
the proposed model with stationary spread processes (i.e., the
trends of the spreads do not change with time), as confirmed
by cointegration tests [34]. Our experiments accordingly
show that extending the length of the training period allows
our model to capture more trading patterns and improve PTS
performance, without creating vulnerability to drastic market
changes. Furthermore, due to the stationary property, even
when a spread process contains less information than the
return or price processes of a stock pair, training the model
on spread process data still outperforms models trained on
returns or price processes.

B. CONSTRUCTING PTS WITH COINTEGRATION
APPRPAOCHES

We divide a trading duration—a business day to fit the intra-
day trading setting in this paper— into a formation period
and a trading period, as illustrated in Figure 1. During the
formation period, the stock tick data is used to generate stock
pairs eligible for PTS. Then we use our machine learning
model (introduced later) to predict feasible open and stop-loss
thresholds for each PTS-eligible stock pair for trading in the
trading period. With a cointegration approach [1], [8], [12],
[35], [36], we identify PTS-eligible stock pairs from a stock
pool, such as 0050. TW constituent stocks from the Taiwan
stock market. If we let the i-th pair be composed of stocks
Si and Sé, and the capital invested in these two stocks to
be B : B, (if the stock pair is eligible), we can extract
logarithmic stock price processes InSj(¢) and InS’(¢) from
the formation period to form a two-dimensional vector y(¢) =
(In S{(t), In Sé(t))’ . The test of the cointegration property of
¥(t) relies on the Johansen cointegration test [3], with the
following vector error correction model (VECM)

p—1
Ayt) =TIyt — 1)+ Y Dyt —i)+€, (1)

i=1

where Ay(t) = y(t) — y(t — 1), the rank of the 2 x 2 matrix I1
denotes the number of cointegration relations, p — 1 denotes
the VECM order, D; is a 2 x 2 matrix, and ¢; denotes a
2 x 1 white noise vector. We follow Liitkepohl et al. [37]
and use a power test, which decomposes IT into af’, where
the 2 x 1 cointegration vector 8 = (ﬂi, ,85)/ determines the
ratios of the capital invested in the two stocks. If the i-th stock
pair Si and Sé passes the cointegration test, we construct a
portfolio by investing the two stocks, according to the ratio
,Bi : ,Bé. The spread process of this portfolio,

Pi(t) = BiInSi(r) + B5 In Si(1),)

VOLUME 10, 2022

-10.12

-10.13

.
=LY]
A L L

-10.17

w i Urr L
-10.18
Formation Period Trading Period

-10.19 s 1

[50 100 150 200 250
Time

Spread

FIGURE 1. Real example for cointegration model calibrations. This figure
illustrates real cointegration calibration for Cheng Shin Tyre (with ticker
number 2105) and Shin Kong Financial Holdings (2888) on May 20th,
2016. The x-axis denotes the elapsed time from the opening of the stock
market. The time span for a trading day is divided into the formation and
trading periods. The blue curve reflects the change in the spread process
defined in Equation (2). The orange line denotes the mean level

of —10.15. The investment weight ratio 8 is (1, —7.9)" The green (red) dash
line denotes the value of the mean level plus (minus) a standard
deviation of the spread process.

is mean-reverting; that is, it oscillates around the mean level
of the spread, E(P(t)). We could also measure the Pi(t)
variation by calculating its standard deviation o’. A sample
cointegration calibration of two 0050.TW constituent stocks,
Cheng Shin Tyre (2105) and Shin Kong Financial Holdings
(2888), are illustrated in Figure 1. We use the stock trading
data during the formation period to calibrate the VECM for
determining the trigger threshold for each stock pair. Then
we use the threshold to trade the stock pair during the trading
period. The mean-reverting property of the spread defined in
Equation (2) is illustrated by the blue curve moving around
the mean level of —10.15. The magnitude of o, denoted by
the distance between the mean level and the green (or red)
dashed line, will be used to tune the open and stop-loss
thresholds described as follows.

The profit (or loss) to purchase the aforementioned stock
pair portfolio at time t and sell it at T/ can be expressed as
the product of the investment amount ¢ and the difference of
the spread:

cx(ﬁus—ﬁuﬂ

B LSl S
- (’311“ s T sg’u))

cﬂi [. . C,Bi . .
= — S’t/—S’r]+ .2[S’r/—S’r]
ST 1(T) = S1(7) Sl (1) = $5(7)
(3)
where In Sj(((rr) denotes the return rate for investing S; over the

J .

time period [7, 7], and % denotes the number of shares for
) j

trading S; at time 7.3

Due to the mean-reverting nature of Equation (2), we can

short (long) the portfolio when the spread P'(¢) soars (falls)

3We long (short) S]’ if the number of shares is positive (negative).

97033

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

C .

E(P'(t)) + €50’

............. S B(P) + €y
X

> E(P'(t)
¢
E(P'(t)) - €,0'
Begin \\H EndE(Pi (t)) - &{S.O'l

Trading Period

FIGURE 2. Trading period scenarios. The red, purple, and black lines
denote the mean of P! (t), the thresholds for opening the portfolio, and
the thresholds for stopping losses, respectively. The values are listed to
the right of the lines. The orange and green curves denote the change of
spread processes over the trading period. We would long (short) the
portfolio if the spread process begun from A goes down (up) to reach
E(B), as denoted by the green (orange) curves. With solid and dashed
curves, we indicate actions that close the portfolio to gain profit or to
stop loss, respectively. The dotted curve indicates that the portfolio is
forced to close at the end of the trading period.

to reach the upper (lower) open threshold (denoted by purple
lines), then close the position when it converges to reach
the mean price level (denoted by the red line) to earn the
profit, as illustrated in Figure 2. To increase the profit in
Equation (3) and cover the transaction cost without signif-
icantly reducing trading opportunities, we find a suitable
open threshold, defined as the product of a scalar &/, and
the spread process’s volatility o;. Then we find another stop-
loss threshold, defined as the product of a scalar % and o7,
to prevent occasional failures of the mean-reverting property
from seriously eroding profits. The intersection of the spread
Pi(t) with either element of the trigger threshold &) &)
determines the timing to long/short the portfolio or to stop
loss, respectively. Specifically, if the spread Pi(¢) reaches
the upper open threshold (denoted by node B), we short the
portfolio with the value investment ratio ,8{ : ﬂé for stocks S {
and S). After shorting the portfolio, P'(t) may still reach
node C, in which case we close the portfolio to stop loss.
Otherwise, it may fall to node D, in which case we close
the portfolio to gain a profit. If P/(¢) falls to the lower open
threshold (denoted by node E), we instead long the portfolio,
after which Pi(r) may still fall to node H, in which case
we close the portfolio to stop loss. Otherwise, it may reach
node F', prompting us to close the portfolio to earn a profit.
Finally, the portfolio may remain open at the end of the
trading period, say, node G. In this case, the portfolio is forced
to close to avoid incurring risks related to keeping cross-day
positions.

Note that the situation of simultaneously longing and short-
ing the portfolio cannot occur under our pairs trading strategy.
Recall that we long the portfolio when the spread reaches
the lower opening threshold. For the action to short the port-
folio, the spread process must increase to reach the upper

97034

opening threshold. However, the spread process should come
across the mean price level to close the long position before
reaching the upper opening threshold. This means that we
cannot short the portfolio before closing the previously open
position. Similarly, we cannot long the position before clos-
ing the previously shorted position. In addition, we cannot
simultaneously long and short the portfolio since a spread
cannot be simultaneously smaller than the lower open thresh-
old and larger than the upper threshold because the upper
threshold is larger than the lower one.

C. MOTIVATIONS

In the above survey, we find that many studies select trigger
thresholds from a heuristic and limited set of thresholds.
While searching from such a limited set clearly limits PTS
investment performance, searching from all possible thresh-
olds results in unconverged training. The motivation of our
proposed RLM is that it reduces the number of candidate
thresholds to eliminate unconverged training without sig-
nificantly harming the investment performance. In addition,
Fallahpour et al. [4], Kim and Kim [5], Brim [21], and
Kim et al. [38] train each reinforcement learning model with
the sequential trading data of a specific stock pair. Such a
design causes these papers to focus on trading on selected
stock pairs since it is impractical to train the many models
needed to cover all possible PTS-eligible stock pairs. Our
paper uses deep learning to learn simultaneously occurring
trading data of different stock pairs, and thus predicts trigger
thresholds for all PTS-eligible stock pairs. To improve PTS
performance by reducing unprofitable stock pairs, the litera-
ture indirectly judges profitability by the similarity of stock
price processes of a stock pair [8] or the occurrence of struc-
tural breaks [9]. Our second-stage model directly predicts
profitability by learning the investment performance obtained
from executing PTS with the trigger thresholds recommended
in the first stage. Numerical experiments in Tables 5 and 6
confirm the superiority of our two-stage model.

Ill. REPRESENTATION LABELING

It is challenging to train naive DL methods to obtain fea-
sible open and stop-loss thresholds for PTS. Generating
candidate trigger thresholds heuristically, as exemplified by
Fallahpour et al. [4] and Kim and Kim [5], harms PTS invest-
ment performance, as we detail in Section V. But considering
all possible trigger thresholds would cause a non-convergence
training problem. To improve trading profits without increas-
ing training difficulty too much, a representation labeling
mechanism (RLM), as depicted in Figure 3, is first proposed
in our previous conference work [6]. For clarity, our current
paper describes the details implementations of RLM with
our revisions for generating representative trigger thresholds
based on the statistics for the PTS profits obtained from
training set data. In Section III-A, we explain how we divide
daily data into formation and trading periods and perform
data preprocessing (step 1). To obtain information on eligible
stock pairs and investment ratios, we apply the Johansen

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

Step 1
2013 D 2018

‘ I Training period ‘ Testing period ‘

‘ Formation period | Trading period ‘

All stock data
d 51,85

in formation perio Step 2 &, c0
)
Use co-integration Calculate spread fses
test to find eligible | ; _ (8, 83)' process by l
stock pairs Equation (2) R
Select optimal
i-th eligible pair P;;‘ Pj > threshold
51,
Use co-integration vector (3 to construct a Step 3
portfolio

(Piles, €3)

5i5i| Steps |7

Train deep learning Step 4
model
(Eenricy) Representative Label
1 KODKS Mechanism

FIGURE 3. Recommending PTS thresholds on the basis of RLM.

cointegration test to the formation period of a trading day D,
as described in Section II-B (step 2). Then we label the
optimal trigger threshold for each stock pair, as described in
Section III-B (step 3); relabel each pair with a representative
threshold, as described in Section III-D (step 4); and train the
DL model with stock pairs and representative labels retrieved
from each trading day in the training period, as described in
Section IV-A (step 5).

A. PREPROCESSING OF DATA SET

We use tick data for the constituent stocks of the Taiwan
Top 50 ETF (0050.TW) between 2013 and 2018. We choose
the constituent stocks of Taiwan Top 50 ETF (0050.TW) since
these stocks have better liquidity, thus preventing higher price
slippage and bid-ask spread from eroding the PTS profits.
We update the list of constituent stocks for each trading day
so that the pairs eligible for pairs trading on each trading day
are selected from the up-to-date list of 0050. TW constituent
stocks via the Johansen cointegration test. However, unlike
our paper, Endres and Stiibinger [39] and Liu et al. [40] that
adopt high-frequency day trading, many other PTS studies
use non-day trading. Note that the dramatic changes in finan-
cial markets that make stock pairs feasible for pairs trading
in one day may not continue to the next trading day. This
instability and frequent stock price jumps at the beginning
of trading days typically lead to significant trading losses for
non-day trading strategies. We found that using day trading
instead significantly increases the profits and Sharpe ratios.*
Our strategy does not hold positions overnight to avoid the

4 Also, as much of the PTS literature uses easily obtained daily close price
data to determine trading decisions, their models cannot consider day trading
due to data limitations. We are not limited by this constraint since we instead
use intra-day tick data.

VOLUME 10, 2022

breaking events that usually occur during the closing of the
market from eroding PTS profits.

Step 1 in Figure 3 describes the data preprocess-
ing, in which we divide the 2013-2018 period into
non-overlapping training and testing periods. The stock tick
data for each business day D in the training period generates
the labels and spread features required to train the RLM
model, whose performance can then be verified on each
business day of the testing period. Daily trading takes place
from 9:00 a.m. to 1:30 p.m. each business day, divided into
the formation period (the first 166 minutes, ignoring the
beginning of the first 16 minutes) and the trading period (rest
of the business day), as illustrated in Figure 1. We cut the
first 16 minutes of trading data since the high volatility of the
stock price influences the effectiveness of the cointegration
test. As this test also requires sufficiently long time series data
to ensure its robustness, we follow [9] by setting the length of
the formation period to 150 minutes for the cointegration test,
and use the remaining time to execute the PTS. We use tick
data from the formation period to calculate each half-minute’s
weighted average stock price. As described in Section II-B,
we examine whether the resultant time series possesses the
mean-reverting property by the Johansen cointegration test.
Then we derive corresponding investment ratios 8 defined in
Equation (2) for each PTS-eligible stock pair by calibrating
Equation (1). The spread process of the i-th stock pair P}
(P7) is constructed by substituting the price processes of
its constituent stocks S and S} during the formation period
(trading period) into Equation (2). Note that the spread pro-
cess is stationary; that is, statistical properties such as the
mean and variance of the spread process do not change with
market trends. Increasing the length of the training period in
this way makes it possible for machine learning algorithms
to capture more time-invariant features, which improves PTS
performance.®

B. LABELING: SEARCHING THE OPTIMAL TRIGGER
THRESHOLD OVER ALL POSSIBLE THRESHOLDS

We label the i-th stock pair with the spread process in
the formation period P} by the optimal trigger threshold
(§0, &) that maximizes PTS profits by trading the stock pair’s
spread P%, during the trading period. Specifically, we long
(short) the portfolio when Py falls to E(P'(t)) — & 0; (rises
to E(P'(t)) + &,0i) and close the portfolio to earn profits
when the spread reverts to E(P'(t)). We impose a stop-loss
when the process .continuoqsly plummets to E (Pi(t)) — & _éai
(or soars to E(P'(t)) + &goi), as illustrated in Figure 2.
The profit for executing PTS with P;. during the trading
period can be evaluated based on Equation (3). Note that
the search space composed of all possible trigger thresholds

5The transaction cost also falls from 0.3% to 0.15% for day trading in the
Taiwan Stock Exchange.

OThe statistical characteristics of training features used in many extant
machine learning algorithms [e.g., 33] vary with market trends. Thus training
periods of heuristically selected lengths may significantly influence invest-
ment performance.

97035

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

is huge since the threshold é(i) (or ";sl;) can be an arbitrary
positive real number. This makes searching for the optimal
trigger threshold (or the labeling process) intractable. Prior
literature [4], [5] either uses fixed trigger thresholds or finds
optimal trigger thresholds from a limited set, determined
heuristically, which significantly deteriorates investment per-
formance, as we verify subsequently. To search for the opti-
mal trigger threshold over the whole solution space without
incurring excessive computational resources, we first collect
all the spread processes of all business days in the training
period. Then, we define the maximum standardized deviation
for all spread processes during the formation period by mim-
icking the z-score formula as

M,= max (max (

icall spreads \ eformation period

Pi(—E (P;(r)) D /oi) .
“4)

Similarly, we can also calculate M., the maximum standard-
ized deviation for the processes that converge to the mean
level before the market close by replacing “all spreads” in
Equation (4) with “all converged spreads.” To construct a
feasible stop-loss threshold set S, we discretely enumerate
equal space samples from the range determined by M,, In turn,
Sisdefinedas {1.5,1.54+1x0.5,1.54+2x%x0.5,...,[M,]}.
To ensure that the estimated profit (proportional to the dis-
tance between the mean price level and the open thresh-
old Sbai) covers the transaction cost, the open threshold
should generally be greater than 0.50;. Thus, we construct
the open threshold set O by enumerating samples from the
range determined by 0.5 and M,. The set O is defined as
{0.5,0.5 + 0.5,0.5 + 2 x 0.5,...,[M.]}, and all trigger
thresholds (&), &;) are generated by separately selecting the
open threshold £ from set O and the stop-loss threshold &g
from set S. In addition, we enforce condition 1.5 x &, < &/
to prevent the open threshold from coming too close to the
stop-loss threshold, which would increase the chance to close
the portfolio to stop the loss right after opening the portfolio,
thereby deteriorating the investment performance. To filter
out stock pairs unsuitable for PTS, we add one more trigger
threshold (10, 25) with extremely high open and stop-loss
thresholds to reflect no trading actions. Then we trade the
stock pairs S{ and Sé by using the spread in the trading
period P’ and the trigger threshold (£, &) to determine the
timing for opening and closing the portfolio, as illustrated
in Figure 2. The trading profit can then be calculated by
Equation (3). The optimal trigger threshold that maximizes
PTS profit is

We label the i-th stock pair with the spread P} by the
optimal trigger threshold (&), &£5) defined above to train the
proposed machine learning models. About N (& 300) out of
2800 trigger thresholds’ have been selected by at least one

N changes with the training set data.

97036

stock pair during different training periods in our later exper-
iments. Note that many trigger thresholds enumerated by the
procedure mentioned above are never chosen as the optimal
threshold by any stock pair, probably because the stock price
is quoted as integral multiples of basic units (i.e., ticks) rather
than continuously. Many trigger thresholds do not fit discrete
changes of the spread process defined in Equation (2), due
to discrete stock price quotes, and therefore will never be
selected as optimal trigger thresholds. This rationale explains
why heuristically selecting trigger thresholds (e.g., [5]) might
significantly deteriorate investment performance. Deriving
feasible trigger thresholds from discrete changes in the spread
process can be very hard, so we discretely enumerate many
thresholds and use Equation (3) to calculate profits to filter
unprofitable thresholds.

C. NON-CONVERGENT TRAINING OF NAIVE
REGRESSION-/CLASSIFICATION-BASED DL

Since feasible open and stop-loss thresholds form a range
[0.5, M.] and [1.5, M,], it is natural to use a regression-based
deep neural network (RDNN) to predict an optimal trigger
threshold (Eé, ég'). We optimize the training of RDNN by
defining the loss as the mean square error (MSE) between
the predicted trigger threshold and the optimal one defined in
Equation (5). To achieve convergent training results, we have
tried different combinations of inputs like the stock price,
return, and the spread processes extracted from the formation
period. We have also attempted many popular solutions to
solve the non-convergent training problems, such as tuning
learning rates, changing activation functions, and optimizers.
Still, all fail. It seems that RDNN fails to capture discon-
tinuous relationships between open and stop-loss thresholds
and profits. Specifically, a minor shift in either threshold can
significantly change the profit, as illustrated in Figure 2. For
example, shifting the upper open threshold from the upper
purple solid line to the dashed one removes the chance to
short the portfolio at point B for the solid orange spread and
sacrifices the corresponding profit.

Instead of adopting the regression-based method, we could
select an optimal trigger threshold for each PTS-eligible stock
pair from all possible trigger thresholds using classification-
based approaches. Here we use cross-entropy as the loss
function and train with different combinations of inputs and
techniques to resolve non-convergence problems as we exam-
ine the regression-based method. Part of our experimental
results® are illustrated in Figure 4. It can be observed from
Figure 4(a) that the training losses oscillate significantly
regardless of the changes in DL models and optimizers.
Figure 4(b) also illustrates the highest training accuracy could
only achieve around 30%. In the next subsection, we address
this non-convergent training problem with RLM, which sig-
nificantly reduces the number of labels without sacrificing
the quality of trigger thresholds. Our experiments show that

80ther non-convergent training results like changing activation functions
and tuning learning rates are not illustrated for simplicity.

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

: —— CNN - AMSGrad
| et Adagred
200) | ;‘ — ResNet - RMSprop
ResNet - SGD
180
A
o
o160
e
'c
©
F140 |
\
120 I
| ‘\\‘
100" 20 40 60 80 100
Epoch

(a) CNN and ResNet training loss

FIGURE 4. CNN and ResNet training losses.

RLM improves training accuracy and resulting PTS invest-
ment performance.

D. REPRESENTATION LABELING MECHANISM

Unlike past RL-based works such as Kim and Kim [5]
and Fallahpour et al. [4] that merely learn 6 to 39 actions
(i.e., trigger thresholds), we combine deep learning models
with an RLM to train 25 representative labels (determined by
the elbow method) that represent all 2800 trigger thresholds,
as specified in Section III-B, to resolve the non-convergent
training problem. Section V shows that training with RLM
outperforms an RL approach with heuristically selected trig-
ger thresholds.

The RLM maintains trading performance by ensuring
properly selected representations, and it resolves the train-
ing convergence problem by reducing the number of labels.
Specifically, the i-th spread process defined in Equation (2)
can be divided into P} (belonging to the formation period)
and P, (trading period). We substitute P’T into Equation (5) to
extract the optimal trigger threshold (&, &5) that maximizes
the benefit of trading the i-th stock pair. Then (£, &) can be
viewed as the label for Pp; the trigger threshold distributions
are illustrated in Figure 5(a). We use pink, yellow, green,
and blue nodes to reflect the magnitudes of the probability
of choosing a corresponding trigger threshold as the optimal
one. By excluding trigger thresholds with probabilities lower
than 0.1% and 0.5%, we obtain Figures 5(b) and 5(c), respec-
tively. The trigger threshold distribution clearly is widespread
and far from uniform. Moreover, the probability of select-
ing some trigger thresholds (like pink or yellow nodes) as
optimal ones is much higher than that of other thresholds.
This significant lack of smoothness could explain why the
training of regression-based DL fails to converge discussed
in Section III-C.

VOLUME 10, 2022

30 o
/ . -
A
/
>25 / /
@) /
9] /) —— CNN - AMSGrad
o / ResNet - Adagrad
© 20 —— ResNet - AMSGrad
()] —— ResNet - RMSprop
£ —— ResNet - SGD
£
@©
—
F1s
J
o —————
0 20 40 60 80 100

Epoch
(b) CNN and ResNet training accuracy

We address the lack of training convergence problem by
setting representation trigger thresholds, according to either
k-means or thresholds with the top-k highest probabilities.
With the former method, we partition all trigger thresholds
into a reasonable number of clusters by the k-means algo-
rithm; the cluster number 25 is determined by the elbow
approach. The set of representation trigger thresholds R is
defined as the centers of the previously mentioned clus-
ter, which we call Kmeans(0). The optimal trigger thresh-
old for the i-th spread process is relabeled by picking one
of the representation thresholds that maximizes profit, as
follows:

(51"(0, gli(s) = argmax(g/ g1)er [Proﬁt (PiT, 5/0, %‘é)] . (6)

Note that each representation threshold selected by
Kmeans(0) (black nodes) basically does not coincide with
any trigger threshold because each cluster center is calcu-
lated as the averaging of nearby trigger thresholds belonging
to the same cluster. However, a slight shift in the thresh-
old, like moving from the upper purple solid line to the
dashed one in Figure 2, could significantly change the invest-
ment profit as mentioned above. To prevent disturbances in
low-probability trigger thresholds from degrading the quality
of representation labels, k-means can be applied to trigger
thresholds with probabilities larger than 0.1% and 0.5%,
as illustrated in Figures 5(b) and 5(c), respectively. The
resulting representation label settings are named Kmeans(1)
and Kmeans(2), respectively. Besides, to ensure that each rep-
resentative label coincides with a trigger threshold, we could
choose, as representation trigger thresholds, those trigger
thresholds with the top 25 highest probabilities, as shown
in Figure 5(d), which we refer to as the HighFreq label
setting. Section V compares these RLMs to find the best
one.

97037

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

25.0 . - 250 . .+ 250 + 250 .
225 : . 225 . . . 225 . 225 '
200 . e e 200 - 200 | 20.0 e e
175 .. . : 175 ., 17.5 : 175 . .
1501 opt . 15,0 " gre 8 15.0 - 15.0 -0
125 0w 125 . . . 12.5 ; 12.5 —
100 <« > 100 « . . = 100 <" _ . 10.0 -,
75 .= 75 et o 75 7.5 s
) — 50 " 50 - 50 -7
2 4 6 8 10 2 4 6 8 2 4 6 8 10 2 4 6 8 10

(a) Kmeans (0) (b) Kmeans (1)

(c) Kmeans (2) (d) HighFreq

FIGURE 5. Trigger threshold distributions and representation thresholds. The x and the y axes denote the open and the stop-loss thresholds, respectively.
Pink, yellow, and green nodes denote the trigger thresholds selected with probabilities larger than 1%, 0.5%, and 0.1%, respectively. Blue and black nodes
denote other low-probability trigger thresholds and representative thresholds, respectively. Here we illustrate the trigger thresholds distribution for the
year 2016. The distributions of other years are similar, so we ignore them for simplicity.

IV. CONSTRUCTIONS OF TWO-STAGE LEARNING
MODELS

Given the stock/spread prices processes and representative
thresholds recommended by different RLMs in Section III-D
as inputs, we can compare the training effectiveness of RLMs
and deep learning models to select the best to use in step 5
of Figure 3, as described in Section IV-A. To improve the
win rate and reduce PTS risk, we train the second-stage
model on the basis of the aforementioned threshold selection
model, which prevents unprofitable pairs from trading (see
Section IV-B). By combining DL with RLM (first stage) and
then unprofitability detection and removals (second stage),
we construct a two-stage model that can more effectively
reduce PTS risk than [8] and [9] do.

A. MODELS FOR SELECTING PROPER REPRESENTATIVE
TRIGGER THRESHOLDS

Here we construct the trigger threshold selection mechanism
(step 5 of Figure 3). The inputted features for the i-th stock
pair, x;, can be formed by the pair’s stock price processes,
return processes, and (or) the spread process. For exam-
ple, we can define x; = [Si, S}, P%], such that the input
is formed by the stock price processes of the i-th pair S{
and S5 during the formation period, plus the corresponding
spread process P determined in Equation (2). The input x;
with length 300 (i.e., the number of half-minute data in the
150-minute formation period) gets extended to 512 by
padding the remaining positions with zeros. We number each
of the 25 representative thresholds with a unique integer
within the range [1, 25]. The label of the stock pair i, y;,
is the number of the representative threshold that maximizes
the trading profit, as illustrated in Equation (6). We train
the plain CNN, a single-scale ResNet [25], and a multi-scale
ResNet [41] with input x; and ground truth y; for each stock
pair i from the training period. The input x; can have three
channels (e.g., spread and the two stock price (or return)
processes), two channels (e.g., two stock price (or return)
processes), or one channel (e.g., the spread process).
The CNN includes a one-dimensional convolutional layer
with 25 1 x 5 kernel maps. The output gets sent to the batch
normalization layer [42] to stabilize and speed up the training

97038

process; we select Leaky-ReLU after trying different activa-
tion functions. The results pass through a one-dimensional
convolutional layer with 50 kernel maps, a layer with 100 ker-
nel maps, and a layer with 200 kernel maps, sequentially;
the final outputs are then sent to a fully connected layer. The
single-scale ResNet uses a single size-3 convolution kernel,
which applies to one chain of residual blocks. The three-scale
ResNet adds size-5 and size-7 convolution kernels, as well as
two corresponding chains of blocks.” The features extracted
by the three convolution kernels (i.e., outputs from the three
chains of residual blocks) are concatenated to form a feature
vector, which gets sent to a fully connected network.

To find the optimal settings to achieve the best training
results, we have attempted different settings of optimizers
and activation functions; training accuracy and loss for part
of our experiments that use different kinds of optimizers
are illustrated in Figure 6. Training accuracy refers to the
percentage of correct predictions of all pairs in the training
set; training loss is measured according to cross-entropy.
The training accuracy for the CNN model, denoted by the
orange curve, increases slowly; the training loss oscillates
significantly. Thus we use a residual network, which employs
more hidden layers to capture various features embedded in
complex financial markets. Although the three-scale ResNet
with AMSGrad, RMSprop, and SGD optimizers and the
single-scale one achieve almost 100% accuracy and 0% loss
after large enough training epochs, we select the three-scale
ResNet with AMSGrad since it converges the most smoothly
and quickly. By repeating the above comparison, our later
experiments choose the three-scale ResNet with AMSGrad
optimizer, Leaky-ReLLU activation function, and the three-
channel input. The inputs are formed by the spread and the
two stock return processes unless stated otherwise in our later
experiments.

We divide the data into the training and the validation set
to determine the number of training epochs. We first train
the model on the training set data and then run the resulting
model on the validation data set to calculate the accuracy
and loss. To retrieve useful information from the training data

YWe adopt the structure of ResNet and the convolution kernel sizes 3, 5,
and 7 that were proposed by [41].

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

100

90

80 /
> / /
@
® 70 /
3 / —— Single-scale ResNet - AMSGrad
o / CNN - AMSGrad
S 60 —— Multi-scale ResNet - AMSGrad
o / / —— Multi-scale ResNet - RMSprop
c / — Mu:ti-sca:e ResNet - Adagrad
£ / —— Multi- ResNet - SGD
€ 50 / y ulti-scale ResNe
©
[[/

40)

30 .

20

0 20 40 60 80 100
Epoch

140 —— Single-scale ResNet - AMSGrad
CNN - AMSGrad
—— Multi-scale ResNet - AMSGrad
—— Multi-scale ResNet - RMSprop
120 —— Multi-scale ResNet - Adagrad

Multi-scale ResNet - SGD

100
80

60

Training loss

40

20

0 20 40

Epoch

80 100

FIGURE 6. Training accuracies and losses of CNN and ResNet under different settings. We illustrate part of our experiments (denoted by the
legends) for finding the optimized settings to achieve the best training results. The activation function used here is Leaky-ReLU. The input

has three channels: the spread and the two stock return processes.

set without incurring overfitting, we halt the training process
when the win rate of the validation set reaches a maximum.

We illustrate part of our experiments (denoted by the leg-
ends) for finding the optimized settings to achieve the best
training results. The activation function used here is Leaky-
ReLU. The input has three channels: the spread and the two
stock return processes.

B. TWO-STAGE MODEL

To improve the win rate and reduce trading risk further,
we produce a two-stage model. The first-stage model recom-
mends a proper representative threshold for each stock pair,
as described in the previous sections; the second stage then
predicts and prevents unprofitable pairs from trading. The
training of the second-stage model is illustrated in Figure 7.
Here, we divide the training set data into set 1 to train the first-
stage mechanism and set 2 for the second-stage mechanism.
In the first stage, the trigger threshold for each pair is deter-
mined by the optimal threshold selection from Equation (5),
then processed by the representative labeling mechanism
discussed in Section III-D. The high training accuracy in
Figure 6 indicates that the profit of almost every pair from
training set 1, given the trigger threshold recommended by the
first-stage model, is positive, an outcome that is of no use if
we seek to distinguish unprofitable pairs from profitable ones.
We address this issue by using the first-stage mechanism
to predict a trigger threshold y for each pair x in training
set 2, as in Figure 7. Next, we apply the PTS with the open
and stop-loss thresholds y on x to generate the win or loss
label, after which we use the features of x, according to the
spread and stock price processes, as the input; the win/loss
label functions as the ground truth to train the second-stage
mechanism in the three-scale ResNet. The trigger threshold
recommendation model with RLM, developed in the first
stage, and the unprofitability detection mechanism trained in
the second stage together execute the PTS on the testing data,
as illustrated in Figure 8. Thus, for each stock pair in the test

VOLUME 10, 2022

data set, a proper representative threshold gets identified and
recommended by the first-stage model, and the pair together
with recommended thresholds are examined to determine
whether they are profitable or not by the second-stage model.
In contrast with the single-stage model, the two-stage model
trades only those pairs that are predicted to be profitable. Our
experiments show that this design improves the win rate and
reduces risk.

V. EMPIRICAL TESTS

We conduct experiments on the constituent stocks of the
Taiwan Top 50 ETF (0050.TW) from 2013 to 2018 to
back-test improvements in PTS investment performance due
to the proposed RLM and the two-stage model. To evaluate
the trading performance, we first extract intra-day trading
information from each trading day D; from the testing period,
as illustrated in Figure 3. Then we retrieve stock pairs fea-
sible for PTS by applying the Johansen cointegration test
to the formation period data of day D;. Next, we predict
each pair’s optimal representative trigger threshold using the
trained three-scale ResNet described in Section IV-A. With
the retrieved stock pair and the corresponding trigger thresh-
old, we execute tick-by-tick pairs trading in the D/s trading
period. We execute all trades one tick later than the spread
process hits the trigger threshold to simulate price slippage
effects.

We compare the investment performance of different
PTS by analyzing the following financial indicators: the
(overall) profit, the win rate, the normal close rate, the number
of trades, the Sharpe ratio (SR) calculated on a daily or
pair basis, the maximum drawdown (MDD), the maximum
required capital, and the average profit (per trade), as listed
in the first column of Table 1. To facilitate the performance
comparison in the following tables, we set in boldface the
best performance for each indicator (except for the number
of trades and the maximum required capital) to easily iden-
tify the best methods or settings. The (overall) profit sums

97039

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

Stage 1

Representative
threshold selection

Training set 2 :

FIGURE 7. Training the second-stage mechanism.

—Thresholds—»{PTS trading

Stage 2

Unprofitability
detection

Label—»

~——»| Representative threshold selection 7Thresh01dsj

Testing set

Apply trading decision

Unprofitability detection

_J

—Trade ?

FIGURE 8. Applying the two-stage model for trading.

up the profit or loss for all trading days during the testing
period, where the profit of day D is the lump sum profits
earned by trading all PTS-eligible stock pairs on that day. The
profit for trading each PTS-eligible stock pair is calculated
in Equation (3). We measure the required capital for day D
as the sum of the capital required to execute each PTS on
that day. The maximum required capital is defined as the
maximum required capital for each trading day in the testing
period. The daily (pair) return is calculated as the daily (pair)
profit divided by the required capital for that day (trade).
The Sharpe ratio, which estimates the average excess trading
return divided by the corresponding risk, can be estimated on
either a daily basis, as

Average daily return — Risk-free rate

(N

Standard deviation of daily return
or else a pair basis, as

Average pair return — Risk-free rate

Standard deviation of pair return

The maximum drawdown (MDD) is defined as the maximum
cumulative daily loss during the testing period. The win rate is
defined as the number of profit-making trades divided by the
total number of trades during the testing period. The normal
close rate reflects the number of trades whose spread process

97040

converges to the mean level'” divided by the total number of
trades.

Section V-A compares various representative labeling
methods discussed in Sections IV-A and III-D. Because
combining multi-scale ResNet with the settings described
in Figure 6 and HighFreq (or KMeans(0)) yields the best
performance, these settings are adopted in our subsequent
experiments. Section V-B demonstrates that the proposed
RLM outperforms existing trigger threshold selection mech-
anisms. Section V-C shows that training a machine learn-
ing model with the spread process defined in Equation (2),
whose patterns are time-invariant, prevents changes in finan-
cial markets from harming the model’s predictability. Finally,
Section V-D illustrates how the two-stage model developed
in Section IV-B can effectively reduce PTS risk than existing
methods do.

A. SELECTION OF RLMs

To improve PTS investment performance, we select the best
DL and corresponding settings as in Section IV-A and proper
RLM in this section to ensure the efficiency of the training
described in step 5 of Figure 3. Table 1 compares the differ-
ent RLM proposed in Section III-D. In row 4, KMeans(0),

10That is, the spread process should converges to the red line like nodes
F and D, as illustrated in Figure 2.

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

KMeans(1), and KMeans(2) denote representative label set-
tings that apply k-means to the total trigger thresholds (see
Figure 5(a)), trigger thresholds with probabilities greater than
0.1% (see Figure 5(b)), and trigger thresholds with prob-
abilities greater than 0.5% (see Figure 5(c)), respectively.
HighFreq picks the trigger thresholds with the top-25 highest
probabilities, as illustrated in Figure 5(d).

Both the win rate and the normal close rate are high for
these label mechanisms because the spread processes selected
by the cointegration test described in Section II-B likely
have mean-reverting properties. Therefore, a mechanism with
larger total opening numbers likely yields higher profits
and Sharpe ratios. KMeans(0) has the highest number of
trades among the four mechanisms probably because it does
not exclude information from other trigger thresholds with
lower probabilities. However, unlike representative thresh-
olds produced by k-means, which typically do not coincide
with trigger thresholds due to the average calculation, every
threshold recommended by HighFreq is directly a trigger
threshold with the highest 25 probabilities. Without distur-
bances in the open and stop-loss thresholds, HighFreq pro-
duces better pair-based investment results (i.e., SR (pair) and
average profit (per trade)) than the other k-mean-based mech-
anisms. Because KMeans(0) and HighFreq possess distinct
advantages, as illustrated by the best result set in boldface,
we include either KMeans(0) or HighFreq for comparisons
in our later experiments.

B. COMPARISONS WITH THRESHOLD SELECTION
METHODS

Table 2 compares existing trigger threshold selection mech-
anisms with our RLM (i.e., method 2). Fallahpour e? al. [4]
(method 1) reduce the threshold selection problem to a multi-
armed bandit problem and solve it using a reinforcement
learning model with 39 actions (i.e., trigger thresholds),
extracted from a much narrower set O € {0.5, 1, ---3} and
S € {0.5,1,---5}. Kim and Kim [5] (method 4) use deep
reinforcement learning (DRL) to select one of six heuristi-
cally generated actions for trading. Because the number of
actions (threshold choices) is relatively small, these models
do not suffer from the training non-convergence problem
described in Section III-C. However, limiting the number of
actions (or the choices of trigger thresholds) likely deterio-
rates the PTS investment performance.

For a fair comparison with the six actions of the DRL
method proposed by [5], we add the HighFreq mechanism
with six representative trigger thresholds (method 3). We find
that HighFreq outperforms DRL in almost every aspect,
even though DRL recommends more trading opportunities
(i.e., more number of trades). However, the low win rate for
DRL results in lower overall profits and SR metrics than
HighFreq with six representative trigger thresholds. Increas-
ing the number of representative trigger thresholds from 6 to
25 increases the number of trades and win rate, improves
profit and SR, and reduces risk (reflected by MDD). The
best performance terms set in boldface also suggest that

VOLUME 10, 2022

the proposed methods 2 and 3 generally outperform other
methods. The quarterly pair-based Sharpe ratios illustrated in
the upper panel in Figure 9 also show that a well-designed
PTS yields absolute positive returns regardless of changes in
the market trend shown in the lower panel. Methods 2 and 3
also outperform other methods irrespective of stock market
changes. Besides, the naive reinforcement learning model
proposed by Fallahpour et al. [4] performs poorly, with a win
rate below 50% and negative profits. However, if transaction
costs are ignored, as mentioned in their papers, the profits of
their model become positive. This implies that their model
fails to find a proper solution to filter out unprofitable trades
due to transaction costs.

C. TRAINING WITH TIME-(IN) VARIANT DATA

Market trends vary with time, and the non-stable nature of
a stock price/return process makes it difficult for machine
learning models to capture and predict stable patterns of trad-
ing data [10]. Thus model performances vary significantly,
depending on whether there are turning points during the
training or testing periods. Therefore, a proper hyperparame-
ter setting that controls the length of training and testing peri-
ods could be challenging to identify [33]. However, spread
processes (Equation (2)) generated by the cointegration test
are stationary; their statistical properties do not change when
shifted in time. This valuable property allows us to extend
the training period to capture more patterns to improve PTS
profitability, without exposing the model to changes in finan-
cial markets. In Table 3, lengthened training periods generally
coincide with increases in win rate, SR, trading opportunities
(i.e., number of trades), and overall profit. In contrast, using
only non-stationary series, such as stock prices and stock
returns, as training data yields unstable performance with
each increment of the training period. The spread process also
can be expressed as the non-invertible function of the pair
of stocks’ prices, as in Equation (2). These two stock price
processes thus contain broader information than is available
in the spread process. Even if the spread process contains less
information though, its stationary property makes it easier
for machine learning algorithms to capture time-invariant
patterns, rather than the time-variant patterns of the stock
return and price processes.

Next, we proceed to analyze the impacts of combin-
ing different types of processes as inputs. Combining the
stationary process with the non-stationary one as inputs
(i.e., “S + R” and “S + P cases) provides stable invest-
ment performance that grows with the increment of the
training period. In addition, their performances are better
than those generated by training with just the spread process
(i.e., “S” case). But investment performance generated by
training with non-stationary return and stock price processes
(i.e., “R + P”) is unstable. This result again confirms the
value of the time-invariant property.

To strengthen our arguments, we extend the experiment
in Table 3 to different testing periods across 2016-2018,
as shown in Table 4. We observe the same phenomena.

97041

I E E E ACC@SS W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

TABLE 1. Comparing different representative labeling mechanisms. We list the

training period, validation period, and testing period in the first, second,

and third rows. The fourth row lists RLMs to generate representative trigger thresholds. The investment performance indicators used to measure
performance are in the first column. For each indicator, we set in boldface the best of the four RLMs.

Training period Jan. 2015 — Oct. 2016

Validation period Nov. 2016 — Dec. 2016

Testing period 2017 2018

Method KMeans (0) KMeans (1) KMeans (2) HighFreq KMeans (0) KMeans (1) KMeans (2) HighFreq
rofit (thousan E B . X . . . A

Win rate (%) 76 76 76 77 74 74 75 76

Normal close rate (%) 75 75 76 78 76 75 76 77

Number of trades 12196 11377 11434 11901 13772 12801 13029 13357

SR (daily based) 7.4776 7.1598 7.2011 7.4389 1.8921 1.5952 1.6411 2.1582

SR (pair based) 0.1829 0.1916 0.1952 0.2189 0.1332 0.1224 0.1283 0.1513

MDD 71 91 84 75 418 386 364 300

Required capital (thousand) 49311 43551 48496 50784 64391 74760 74251 62389

Average profit (per trade) (thousand) 0.1729 0.1810 0.1677 0.1877 0.1467 0.1408 0.1312 0.1699

TABLE 2. Comparisons among different trigger threshold selection methods. The performance indicators (first column) for different trigger threshold
settings proposed by Fallahpour et al. [4] with 39 actions (method 1), our HighFreq with 25 representative thresholds (method 2), our HighFreq with

6 representative thresholds (method 3), and the deep reinforcement method proposed by Kim and Kim [5] with 6 heuristic actions (method 4) are listed
for comparison. For each indicator, we set in boldface the best of the four methods.

Training period Jan. 2014 — Oct. 2015 Jan. 2015 — Oct. 2016 Jan. 2016 — Oct. 2017
Validation period Nov. 2015 — Dec. 2015. Nov. 2016 — Dec. 2016 Nov. 2017 — Dec. 2017

Testing period 2016 2017 2018

Method I 2 3 4 I 2 3 4 I 2 3 4
Win rate (%) 64 80 79 68 56 77 76 67 47 76 75 65
Normal close rate (%) 71 81 78 67 62 77 77 67 44 77 78 68
Number of trades 42488 16777 13734 18628 34566 11902 11385 15440 13577 13151 12093 16388
SR (daily based) -2.38 8.1791 7.5344 2.5716 -4.74 7.4383 6.4398 4.2653 -1.73 2.2289 1.8119 0.1115
SR (pair based) -0.01 0.2416 0.2341 0.1099 -0.06 0.2190 0.1867 0.1113 -0.04 0.1426 0.1337 0.0689
MDD 208 67 49 102 366 75 53 51 422 343 504 381
Required capital (thousand) 151443 50543 44147 57155 96012 50784 47309 62088 61672 80292 68094 86349
Average profit (per trade) (thousand) -0.0212 0.1354 0.1416 0.0390 -0.0466 0.1877 0.1594 0.0832 -0.1172 0.1743 0.1454 0.0062

0.2 method 2

i h I_ L method 3
0.0 | | | | | | . method 4
-0.2 ‘ ‘

method 1

\/60\’ iy

Q'5
20 ©

oY

o 0> 40P &
28> S

A0 4B 40> 4OV 0>

hY
RIS S %Q’LQ\/%(f

(M
o0
2> 40>

0>

—— TAIEX Price

Qo> Qo R Al o L o
A0 ’LQ\'Q) A A\ \f\

720 0% 90> 90> 10

1

’L %,'5 %’6 %09 %:\,’L
’LQ\‘ fLQ’\' 'LQ\‘ 7«0\‘

FIGURE 9. Comparisons with quarterly pair-based sharpe ratios among different methods. The upper panel illustrates the quarterly pair-based Sharpe
ratios for executing PTSs with the trigger threshold selection methods mentioned in Table 2. The lower panel shows the price trend of the Taiwan

Capitalization Weighted Stock Index (TAIEX) for the corresponding period.

The investment performance generated by training with both
time-invariant and variant data (i.e., “S + R” or “S + P”
cases) is better than that generated by training with
time-invariant data (i.e., ““S” case), which in turn is bet-
ter than those generated by training with time-variant data
(i.e., “R” or “P” cases). Moreover, the distribution of the

97042

stock return process is more stable than that of the stock price,
as the former process is evaluated by applying the difference
operators on the logarithm of the latter process. Specifically,
the return for stock S]? over the period [t, T'] can be evaluated
by In S(()) as in Equation (3). Thus, the machine learning

VOLUME 10, 2022

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

TABLE 3. Impact of different lengths of training periods and inputs on PTS performance. The input data can be the spread process (S), prices (P), and/or
return (R) processes of stocks. For example, “R + P” indicates that the input data are composed of the stocks’ returns and price processes. The validation
period is Oct. 2016-Dec. 2016, and the testing period is 2017. The length of the training period ranges from 0.25 to 1.75 years. For example, the training
period Jan. 2015-Sep. 2016 pertains to the 1.75-year case.

Testing period 2017

Input data S R P
Training period

Win rate (%) 76 75 76 74 74 68 75 73 70 74 75 75
Normal close rate (%) 76 74 76 74 73 64 74 70 65 73 75 75
Number of trades 10692 10509 9089 8172 10866 8466 11187 8321 4876 10669 11663 7052
SR (daily based) 7.4237 6.5282 59178 6.4087 5.9951 3.0337 7.0880 4.7318 29517 6.1777 6.4918 5.9240
SR (pair based) 0.2000 0.1815 0.1901 0.1836 0.1724 0.1026 0.1704 0.1635 0.1100 0.1638 0.1839 0.1766
MDD 62 62 83 51 68 105 47 63 53 87 59 59
Required capital (thousand) 52089 39906 38086 37292 42703 42661 50222 33841 20467 49372 45869 44004
Average profit (per trade) (thousand) 0.1812 0.1715 0.1811 0.1702 0.1695 0.0952 0.1764 0.1439 0.1052 0.1544 0.1613 0.1629
Input data R+P S+R S+P

Training period

Win rate (%) 75 76 75 77 78 77 76 76 77 76 76 77
Normal close rate (%) 75 75 76 77 80 76 76 76 76 76 76 76
Number of trades 11266 2775 7833 5969 13670 11181 10415 6450 11900 11392 10344 7237
SR (daily based) 6.7917 5.5990 6.3876 6.7940 9.1746 7.7868 6.3554 5.5612 7.4381 7.6869 6.0328 6.9709
SR (pair based) 0.1992 0.2126 0.1776 0.2246 0.2306 0.2130 0.1843 0.1723 0.2188 0.2137 0.1897 0.2003
MDD 77 41 55 47 55 73 78 66 76 60 58 51
Required capital (thousand) 45305 15150 33827 34843 56223 49807 38972 28256 50783 44278 38528 37720
Average profit (per trade) (thousand) ~ 0.1774 0.2332 0.1868 0.2069 0.2007 0.1911 0.1712 0.1749 0.1876 0.1860 0.1592 0.1986

TABLE 4. Comprehensive examination of different inputs for PTS performance. The training, validation, and testing periods are listed in the first three
rows. The PTS performances of HighFreq with different input data are compared for the period from 2016 to 2018. For each indicator, we set in boldface
the best of the different input data sources.

Training period Jan. 2014 — Oct. 2015 Jan. 2015 — Oct. 2016 Jan. 2016 — Oct. 2017
Validation period Nov. 2015 — Dec. 2015 Nov. 2016 — Dec. 2016 Nov. 2017 — Dec. 2017
Testing period 2016 2017 2018

Input data S R P S R P S R P

Win rate (%) 77 76 76 76 75 75 74 74 73
Normal close rate (%) 76 75 75 76 75 75 77 76 76
Number of trades 14433 14766 11689 11719 12831 12165 11728 12463 12736
SR (daily based) 6.0314 6.0143 5.9901 7.7379 6.7916 6.3686 1.9245 1.9128 1.6942
SR (pair based) 0.2394 0.2315 0.2115 0.2025 0.1705 0.1879 0.1385 0.1365 0.1336
MDD 100 73 57 83 72 90 241 194 224
Required capital (thousand) 39835.172 42172.367 46428.715 43073.422 51461.329 53587.048 57366.327 60658.698 68463.454
Average profit (per trade) (thousand) 0.1347 0.1291 0.1332 0.1883 0.1607 0.1650 0.1595 0.1478 0.1326
Input data R+P S+R S+P R+P S+R S+P R+P S+R S+P
rofit (thousan
Win rate (%) 76 79 77 75 77 78 73 75 75
Normal close rate (%) 76 81 77 75 76 80 76 77 77
Number of trades 14715 16776 15656 11266 11900 13670 12211 13149 13268
SR (daily based) 5.9387 8.1789 7.6765 6.7919 7.4381 9.1746 1.7937 2.2287 2.0995
SR (pair based) 0.2176 0.2415 0.2426 0.1992 0.2188 0.2306 0.1324 0.1422 0.1423
MDD 80 66 69 77 76 55 373 344 210
Required capital (thousand) 46232.812 50542.895 55244.04 45305.439 50783.951 56223.750 70309.697 80291.094 62750.708
Average profit (per trade) (thousand) 0.1197 0.1353 0.1424 0.1774 0.1876 0.2007 0.1394 0.1741 0.1661

algorithm better captures patterns in the stock return process,
yielding PTS performance that is generally better than that of
stock prices. Observing the best performances set in boldface
shows that training with a time-invariant spread process (S) is
better than training with time-varying stock returns (R) or
prices (P) in the upper panel of Table 4. Training with data
containing time-invariant processes (i.e., S + R or S 4+ P) is
better than training with only time-varying data (R 4 P) in
the lower panel.

D. TWO-STAGE LEARNING MODEL

It is hard to prevent unprofitable stock pairs from trading, no
matter the level of sophistication achieved by the pair and
trigger threshold selection methods (e.g., cointegration test
and HighFreq adopted herein). To reduce PTS risk (or loss) by
avoiding trading unprofitable pairs, Sarmento and Horta [8]
use OPTICS to group stocks by their 5-minute moving
average returns; they prevent trading a stock pair if the

VOLUME 10, 2022

stocks of the pair belong to different groups. We combine
their OPTICS-based risk-reduction into our first-stage RLM
mechanism, illustrated in Figure 3, and thereby compare their
risk-reduction model and our second-stage model that detects
and removes unprofitable trades, as in Figure 7. Comparisons
of the one-stage model (i.e., adopting only the RLM mecha-
nism for trading) and the combinations of RLM with different
risk-reduction methods are listed in Table 5.

Detecting and removing unprofitable pairs may erro-
neously remove profitable transactions, which would reduce
overall profits and the daily Sharpe ratio. But our removal
mechanism also improves the win/normal close rate and
significantly enhances pair-based SR and the average profit
(per trade) by up to 40%. In addition, MDD falls significantly,
attesting to the effectiveness of our second-stage approach
to protect investors from unexpected significant loss. The
OPTICS-based approach [8] achieves similar effects, but our
proposed two-stage model outperforms their model on almost

97043

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

TABLE 5. Comparison with the optics-based risk-reduction algorithm. The training data set 1 and validation data used to train the first-stage model in
Figure 3 are listed in the first two rows. The training data set 2 used to train our or Sarmento and Horta [8] risk-reduction methods is listed in the third
row. “0-S” and “T-S” denote our proposed one-stage and two-stage models, respectively. “5 min-M” indicates the OPTICS grouping based on the
5-minute moving average returns. The performance when we use Kmeans(0) or HighFreq to select representative thresholds appears in subsequent rows.

For each indicator, we set in boldface the best of the three methods.

Training dataset 1 Jan. 2013 — Oct. 2014

Jan. 2014 — Oct. 2015 Jan. 2015 — Oct. 2016

Validation period Oct. 2014 — Dec. 2014 Oct. 2015 — Dec. 2015 Oct. 2016 — Dec. 2016
Training dataset 2 Jan. 2015 — Dec. 2015 Jan. 2016 — Dec. 2016 Jan. 2017 — Dec. 2017
Testing period 2016 2017 2018

Model 0-S T-S 5 min-M 0O-S T-S 5 min-M 0O-S T-S 5 min-M
Threshold: Kmeans(0)

Profit (thousand) 193745 441.06 461.77 1918.16 454.04 313.77 2020.37 406.24 62.55
Win rate (%) 77 78 77 76 77 76 74 76 74
Normal close rate (%) 76 77 75 75 76 76 76 78 75
Number of trades 14577 2561 3199 11579 2270 2027 13771 1947 1250
SR (daily based) 6.3641 5.6972 3.7878 6.3954 47917 4.0301 1.8919 1.8208 0.6060
SR (pair based) 0.2232 0.2598 0.2385 0.1823 0.2126 0.2400 0.1322 0.1712 0.1621
MDD 90 26 63 71 32 31 419 105 80
Required capital (thousand) 45910 15520 24597 47465 11832 30350 64390 15353 24770
Average profit (per trade) (thousand) 0.1329 0.1803 0.1379 0.1656 0.2000 0.1578 0.1467 0.2093 0.054
Threshold: HighFreq

Profit (thousand) 2533.94 72473 564.80 2543.85 720.65 337.87 2254.96 442.95 89.87
Win rate (%) 80 80 80 79 80 80 75 77 77
Normal close rate (%) 81 83 81 80 82 82 77 81 80
Number of trades 16820 3986 3754 12418 3055 2063 13355 2179 1369
SR (daily based) 7.3559 5.2082 4.8660 8.4031 74118 4.2987 21572 2.0918 0.7574
SR (pair based) 0.2668 03117 0.2883 0.2249 0.2637 0.2972 0.1512 0.1784 0.1779
MDD 97 43 34 66 18 29 400 107 102
Required capital (thousand) 58351 23010 31681 47130 15816 31519 62389 15853 24562
Average profit (per trade) (thousand) 0.1507 0.1818 0.1505 0.2048 0.2358 0.1638 0.1688 0.2033 0.066

TABLE 6. Comparison with Lu et al. [9]. All experimental results (except
the last row) are retrieved from Table 4 in Lu et al. [9]. The experimental
settings also match their paper. For each financial indicator, we set in
boldface the best of the methods listed in the first column.

Sharpe ratio Sortino ratio MDD
SAPT 4.30 13.18 0.020
SAPT w/o Break 3.45 9.53 0.044
SAPT w/o Time 3.42 9.78 0.043
SAPT w/o Hold 3.07 6.71 0.090
PTDQN 1.01 1.41 0.169
SAPT-3-std 1.07 1.77 0.143
SAPT-ADF -0.23 -0.32 0.127
SAPT-BCD -3.15 -2.95 0.250
SAPT-LSTM -1.32 -1.49 0.297
HighFreq 2.40 28.89 0.041

all financial indicators, according to the direct comparisons.
Observing the best performances set in boldface shows that
our first-stage model affords more trading opportunities and
aggregated profits. However, our two-stage model has better
average profitability and lower risk per trade.

Lu et al. [9] design a “structural break aware pair trading™
strategy (SAPT) that stops losses by detecting “‘structural
breaks”, or the loss of cointegrating properties, as illustrated
in the first column of Table 6. In their two-phase frame-
work, DL first serves to detect the probability of a struc-
tural break. Then second phase trains a deep reinforcement
learning model to select heuristically generated thresholds.
We extend their experiment by inserting our two stage model
with 25 representative thresholds selected by HighFreq, in the
last row of the table. Although the Sharpe ratio of HighFreq
performs worse than the first four versions of SAPT, it signif-
icantly outperforms all different versions of SAPT in terms

97044

of the Sortino ratio. This is because the denominator of the
Sharpe ratio (Equation (7)) is the standard deviation of all
returns, regardless of positive or negative signs. In contrast,
the Sortino ratio is the standard deviation of negative returns.
Therefore, we can deduce that the risk of negative returns in
HighFreq is much smaller than in SAPT.

VI. CONCLUSION

This paper proposes a novel two-stage model to improve PTS
investment performance and reduce trading risk by optimally
selecting trigger thresholds and removing unprofitable stock
pairs. In the first stage, we train a multi-scale ResNet with the
proposed RLM to select optimal thresholds without incurring
the non-convergence training problem. Our approach outper-
forms other approaches that heuristically generate a set of
thresholds for selections. To remove unprofitable stock pairs
in the second stage, we train another multi-scale ResNet with
the profitability of each stock pair obtained by executing the
PTS with trigger thresholds recommended in the first stage.
Therefore, our second-stage model outperforms models that
indirectly predict stock pair profitability by the similarity of
stock price processes [8] and the occurrence of structural
breaks [9]. We also find that the time invariance of the
spread process (i.e., portfolio value process) makes it eas-
ier for machine-learning algorithms to capture features and
hence improve investment performance. Indeed, as in much
of the financial-market-prediction literature, training with
time-varying patterns such as stock prices or returns yields
unstable investment performance as the patterns learned
from the training set may change in the testing set. Thus,
changing the training period length influences investment

VOLUME 10, 2022

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

IEEE Access

performance in an unstable way due to unpredictable
changes in financial markets. However, training with the
time-invariant spread process monotonically improves the
performance with prolonged training periods and outper-
forms training with time-variant stock prices and returns,
even though the spread process contains less information than
the stock price or return data.

Our work yields meaningful insights for further develop-
ments in financial market prediction and investment. To avoid
unpredictable changes in financial markets due to outbreaks
of pandemics and wars from harming the predictability
of machine learning models for PTS, we can train with
time-invariant spread processes to eliminate unstable perfor-
mance. The high profitability and the low-risk properties also
render our two-stage model a good PTS candidate for appli-
cations such as reducing the variance (or risk) in investment
portfolios [16] and establishing optimal asset allocations [17].

REFERENCES

[1] G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis,
vol. 217. Hoboken, NJ, USA: Wiley, 2004.

[2] C.Krauss andJ. Stiibinger, ‘“Non-linear dependence modelling with bivari-
ate copulas: Statistical arbitrage pairs trading on the S&P 100,” Appl.
Econ., vol. 49, no. 52, pp. 5352-5369, Nov. 2017.

[3] S. Johansen, Likelihood-Based Inference in Cointegrated Vector Autore-
gressive Models. Oxford, U.K.: Oxford Univ. Press, 1995.

[4] S. Fallahpour, H. Hakimian, K. Taheri, and E. Ramezanifar, ‘“Pairs
trading strategy optimization using the reinforcement learning method:
A cointegration approach,” Soft Comput., vol. 20, no. 12, pp. 5051-5066,
Dec. 2016.

[5] T. Kim and H. Y. Kim, “Optimizing the pairs-trading strategy using deep
reinforcement learning with trading and stop-loss boundaries,” Complex-
ity, vol. 2019, pp. 1-20, Nov. 2019.

[6] W.-L. Kuo, T.-S. Dai, and W.-C. Chang, *“Solving unconverged learning of
pairs trading strategies with representation labeling mechanism,” in Proc.
CIKM Workshops, vol. 3052, 2021, pp. 1-11.

[71 J. Li, F. Fang, K. Mei, and G. Zhang, “Multi-scale residual network
for image super-resolution,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 517-532.

[8] S.M. Sarmento and N. Horta, “Enhancing a pairs trading strategy with the
application of machine learning,” Expert Syst. Appl., vol. 158, Nov. 2020,
Art. no. 113490.

[9] J.-Y. Lu, H.-C. Lai, W.-Y. Shih, Y.-E. Chen, S.-H. Huang, H.-H. Chang,
J.-Z. Wang, J.-L. Huang, and T.-S. Dai, ““Structural break-aware pairs trad-
ing strategy using deep reinforcement learning,” J. Supercomput., vol. 78,
no. 3, pp. 3843-3882, Feb. 2022.

[10] R. Singh and S. Srivastava, *“‘Stock prediction using deep learning,” Mul-
timedia Tools Appl., vol. 76, no. 18, pp. 18569-18584, 2017.

[11] C. Krauss, “Statistical arbitrage pairs trading strategies: Review and out-
look,” J. Econ. Surv., vol. 31, no. 2, pp. 513-545, Apr. 2017.

[12] H. Rad, R. K. Y. Low, and R. Faff, “The profitability of pairs trading
strategies: Distance, cointegration and copula methods,” Quant. Finance,
vol. 16, no. 10, pp. 1541-1558, Oct. 2016.

[13] N. Huck and K. Afawubo, “Pairs trading and selection methods: Is coin-
tegration superior?”” Appl. Econ., vol. 47, no. 6, pp. 599-613, Feb. 2015.

[14] R. F. Engle and C. W. J. Granger, “Co-integration and error correction:
Representation, estimation, and testing,” Econometrica, vol. 55, no. 2,
pp. 251-276, Mar. 1987.

[15] S. Johansen, “Statistical analysis of cointegration vectors,” J. Econ. Dyn.
Control, vol. 12, nos. 2-3, pp. 231-254, Jun. 1988.

[16] J. Giner, “Orthant-based variance decomposition in investment portfo-
lios,” Eur. J. Oper. Res., vol. 291, no. 2, pp. 497-511, Jun. 2021.

[17] S.C.P. Yam, H. Yang, and F. L. Yuen, “Optimal asset allocation: Risk and
information uncertainty,” Eur. J. Oper. Res., vol. 251, no. 2, pp. 554-561,
Jun. 2016.

[18] M. Fil and L. Kristoufek, ““Pairs trading in cryptocurrency markets,” [EEE
Access, vol. 8, pp. 172644-172651, 2020.

VOLUME 10, 2022

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

P. S. Lintilhac and A. Tourin, ‘“Model-based pairs trading in the bitcoin
markets,” Quant. Finance, vol. 17, no. 5, pp. 703716, May 2017.

N. Huck, “Pairs trading and outranking: The multi-step-ahead fore-
casting case,” Eur. J. Oper. Res., vol. 207, no. 3, pp.1702-1716,
Dec. 2010.

A. Brim, “Deep reinforcement learning pairs trading with a double deep
Q-network,” in Proc. 10th Annu. Comput. Commun. Workshop Conf.
(CCWC), Jan. 2020, pp. 0222-0227.

F. Xu and S. Tan, “Dynamic portfolio management based on pair trading
and deep reinforcement learning,” in Proc. 3rd Int. Conf. Comput. Intell.
Intell. Syst., Nov. 2020, pp. 50-55.

T.-W. Hsu, C.-C. Chen, H.-H. Huang, M. C. Chen, and H.-H. Chen,
“Hedging via opinion-based pair trading strategy,” in Proc. Companion
Web Conf., 2020, pp. 69-70.

C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang, “Time series
anomaly detection for trustworthy services in cloud computing systems,”
IEEE Trans. Big Data, vol. 8, no. 1, pp. 60-72, Feb. 2022.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jan. 2016, pp. 770-778.

S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and
K. P. Soman, ““Stock price prediction using LSTM, RNN and CNN-sliding
window model,” in Proc. Int. Conf. Adv. Comput., Commun. Informat.
(ICACCI), 2017, pp. 1643-1647.

M. S. Hegde, G. Krishna, and R. Srinath, “An ensemble stock predictor
and recommender system,” in Proc. Int. Conf. Adv. Comput., Commun.
Informat. (ICACCI), Sep. 2018, pp. 1981-1985.

K. Khare, O. Darekar, P. Gupta, and V. Z. Attar, “Short term stock
price prediction using deep learning,” in Proc. 2nd IEEE Int. Conf.
Recent Trends Electron., Inf. Commun. Technol. (RTEICT), May 2017,
pp. 482-486.

S. Jain, R. Gupta, and A. A. Moghe, “Stock price prediction on daily
stock data using deep neural networks,” in Proc. Int. Conf. Adv. Comput.
Telecommun. (ICACAT), Dec. 2018, pp. 1-13.

C. Peng, Z. Yin, X. Wei, and A. Zhu, “Stock price prediction based on
recurrent neural network with long short-term memory units,” in Proc. Int.
Conf. Eng., Sci., Ind. Appl. (ICESI), 2019, pp. 1-5.

M. Wen, P. Li, L. Zhang, and Y. Chen, “Stock market trend predic-
tion using high-order information of time series,” IEEE Access, vol. 7,
pp. 28299-28308, 2019.

Y. Gu, D. Yan, S. Yan, and Z. Jiang, “‘Price forecast with high-frequency
finance data: An autoregressive recurrent neural network model with
technical indicators,” in Proc. 29th ACM Int. Conf. Inf. Knowl. Manage.,
Oct. 2020, pp. 2485-2492.

L. Zhang, C. Aggarwal, and G.-J. Qi, “Stock price prediction via discov-
ering multi-frequency trading patterns,” in Proc. 23rd ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2017, pp. 2141-2149.

S. Johansen, “Identifying restrictions of linear equations with applications
to simultaneous equations and cointegration,” J. Econometrics, vol. 69,
no. 1, pp. 111-132, Sep. 1995.

J. Rudy, C. Dunis, G. Giorgioni, and J. Laws, “Statistical arbitrage and
high-frequency data with an application to Eurostoxx 50 equities,” Social
Sci. Res. Netw., 2010.

S. Broumandi and T. Reuber, ““Statistical arbitrage and FX exposure with
south American ADRs listed on the NYSE,” Financial Assets Investing,
vol. 3, no. 2, pp. 5-18, May 2012.

H. Liitkepohl, P. Saikkonen, and C. Trenkler, ‘“‘Maximum eigenvalue ver-
sus trace tests for the cointegrating rank of a VAR process,” Econometrics
J., vol. 4, no. 2, pp. 287-310, 2001.

S.-H. Kim, D.-Y. Park, and K.-H. Lee, ““Hybrid deep reinforcement learn-
ing for pairs trading,” Appl. Sci., vol. 12, no. 3, p. 944, Jan. 2022.

S. Endres and J. Stiibinger, “A flexible regime switching model with pairs
trading application to the S&P 500 high-frequency stock returns,” Quant.
Finance, vol. 19, no. 10, pp. 1727-1740, Oct. 2019.

B. Liu, L.-B. Chang, and H. Geman, “Intraday pairs trading strategies on
high frequency data: The case of oil companies,” Quant. Finance, vol. 17,
no. 1, pp. 87-100, Jan. 2017.

R. Liu, F. Wang, B. Yang, and S. J. Qin, “Multiscale kernel based residual
convolutional neural network for motor fault diagnosis under nonstationary
conditions,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3797-3806,
Jun. 2019.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn., 2015, pp. 448-456.

97045

IEEE Access

W.-L. Kuo et al.: Improving Pairs Trading Strategies Using Two-Stage DL Methods and Analyses of Time (In)variant Inputs

WEI-LUN KUO received the B.S. degree in com-
puter science from the National Taiwan Normal
University, Taipei, Taiwan, in 2019, and the M.S.
degree in computer science from the National
Yang Ming Chiao Tung University (NYCU),
Hsinchu, Taiwan, in 2021. His research interest
includes deep learning in finance.

WEI-CHE CHANG received the B.S. degree in
computer science from the National Yang Ming
Chiao Tung University (NYCU), Hsinchu, Taiwan,
in 2020, where he is currently pursuing the M.S.
degree in computer science. His research interest
includes reinforcement learning in finance.

TIAN-SHYR DAI received the Ph.D. degree from
the Department of Computer Science, National
Taiwan University. He was the Chairperson of
the Department of Information Management and
Finance, from 2016 to 2019, and the Director
of the Taiwan Association of Business School,
from 2018 to 2020. He is currently a Full Professor
at the Department of Information Management and
Finance, National Yang Ming Chiao Tung Univer-
sity (NYCU). He is also a Research Member of the

Risk and Insurance Research Center, NCCU. He has been a Senior Fellow of
AdvanceHE and a Faculty Member of Beta Gamma Sigma, since 2021. His
research interests include financial engineering and financial technology.

97046

YING-PING CHEN (Member, IEEE) received
the B.S. and M.S. degrees in computer science
and information engineering from the National
Taiwan University, Taiwan, in 1995 and 1997,
respectively, and the Ph.D. degree from the Depart-
ment of Computer Science, University of Illinois
at Urbana—Champaign, Champaign, IL, USA,
in 2004. He is currently a Full Professor with the
Department of Computer Science, National Yang
Ming Chiao Tung University (NYCU), Taiwan.
His research interests include understanding intelligence from computational
perspectives and via computational mechanisms, novel, emerging computa-
tional technologies, and theories, working principles, and dimensional/facet-
wise models in genetic and evolutionary computation.

HAO-HAN CHANG is currently pursuing the
Ph.D. degree with the Institute of Finance,
National Yang Ming Chiao Tung University
(NYCU). His research interests include statistical
arbitrage and valuation employee stock options
with forest model.

VOLUME 10, 2022

