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ABSTRACT Attackers compromise insecure IoT devices to expand their botnets in order to launch more
influential attacks against their victims. In various studies, machine learning has been used to detect IoT
botnet attacks. In this paper, we focus on the minimization of feature sets for machine learning tasks that are
formulated as six different binary and multiclass classification problems based on the stages of the botnet
life cycle. More specifically, we applied filter and wrapper methods with selected machine learning methods
and derived optimal feature sets for each classification problem. The experimental results show that it is
possible to achieve very high detection rates with a very limited number of features. Some wrapper methods
guarantee an optimal feature set regardless of the problem formulation, but filter methods do not achieve
that in all cases. The feature selection methods prefer channel-based features for detection at post-attack,
communication, and control stages, while host-based features are more influential in identifying attacks

originating from bots.

INDEX TERMS Feature selection, machine learning, Internet of Things, botnet, intrusion detection.

I. INTRODUCTION

10T (Internet of Things) is shaping the way we live our human
lives [1], from tiny toys to home-made applications to smart
cities. IoT is a system of interrelated devices connected to the
Internet to transmit and receive data from one device to other
parts of the system; it can be an edge device, a cloud server,
or another field device. At the same time, the [oT security
issue has become more important as an enormous amount of
data is associated with IoT networks. Due to the exponential
growth of IoT devices [2], hackers and cybercriminals have
more opportunities to exploit network vulnerabilities [3],
resulting in various loT-based botnet attacks [4], [5], [6]. The
botnet, a large set of compromised machines controlled by
attackers, is one of the strongest threats on the Internet to

The associate editor coordinating the review of this manuscript and

approving it for publication was Chin-Feng Lai

94518

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

perpetrate cybercrimes, such as launching DDoS attacks [4],
stealing sensitive data [7] or distributing malicious spam [8].
As a result, botnets act as a source of spreading malicious
activity and usually threaten the availability of networks,
in addition to other significant security consequences. It is
important to develop security countermeasures against botnet
threats.

A typical botnet life cycle has four phases, formation,
command and control (C&C), attack and post-attack [9].
Attackers spread malware that helps them recruit new bots
(that is, members of botnets) during the formation phase.
C&C phase enables them to establish continuous commu-
nication with bots to control them for future actions. In the
attack phase, attackers carry out malicious operations using
bots. The post-attack phase covers activities related to the
spread of IoT malware with the purpose of expanding the
botnet. IoT networks constitute a lucrative target for botnet
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owners, as it is possible for them to recruit large numbers of
IoT devices, which are usually shipped with various security
vulnerabilities.

One of the effective security countermeasures against bot-
nets is to establish security monitoring systems to detect mali-
cious activities. An organization hosting various IoT devices
is interested in the identification of devices that are compro-
mised by IoT bot malware; therefore, its focus is much more
on detection at formation, C&C or post-attack phases. On the
other hand, organizations receiving attacks from IoT bots aim
to prevent malicious traffic launched during the attack and
post-attack phases. Therefore, it is important to develop a
monitoring system that encompasses the entire botnet life
cycle. This endeavor requires a more in-depth understanding
of malicious actions and their characterization in each phase.

The Internet of Things (IoT) has received great atten-
tion in research on network anomalies and intrusion detec-
tion [10]. Malicious network traffic has been detected with
conventional signature-based solutions such as Snort [11] or
Suricata [12]. The drawback of signature-based systems is
the inability to detect unknown or previously unidentified
attacks, in addition to the obstacles that arise from misman-
agement of signatures.

Instead of signature-based solutions, a behavior- or
anomaly-based solution goes beyond identifying individual
attack signatures to detect and analyze malicious behavior
patterns. Machine learning is considered a viable solution
that detects new variants of attacks with the elimination of
the need for signatures. Although the application of statistical
machine learning (ML) techniques has demonstrated highly
accurate classification results in malicious traffic detection
problems [13], feature selection as an important step in the
ML workflow has not been fully addressed. The curse of
dimensionality can be a concern that decreases detection per-
formance due to overfitting when classifiers are trained with a
large number of features [14]. In addition, a high-dimensional
feature space may require more computing resources when
the models are deployed in the operational environment.
In most cases, intrusion detection systems should handle
a large volume of network traffic, so maximizing resource
usage is vital. IoT environments bring additional restrictions,
so that detection sensors, system components that are respon-
sible for the collection of network traffic and performing the
detection function, may run on resource-constrained devices
(e.g., edge devices). Therefore, reducing the size of the
feature set can improve the performance of ML models in
many ways. Additionally, feature selection helps to achieve
a deeper understanding of the underlying approaches that
rendered the data, since fewer features would be more per-
ceivable by experts.

Various academic works [15], [16], [17], [18], [19], [20],
[21] use feature selection techniques to improve the detection
scores of existing ML classifiers. However, these studies
do not explore the impact of feature selection methods on
different binary and multiclass classification formulations
that can be performed for intrusion detection at various
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stages of the botnet life cycle. More specifically, the set
of features that is effective in detecting malicious traffic at
one stage may not be instrumental at another stage. Further-
more, the performance of models that use different feature
selection methods can vary according to the classification
formulation.

The crux of this paper is to find the optimal subset of
features with the help of filter and wrapper feature selection
methods for various classification formulations that can be
applied to IoT botnet attack detection. For this purpose,
we have induced ML classifiers using the methods, extra tree
classifier, random forest, decision tree, and k-nearest neigh-
bor. The optimal feature sets are derived by a 10-fold cross-
validation with classifiers from filter and wrapper methods.

In this research, we applied the feature selection methods to
two datasets, namely N-BaloT [22] and MedBIoT [23], which
include network activities belonging to different steps of the
botnet life cycle in IoT networks. Based on the phases of the
botnet life cycle given in [9], we can deduce that N-BaloT has
instances related to the attack phase, while MedBIoT covers
post-attack and C&C phases.

In addition to a binary classification, such as discriminating
malicious traffic from benign traffic, it is possible to for-
mulate various multiclass classification problems from these
datasets. One of such formulations may focus on the detec-
tion of the malware type that induces the malicious traffic
(e.g., Mirai, Bashlite), which is applicable for both datasets,
whereas the second one may deal with the attack type that
is conducted by the corresponding malware. For the latter
case, N-BaloT provides labels on the types of attacks that
originated from infected devices (e.g., UDP flooding, spam),
and MedBIoT has labels on whether the activity belongs to
the C&C or post-attack phase. Depending on the situation,
security administrators may be interested in different aspects
of detection to make more informed operational decisions.
For example, identifying the type of malware on the infected
device would be necessary to apply the correct malware
removal procedures. On the other hand, identifying the type
of attack rather than the type of malware would be more
essential for organizations that receive botnet attacks, as they
need to develop defensive countermeasures to block or redi-
rect network traffic accordingly. In our study, we investigate
which feature sets are optimal for each binary and multiclass
classification formulation and analyzed whether there exist
variations in the optimal feature set that may impact the
design considerations of intrusion detection in such different
contexts. This contribution is unique because, to our knowl-
edge, there is no study that provides a deeper analysis of
the variations in feature sets that are effective in intrusion
detection at different stages of the botnet life cycle.

The structure of this research work is described below.
In Section II we have mentioned background work and a
review of the literature related to botnet detection and feature
selection. In Section III, the feature selection methods and
experiments are described. Finally, our results are presented
in Section IV. Section V gives a discussion of the main
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findings of this research work. Conclusions are drawn in
Section VI.

Il. BACKGROUND AND LITERATURE REVIEW

A. BOTNET DETECTION

Researchers have introduced traditional machine learning and
data mining methods for botnet detection in recent decades
and made significant advances. BotMiner [24], [25] and
BotSniffer [26] used statistical algorithms to detect malicious
traffic on an IoT network that is part of a botnet.

The Bayesian optimization Gaussian process (BO-
GP) [27] is combined with the decision tree classifier as an
optimized ML-based framework to detect botnet attacks on
IoT devices. The detection rate for binary classification is
improved to 99%.99 when the accuracy, precision, recall, and
fl score metrics are compared to the Decision Tree, SVM,
with this optimized DT-BOGP framework. In this work, the
Bot-IoT-2018 dataset [28] is used.

Convolutional neural networks (CNN) are used to detect
IoT malware. This approach was created for the detec-
tion of Linux IoT botnets based on the PSI graph together
with the CNN classifier [29]. Experiments were carried out
using 4002 labeled IoT botnet datasets provided by the IoT-
POT [30] team. These data sets were collected over one year,
from October 2016 to October 2017. The detection rates,
92% precision and 94% F1 score, are achieved with the CNN
classifier.

Yin et al. proposed the Bot-GAN framework to improve
botnet detection performance [31]. Generative adversarial
networks are used, where the GAN generator creates fake
samples. A 3-layer LSTM network was selected as the gener-
ator and a 4-layer neural network architecture was chosen as
the detector in the Bot-GAN setup. The ISCX dataset [32]
is used for this framework. Of 491,381 training samples,
192,112 (39.10%) are malicious and include seven botnets,
while the test set consists of 348,452 testing samples. This
test set has 169988 (48.78%) malicious samples that possess
16 botnet types. The detector achieves 68.51% as an F1
score without having fake samples. The detector attains a
maximum 70.59% of F1 score when the training set has
500 fake samples.

A hybrid deep learning scheme [33] is used to detect
the botnet in the IoT network. A long-short-term memory
autoencoder (LAE) is implemented to reduce the dimension-
ality of network traffic features. Then, the long-term inter-
related network traffic behavior is analyzed with the help of
bidirectional long-short-term memory (BLSTM) to achieve
generalization ability. In this work, binary multiclassification
problems are addressed in the BoT-IoT dataset [28] for the
classification of network traffic. In general, 6 features were
derived from 37 features of the dataset [28] with the help of
the LAE and BLSTM classifier that achieved 100% precision,
93.17% MCC (Matthews correlation coefficient).

Alauthman et al. [34] have proposed a traffic reduc-
tion mechanism that integrates the reinforcement learning
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technique in three datasets. The first dataset is information
security and objects technology (ISOT) that contains Storm
Bot, Waledac Bot, and normal traffic. The second data set
comprises four legitimate P2P applications (Vuze, uTorrent,
Frostwire and eMule) and three P2P botnets (Zeus, Storm and
Waledac) [35], and the third is the ISCX data set [32], which
contains benign traffic. The authors have used real-world net-
work traffic to evaluate their proposed approach and achieved
a detection rate of 98.3% and a false positive rate of 0.012%.

Singh et al. [36] have developed a quasi-real-time intru-
sion detection system using open-source tools such as
Hadoop, Hive, and Mahout to provide scalability for the
identification of Peer-to-Peer botnet attacks. For this, the
authors have built the packet capture module to process high
data bandwidth in a quasi-real-time (within 5-30 s delay) and
developed a distributed dynamic feature extraction frame-
work to illustrate network traffic statistics of packet captures.
The parallel processing power of Mahout (that is, a machine
learning library built on top of Hadoop) was used to build the
Random Forest model that achieved a detection performance
of 99% precision and recall.

B. FEATURE SELECTION

Feature selection aims to find the best subsets of features from
input data to achieve better prediction results by eliminating
unnecessary features [37]. The feature selection methods
were classified mainly into three categories, such as filter,
wrapper, and embedded [14]. Filter methods utilize statistical
methods to rank features according to their discriminatory
power. They are usually applied in an initial step before induc-
ing the models. However, wrapper methods use a machine
learning model to evaluate the merits of a given set of features
in terms of model performance to identify the optimal set.
Embedded methods blend the advantageous factors of both
the filter and wrapper methods so that they perform feature
selection and training of the ML algorithm in parallel. This
feature selection method is an integral part of the classifica-
tion or regression model.

Many feature selection approaches have been applied to
evaluate the importance of features related to the context
of botnet detection. Entropy, impurity, RelieF and principal
component analysis (PCA) [38] were used with the neural
network classification algorithm. 99.20% detection rate was
achieved with the top 10 features based on the entropy of
a total of 29 features in two botnet datasets, ISOT [39] and
ISCX [32].

Velasco-Mata et al. [40] has tested the feature sets 5, 6,
7 with two filter methods, Information Gain and Gini Impor-
tance, over Decision Tree, Random Forest, k-NN for bot-
net detection for multiclass classification. Finally, the set
of five features produced an 85% detection rate with a
decision tree classifier induced for the QB-CTU13 [41] and
EQB-CTU13 [41] datasets.

Guerra-Manzanares et al. [19] proposed a hybrid approach
by combining filter and wrapper methods with random for-
est and k-NN classifiers. Eighteen features are selected by
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FIGURE 1. We used the filter and wrapper method feature selection approaches over the N-BaloT [22] and MedBIoT [23] datasets to find the optimal
feature subset.we evaluated all the feature subsets with four classifiers - DT, ET, RF and k-NN.

Pearson’s correlation, and the top 20 features are selected
with Fisher score. This study used the botnet dataset,
N-BaloT [22], which has 115 statistical features extracted
from network traffic in an IoT network. The feature sets
obtained from the filter methods are processed by wrapper
methods, Sequential Forward Selection and Sequential Back-
ward Elimination. Finally, a five-element set of features is
used for the detection of IoT botnets formulated as a binary
classification problem.

Correlation-based feature selection, consistency-based
subset evaluation and principal component analysis [42] are
used to select features that are then evaluated with decision
trees, the Naive Bayes classifier, and the Bayesian Network
classifier to detect botnet traffic based on peer-to-peer (P2P).
With these selection methods, 5, 8, and 12 features were iden-
tified, respectively. 99% accuracy achieved with the decision
tree based on the ISOT dataset [39].

Pektag and Acarman [43] used linear models penalized
with the L1 norm (also called Lasso), recursive feature elim-
ination (RFE), tree-based feature selection methods (ran-
dom forest feature importance) for the ISOT dataset [39].
Random forest feature selection produced 99% highest detec-
tion among all these feature selection methods.

The studies proposing feature selection do not create and
compare the optimal sets that can be obtained for different
multiclass problem formulations. In this paper, we address
this gap by inducing various learning models for two datasets
as explained in detail in Section II-C.

C. DATASET
In this study, we used two datasets, N-BaloT [22] and Med-
BIoT [23]. Both datasets comprise legitimate [oT traffic as
well as traffic with various types of attacks that originate from
compromised IoT devices acting as bots.

N-BaloT and MedBIoT have 115 and 100 features
(mainly descriptive statistics measures), respectively, which
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are extracted from network traffic. These traffics are gener-
ated by bots deployed in a controlled testing environment.
Both datasets have the same features, except that the Med-
BIoT dataset does not include network traffic coded as “H”
in Table 1. More specifically, the features that are defined
for each data point reflect the aggregated statistics of the raw
streams of the network in five time windows (100 ms, 500 ms,
1.5, 10 s, and 1 min), which are coded L5, L3, L1, L0O.1 and
LO0.01, respectively. There are five main feature categories,
host-IP (traffic originated from a specific IP address, coded as
H), host-MAC and IP (traffic originated from the same MAC
and IP, coded MI), channel (traffic between specific hosts,
coded HH), socket (traffic between specific hosts, including
ports, coded HpHp), and network jitter (time interval between
packets in channel communication, coded as HH_jit). For
each major category, the packet count, mean and variance
packet sizes are calculated. There have been extra statistical
values like the correlation coefficient (PCC) of packet size,
radius, covariance, magnitude, which are derived for Chan-
nel and Socket categories along with packet count, mean,
variance. In this paper, we used a specific notation to name
the features. The feature name is the concatenation of three
keywords. The first one represents the category type (e.g., MI,
HH), the second one shows the time window, and the third one
indicates the statistical measurement function. For instance,
“HH_LO0.01_mean” means this feature is about the channel
type that belongs to a 1-min interval with a mean function.
In this study, we have developed six different ML clas-
sification problems using these two datasets, as detailed in
Table 2. The N-BloT dataset is used for three classifica-
tion problems, namely, binary, 3-class, and 9-class. Binary
classification basically discriminates malicious traffic from
benign traffic. 3-class provides greater scrutiny of malware
type by classifying data points into categories, mirai, gafgyt,
and benign. For the 9-class classification, the data points
have been classified into different attack types: ack, benign,
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TABLE 1. Summary of the features of the N-BaloT and MedBloT datasets features.

N-BaloT MedBIoT
Feature Category | Category Code | Statistical Value Feature Time Frame Window | No. of Features | No. of Features
Host Mac& 1P MI Packet Count. Mean 100 Micro Seconds 15 15
Host 1P H Variance ’ 500 Micro seconds 15 -
Network Jitter HH_Jit 1.5 Seconds 15 15
Channel HH Packet Count, Mean 10 Seconds 35 35
Socket HpHp Variance, Magnitude, Radius, Covariance, Correlation 1 Minute 35 35

TABLE 2. Classification problems addressed in this study.

Dataset Classification Task  Class Name  Description of the Class name
. Benign Legitimate Network Traffic
Binary
Attack Malicious Network Traffic (Mirai, Gafgyt)
Mirai Mirai malware-infected network traffic
3-class Benign Legitimate Network Traffic
Gafgyt Gafgyt malware-infected network traffic
ACK Gafgyt malware Sending Spam data
N-BaloT Benign Legitimate Network Traffic
Gafgyt malware Sending spam data
COMBO & &P
and opening a connection to IP, port
9-class JUNK Mirai Malware ACK-Flooding
Scans the network devices for
SCAN
vulnerabilities,(Mirai &Gafgyt )
SYN Mirai Malware SYN-Flooding
TCP Gafgyt malware TCP Flooding
UDP UDP flooding (Mirai & Gafgyt)
Mirai malwar UDP flooding with Less of
UPDPLAIN
an option for higher packet per second
. Benign Legitimate Network Traffic
Binary
Malicious Network Traffic (Mirai,
Attack
Bashlite, Torii)
Benign Legitimate Network Traffic
MedBIoT
3-class C&C network traffic for C&C
Spread Spread Attack network traffic
Bashlite Bashlite malware-infected network traffic
Benign Legitimate Network Traffic
4-class
Mirai Mirai malware-infected network traffic
Torii Torii malware-infected network traffic

compact, junk, scan, syn, tcp, udp, and udpplain. These
three-class and nine-class problem formulations address the
attack phase of the botnet life cycle from two perspectives.
The former identifies the types of malware that can be instru-
mental in detecting infected hosts in an organizational setting.
The latter aims to discriminate against attacks carried out by
bots, which better informs organizations that are targeted by
such attacks.

MedBIoT is used for three classification formulations,
binary, 3-class, and 4-class. As this dataset is collected at the
C&C or formation phases, such formulations reveal which

94522

features are important in those phases. More specifically,
3-class addresses the identification of the phase (i.e., classes
are benign, C&C and Spread), whereas 4-class aims to detect
malware category (i.e., classes are benign, Bashlite, Mirai,
and Torii).

In this work, we have experimented with 20,000 sam-
ples of each class label for the addressed classification
type. For example, if the classification problem contains
two classes, we randomly selected 40,000 samples from the
source dataset.

Ill. FEATURE SELECTION METHODS

Within the framework of the present investigation, two types
of feature selection methods are considered. The first is called
the filter model, which evaluates a feature or a subset of
features using a class-sensitive discriminating criterion [44].
These techniques do not depend on the particular classifica-
tion algorithm. The second type of technique is the wrapper
model. Techniques of this type use the characteristics of the
specific classification algorithm to choose the feature set.

A. FILTER MODELS

In the domain of numeric feature sets, there are four main
types of techniques. The first utilizes the linear correlations
between the features. The second is based on the relationship
between the inter-class and intra-class separation. The third
uses entropy, and the fourth is based on the analysis of
variance.

1) PEARSON’s CORRELATION BASED TECHNIQUE

Based on Pearson’s correlation coefficient (see (1)), the tech-
nique requires one to compute the collinearity matrix for the
entire set of features to find the redundancy of the features.
Pearson’s correlation technique computes the linear correla-
tion relationship between two variables. Pairwise correlations
between features are analyzed to find the redundancy of fea-
tures. P-value of correlation coefficients bounds the ranges
between —1 and 1. Two features contain a perfect positive
correlation if the value is P = 1. There is no correlation
between the two features if the value P = 0, and a perfect
negative correlation is accepted if the value P = —1. The
formula for the Pearson correlation

— Z:‘l:] (i — w) i — py)]
Vi = T = 2
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In (1), py and py denote the means of features x and y
respectively. Greater absolute values of Pearson’s correlation
coefficient indicate stronger linear dependence between the
features.

2) FISHER SCORE
Fisher score [44] is designed for the numeric features and
measures the ratio of the average inter-class separation to the
average intra-class separation. It is also referred to as Fisher’s
ratio [45]. Formally defined in (2) and denoted as F; (not
to be confused with F1 score), the numerator calculates the
average inter-class separation and, the denominator calculates
the average intra-class separation.
Y Pt — iy
Fs = e . @
Zj:l pj(ajl)2

where ! and o/ are the mean and standard deviation of the
Jj-th class and i-th feature, p; is the proportion of data points
of class belonging to the class j. Greater Fisher’s score values
indicate greater discriminating power of the feature.

3) MUTUAL INFORMATION

Among the different techniques implementing mutual infor-
mation exclusion idea normalized mutual information feature
selection [46] was chosen. For the case of continuous vari-
ables mutual information (MI) is defined by [46] as follows:

plx,y)
I(X,Y xdy 3
(X,Y)= f/(xy)Og()p(y) (3)

Here, p(x, y) is the joint probability density function (PDF) of
the variables &X', Y and p(x) and p(y) are the marginal PDFs of
the respected variables. For the case of discrete variables, [46]
defines MI as follows:

o P, y)
IX:Y) = Zyey erx px.y)log pPG) @

In (5) p(x, y) denotes the joint probability mass, the function,
the function, and p(x) and p(y) are the marginal probabilities.
Mutual information values fall in the interval given below.

0=<I1(X;Y) <min{H(X), H(Y)} &)

To make this paper self-sufficient, the main steps of the
MI -based feature selection algorithm proposed by [46] are
presented below. Denote I(C; S) the MI between the class
variable C and the subset of selected features S. Also define
measure G as

G=1(C:f) = 15 =Y NI ). 6)

fs€S

1) Initialize the initial feature set F that includes all
available features and the empty set S of the selected
features.

2) Calculate I(f;, C) or each feature f; € F.

3) T0 select the first feature, find ﬁ
Ji = maxizi AL, O)).

such that
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4) Update sets F and S as follows: F = F \ f, and § = f,
5) Repeat until |S| = k.
a) Compute I(f;; f) for all pairs of features such that
fie Fandf; € S.
b) Select the feature f; € F that maximizes the
measure (6).
¢) Update sets F and S as follows: F' = F \ f, and
S =/
6) Return the set S

4) ANOVA F-TEST

ANOVA is one of the most well-known feature selection tech-
niques, therefore, does not require an in-depth explanation.
This method usually answers the question of whether the
values of the given features are independent of the target
classification label or not. It is performed in the form of
statistical hypothesis testing, where the null hypothesis states
that the values of the feature are independent of those of the
target label, and the alternative hypothesis states the opposite.
The application of this method requires the user to utilize only
the features whose values are not independent of the target
labels.

B. WRAPPER METHODS

Unlike the filter models, wrapper methods are classifier-
agnostic and choose the most suitable feature set for the
particular classifier. The wrapper method is used to calculate
the weights of the features using the classification algorithm
to measure the performance of the features. Wrapper methods
employ the inductive algorithm as an evaluation or criterion
function [47], [48]. This approach uses a classification algo-
rithm to evaluate subsets of features based on their predictive
accuracy (in test data) after cross-validation of the dataset.
In the context of our research, we have evaluated subsets
of features using the F1 score. Usually, the feature set is
being constructed iteratively by adding (forward selection)
or deleting (backward elimination) the features. Within each
branch, particular methods differ by evaluating the signifi-
cance of the features, the goodness criteria of the model, and
the number of features added or removed. In the preliminary
stage of the investigation, the authors have experimented with
six different wrapper techniques. Among them, Recursive
Feature Elimination (RFE) [49], Sequential Backward Selec-
tion (SBS), and Sequential Forward Selection (SFS) [50] have
shown the best results and are included in the comparison.

1) RECURSIVE FEATURE ELIMINATION

Recursive feature elimination (RFE) is a greedy algorithm
based on feature ranking techniques [49]. Based on a char-
acteristic of the feature-ranking criterion, the RFE starts with
a complete set of features and then removes the least relevant
feature one by one to choose the most significant features.
The RFE is used with the following classification algorithms,
DT, ET, and RF. This method uses the following steps to
evaluate the significance of the features.
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1) Initialize the initial set of features F that includes
all available features, set each element of the feature
ranking list R to 1/n.

2) Repeat the following steps until the feature set F' = (J

o Train with the classification algorithm and calcu-
late the importance of the feature in set F. Order
the features corresponding to their importance and
update the list R accordingly.

« Eliminate the feature of the smallest importance.

3) Output: List of Feature Rankings R.

2) SEQUENTIAL FORWARD SELECTION
We have used two sequential algorithms [50] that work based
on greedy search algorithms. SFS [50] is a stepwise search
approach that can avoid excessive computational time con-
sumption. It works in a bottom-to-top approach. The follow-
ing steps are involved in the SFS Algorithm.
1) Start with an empty setS =@, F =f1,/2, ... .fu
2) while IFI>0
# IFl is size of the feature set F
3) fi = argminiepJ(S +fi)]
(Select the feature f; € F with the maximum perfor-
mance of the classification algorithm and join to the
set S (the features selected subsequently combine with
the initial selected feature)
4) S=S+1f;
5) F=F—f
Consider F to be a set of features. Then select the best
feature among the F' features using some evaluation criterion
function J that maximizes the performance of the classifi-
cation algorithm. The F1 score is considered an objective
evaluation criterion function. At each iteration, a new feature
subset is created with the help of one of the remaining
available features and the previous feature subset. The new
subset of features should provide the maximum classification
performance compared to the addition of any other feature.
This iteration continues until the total number of features is
completed in the set F'. SFS method is the best and most rapid
method when a small subset of optimal features is available.

3) SEQUENTIAL BACKWARD SELECTION
In contrast to SFS, SBS (Sequential Backward Selection)
operates in a top-to-bottom approach. The selection of fea-
tures starts from a set F with n being the total number
of features. Therefore, the evaluation function produces the
maximum performance of the classification algorithm for all
n numbers of features. Each feature is removed one at a time.
For every iteration, the new subset is created by the n —1
features computed with the help of the evaluation function,
and then the worst feature is discarded from the next subset
of features. This procedure continues until the total number
of features is left.

1) S =feature set, F = f1, /2, ... .fa

2) while IFI>1 do

#IF| is size of the feature set F,
3) fi=argminjcp[J(S — fi)]
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TABLE 3. Tuning of learning algorithm hyperparameters.

Algorithm Description Range
Maximumn Depth of the tree 5-50 in steps of 1
Minimum number of samples required to split an internal node ~ 2-30 in steps of 1
Decision Tree
the minimum number of samples required to be at a leaf node.  2-30 in steps of 1
the impurity of a split Gini, Entropy
Maximum number of levels in each decision tree 5, 500 in steps of 50
Maximum number of features Square root, Auto ,
Random Forest Maximumn Depth of the tree 5-50 in steps of 1
Extra Tree Classifier ~ the minimum number of samples required to be at a leaf node. ~ 2-30 in steps of 1
the minimum number of samples required to be at a leaf node.  2-30 in steps of 1
the impurity of a split Gini, Entropy
. number of neighbors 1-25 in steps of 1
Kk-nearest neighbors
Distance metric minkowski,euclidean,manhattan
4) S=S—-f
5) F=F —f;

C. APPLICATION OF THE MACHINE LEARNING
WORKFLOW

For the computational experiments, the classical machine
learning workflow was used. The initial datasets are large
enough to provide samples that can be balanced with respect
to all characteristics of the dataset, malware type, attack
type, and device type. In the preprocessing step, balanced
samples were drawn from the dataset of interest. Then, the
division into training and testing subsets was carried out
proportionally 80/20. Initial experiments have demonstrated
that among the k-nearest neighbors classifier (kNN), decision
tree classifier (DT), random forest classifier (RF), extremely
randomized trees classifier (ET), logistic regression, support
vector machine, and Ada-boost classifier, the last three have
demonstrated much lower performance and were excluded
from further investigation. For each remaining classifier and
feature selection technique, a ten-fold cross-validation was
performed, while, to ensure better results and the best con-
figuration for each classification algorithm, a randomized
search was used to find the optimal hyperparameters for
each classifier. The range of hyperparameters is described in
Table 3.

We use the three steps to evaluate the distinct subsets
of features in both datasets. First, the F1 score metric is
used to evaluate the set of features. Second, computational
time is the total time it takes a computer with a particular
processor to complete a task. Third, Performance computed
the ratio between the F1 score and the computational time.
Intrusion detection systems must respond as quickly as pos-
sible without sacrificing accuracy. Response time is essential
when thwarting the threat in the early stages would limit the
degree of losses. For this motivation, time must be considered
when evaluating any detection of the model along with the
model metrics. The F1 score (see Eq. (7)) is defined as a
harmonic mean of precision (P) and recall(R) [51]. In this
research work, precision is the fraction of correctly identified
botnet samples to all botnet samples identified as a botnet.
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TABLE 4. Filter method feature sets for the N-BaloT and MedBIloT dataset.

Dataset Classificaiton type | Pearson Correlation | Fisher Score | Mutual Information | Anova
Binary 33 5 3 3

N-BaloT | 3-class 33 6 3 5
9-class 33 68 28 59
Binary 34 51 36 85

MedBIoT | 3-class 34 42 38 49
4-class 34 46 41 52

On the other hand, recall is the fraction of correctly identified
botnet samples for all botnet samples in the dataset [52].
The F1 score provides a more suitable measure of incorrectly
classified cases than the accuracy measure. We have used the
harmonic mean of the F1 score, as it penalizes the extreme
values. F1 score as follows;

2 x precision X recall
F1 score = — @)
precision + recall

In our experiments, we used the computational time to
calculate the computational cost of classifying a sample.
We did not consider the training time of the ML algorithms.
We have experimented with all tasks on the same CPU.
Finally, to measure the performance of a set of features
derived from filter and wrapper methods, we calculated the
ratio between the F1 score and the computational time to
allow measurement of the gain in detection ability relative
to the computational expense of this detection [40].

The experiment carried out in this work was carried out on
a Ubuntu 20.04.4 LTS machine with 60 GB of DDR4-2666
R ECC RAM and 2 x Intel Xeon Gold 6148 20C 2.40 GHz.
We developed our scripts using Python 3, Scikit-learn [53]
and mlextend libraries [54].

IV. RESULTS

This section gives experimental results of the learning models
induced for six classification problems listed in Table 2.
We analyze the importance of the features obtained by filter
and wrapper feature selection methods in each problem and
perform a comparison between the results. Tables 4 and 5
show the numbers of features selected by the filter and wrap-
per methods for each classification problem, respectively.
We provided detailed analysis of the result of each classifi-
cation problem in the following subsections.

A. N-BaloT

1) BINARY CLASSIFICATION

In this part, we use filter and wrapper feature selection
methods to find the optimal feature subsets for binary clas-
sification of the N-BaloT dataset. Based on the ratio of
the highest detection rate of the minimal feature set to its
computational time, as given in Fig. 2, we selected the best
model for the implementation of four classifiers with different
feature selection methods. In this binary problem formula-
tion, we identified 33 features with fewer correlations accord-
ing to Pearson’s correlation values. For each filter method,
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TABLE 5. Wrapper methods feature sets for N-BaloT and MedBloT.

Dataset Classification Type Feature Selection Approach DT RF ET Knn
RFE 3 4 4
Binary SES 3 3 3 3
SBS 3 3 3 3
RFE 3 4 4
NBaloT 5 crass SFS 303 33
SBS 3 3 3 3
RFE 28 23 25
9-class SFS 3 3 3 3
SBS 3 3 3 3
RFE 29 27 24
Binary SES 7 7 7 7
SBS 7 7 7 7
RFE 26 27 24
MedBIOT 3 crass SES 77 1 7
SBS 7 7 7 7
RFE 29 24 22
4-class SFS 7 7 7 7
SBS 7 7 7 7

we select the best features based on their scores. Furthermore,
we induce models with feature sets that have increasing num-
bers to understand how many features are enough to pass the
99% F1 score. Finally, we select the best 3, 5, 3 features for
the ANOVA, Fisher Score and mutual information methods,
respectively (see Table 4). On the other hand, the wrapper
methods usually select three features (for example, DT selects
three features in each method), as presented in Table 5.

Almost all classifier and feature pairs produce a high
detection rate above 99%, as shown in Table 6. Based on
the minimal set and computational performance, we selected
three pairs and reported more detailed performance results,
accuracy, precision, recall, and F1 score values in Table 7.
These pairs are: DT with mutual information (that is, three
features), Fisher (that is, five features), and SBS (that is, three
features). DT with SBS achieves the highest performance
metric, as shown in Fig. 3. Among the wrapper methods,
Anova provides better results than the others.

The mutual information method selected the features,
{MI_dir_LO0.1_weight, MI_dir_L0.01_weight, H_LO0.01_
weight}, fisher score selected {MI_dir_L5_weight,
HH_jit_L5_mean, MI_dir_L5_mean, MI_dir_L0.01_weight,
MI_dir_L0.01_mean}, Anova identified the feature set,
{MI_dir_L1_weight, MI_dir_L0.1_weight, H_L.0.1_weight}.
SBS selected {MI_dir_L5_weight, MI_dir_L3_weight,
MI_dir_L1_ weight}. Almost all features belong to the host
category; except one that is a network jitter-type feature.

It is important to note that we computed the computational
time of the models (i.e. the testing-time performance) after
selecting the features in all filter and wrapper methods. Thus,
the time required for feature selection is not reported in this
paper, as testing time is a more significant aspect compared to
training, which is not done so frequently, and, when needed,
high resources can be assigned for such task. In this sense,
the calculated time can be affected by the number of fea-
tures and characteristics of the corresponding learning model.
However, in our experiments, as expected, we observed that
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TABLE 6. F1 scores for binary classification models using feature subsets
(represented in Table 4 and 5) of feature selection algorithms in the
N-BaloT dataset.

TABLE 7. Accuracy, precision, recall, F1, Binary classification scores of the
selected model with performance based on feature sets in the N-BaloT
dataset.

Binary N-BaloT

FS Method  Approach DT ET RF KNN
Pearson Correlation  0.9987  0.9983  0.9983  0.9957
Filt Fisher Score 0.9997  0.9997 1.0000 0.9847
ilter
Mutual Information  0.9990  0.9990 0.9990  0.9977
Anova 0.9973  0.9970 0.9970  0.9970
RFE 0.9983  0.9983  0.9987
Wrapper SFS 0.9996  1.0000 0.9999  0.9994
SBS 0.9998  0.9999  0.9997  0.9966
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FIGURE 2. Computational time required to classify a sample by binary
classification models on N-BaloT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.
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FIGURE 4. Contribution of feature categories and time windows in
selected feature sets for binary classification in the N-BaloT dataset.

TABLE 8. F1 scores for 3-class classification models using feature subsets
(shown in Table 4 and 5) of feature selection algorithms on the N-BaloT
dataset.

3-Class N-BaloT

FS method Approach DT ET RF KNN
Pearson Correlation ~ 0.9989  0.9989  0.9987  0.9338
Filter Fisher Score 0.9989  0.9989  0.9987  0.9338
Mutual Information  0.9991  0.9989  0.9989  0.9730
Anova 0.9965 0.9956 09921 0.9910

RFE 0.9991  0.9964  0.9904
Wrapper SFS 0.9997 09997 0.9998  0.9970
SBS 0.9996  0.9998 0.9994  0.9790

EDT WET mRF mKNN

FIGURE 3. Performance achieved by binary classification models over the
N-BaloT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

training the wrapper models is more computationally expen-
sive compared to filter methods. Among the wrapper meth-
ods, sequential feature selection algorithms (SBS, SFS) are
more expensive than recursive feature elimination.

After identifying the optimal feature subsets from the
dataset for binary classification, we performed a frequency
analysis to scrutinize which feature category and time win-
dows are used primarily by the selection methods, as shown
in Fig. 4. Host-based feature categories are observed to play
an important role in discriminating malicious traffic from
benign traffic. The features of network jitter and socket are
less preferred. Although the features regarding the longest
time window, 1 minute, have contributed greatly to the
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detection, there is no clear increasing or decreasing pat-
tern regarding the time duration, as the shortest duration,
100 microseconds, also plays a significant role in the model
performance.

2) 3-CLASS CLASSIFICATION
In the N-BaloT dataset, Mirai and Gafgyt malware are used
to infect IoT devices. In this part, we report the findings of the
three-class classification models that discriminate network
traffic as Mirai, Gafgyt, and legitimate. Similarly, we eval-
uated the feature selection method and the pairs of learning
models according to the same performance metric we used for
binary classification and presented the F1 scores in Table 8.
All pairs, except some KNN models, provide more than
99% F1 scores. Pearson correlation still found 33 features.
We identified six, three, and five features by using filter
methods, fisher score, mutual information, and ANOVA,
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TABLE 9. Accuracy, Precision, Recall, F1 of 3-class classification of the
selected model with feature set-based performance over the N-BaloT

dataset.

Feature S Feature Subset Model Class Name Accuracy Precision Recall F1-Score
mirai 0.99 0.99 0.99 0.99
Fisher Score 5 DT benign 0.99 0.99 0.99 0.99
gafgyt 1 1 1 1
mirai 0.99 0.99 0.99 0.99
Mutual Information 3 DT benign 0.99 0.99 0.99 0.99
gafgyt 1 1 1 1
mirai 0.99 0.99 0.99 0.99
SBS 3 DT benign 0.99 0.99 0.99 0.99

gafgyt
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1

0.99

= Channel

u Network
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® 1 minute

10 seconds
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 Host-Based
500 Micro
Seconds

100 micro
saconds

(a) Feature Category Contribu- (b) Time Window Contribution
tion to Overall Botnet detection to overall botnet detection

selection methods.

respectively, as shown in Table 4. The wrapping methods
mostly selected three features (see Table 5).

Among all the feature selection methods, the DT and SBS
pair again achieves the highest performance, as shown in
Fig. 6. Anova is the best compared to other filter methods.
Table 9 shows the detailed performance metrics for DT and
three feature selection methods, Fisher Score, Mutual Infor-
mation, and SBS. It is obvious that the detection performance
is higher than 99% for all metrics.

The optimal feature set selected by the mutual informa-
tion feature setis {MI_dir_L0.1_mean, MI_dir_L0.01_mean,
H_L0.01_mean}, the set of Fisher Score is { MI_dir_L5_
weight, MI_dir_L5_mean, MI_dir_L0.01_mean, MI_dir_
L0.01_weight, H_L0.01_mean}.

Compared to binary classification, we were unable to
identify clear differences between the results. Learning mod-
els can easily identify the type of malware in this dataset.
However, a small number of features, 3-5, achieve high
detection rates regardless of the feature selection method.
SBS and DT are the pair that performs best. The analysis
of category distributions for the classification of 3 classes
is given in Fig. 7. The results are very similar to those of
binary classification. Host-based features have again played
an essential role, and the time-window distribution does not
show a distinct outcome.

3) 9-CLASS CLASSIFICATION

In the 9-class formulation, we consider eight different types
of attack and benign as distinct categories, as presented in
Table 2. The results of this classification are quite different
from the results of the binary and 3-class classification with
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FIGURE 7. Contribution of feature category and time window in the
selected feature set for 3-class classification in the N-BaloT dataset.

TABLE 10. F1 scores for 9-class classification models using feature
subsets (see in Table 4&5) of feature selection algorithms in the N-BaloT

dataset.
9-class N-BaloT

FS Method Approach DT ET RF KNN
Pearson Correlation  0.9946  0.9949  0.9944  0.7051

Filt Fisher Score 0.9955 0.9954 0.9941 0.9611

1iter

Mutual Information  0.9937  0.9948  0.9912  0.9453
Anova 0.9956  0.9952  0.9925 0.9601
RFE 0.9943  0.9962  0.9967

Wrapper SFS 0.9927  0.9941 0.9942  0.9928
SBS 0.9944  0.9947 0.9940 0.8502

respect to filter methods, as the learning models with these
selection methods require a very high number of features to
achieve an F1 score greater than 99%. More specifically, 68,
28 and 59 features should be fed into the models when Fisher
score, mutual information, and ANOVA methods are used,
respectively. However, 33 features are identified as not highly
correlated by the Pearson correlation method. Wrapper meth-
ods show very interesting results. Although RFE provides
higher detection results using 20-28 features depending on
the type of learning model, SFS and SBS achieved higher
detection with only three features.

Table 10 shows the F1 scores achieved by the nine sets
of classification features of the classes. Except for KNN, all
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TABLE 11. Accuracy, Precision, Recall, F1 summary of classification of
results mutual information and SBS features, DT with 28-feature set and
3-feature set respectively for 9-class classification over N-BaloT dataset.

Accuracy Precision Recall F1-Score
Class Name ~ MI SBS MI SBS MI SBS MI SBS
Ack 0.99  0.99 0.99  0.99 099  0.99 099  0.99
Benign 0.99 099 098  0.99 099  0.99 099  0.99
Combo 0.99  0.99 099  0.99 099  0.99 099  0.99
Junk 098 098 099  0.99 0.99  0.99 0.99  0.99
Scan 099 099 099 099 0.99  0.99 0.99  0.99
Syn 099 1 1 0.99 099 0.99 099  0.99
TCP 1 1 098 098 099  0.99 099 0.99
UDP 098 098 0.99  0.99 098 098 098 098
UDPPLain 0.99  0.99 1 1 099  0.99 0.99  0.99

other models achieve more than 99% in all selection methods.
The result of the overall performance metric indicates that
SBS and DT are the best pair in the 9-class classification
(see Fig. 9). Among the wrapper methods, DT and mutual
information emerge as the leading performer.

3 features used by the SBS and DT pair are as follows:
MI_dir_L0.01_mean, HH_L0.01_std, HH_jit_L0.01_mean.

Table 11 shows the detailed classification performance of
the 9-class classification with mutual information based on
the 28-feature set and the SBS with the 3-feature set (that
is, DT is the learning model in both cases). Although the
detection rates of some classes (e.g., junk accuracy, accuracy,
recall and F1 UDP scores) decrease to 98%, the remaining
metrics show figures equal to or greater than 99%.
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FIGURE 10. Feature category and time window in each set of features for
9-class classification.

The frequency analysis of the feature categories shows that
the host-based features are still the most important category
for the 9-class classification (see Fig. 10). However, the
selected features of the channel category are higher compared
to the binary and 3-class formulations. The contribution of
the network jitter category is also more important in this
classification task. This means that learning models need
to resort to other features, which provide statistics about
network activities between hosts and time intervals between
network packets to differentiate attack types. When many
types of attack are considered, including various denial-of-
service attacks, such features are instrumental in making a
distinction between them. Time window analysis provides
a similar distribution, except that lower time intervals (i.e.
1.5 seconds, 500 microseconds, and 100 microseconds) have
closer distributions to each other.

4) THE STANDARD FEATURE SET FOR BINARY, 3-CLASS AND
9-CLASS CLASSIFICATIONS OVER N-BaloT

In this part, our objective was to discover a feature set
that provides high performance for all classification models
induced with the N-BaloT dataset. Here, we do not claim
to obtain the feature set that has been proven to be the
best for all formulations, but we show that a working set
is possible. Intuitively, for this purpose, we have tested the
best feature sets of each classification in the other classifi-
cation tasks. The best feature set obtained from the 9-class
classification provided high detection rates for the remaining
binary and 3-classification tasks. However, we were unable to
obtain such high results in the reverse situation where binary
or 3-class classification features are applied to a 9-class
formulation. More specifically, the feature set, {MI_dir
_L0.01_mean, HH_LO0.01_std, HH_jit_L.0.01_mean} that is
determined by the SBS and DT pair for the 9-class clas-
sification is utilized to induce models for all classification
types, and we obtained the results given in Table 12. Except
for the Junk and UDP classes in the 9-class formulation,
all results are equal to or greater than 99%, demonstrating
the effectiveness of this common set in all classification

types.
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TABLE 12. Classification results using the standard 3-Feature Set for all classification tasks in the N-BaloT dataset.

Classification Type  Class Name Accuracy Precision Recall F1-Score
DT RF KNN ET DT RF KNN ET DT RF KNN ET DT RF KNN ET
Binar Benign 0.99 099 099 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
Y Attack 0.99 099 099 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
Mirai 099 099 099 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
3-class Benign 099 099 099 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
Gafgyt 0.99 099 0.99 0.99 099 1 1 1 1 0.99 0.99 0.99 099 099 099 0.99
Ack 099 099 099 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
Benign 0.99 099 0.99 0.99 0.99 099 0.99 0.99 0.99 099 0.99 0.99 099 099 099 0.99
Combo 0.99 099 0.99 0.99 0.99 099 0.99 1 0.99 099 0.99 0.99 099 099 099 0.99
Junk 098 098 098 0.98 098 098 098 0.98 098 098 098 0.98 098 098 0.98 1
9-class Scan 099 099 099 0.99 0.99 099 0.99 0.99 099 1 0.99 1 099 099 099 1
Syn 0.99 099 099 0.99 099 1 1 1 1 0.99 0.99 0.99 099 1 0.99 0.99
TCP 0.99 099 0.99 0.99 099 1 1 1 099 099 1 0.99 099 099 1 0.99
UDP 098 099 099 0.99 099 097 099 0.99 097 099 099 0.99 099 098 0.99 0.98
UDPPLain 0.99 099 099 0.99 099 099 1 0.99 0.99 099 0.99 0.99 099 099 099 0.99
TABLE 13. Classification performance of sequential back- ward selection, woo B2 288. B8eo 0EEc o5 goge 282
DT With 7-feature set for binary classification over MedBloT dataset. Ghboo HB2f 2E%% SERY Lig LN RS
- K gfg LLdy E8x & H B E B
2 8 8 8
2 09600
Feature Selection Method  Feature Set  Model ~ Class Name  Accurac] Precision  Recall ~ Fl-Score §
Attack 0.99 0.99 0.99 0.99 o
SBS 7 DT
Benign 0.99 0.99 0.99 0.99 09200

B. MedBloT

MedBIoT dataset has malicious network traffic from Mirai,
BashLite, and Torii botnet malware, which were deployed on
83 real or emulated IoT devices. In this subsection, we report
the experimental results of the binary, 3- and 4-class classifi-
cation models induced with this data set (see Table 2 for the
details of classification formulations).

1) BINARY CLASSIFICATION
We identified that 34 features are not highly correlated
according to Pearson’s correlation scores in the MedBloT
data set. A high number of features are required for filter
methods to achieve a reasonable detection threshold rate
equal to or above 98%. More specifically, ANOVA, Fisher
Score, and Mutual Information can achieve that threshold rate
with 85, 51, and 36, respectively, as shown in Table 4. On the
other hand, RFE reaches the threshold value of 24-27 features
depending on the type of learning model, while 7 features are
enough for SBS and SFS (see Table 5). We present the F1
scores for all model and feature selection pairs in Fig. 11.
Although the pairs do not exceed 98%, at least one learn-
ing model achieved this threshold for each feature selection
method. In this data set and in the formulation of the problem,
SBS still provides the best performance metric, as shown in
Fig. 13. The results presented in Table 13 indicate that SBS
achieves a score greater than 99% in all performance metrics.
7 features selected by the SBS and DT pair are as fol-
lows: {HH_L1_pcc, HH_L0.01_magnitude, HH_jit_L1_std,
HH_jit_0.01_weight, HpHp_L1_pcc, HpHp_L0.01_weight,
HpHp_L0.01_magnitude}. The distributions of the features
according to the category of features and the duration of
the time window are given in Fig. 14. When this feature set
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FIGURE 11. F1-scores for binary classification models in the MedBloT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.
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FIGURE 12. Computational time required to classify a sample by binary
classification models over MedBloT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

is compared to the selected feature sets in N-BaloT, it is
observed that the channel category is the dominant category
instead of the host-based one. As MedBIoT covers malicious
activities regarding the the C&C and formation phases of
the botnet life cycle, the features that characterize host-to-
host communications become more important. In contrast,
N-BaloT, which covers the attack phase, can discriminate
malicious activities based on host-based features.

Similar to N-BaloT, MedBIoT does not show any specific
pattern on time periods, indicating whether longer or shorter
periods are preferred. Although the longest period, 1 minute,
provides more discriminative features among the others, still,

94529



IEEE Access

R. Kalakoti et al.: In-Depth Feature Selection for the Statistical ML-Based Botnet Detection in loT Networks

I 050
I 190

000

I 65°0

000

I 970
I 06°0
I £0°T

Performance (us™)
o o o
S £ 8
3 &8 3
I 09°0

ooo ©90o oo oo oo ©%o ©oo

0 Oc¢ o0oc¢ ook o oo o0oc¢ ooc¢

NSRS NI (MM SN o N NN
000 — — — — — - —
Pearson Fisher Score Mutual Anova RFE SFS SBS

Correlation Information

Feature Selection

EmDT WET WRF mKNN
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FIGURE 14. Feature category and time window contribution in each
feature set for binary classification over the MedBloT datase.

the second-best category is 100 microseconds, which is the
smallest one.

2) 3-CLASS CLASSIFICATION
The 3-class classification of the MedBIoT dataset aims to
identify whether the instance that represents a portion of
network traffic belongs to the spreading or C&C phases
of a botnet life cycle. The third class in this formulation
is benign traffic. Similarly to binary classification, filter
methods require a greater number of features to achieve
high detection rates. More specifically, features 42, 38 and
49 should be included by Fisher score, Mutual information,
and Anova, respectively, to achieve 98% detection rate (see
Fig. 15. Wrapper methods, SFS and SBS, identified a set with
7 features. On the other hand, RFE requires 24-27 features.

SBS and DT are still the best pair of models
and feature selection methods, as shown in Fig. 15.
This highest performance is obtained from the follow-
ing feature set: {HH_L3_magnitude, HH_L0.01_weight,
HH_L.0.01_radius, HH_jit_L1_weight, HH_jit_L0.1_std,
HpHp_L5_pcc, HpHp_LO.1_magnitude}. The detection
results given in Fig. 15 indicate that it is possible to find
learning models for each feature selection method that gives
a performance greater than 99%.

Fig. 18 shows that channel-based features are more useful
than other network categories to achieve the highest per-
formance. Compared to binary classification, the ratios of
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TABLE 14. Summary of the classification results with the selected model
and feature sets based on the performance of the 3-class classification in
the Med BloT dataset.

Feature Selection ~ Class Name  Class Name  Accuracy  Precision  Recall ~ Fl-Score
Benign 0.99 0.98 0.99 0.99

SBS DT CcC 0.99 0.99 0.99 0.99
Spread 0.99 0.98 0.99 0.99
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FIGURE 15. F1-scores for 3-class classification models in the MedBloT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

100000 & & g &
N N N &
w° © o u -
2 80000 w © =) ©
o
£
F 600.00
]
2
2 =
= 400.00
g @ =
3 w
a Bw Uw Aw Bw Sw Uy Bw
£ 20000 o0 o wa Ao uag Lok ©YNa
S P ow Pio g 1Y g 1 P oo Pop® Puw®
o uw H W oun DO NW = o owun
g¥e & 2 i @ ave 0% i
000 - - - - - - -
Pearson Fisher Score Mutual Anova RFE SFS SBS

Correlation Information

Feature Selection

EDT HWET EMRF ®KNN

FIGURE 16. Computational Time required to classify a sample using
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FIGURE 17. Performance achieved by 3-class classification models in the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

channel features are more frequent. The time window results
are similar to the binary classification outcome.

3) 4-CLASS CLASSIFICATION

In the 4-class classification, we consider the identifica-
tion of the source malware that generates malicious traf-
fic. Thus, the labels in this formulation are Mirai, Bash-
Lite, Torii, and Benign. Fisher score, mutual information,
and Anova require 46, 41 and 52 features, respectively
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FIGURE 18. Feature category and time window contribution in each
feature set for 3-class classification in MedBloT dataset.
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FIGURE 19. F1-scores for 4-class classification models in the MedBloT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.
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FIGURE 20. Computational Time required to classify a sample by 4-class
classification models in the MedBloT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

(see Table 4). SBS and SFS methods with any learning
model achieve a higher detection with 7 features, whereas
the feature numbers within the range of 22-29 are suf-
ficient in RFE. F1 score of 99% can be achieved by a
learning model in each feature selection method, as shown
in Fig. 19. SBS and DT are the best pair of performers
and use the following feature set:{MI_dir_L0.1_weight,
HH_L1_pcc, HH_LO0.01_magnitude, HH_jit_L.0.01_weight,

HH_jit_L.0.01_std, HpHp_L.0.01_weight, HpHp_L.0.01_std}.

Fig. 22 shows that the channel category is the most important
category.

4) STANDARD FEATURE SET FOR BINARY, 3-CLASS AND
4-CLASS CLASSIFICATION TASKS OVER MedBloT DATASET
To find a standard feature set that works for binary, 3-class
and 4-class classification problems in the MedBIoT data set,
similar to the case of N-BaloT, we tested the performance
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FIGURE 21. Performance achieved by 4-class classification models on the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.
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FIGURE 22. Feature category and time window contribution in each
feature set for 4-class classification in the MedBloT dataset.

of the selected feature set of one classification on the other
classification problem. We identified that the feature set of
4-class classification also works better in all other classifica-
tions, as shown in Table 15.

V. DISCUSSION

In this study, it is shown that all the machine learning problem
formulations realized for the detection of IoT botnet attacks in
two datasets, N-BaloT and MedBIoT, achieved high detection
performance in more than 99% with a limited number of
features (i.e. 3 and 7 features).

In our experiments, we used various filter and wrap-
per methods for feature selection, in addition to four main
machine learning methods to induce the models. In the case
where we use filter methods, the results of feature selection
are fed into the models. In wrapper methods, models are used
directly for the assessment of feature subset alternatives. Per-
formance evaluation was carried out based on the relationship
between the F1 score and the computational time required to
classify a sample. The wrapper method, SBS, with the DT
model has achieved the most satisfactory trade-off between
detection capacity and computational cost, exceeding the
other alternative feature selection and learning model pairs.

Using feature selection approaches, tree-based models
(DT, ET, and RF) achieved the best results in all classification
types for both datasets, especially in multiclass classifica-
tion types. k-NN classifier was not suitable for multiclass
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TABLE 15. Summary of classification results using the standard 7-Feature Set for binary, 3-class and 4-class classification tasks in the MedBloT dataset.

Classification Type  Class Name  Accuracy Precision Recall F1-Score
DT RF KNN ET DT RF KNN ET DT RF KNN ET DT RF KNN ET

Bina Benign 099 099 096 0.99 099 099 095 0.99 099 099 098 0.99 099 099 0.96 0.99
Ty Attack 0.99 099 098 0.99 099 099 097 0.99 099 099 094 0.99 099 099 096 0.99
Benign 0.99 099 097 0.99 099 098 0.96 0.98 098 099 098 0.99 099 099 097 0.99
3-class CcC 0.99 099 097 0.99 098 099 097 0.99 099 099 097 0.99 099 099 097 0.99
Spread 0.99 098 097 0.99 099 099 098 0.99 099 098 0.96 0.99 099 098 097 0.99
Bashlite 0.99 099 094 0.99 1 1 0.97 0.99 099 099 094 0.98 099 099 096 0.99
Jeclass Benign 0.99 099 094 0.99 099 098 091 0.98 098 098 092 0.99 098 098 091 0.98
Mirai 0.99 099 0.89 0.99 098 098 0.88 0.98 099 099 0.89 0.98 098 098 0.88 0.98
Torii 0.99 099 098 0.99 099 099 098 0.99 099 099 098 0.99 099 099 098 0.99

classification and also took the longest computational time
to classify the sample compared to tree-based models.

However, there are some differences between the results
of the MedBIoT and N-BaloT data sets. The former requires
seven features, whereas three features in the latter data set are
enough for high detection rates. Compared to N-BIoT, which
addresses the attack stage of the botnet lifecycle, MedBloT
differentiates post-attack and C&C phases. It can be argued
that the detection at the attack stage would be relatively easier,
as this stage is usually accomplished by sending an enormous
number of packets (i.e., spam, packet flooding). Therefore,
more features are needed for other attack stages.

On the other hand, we observed a remarkable difference
between filter and wrapper methods in some classification
formulations. High accuracy rates are achieved with more
than 28 features with filter methods for 9-class classification
with N-BaloT and all classifications with MedBIoT. On the
other hand, the wrapper methods, SFS and SBS, identify
an optimal set with 3 and 7 features for the respective for-
mulations. One interesting observation is that the wrapper
method, RFE, demonstrates quite different results for these
formulations when compared to the other wrapper methods,
so that, similarly to filter methods, it demands a high number
of features. RFE applies a greedy approach by evaluating each
feature one by one. Despite the differences in the statistical
approach, filter methods also evaluate features in a similar
fashion, one by one; thus, more composite feature set evalua-
tion of SFS and SBS provides remarkable results in our case.

Another significant finding is obtained by comparing the
feature categories that are prioritized by the feature selection
methods. We identified that host-based features are more
influential for the N-BaloT dataset, whereas channel-based
features show a more discriminatory property for the Med-
BIoT dataset. As the latter data set focuses on the spreading
and C&C activity of the IoT malware within the target net-
work, statistical features that are derived by tracking which
network node communicates with which other node help
more discriminate the malicious activity from the benign one
or determine the type of malicious activity.

We conducted additional experiments to demonstrate the
influence of feature categories. For this purpose, we induced
models with only the features of the corresponding categories
and reported the F1 scores for the ET, RF, DT and kNN
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models. As shown in Figure 23, the use of all host features
achieves a perfect model with a 1.00 F score, while network
jitter would be helpful for higher rates for the N-BaloT data
set. However, the features of the channel category achieve
99% rates, and the host and network jitter categories would
also be helpful for MedBIoT, as demonstrated in Figure 24.

Our results send a significant message to experts who
design intrusion detection systems. The attacks originating
from the bots (i.e., as simulated in the N-BaloT dataset) can
be easily detected by the sensors that track the incoming and
outgoing packet statistics without considering the destination
of the traffic. However, post-attack and C&C stages require
the sensors to follow the sources and targets of traffic flows.
Although some feature selection methods utilize the features
of the socket category, the overall picture shows that the
identification of receiving parties would be enough without
using the source and destination ports.

Our comparison regarding the feature categories from the
time interval perspective shows that the longest interval value,
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TABLE 16. Comparison of selected feature counts and classification
results with previous work.

TABLE 17. SBS-DT optimal parameters for each classification in the
dataset.

¢ Classification Best
DataSet Classification Feature Selection method Number of Model ~ Accuracy ~ Precision  Recall ~ Fl-score Dataset Description
ype features Type Parameter
LOGISTIC REGRESSION METHOD [21] 19 ANN 964 939 951 99.13 Maximum Depth of the tree 38
Random forest [55] 40 XGB  99.96 NA NA 99.94 — -
N-BaloT ~ 9-class ) Minimum number of samples required
correlation based feature selection (CFS) [56] 75 LSTM 9784 9781 95 96.25 Binary 15
In this paper 3 DT 9957 99.56 9955 99.55 to split an internal node
pT 953 95 98 % the minimum number of samples
Chi-Squared [57] 20 - : 1
Binary RE Ees) 95 98 96 required to be at a leaf node.
MedBIoT Original MedBIoT [23] NA DT 93.15 94.48 9315 92.93 the impurity of a split Entropy
In this paper 7 DT 99.34 99.33 99.32 9934 N-BaloT
Maximum Depth of the tree 19
Aclass Original MedBIoT [23] NA DT 95.16 95.84 9516 94.99 — . -
In this paper 7 pT 99.41 99.36 9938 99.46 3-class Minimum number of samples required 3
" . to split an internal node
*NA -Not Applicable
pp : the minimum number of samples required to be at a leaf node. | 3
the impurity of a split Gini
Maximum Depth of the tree 24
oecl Minimum number of samples 5
. . . . . . . -class
1 min, contributes more to the set with a higher discrimination required to split an internal node
property the minimum number of samples required to be at a leaf node. | 2
. the impurity of a split Entropy
We also compared our proposal with the latest meth- .
. . Maximumn Depth of the tree 47
ods from recent models, and the results are summarized in . Minirmum mamber of samples .
. pe . inary
Table 16. For the N-BaloT dataset, the 9-class classification required to split an internal node
achieved better results With IOWCI” SubSCtS Of features than the minimum number of samples required to be at a leaf node. | 8
. . . the impurity of a split Entropy
others. Abbasi et al. provided the 19 most important features .
MedBIoT Maximum Depth of the tree 24
edBIo’

for various attacks using LR(logistic regression) as feature
selection. With these features, the ANN model performed
well with 96.4% accuracy, 93.9% precision, 93.9% recall,
99.13% F1 score [21]. Parra et al. has created an LSTM
model with the help of correlation-based feature selection
to classify attacks and confirmed its model with 75 features
achieved 97.84% precision, 97.81% precision, 95% Recall,
96.25% F1 score [56]. Faysal et al. proposed an XGBoost
model that used 40 related features and stated that the
model classified attacks with 99.96% accuracy and 99.94%
F1 score [55].

Compared to existing models, the proposed framework
achieved for botnet attack type classification in the N-baloT
dataset achieved good detection performance on the SBS-DT
model (decision tree) with three features: precision of
99.57%, precision of 99.56%, recall of 99.55% and F1 score
of 99.55%. The proposed methodology effectively distin-
guishes IoT botnet attacks from network traffic with high
detection rates.

However, feature selection is applied less on the MedBIoT
dataset. Gandhi and Li has proposed the decision tree, ran-
dom forest models for binary classification, and selection
of chi-square characteristics utilized. Twenty features used
to detect malware type for DT and RF models with 99.3%
precision, 95% precision, 98% recall, 96% recall. We also
compared our detection rates with an original MedBloT
dataset.

Our proposed methodology achieved good detection per-
formance for binary and 4-class classification in the Med-
BIoT dataset compared to the SBS-DT models. For binary
classification, 99.34% precision, 99.33% precision, 99.32%
recall, 99.34% f1 score. For 4-class classification, 99.41%
precision, 99.36% precision, 99.38% recall, 99.46% f1 score.
To maximize the classification performance of the learning
model, a random search is used to determine the best set of
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3-class 15
required to split an internal node

the minimum number of samples required to be at a leaf node. | 3

the impurity of a split Entropy

Maximumn Depth of the tree 39

Minimum number of samples
4-class 5

required to split an internal node

the minimum number of samples required to be at a leaf node. | 1

the impurity of a split Gini

hyperparameters for each classification formulation and is
summarized in Table 17.

Vi. CONCLUSION

Botnet attacks change the shape and volume to deplete the
target resources on the entire IoT network system. Therefore,
to mitigate the critical impact, a machine learning-based
intrusion detection system is developed to accurately classify
botnet attacks.

In this work, we propose a reduced set of features to
detect and classify malicious activities of popular IoT botnet
malware. We identified six different binary or multiclass
classification problems using datasets, N-BaloT and Med-
BIoT. We applied various filter and wrapper methods with
four machine learning methods to these datasets. Finally,
we derive an optimal set of features for each classification
problem. To our knowledge, no detailed comparison between
the optimal feature sets required for different classification
problems of IoT botnet detection, which can vary depending
on the stage of the botnet life cycle, has been done before.

We obtained very high detection rates for each classifi-
cation problem with fewer features. The decision tree-based
SBS takes less time to classify the samples with the highest
detection rate. Wrapper methods, SFS and SBS, were effec-
tive in finding the optimal feature sets in each classification.
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Filter methods provide suboptimal results in terms of fea-
ture numbers for 9-class classification with N-BaloT and
all classifications with MedBloT. Host-based features are
more instrumental in the detection rates for N-BaloT, whereas
channel features play a more important role for MedBIoT.
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