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ABSTRACT This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-
connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine
Learning (ML) and Deep Learning (DL) has been widely utilized in the fields of cyber security including
intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based
approaches for the detection and defense of cyber attacks and threats are more advanced and efficient
compared to the conventional signature-based and rule-based cyber security strategies, most ML-based
techniques and DL-based techniques are deployed in the ‘‘black-box’’ manner, meaning that security experts
and customers are unable to explain how such procedures reach particular conclusions. The deficiencies
of transparencies and interpretability of existing Artificial Intelligence techniques would decrease human
users’ confidence in the models utilized for the defense against cyber attacks, especially in current situations
where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI
in the establishment of cyber security models to create more explainable models while maintaining high
accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense
mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas
and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal
justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI
applications in cyber security. Therefore, the motivation behind the survey is to bridge the research gap by
presenting a detailed and up-to-date survey of XAI approaches applicable to issues in the cyber security
field. Our work is the first to propose a clear roadmap for navigating the XAI literature in the context of
applications in cyber security.
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INDEX TERMS Artificial intelligence, cyber security, deep learning, explanation artificial intelligence,
intrusion detection, machine learning, malware detection, spam filtering.

I. INTRODUCTION24

Cyber Security is the practice of securing networks, devices,25

and data against unauthorized access or illegal usage, as well26

as the art ofmaintaining information confidentiality, integrity,27
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approving it for publication was Zijian Zhang .

and availability [1], whereas cyber defensive mechanisms 28

emerge at the application, network, host, and data levels [2]. 29

As the Internet has become an essential tool in everyone’s 30

daily life, the number of systems linked to the Internet grows 31

as well. The advancement of computer networks, servers, 32

and mobile devices has significantly boosted Internet usage. 33

However, thewide utilization of the Internet also tempts cyber 34
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attackers to develop more sophisticated and powerful cyber-35

attack methods for their benefit. It is noticeable that with the36

number of internet users worldwide increasing by 0.3 billion37

in 2021 compared with the previous year [3], global cyber38

attacks increased by 29% in 2021 according to the 202139

Cyber Trends Report [4]. In June of 2022, a cyberattack on a40

software business caused thousands of individuals in multiple41

states of the USA to lose their unemployment benefits and42

job-search help [5], which will lead to severe social insta-43

bility during the COVID-19 pandemic. As a matter of fact,44

according to the report by the European Union Agency for45

Network and Information Security (ENISA) [6], safe and46

trustworthy cyberspace is expected to become even more47

crucial in the new social and economic norms formed by the48

COVID-19 epidemic. These figures and events demonstrate49

the serious facts that the Internet and connected networks and50

devices have suffered more cybercriminals and cyber attacks51

nowadays.52

Therefore, a stable and secure cyber security computer53

system must be established to ensure the information pri-54

vacy, accessibility, and integrity transmitted within the55

Internet. Nevertheless, the conventional signature-based and56

rule-based cyber defensive mechanisms are facing chal-57

lenges within the increasing quantities of information spread58

over the Internet [7]. On the other hand, cyber hackers are59

always striving to keep one step ahead of law enforce-60

ment by generating new, smart, and intricate attacking tech-61

niques and implementing technological advances including62

Artificial Intelligence to make their adversarial behaviors63

more sophisticated and efficient [8]. As a consequence,64

researchers in cyber security have begun to investigate Arti-65

ficial Intelligence-based approaches especially ML and DL66

rather than traditional (non-AI) cybersecurity techniques67

including Game theory, Rate Control, and Autonomous sys-68

tems to enhance the performance of cyber defensive systems.69

Although Artificial Intelligence techniques, especially ML70

and DL algorithms could provide impressive performances71

on benchmark datasets in a number of cyber security domain72

applications such as Intrusion detection, spam e-mail filter-73

ing, Botnet detection, fraud detection, and malicious appli-74

cation identification [9], they can commit errors, some of75

which are more expensive than conventional cyber defensive76

approaches. On the other hand, cyber security developers77

have sometimes sought higher accuracy at the price of inter-78

pretability, making their models more intricate and difficult to79

grasp [10]. This lack of explainability has been disclosed by80

the European Union’s General Data Protection Regulation,81

preserving the capacity to comprehend the logic behind an82

Artificial Intelligence algorithmic decision that negatively83

impacts individuals [11]. Accordingly, to be able to believe84

the decisions of cyber security systems, Artificial Intelligence85

must be transparent and interpretable. To satisfy these kinds86

of demands, several strategies have been proposed to make87

Artificial Intelligence decisions more intelligible to humans.88

And these explainable techniques are usually shortened as89

‘‘XAI’’, which have already been implemented in many90

application domains such as healthcare, Natural Language 91

Processing, and financial services [12]. And the objective of 92

this research paper is to focus on the applications of XAI in 93

different fields in the context of cyber security. 94

A. RESEARCH MOTIVATION 95

Implementing Artificial Intelligence in applications of cyber 96

security has been researched in recent years and many 97

previous surveys reviewed the existing work in this field. 98

On the other hand, the trends of applying XAI to provide 99

more explainable and transparent services for areas including 100

healthcare and image analysis are popular in research as well. 101

However, to the best of our knowledge, although there are 102

some other excellent survey papers available on the topics 103

of XAI and cyber security independently, there is a lack 104

of a comprehensive survey paper focusing on the review of 105

solutions based onXAI across awide variety of cyber security 106

applications. This survey also concludes with special deep 107

analytical insights based on their opinions. These findings 108

reveal several holes that may be filled using XAI methods, 109

indicating the overall future direction of research in this 110

domain. 111

In general, this survey intends to provide a comprehensive 112

review of state-of-art XAI applications in the cyber security 113

area. The research motivations behind this work are listed as 114

followings: 115

1) To review different techniques and categorizations of 116

XAI. 117

2) To review existing challenges and problems of XAI. 118

3) To identify the frameworks and available datasets for 119

the XAI-based cyber defensive mechanism. 120

4) To review the latest successful XAI-based systems and 121

applications in the cyber security domain. 122

5) To identify challenges and research gaps of XAI appli- 123

cations in cyber security. 124

6) To identify the key insights and future research direc- 125

tions for applying XAI in the cyber security area. 126

B. PREVIOUS SURVEYS 127

XAI and cyber security have been reviewedmostly separately 128

in previous surveys. However, crossovers have emerged 129

between the two domains. This survey presented a com- 130

prehensive introduction of different XAI techniques applied 131

in cyber defensive systems. Our work also provided com- 132

prehensive XAI categorizations and analyzed details about 133

the existing challenges and frameworks of XAI for cyber 134

security. Cyber security datasets available for XAI models 135

and the cyber threats faced by XAI models are discussed in 136

this paper as well. Table 1 contrasts our study with currently 137

available surveys and reviewing articles. Many existing sur- 138

veys only analyzed Artificial Intelligence (AI) applications, 139

either ML or DL, in the cyber security area, whereas other 140

authors reviewXAImethods for a narrow set of cyber security 141

applications. Some reviewers could not describe the back- 142

ground ofXAI and cyber security in detail. Furthermore,most 143
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articles discuss only AI applications in cyber security or XAI144

implemented in other domains rather than focusing on cyber145

security.146

From Table 1, it is obvious that this survey is compre-147

hensive and distinct in including the following features in148

comparison to previously published survey research in the149

field: summarizing commonly used cyber security datasets150

available, discussing popular XAI tools and their applications151

in the cyber security area, analyzing the XAI applications152

in defending different categories of cyber attacks, providing153

assessment measures for evaluating the performance of XAI154

models, giving descriptions on the adversarial cyber attacks155

which XAI itself may suffer, and pointing out some key156

insights about applying XAI for cyber security.157

C. SCOPE OF CYBER SECURITY ANALYSED158

In agreement with the International Organization for Stan-159

dardization (ISO/IEC 27032) [37], cyber security is defined160

as the privacy, integrity, and availability of internet data.161

Cyber attacks are cybercriminal attacks undertaken using one162

or more computers against a single or numerous computers or163

networks. A cyber assault can purposefully destroy systems,164

steal data, or utilize a compromised computer as a launch165

pad for more attacks [38]. Due to the wide spreading of166

cyber attacks and threats, the cyber security industries are167

seeing rapid expansion. As a result, by 2026, the worldwide168

cybersecurity sector is anticipated to be worth 345.4 billion169

USD [39]. On the other hand, besides the conventional cyber170

attacks including malware, botnet, and spam, adversarial171

cyber security threats specifically targeting AI models are172

Gradually emerging in recent years as well [24]. Therefore,173

the scope for the domain of cyber security analyzed in this174

survey paper will be constituted in the following 3 sub-fields175

in conjunction with XAI:176

1) Different categories of the most prominent cyber177

attacks including malware, Botnet, spam, fraud, phish-178

ing, Cyber Physical Systems (CPSs) attacks, network179

intrusion, Denial-of-service (DoS) attacks,Man-in-the-180

middle (MITM) attacks, Domain Generation Algo-181

rithms (DGAs), and Structured Query Language (SQL)182

injection attacks are described in detail respectively.183

By doing so, the terminologies of cyber attacks are184

clear and the defensive systems against these attacks185

are discussed in this paper as well.186

2) Cyber security implementation in different industrial187

areas including smart grid, healthcare, smart agricul-188

ture, smart transportation, Human-Computer Interac-189

tion(HCI), and smart financial system will be reviewed190

in this survey. This paper provides a brief introduction191

of XAI for cyber security in each domain respectively.192

3) While XAI is implemented in many different sce-193

narios to defend against cyber threats, XAI models194

will face adversarial attacks targeting XAI models as195

well. This survey will investigate cyber security from196

this perspective as well. Adversarial threats targeting197

XAI, defense approaches against these attacks, and the 198

establishment of secure XAI cyber systems will be 199

interpreted respectively. 200

D. CONTRIBUTIONS 201

This study extensively evaluates current breakthroughs and 202

state-of-the-art XAI-based solutions in a wide variety of 203

cyber security applications and cyber attack defensive mech- 204

anisms to address the gaps and shortcomings mentioned in 205

earlier surveys. There is no previous survey available analyz- 206

ing the state-of-art XAI applications in cyber security system- 207

ically from the perspectives of both cyber attack defensive 208

schemes and industrial applications. Our research’s contribu- 209

tions can be summarized in the following points: 210

1) We rationalize the motivations for integrating XAI 211

in AI-based cyber security models whereas the basic 212

background on XAI is presented. 213

2) We provide a thorough summary as well as a quick 214

overview of the datasets that are accessible for the 215

usage of XAI applications in cyber security. 216

3) We discuss different categories of defensive applica- 217

tions of XAI against cyber attacks respectively, and 218

we highlight the advantages and limitations to develop 219

XAI-based cyber-defense systems. 220

4) We justify XAI for cyber security in different industry 221

scenarios. 222

5) We illustrate Adversarial cyber threats pointing to XAI 223

models are described whereas the defense approaches 224

against these attacks. 225

6) We outline the outstanding issues and existing chal- 226

lenges associated with the intersection of XAI and 227

cyber security, and we identify the key insights and 228

future research directions for the XAI applications in 229

cyber security. 230

E. STRUCTURE OF THIS SURVEY 231

As shown in Fig 1, this survey has been organized in such a 232

way that the background information for the research being 233

examined comes first. Section II introduces the methodology 234

of research on this survey in the field of XAI applications in 235

cyber security. Section III discusses the general background 236

of XAI, motivations, categorizations, and challenges of XAI 237

are justified in this section. The section after that (Section IV) 238

is organized based on the XAI framework and available 239

datasets for cyber security. Section V will be devoted to a 240

comprehensive discussion of XAI applications in cyber secu- 241

rity from different perspectives. The existing challenges, key 242

insights, and future directions of this area are highlighted in 243

Section VI, which is followed by the conclusion. And the 244

conclusion would be the last section, which is Section VII. 245

II. METHODOLOGY OF RESEARCH 246

The research methodology flow chart of this survey is 247

described in Figure 2. As we mentioned in Section I Intro- 248

duction, the goal of this study was to investigate the research 249
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TABLE 1. Comparison of existing surveys with our work (legend:
√

means included; N/A means not included; ≈ means partially included).

state-of-art in the areas of XAI applications in cyber secu-250

rity. Therefore, to collect the research articles reviewed, the251

following criteria were established:252

1) A thorough search was carried out whereas different253

academic search engines illustrated in Table 2 were254

utilized to collect the relevant papers.255

2) The searching keywords for this survey paper were 256

constituted as 2 aspects: ‘‘XAI’’ and ‘‘Cyber Security’’. 257

To create the search string, all potential pertinent syn- 258

onyms of the given terms were discovered in differ- 259

ent databases and the percentage of reviewed papers 260

from sources was depicted in Figure 3. The following 261
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FIGURE 1. Structure of this paper.

TABLE 2. Research searching database engines.

synonyms may be pertinent to the subject: ‘‘Cyber262

Security’’, ‘‘Cyber Physical’’, ‘‘Cyber Attack’’,263

‘‘Cyber Threat’’, Network Security’’, ‘‘Cyber Crime’’,264

‘‘XAI’’, ‘‘Explainable Artificial Intelligence’’, ‘‘Inter-265

pretable Artificial Intelligence’’, ‘‘Explainable ML266

(XML)’’, and ‘‘Transparent Artificial Intelligence’’.267

3) Only researches published between 2011 and 2022268

were selected to report on the most recent trends in the269

application of XAI techniques in cyber security for this270

research. Besides, papers published after 2017 were271

given higher attention and occupied a large proportion272

of all reviewed publications, as shown in Figure 4.273

4) Only publications written in the English language were 274

included in this review and duplicated studies were 275

excluded. 276

5) Only papers objecting to cyber security vulnerability 277

domains were reviewed in this survey paper whereas 278

researches proposing ML-based systems, DL-based 279

systems, XAI-based mechanisms, and AI-based mech- 280

anisms would be extracted. 281

The procedure of choosing articles was instantaneous and 282

consisted of two steps: firstly, the searching results were 283

initially chosen based on the selection criteria by scanning 284

the publications’ titles and abstracts; secondly, the documents 285

chosen in the initial phase were thoroughly read to create a 286

shortlist of articles published that would be chosen based on 287

the inclusion and exclusion criteria. 288

III. XAI BACKGROUND 289

As we introduced in Section I, the concept of XAI is defined 290

as the technique to improve the human understanding of how 291

AI makes decisions [10]. In this section, we will review the 292

general background of XAI, providing some necessary prior 293

knowledge for readers to have a better understanding in the 294

following sections introducing the XAI applications in cyber 295

security. 296
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FIGURE 2. Research methodology flow chart.

FIGURE 3. Percentage of Reviewed Papers from Sources.

Before exploring the XAI background deeply, it is worth297

mentioning and clarifying the terminologies in the XAI298

domain. Numerous concepts and phrases, which include299

intelligibility, explainability, transparency, and interpretabil-300

ity. have been used to characterize XAI recently [40]. And301

the relationships between these terms are shown in Figure 5.302

Among these terms, interpretability is defined as a concept303

similar to explainability [41]. However, in recent years, the304

terminology for the term ‘‘interpretability’’ has shifted to305

information extraction rather than providing explanations306

[42], meaning that the terms of interpretability and explain-307

ability are becomingmore diverse while still intersecting with308

FIGURE 4. Percentage of Papers included from 2011 to 2022.

each other. Therefore, in this study, we focus on the side of 309

‘‘explainability’’ in XAI whereas the reviewed papers focus- 310

ing on ‘‘intelligibility’’, ‘‘transparency’’, and ‘‘intelligibility’’ 311

parts would be extracted and excluded according to their 312

clutters with the concept of ‘‘explainability’’. 313

In the following subsections of this section, we will 314

introduce the background of XAI from different perspec- 315

tives respectively, including the motivations to integrate XAI 316

into cyber security, categorizations of XAI, and existing 317
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FIGURE 5. A Venn Diagram showing the connections between words used
frequently in the XAI domain.

challenges of XAI. The purpose of this section is to provide318

readers with a general description of the XAI area so that319

readers could have a deeper understanding of the parts of XAI320

applications in cyber security.321

A. MOTIVATIONS TO INTEGRATE XAI INTO CYBER322

SECURITY323

Given the constant growth in complexity and volume of324

cyber attacks including malware, intrusion, and spam, coping325

with them is becoming increasingly difficult [17]. Accord-326

ing to [43], conventional algorithms including rule-based327

algorithms, statistics-based algorithms, and signature-based328

approaches are utilized to detect intrusions in the cyber secu-329

rity area. However, due to the growing amount of data being330

communicated over the Internet and the emergency of the331

new networking paradigms including the Internet of Things332

(IoT), cloud computing, and fog/edge computing [44], these333

traditional approaches have a low capacity to process massive334

amounts of data and high computing costs [7].335

On the other hand, Artificial intelligence works as one of336

the foundational technologies of Industry 4.0 [31]. Therefore,337

AI techniques including ML algorithms and DL algorithms338

can play a significant part in the provision of intelligent339

cyber security services and management in recent years. For340

instance, Daniele et al. [17] concluded the implementation of341

ML Methods for malware analysis including malware detec-342

tion, malware similarity analysis, and malware category anal-343

ysis. Donghwoon et al. [15] utilized DL-based approaches to344

network anomaly detection and network traffic analysis.345

Nevertheless, due to the limitations of the AI-based346

approaches, the applications of AI in the cyber security area347

are facing challenges as well. For instance, the access to348

cybersecurity-related data [45], adversarial attacks on AI349

models [46], and Ethics and Privacy issues [47] are typi-350

cal inherent limitations suffered by AI-based cyber security351

systems. Among these drawbacks, the black-box nature of352

AI models is a severe limitation that we should pay more353

attention to when AI models are integrated into the cyber354

security domain [48]. Because of AI models’ black-box char-355

acteristics, the cybersecurity-related decisions generated by356

AI-based models lack rationale and justifiability of their deci- 357

sions and therefore are difficult for people to understand how 358

these results are produced [49]. In this case, the cyber defen- 359

sive mechanisms would become black-box systems that are 360

extremely vulnerable to information breaches and AI-based 361

cyber threats [50]. 362

Therefore, to deal with the drawbacks of utilizing AI for 363

cyber security, XAI is a reaction that emerged to the growing 364

black box issue with AI. Users and specialists can understand 365

the logical explanation and main data evidence due to XAI’s 366

contribution of interoperability to the results produced by the 367

AI-based statistical models [19]. 368

To conclude, the motivations to apply XAI to cyber secu- 369

rity are given as followings: 370

1) Building trust is a key object for integrating XAI which 371

is closely related to transparency and understanding of 372

cybersecurity-related decision models. 373

2) Another motivation to apply XAI in the cyber secu- 374

rity area is to comply with many new regulations and 375

General Data Protection Regulation (GDPR) laws [51] 376

calling for providing explanations to the entire society 377

in various fields including cyber security. 378

3) Justice, social responsibility, and risk mitigation are 379

significant concerns for applying XAI in cyber security 380

because protecting cyber security may be dealing with 381

serious social problems, sometimes even human lives, 382

and not just cost-benefit calculations. 383

4) Cyber security system biases and the misunderstanding 384

of their effectiveness have emerged as key drivers for 385

XAI. For instance, biased training data occurs as a 386

problem that affects the model’s output’s credibility, 387

in particular when working with neural networks that 388

learn patterns from training data [52]. 389

5) Ability to provide obliged and decent justification for 390

the cyber security system. By doing so, the created 391

cyber security defensive mechanisms can not only be 392

fair and socially responsible for the decisions, but also 393

defend their results with justifications. 394

B. CATEGORIZATIONS OF XAI 395

According to [53], [54], the XAI categories can be structured 396

in a variety of aspects shown in Figure 6. It is noticeable 397

that the categorization methods are not ideal, meaning that 398

overlapping may happen and one specific XAI technique can 399

be categorized into one or more aspects. Therefore, it would 400

be more precise and concrete if we categorized one XAI tech- 401

nique from different categorization perspectives. By doing so, 402

more information and characteristics of this XAI approach 403

could be revealed at different levels. 404

1) INTRINSIC OR POST-HOC 405

This categorization method distinguishes between achieving 406

explainability by limiting the complexity of the AI model 407

(intrinsic) or by analyzing the methodology of the model 408

after training (Post-hoc) to differentiate whether explainabil- 409

ity is achieved. An intrinsic XAI approach produces the 410
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FIGURE 6. An overview diagram showing the categorization of XAI in different aspects.

explanation concurrently with the forecast by using data that411

the model emits as a result of the prediction-making process412

[55]. Some ML models, including Decision Trees and Sparse413

Linear models, are regarded as intrinsic XAI approaches414

because they are self-explained. On the other hand, Post-hoc415

explanations are the utilization of interpretationmethods after416

the models have been trained and the decisions have already417

been made. Local Interpretable Model-agnostic Explanations418

(LIME) [56] and Permutation Importance [57] are typical419

Post-hoc explanation methods working independently as an420

external interpretable model.421

2) MODEL-SPECIFIC OR MODEL-AGNOSTIC422

XAI methods can also be classified according to the classes423

of models to that XAI methods could be applied, which are424

model-specific or model-agnostic. Model-specific explana-425

tion tools are specific to a single model or group of mod-426

els. For instance, the graph neural network explainer [58]427

is a method for presenting comprehensible justifications for428

any GNN-based model’s predictions on any graph-based ML429

problem. On the contrary, model-agnostic explanation tools430

can be implemented with any ML model in theory. Fur-431

thermore, model-agnostic explanation methods usually work432

by analyzing feature inputs and outputs and do not have433

access to the models’ internal information, such as weights434

or structural information by definition. Shapley Additive435

Explanations (SHAP) tools [59], Saliency Map [60], 436

and Gradient-weighted Class Activation Mapping (Grad- 437

CAM)()()() [61] are widely used model-agnostic explanation 438

tools. 439

3) LOCAL OR GLOBAL 440

Explanations of the decisionmodels can be divided as local or 441

global depending on the model’s scope. Local explainability 442

describes a system’s capacity to show a user why a particular 443

choice or decision was made. Some popular explainability 444

methods such as LIME [56], SHAP [59], and counterfactual 445

explanations [62] can be filed under this category. Local 446

explainability methods are emphasized as the first crucial 447

component of model transparency [55]. In the contrast, global 448

explainability refers to the explanation of the learning algo- 449

rithm as a whole, taking into account the training data uti- 450

lized, the algorithms’ proper applications, and any cautions 451

regarding the algorithm’s flaws and improper applications. 452

Global Attribution Mapping (GAM) is proposed in [63] as 453

a global explaination approach to explain the landscape of 454

neural network predictions across subpopulations. 455

4) EXPLANATION OUTPUT 456

The explanation output is also a crucial component of XAI 457

categorization for the reason that the format of the explana- 458

tion output would have a strong influence on certain users. 459
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For instance, text-based explanation methods are widely uti-460

lized in the field of Natural Language Processing (NLP)461

to fine-grained information and generate human-readable462

explanations [64]. On the hand, the visualized explanation463

approaches are used in vaster domains including NLP [65],464

neural networks [66], and healthcare [67]. In fact, the major-465

ity of feature summary statistics can also be visualized and466

some feature summaries are only meaningful when visual-467

ized [68]. Arguments-based explanations involve outlining468

the features in a way that humans use to come to decisions469

to help humans to better understand the relevance of a fea-470

ture [69]. Model-based explanation approaches need to out-471

line the internal working logic of a black-box model. And this472

is often accomplished by approximating the black-box model473

behavior with a different model that is more interpretable474

and transparent [10]. For instance, Wu et al. [70] proposed475

a model-specific technique aiming to reduce the complexity476

of the Deep Neural Network (DNN) model by introducing477

a model complexity penalty function. Lakkaraju et al. [71]478

proposed a model-agnostic technique called Model Under-479

standing through Subspace Explanations (MUSE), aiming480

at learning the behavious of a specific black-box model by481

yielding a small number of tight decision sets.482

C. EXISTING CHALLENGES OF XAI483

Despite the fact that the research community has regarded484

XAI as a solution to the issues with the trust and dependency485

posed by conventional black-box AI-based systems, XAI is486

still facing challenges from different perspectives. Challenges487

related to XAI security, XAI performance evaluation, legal488

and privacy issues, and the trade-off between interpretability489

and accuracy. In Table 3, a summary of challenges related to490

these challenges of XAI is provided.491

1) XAI SECURITY492

Some frequently deployed XAI models are susceptible to493

adversarial attacks, which raises the public’s concern about494

the security of XAI [72].495

Guo in [73] highlighted the necessity to develop defense496

mechanisms that can recognize targeted attacks against XAI497

engines, especially for the reason that building and quan-498

tifying trust between human end-users is essential for 6G499

to enable higher levels of safety-critical autonomy across a500

variety of industries. Fatima et al. [74] also pointed out that501

it would be fascinating to look into the adversarial ML and502

Deep models (or the application of ML and DL in adversarial503

circumstances) in XAI and highlighted the three main factors504

that enable the security of AI models are the changes in the505

input data used by learning models, bias, and fairness.506

Slack et al. [75] made criticism about some post-hoc expla-507

nation methods such as LIME and SHAP by demonstrat-508

ing that the extremely biased (racist) classifiers crafted can509

easily fool these popular explanation techniques. Besides,510

for the specific Deep Neural Network (DNN) models,511

Cleverhans et al. [76] looked for adversarial vulnerabilities512

TABLE 3. Summary of XAI challenges.

DeepFool tool and offered several methods to harden the 513

model against it. 514

2) XAI PERFORMANCE EVALUATION 515

The effectiveness of an XAI method could be evaluated 516

and measured in a variety of ways. However, there is no 517

accepted system available for determining if an XAI sys- 518

tem is more user-intelligent than another XAI system at this 519

time [77]. 520

In papers [78] and [79], strong concerns were proposed 521

about choosing the best technique for explainability requires 522

a well-established evaluation system for explainability. 523

For the evaluation of the explanations given by post-hoc 524

XAI approaches on tabular data, Julian et al. [80] proposed 525

a definition of feature relevance in Boolean functions and a 526

testing environment by creating fictitious datasets. And in 527

paper [81], Leila et al. solved the issue of the absence of 528
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a heatmap quality measurement that is both impartial and529

widely acknowledged by presenting a framework for evaluat-530

ing XAI algorithms using ground truth based on the CLEVR531

visual question answering task.532

3) LEGAL AND PRIVACY ISSUES533

Besides the above described technical challenges, XAI faces534

significant legal and privacy issues as well. In numerous535

instances, including some well-known court cases, a his-536

tory of biased legal and privacy issues was made by XAI537

systems [89].538

Arun [82] proposed concerns about the role of XAI in539

influencing the privacy calculus of individuals, especially the540

privacy concerns of customers in marketing AI applications.541

The European Commission (EC) has also published ethical542

guidelines for Trustworthy AI as a legal document [83],543

highlighting the respect for privacy, quality and integrity of544

data, and access to data.545

The General Data Protection Regulation (GDPR) [84] of546

the EU has added clarification to its information security547

architecture. In Recital 71, the word ‘‘explanation’’ is men-548

tioned, outlining the human right to contest the decision made549

following such an evaluation and to get an explanation of the550

decision. Furthermore, Martin [85] investigated whether and551

to what degree people have a legal right to an explanation of552

automated decision-making under EU law, particularly when553

AI systems are involved.554

4) THE TRADE-OFF BETWEEN INTERPRETABILITY AND555

ACCURACY556

The Explainability and performance (predictive accuracy) of557

a model are generally shown to be in trading-off with each558

other [90]. In fact, there is a demand for explainable models559

that can attain high performance because the algorithms that560

currently perform the best are frequently the least explainable561

(for example, DL) [53].562

Despite simple models being frequently favored for their563

ease of explaining [91], these models’ explainability may564

be compromised in cases when highly engineered or heavy565

dimensional features are used [86].566

Amann et al. [87] adopted a multidisciplinary approach to567

analyze the relevance of explainability for medical AI from568

different perspectives, showing the necessity to apply XAI in569

clinical practice even though the primary objective is to give570

patients the finest care possible [88].571

IV. XAI FRAMEWORK AND DATASETS FOR CYBER572

SECURITY573

A. XAI FRAMEWORK FOR CYBER SECURITY574

In this section, based on the publications we have carefully575

read in this survey, we provide a general XAI framework576

diagram for cyber security applications. And the conceptual577

framework diagram for XAI applications in cyber security is578

illustrated in Figure 7. This diagram is considered to be as579

general as it can be to show the processes of applying XAI580

in the cyber area domains. There are several stages in this 581

workflow whereas certain sample instances are presented in 582

each stage. 583

The framework workflow starts by determining the types 584

of cyber security tasks, including malware detection, spam 585

detection, and fraud detection, which are defined by the 586

types of cyber attacks facing. The corresponding data such 587

as emails, network traffic, and application activities will be 588

collected and processed in the next stages. Then features 589

representing significant characteristics will be extracted and 590

fed to train different Artificial Intelligence models depending 591

on specific situations. Cyber security test samples will be ana- 592

lyzed and made decisions after the models have been trained. 593

Users can get decisions and explanations explicitly from self- 594

interpretable models whereas the predictions made by black- 595

box modes require explanations of XAI models to make the 596

users requesting for the cyber security tasks satisfied. It is 597

noticeable that this diagram is only a general workflow of 598

XAI applied in cyber security areas, and the details may differ 599

for different tasks specifically. 600

B. CYBER SECURITY DATABASES 601

It is an undeniable fact that currently judicious selection and 602

use of data is a pretty significant presence for cyber security 603

research [92]. On the other hand, the quality and capacity 604

of data influence significantly the decisions of XAI models, 605

including DL-based models and ML-based models as well. 606

Although cyber security data can be gathered straightfor- 607

wardly by the use of numerous methods, like using software 608

tools like Win Dump or Wireshark to capture network pack- 609

ets, these methods are mainly targeted and appropriate for 610

gathering narrow or low volumes of data whereas high acqui- 611

sition time and expenses will be required [93]. Therefore, the 612

utilization of benchmark cyber security datasets can reduce 613

the time spent on data gathering and improve the effective- 614

ness of research. Researchers can train, verify, and evaluate 615

XAI-based cyber security solutions using these benchmark 616

datasets. In this section, we will introduce and describe the 617

most significant datasets employed in cyber security from 618

perspectives of different categories of the most prominent 619

cyber attacks and cyber security implementation in different 620

industrial areas respectively. 621

Table 4 shows the details of the frequently used public 622

accessible datasets in the context of cyber attacks including 623

malware, Botnet, spam, DGA, DoS, CPSs, phishing, and 624

network intrusion. It is noteworthy that there are some over- 625

lappings because some datasets contain several categories of 626

cyber attacks. 627

On the other hand, Table 5 illustrates a comprehen- 628

sive overview of XAI applications for cyber security in 629

distinct industries including smart cities, healthcare, smart 630

agriculture, smart transportation, smart financial system, 631

and Human-Computer Interaction(HCI). These industrial 632

datasets can show the potential of applying XAI for cyber 633

security in these domains. 634
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FIGURE 7. The conceptual framework diagram for XAI applications in cyber security.

V. XAI APPLICATIONS TO CYBER SECURITY635

This section provides a comprehensive overview of XAI636

applications in the areas of cyber security from different637

viewpoints. We categorized these applications into 3 main638

groups: defensive applications of XAI against cyber attacks,639

potentials of XAI applications for cyber security in different640

industries, and cyber adversarial threats targeting XAI appli-641

cations and defense approaches against these attacks. Some642

important existing works under each of these domains will643

be introduced in detail respectively.644

A. XAI APPLICATIONS IN DEFENDING AGAINST CYBER645

ATTACKS646

XAI is playing an increasingly significant role in fighting a647

wide range of cyber attacks, as shown in Figure 8. In this648

subsection, we analyzed the state-of-art XAI-based defense649

systems for different categories of cyber attacks. And the650

conjunctions of these systems with XAI topologies are shown651

in Table 6 as well.652

1) MALWARE653

One of the major cyber security risks on the Internet today654

is malware, and implementing effective defensive measures655

necessitates the quick analysis of an ever-growing volume of656

malware quantities [148]. Existing techniques for malware657

detection can be categorized into two main types: Static658

detection andDynamic detection [149]. Staticmalware detec- 659

tion analyzes the malware binary without actually running the 660

code. Instead, the decompilation tool is utilized to obtain the 661

decompiled codes and the included instructions are inspected. 662

However, this kind of strategy can be easily countered by 663

using evading methods like obscuring and incorporating syn- 664

tax flaws. On the other hand, dynamic malware detection 665

entails executing the malware codes on the testing system and 666

monitoring how it behaves. 667

In practice, using these conventional malware detection 668

techniques and manually analyzing every malware file in 669

an application takes a lot of time and resources. Therefore, 670

many AI-based malware detection systems, especially DL 671

algorithms are utilized to detect malware with higher better 672

performance and fewer resources than traditional malware 673

detecting methods [150]. However, the working functions of 674

neural networks are similar to a black box, and this topology 675

offers no indication of how it operates [151]. Due to similar 676

motivations, many researchers deploy different categories of 677

XAI approaches in different degrees to make the AI-based 678

malware detection systems more explainable and transparent 679

so that a reliable malware detector can continue to perform 680

well when deployed to a new environment. 681

There are multiple ways to explain the malware detec- 682

tor. Identifying the most significant local features can 683

always provide valuable explanations for malware detection 684
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TABLE 4. Some public available datasets in the context of cyber attacks categories.

decisions. Marco et al. [152] implemented a gradient-based685

approach to identify the most influential features contributing686

to each decision. A popular Android malware detector named687

Drebin [153] extracted the information from the Android 688

applications. The explainabilities of Drebin on non-linear 689

algorithms, including Support Vector Machines (SVMs) and 690
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TABLE 5. Some public available datasets in the context of distinct industries.

Random Forests (RFs) are retained by both local explanations691

and global explanations. The top 10 important features, sorted692

by their applicability values are disclosed for 3 different cases693

whereas the AUC remains above 0.96.694

For neural network-based detecting mechanisms, 695

Shamik et al. [154] proposed a framework explaining how 696

a deep neural network generalizes real-world testing set in 697

different layers. The gradients and weights of different layers 698
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FIGURE 8. The overview of some common types of cyber attacks.

of the MalConv architecture [155] and emberMalConv [156]699

are analyzed to identify different parts’ contributions to the700

classification. High gradient values were found in the header701

of the files while there are peaks elsewhere, demonstrating702

that these parts are mostly responsible for classification703

results. Besides, two filters A and B learned two different sets704

of features, the accuracy and F1-Score can achieve 91.2% and705

90.7% respectively when model B was replaced by model A.706

Hamad et al. [157] developed a pre-trained Inception-v3707

CNN-based transfer learned model to analyze malware in708

IoT devices. To better understand the features learned by the709

CNN models, Gradient weighted class activation mapping710

(Grad-CAM) is utilized to generate cumulative heatmaps and711

explain the models visually. Besides, t-distributed stochastic712

neighbor embedding (t-SNE) is used to verify the density of713

the features in the proposed CNN models. Achieved by the714

suggested methods, the detection accuracies were 98.5% and715

96.9% on the available testing dataset with SoftMax classifier716

and RF classifier respectively.717

Anli et al. [158] suggested a technique for extracting718

rules from a deep neural network so that the rules can be719

used to identify mobile malware behaviors. To represent the720

rules discovered between the inputs and outputs of each721

hidden layer in the deep neural network, an input-hidden tree722

and a single hidden-output tree for each hidden layer were723

established. Then the hidden-output tree can tell the most724

important hidden layer which could specify the related input- 725

hidden tree. The experimental results illustrated accuracy, 726

precision, recall, and F-Measure of the proposedmethodwere 727

98.55%, 97.93%, 98.27%, and 98.04% respectively. 728

Giacomo et al. [159] offered a way for assessing DL 729

models for malware classification using image data. It uses 730

data from a Grad-CAM and makes an effort to extend the 731

evaluation of the training phase of the models being studied 732

and provide visual information to security analysts. Besides, 733

this technique extends the use of the Grad-CAM and, in addi- 734

tion to the cumulative heatmap, automates the analysis of the 735

heatmaps, assisting security analysts in debugging the model 736

without having any prior knowledge of the issue/pattern in 737

question. Over a testing dataset of more than 8,000 samples 738

classified into 7 families, the proposed model tested in the 739

experimental study had a test accuracy of 97%. However, the 740

limitation of this approach is the morphed version of the mali- 741

cious sample belonging to the family can evade antimalware 742

detection. 743

TrafficAV, an effective and explainable detection frame- 744

work of mobile malware behavior using network traffic was 745

proposed by Shanshan et al. [160]. This framework provided 746

explainability to users by defining four sets for each feature 747

extracted from the malware HTTP request and every decision 748

would be distributed certain values to each set respectively, 749

showing the contribution of different sets of features to the 750
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TABLE 6. Details of XAI applications in defending mechanisms against different categories of cyber attacks.
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TABLE 6. (Continued.) Details of XAI applications in defending mechanisms against different categories of cyber attacks.

detection results. The detection rates of TCP flow and HTTP751

models reach 98.16% and 99.65% while the false positive752

rates are 5.14% and 1.84%.753

An explainable fast, and accurate approach for detect-754

ing Android malware called PAIRED was illustrated by755

Mohammed et al. in [161]. The proposed detection system756

achieved lightweight by reducing the number of features by a757

factor of 84% and deploying classifiers that are not resource-758

intensive. 35 static features were extracted and explained759

later by SHAPmethods. In the experiment, PAIREDmalware760

detection system was able to retain a very high accuracy761

of 97.98% while processing data in just 0.8206µs by test-762

ing with the CICMalDroid2020 dataset with the extracted763

35 features.764

Martin et al. [162] presented a novel way to find loca-765

tions in an Android app’s opcode sequence that the CNN766

model considered crucial and that might help with malware767

detection. CNN was demonstrated to assign a high prior-768

ity in locations similar to those highlighted by LIME as769

the state-of-the-art for highlighting feature relevance on the770

benchmark Drebin [101] dataset. And satisfying experimen-771

tal results were produced as well, including accuracy = 0.98,772

precision =0.98, recall = 0.98, and F1-Score = 0.97.773

2) SPAM774

Due to the increasing number of Internet users, spam has775

become a major problem for Internet users in recent years776

[163]. According to [164], while over 306.4 billion emails777

were sent and received per day in 2021, spam emails778

accounted for more than 55 percent of all emails sent in779

2021, meaning that unsolicited email messages accounted for780

nearly half of all email traffic.781

Recently, AI-based systems can be regarded as an efficient782

option to tackle the spam issue primarily because of their783

ability to evolve and tune themselves [165]. However, due to784

the privacy and legal specialties of spam, users can ask many785

questions about AI models, especially the black-box ML and786

DL models [166]. For instance, a curious spam recipient can787

have an interest in understanding the utilized AI models and788

ask the following questions:789

1) Why is Message classified as spam by Model?790

2) What distinguishes spam from no spam?791

3) How does Model distinguish spam from no spam?792

4) How does Model work distinguishing an alternative793

spam filter Model′ used in the past?794

5) How does Model work?795

These proposed questions can be answered by the implemen-796

tation of XAI algorithms and XAI algorithms can be used797

to complement ML models with desired properties, such as 798

explainability and transparency [167]. And many works of 799

literature have studied this area to enhance the trust of the 800

AI-based spam filters. 801

Julio et al. [168] conducted a highly exploratory inves- 802

tigation on fake spam news detection with ML algorithms 803

from a large and diverse set of features. SHAP method was 804

deployed to explain why some are classified as fake news 805

whereas others are not by representative models of each 806

cluster. Novel features related to the source domain of the 807

fake news are proposed and demonstrated five times more 808

frequencies appeared in the detection models than in other 809

features. Besides, only 2.2 percent of the models have a 810

detection performance higher than 0.85 in terms of AUC, 811

which highlights how difficult it is to identify bogus news. 812

The legally required trade-off between accuracy and 813

explainability was discussed and demonstrated in the context 814

of spam classification by Philipp et al. in [169] as well. 815

A dataset of 5574 SMS messages [170] was used to support 816

the argument that it is equally important to select the appropri- 817

ate model for the task at hand in addition to concentrating on 818

making complex models understandable. In this work, under 819

circumstances, that which just a small quantity of annotated 820

training data is available, very simple models, such as Naive 821

Bayes, can outperform more complicated models, such as 822

Random Forests. 823

HateXplain, a benchmark dataset for hate speech spam 824

that considers bias and explainability from many angles 825

was introduced by Binny et al. in [171]. Several models 826

including CNN-GRU [172], BiRNN [173], and BiRNN- 827

Attention [174] were used and tested on this dataset 828

whereas explainability-based metrics such as Intersection- 829

Over-Union (IOU), comprehensiveness, and sufficiency were 830

utilized to evaluate the model interpretability. Experimental 831

results showed that models that succeed at classification may 832

not always be able to explain their conclusions in a way 833

that is believable and accurate. The limitations behind this 834

benchmark dataset are that external contexts that would be 835

relevant to the classification task, such as the profile bio, user 836

gender, and post historywere not considered and the proposed 837

dataset contained English language only. 838

3) BOTNET 839

A botnet attack is known as a group of connected computers 840

working together to carry out harmful and repetitive actions 841

to corrupt and disrupt the resources of a victim, such as 842

crashing websites [175]. As shown in Figure 9, a typical bot- 843

net’s lifecycle contains 5 phases, including Initial Injection, 844
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FIGURE 9. The typical lifecycle of a botnet.

Secondary Injection, Connection, Malicious Activities, and845

Maintenance and Updating.846

The market for global botnet detection is anticipated to847

expand from US$207.4 million in 2020 to US$965.6 mil-848

lion in 2027, at a compound annual growth rate (CAGR) of849

24.0 percent from 2021 to 2027, according to [176]. And850

Imperva Research Labs [177] also found that botnets consti-851

tuted 57%of all attacks against e-commercewebsites in 2021.852

These statistics indicate that developing AI-based systems for853

detecting botnets is necessary. Besides, XAI can contribute854

to the botnet detecting systems’ trust and prevent automation855

bias when users have too much trust in the systems’ output.856

In [178], Hatma et al. proposed a novel model for botnet857

DGA detection. Five ML algorithms were utilized and tested858

with datasets of 55 botnet families. Random Forest achieved859

the best accuracy of 96.3% and outperformed previous works860

as well. Open-source intelligence (OSINT) and Xai tech-861

niques including SHAP and LIME were combined in this862

work to provide an antidote for skepticism toward themodel’s863

output and enhance the system trust. Besides, the limitations864

of the proposed frameworks were the temporal complexity865

involved in calculating the characteristics and themodel’s low866

resistance to Mask botnet assaults.867

Shohei et al. [179] presented a novel two-step clustering868

approach based on DBSCAN to cluster botnets and classify869

their categories. Important features were represented and870

explained by combining subspace clustering and frequent871

pattern mining from 2 different real-world flow datasets:872

MAWI [180] and ISP. 60 bot groups from 61,167 IP addresses873

were categorized from the MAWI dataset whereas 295 bot874

groups from 408,118 IP addresses from the ISP dataset. And875

the cluster results of botnets were self-explained by using a876

dendrogram.877

Visualization tools are also used to give better explana-878

tions about the reasons for labeling an account as botnet or879

legitimate. Michele et al. [181] suggested ReTweet-Tweet880

(RTT), a small but informative scatterplot representation to881

make it simpler to explore a user’s retweeting activities.882

While the proposed botnet detection method Retweet-Buster883

(RTbust) based on Variational autoencoders (VAEs) and long884

short-term memory (LSTM) network unsupervised feature 885

extraction approaches were utilized in a black-box nature, the 886

visualization tool RTT can still be employed economically 887

after RTbust has been applied to comprehend the traits of 888

those accounts that have been classified as bots. 889

Some researchers suggested the necessity to reduce the 890

number of the required features for botnet classification to 891

overcome the scalability and computation resource problems 892

and provide more reliable explanations in botnet detection 893

systems. In [182], Hayretdin et al. utilized Principal Compo- 894

nent Analysis (PCA) for feature dimension reduction Deci- 895

sion Tree classifier preserved the original features and clearly 896

illustrated how the classifier determined the labels. Therefore, 897

An analyst for cyber security can quickly comprehend an 898

attack or typical behavior and utilize this understanding to 899

further interpret a security event or incident. 900

With the rise of DL (DL), several pilot studies have been 901

created to understand the behavior of botnet traffic. However, 902

It is difficult for users to understand and put their trust in the 903

outcomes of present DL models because of neural networks’ 904

poor decision-making and lack of transparency compared to 905

other approaches. To address this issue, Partha et al. [183] 906

carried out in-depth tests using both synthetic and actual 907

network traffic produced by the IXIA BreakingPoint System 908

and the results showed that the proposed DCNN botnet detec- 909

tion models outperformed the existing ML models with an 910

improvement of up to 15% for all performance metrics while 911

SHAP was deployed to provide a clear explanation of the 912

model decision and gain the trust of the end users. 913

BotStop, a packet-based and ML-based botnet detection 914

solution aimed at testing the incoming and outgoing network 915

traffic in an IoT device to stop botnet infections, was intro- 916

duced by Mohammed in [184]. The suggested method addi- 917

tionally emphasized feature selection to utilize only seven 918

features to train an extremely accurate ML classifier. The 919

trained classifier surpassed all methods from similar work 920

with an accuracy of 0.9976, an F1-Score of 0.9968, and a 921

testing duration of 0.2250 µs. Besides, very low FN and FP 922

rates of 0.21 percent and 0.31 percent were attained using 923

the suggested approach as well. SHAP explanation is used to 924

explain the proposed model to make the classifier prediction 925

process transparent. 926

4) FRAUD 927

According to [185], during the tightest periods of the lock- 928

down during the Covid-19 epidemic, there were observed 929

rises in personal account hacking and online financial fraud. 930

In the UK, fraud costs businesses and individuals £130 billion 931

per year, while it costs the worldwide economy $3.89 trillion 932

[186]. Therefore, to deal with this issue, numerous financial 933

services, have the potential to benefit from the use of AI 934

systems to defend against fraud attacks. However, there are 935

still practical challenges with the complete implementation 936

of AI methods, and some focus on comprehending and being 937

able to explain the judgments and predictions produced by 938

complicated models by XAI [187]. 939
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Ismini et al. [187] investigated explanations for fraud940

detection by both supervised and unsupervised models using941

two of the most used techniques, LIME and SHAP. The open942

source IEEE-CIS Fraud Detection dataset [188] was tested on943

8 popular supervised and unsupervised AI models including944

Naive Bayes, Logistic Regression, Decision Tree, Random945

Forest, Gradient Boosting, Neural Network, Autoencoder,946

and Isolation Forest whereas LIME and SHAP provided947

explanations for the detection results of each model respec-948

tively. It was noticed that while SHAP gives more reliable949

explanations, LIME is faster. Therefore, this paper suggested950

that combining the two approaches may be advantageous,951

with SHAP being used to facilitate regulatory compliance and952

LIME being used to offer real-time explanations for fraud953

prevention and model accuracy analysis.954

David et al. [189] investigated how existing XAI algo-955

rithms may be used to explain specific predictions for pre-956

scriptive solutions and derive more information about the957

causes of cyber-fraud in the iGaming industry.ML algorithms958

including RF, LGB, DT, and LR were utilized to analyze a959

dataset with a sample size of 197,733. Besides, this study960

also proved the existence of data drift and suggested monthly961

retraining for the model to remain consistently updated.962

Furthermore, to identify the features that contributed most963

significantly to that particular case and to quantify that same964

contribution, this study employed locally faithful explana-965

tions. These explanations take the form of mathematical966

inequalities that reflect feature conditions, and each condition967

is assigned a relative strength. One of the research’s limi-968

tations would be the manually labeled dataset, which could969

have added bias and human error to our analysis.970

XFraud, an explainable fraud transaction prediction frame-971

work composed of a detector and an explainer, was pre-972

sented by Susie et al. in [190]. A heterogeneous GNN model973

for transaction fraud detection was proposed and tested on974

industrial-scale datasets. Heterogeneity in transaction graphs975

was captured whereas the presented methodology outper-976

formed previousmodels HGT [191] andGEM [192]. Besides,977

the weights learned by the GNNExplainer and the edge978

weights calculated using centrality measures were compared979

and traded off to compute a hybrid explainer in XFraud.980

The computed hybrid XFraud explainer calculated the con-981

tributions of its surrounding node types and edges and also982

paid attention to global topological aspects discovered by983

centrality metrics.984

XAI methods can also be utilized to improve the985

performance of the fraud detection models. In [193],986

Khushnaseeb et al. proposed SHAP_Model based on the987

autoencoder for network fraud detection using SHAP val-988

ues, implemented in a subset of the CICIDS2017 dataset989

and achieved overall accuracy and AUC of 94% and 96.9%990

respectively. The top 30 features with the highest SHAP991

values, playing a more significant role in causing abnormal992

behavior in fraud detection than any other features, were993

employed to build the SHAP_Model. Experimental results994

demonstrated that the SHAP_Model outperformed the model995

based on all features and the model based on 39features 996

extracted by unsupervised learning. 997

Yongchun et al. [194] proposed a Hierarchical Explainable 998

Network (HEN) to represent user behavior patterns, which 999

could help with fraud detection while also making the infer- 1000

ence process more understandable. Furthermore, a transfer 1001

frameworkwas suggested for knowledge transfer from source 1002

domains with sufficient and mature data to the target domain 1003

to address the issue of cross-domain fraud detection. 1004

A novel fraud detection algorithm called FraudMemory 1005

was proposed in [195] by Kunlin et al. This methodology 1006

used memory networks to enhance both performance and 1007

interpretability while using a novel sequential model to cap- 1008

ture the sequential patterns of each transaction. Besides, 1009

memory components were incorporated in FraudMemory to 1010

possess high adaptability to the existence of the concept drift. 1011

The precision and AUC of the FraudMemory model were 1012

0.968 and 0.969 respectively and performed better than any 1013

other methods for comparison including SVM, DNN, RF, and 1014

GRU. 1015

Based on a real-world dataset and a simulated dataset, 1016

Zhiwen and Jianbin [196] proposed an explainable classifi- 1017

cation approach within the multiple instance learning (MIL) 1018

framework that deployed the AP clustering method in the 1019

self-training LSTM model to obtain a precise explanation. 1020

The experimental results indicated that the presentedmethod- 1021

ology surpassed the other 3 benchmark classifiers including 1022

AP, SVM, and RF in both 2 datasets. Only a few classification 1023

methods that can produce a straightforward casual explana- 1024

tion is the one used in this study. 1025

Wei et al. [197] proposed a DL-based behavior representa- 1026

tion framework for clustering to detect fraud in financial ser- 1027

vices, called FinDeepBehaviorCluster. Time attention-based 1028

Bi-LSTM was used to learn the embedding of behavior 1029

sequence data whereas handcrafted features were deployed 1030

to provide explanations. Then a GPU-optimized HDBSCAN 1031

algorithm called pHDBSCAN is used for clustering transac- 1032

tions with similar behaviors. The proposed pHDBSCAN has 1033

demonstrated comparable performance to the original HBD- 1034

SCAN in experiments on two real-world transaction data sets 1035

but with hundreds of times greater computation efficiency. 1036

5) PHISHING 1037

Phishing refers to fake email messages that look to be sent by 1038

a well-known company. The intention is to either download 1039

malicious software onto the victim’s computer or steal sen- 1040

sitive data from it, including credit card numbers and login 1041

credentials. Phishing is a form of online fraud that is gaining 1042

popularity [198]. 1043

Yidong et al. [199] proposed a multi-modal hierarchi- 1044

cal attention model (MMHAM) that, for phishing website 1045

detection, jointly learned the deep fraud cues from the three 1046

main modalities of website content including URLs, text, and 1047

image. Extracted features from different contents would be 1048

aligned representations in the attention layer. This method- 1049

ology is self-explained because content distributed with the 1050
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most attention would be regarded as the most important con-1051

tent contributing to the final decision.1052

Paulo et al. [200] utilized LIME and EBM explana-1053

tion techniques based on malicious URLs for a phishing1054

experiment on a publicly available dataset Ebbu2017 [201].1055

EBM, Random Forest, and SVM classifiers rated accuracy1056

of 0.9646, 0.9732, and 0.9469 respectively on the tested1057

database. The empirical evidence supported that the models1058

could accurately categorize URLs as phishing or legitimate,1059

and they also added explainability to these ML models,1060

improving the final classification outcome.1061

Visual explanations of the phishing detection system1062

attracted attention in the work of Yun et al. [202] as well.1063

The proposed phishing website detection method Phishpedia1064

solved the challenging issues of logo detection and brand1065

recognition in phishingwebsite detection. Both high accuracy1066

and little runtime overhead are attained via Phishpedia. And1067

most crucially, unlike conventional methods such as EMD,1068

PhishZoo, and LogoSENSE, Phishpedia does not demand1069

training on any specific phishing samples. Moreover, Phish-1070

pedia was implemented with the CertStream service, and in1071

just 30 days, we found 1,704 new genuine phishing websites,1072

far more than other solutions. In addition, 1,133 of these were1073

not flagged by any engines in VirusTotal.1074

Rohit et al. [203] proposed an anti-phishing method that1075

utilizes persuasion cues and investigated the effectiveness of1076

persuasion cues. Three ML models were developed with per-1077

tinent gain persuasion cues, loss persuasion cues, and com-1078

bined gain and loss persuasion cues, respectively, to respond1079

to the research questions. We then compare the results with1080

a baseline model that does not take the persuasion cues1081

into account. The findings demonstrate that the three phish-1082

ing detection models incorporating pertinent persuasion cues1083

considerably outperform the baseline model in terms of1084

F1-score by a range of 5% to 20%, making them effective1085

tools for phishing email detection. In addition, the use of the1086

theoretical perspective can aid in the creation of models that1087

are comprehensible and can understand black-box models.1088

6) NETWORK INTRUSION1089

An unauthorized infiltration into a computer in your company1090

or an address in your designated domain is referred to as1091

a network intrusion. On the other hand, Network Intrusion1092

Detection Systems (NIDSs) are defined as monitoring net-1093

work or local system activity for indications of unusual or1094

malicious behavior that violates security or accepted prac-1095

tices [36]. Recently, many works have adopted ML and DL1096

algorithms for building efficient NIDSs. In addition, cyber1097

security experts also consider introducing explainability to1098

the black-box AI systems to make the NISDs more robust1099

and many have tried with XAI [204].1100

Pieter et al. [204] proposed a two-staged pipeline for robust1101

network intrusion detection, which deployed XGBoost in1102

the first phase and Autoencoder in the second phase. SHAP1103

method was implemented to explain to the first stage model1104

whereas the explanation results were utilized in the second1105

stage to train the autoencoder. Experiments in the public 1106

corpus NSL-KDD [105] showed that the proposed pipeline 1107

can outperformmany state-of-the-art efforts in terms of accu- 1108

racy, recall, and precision with 93.28%, 97.81%, and 91.05% 1109

respectively on the NSL-KDD dataset while adding an extra 1110

layer of explainability. 1111

ROULETTE, an explainable network intrusion detection 1112

system for neural attention multi-output classification of 1113

network traffic data was introduced by Giuseppina et al. 1114

in [205]. Experimentations were performed on two bench- 1115

mark datasets, NSL-KDD [105] and UNSW-NB15 [113] to 1116

demonstrate the effectiveness of the proposed neural model 1117

with attention. The additional attention layer enables users 1118

to observe specific network traffic characteristics that are 1119

most useful for identifying particular intrusion categories. 1120

Two heatmaps depicting the ranked average feature relevance 1121

of the flow characteristics in the attention layer of the above 1122

2 datasets were provided to show the explanation. 1123

Zakaria et al. [206] designed a novel DL and XAI-based 1124

system for intrusion detection in IoT networks. Three differ- 1125

ent explanation methods including LIME, SHAP, and RuleFit 1126

were deployed to provide local and global explanations for 1127

the single output of the DNN model and the most signifi- 1128

cant features conducted to the intrusion detection decision 1129

respectively. Experiments were operated on NSL-KDD [105] 1130

and UNSW-NB15 [113] datasets and the performance results 1131

indicated the proposed framework’s effectiveness in strength- 1132

ening the IoT IDS’s interpretability against well-known IoT 1133

assaults and assisting cybersecurity professionals in better 1134

comprehending IDS judgments. 1135

Yiwen et al. [207] presented an intrusion detection system 1136

aimed at detecting malicious traffic intrusion in networks 1137

such as flood attacks and Ddos attacks. This method was 1138

XAI-based and deployed both neural networks and tree mod- 1139

els. It is noticeable that this approach decreased the number 1140

of convolution layers in the neural work to enhance the 1141

model’s explainability whereas the accuracy performance of 1142

the model was not sacrificed. XGBoost was implemented to 1143

process the prediction outputs of the neural network and the 1144

processed results would be fed to LIME and SHAP for further 1145

explanations. 1146

A novel intrusion detection system known as BiLSTM- 1147

XAI was presented By Sivamohan et al. in [208]. Krill herd 1148

optimization (KHO) algorithm was implemented to gener- 1149

ate the most significant features of two network intrusion 1150

datasets, NSL-KDD [105] and Honeypot [209], to reduce the 1151

complexities of BiLSTM model and thus enhance the detec- 1152

tion accuracy and explainability. The obtained detection rate 1153

of Honeypot is 97.2% and the NSL-KDD dataset is 95.8% 1154

which was superior and LIME and SHAP were deployed to 1155

explain the detection decisions. 1156

Hong et al. [210] suggested a network intrusion detec- 1157

tion framework called FAIXID making use of XAI and 1158

data cleaning techniques to enhance the explainability and 1159

understandability of intrusion detection alerts. The proposed 1160

framework will help cyber analysts make better decisions 1161
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because false positives will be quickly eliminated. Five func-1162

tional modules were identified in FAIXID framework: the1163

pre-modeling explainability model, the modeling module, the1164

post-modeling explainability module, the attribution mod-1165

ule, and the evaluation module. XAI algorithms including1166

Exploratory Data Analysis (EDA), Boolean Rule Column1167

Generation(BRCG), and Contrastive Explanations Method1168

(CEM) were deployed in the pre-modeling explainability1169

model, the modeling module, and the post-modeling explain-1170

ability module respectively to provide cybersecurity ana-1171

lysts comprehensive and high-quality explanations about the1172

detection decisions made by the framework. On the other1173

hand, collecting analysts’ feedback through the evaluation1174

module to enhance the explanation models by data cleaning1175

also proved effective in this work as well.1176

Shraddha et al. [211] proposed a systemwhere the relations1177

between features and system outcome, instance-wise expla-1178

nations, and local and global explanations aid to get relevant1179

features in decision making were identified to help users to1180

comprehend the patterns that the model has learned by look-1181

ing at the generated explanations. If the learned patterns are1182

incorrect, they can alter the dataset or choose a different set of1183

features to ensure that the model learns the correct patterns.1184

XAI methods including SHAP, LIME, Contrastive Expla-1185

nations Method (CEM), ProtoDash, and Boolean Decision1186

Rules via Column Generation (BRCG) were implemented at1187

different stages of the framework so that the neural network1188

not being a black box. The experiment was performed on the1189

dataset NSL-KDD [105] and the proposed framework was1190

applied to generate explanations from different perspectives.1191

The Decision Tree algorithm was utilized by Basim et al.1192

in [212] to enhance trust management and was compared1193

with other ML algorithms such as SVM. By applying the1194

Decision Tree model for the network intrusion of benchmark1195

dataset NSL-KDD [105], three taskswere performed: ranking1196

the features, decision tree rule extraction, and comparison1197

with the state-of-the-art algorithms. The ranking of network1198

featureswas listed and it is noticeable that not all features con-1199

tributed to the decision of intrusion. Besides, the advantages1200

of the Decision Tree algorithm compared with other popular1201

classifiers, being computationally cheaper and easy to explain1202

were also demonstrated in this work.1203

Syed et al. [213] suggested an Intrusion Detection Sys-1204

tem that used the global explanations created by the SHAP1205

and Random Forest joint framework to detect all forms of1206

malicious intrusion in network traffic. The suggested frame-1207

work was composed of 2 stages of Random Forest clas-1208

sifiers and one SHAP stage. SHAP provided explanations1209

for the outcome of the initial Random Forest classifier and1210

one decision of the first Random Forest classifier with low1211

credibility would be reassessed by the secondary classifier.1212

This three-stage based architecture can increase user trust1213

while filtering out all cloaked dangerous network data by1214

introducing transparency to the decision-making process.1215

CSE-CIC IDS 2018 [214] dataset was utilized to evaluate the1216

performance of the proposed framework and the presented1217

architecture produced accuracy rates of 98.5 percent and 1218

100 percent, respectively on the test dataset and adversarial 1219

samples. 1220

Tahmina et al. [215] proposed an XAI-based ML sys- 1221

tem to detect malicious DoH traffic within DNS over 1222

HTTPS protocol. publicly available CIRA-CIC-DoHBrw- 1223

2020 dataset [216] was utilized in the testing of the proposed 1224

Balanced and Stacked Random Forest framework and other 1225

ML algorithms including Gradient Boosting and Generic 1226

Random Forest. The suggested approach in this work got 1227

slightly greater precision (99.91 percent), recall (99.92 per- 1228

cent), and F1 score (99.91 percent) over other methods 1229

for comparison. Additionally, feature contributions to the 1230

detection results were also highlighted with the help of the 1231

SHAP algorithm. The limitation of this framework would be 1232

the inconsideration of DGA-related DoH traffic from other 1233

HTTPS traffic. 1234

7) DOMAIN GENERATION ALGORITHMS (DGA) 1235

DGAs are a type of virus that is frequently used to generate 1236

a huge number of domain names that can be utilized for 1237

evasive communication with Command and Control (C2) 1238

servers. It is challenging to prohibit harmful domains using 1239

common approaches like blacklisting or sink-holing due to 1240

the abundance of unique domain names. A DGA’s dynamics 1241

widely used a seeded function. Deterring a DGA strategy 1242

presents a hurdle because an administrator would need to 1243

recognize the virus, the DGA, and the seed value to filter 1244

out earlier dangerous networks and subsequent servers in 1245

the sequence. The DGA makes it more challenging to stop 1246

unwanted communications because a skilled threat actor can 1247

sporadically switch the server or location from which the 1248

malware automatically calls back to the C2 [217]. Therefore, 1249

blacklisting and other conventional malware management 1250

techniques fall short in combating DGA attacks and many 1251

ML classifiers have been suggested. These classifiers allow 1252

for the identification of the DGA responsible for the creation 1253

of a given domain name and consequently start targeted 1254

remedial actions. However, it’s challenging to assess the inner 1255

logic due to the black box aspect and the consequent lack of 1256

confidence makes it impossible to use such models. 1257

Franziska et al. [218] proposed a visual analytics frame- 1258

work that offers clear interpretations of the models created 1259

by DL model creators for the classification of DGAs. The 1260

activations of the model’s nodes were clustered, and decision 1261

trees were utilized to illuminate these clusters. The users can 1262

examine how the model sees the data at different layers in 1263

conjunction with a 2D projection. A drawback of the pro- 1264

posed strategy is that although the decision trees can provide a 1265

possible explanation for the clusters, this does not necessarily 1266

reflect how the model classifies this data, especially when 1267

there are numerous equally valid explanations. 1268

EXPLAIN, a feature-based and contextless DGAs 1269

multiclass classification framework was introduced by 1270

Arthur et al. in [219] and compared with several state- 1271

of-the-art classifiers such as RNN, CNN, SVM, RF, and 1272
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ResNet based on real-world datasets including DGArchive1273

[220] and University Network [221]. After the ResNet-1274

based techniques, the best model, EXPLAIN-OvRUnion,1275

used 76 features and achieves the best F1-score. Moreover,1276

Only 28 features were used by EXPLAIN-OvRRFE-PI and1277

EXPLAIN-RFRFE-PI, which outperformed all feature-based1278

strategies put out in previous work by a significant margin.1279

Additionally, they outperformed the DL-based algorithms1280

M-Endgame, M-Endgame.MI, and M-NYU in terms of1281

F1-scores as well.1282

To address the issues of DGAs classification including1283

which traffic should be trained in which network and when,1284

and how to measure resilience against adversarial assaults,1285

Arthur et al. [222] proposed two ResNets-based DGAs1286

detection classifiers, one for binary classification and the1287

other for multiclass classification. Experiments on real-world1288

datasets demonstrated that the proposed classifier performed1289

at least comparably to the best state-of-the-art algorithms for1290

the binary classification test with a very low false positive1291

rate, and significantly outperformed the competition in the1292

extraction of complex features. In addition, for the multi-1293

class classification problem, the ResNet-based classifier per-1294

formed better than previous work in attributing AGDs to1295

DGAs for the multiclass classification problem, achieving an1296

improvement of nearly 5 percent in F1-score while requir-1297

ing 30 percent less training time than the next best classi-1298

fier. In the explainability analysis, it was also highlighted1299

that some of the self-learned properties employed by the1300

DL-based systems.1301

8) DENIAL-OF-SERVICE (DOS)1302

The Internet is seriously threatened by denial-of-service1303

(DoS) assaults, and numerous protection measures have been1304

suggested to address the issue. DoS attacks are ongoing1305

attacks in which malicious nodes produce bogus messages1306

to obstruct network traffic or drain the resources of other1307

nodes [223]. As the DoS attacks become increasingly com-1308

plicated in the past years, conventional Intrusion Detection1309

Systems (IDS) are finding it increasingly challenging to iden-1310

tify these newer, more sophisticated DoS attacks because they1311

use more complicated patterns. To identify malicious DoS1312

assaults, numerous ML and DL models have been deployed.1313

Additionally, for the goal of model transparency, XAI meth-1314

ods that investigate how features contribute to or impact an1315

algorithm-based choice can be helpful [224].1316

Boryau et al. [225] introduced CSTITool, a1317

CICFlowMeter-based flow extraction to feature extraction1318

to enhance the performance of the ML DoS attack detection1319

model. CICFlowMeter translated the flow data from packets1320

for the model’s training. The size of the data was significantly1321

reduced during this process, which decreased the need for1322

data storage. Hacker attack data including Network Service1323

Scanning, Endpoint DoS, Brute Force, and Remote Access1324

Software from the dataset CIC-IDS2017 network flow data1325

of malware from the dataset CSTI-10 were utilized to train1326

the XGBoost model. The outcome demonstrated that the1327

performance measurements can be enhanced by using the 1328

additional descriptive flow statistics produced by CSTITool. 1329

For instance, Rig’s Precision and Recall increased by 1.23% 1330

and 1.59% respectively. Moreover, XAI method SHAP was 1331

deployed to further explore the relationship between cyber- 1332

attacks and network flow variables to better understand how 1333

the model produced predictions. 1334

In the context of DoS attack, Rendhir et al. [226] analyzed 1335

the strategic decisions based on the KDD99 dataset [227] 1336

with the XAI method of Testing with ConceptActivation 1337

Vectors (TCAV). The approach investigates the connection 1338

between the strategic choice, autonomous agent’s objective, 1339

and dataset properties. TCAVQ scores are obtained from the 1340

KDD99 dataset for various DoS attacks and regular traf- 1341

fic. The relationship between the goal availability and the 1342

strategies TerminateConnection and AllocateMoreResources 1343

is determined using the TCAVQ scores. In the event of cyber- 1344

attacks, the analysis is performed to support the choice of the 1345

plan or, if necessary, a change in the strategy. 1346

Kasun et al. [228] described the framework for explainable 1347

DNNs-based DoS anomaly detection in process monitoring. 1348

The user was given post-hoc explanations for DNN predic- 1349

tions in the framework that is currently being used. Based on 1350

the DoS attack benchmark dataset NSL-KDD [105], experi- 1351

ments were implemented on several DNN architectures, and 1352

it was found that on the test dataset, DNNs were able to 1353

yield accuracies of 97%. Besides, according to experimental 1354

findings, while classified as DoS, DNNs could also provide a 1355

higher relevance to the number of connections, connection 1356

frequency, and volume of data exchanged. Therefore, this 1357

framework improves human operators’ confidence in the sys- 1358

tem by reducing the opaqueness of the DNN-based anomaly 1359

detector. 1360

B. XAI FOR CYBER SECURITY IN INDUSTRIAL 1361

APPLICATIONS 1362

In this subsection, we aim to present a comprehensive 1363

overview of XAI studies for the cyber security of different 1364

industrial areas, as shown in Figure 9. And the details of these 1365

XAI implementations for cyber security in distinct industries 1366

are shown in Table 7 as well. 1367

1) XAI FOR CYBER SECURITY OF HEALTHCARE 1368

The use of big data, cloud computing, and IoT creates a mod- 1369

ern, intelligent healthcare industry. The use of the Internet of 1370

Things, cutting-edge manufacturing technologies, software, 1371

hardware, robots, sensors, and other sophisticated informa- 1372

tion technologies, improves data connectivity. Information 1373

and communication technology advancements enhance the 1374

quality of healthcare by transforming conventional healthcare 1375

organizations into smart healthcare [229]. With the increas- 1376

ingly significant role of AI in healthcare, there are growing 1377

concerns about the vulnerabilities of the smart healthcare sys- 1378

tem. Smart healthcare is a prime target for cybercrime for two 1379

main reasons: a vast supply of valuable data and its defenses 1380

are porous. Health information theft, ransomware attacks on 1381
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hospitals, and potential attacks on implanted medical equip-1382

ment are all examples of cyber security breaches. Breaches1383

can undermine smart healthcare systems, erode patient trust,1384

and endanger human life [230].1385

XAI comes into the picture as the smart healthcare sys-1386

tem demands transparency and explainability to decrease the1387

increasing vulnerabilities of the smart healthcare system due1388

to the increasingly connected mobile devices, more concern1389

for patients’ monitoring, and more mobile consumer devices.1390

There are many studies currently on implementing the XAI1391

framework to address the issue of privacy and security of the1392

smart healthcare system.1393

Devam et al. [231] introduced a study based on the heart1394

disease dataset and illustrated why explainability techniques1395

should be chosen when utilizing DL systems in the medi-1396

cal field. This study then suggested and described various1397

example-based strategies, such as Anchors, Counterfactuals,1398

Integrated Gradients, Contrastive Explanation Method, and1399

Kernel Shapley, which are crucial for disclosing the nature1400

of the model’s black box and ensuring model accountability.1401

These XAI approaches were compared with two benchmark1402

XAI methods, LIME and SHAP, as well. It was concluded1403

that these discussed XAI approaches all explained how differ-1404

ent features contribute to the outputs of the model. They are1405

intuitive, which helps in the process of understanding what1406

the black boxmodel thinks and explains themodel’s behavior.1407

BrainGNN, an explainable graph neural network (GNN)1408

based framework to analyze functional magnetic reso-1409

nance images (fMRI) and identify neurological biomarkers1410

was proposed by Xiaoxiao et al. [232]. Motivated by the1411

requirements for transparency and explainability in medical1412

image analysis, the proposed BrainGNN framework included1413

ROI-selection pooling layers (R-pool) that highlight promi-1414

nent ROIs (nodes in the graph) so that which ROIs are crucial1415

for prediction could be determined. By doing so, the advan-1416

tage of the BrainGNN framework could be the allowance of1417

users to interpret significant brain regions in multiple ways.1418

The chain of reasoning behind Computer Aided Diagnos-1419

tics (CAD) is attracting attention to build trust in CAD deci-1420

sions from complicated data sources such as electronic health1421

records, magnetic resonance imaging scans, cardiotocogra-1422

phy, etc. To address this issue, Julian et al. [233] presented1423

a new algorithm, Adaptive-Weighted High Importance Path1424

Snippets (Ada-WHIPS) to explain AdaBoost classification1425

with logical and simple rules in the context of CAD-related1426

data sets. The weights in the individual decision nodes1427

of the internal decision trees of the AdaBoost model are1428

redistributed especially by Ada-WHIPS. A single rule that1429

dominated the model’s choice is then discovered using a1430

straightforward heuristic search of the weighted nodes.More-1431

over, according to experiments on nine CAD-related data sets,1432

Ada-WHIPS explanations typically generalize better (mean1433

coverage 15 percent to 68 percent) than the state of the art1434

while being competitive for specificity.1435

A novel human-in-the-loop XAI system, XAI-Content1436

based Image Retrieval (CBIR), was introduced by1437

Deepak et al. in [234] to retrieve video frames fromminimally 1438

invasive surgery (MIS) videos that are comparable to a query 1439

image based on content. MIS video frames were processed 1440

using a self-supervised DL algorithm to extract semantic 1441

features. The search results were then iteratively refined 1442

using an iterative query refinement technique, which utilized 1443

a binary classifier that has been trained online using user 1444

feedback on relevance. The saliency map, which provided 1445

a visual description of why the system deems a retrieved 1446

image to be similar to the query image, was produced using an 1447

XAI technique. The proposed XAI-CBIR system was tested 1448

using the publicly available Cholec80 dataset, which contains 1449

80 films of minimally invasive cholecystectomy procedures. 1450

2) XAI FOR CYBER SECURITY OF SMART CITIES 1451

As increasingly data-driven artificial intelligence services 1452

such as IoT, blockchain, and DL are incorporated into con- 1453

temporary smart cities, smart cities are able to offer intelligent 1454

services for energy, transportation, healthcare, and entertain- 1455

ment to both city locals and visitors by real-time environ- 1456

mental monitoring [235]. However, smart city applications 1457

not only gather a variety of information from people and 1458

their social circles that are sensitive to privacy, but also 1459

control municipal services and have an impact on people’s 1460

life, cyber security, cyber crime, and privacy problems about 1461

smart cities arise. To address this issue, XAI integration 1462

into IoT and AI-enabled smart city applications can help to 1463

address black-box model difficulties and offer transparency 1464

and explainability components for making useful data-driven 1465

decisions for smart city applications. Smart city applications 1466

are usually utilized in high-risk and privacy-sensitive sce- 1467

narios. Therefore, it is crucial to establish an effective XAI 1468

approach to give authorities additional information about the 1469

justification, implications, potential throughput, and an in- 1470

depth explanation of background procedures to aid in final 1471

decision-making [236]. 1472

Roland et al. [237] introduced a tree-based method 1473

Gradient Boosted Regression Trees (GBRT) model in con- 1474

junction with the SHAP-value framework to identify and 1475

analyze major patterns of meteorological determinants of 1476

PM1 species and overall PM1 concentrations. SIRTA [238], 1477

a ground-based atmospheric observatory dataset for cloud 1478

and aerosol was utilized to experiment and the location for 1479

establishing this dataset was in the city of Paris. The findings 1480

of this study show that shallowMLHs, cold temperatures, and 1481

lowwind speeds play distinct roles during peak PM1 events in 1482

winter. Under high-pressure synoptic circulation, northeast- 1483

ern wind input frequently intensifies these conditions. 1484

One of the most demanded bus lines of Madrid was ana- 1485

lyzed by Leticia et al. in [239] tomake the smart city transport 1486

network more efficient by predicting bus passenger demand. 1487

The proposed method created an interpretable model from 1488

the Long Short Term Memory (LSTM) neural network that 1489

enhances the generated XAI model’s linguistic interpretabil- 1490

ity without sacrificing precision using a surrogate model and 1491

the 2-tuple fuzzy linguistic model. The public transportation 1492
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business can save money and energy by using passenger1493

demand forecasting to plan its resources most effectively.1494

This methodology can also be used in the future to forecast1495

passenger demand for other forms of transportation (air, rail-1496

way, marine).1497

Georgios et al. [240] proposed explainable models for1498

early prediction of certification in Massive Open Online1499

Courses (MOOCs) for Smart City Professionals. MOOCs1500

have grown significantly over the past few years due to1501

Covid-19 and tend to become themost common type of online1502

and remote higher education. Several ML classification1503

techniques such as Adaptive Boosting, Gradient Boosting,1504

Extremely Randomized Trees, Random Forest, and Logistic1505

Regression were utilized to build corresponding predictive1506

models using PyCaret. And the XAI method SHAP summary1507

plot was employed to the classifiers including LightGBM,1508

GB, and RF. Furthermore, new classification models based1509

only on the two most important features in each step gained1510

from the SHAP summary plot. And the experimental results1511

showed that the effectiveness of all methods was slightly1512

improved for all metrics.1513

3) XAI FOR CYBER SECURITY OF SMART FARMING1514

Smart farming refers to the use of cutting-edge technology1515

in agriculture, including IoT, robots, drones, sensors, and1516

geolocation systems. Big data, cloud computing, AI, and1517

augmented reality are the engines of smart farming as well.1518

However, the addition of several communicationmodules and1519

AI models leaves the system open to cyber-security risks and1520

threats to the infrastructure for smart farming [241]. And1521

cyber attacks can harm nations’ economies that heavily rely1522

on agriculture. However, due to the black box nature of most1523

AI models, users cannot understand the connections between1524

features. This is crucial when the system is designed to simu-1525

late physical farming events with socioeconomic effects like1526

evaporation [242]. Therefore, many researchers are working1527

on the implementation potentials of XAI applied in smart1528

farming cyber security.1529

Nidhi et al. [242] presented an IoT and XAI-based frame-1530

work to detect plant diseases such as rust and blast in pearl1531

millet. Parametric data from the pearl millet farmland at1532

ICAR, Mysore, India was utilized to train the proposed1533

Custom-Net DLModels, reaching a classification accuracy of1534

98.78% which is similar to state-of-the-art models including1535

Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16,1536

and VGG-19 and superior to them in terms of reducing the1537

training time by 86.67%. Additionally, the Grad-CAM is used1538

to display the features that the Custom-Net extracted to make1539

the framework more transparent and explainable.1540

To thoroughly assess the variables that can potentially1541

explain why agricultural land is used for plantations of wheat,1542

maize, and olive trees, Viana et al. [243] implemented an ML1543

and agnostic-model approach to show global and local expla-1544

nations of the most important variables. ML model Random1545

Forest and XAI approach LIME were deployed for analy-1546

sis and approximately 140 variables related to agricultural1547

socioeconomic, biophysical, and bioclimatic factors were 1548

gathered. By applying the proposed framework, it is found 1549

that the three crop plantations in the research area’s usage 1550

of agricultural land were explained by five major factors: 1551

drainage density, slope, soil type, and the ombrothermic index 1552

anomaly (for humid and dry years). 1553

4) XAI FOR CYBER SECURITY OF SMART FINANCIAL SYSTEM 1554

The financial system has been rapidly altered by AI models, 1555

which offer cost savings and improved operational efficiency 1556

in fields like asset management, investment advice, risk fore- 1557

casting, lending, and customer service [244]. On one hand, 1558

the ease of using AI in these smart financial systems provides 1559

efficiency for all parties involved, but on the other hand, 1560

the risk of cyberattacks on them is growing exponentially. 1561

Attackers have traditionally been motivated primarily by 1562

money, making smart financial systems their top choice of 1563

target. To combat the finance crime targeting smart financial 1564

systems, one of the primary priorities in the smart financial 1565

domain should be the implementation of Xai [245]. The rea- 1566

son behind this issue is that it is essential in these extremely 1567

sensitive areas such as Money Laundering detection and Cor- 1568

porate Mergers and Acquisitions to not only have a highly 1569

accurate and robust model but also to be able to produce 1570

helpful justifications to win a user’s faith in the automated 1571

system. 1572

Swati et al. [246] proposed a belief-rule-based automated 1573

AI decision-support system for loan underwriting (BRB). 1574

This system can take into account human knowledge and can 1575

employ supervised learning to gain knowledge from prior 1576

data. Factual and heuristic rules can both be accommodated 1577

by BRB’s hierarchical structure. The significance of rules 1578

triggered by a data point representing a loan application and 1579

the contribution of attributes in activated rules can both be 1580

used to illustrate the decision-making process in this system. 1581

The textual supplied to rejected applicants as justification 1582

for declining requesters’ loan applications might have been 1583

started by the progression of events from the factual-rule-base 1584

to the heuristic-rule-base. 1585

A novel methodology for producing plausible counterfac- 1586

tual explanations for the Corporate Mergers and Acquisi- 1587

tions (M&A) Deep Transformers system was presented by 1588

Linyi et al. [247]. The proposed transformer-based classi- 1589

fier made use of the regularization advantages of adversar- 1590

ial training to increase model resilience. More significantly, 1591

a masked language model for financial text categorization 1592

that improved upon prior methods tomeasure the significance 1593

of words and guarantee the creation of credible counterfactual 1594

explanations was developed. When compared to state-of- 1595

art methods including SVM, CNN, BiGRU, and HAN, the 1596

results show greater accuracy and explanatory performance. 1597

An interactive, evidence-based method to help customers 1598

understand and believe the output produced by AI-enabled 1599

algorithmswas generated for analyzing customer transactions 1600

in the smart banking area by Ambreen [248]. A digital dash- 1601

board was created to make it easier to engage with algorithm 1602
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results and talk about how the suggested XAI method can1603

greatly boost data scientists’ confidence in their ability to1604

comprehend the output of AI-enabled algorithms. In the pro-1605

posed model, a Probabilistic Neural Network (PNN) was uti-1606

lized to classify the multi-class scenario of bank transaction1607

classification.1608

5) XAI FOR CYBER SECURITY OF HUMAN-COMPUTER1609

INTERACTION (HCI)1610

HCI enables people to comprehend and engage with technol-1611

ogy by establishing an effective channel of communication.1612

And HCI’s primary goal is to create interactions that take1613

users’ wants and abilities into account [249]. In the field of1614

HCI, security and privacy have long been significant research1615

concerns, where Usable Security has arisen as an interdisci-1616

plinary research area. On the other hand, HCI and AI emerge1617

together in such a way that AI imitates human behavior to1618

create intelligent systems, whereas HCI tries to comprehend1619

human behavior to modify the machine to increase user1620

experience, safety, and efficiency. However, from an HCI1621

standpoint, there is no assurance that an AI system’s intended1622

users will be able to comprehend it. And according to the1623

user-centered design (UCD), a design must offer an under-1624

standable AI that cyber-attacks the requirements and skills1625

of the intended users (e.g., knowledge level). Therefore, the1626

final objective of XAI in HCI should be to guarantee that1627

target users can comprehend the outcomes, assisting them in1628

becoming more efficient decision-makers [250].1629

Gaur et al. [251] utilized XAI methods including1630

LIME and SHAP in conjunction with ML algorithms1631

including Logistic Regression(80.87%), Support Vector1632

Machine(85.8%), K-nearest Neighbour(87.24%), Multilayer1633

Perceptron(91.94%), and Decision Tree(100%) to build a1634

robust explainable HCI model for examining the mini-mental1635

state for Alzheimer’s disease. It is worth mentioning that1636

the most significant features contributing to the Alzheimer’s1637

disease examing were different for the LIME-based frame-1638

work and the SHAP-based framework. In contrast to nWBV’s1639

dominance of the LIME features, MMSE makes a significant1640

contribution to Shapely values.1641

To fill the gap few publications on artistic image1642

recommendation systems give an understanding of how1643

users perceive various features of the system, includ-1644

ing domain expertise, relevance, explainability, and trust,1645

Vicente et al. [252] examed several aspects of the user expe-1646

rience with a recommender system of artistic photos from1647

algorithmic and HCI perspectives. Three different recom-1648

mender interfaces and two different Visual Content-based1649

Recommender (VCBR) algorithms were employed in this1650

research.1651

Vera et al. [253] presented a high-level introduction of1652

the XAI algorithm’s technical environment, followed by a1653

selective examination of current HCI works that use human-1654

centered design, evaluation, and provision of conceptual1655

and methodological tools for XAI. Human-centered XAI1656

was highlighted in this research, and the emerged research1657

communities of human-centered XAI were introduced in the 1658

context of HCI. 1659

6) XAI FOR CYBER SECURITY OF SMART TRANSPORTATION 1660

The emergence of cutting-edge technologies including 1661

software-defined networks (SDNs), IIoT, Blockchain, AI, 1662

and vehicular ad hoc networks (VANETs) has increased 1663

operational complexity while smoothly integrating smart 1664

transportation systems [254]. However, it can experience 1665

security problems that leave the transportation systems open 1666

to intrusion. In addition, security concerns in transporta- 1667

tion technology affect the AI model [255]. Major trans- 1668

portation infrastructures such as Wireless Sensor Networks 1669

(WSN), Vehicle-to-everything communication (V2X), VMS, 1670

and Traffic Signal Controllers (TSC) have either already been 1671

targeted or are still susceptible to hacking. To defend against 1672

these cyber attacks and prevent the potential cyber threats on 1673

the smart transportation system, AI-enabled intrusion detec- 1674

tion systems are introduced recently. Although In the past few 1675

years, AI has made significant progress in providing effective 1676

performance in smart transportation systems, the XAI meth- 1677

ods are still required as XAI could make it possible for the 1678

smart transportation system to monitor transportation details 1679

such as drivers’ behaviour, accicent causes, and vechicles’ 1680

conditions. 1681

A ML approach to detect misbehaving vehicles in the 1682

Vehicular Adhoc Networks (VANET) was proposed by 1683

Harsh et al. [256]. In the smart VANET, the performance 1684

of each vehicle depends upon the information from other 1685

autonomous vehicles (AVs). Therefore, the misinformation 1686

from misbehaving vehicles would damage the entire VANET 1687

as a whole and detecting misbehaving would be significant 1688

to build a stable and safe VANET system. Vehicular ref- 1689

erence misbehavior (VeReMi) dataset [257] was utilized in 1690

an ensemble learning using Random Forest algorithm and a 1691

decision tree-based algorithm and accuracy and F1 score of 1692

98.43% and 98.5% were achieved respectively. 1693

Shideh et al. [258] described a transportation energymodel 1694

(TEM) that forecasts home transportation energy use using 1695

XAI technique LIME. Data from Household Travel Survey 1696

(HTS), which is utilized to train the artificial neural network 1697

accurately, has been deployed in TEM and high validation 1698

accuracy (83.4%) was developed. For certain traffic analysis 1699

zones (TAZs), the significance and impact (local explanation) 1700

of HTS inputs (such as household travel, demographics, and 1701

neighborhood data) on transportation energy consumption 1702

are studied. The explainability of the proposed TEM frame- 1703

work can help the home transportation energy distribution in 1704

two ways, including describing the local inference mecha- 1705

nisms on individual (household) predictions and assessing the 1706

model’s level of confidence can be done using a broad grasp 1707

of the model. 1708

Bustos et al. [259] provided an automated scheme for 1709

reducing traffic-related fatalities by utilizing a variety of 1710

Computer Vision techniques (classification, segmentation, 1711

and interpretability techniques). An explainability analysis 1712
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based on image segmentation and class activation mapping1713

on the same images, as well as an adaptation and training1714

of a Residual Convolutional Neural Network to establish a1715

danger index for each specific urban scene, are all steps in1716

this process. This computational approach results in a fine-1717

grained map of risk levels across a city as well as a heuristic1718

for identifying potential measures to increase both pedestrian1719

and automobile safety.1720

C. CYBER THREATS TARGETING XAI AND DEFENSIVE1721

APPROACHES1722

In the above sections, the applications of XAI in different1723

areas to defend against different cyber threats have been1724

discussed. Nevertheless, although XAI could be effective in1725

protecting other areas and models by providing transparency1726

and explainability, XAI models themselves would face cyber1727

threats as well. Both the AI models deployed and the explain-1728

ability part could be vulnerable to cyber attacks. Some cyber1729

attackers even utilize the explainable characteristics to attack1730

the XAI model. Therefore, we deem it necessary to review1731

the cyber threats targeting XAI and corresponding defensive1732

approaches against them in this review.1733

Apart from the different parts that conventional AI models1734

need to protect, including samples, learning models, and the1735

interoperation processes, the explainable part of XAI-based1736

models should be paid attention to as well. The following1737

researches describe some cyber attacks targeting XAI models1738

using different approaches from different perspectives.1739

A novel black box attack was developed by1740

Aditya et al. [260] to examine the consistency, accuracy, and1741

confidence security characteristics of gradient-based XAI1742

algorithms. The proposed black box attack focused on two1743

categories of attack: CI and I attack. While I attack attempts1744

to attack the single explainer without affecting the classifier’s1745

prediction given a natural sample, the CI attack attempts to1746

simultaneously compromise the integrity of the underlying1747

classifier and explainer. It is demonstrated that the effective-1748

ness of the attack on various gradient-based explainers as1749

well as three security-relevant data sets and models through1750

empirical and qualitative evaluation.1751

Thi-Thu-Huong et al. [261] proposed a robust adversarial1752

image patch (AIP) that alters the causes of interpretation1753

model prediction outcomes and leads to incorrect deep neu-1754

ral networks (DNNs) model predictions, such as gradient-1755

weighted class activation mapping. Four tests pertaining to1756

the suggested methodology were carried out on the ILSVRC1757

image dataset. There are two different kinds of pre-trained1758

models (i.e., feature and no feature layer). The Visual Geom-1759

etry Group 19-Batch Normalization (VGG19-BN) and Wide1760

Residual Networks models, in particular, were used to test the1761

suggested strategy (Wide ResNet 101). Two more pre-trained1762

models: Visual Geometry Group 19 (VGG19) and Residual1763

Network (ResNext 101 328d), were also deployed whereas1764

masks and heatmaps from Grad-CAM results were utilized1765

to evaluate the results.1766

Tamp-X, a unique approach that manipulates the 1767

activations of powerful NLP classifiers was suggested by 1768

Hassan et al. [262], causing cutting-edge white-box and 1769

black-box XAI techniques to produce distorted explana- 1770

tions. Two steps were carried out to evaluate state-of-art 1771

XAI methods, including the white-box InteGrad andSmooth- 1772

Grad, and the black-box—LIME and SHAP. The first 1773

step was to randomly mask keywords and observe their 1774

impact on NLP classifiers whereas the second step was 1775

to tamper with the activation functions of the classifiers 1776

and evaluate the outputs. Additionally, three cutting-edge 1777

adversarial assaults were utilized to test the tampered 1778

NLP classifiers and it was found that the adversarial 1779

attackers have a much tougher time fooling the tampered 1780

classifiers. 1781

Slack et al. [263] provided a unique scaffolding method 1782

that, by letting an antagonistic party create any explanation 1783

they want, effectively masks the biases of any given clas- 1784

sifier. Extensive experimental testing using real data from 1785

the criminal justice and credit scoring fields showed that 1786

the proposed fooling method was successful in producing 1787

adversarial classifiers that can trick post-hoc explanation 1788

procedures, including LIME and SHAP, with LIME being 1789

found to be more susceptible than SHAP. In detail, it was 1790

demonstrated how highly biased (racist) classifiers created by 1791

the proposed fooling framework can easily deceive well-liked 1792

explanation techniques like LIME and SHAP into producing 1793

innocent explanations which do not reflect the underlying 1794

biases using extensive evaluation with numerous real-world 1795

datasets (including COMPAS [264]). 1796

Simple, model-agnostic, and intrinsic Gradient-based NLP 1797

explainable approaches are considered faithful compared 1798

with other state-of-art XAI approaches including SHAP and 1799

LIME. However, Junlin et al. [265] show how the gradients- 1800

based explanation methods can be fooled by creating a 1801

FACADE classifier that could be combined with any particu- 1802

lar model having deceptive gradients. Although the gradients 1803

in the final model are dominated by the customized FACADE 1804

model, the predictions are comparable to those of the original 1805

model. They also demonstrated that the proposed method 1806

can manipulate a variety of gradient-based analysis methods: 1807

saliency maps, input reduction, and adversarial perturbations 1808

all misclassify tokens as being very significant and of low 1809

importance. 1810

On the other hand, to defend against these cyber threats 1811

targeting XAI models, researchers also developed several 1812

defensive approaches, divided into three main categories: 1813

modifying the training process and input data, modifying the 1814

model network, and sing auxiliary tools. 1815

Gintare et al. [266] assessed how JPG compression 1816

affects the categorization of adversarial images. Experimen- 1817

tal tests demonstrated that JPG compression could undo 1818

minor adversarial perturbations brought forth by the Fast- 1819

Gradient-Sign technique. JPG compression could not undo 1820

the adversarial perturbation, nevertheless, if the perturba- 1821

tions are more significant. In this situation, neural network 1822

93128 VOLUME 10, 2022



Z. Zhang et al.: XAI Applications in Cyber Security: State-of-the-Art in Research

classifiers’ strong inductive bias cause inaccurate yet confi-1823

dent misclassifications.1824

Ji et al. [267] present DeepCloak, a defense technique.1825

DeepCloak reduces the capacity an attacker may use to gener-1826

ate adversarial samples by finding and eliminating pointless1827

characteristics from a DNN model, increasing the robust-1828

ness against such adversarial attacks. In this work, the mask1829

layer, inserted before processing the DNN model, encoded1830

the discrepancies between the original images and related1831

adversarial samples, as well as between these images and the1832

output features of the preceding network model layer.1833

Pouya et al. [268] Defense-GAN, a novel defense1834

technique leveraging GANs to strengthen the resilience1835

of classification models against adversarial black-box and1836

white-box attacks. The proposed approach was demonstrated1837

to be successful against the majority of frequently thought-1838

of attack tactics without assuming a specific assault model.1839

On two benchmark computer vision datasets, we empirically1840

demonstrate that Defense-GAN consistently offers accept-1841

able defense while other approaches consistently struggled1842

against at least one sort of assault.1843

VI. ANALYSIS AND DISCUSSION1844

A. CHALLENGES OF USING XAI FOR CYBER SECURITY1845

We have reviewed the state-of-art XAI techniques utilized1846

in the defense of different cyber attacks and the protection1847

of distinct industrial cyber security domains. It is noticeable1848

that although XAI could be a powerful tool in the application1849

of different cyber security domains, XAI faces certain chal-1850

lenges in its application of cyber security. And in this section,1851

we will discuss these challenges.1852

1) DATASETS1853

An overview of the famous and commonly used datasets of1854

different cyber attacks and distinct industries was provided1855

in Table 4 and Table 5 respectively. However, there is a1856

severe issue with the most used cyber security datasets, i.e.1857

many datasets are not updated in certain directions. This1858

phenomenon may be caused by privacy and ethical issues.1859

Therefore, the most recent categories of cyber attacks were1860

not included in the public cyber attack datasets, which would1861

lead to inefficiency in the training of the XAI applications1862

in the establishment of cyber attack defensive mechanisms.1863

Although the industrial datasets in areas such as health-1864

care, smart agriculture, and smart transportation includemore1865

recent samples than the datasets for cyber attacks, these1866

datasets should be updated as well because cyber attacks1867

are becoming more sophisticated and diverse these days.1868

Another issue with the currently available datasets is that1869

these datasets usually lack a large volume of data available1870

for the training of XAI methods, which will decrease both the1871

performance and the explainability of the XAI approaches.1872

Another reason behind this situation is that some of the infor-1873

mation related to cyber attacks and cyber industries is redun-1874

dant and unbalanced. Other than that, the heterogeneity of1875

samples collected in these datasets is a challenge for the XAI 1876

models as well. The number of features and categories varies 1877

for each dataset and some datasets are composed of human- 1878

generated cyber attacks rather than exhibiting real-world and 1879

latest attacks. These problems highlight the challenge that the 1880

most recent benchmark datasets with a massive amount of 1881

data for training and testing and a balanced and equal number 1882

of attack categories are still to be identified. 1883

2) EVALUATION 1884

Evaluation measure for XAI systems is another important 1885

factor in the application of XAI approaches for cyber secu- 1886

rity. When evaluating the performance of the established 1887

XAI-based cyber security systems, several conventional eval- 1888

uation metrics including F1-Score, Precision, and ROC could 1889

be utilized to measure the performance of the proposedmech- 1890

anisms. However, when applying XAI methods in the cyber 1891

security domains, measurements to evaluate the accuracy 1892

and completeness of explanations from the XAI systems are 1893

required. In general, the evaluation measurements of XAI 1894

systems should be able to assess the quality, value, and 1895

satisfaction of explanations, the enhancement of the users’ 1896

mental model brought about by model explanations, and the 1897

impact of explanations on the effectiveness of the model as 1898

well as on the users’ confidence and reliance. Unfortunately, 1899

the findings derived from the above reviews of this survey 1900

demonstrate the challenge that: more generic, quantifiable 1901

XAI system evaluation measurements are required to sup- 1902

port the community’s suggested XAI explainability measur- 1903

ing techniques and tools. Popular XAI explanation evalua- 1904

tion measurements can be divided into two main categories: 1905

user satisfaction and computational measurements. However, 1906

user satisfaction-based evaluation approaches are dependent 1907

on user feedback or interview, which may cause privacy 1908

issues for many cyber security problems. On the other hand, 1909

for computational measurements, many researchers utilize 1910

inherently interpretable models [56] (e.g., linear regression 1911

and decision trees) to compare with the generated expla- 1912

nations. Nevertheless, there are no benchmark comparison 1913

models for this evaluation approach, and the users’ under- 1914

standing of the explanation could not be reflected. Besides, 1915

the XAI evaluation systems lack measurements focusing on 1916

some other significant factors of the cyber security domain 1917

including computational resources as well as computational 1918

power. In conclusion, it is necessary to take into account a 1919

set of agreed-upon standard explainability evaluation met- 1920

rics for comparison to make future improvements for XAI 1921

applications in cyber security. 1922

3) CYBER THREATS FACED BY XAI MODELS 1923

As we discussed in Section V, although XAI methods can 1924

provide transparency and explainability to AI-enabled sys- 1925

tems to prevent cyber threats, the current XAI models are 1926

facing many cyber attacks targeting the vulnerabilities of the 1927

explanation approaches, which is extremely dangerous for the 1928

cyber security systems as they always require a high level 1929
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of safety. For instance, many researchers [263], [264] have1930

proved the fact that it is possible to fool some of the most1931

popular XAI explanation methods such as LIME and SHAP,1932

which are also frequently deployed in the XAI application of1933

cyber security areas. It is demonstrated that the explanations1934

generating processes of those state-of-art XAI methods might1935

be counter-intuitive. Other than that, in the practical industrial1936

cyber security domains, such as XAI-enabled face authen-1937

tication systems. Although in Section V, we have discussed1938

several defensivemethods against cyber threats targetingXAI1939

systems, most defensive approaches focus on the protection1940

of the performance of the prediction results of XAI models1941

rather than the explanation results. However, for XAI-based1942

cyber security systems, the explainability of the models is1943

significant to maintain the transparency and efficiency of the1944

entire system and prevent the cyber attacks as well.1945

4) PRIVACY AND ETHICAL ISSUES1946

In addition to the aforementioned technical challenges, pri-1947

vacy and ethical issues are also crucial challenges when1948

implementing XAI in cyber security. During the system life1949

cycle, XAI models must explicitly take privacy concerns into1950

account. It is commonly agreed that respecting every person’s1951

right to privacy is essential, especially in some very sensitive1952

areas of cyber security, for instance, authentication, e-mails,1953

and password. Moreover, XAI systems naturally fall within1954

the general ethical concern of potential discrimination (such1955

as racism, sexism, and ageism) by AI systems. In theory,1956

identical biases may be produced by anyAImodel that is built1957

using previously collected data from humans. It is important1958

to take precautions to ensure that there is no discrimination,1959

bias, or unfairness in the judgments made by the XAI system1960

and the explanations that go along with them. The ethical bias1961

of XAI systems should be eliminated in terms of justification1962

as well as explainability, in particular in specific domains1963

of cyber security applications. For privacy issues, because1964

the data are gathered from security-related sources, the pri-1965

vacy and security-related concerns increase. Therefore, it is1966

essential to guarantee that data and models are protected from1967

adversarial assaults and being tampered with by unauthorized1968

individuals, which means that only authorized individuals1969

should be permitted access to XAI models.1970

B. KEY INSIGHTS LEARNED FROM USING XAI FOR CYBER1971

SECURITY1972

In this section, some key insights learned from using XAI for1973

cyber security will be discussed based on the review in the1974

above sections. The main insights for the XAI implementa-1975

tion in cyber security systems can be itemized as follows:1976

1) User trust and reliance should be satisfied. By offering1977

explanations, an XAI system can increase end users’1978

trust in the XAI-based cyber security system. Users of1979

an XAI system can test their perception of the system’s1980

correctness and reliability. Users become dependent on1981

the system as a result of their trust in the XAI-based1982

cyber security system.1983

2) Model visualization and inspection should be con- 1984

sidered. Cyber security experts could benefit from 1985

XAI system visualization and explainability to inspect 1986

model uncertainty and trustworthiness. Additionally, 1987

identifying and analyzing XAI model and system fail- 1988

ure cases is another crucial component of model visu- 1989

alization and inspection. 1990

3) Model tuning and selection are crucial factors to ensure 1991

the efficiency of the XAI model implemented in cyber 1992

security. Selecting different explanation approaches for 1993

distinct ML or DL algorithms in different cyber secu- 1994

rity tasks would influence the performance and explain- 1995

ability of XAI models significantly. Other than that, the 1996

tuning process of parameters and model structures of 1997

the established XAI model is another crucial consider- 1998

ation as well. 1999

4) The model defense could be highlighted in particular 2000

for cyber security tasks as they are the main targets 2001

for cyber attackers. Especially for XAI-based cyber 2002

security mechanisms, the decision model, security data 2003

as well as the explanation process should be protected 2004

to prevent cyber threats. 2005

5) Privacy awareness is another insight that XAI methods 2006

could provide for the cyber security system. Giving 2007

end users of cyber security systems a way to evalu- 2008

ate their data privacy is a significant objective in the 2009

application of XAI. End-users could learn through XAI 2010

explanations about what user data is used in algorithmic 2011

decision-making. 2012

C. FUTURE RESEARCH DIRECTIONS 2013

1) HIGH-QUALITY DATASETS 2014

The quantity and quality of the available datasets have a 2015

significant impact on how well XAI methods work for the 2016

cyber security system, and the biases and constraints of the 2017

datasets used to train the models have an impact on how 2018

accurate the decisions and explanations are. On the other 2019

hand, as we discussed in the above sections, the existing 2020

available cyber security datasets could not reflect the most 2021

recent cyber attacks due to privacy and ethical issues. Data 2022

from real networks or the Internet typically contain sensi- 2023

tive information, such as personal or business details, and 2024

if made publicly available, they may disclose security flaws 2025

in the network from which they originated. Additionally, the 2026

imbalance of both volumes and features of the datasets would 2027

influence the establishment of the XAI-based cyber security 2028

system negatively as well. Therefore, the construction of 2029

both high-quality and up-to-date datasets available for XAI 2030

applications for cyber security could be a possible future 2031

research direction. 2032

2) TRADE-OFF BETWEEN PERFORMANCE AND 2033

EXPLAINABILITY 2034

It is essential for cyber security experts to maintain the 2035

trade-off between performance and explainability aspects of 2036
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the newly introduced XAI-enabled cyber security systems.2037

It is noticeable that although for some self-explainable XAI2038

approaches, for instance, Decision Tree, the model is quite2039

transparent and users could understand the decision-making2040

process easier, the performance of those approaches could2041

not always be satisfying. On the other hand, the AI algo-2042

rithms that now often perform best (for example, DL) are the2043

least explainable, causing a demand for explainable models2044

that can achieve high performance. Some researchers have2045

exploited this area, including authors of [269] significantly2046

reduce the trade-off between efficiency and performance by2047

introducing XAI for DNN into existing quantization tech-2048

niques. And authors of [270] demonstrated that the wavelet2049

modifications provided could lead to significantly smaller,2050

simplified, more computationally efficient, and more nat-2051

urally interpretable models, while simultaneously keeping2052

performance. However, there is a lack of research focusing2053

on the trade-off of performance and explainability of XAI2054

approaches applied in cyber security.2055

3) USER-CENTERED XAI2056

The human understandability of XAI approaches has become2057

the focus of some recent studies to find new potential for2058

its application in areas of cyber security. As we mentioned2059

in the above sections, user satisfaction with the generated2060

explanation is a significant component of the XAI approaches2061

to explainability evaluation. However, in areas of cyber secu-2062

rity, the questionnaire and feedback of users are limited to2063

some degree due to security concerns. Therefore, how to2064

generate user-centered XAI systems for cyber security end2065

users in terms of user understanding, user satisfaction, and2066

user performance without violating the security issues could2067

be a future research direction.2068

4) MULTIMODAL XAI2069

Multimodal information of text, video, audio, and images2070

in the same context can all be easily understood by people.2071

The benefit of multimodality is its capacity to gather and2072

combine important and comprehensive data from a range of2073

sources, enabling a far richer depiction of the issue at hand.2074

In some cyber security industrial areas, such as healthcare,2075

medical decisions are primarily driven by a variety of influ-2076

encing variables originating from a plurality of underlying2077

signals and information bases, which highlights the need for2078

multimodality at every stage. On the other hand, due to the2079

application of XAI in these areas, multimodal XAI could be2080

developed in near future.2081

5) ADVERSARIAL ATTACKS AND DEFENSES2082

As we discussed in this review, although XAI could be2083

applied in cyber security to prevent cyber attacks, the XAI2084

model performance and explainability could be attacked as2085

well. Other than that, the adversarial inputs to the sample data2086

should be paid attention to as well. Some researchers [263]2087

have already developed powerful tools to fool the state-of-art2088

XAI methods including LIME and SHAP. However, although2089

the cyber threats and corresponding defensive mechanisms 2090

focusing on the performance of AI models have been stud- 2091

ied recently, the adversarial attacks and defenses against the 2092

explainability of XAI models still require further research. 2093

6) PROTECTION OF DATA 2094

In cyber security areas, confidentiality and protection of 2095

data are significant issues as privacy and ethical issues are 2096

highlighted recently. For XAI-based systems, the situation 2097

is even more severe as both the decisions and the expla- 2098

nations related to users should be preserved. As a result, 2099

there is a conflict between using big data for security and 2100

safeguarding it. Data must be guaranteed to be safe from 2101

adversarial assaults and manipulation by unauthorized users 2102

and legitimate users should also be able to access the data. 2103

Therefore, the protection of data and generated explanations 2104

of XAI systems could be a future research direction as well. 2105

VII. CONCLUSION 2106

XAI is a powerful framework to introduce explainability 2107

and transparency to the decisions of conventional AI models 2108

including DL and ML. On the other hand, cyber security is 2109

an area where transparency and explainability are required to 2110

defend against cyber security threats and analyze generated 2111

security decisions. Therefore, in this paper, we presented a 2112

comprehensive survey of state-of-art research regarding XAI 2113

for cyber security applications. We concluded the basic prin- 2114

ciples and taxonomies of state-of-art XAI models with essen- 2115

tial tools, such as a general framework and available datasets. 2116

We also investigated the most advanced XAI-based cyber 2117

security systems from different perspectives of application 2118

scenarios, including XAI applications in defending against 2119

different categories of cyber attacks, XAI for cyber security 2120

in distinct industrial applications, and cyber threats target- 2121

ing XAI models and corresponding defensive approaches. 2122

Some common cyber attacks includingmalware, spam, fraud, 2123

DoS, DGAs, phishing, network intrusion, and botnet were 2124

introduced. The corresponding defensive mechanisms utiliz- 2125

ing XAI against them were presented. The implementation 2126

of XAI in various industrial areas namely in smart health- 2127

care, smart financial systems, smart agriculture, smart cities, 2128

smart transportation, and Human-Computer Interaction were 2129

described exhausively. Distinct approaches of cyber attacks 2130

targeting XAImodels and the related defensive methods were 2131

introduced as well. In continuation to these, we pointed out 2132

and discussed some challenges, key insights and research 2133

directions of XAI applications in cyber security. We hope 2134

that this paper could serve as a reference for researchers, 2135

developers, and security professionals who are interested 2136

in using XAI models to solve challenging issues in cyber 2137

security domains. 2138
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