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ABSTRACT Attackers compromise insecure IoT devices to expand their botnets in order to launch more
influential attacks against their victims. In various studies, machine learning has been used to detect IoT
botnet attacks. In this paper, we focus on the minimization of feature sets for machine learning tasks that are
formulated as six different binary and multiclass classification problems based on the stages of the botnet
life cycle. More specifically, we applied filter and wrapper methods with selected machine learning methods
and derived optimal feature sets for each classification problem. The experimental results show that it is
possible to achieve very high detection rates with a very limited number of features. Some wrapper methods
guarantee an optimal feature set regardless of the problem formulation, but filter methods do not achieve
that in all cases. The feature selection methods prefer channel-based features for detection at post-attack,
communication, and control stages, while host-based features are more influential in identifying attacks
originating from bots.

12 INDEX TERMS Feature selection, machine learning, Internet of Things, botnet, intrusion detection.

I. INTRODUCTION13

IoT (Internet of Things) is shaping the way we live our human14

lives [1], from tiny toys to home-made applications to smart15

cities. IoT is a system of interrelated devices connected to the16

Internet to transmit and receive data from one device to other17

parts of the system; it can be an edge device, a cloud server,18

or another field device. At the same time, the IoT security19

issue has become more important as an enormous amount of20

data is associated with IoT networks. Due to the exponential21

growth of IoT devices [2], hackers and cybercriminals have22

more opportunities to exploit network vulnerabilities [3],23

resulting in various IoT-based botnet attacks [4], [5], [6]. The24

botnet, a large set of compromised machines controlled by25

attackers, is one of the strongest threats on the Internet to26
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perpetrate cybercrimes, such as launching DDoS attacks [4], 27

stealing sensitive data [7] or distributing malicious spam [8]. 28

As a result, botnets act as a source of spreading malicious 29

activity and usually threaten the availability of networks, 30

in addition to other significant security consequences. It is 31

important to develop security countermeasures against botnet 32

threats. 33

A typical botnet life cycle has four phases, formation, 34

command and control (C&C), attack and post-attack [9]. 35

Attackers spread malware that helps them recruit new bots 36

(that is, members of botnets) during the formation phase. 37

C&C phase enables them to establish continuous commu- 38

nication with bots to control them for future actions. In the 39

attack phase, attackers carry out malicious operations using 40

bots. The post-attack phase covers activities related to the 41

spread of IoT malware with the purpose of expanding the 42

botnet. IoT networks constitute a lucrative target for botnet 43
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owners, as it is possible for them to recruit large numbers of44

IoT devices, which are usually shipped with various security45

vulnerabilities.46

One of the effective security countermeasures against bot-47

nets is to establish security monitoring systems to detect mali-48

cious activities. An organization hosting various IoT devices49

is interested in the identification of devices that are compro-50

mised by IoT bot malware; therefore, its focus is much more51

on detection at formation, C&C or post-attack phases. On the52

other hand, organizations receiving attacks from IoT bots aim53

to prevent malicious traffic launched during the attack and54

post-attack phases. Therefore, it is important to develop a55

monitoring system that encompasses the entire botnet life56

cycle. This endeavor requires a more in-depth understanding57

of malicious actions and their characterization in each phase.58

The Internet of Things (IoT) has received great atten-59

tion in research on network anomalies and intrusion detec-60

tion [10]. Malicious network traffic has been detected with61

conventional signature-based solutions such as Snort [11] or62

Suricata [12]. The drawback of signature-based systems is63

the inability to detect unknown or previously unidentified64

attacks, in addition to the obstacles that arise from misman-65

agement of signatures.66

Instead of signature-based solutions, a behavior- or67

anomaly-based solution goes beyond identifying individual68

attack signatures to detect and analyze malicious behavior69

patterns. Machine learning is considered a viable solution70

that detects new variants of attacks with the elimination of71

the need for signatures. Although the application of statistical72

machine learning (ML) techniques has demonstrated highly73

accurate classification results in malicious traffic detection74

problems [13], feature selection as an important step in the75

ML workflow has not been fully addressed. The curse of76

dimensionality can be a concern that decreases detection per-77

formance due to overfitting when classifiers are trained with a78

large number of features [14]. In addition, a high-dimensional79

feature space may require more computing resources when80

the models are deployed in the operational environment.81

In most cases, intrusion detection systems should handle82

a large volume of network traffic, so maximizing resource83

usage is vital. IoT environments bring additional restrictions,84

so that detection sensors, system components that are respon-85

sible for the collection of network traffic and performing the86

detection function, may run on resource-constrained devices87

(e.g., edge devices). Therefore, reducing the size of the88

feature set can improve the performance of ML models in89

many ways. Additionally, feature selection helps to achieve90

a deeper understanding of the underlying approaches that91

rendered the data, since fewer features would be more per-92

ceivable by experts.93

Various academic works [15], [16], [17], [18], [19], [20],94

[21] use feature selection techniques to improve the detection95

scores of existing ML classifiers. However, these studies96

do not explore the impact of feature selection methods on97

different binary and multiclass classification formulations98

that can be performed for intrusion detection at various99

stages of the botnet life cycle. More specifically, the set 100

of features that is effective in detecting malicious traffic at 101

one stage may not be instrumental at another stage. Further- 102

more, the performance of models that use different feature 103

selection methods can vary according to the classification 104

formulation. 105

The crux of this paper is to find the optimal subset of 106

features with the help of filter and wrapper feature selection 107

methods for various classification formulations that can be 108

applied to IoT botnet attack detection. For this purpose, 109

we have induced ML classifiers using the methods, extra tree 110

classifier, random forest, decision tree, and k-nearest neigh- 111

bor. The optimal feature sets are derived by a 10-fold cross- 112

validation with classifiers from filter and wrapper methods. 113

In this research, we applied the feature selectionmethods to 114

two datasets, namelyN-BaIoT [22] andMedBIoT [23], which 115

include network activities belonging to different steps of the 116

botnet life cycle in IoT networks. Based on the phases of the 117

botnet life cycle given in [9], we can deduce that N-BaIoT has 118

instances related to the attack phase, while MedBIoT covers 119

post-attack and C&C phases. 120

In addition to a binary classification, such as discriminating 121

malicious traffic from benign traffic, it is possible to for- 122

mulate various multiclass classification problems from these 123

datasets. One of such formulations may focus on the detec- 124

tion of the malware type that induces the malicious traffic 125

(e.g., Mirai, Bashlite), which is applicable for both datasets, 126

whereas the second one may deal with the attack type that 127

is conducted by the corresponding malware. For the latter 128

case, N-BaIoT provides labels on the types of attacks that 129

originated from infected devices (e.g., UDP flooding, spam), 130

and MedBIoT has labels on whether the activity belongs to 131

the C&C or post-attack phase. Depending on the situation, 132

security administrators may be interested in different aspects 133

of detection to make more informed operational decisions. 134

For example, identifying the type of malware on the infected 135

device would be necessary to apply the correct malware 136

removal procedures. On the other hand, identifying the type 137

of attack rather than the type of malware would be more 138

essential for organizations that receive botnet attacks, as they 139

need to develop defensive countermeasures to block or redi- 140

rect network traffic accordingly. In our study, we investigate 141

which feature sets are optimal for each binary and multiclass 142

classification formulation and analyzed whether there exist 143

variations in the optimal feature set that may impact the 144

design considerations of intrusion detection in such different 145

contexts. This contribution is unique because, to our knowl- 146

edge, there is no study that provides a deeper analysis of 147

the variations in feature sets that are effective in intrusion 148

detection at different stages of the botnet life cycle. 149

The structure of this research work is described below. 150

In Section II we have mentioned background work and a 151

review of the literature related to botnet detection and feature 152

selection. In Section III, the feature selection methods and 153

experiments are described. Finally, our results are presented 154

in Section IV. Section V gives a discussion of the main 155
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findings of this research work. Conclusions are drawn in156

Section VI.157

II. BACKGROUND AND LITERATURE REVIEW158

A. BOTNET DETECTION159

Researchers have introduced traditionalmachine learning and160

data mining methods for botnet detection in recent decades161

and made significant advances. BotMiner [24], [25] and162

BotSniffer [26] used statistical algorithms to detect malicious163

traffic on an IoT network that is part of a botnet.164

The Bayesian optimization Gaussian process (BO-165

GP) [27] is combined with the decision tree classifier as an166

optimized ML-based framework to detect botnet attacks on167

IoT devices. The detection rate for binary classification is168

improved to 99%.99 when the accuracy, precision, recall, and169

f1 score metrics are compared to the Decision Tree, SVM,170

with this optimized DT-BOGP framework. In this work, the171

Bot-IoT-2018 dataset [28] is used.172

Convolutional neural networks (CNN) are used to detect173

IoT malware. This approach was created for the detec-174

tion of Linux IoT botnets based on the PSI graph together175

with the CNN classifier [29]. Experiments were carried out176

using 4002 labeled IoT botnet datasets provided by the IoT-177

POT [30] team. These data sets were collected over one year,178

from October 2016 to October 2017. The detection rates,179

92% precision and 94% F1 score, are achieved with the CNN180

classifier.181

Yin et al. proposed the Bot-GAN framework to improve182

botnet detection performance [31]. Generative adversarial183

networks are used, where the GAN generator creates fake184

samples. A 3-layer LSTM network was selected as the gener-185

ator and a 4-layer neural network architecture was chosen as186

the detector in the Bot-GAN setup. The ISCX dataset [32]187

is used for this framework. Of 491,381 training samples,188

192,112 (39.10%) are malicious and include seven botnets,189

while the test set consists of 348,452 testing samples. This190

test set has 169988 (48.78%) malicious samples that possess191

16 botnet types. The detector achieves 68.51% as an F1192

score without having fake samples. The detector attains a193

maximum 70.59% of F1 score when the training set has194

500 fake samples.195

A hybrid deep learning scheme [33] is used to detect196

the botnet in the IoT network. A long-short-term memory197

autoencoder (LAE) is implemented to reduce the dimension-198

ality of network traffic features. Then, the long-term inter-199

related network traffic behavior is analyzed with the help of200

bidirectional long-short-term memory (BLSTM) to achieve201

generalization ability. In this work, binary multiclassification202

problems are addressed in the BoT-IoT dataset [28] for the203

classification of network traffic. In general, 6 features were204

derived from 37 features of the dataset [28] with the help of205

the LAE andBLSTMclassifier that achieved 100%precision,206

93.17% MCC (Matthews correlation coefficient).207

Alauthman et al. [34] have proposed a traffic reduc-208

tion mechanism that integrates the reinforcement learning209

technique in three datasets. The first dataset is information 210

security and objects technology (ISOT) that contains Storm 211

Bot, Waledac Bot, and normal traffic. The second data set 212

comprises four legitimate P2P applications (Vuze, uTorrent, 213

Frostwire and eMule) and three P2P botnets (Zeus, Storm and 214

Waledac) [35], and the third is the ISCX data set [32], which 215

contains benign traffic. The authors have used real-world net- 216

work traffic to evaluate their proposed approach and achieved 217

a detection rate of 98.3% and a false positive rate of 0.012%. 218

Singh et al. [36] have developed a quasi-real-time intru- 219

sion detection system using open-source tools such as 220

Hadoop, Hive, and Mahout to provide scalability for the 221

identification of Peer-to-Peer botnet attacks. For this, the 222

authors have built the packet capture module to process high 223

data bandwidth in a quasi-real-time (within 5-30 s delay) and 224

developed a distributed dynamic feature extraction frame- 225

work to illustrate network traffic statistics of packet captures. 226

The parallel processing power of Mahout (that is, a machine 227

learning library built on top of Hadoop) was used to build the 228

Random Forest model that achieved a detection performance 229

of 99% precision and recall. 230

B. FEATURE SELECTION 231

Feature selection aims to find the best subsets of features from 232

input data to achieve better prediction results by eliminating 233

unnecessary features [37]. The feature selection methods 234

were classified mainly into three categories, such as filter, 235

wrapper, and embedded [14]. Filter methods utilize statistical 236

methods to rank features according to their discriminatory 237

power. They are usually applied in an initial step before induc- 238

ing the models. However, wrapper methods use a machine 239

learning model to evaluate the merits of a given set of features 240

in terms of model performance to identify the optimal set. 241

Embedded methods blend the advantageous factors of both 242

the filter and wrapper methods so that they perform feature 243

selection and training of the ML algorithm in parallel. This 244

feature selection method is an integral part of the classifica- 245

tion or regression model. 246

Many feature selection approaches have been applied to 247

evaluate the importance of features related to the context 248

of botnet detection. Entropy, impurity, RelieF and principal 249

component analysis (PCA) [38] were used with the neural 250

network classification algorithm. 99.20% detection rate was 251

achieved with the top 10 features based on the entropy of 252

a total of 29 features in two botnet datasets, ISOT [39] and 253

ISCX [32]. 254

Velasco-Mata et al. [40] has tested the feature sets 5, 6, 255

7 with two filter methods, Information Gain and Gini Impor- 256

tance, over Decision Tree, Random Forest, k-NN for bot- 257

net detection for multiclass classification. Finally, the set 258

of five features produced an 85% detection rate with a 259

decision tree classifier induced for the QB-CTU13 [41] and 260

EQB-CTU13 [41] datasets. 261

Guerra-Manzanares et al. [19] proposed a hybrid approach 262

by combining filter and wrapper methods with random for- 263

est and k-NN classifiers. Eighteen features are selected by 264
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FIGURE 1. We used the filter and wrapper method feature selection approaches over the N-BaIoT [22] and MedBIoT [23] datasets to find the optimal
feature subset.we evaluated all the feature subsets with four classifiers - DT, ET, RF and k-NN.

Pearson’s correlation, and the top 20 features are selected265

with Fisher score. This study used the botnet dataset,266

N-BaIoT [22], which has 115 statistical features extracted267

from network traffic in an IoT network. The feature sets268

obtained from the filter methods are processed by wrapper269

methods, Sequential Forward Selection and Sequential Back-270

ward Elimination. Finally, a five-element set of features is271

used for the detection of IoT botnets formulated as a binary272

classification problem.273

Correlation-based feature selection, consistency-based274

subset evaluation and principal component analysis [42] are275

used to select features that are then evaluated with decision276

trees, the Naive Bayes classifier, and the Bayesian Network277

classifier to detect botnet traffic based on peer-to-peer (P2P).278

With these selection methods, 5, 8, and 12 features were iden-279

tified, respectively. 99% accuracy achieved with the decision280

tree based on the ISOT dataset [39].281

Pektaş and Acarman [43] used linear models penalized282

with the L1 norm (also called Lasso), recursive feature elim-283

ination (RFE), tree-based feature selection methods (ran-284

dom forest feature importance) for the ISOT dataset [39].285

Random forest feature selection produced 99% highest detec-286

tion among all these feature selection methods.287

The studies proposing feature selection do not create and288

compare the optimal sets that can be obtained for different289

multiclass problem formulations. In this paper, we address290

this gap by inducing various learning models for two datasets291

as explained in detail in Section II-C.292

C. DATASET293

In this study, we used two datasets, N-BaIoT [22] and Med-294

BIoT [23]. Both datasets comprise legitimate IoT traffic as295

well as traffic with various types of attacks that originate from296

compromised IoT devices acting as bots.297

N-BaIoT and MedBIoT have 115 and 100 features298

(mainly descriptive statistics measures), respectively, which299

are extracted from network traffic. These traffics are gener- 300

ated by bots deployed in a controlled testing environment. 301

Both datasets have the same features, except that the Med- 302

BIoT dataset does not include network traffic coded as ‘‘H’’ 303

in Table 1. More specifically, the features that are defined 304

for each data point reflect the aggregated statistics of the raw 305

streams of the network in five timewindows (100ms, 500ms, 306

1.5 s, 10 s, and 1 min), which are coded L5, L3, L1, L0.1 and 307

L0.01, respectively. There are five main feature categories, 308

host-IP (traffic originated from a specific IP address, coded as 309

H), host-MAC and IP (traffic originated from the same MAC 310

and IP, coded MI), channel (traffic between specific hosts, 311

coded HH), socket (traffic between specific hosts, including 312

ports, coded HpHp), and network jitter (time interval between 313

packets in channel communication, coded as HH_jit). For 314

each major category, the packet count, mean and variance 315

packet sizes are calculated. There have been extra statistical 316

values like the correlation coefficient (PCC) of packet size, 317

radius, covariance, magnitude, which are derived for Chan- 318

nel and Socket categories along with packet count, mean, 319

variance. In this paper, we used a specific notation to name 320

the features. The feature name is the concatenation of three 321

keywords. The first one represents the category type (e.g.,MI, 322

HH), the second one shows the timewindow, and the third one 323

indicates the statistical measurement function. For instance, 324

‘‘HH_L0.01_mean’’ means this feature is about the channel 325

type that belongs to a 1-min interval with a mean function. 326

In this study, we have developed six different ML clas- 327

sification problems using these two datasets, as detailed in 328

Table 2. The N-BIoT dataset is used for three classifica- 329

tion problems, namely, binary, 3-class, and 9-class. Binary 330

classification basically discriminates malicious traffic from 331

benign traffic. 3-class provides greater scrutiny of malware 332

type by classifying data points into categories, mirai, gafgyt, 333

and benign. For the 9-class classification, the data points 334

have been classified into different attack types: ack, benign, 335
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TABLE 1. Summary of the features of the N-BaIoT and MedBIoT datasets features.

TABLE 2. Classification problems addressed in this study.

compact, junk, scan, syn, tcp, udp, and udpplain. These336

three-class and nine-class problem formulations address the337

attack phase of the botnet life cycle from two perspectives.338

The former identifies the types of malware that can be instru-339

mental in detecting infected hosts in an organizational setting.340

The latter aims to discriminate against attacks carried out by341

bots, which better informs organizations that are targeted by342

such attacks.343

MedBIoT is used for three classification formulations,344

binary, 3-class, and 4-class. As this dataset is collected at the345

C&C or formation phases, such formulations reveal which346

features are important in those phases. More specifically, 347

3-class addresses the identification of the phase (i.e., classes 348

are benign, C&C and Spread), whereas 4-class aims to detect 349

malware category (i.e., classes are benign, Bashlite, Mirai, 350

and Torii). 351

In this work, we have experimented with 20,000 sam- 352

ples of each class label for the addressed classification 353

type. For example, if the classification problem contains 354

two classes, we randomly selected 40,000 samples from the 355

source dataset. 356

III. FEATURE SELECTION METHODS 357

Within the framework of the present investigation, two types 358

of feature selectionmethods are considered. The first is called 359

the filter model, which evaluates a feature or a subset of 360

features using a class-sensitive discriminating criterion [44]. 361

These techniques do not depend on the particular classifica- 362

tion algorithm. The second type of technique is the wrapper 363

model. Techniques of this type use the characteristics of the 364

specific classification algorithm to choose the feature set. 365

A. FILTER MODELS 366

In the domain of numeric feature sets, there are four main 367

types of techniques. The first utilizes the linear correlations 368

between the features. The second is based on the relationship 369

between the inter-class and intra-class separation. The third 370

uses entropy, and the fourth is based on the analysis of 371

variance. 372

1) PEARSON’s CORRELATION BASED TECHNIQUE 373

Based on Pearson’s correlation coefficient (see (1)), the tech- 374

nique requires one to compute the collinearity matrix for the 375

entire set of features to find the redundancy of the features. 376

Pearson’s correlation technique computes the linear correla- 377

tion relationship between two variables. Pairwise correlations 378

between features are analyzed to find the redundancy of fea- 379

tures. P-value of correlation coefficients bounds the ranges 380

between −1 and 1. Two features contain a perfect positive 381

correlation if the value is P = 1. There is no correlation 382

between the two features if the value P = 0, and a perfect 383

negative correlation is accepted if the value P = −1. The 384

formula for the Pearson correlation 385

P =
∑n

i=1[(xi − µx)(yi − µy)]√∑n
i=1 (xi − µx)2

√∑n
i=1 (yi − µy)2

(1) 386
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In (1), µx and µy denote the means of features x and y387

respectively. Greater absolute values of Pearson’s correlation388

coefficient indicate stronger linear dependence between the389

features.390

2) FISHER SCORE391

Fisher score [44] is designed for the numeric features and392

measures the ratio of the average inter-class separation to the393

average intra-class separation. It is also referred to as Fisher’s394

ratio [45]. Formally defined in (2) and denoted as Fs (not395

to be confused with F1 score), the numerator calculates the396

average inter-class separation and, the denominator calculates397

the average intra-class separation.398

Fs =

∑K
j=1 pj(µ

i
j − µ

i)2∑K
j=1 pj(σ

i
j )
2

(2)399

where µij and σ
i
j are the mean and standard deviation of the400

j-th class and i-th feature, pj is the proportion of data points401

of class belonging to the class j. Greater Fisher’s score values402

indicate greater discriminating power of the feature.403

3) MUTUAL INFORMATION404

Among the different techniques implementing mutual infor-405

mation exclusion idea normalized mutual information feature406

selection [46] was chosen. For the case of continuous vari-407

ables mutual information (MI) is defined by [46] as follows:408

I (X ,Y ) =
∫ ∫

p(x, y) log
p(x, y)
p(x), p(y)

dxdy (3)409

Here, p(x, y) is the joint probability density function (PDF) of410

the variablesX ,Y and p(x) and p(y) are the marginal PDFs of411

the respected variables. For the case of discrete variables, [46]412

defines MI as follows:413

I (X;Y ) =
∑

y∈Y

∑
x∈X

p(x, y) log
p(x, y)
p(x)p(y)

. (4)414

In (5) p(x, y) denotes the joint probability mass, the function,415

the function, and p(x) and p(y) are the marginal probabilities.416

Mutual information values fall in the interval given below.417

0 ≤ I (X;Y ) ≤ min {H (X ),H (Y )} (5)418

To make this paper self-sufficient, the main steps of the419

MI -based feature selection algorithm proposed by [46] are420

presented below. Denote I (C; S) the MI between the class421

variable C and the subset of selected features S. Also define422

measure G as423

G = I (C; fi)−
1
|S|

∑
fs∈S

NI (fi; fs). (6)424

1) Initialize the initial feature set F that includes all425

available features and the empty set S of the selected426

features.427

2) Calculate I (fi,C) or each feature fi ∈ F .428

3) To select the first feature, find f̂i such that429

f̂i = maxi=1,...,N {I (fi,C)}.430

4) Update sets F and S as follows: F = F \ f̂i and S = f̂i 431

5) Repeat until |S| = k . 432

a) Compute I (fi; fs) for all pairs of features such that 433

fi ∈ F and fs ∈ S. 434

b) Select the feature fi ∈ F that maximizes the 435

measure (6). 436

c) Update sets F and S as follows: F = F \ f̂i and 437

S = f̂i 438

6) Return the set S 439

4) ANOVA F-TEST 440

ANOVA is one of themost well-known feature selection tech- 441

niques, therefore, does not require an in-depth explanation. 442

This method usually answers the question of whether the 443

values of the given features are independent of the target 444

classification label or not. It is performed in the form of 445

statistical hypothesis testing, where the null hypothesis states 446

that the values of the feature are independent of those of the 447

target label, and the alternative hypothesis states the opposite. 448

The application of this method requires the user to utilize only 449

the features whose values are not independent of the target 450

labels. 451

B. WRAPPER METHODS 452

Unlike the filter models, wrapper methods are classifier- 453

agnostic and choose the most suitable feature set for the 454

particular classifier. The wrapper method is used to calculate 455

the weights of the features using the classification algorithm 456

to measure the performance of the features.Wrapper methods 457

employ the inductive algorithm as an evaluation or criterion 458

function [47], [48]. This approach uses a classification algo- 459

rithm to evaluate subsets of features based on their predictive 460

accuracy (in test data) after cross-validation of the dataset. 461

In the context of our research, we have evaluated subsets 462

of features using the F1 score. Usually, the feature set is 463

being constructed iteratively by adding (forward selection) 464

or deleting (backward elimination) the features. Within each 465

branch, particular methods differ by evaluating the signifi- 466

cance of the features, the goodness criteria of the model, and 467

the number of features added or removed. In the preliminary 468

stage of the investigation, the authors have experimented with 469

six different wrapper techniques. Among them, Recursive 470

Feature Elimination (RFE) [49], Sequential Backward Selec- 471

tion (SBS), and Sequential Forward Selection (SFS) [50] have 472

shown the best results and are included in the comparison. 473

1) RECURSIVE FEATURE ELIMINATION 474

Recursive feature elimination (RFE) is a greedy algorithm 475

based on feature ranking techniques [49]. Based on a char- 476

acteristic of the feature-ranking criterion, the RFE starts with 477

a complete set of features and then removes the least relevant 478

feature one by one to choose the most significant features. 479

The RFE is used with the following classification algorithms, 480

DT, ET, and RF. This method uses the following steps to 481

evaluate the significance of the features. 482
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1) Initialize the initial set of features F that includes483

all available features, set each element of the feature484

ranking list R to 1/n.485

2) Repeat the following steps until the feature set F = ∅486

• Train with the classification algorithm and calcu-487

late the importance of the feature in set F. Order488

the features corresponding to their importance and489

update the list R accordingly.490

• Eliminate the feature of the smallest importance.491

3) Output: List of Feature Rankings R.492

2) SEQUENTIAL FORWARD SELECTION493

We have used two sequential algorithms [50] that work based494

on greedy search algorithms. SFS [50] is a stepwise search495

approach that can avoid excessive computational time con-496

sumption. It works in a bottom-to-top approach. The follow-497

ing steps are involved in the SFS Algorithm.498

1) Start with an empty set S = ∅, F = f1, f2, . . . .fn499

2) while |F|>0500

# |F| is size of the feature set F501

3) fi = argminj∈F [J (S + fi)]502

(Select the feature fi ∈ F with the maximum perfor-503

mance of the classification algorithm and join to the504

set S (the features selected subsequently combine with505

the initial selected feature)506

4) S = S + fi507

5) F = F − fi508

Consider F to be a set of features. Then select the best509

feature among the F features using some evaluation criterion510

function J that maximizes the performance of the classifi-511

cation algorithm. The F1 score is considered an objective512

evaluation criterion function. At each iteration, a new feature513

subset is created with the help of one of the remaining514

available features and the previous feature subset. The new515

subset of features should provide the maximum classification516

performance compared to the addition of any other feature.517

This iteration continues until the total number of features is518

completed in the set F . SFS method is the best and most rapid519

method when a small subset of optimal features is available.520

3) SEQUENTIAL BACKWARD SELECTION521

In contrast to SFS, SBS (Sequential Backward Selection)522

operates in a top-to-bottom approach. The selection of fea-523

tures starts from a set F with n being the total number524

of features. Therefore, the evaluation function produces the525

maximum performance of the classification algorithm for all526

n numbers of features. Each feature is removed one at a time.527

For every iteration, the new subset is created by the n −1528

features computed with the help of the evaluation function,529

and then the worst feature is discarded from the next subset530

of features. This procedure continues until the total number531

of features is left.532

1) S = feature set, F = f1, f2, . . . .fn533

2) while |F|>1 do534

#|F| is size of the feature set F,535

3) fi = argminj∈F [J (S − fi)]536

TABLE 3. Tuning of learning algorithm hyperparameters.

4) S = S − fi 537

5) F = F − fi 538

C. APPLICATION OF THE MACHINE LEARNING 539

WORKFLOW 540

For the computational experiments, the classical machine 541

learning workflow was used. The initial datasets are large 542

enough to provide samples that can be balanced with respect 543

to all characteristics of the dataset, malware type, attack 544

type, and device type. In the preprocessing step, balanced 545

samples were drawn from the dataset of interest. Then, the 546

division into training and testing subsets was carried out 547

proportionally 80/20. Initial experiments have demonstrated 548

that among the k-nearest neighbors classifier (kNN), decision 549

tree classifier (DT), random forest classifier (RF), extremely 550

randomized trees classifier (ET), logistic regression, support 551

vector machine, and Ada-boost classifier, the last three have 552

demonstrated much lower performance and were excluded 553

from further investigation. For each remaining classifier and 554

feature selection technique, a ten-fold cross-validation was 555

performed, while, to ensure better results and the best con- 556

figuration for each classification algorithm, a randomized 557

search was used to find the optimal hyperparameters for 558

each classifier. The range of hyperparameters is described in 559

Table 3. 560

We use the three steps to evaluate the distinct subsets 561

of features in both datasets. First, the F1 score metric is 562

used to evaluate the set of features. Second, computational 563

time is the total time it takes a computer with a particular 564

processor to complete a task. Third, Performance computed 565

the ratio between the F1 score and the computational time. 566

Intrusion detection systems must respond as quickly as pos- 567

sible without sacrificing accuracy. Response time is essential 568

when thwarting the threat in the early stages would limit the 569

degree of losses. For this motivation, time must be considered 570

when evaluating any detection of the model along with the 571

model metrics. The F1 score (see Eq. (7)) is defined as a 572

harmonic mean of precision (P) and recall(R) [51]. In this 573

research work, precision is the fraction of correctly identified 574

botnet samples to all botnet samples identified as a botnet. 575
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TABLE 4. Filter method feature sets for the N-BaIoT and MedBIoT dataset.

On the other hand, recall is the fraction of correctly identified576

botnet samples for all botnet samples in the dataset [52].577

The F1 score provides a more suitable measure of incorrectly578

classified cases than the accuracy measure. We have used the579

harmonic mean of the F1 score, as it penalizes the extreme580

values. F1 score as follows;581

F1 score =
2× precision× recall
precision+ recall

(7)582

In our experiments, we used the computational time to583

calculate the computational cost of classifying a sample.584

We did not consider the training time of the ML algorithms.585

We have experimented with all tasks on the same CPU.586

Finally, to measure the performance of a set of features587

derived from filter and wrapper methods, we calculated the588

ratio between the F1 score and the computational time to589

allow measurement of the gain in detection ability relative590

to the computational expense of this detection [40].591

The experiment carried out in this work was carried out on592

a Ubuntu 20.04.4 LTS machine with 60 GB of DDR4-2666593

R ECC RAM and 2 x Intel Xeon Gold 6148 20C 2.40 GHz.594

We developed our scripts using Python 3, Scikit-learn [53]595

and mlextend libraries [54].596

IV. RESULTS597

This section gives experimental results of the learningmodels598

induced for six classification problems listed in Table 2.599

We analyze the importance of the features obtained by filter600

and wrapper feature selection methods in each problem and601

perform a comparison between the results. Tables 4 and 5602

show the numbers of features selected by the filter and wrap-603

per methods for each classification problem, respectively.604

We provided detailed analysis of the result of each classifi-605

cation problem in the following subsections.606

A. N-BaIoT607

1) BINARY CLASSIFICATION608

In this part, we use filter and wrapper feature selection609

methods to find the optimal feature subsets for binary clas-610

sification of the N-BaIoT dataset. Based on the ratio of611

the highest detection rate of the minimal feature set to its612

computational time, as given in Fig. 2, we selected the best613

model for the implementation of four classifiers with different614

feature selection methods. In this binary problem formula-615

tion, we identified 33 features with fewer correlations accord-616

ing to Pearson’s correlation values. For each filter method,617

TABLE 5. Wrapper methods feature sets for N-BaIoT and MedBIoT.

we select the best features based on their scores. Furthermore, 618

we induce models with feature sets that have increasing num- 619

bers to understand how many features are enough to pass the 620

99% F1 score. Finally, we select the best 3, 5, 3 features for 621

the ANOVA, Fisher Score and mutual information methods, 622

respectively (see Table 4). On the other hand, the wrapper 623

methods usually select three features (for example, DT selects 624

three features in each method), as presented in Table 5. 625

Almost all classifier and feature pairs produce a high 626

detection rate above 99%, as shown in Table 6. Based on 627

the minimal set and computational performance, we selected 628

three pairs and reported more detailed performance results, 629

accuracy, precision, recall, and F1 score values in Table 7. 630

These pairs are: DT with mutual information (that is, three 631

features), Fisher (that is, five features), and SBS (that is, three 632

features). DT with SBS achieves the highest performance 633

metric, as shown in Fig. 3. Among the wrapper methods, 634

Anova provides better results than the others. 635

The mutual information method selected the features, 636

{MI_dir_L0.1_weight, MI_dir_L0.01_weight, H_L0.01_ 637

weight}, fisher score selected {MI_dir_L5_weight, 638

HH_jit_L5_mean, MI_dir_L5_mean, MI_dir_L0.01_weight, 639

MI_dir_L0.01_mean}, Anova identified the feature set, 640

{MI_dir_L1_weight,MI_dir_L0.1_weight, H_L0.1_weight}. 641

SBS selected {MI_dir_L5_weight, MI_dir_L3_weight, 642

MI_dir_L1_ weight}. Almost all features belong to the host 643

category; except one that is a network jitter-type feature. 644

It is important to note that we computed the computational 645

time of the models (i.e. the testing-time performance) after 646

selecting the features in all filter and wrapper methods. Thus, 647

the time required for feature selection is not reported in this 648

paper, as testing time is a more significant aspect compared to 649

training, which is not done so frequently, and, when needed, 650

high resources can be assigned for such task. In this sense, 651

the calculated time can be affected by the number of fea- 652

tures and characteristics of the corresponding learningmodel. 653

However, in our experiments, as expected, we observed that 654
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TABLE 6. F1 scores for binary classification models using feature subsets
(represented in Table 4 and 5) of feature selection algorithms in the
N-BaIoT dataset.

FIGURE 2. Computational time required to classify a sample by binary
classification models on N-BaIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

FIGURE 3. Performance achieved by binary classification models over the
N-BaIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

training the wrapper models is more computationally expen-655

sive compared to filter methods. Among the wrapper meth-656

ods, sequential feature selection algorithms (SBS, SFS) are657

more expensive than recursive feature elimination.658

After identifying the optimal feature subsets from the659

dataset for binary classification, we performed a frequency660

analysis to scrutinize which feature category and time win-661

dows are used primarily by the selection methods, as shown662

in Fig. 4. Host-based feature categories are observed to play663

an important role in discriminating malicious traffic from664

benign traffic. The features of network jitter and socket are665

less preferred. Although the features regarding the longest666

time window, 1 minute, have contributed greatly to the667

TABLE 7. Accuracy, precision, recall, F1, Binary classification scores of the
selected model with performance based on feature sets in the N-BaIoT
dataset.

FIGURE 4. Contribution of feature categories and time windows in
selected feature sets for binary classification in the N-BaIoT dataset.

TABLE 8. F1 scores for 3-class classification models using feature subsets
(shown in Table 4 and 5) of feature selection algorithms on the N-BaIoT
dataset.

detection, there is no clear increasing or decreasing pat- 668

tern regarding the time duration, as the shortest duration, 669

100 microseconds, also plays a significant role in the model 670

performance. 671

2) 3-CLASS CLASSIFICATION 672

In the N-BaIoT dataset, Mirai and Gafgyt malware are used 673

to infect IoT devices. In this part, we report the findings of the 674

three-class classification models that discriminate network 675

traffic as Mirai, Gafgyt, and legitimate. Similarly, we eval- 676

uated the feature selection method and the pairs of learning 677

models according to the same performancemetric we used for 678

binary classification and presented the F1 scores in Table 8. 679

All pairs, except some KNN models, provide more than 680

99% F1 scores. Pearson correlation still found 33 features. 681

We identified six, three, and five features by using filter 682

methods, fisher score, mutual information, and ANOVA, 683
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FIGURE 5. Computational time required to classify a sample using 3 class
classification models in the N-BaIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

FIGURE 6. Performance achieved by 3-class classification models in the
N-BaIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

respectively, as shown in Table 4. The wrapping methods684

mostly selected three features (see Table 5).685

Among all the feature selection methods, the DT and SBS686

pair again achieves the highest performance, as shown in687

Fig. 6. Anova is the best compared to other filter methods.688

Table 9 shows the detailed performance metrics for DT and689

three feature selection methods, Fisher Score, Mutual Infor-690

mation, and SBS. It is obvious that the detection performance691

is higher than 99% for all metrics.692

The optimal feature set selected by the mutual informa-693

tion feature set is {MI_dir_L0.1_mean,MI_dir_L0.01_mean,694

H_L0.01_mean}, the set of Fisher Score is { MI_dir_L5_695

weight, MI_dir_L5_mean, MI_dir_L0.01_mean, MI_dir_696

L0.01_weight, H_L0.01_mean}.697

Compared to binary classification, we were unable to698

identify clear differences between the results. Learning mod-699

els can easily identify the type of malware in this dataset.700

However, a small number of features, 3-5, achieve high701

detection rates regardless of the feature selection method.702

SBS and DT are the pair that performs best. The analysis703

of category distributions for the classification of 3 classes704

is given in Fig. 7. The results are very similar to those of705

binary classification. Host-based features have again played706

an essential role, and the time-window distribution does not707

show a distinct outcome.708

3) 9-CLASS CLASSIFICATION709

In the 9-class formulation, we consider eight different types710

of attack and benign as distinct categories, as presented in711

Table 2. The results of this classification are quite different712

from the results of the binary and 3-class classification with713

TABLE 9. Accuracy, Precision, Recall, F1 of 3-class classification of the
selected model with feature set-based performance over the N-BaIoT
dataset.

FIGURE 7. Contribution of feature category and time window in the
selected feature set for 3-class classification in the N-BaIoT dataset.

TABLE 10. F1 scores for 9-class classification models using feature
subsets (see in Table 4&5) of feature selection algorithms in the N-BaIoT
dataset.

respect to filter methods, as the learning models with these 714

selection methods require a very high number of features to 715

achieve an F1 score greater than 99%. More specifically, 68, 716

28 and 59 features should be fed into the models when Fisher 717

score, mutual information, and ANOVA methods are used, 718

respectively. However, 33 features are identified as not highly 719

correlated by the Pearson correlation method. Wrapper meth- 720

ods show very interesting results. Although RFE provides 721

higher detection results using 20-28 features depending on 722

the type of learning model, SFS and SBS achieved higher 723

detection with only three features. 724

Table 10 shows the F1 scores achieved by the nine sets 725

of classification features of the classes. Except for KNN, all 726
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FIGURE 8. Computational Time required to classify a sample using
9-class classification models on the N-BaIoT dataset using feature sets
(see Table 4 and 5) of feature selection methods.

FIGURE 9. Performance achieved by 9-class classification models in the
N-BaIoT dataset using feature sets (in Table 4 and 5) of feature selection
methods.

TABLE 11. Accuracy, Precision, Recall, F1 summary of classification of
results mutual information and SBS features, DT with 28-feature set and
3-feature set respectively for 9-class classification over N-BaIoT dataset.

other models achieve more than 99% in all selection methods.727

The result of the overall performance metric indicates that728

SBS and DT are the best pair in the 9-class classification729

(see Fig. 9). Among the wrapper methods, DT and mutual730

information emerge as the leading performer.731

3 features used by the SBS and DT pair are as follows:732

MI_dir_L0.01_mean, HH_L0.01_std, HH_jit_L0.01_mean.733

Table 11 shows the detailed classification performance of734

the 9-class classification with mutual information based on735

the 28-feature set and the SBS with the 3-feature set (that736

is, DT is the learning model in both cases). Although the737

detection rates of some classes (e.g., junk accuracy, accuracy,738

recall and F1 UDP scores) decrease to 98%, the remaining739

metrics show figures equal to or greater than 99%.740

FIGURE 10. Feature category and time window in each set of features for
9-class classification.

The frequency analysis of the feature categories shows that 741

the host-based features are still the most important category 742

for the 9-class classification (see Fig. 10). However, the 743

selected features of the channel category are higher compared 744

to the binary and 3-class formulations. The contribution of 745

the network jitter category is also more important in this 746

classification task. This means that learning models need 747

to resort to other features, which provide statistics about 748

network activities between hosts and time intervals between 749

network packets to differentiate attack types. When many 750

types of attack are considered, including various denial-of- 751

service attacks, such features are instrumental in making a 752

distinction between them. Time window analysis provides 753

a similar distribution, except that lower time intervals (i.e. 754

1.5 seconds, 500 microseconds, and 100 microseconds) have 755

closer distributions to each other. 756

4) THE STANDARD FEATURE SET FOR BINARY, 3-CLASS AND 757

9-CLASS CLASSIFICATIONS OVER N-BaIoT 758

In this part, our objective was to discover a feature set 759

that provides high performance for all classification models 760

induced with the N-BaIoT dataset. Here, we do not claim 761

to obtain the feature set that has been proven to be the 762

best for all formulations, but we show that a working set 763

is possible. Intuitively, for this purpose, we have tested the 764

best feature sets of each classification in the other classifi- 765

cation tasks. The best feature set obtained from the 9-class 766

classification provided high detection rates for the remaining 767

binary and 3-classification tasks. However, we were unable to 768

obtain such high results in the reverse situation where binary 769

or 3-class classification features are applied to a 9-class 770

formulation. More specifically, the feature set, {MI_dir 771

_L0.01_mean, HH_L0.01_std, HH_jit_L0.01_mean} that is 772

determined by the SBS and DT pair for the 9-class clas- 773

sification is utilized to induce models for all classification 774

types, and we obtained the results given in Table 12. Except 775

for the Junk and UDP classes in the 9-class formulation, 776

all results are equal to or greater than 99%, demonstrating 777

the effectiveness of this common set in all classification 778

types. 779
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TABLE 12. Classification results using the standard 3-Feature Set for all classification tasks in the N-BaIoT dataset.

TABLE 13. Classification performance of sequential back- ward selection,
DT With 7-feature set for binary classification over MedBIoT dataset.

B. MedBIoT780

MedBIoT dataset has malicious network traffic from Mirai,781

BashLite, and Torii botnet malware, which were deployed on782

83 real or emulated IoT devices. In this subsection, we report783

the experimental results of the binary, 3- and 4-class classifi-784

cation models induced with this data set (see Table 2 for the785

details of classification formulations).786

1) BINARY CLASSIFICATION787

We identified that 34 features are not highly correlated788

according to Pearson’s correlation scores in the MedBIoT789

data set. A high number of features are required for filter790

methods to achieve a reasonable detection threshold rate791

equal to or above 98%. More specifically, ANOVA, Fisher792

Score, andMutual Information can achieve that threshold rate793

with 85, 51, and 36, respectively, as shown in Table 4. On the794

other hand, RFE reaches the threshold value of 24-27 features795

depending on the type of learning model, while 7 features are796

enough for SBS and SFS (see Table 5). We present the F1797

scores for all model and feature selection pairs in Fig. 11.798

Although the pairs do not exceed 98%, at least one learn-799

ing model achieved this threshold for each feature selection800

method. In this data set and in the formulation of the problem,801

SBS still provides the best performance metric, as shown in802

Fig. 13. The results presented in Table 13 indicate that SBS803

achieves a score greater than 99% in all performance metrics.804

7 features selected by the SBS and DT pair are as fol-805

lows: {HH_L1_pcc, HH_L0.01_magnitude, HH_jit_L1_std,806

HH_jit_0.01_weight, HpHp_L1_pcc, HpHp_L0.01_weight,807

HpHp_L0.01_magnitude}. The distributions of the features808

according to the category of features and the duration of809

the time window are given in Fig. 14. When this feature set810

FIGURE 11. F1-scores for binary classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 12. Computational time required to classify a sample by binary
classification models over MedBIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

is compared to the selected feature sets in N-BaIoT, it is 811

observed that the channel category is the dominant category 812

instead of the host-based one. As MedBIoT covers malicious 813

activities regarding the the C&C and formation phases of 814

the botnet life cycle, the features that characterize host-to- 815

host communications become more important. In contrast, 816

N-BaIoT, which covers the attack phase, can discriminate 817

malicious activities based on host-based features. 818

Similar to N-BaIoT, MedBIoT does not show any specific 819

pattern on time periods, indicating whether longer or shorter 820

periods are preferred. Although the longest period, 1 minute, 821

provides more discriminative features among the others, still, 822
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FIGURE 13. Performance achieved by binary classification models over
the MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

FIGURE 14. Feature category and time window contribution in each
feature set for binary classification over the MedBIoT datase.

the second-best category is 100 microseconds, which is the823

smallest one.824

2) 3-CLASS CLASSIFICATION825

The 3-class classification of the MedBIoT dataset aims to826

identify whether the instance that represents a portion of827

network traffic belongs to the spreading or C&C phases828

of a botnet life cycle. The third class in this formulation829

is benign traffic. Similarly to binary classification, filter830

methods require a greater number of features to achieve831

high detection rates. More specifically, features 42, 38 and832

49 should be included by Fisher score, Mutual information,833

and Anova, respectively, to achieve 98% detection rate (see834

Fig. 15.Wrapper methods, SFS and SBS, identified a set with835

7 features. On the other hand, RFE requires 24-27 features.836

SBS and DT are still the best pair of models837

and feature selection methods, as shown in Fig. 15.838

This highest performance is obtained from the follow-839

ing feature set: {HH_L3_magnitude, HH_L0.01_weight,840

HH_L0.01_radius, HH_jit_L1_weight, HH_jit_L0.1_std,841

HpHp_L5_pcc, HpHp_L0.1_magnitude}. The detection842

results given in Fig. 15 indicate that it is possible to find843

learning models for each feature selection method that gives844

a performance greater than 99%.845

Fig. 18 shows that channel-based features are more useful846

than other network categories to achieve the highest per-847

formance. Compared to binary classification, the ratios of848

TABLE 14. Summary of the classification results with the selected model
and feature sets based on the performance of the 3-class classification in
the Med BIoT dataset.

FIGURE 15. F1-scores for 3-class classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 16. Computational Time required to classify a sample using
3-class classification models on MedBIoT dataset using feature sets (see
in Table 4 & 5) of feature selection methods.

FIGURE 17. Performance achieved by 3-class classification models in the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

channel features are more frequent. The time window results 849

are similar to the binary classification outcome. 850

3) 4-CLASS CLASSIFICATION 851

In the 4-class classification, we consider the identifica- 852

tion of the source malware that generates malicious traf- 853

fic. Thus, the labels in this formulation are Mirai, Bash- 854

Lite, Torii, and Benign. Fisher score, mutual information, 855

and Anova require 46, 41 and 52 features, respectively 856
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FIGURE 18. Feature category and time window contribution in each
feature set for 3-class classification in MedBIoT dataset.

FIGURE 19. F1-scores for 4-class classification models in the MedBIoT
dataset using feature subsets (see in Table 4&5) of feature selection
algorithms.

FIGURE 20. Computational Time required to classify a sample by 4-class
classification models in the MedBIoT dataset using feature sets (see in
Table 4 & 5) of feature selection methods.

(see Table 4). SBS and SFS methods with any learning857

model achieve a higher detection with 7 features, whereas858

the feature numbers within the range of 22-29 are suf-859

ficient in RFE. F1 score of 99% can be achieved by a860

learning model in each feature selection method, as shown861

in Fig. 19. SBS and DT are the best pair of performers862

and use the following feature set:{MI_dir_L0.1_weight,863

HH_L1_pcc, HH_L0.01_magnitude, HH_jit_L0.01_weight,864

HH_jit_L0.01_std, HpHp_L0.01_weight, HpHp_L0.01_std}.865

Fig. 22 shows that the channel category is the most important866

category.867

4) STANDARD FEATURE SET FOR BINARY, 3-CLASS AND868

4-CLASS CLASSIFICATION TASKS OVER MedBIoT DATASET869

To find a standard feature set that works for binary, 3-class870

and 4-class classification problems in the MedBIoT data set,871

similar to the case of N-BaIoT, we tested the performance872

FIGURE 21. Performance achieved by 4-class classification models on the
MedBIoT dataset using feature sets (see in Table 4 & 5) of feature
selection methods.

FIGURE 22. Feature category and time window contribution in each
feature set for 4-class classification in the MedBIoT dataset.

of the selected feature set of one classification on the other 873

classification problem. We identified that the feature set of 874

4-class classification also works better in all other classifica- 875

tions, as shown in Table 15. 876

V. DISCUSSION 877

In this study, it is shown that all the machine learning problem 878

formulations realized for the detection of IoT botnet attacks in 879

two datasets, N-BaIoT andMedBIoT, achieved high detection 880

performance in more than 99% with a limited number of 881

features (i.e. 3 and 7 features). 882

In our experiments, we used various filter and wrap- 883

per methods for feature selection, in addition to four main 884

machine learning methods to induce the models. In the case 885

where we use filter methods, the results of feature selection 886

are fed into the models. In wrapper methods, models are used 887

directly for the assessment of feature subset alternatives. Per- 888

formance evaluation was carried out based on the relationship 889

between the F1 score and the computational time required to 890

classify a sample. The wrapper method, SBS, with the DT 891

model has achieved the most satisfactory trade-off between 892

detection capacity and computational cost, exceeding the 893

other alternative feature selection and learning model pairs. 894

Using feature selection approaches, tree-based models 895

(DT, ET, and RF) achieved the best results in all classification 896

types for both datasets, especially in multiclass classifica- 897

tion types. k-NN classifier was not suitable for multiclass 898
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TABLE 15. Summary of classification results using the standard 7-Feature Set for binary, 3-class and 4-class classification tasks in the MedBIoT dataset.

classification and also took the longest computational time899

to classify the sample compared to tree-based models.900

However, there are some differences between the results901

of the MedBIoT and N-BaIoT data sets. The former requires902

seven features, whereas three features in the latter data set are903

enough for high detection rates. Compared to N-BIoT, which904

addresses the attack stage of the botnet lifecycle, MedBIoT905

differentiates post-attack and C&C phases. It can be argued906

that the detection at the attack stagewould be relatively easier,907

as this stage is usually accomplished by sending an enormous908

number of packets (i.e., spam, packet flooding). Therefore,909

more features are needed for other attack stages.910

On the other hand, we observed a remarkable difference911

between filter and wrapper methods in some classification912

formulations. High accuracy rates are achieved with more913

than 28 features with filter methods for 9-class classification914

with N-BaIoT and all classifications with MedBIoT. On the915

other hand, the wrapper methods, SFS and SBS, identify916

an optimal set with 3 and 7 features for the respective for-917

mulations. One interesting observation is that the wrapper918

method, RFE, demonstrates quite different results for these919

formulations when compared to the other wrapper methods,920

so that, similarly to filter methods, it demands a high number921

of features. RFE applies a greedy approach by evaluating each922

feature one by one. Despite the differences in the statistical923

approach, filter methods also evaluate features in a similar924

fashion, one by one; thus, more composite feature set evalua-925

tion of SFS and SBS provides remarkable results in our case.926

Another significant finding is obtained by comparing the927

feature categories that are prioritized by the feature selection928

methods. We identified that host-based features are more929

influential for the N-BaIoT dataset, whereas channel-based930

features show a more discriminatory property for the Med-931

BIoT dataset. As the latter data set focuses on the spreading932

and C&C activity of the IoT malware within the target net-933

work, statistical features that are derived by tracking which934

network node communicates with which other node help935

more discriminate the malicious activity from the benign one936

or determine the type of malicious activity.937

We conducted additional experiments to demonstrate the938

influence of feature categories. For this purpose, we induced939

models with only the features of the corresponding categories940

and reported the F1 scores for the ET, RF, DT and kNN941

FIGURE 23. Comparison according to the feature categories - N-BaIoT
dataset.

FIGURE 24. Comparison according to the feature categories - MedBIoT
data set.

models. As shown in Figure 23, the use of all host features 942

achieves a perfect model with a 1.00 F score, while network 943

jitter would be helpful for higher rates for the N-BaIoT data 944

set. However, the features of the channel category achieve 945

99% rates, and the host and network jitter categories would 946

also be helpful for MedBIoT, as demonstrated in Figure 24. 947

Our results send a significant message to experts who 948

design intrusion detection systems. The attacks originating 949

from the bots (i.e., as simulated in the N-BaIoT dataset) can 950

be easily detected by the sensors that track the incoming and 951

outgoing packet statistics without considering the destination 952

of the traffic. However, post-attack and C&C stages require 953

the sensors to follow the sources and targets of traffic flows. 954

Although some feature selection methods utilize the features 955

of the socket category, the overall picture shows that the 956

identification of receiving parties would be enough without 957

using the source and destination ports. 958

Our comparison regarding the feature categories from the 959

time interval perspective shows that the longest interval value, 960
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TABLE 16. Comparison of selected feature counts and classification
results with previous work.

1min, contributesmore to the set with a higher discrimination961

property.962

We also compared our proposal with the latest meth-963

ods from recent models, and the results are summarized in964

Table 16. For the N-BaIoT dataset, the 9-class classification965

achieved better results with lower subsets of features than966

others. Abbasi et al. provided the 19 most important features967

for various attacks using LR(logistic regression) as feature968

selection. With these features, the ANN model performed969

well with 96.4% accuracy, 93.9% precision, 93.9% recall,970

99.13% F1 score [21]. Parra et al. has created an LSTM971

model with the help of correlation-based feature selection972

to classify attacks and confirmed its model with 75 features973

achieved 97.84% precision, 97.81% precision, 95% Recall,974

96.25% F1 score [56]. Faysal et al. proposed an XGBoost975

model that used 40 related features and stated that the976

model classified attacks with 99.96% accuracy and 99.94%977

F1 score [55].978

Compared to existing models, the proposed framework979

achieved for botnet attack type classification in the N-baIoT980

dataset achieved good detection performance on the SBS-DT981

model (decision tree) with three features: precision of982

99.57%, precision of 99.56%, recall of 99.55% and F1 score983

of 99.55%. The proposed methodology effectively distin-984

guishes IoT botnet attacks from network traffic with high985

detection rates.986

However, feature selection is applied less on the MedBIoT987

dataset. Gandhi and Li has proposed the decision tree, ran-988

dom forest models for binary classification, and selection989

of chi-square characteristics utilized. Twenty features used990

to detect malware type for DT and RF models with 99.3%991

precision, 95% precision, 98% recall, 96% recall. We also992

compared our detection rates with an original MedBIoT993

dataset.994

Our proposed methodology achieved good detection per-995

formance for binary and 4-class classification in the Med-996

BIoT dataset compared to the SBS-DT models. For binary997

classification, 99.34% precision, 99.33% precision, 99.32%998

recall, 99.34% f1 score. For 4-class classification, 99.41%999

precision, 99.36% precision, 99.38% recall, 99.46% f1 score.1000

To maximize the classification performance of the learning1001

model, a random search is used to determine the best set of1002

TABLE 17. SBS-DT optimal parameters for each classification in the
dataset.

hyperparameters for each classification formulation and is 1003

summarized in Table 17. 1004

VI. CONCLUSION 1005

Botnet attacks change the shape and volume to deplete the 1006

target resources on the entire IoT network system. Therefore, 1007

to mitigate the critical impact, a machine learning-based 1008

intrusion detection system is developed to accurately classify 1009

botnet attacks. 1010

In this work, we propose a reduced set of features to 1011

detect and classify malicious activities of popular IoT botnet 1012

malware. We identified six different binary or multiclass 1013

classification problems using datasets, N-BaIoT and Med- 1014

BIoT. We applied various filter and wrapper methods with 1015

four machine learning methods to these datasets. Finally, 1016

we derive an optimal set of features for each classification 1017

problem. To our knowledge, no detailed comparison between 1018

the optimal feature sets required for different classification 1019

problems of IoT botnet detection, which can vary depending 1020

on the stage of the botnet life cycle, has been done before. 1021

We obtained very high detection rates for each classifi- 1022

cation problem with fewer features. The decision tree-based 1023

SBS takes less time to classify the samples with the highest 1024

detection rate. Wrapper methods, SFS and SBS, were effec- 1025

tive in finding the optimal feature sets in each classification. 1026
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Filter methods provide suboptimal results in terms of fea-1027

ture numbers for 9-class classification with N-BaIoT and1028

all classifications with MedBIoT. Host-based features are1029

more instrumental in the detection rates for N-BaIoT, whereas1030

channel features play a more important role for MedBIoT.1031
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