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ABSTRACT Resistance to differential cryptanalysis is a fundamental security requirement for symmetric
block ciphers, and recently, deep learning has attracted the interest of cryptography experts, particularly in the
field of block cipher cryptanalysis, where the bulk of these studies are differential distinguisher based black-
box attacks. This paper provides a deep learning-based decryptor for investigating the permutation primitives
used in multimedia block cipher encryption algorithms.We aim to investigate how deep learning can be
used to improve on previous classical works by employing ciphertext pair aspects to maximize information
extraction with low-data constraints by using convolution neural network features to discover the correlation
among permutable atoms to extract the plaintext from the ciphered text without any P-box expertise. The
evaluation of testing methods has been conceptualized as a regression task in which neural networks are
supervised using a variety of parameters such as variations between input and output, number of iterations,
and P-box generation patterns. On the other hand, the transfer learning skills demonstrated in this study
indicate that discovering suitable testing models from the ground is also achievable using our model with
optimum prior cryptographic expertise, where we contribute the results of deep learning in the field of deep
learning based differential cryptanalysis development.Various experiments were performed on discrete and
continuous chaotic and non-chaotic permutation patterns, and the best-performing model had an MSE of
1.8217¢=9% and an R? of 1, demonstrating the practicality of the suggested technique.

INDEX TERMS Cryptanalysis, deep learning, convolution, deconvolution, plaintext, ciphertext, block
cipher, P-Box, attack.

I. INTRODUCTION
A. MOTIVATION AND GOALS OF THIS PAPER
Block ciphers are famous cryptographic alternatives that
improve data confidentiality while also providing the frame-
work for a wide range of other cryptographic algorithms and
network protocols [1].

A block cipher uses a key-dependent transformation to
handle axed-length (block) data, which frequently includes
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generic operations like substitution and permutation. The
key-dependent modification should be carried out over
several rounds until the complete ciphertext is generated
(multiple rounds).A key scheduling technique is used to
produce round keys from a master key for each encryp-
tion round. Among the algorithms that use this technique
are the modern block ciphers, whose basic structures are
divided into several categories, including the generalized
Feistel structure (GFS), addition-XOR-rotate (ARX), and
substitution-permutation network (SPN). Aside to that, per-
mutation techniques (P-boxes) are widely applied to various
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image and video encrypted communication processes, and
they are recommended as a straightforward solution in
the design of business and privacy engineering fields in
social-use network systems where the recommended security
level, as well as the potential cost demanded for a potential
threat, are both low.

On the other hand,cryptanalysis is an assessment step in
the process of the development of those ciphers that assists
developers in designing more secure cryptosystems as well
as measuring the overall operational efficiency of the pro-
posed algorithm. This step could be performed during the
construction process of cipher architecture or even after the
final deployment.From this perspective, attempts to reduce
the complicated task of cryptanalysis toward a computational
analysis requiring only a basic understanding of cryptography
have inspired scientists to explore the use of machine learn-
ing. Rather than relying heavily on cryptanalysts to develop
a stronger cryptosystem structure, machine learning models
have been widely implemented using data provided by the
cryptosystem itself to simplify this audit step [1].

The early implementations of machine learning models
in cryptanalysis focused primarily on training the models to
imitate cipher behavior under the assumption of an available
secret key, and while deep learning has recently piqued the
interest of cryptography experts, particularly those special-
izing in block cipher cryptanalysis, the great majority of
research has concentrated on deep learning-based black-box
cipher attacks [2]. A block cipher is properly secured enough
for effective use in cryptography if it has proven tolerance
to different breaking cryptanalysis strategies over a specified
time period, and it should be highlighted that resistance to
differential cryptanalysis is among the most important secu-
rity necessities for symmetric block ciphers. In this sense,
differential cryptanalysis methodologies have recently been
used for something altogether new: training machine learn-
ing algorithms for cryptanalysis applications. In this context,
Rivest [3] studied the interactions between machine learning
and cryptanalysis many years ago, whereas Gohr [4], who
provided the first effective application of deep learning in the
field of traditional cipher attacks, which has only recently
gained popularity. By applying a machine learning-based
differential distinguisher developed on differential data, the
greatest cryptanalytic attack to date was achieved against
a round-reduced Speck32/64. His results demonstrated that
machine learning distinctions outperformed classical differ-
ential distinctions, opening the path for further study in the
subject. As a result, further investigation is devoted to under-
standing the possibilities and limits of machine learning,
which is often designed to evaluate the strength of cryp-
tographic systems. In the classical investigation works on
permutation techniques used for image encryption [43], [44],
[46], [54], the researchers employed a known plain attack
(KPA) to restrict the number of pairs required to partially
or completely infer the permutation used key. The problem
is that all of these studies concentrate on generating pictures
with a uniform color distribution to reinforce the results while
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minimizing computation time and storage space. This uni-
form distribution of elements does not occur in natural images
when using images without unified distribution or when
deploying permutation algorithms in the operational mode,
which reflects the work’s weakness. Despite the higher recov-
ery performance, it’s indeed insufficient and cannot properly
determine the appropriate permutation aspects. In the fre-
quent circumstances of non-uniform color distribution, where
the calculated size of the key search space rises appropriately,
the outcome does not appear to be sufficiently pleasing.
Furthermore, those linked research appears to be infeasible
against lower color number ciphers, particularly white-and-
black images, where reconstructing the real shape of the
encrypted picture is impossible. However, these studies do
not address another critical issue in the field of cryptog-
raphy because all prior research is based on a black box
attack that uses a predetermined number of (cipher/plain)
pairs encrypted by permutation with no specification of the
permutation rounds number or key generator pattern type.

B. CONTRIBUTIONS

This paper extends prior researches [43], [44], [46], [54] to
overcome their drawbacks by using deep learning to assess
P-box permutation methods and technologies widely used in
multimedia encryption. Most studies that fit this condition
in the literature attempt to recover the whole plain form of
a particular cipher using classical research approaches and
various optimization methods to find the used key or most
parts of it by using black-box attacks. At the same time, those
methods make it impractical in many situations because they
go into important details and constraints of the optimiza-
tion algorithms and parameters of methods used, whereas
cryptanalysis’s real purpose is limited to the acquisition of
just the cipher sense and its basic concept, which can be
reached by black-box based deep learning attacks without any
complicated task of cryptanalysis and hard algorithm details.
Furthermore, these approaches appear to be hard to reuse.
On the other hand, our technique provides a relatively basic
process that can easily be reused in the testing processes.
Image files, unlike text files, have unique characteristics such
as large data capacity, redundancy, and strong adjacent pixel
correlation that necessitate the use of specialized strategies
to deal with them in the encryption process to break the
correlation of adjacent pixels. Among these are permutation
algorithms, which are based on non-linear systems, and chaos
theory.This technique appears to be beneficial in transfer-
ring media files and high-resolution pictures across insecure
channels.

We explore the advantages of deep learning cryptanalysis
techniques on the evaluation process, employing convolution
neural network features ,by a black box attack, to discover
the correlation among permutable entities to effectively and
efficiently extract the plaintext from the ciphered text without
any P-box knowledge.

We provide an automated decryptor based on deep convo-
lutional neural networks that outperforms related work that
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relies on traditional methods. We define a decryptor as a
neural network model with the capability of decrypting a
plaintext/plainimage without knowledge of additional details
such as the small difference distribution [54],number of iter-
ations, and P-box generation patterns.

— In our scenario, we focused on data that did not have a
unified distribution. Because the data-driven methodologies
utilized in prior research to demonstrate their potential ben-
efits are based on the unified distribution of atoms, which
fully matches the theoretical tests, which is a performance
mismatch between the theoretical approaches and measured
experimental execution. We show that even with limited
data distribution, our neural decryptor successfully employs
ciphertext pair aspects to maximize information extraction
with low-data constraints in terms of the absence of uniform
distribution that were not addressed in previous differential
attack works implemented in previous studies. [43], [44],
[46], [54].

— Also, this study focuses on applying machine learning
techniques to expand the generally used model of differen-
tial cryptanalysis . We contribute to this area of study by
studying the capabilities of deep learning to support differ-
ential cryptanalysis to measure the security of block ciphers.
The assessment of block cipher security in which artificial
neural networks are developed and employs a multitude of
elements such as input and output distinctions, the number of
iterations, and P-boxes used patterns. — The transfer learning
skills exhibited in this study, on the other hand, demonstrate
that determining approved input differences from scratch is
also achievable by the networks with optimal background
cryptography knowledge.

C. OUTLINE

The following is the structure of this document. Section 2 con-
tains the famous published research on the use of machine
learning in cryptanalysis. Section 3 provides an overview of
the P-box block cipher for multimedia, as well as a brief nota-
tion and definition of the cipher. Many classical attacks on
permutation ciphers are presented. In Section 4, many exper-
iments to test the effectiveness of training DL-decryptors are
presented. In Section 5, considerable experimental evidence
is explored.Finally, in section 6, a brief overview of the
relationship between our solution and previous literature
works is provided.

Il. RELATED WORKS OF USE MACHINE LEARNING IN
CRYPTANALYSIS

Aron Gohr employed machine learning to construct an
8-round differential distinguisher for the SPECK32/64 cipher
in 2019 [4], and based on it, an 11-round attack that surpassed
earlier conventional techniques was built. Gohr’s core aim
was to use artificial intelligence to create new cryptanalysis
attacks. By analyzing the output differences of the ciphertexts
for a certain plaintext difference, he constructed a neural
classifier in SPECK32/64 to discriminate between a block
cipher and a random permutation.
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Then, he evaluated this neural distinguisher against
the famous SPECK32/64 all-in-one difference distribution
database, which is also able to commute because of the small
block size of the encryption, and the results showed that
ML-distinguishers are an acceptable model behind it.

Recently, machine learning has been deployed to perform
linear cryptanalysis. Hou et al. applied machine learning to
achieve a linear attack on the DES encryption [5], employing
known plaintext and ciphertexts. The findings show that in
the DES cipher, a neural network can distinguish the XOR
distribution of a linear expression. Other attacks, such as
integral, have also been studied in connection with machine
learning [6].

Modern studies in this field are not restricted to block
ciphers: Liu et al. [7] use deep learning to evaluate the
security of Xoodyak hash mode variations against preimage
attacks. They developed a model to predict the message of a
hash function for one round of permutation and reported that
the accuracy was great. However, as the number of rounds
increases, the efficacy of the deep learning preimage attack
decreases.

With modest success, a similar method is employed to
cryptanalysis lightweight cryptographic algorithms, FeW and
PRESENT [9], [16] deep learning models were trained, veri-
fied, and validated on data that included plaintext, ciphertext,
and intermediate round data created with the same encryp-
tion key. In the work of [10], he developed a learning algo-
rithm to recover the secret keys of the Caesar and Vigenere
poly-alphabetic and substitution ciphers. In [11] also genera-
tive adversarial networks have been employed to break these
traditional cryptosystems. Machine learning algorithms and
classification skills have been used to detect cryptographic
algorithms from ciphertexts in the works of [12] and [13].
Classifiers were trained using known ciphertexts produced
by a collection of six widely used cryptographic methods.
Benamira et al [8] conducted a more detailed investigation
of the operation of ML-based distinguishers, focusing on
what information they employ, Their results demonstrate that
these machines not only perform the differential distribu-
tion on ciphertext combinations but that the distinguisher
is influenced by the penultimate or ante-penultimate round.
They suggest a new pure cryptanalysis distinguisher with the
same accuracy as Gohr’s neural distinguisher based on their
findings. [1] investigated the influence of block cipher char-
acteristics on prediction accuracy by training deep learning
algorithms to estimate the amount of active S-boxes for GFS
cryptosystems. Deep learning has been used in both of these
strategies, rather than just simpler, conventional machine
learning techniques.

Further machine learning algorithm distinguishers and
cryptanalysis against Simon, Speck, and non-Markov ciphers
have also been introduced [14], [15]. The findings in [64] add
another contribution by investigating the capability of lin-
ear and nonlinear machine learning classifiers in evaluating
block cipher security in cryptanalysis using machine learning.
According to their findings, machine learning models identify
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a given block cipher result as secure or insecure depending
on the number of active S-boxes. Nonlinear machine learning
model types outperform linear models when evaluating inputs
from previously observed ciphers during training, achieving
prediction accuracy of up to 93%. But when evaluating inputs
from other unobserved ciphers, nonlinear models outperform
linear models with an accuracy of up to 71 %. These crypt-
analysis works motivate us to investigate the use of deep
learning techniques to overcome traditional cryptanalysis
challenges in the most efficient manner possible.

Ill. BACKGROUNDS

A. PERMUTATION P-BOXES

A basic encryption scheme includes two major alterna-
tives for accomplishing Shannon’s confusion and diffu-
sion metrics: substitution (S-box) and permutation (P-box)
phases [17]. While the permutation stage changes the loca-
tions of atoms, the substitution stage changes the values of
atoms. These two alternatives appear to be able to deal effec-
tively with digital multimedia encryption while minimizing
distraction, accidental deletion, and obfuscations caused by
the encryption operation, and it must be noted that many
block-cipher multimedia cryptographic structures involve
independent processes for all permutation and substitution
procedures [18].

Many block ciphers, including AES, substitution-
permutation networks (SPN), and generalized Feistel
structures (GFS), lightweight block ciphers, employ public
permutation, and it is also a symmetric cipher for secret
permutation, with the key being the secret for generating the
permutation sequence [1].

B. DEFINITION AND NOTATION

Definition:

The function P : B" — B™

P is called P-BOX if there exists a sequence (i)}’ = 1,
Where i, € {1,...,n}

such thatforallb e B"andk =1,...,m

we have: P(b); = bijy.

o Itjust says: the K~ item of P(b) represents the il_(lh item
of b.

« P-BOXis a special type of S-BOX.

o P-BOXES permute, repeat or discard the elements of the
input but do not change them.

o Because P-BOXES are a special type of S-BOXES,
we denote that “n = m”.

For multimedia permutation, the image M is represented as
a two-dimensional array of positive integers with size (MN).

o Each element of M entry variable M is an image pixel
s defined as: M,(i, j).

o Where (i, j) and [ are the pixel coordinates in M and the
intensity value, respectively.

« Each element position is shifted to another place during
the permutation step, to reconstruct the ciphered image
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without distortion, this technique must be a one-to-one
correspondence.

o The secret permutation phase could be seen as a two-
dimensional table, with each table member holding the
new element location.

Prm is a permutation table (P-box) of size MN that is
defined as in following:

] 225 Pln

P21 - ool P2n
Prm =

Pml - oo onn Pmn

o The permutation Prm, represented by the function T} in
the following : C = MTy = Ty (M).

o Ty isabijection function that converts each element e;; of
M with location (i, j) to egj anew location (7, j') referring
to a key k over a set number of rounds with i # i’ and
j#jandi, i €{l,---m}andj,j € {1, --n}.

11 vveve enn en
€] e et em
C = Tk
L eml o emn |
-, -
e/” ......... e}n
621 ......... ezn
C =
/ /
R € |

o The permutation relationship can be expressed as a
matrix Prm[MN] that contains the cipher image pixels’
positions of every clear image.

o This notion assumes that those cryptographic algorithms
based on permutation can be deciphered using the same
technique.

o As a result, the starting location of pixel p must be
determined using the inverse function kal .

o The T function as well as its inversion Tk_1 are formed
by the encryption private key k& and have the same
dimension as the considered plaintext witch is the block
cipher size (P-box size).

o Asaresult, this framework reveals that image encryption
reflects a symmetric block cipher, with an input size of
(MN) as well as a key size of (MN).

o We conclude that all permutation approaches will be
included within the [MN]! possible scenarios that also
reflect the greatest number of selected plaintexts that
outcomes in a conclusion, and that permutation crypt-
analysis should thus concentrate on those dimensions as
a problem space [54].

Permutation methods are frequently included as multi-
media content encryption techniques, and they are strongly
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advised as an attractive option in the composition of mar-
keting and security engineering disciplines in insecure chan-
nels where the requested security measures and the related
impacts of a security threat are generally low [54].

Because of its simplicity, flexibility, size conservation,
and effectiveness in masking apparent visual information,
permutation is a common method in many secure multimedia
systems. It is divided into two sorts, dependent on whether or
not it is linked to a secret key: public permutations and secret
permutations.

According to the digitized multimedia’s particular format,
the quantity of items that could be shifted is higher than its
analog counterpart. Such items include bits [19], [20], [21],
[22], bit-planes [21], [22], pixels [23], [24], [25], pixel blocks
[23], [26], [27], transform coefficients [23], [28], [29], [30],
variable-length code-words [30], tree nodes [31] motion vec-
tors [30], [32], prediction errors [23], [32], [33], and several
different sorts of those types [30], [32].

The encryption strategy is implemented directly on the
picture frame in the spatial domain, and efforts in this aspect
rely on direct modification of the picture intensities. The
encryption in this field eliminates the correlation between the
pixels. Using the opposite procedure, the pixel intensities in
the picture could be fully restored without any errors.

Schemes in the frequencies field of cryptographic algo-
rithms are focused on altering the frequency of the picture by
transformations. Hence, recuperation of the original picture
pixel intensities in the decryption process frequently results
in distortion and information degradation.

The permutation transitional period is often carried out
by using a variety of chaotic and non-chaotic strategies,
such as using the logistic and Arnold’s map [34], [35]
for discrete chaotic maps. Furthermore, the Lorenz attrac-
tor and Chen’s hyper-chaotic system are used to generate
chaotic permutations [35], [36] with continuous attractors.
A range of different techniques, including the chess-based
horse movement [35] and the trajectory of a water wave
movement [37], could be processed to create non-chaotic
alternatives.

C. MULTIPLE CLASSICAL ATTACKS ON PERMUTATION
CIPHERS

For a long time, researchers have been interested in the
security of permutation encryption techniques. Because the
unique architecture of analog video signals limits the flexi-
bility of building elaborate permutations, the cipher text-only
attack (COA) has an effect on Numerous permutation-only
broadcast-TV devices [39].

For example, Bertilsson ef al. [38] presented another
approach to the famous architecture of Matias and
Shamir [40], wherein every structure of a video is examined
over to the other multiple pseudo-random space-filling curves
to selectively retrieve the contents of the video by using the
connection between subsequent frames.
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Whenever secret permutations are used to encrypt multi-
media content information, the situation appears to improve
dramatically.

Furthermore, a cipher text-only attack (COA) can still be
successful if certain correlations emerge between the items
to be permuted. In [41], Li e al. showed a COA attack on
row-column shuffled pictures by taking advantage of any
connection between distinct rows and columns.

The above approach has been further expanded in [42] to
break permutation-only picture encryption of pixel bits.

However, if the atoms of each element L are not low and the
entropy contained in each element is significant, it is evident
that finding for all (L!) possibilities is very complex, and it
hence COA is practically infeasible.

As a result, several research strategies propose building
more complicated ways to generate secret permutations in
order to provide higher security while also satisfying various
additional application-dependent needs [25], [26], [30], [32].

Despite efforts to improve the resilience of permutation-
only ciphers to cipher text-only attacks, most cryptographic
algorithms of this type are vulnerable to plaintext attacks.

The impact of a chosen-plaintext attack (CPA), in which
the adversary obtains the cipher text of a chosen plaintext,
is increased by making all elements of the plaintext distinct
from one another (input difference).

From the results of [43], Jolfaei et al. [44] demonstrated
that the minimum constraint on the number of selected plain-
text to completely extract the fundamental permutation pat-
tern is (Log,l), where r seems to be the number of potential
intensity.

It was hard to calculate how often these known plaintexts
are required to properly break the fundamental permutation
pattern in the case of a targeted attack (KPA), which rep-
resents an attack model that varies from CPA only in the
implication that the adversary cannot choose the plaintext
arbitrarily.

In general, L is much larger than r in multimedia data.
According to the pigeonhole principle, certain values in
0,1,...,r must occur more than once. The same pixel
quantity of 0 should occur approximately 512 times within
the permutation encrypted ciphered image when a known
plainimage of size (512x512) has a uniform distribution. As a
result of witnessing this clear picture and the accompanying
cipher one, there must be ([512]!) possibilities for one item
in the permutation pattern whose pixel value corresponds to
zero [54].

— Viewing many more pairs of known plainimages and
encrypted images instinctively should eventually remove the
uncertainty from such experiences [54].

Li et al. gave a quantitative analysis of the known plaintext
attack on permutation-only multimedia algorithms in [43]
by expanding the work in [45]. Their approach consists of
two phases: partitioning a permutation sequence into various
groups based on the atom values in every plaintext/ciphertext
combination and finding the intersection of the sets between
different pairings.
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By establishing a tree structure, this approach was
enhanced in terms of storage and computational complexity
in [46]. Both of these studies came to the conclusion that the
number of known plaintext is in the rang of (Log,L) [54].

These two publications are famous for the development
and study of lightweight multimedia encryption systems
due to their universality [22], [44], [49], [50], [51], [52],
[53]. From the standpoint of composite representation, Leo
Yu Zhang re-analyzes the KPA attack on permutation-only
ciphers.

Bianchi et al. [47], [48] confirmed it in a series of
publications, suggesting that it is used to minimize the dimen-
sion of secret text and increase the speed of linear pro-
cesses on ciphered data created using additive homomorphic
cryptograms.

He provides a complete theoretical study of the KPA
cryptanalysis on permutation-only systems using compos-
ite representation. Many KPA algorithms are implied by
the composite representation, one of which outperforms the
well-known “optimal” approach in terms of faster com-
putation with the same storage. Leo Yu et al. [54] present
a complete theoretical investigation of the KPA attack on
permutation-only ciphers, in contrast to prior work [43], [44],
[46], Many KPA algorithms are implied by the composite
representation, one of which outperforms the recognized
“optimal” approach in terms of faster computation with the
same storage [54].

IV. OUR NEURAL DECRYPTOR

A. DATA SETS

For training and cracking tests, the MNIST [55] and
FASHION MNIST [56] data sets are utilized.

Specifically, we use 60000 plain pictures from the MNIST
and FASHION MNIST data sets to generate our encrypted
images, which represent the training set, and the remaining
10000 ciphered images from the same dataset for the test set.

The non-uniform distribution of colors in each image
would be the main motivation for selecting such a dataset
where the intensity of the picture is stored as a number
between 0 and 255, providing each pixel with 256 different
possibilities. The number O represents black, whereas the
value 255 represents white, and the intermediate values are
grayscale levels ranging from black to white.

The histogram is an effective instrument in image process-
ing because it illustrates the intensity (or color) distribution
of a picture.

The distribution of color intensity created by the MNIST
and Fashion MNIST databases has been calculated, as illus-
trated in the graphics below. In which we can see the table
values as well as the shades of gray that describe the image
in the absence of a uniform distribution.

Figures 1 and 2 demonstrate 16 samples from the fashion
MNIST and MNIST data sets, respectively, while tables 3
and 4 indicate the intensity distribution of their corresponding
samples from the two data sets.
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B. DEEP LEARNING MODEL

1) NEURAL DECRYPTOR

The model computes the difference between various inputs
and outputs based on the dataset, using numerous parameters
such as batch size and pixel values, and the present key char-
acteristic is the correlation between adjacent pixels in two-
dimensional space.The decryptors’ objective is to extract the
visual difference between the inputs and the outputs, which
would be formally defined as follows:

o Ad = Input; ® Input
where Input| and Input, are two distinctive plainimages
and ® denotes to the dissimilar function.

Because we work in a two-dimensional space, the dis-
similar function represents the distance between two
images.For more details, if we place two images that
have the same size on top of each other, the function
represents the number of pixels in the same position in
the two images that have different colors and this can be
noted as follows:

Input; = Img and Inputy, = Img;.

The dissimilar function represents the number of pix-
els P; with the condition P1; #P2; and P1;; € Imgy,
P2j; € Img,.

o Ad' = Output) @ Output, For an outputting distinction,
Ad’ can be alternatively constructed by exploiting a pair
of relative cipher images Output| and Output,.

o The underlined I-iteration differential pathway like the
propagation of Ad to Ad’ after i iteration of permutation

is represented by: Ad — Ad'.

« Every differential direction must have a specific proba-
bility of holding: Pr(Ad — Ad’) = a" in the case of
unified distribution of the intensity I with I € {0, ..., a}.

witch the current work seeks to reduce because differential
patterns can be used as a statistical or quantitative distin-
guisher [43], [44], [46], [54] for permutation cryptanalysis
attacks.

In the case of a non-unified distribution, every differential
direction must have a specific probability of holding:

Pr(Ad > Ad') = a~? with b > p, posing a performance
gap in current works [43], [44], [46], [54]. We show in this
paper that, even with the absence of data distribution, our
neural decryptor successfully employs aspects of ciphertext
pairs that are not addressed by the previous differential works.

2) THE CHOICE OF MACHINE LEARNING MODEL

Test evaluation is conceptualized as a regression problem
for a supervised model in which layers of the model are
trained by many characteristics such as variations between
input and output, number of iterations, and P-box generation
patterns.

Deep learning algorithms are used to find a decryptor
because they can detect hidden structures in digital informa-
tion besides the need for explicit intentional feature extraction
engineering.
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We experimented with several neural network types, such
as the basic Multi-Layer Perceptron (MLP), deep neural net-
work (DNN), convolutional neural network (CNN), and long-
short-term memory network (LSTM).
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FIGURE 4. Corresponding MNIST samples color intensity distribution.

To get the highest accuracy and learning speed, we investi-
gated the width (number of neurons for every layer) and depth
(number of hidden layers) of the latter.
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We also performed experiments including several sorts
of activation functions as well as the weights initialization
technique.

After many experiments, we found that the CNNs [57] are
appropriate for the task of identifying a decryptor .

The main reason for this choice is that CNNs are designed
to recognize patterns in input data, which aids the differential
process, and it works for every input where two-dimensional
data is connected in any manner.

Convolution is based on three key techniques that can help
in the enhancement of a machine learning approach, which
are:

o Sparse interactions: Classical neural networks employ

matrix multiplication by a table of features with distinc-
tive parameters specifying the relationship between each
incoming and outgoing unit. This signifies that each
element of output communicates with each element of
entry, which is not the case with convoluted neural net-
works. This is accomplished by making the core lower
than the entry.
This ensures that the model must store fewer parameters,
which reduces the model’s memory requirements and
improves its efficiency. This also means that the calcu-
lation of the departure requires fewer operations. These
efficiency improvements are often significant. Despite
the limited distribution of data, this property enables our
proposed model to establish a strong distinction between
the corresponding inputs and outputs, as well as the
different color intensities [57].

o Parameter sharing: This refers to the use of the same
characteristic for more than one function in a model.
In a convolution network of neurons, each core element
is used at each entry location. The parameter sharing
performed by the kernel size ensures that instead of
learning a set of different parameters for each location,
we just discover one set, which minimizes the model’s
size of the data requirements even further [57].

o Equivariant representations: In the case of convolution,

the layer has equivariant interpretations due to the spe-
cial property of parameter sharing.
When a function is said to be equivariant, it appears to
mean that even if the input changes, so too does the
output. In particular, a function H(x) is equivalent to
a function K if H(K(x)) = K(H(x)). This property
enables our proposed model to establish a strong link
between the plain and cipher pairs [57].

3) ARCHITECTURE

We proceed by recovering permutation pattern information
from cipher images using a convolutional encoder network.
Furthermore, using a symmetric deconvolutional generator
network, we construct encrypted pictures from the features
to match their equivalent plainimages. To decrypt the P-box
encryption technique, we must first involve a strong map-
ping function that can be expressed as the inverse transform
between encrypted and plainimages.
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o Deep convolutional neural networks (CNN) [57] are
used to mimic such complex inverse characteristics. In
Fig.5, the system is split into convolutional and decon-
volutional groups.

o The input is encrypted images specifically mentioned
as X in convolutional groups, and we start generating
six convolutional layers to quantify input image compo-
sition that gets low-dimensional characteristic features,
with the operating condition described as ¥ = O(X).

o All these characteristic features will be used to define
the dense layer parameters for profound understanding
to detect hidden features in data sets without the need for
intentional feature selection.

« Form the dense layer we reverse the convolution stage in
deconvolutional groups and reestablish the basic images
with good accuracy.

o The inverted procedure is expressed by the following
equation: X = H(Y).

o The regenerated images are compared to corresponding
ground truth plainimages presented as objective 7', with
the error function MeanSquaredError(MSE).

4) HYPER-PARAMETERS

When deploying machine learning algorithms, the hyper-
parameters that make the biggest difference for a particular
task must be chosen. These parameters are often determined
experimentally by analyzing multiple network topologies and
adhering to best practices. There are automated ways of
tuning the hyper-parameters [60], but they demand significant
resources that can be difficult to replicate. Following that,
we provide the results of the manual architectural search.

The remaining hyper-parameters that were correctly

applied in our interesting experiments are listed below:

o Initial Learning rate: 0.1.

« Batch Size: 2000.

o Epochs: fixed in 1500.

o Trainable parameters: 679 338.

o Weights initialization: Xavier Initialization [61], also
known as Glorot Initialization, is a neural network ini-
tialization strategy. Biases are set to zero, and for each
level, the weights Wj; are established as:

1 1
- 1
W’W] M

where Ds is a uniform distribution and Prv is the dimen-
sion of the preceding layer (the number of columns
in W).

o Optimizer: As an optimizer, we used the Adam algo-
rithm [58]. Since it slightly differs from the classical
gradient descent we presented before, we give a brief
explanation here. We denote two sequences:

X = Yixp—1 + (1 = »)fs 2)
vi = yya—n + (1 — y)f? )

x; and y; are respectively 1 order (mean) and 21d order
(variance) gradient estimates.

W,'j:DS|:
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andf, = VEQU~D
where 0(¢) represents as before our trainable parameters,
E is our loss function and y1, y» are constants.

o Error function:

— The mean squared error (MSE) [59] of a regression
line indicates how near it is to a set of values by
squaring the distances between the values and the
regression line (the ““errors’). Squaring is essential
to remove any negative parameters. Larger differ-
ences are also found to be more significant. The
mean squared error is so named because we are
computing the average of a sequence of errors. The
smaller the MSE, the more accurate the prediction.
Below is the description of the mean squared error:

MSE 1i@ 3)? @)

- 1 1
43
With:
* n is the number of items.
* 2 1S summation notation.
% y; represent original ground of truth or observed
y-value.

x ¥ is the predicted y-value from the model.

— Instead of single-point predictions, the quantile loss
function is used to forecast intervals or ranges of
predictions. The quantile regression loss function
is used to predict quantiles, as both the title and
subheading indicate. A quantile is indeed the value
from which a particular amount of observations in
a group are derived.

o The coefficient of determination (R — squared) is a met-

ric that offers information about a model’s goodness of

fit. In the framework of regression, this is a measurable
statistic about how well the linear regression accurately
simulates the correct information. It’s indeed significant
when using a quantitative model to better estimate out-
comes or validate hypotheses. There are other versions

(see reminder below); the one shown here is the most

commonly used:

R — squared = 1 — %, Q)
> i =)
T Tew @

with SSR is the sum squared regression and SS7T rep-
resents the total sum of squares. The complete sum of
squares would be the sum of the information’s distance
from the average squared, whereas the sum multiplied
regression is the total of the residuals squared. It would
only handle values between 0 and 1 because it is a
percentage.

The residual, according to each measurement, is the
difference between the estimated and observed values of
the parameter y.

Residual = actual y value — predicted y value, (7)
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TABLE 1. Convolutional groups parameters.

Conv  Filters Kernels Strides Padding Parameters

I 140 §H)) §H)) valid 280
2 112 (1,1) (1,1) valid 15792
3 84 (1,1 (1,1) valid 9492
4 56 1,1 (1,1 valid 4760
5 28 (1,1 (1,1) valid 1596
6 1 (1,1) (1,1) valid 29

TABLE 2. Dense layer parameters.

Dense Layer ~ Neurons  Trainable parameters
1 784 615440

ri = yi — Yi. )]

A negative residual indicates that the desired value was
too great, whereas a positive residual indicates that the
value obtained was too lower. A regression line’s goal is
to minimize the sum of residuals.

For calculating residuals, recognizing that:r; = y; — y;
and understanding that the regression contains the equa-
tion: y; = a + bx;

The residual of observation is calculated as follows:
ri =yi—Yi=yi— (a+bx;)

o Activation function: The linear activation function was

chosen for any situation in which activation is roughly
proportional to the input. It is also known as ‘‘no activa-
tion” or “identity function™.
The function makes zero variations to the weighted com-
bination of the parameters; it really just returns the value
that was therefore provided. In our situation, using this
function well preserves the parameters generated by the
Adam optimizer and strengthens the effectiveness of the
convolution features.

5) PADDING, STRIDES, KERNELS AND FILTERS

o The first important Conv-2D measurement is the total of
filters that the convolutional layer should receive.

o The depth of the kernel, which is a 2-tuple indicating the
size of the 2D convolution frame, is the next essential
factor that must be supplied to the Conv-2D class. The
kernel size must be an integer value as well.

o The strides configuration is a pair of integers that
describes the movement of the convolution along the
input volume’s x and y dimensions.

o The padding argument of the Conv-2D class could have
one of the two possible paratetrs: valid or the same.
By using the valid measurement, the entry dimension
is not zero-padded, so the spatial perception has been
restricted naturally through the use of convolution.

Figure 5 illustrates the model architecture and tables 1, 2

and 3 represent the convolutional groups parameters, Dense
layer and De-convolutional groups parameters respectively.

6) THE TRAINING GOALS OF THE DEEP LEARNING MODEL
One of the main goals of image encryption algorithms is
to break down the correlation between adjacent pixels as
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TABLE 3. De-convolutional groups parameters.

Deconv  Filters Kernels Strides Padding Parameters
1 28 (1,1) (1,1) valid 56
2 56 (1,1 (1,1) valid 1624
3 84 (1,1) (1,1) valid 4788
4 112 (L,1) (L,1) valid 9520
5 140 (1,1) (1,1) valid 15820
6 1 (L,1) (1,1) valid 141

TABLE 4. Pseudo code of the model training algorithm.

Algorithm
Input: Ciphered image data set C , Plainimage data set P, loss functions
L, initial learning rate r, number of epochs E, Optimizer O, Initializer I ,
Batch size B .
Output: Generated image G .
Initialize the weights and bias of the algorithm by I technique
Fore=1to E do
Fori=1tolCldo
-Extract the i%* sample ¢; cipher image from the dataset C.
-Extract the 7%t sample p; plainimage from the dataset P
corespondent to the ciphered image c; .
-Forward propagate the sample ¢; through the model M to obtain
the output generated image G.
-Compute the loss L using the output generated imageG
and the labeled p; plainimage from the dataset P .
-Back-propagate the loss L through the M model with O.
-Update the weights and bias of the M model using the O and B.
-Update the learning rate r.
-Save the best weights and bias of the M model .
end for i
end for e
return the generated image G

much as possible. Because images contain important visual
information that can be seen by simply overlaying the correla-
tions of adjacent pixels. In order to predict clear images from
encrypted images by implicit exploration of this correlation,
one of the important features of our model is to rediscover and
reconstruct this correlation by training the model with several
different input and output (plain/cipher) pairs for permutation
feature extraction.

The main goal is to train a model that can predict a clear
image from its corresponding ciphered image. but at the
same time to find a model that can be trained with differ-
ent characteristics to distinguish the clear image from its
encrypted counterpart, whatever the permutation technique
and the number of rounds.

The problem was designed as a regression problem for
a supervised model. It mean that the model will be trained
to predict the clear image from its corresponding encrypted
image or in other words the inputs of the model are encrypted
images and the outputs are images generated to be like the
originals plainimages. In the output, the resulting images
obtained will be compared to the labeled data, which are the
original image of Mnist and fashion Mnist, by an error func-
tion which will measure the results of the model. Then, after
each iteration, an update to the parameters of the model will
be carried out according to the chosen optimizer. The system
will save the weights and biases corresponding to the best
results obtained at the end of each iteration, and the training
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input_1 input:
InputLayer [(None, 28, 28, 1)] | [(None, 28, 28, 1)]
floa32 | OUtPUE
conv2d input:
Conv2D | linear (None, 28, 28, 1) | (None, 28, 28, 140)
floa32 output:
conv2d_1 input:
Conv2D | linear (None, 28, 28, 140) | (None, 28, 28, 112)
float32 output:
conv2d_2 input:
Conv2D | linear (None, 28, 28, 112) | (None, 28, 28, 84)
float32 output:
conv2d_3 input:
Conv2D | linear (None, 28, 28, 84) | (None, 28, 28, 56)
float32 output:
conv2d_4 input:
Conv2D | linear (None, 28, 28, 56) | (None, 28, 28, 28)
float32 output:
conv2d_5 input:
Conv2D | linear (None, 28, 28, 28) | (None, 28, 28, 1)
float32 output:
flatten_1 input:
Flatten (None, 28, 28, 1) | (None, 784)
float32 | OUPUT
dense_2 input:
Dense | linear (None, 784) | (None, 784)
float32 output:
flatten_2 input:
Flatten (None, 784) | (None, 784)
floa32 | Output:
reshape input:
Reshape (None, 784) | (None, 28, 28, 1)
floa32 | OUPUE

]

conv2d_transpose input:
Conv2DTranspose | linear
float32 output:

(None, 28, 28, 1)

(None, 28, 28, 28)

I

conv2d_transpose 1 input:
Conv2DTranspose | linear (None, 28, 28, 28) | (None, 28, 28, 56)
float32 output:
conv2d_transpose_2 input:
Conv2DTranspose | linear (None, 28, 28, 56) | (None, 28, 28, 84)
float32 output:
conv2d_transpose_3 input:
Conv2DTranspose | linear (None, 28, 28, 84) | (None, 28, 28, 112)
float32 output:
conv2d_transpose_4 input:
Conv2DTranspose | linear (None, 28, 28, 112) | (None, 28, 28, 140)
floar32 output:
conv2d_transpose_5 input:
Conv2DTranspose ‘ linear (None, 28, 28, 140) | (None, 28, 28, 1)
float32 output:

FIGURE 5. Model architecture.
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FIGURE 6. The model training process.

will remain in loop until the number of iterations (epochs)
completed. To examine permutation pattern measurements in
the context of visual cryptography, we used four chaotic and
non-chaotic system permutation algorithms on images from
the Mnist and Fashion mnist data sets and to strengthen our
study and better validate the established model, we employed
these patterns as permutation key generators.

Following the production of these permutation keys, the
datasets Mnist and Fashion mnist are encrypted by these
patterns to produce 60000 encrypted images of each, which
are used as inputs to the trained model, and the remaining
10000 images are encrypted for use in the model validation
step. To simplify training, the encrypted images are arranged
in the same sequence as the clear original images of the Mnist
and Fashion mnist datasets. The model additionally makes
use of the original images from the Mnist and Fashion mnist
datasets as label data. Figure 6 depicts the training procedure,
and table 4 provides a pseudo-code of the training algorithm’s
strategy.

V. EXPERIMENTAL RESULTS

A. PERMUTATION PATTERNS FOR P-BOXES GENERATION
We applied four chaotic and non-chaotic system permutation
algorithms on pictures from the Mnist and fashion mnist data

VOLUME 10, 2022

Mnist and Fashion Mnist

Plain images

Y ar-s

Labeled
data

784 784 784 1

Mean

Squared

Ground of Truth

error

De-convolution Generated

image

Dense Reshape  Conv2DTranspose

sets to investigate permutation pattern measures in the context
of visual cryptography. The methodological approach was
used to generate P-box permutations of overall pictures with
dimensions of 28 x 28 as follows:

1) DISCRETE CHAOS

The logistic map is utilized in this study case to produce a
series of numbers, However, any discrete chaotic map can
also be employed in the same manner.

After sorting these values ascendingly, the scoring system
for every integer in the sorted series is used to fill the permu-
tation P-BOX.

The standard logistic map with parameter A looks like this:

&)

Fpa1 = Ary (1 —1y)

The discrete chaotic system was iterated (ﬁ%) rounds for
P-Box of size MN, where spc is the value of algorithm output
parameters and it represents the lowest integer higher than or

MN
equal to (Sp—c).
2) CONTINUOUS CHAOS
The Lorenz system is utilized in this study case to produce a
series of numbers, However, any continuous chaotic system
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can also be employed in the same manner.

a —1010 O

a 0
b 8 4 0 b1+ —ac (10)
¢ 0 0 —8/3 c ab

To begin, the three output frames are modified to remove
short-term dependability. Then, every variable from every
sequence is combined together to form a single sequence.
To complete the permutation matrix, this series is sorted in
ascending order, and a scoring system is supplied for each
value in the sorted series. For a P-Box of size MN, the chaotic
system is iterated (ﬁ%) times.

3) GRAY CODE BASED PERMUTATION METHOD (GCBPM)
In [64] method, a basic Gray-code-based permutation strat-
egy is used, using the bijective non-linear map described by
the following equation as the basis.

y=0® 0> B+1) Y

where 0 is a k — bit number, y is a Gray-code value of k bits,
@ is the binary XOR operation, § is an integer, and > is the
binary right shift. A k-bit number’s Gray-code is also a k-bit
number.

The image is turned into a one-dimensional array of pixels
in order for this code to complete the permutation procedure.
This method takes four digits f1, B2, 81 and & as input. It is
worth noting that §; and §, are k-bit integers. Two Gray-
code values, I1 and I», are calculated for each pixel location.
Where: I} = GRAY (0, B1) @ 51 and I, = GRAY (0, B2) ® &>

Then, in the permuted image, take the pixel at position
X1 and insert it in spot X 2.

4) COUPLED MAP LATTICE(CML)

Coupled map lattice [63], a dynamical system with discrete
time and discrete space, is employed in the manner stated
by (12). This system has a long enough period to be employed
in crypto-systems, and its output is transformed to integer
numbers using (13). The generated numbers are then used to
conduct right cyclic shifts to the image’s rows and up cyclic
shifts to the image’s columns.

Jar1(k) = 1 =)t (fa (k) +er (fy(k —1)) (12)
54 = mod (fd (k) 10‘6,X) (13)

wherek = 1, 2, ..., L is the lattice site indices, L is the lattice
width, and f; (k)is the constant variable for the Kth site at the
instant d. € is the coupling parameter, which is one or zero,
X = N for row shifts and X = M for column shifts. When the
map 7 is chaotic, the entire system is chaotic. The coupled
map lattice system is then repeated Max(MN )times for a
MN -sized P-box.

B. TRAINING EXPERIMENTS, TRANSFER LEARNING AND
PREDICTION

All of the following experiments has been carried out
on Google Collaboratory with the Back-end Google Com-
pute Engine (Free GPU NVIDIA Tesla K80) and 12 GB
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RAM employing Python 3.7.13, TensorFlow 2.8, and Keras
API, The source code is available from GitHub.!

We were using the Keras checkpoint called Call Backs
to preserve the much more intended results during every
iteration, as well as the weight and bias of the CNN model.
To demonstrate the scope of training a machine learning-
based decryptor by exploiting significant differences between
(Plainimages) and (cipherimages), we set up an experiment
in which DL-decryptors are trained in a single round, eight
rounds, and sixteen rounds with the following parameters:

First, we trained the model on data from the Mnist data set
and the results are presented as following.

1) TRAINING EXPERIMENTS WITH ONE ROUND P-BOX
BASED ENCRYPTION
We conduct preliminary experiments on smaller-scale one-
permutation ciphers before moving on to larger 8 and
16 rounds equivalents to assess the effectiveness of the exper-
imental evaluation. Mnist data set images are used to produce
samples with four distinct permutation mechanisms and the
following are the pattern specifications designed to automat-
ically generate one round permutation keys:
o Chaotic system 1: The logistic map with rp = 0.448 and
A =3.988.

e Chaotic system 2: The Lorenz system with ag =
6.293,bp = -6.749 and ¢y = 2.886.

o Non chaotic system 1: Coupled map lattice with x; =
0.31457,y2 = 0.6532 and € = 0.94.

o Non chaotic system 2: Gray code based permutation
withd) = 1,dy = 28, 81 = 29493, 6, = 23749.

This makes it possible to create a large number
of encrypted images in a reasonable amount of time:
60,000 encrypted images for training and 10,000 encrypted
images for testing. The structure of the ciphered pictures is
described as a two-dimensional array with elements rang-
ing from O to 255. The numbers 0 and 255 indicate black
and white, respectively, while the intermediate values are
grayscale levels ranging from black to white.

Each sample of the dataset used to train a deep learning
model contains block cipher-related characteristics. In this
initial experience, we have four models. The labeled data of
the model is the clear pictures that correspond to the data sets.
To simplify training, the encrypted images are arranged in the
same sequence as the clear original images of the Mnist data
set. The model additionally makes use of the original images
from the Mnist dataset as label data. Our experimentation is
divided into these main phases:

-With one encryption process cycle, generating the permu-
tation keys of the four permutation patterns structured for the
encryption algorithm of the block cipher.

-The generation of cipher Mnist training dataset based on
generated keys: 60,000 samples for training and 10,000 sam-
ples for model validation.

IThis paper’s supplementary code is accessible at https://github.com/
zakariatolba/multimedia-p-box-assessment.git.
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TABLE 5. Pseudo code of P-box based permutation encryption algorithm.

Algorithm
Input: Plainimage data set P, Number of rounds R, P-box Generation
pattern F .
Output: Generated Ciphered image data set C .
Forr=1toR do
-Generating the permutation key K- from the F permutation patterns.
Fori=1toIPldo
-Extract the i**" sample p; plainimage from the dataset P.
-Encrypt the 7*"* sample p; image from the dataset P by the key
K, to get ¢;.
-Save the encrypted c; as the 77t/
dataset C.
end for i
-Use the encrypted data set C as the plain data set P for the
following round P <~ C.
end for r
return the generated ciphered images data set C.

sample C; image of the generated

60 000 Dataset plain images labeled data for training P-Box

Based

10 000 Dataset plain images labeled data for validation Eneryption

— — ~—

Training [ 60 000 Cipher images for training step ‘<— Discrete
| The model | _—
chaos
Validation 10 000 Cipher images for testing step “

Continuous

‘r 60 000 Cipher images for training step ]4-

chaos

Coupled Map
O Laiceomn)

Gray code

10 000 Cipher images for testing step | +-|

petterns Key Generation

Inputs

(

l 60 000 Cipher images for training step

10 000 Cipher images for testing step

Validation

T.abeled Data
Error function for output evalution
-
Outputs

! o — based
| Training | $0000 Cipher nges fortrining st ] o ] rermuaton
‘ | The model | I

Validation

— =

method
(GCBPM)

10000 Cipher images for testing step |+

FIGURE 7. Data set generation and labeled data for one round
experiments.

-Generation of ciphered Fashion Mnist encryption training
datasets based on the same produced keys for the four per-
mutation patterns: 60,000 samples for a transfer learning test
and 10,000 samples for each model’s prediction.

-Training the four models with the ciphered mnist data sets
and saving the best results for each one.

-The reusing of the four models trained by encrypted mnist
images as deployment models for prediction images from the
ciphered fashion mnist data set.

Figure 7 depicts the data sets generation procedure, and
table 6 provides the training results for the Mnist data set.

2) TRAINING EXPERIMENTS WITH 8 ROUNDS P-BOX BASED
ENCRYPTION

To conduct a more in-depth investigation and better test our
model, we increase the number of rounds of parmation from
one to eight in order to complicate the operation of permuta-
tion, effectively break the correlation between the pixels, and
make the developed models predict the text from the more
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TABLE 6. The ciphered Mnist data set one round training results.

Patterns Loss R? MSE
Discrete chaos 0.0842 1 0.1365
Continuous chaos 0.0708 1 0.3144
Gray code 0.0239 1 0.0052
based permutation
Coupled map 87997¢ %% 1  1.8217¢ ™
lattice

P-B
60 000 Dataset plain images labeled data for training o

Based

Encryptic
10 000 Dataset plain images labeled data for validation neryption

‘am Y

60 000 Cipher images
for training step
- 7] Discrete
—
10 000 Cipher images Chaos
T for testing step 1 m
,,,,,,,,,,,,,,,,,,,, L L[ oo cinermages Contmaons
Training 1 for training step
The Model e Chaos
] Validation P L 10000 Cipher images | :
|| for testing step

( \ Coupled
o \ _‘ 60 000 Cipher images #

] . Map
Training d—— for training step

—
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Ciphered
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N
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P
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: o | 0o Cipherimages /
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3
| ] 60000 Cipher images e
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SO S 4L permuta
{ I The model I - on method
L[ 10000 Cipherimages || (GCBPY)

Validation i
for testing stef
N sk — J

FIGURE 8. Data set generation and labeled data for 8 rounds
experiments.

difficult ciphertext. The specifications designed to automati-
cally generate the first round of permutation keys are the same
as for the first experiments, but it should be highlighted that
in the case of multiple rounds, the key generation stage will
be conducted in accordance with the number of rounds. In the
case of eight rounds, the first key is created from the baseline
parameters specified above, the second key from the first one,
the third key from the second one, and so on until the last
round.

This experimentation is divided into these main phases:

-After employing the encryption approach given in Table 5
we get:

-The generation of cipher Mnist training dataset based on
generated keys: 60,000 samples for training and 10,000 sam-
ples for model validation.

-Generation of ciphered Fashion Mnist encryption training
datasets based on the same produced keys for the four per-
mutation patterns: 60,000 samples for a transfer learning test
and 10,000 samples for each model’s prediction.

-Training the four models with the ciphered mnist data sets
and saving the best results for each one.

-The reusing of the four models trained by encrypted mnist
images as deployment models for prediction images from the
ciphered fashion mnist data set.

Figure 8 depicts the data sets generation procedure, and
table 7 provides the training results for the Mnist data set.
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TABLE 7. The ciphered Mnist data set for 8 rounds training results.

Patterns Loss R? MSE
Discrete chaos 0.0471  0.9997 1.5738
Continuous chaos  0.0278 0.9994  3.8839
Gray code 0.0294  0.9998 1.3939
based permutation
Coupled map 0.0655 1 0.0721
lattice

TABLE 8. The ciphered Mnist data set for 16 rounds training results.

Patterns Loss R> MSE
Discrete chaos 0.1061 0.8507  922.6311
Continuous chaos  15.1446  0.6793  1957.4821
Gray code 0.2193  0.9998 1.3684
based permutation
Coupled 0.0724  0.9996 2.3448

map lattice

3) TRAINING EXPERIMENTS WITH 16 ROUNDS P-BOX
BASED ENCRYPTION

To conduct a more in-depth investigation and better test our
model, we increase the number of rounds of parmation from
“8” to ““16” in order to complicate the operation of permuta-
tion, effectively break the correlation between the pixels, and
make the developed models predict the text from the more
difficult ciphertext. The specifications designed to automat-
ically generate the first round of permutation keys are the
same as for the first experiments, but it should be highlighted
that in the case of multiple rounds, the key generation stage
will be conducted in accordance with the number of rounds.
In the case of 16 rounds, the first key is created from the
baseline parameters specified above, the second key from the
first one, the third key from the second one, and so on until
the last round. This experimentation is divided into these main
phases:

-We receive after employing the encryption approach given
in Table 6: -The generation of cipher Mnist training dataset
based on generated keys: 60,000 samples for training and
10,000 samples for model validation.

-Generation of ciphered Fashion Mnist encryption training
datasets based on the same produced keys for the four per-
mutation patterns: 60,000 samples for a transfer learning test
and 10,000 samples for each model’s prediction.

-Training the four models with the ciphered mnist data sets
and saving the best results for each one.

-The reusing of the four models trained by encrypted mnist
images as deployment models for prediction images from the
ciphered fashion mnist data set.

Figure 9 depicts the data sets generation procedure, and
table 8 provides the training results for the Mnist data set.

4) TRANSFER LEARNING EXPERIMENTS
The objective of the patterns which used to produce the
p-boxes is really to construct permutation keys in such a
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experiments.

TABLE 9. Transfer learning experiments with one round P-box based
encryption.

Patterns Loss R> MSE
Discrete chaos 0.1867 1 0.3265
Continuous chaos  2.4533 09782 1754175

Gray code 0.0480 1 0.0725
based permutation
Coupled map 0.0014 1 0.0015
lattice

way that they seem random (pseudo-random generators), but
these patterns simultaneously allow for the inverse opera-
tion, which is decryption without loss of data. The model is
not distinct in itself, but it improves in the identification of
decryptors . In other terms, a model trained on data encrypted
with one round CML is distinguishable from a P-box-based
CML one-round encryption algorithm. All of the models
have the same architecture, layers, and hyper parameters, but
the key difference between them is the parameters acquired
during the training process (weights and bias).

After training the four models with the Mnist data set,
we attempted to employ learning transfer by using the weights
and bias of the models from the first model trained by the
Mnist data set for one, eight, and sixteen rounds as deploy-
ment models for the Fashion Mnist models for one, eight, and
sixteen rounds with the same permutation patterns and the
same algorithms parameters, respectively.

The most remarkable conclusion is that, without any train-
ing, the assessment process converges toward desirable find-
ings and the error function is reduced.

It should be highlighted that by combining transfer learn-
ing with optimal prior cryptographic competence, it is
also possible to develop acceptable decryptors from the
ground up by utilizing the transfer learning techniques
described in this paper. The results obtained are presented in
tables 9, 10 and 11 respectively. Furthermore, the experience
of learning transfer reusability to improve model performance
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TABLE 10. Transfer learning experiments with 8 rounds P-box based
encryption.

Patterns Loss R? MSE
Discrete chaos 0.0270 0.9993 5.8473
Continuous chaos  0.1995  0.9994  5.0487
Gray code 0.0769  0.9994  4.6592
based permutation
Coupled map 0.0530 1 0.1907
lattice

TABLE 11. Transfer learning experiments with 16 rounds P-box based
encryption.

Patterns Loss R? MSE
Discrete chaos 0.0992  0.7599 1940.4117
Continuous chaos  8.3224  0.9223 623.6430
Gray code 0.5570  0.9994 4.9375
based permutation
Coupled map 0.0714  0.9991 7.6776
lattice

is the best proof of the concept distinguishability emphasized
in this research.

5) PREDICTION

The prediction was accomplished by combining the search
results; in other words, with models trained by the Mnist data
set, the estimation was done by the Fashion Mnist data set.
in which both models are predicted with the same weight
and bias parameters.

As an illustration of our results, the figures below reflect
a sample of the best results obtained by the model of the
CML-encrypted images from the two data sets and the predic-
tion of the corresponding images as an example of our results.
Visually, we can also see a distinction in the distribution of
colors in the encrypted images (Figl0, Figl2), like those of
their counterparts dictated by the predicted model of simple
images (Figl1, Figl3).

Besides, the images (Fig 14, Figl5) represent the predic-
tion of the encrypted images of the worst results of the chaotic
discrete models with 16 iterations, where it is very clear
visually the degradation of image quality in prediction.

V1. DISCUSSIONS

A. MEASURING THE DECRYPTOR RESULTS

To examine and fully understand the research results, we need
to have a measuring tool that quantifies the visual original
plaintext from the Mnist and Fashion mnist data sets to the
prediction results, allowing us to demonstrate the attack using
a more reliable technique.

In order to monitor the effectiveness of our achievements,
we deployed a pre-trained deep learning model with accept-
able accuracy to distinguish and examine the outcomes. The
model has pre-trained using Adam optimizer and Sparse Cat-
egorical Cross entropy error function.This model has a good
level of accuracy in recognizing Mnist and Fashion Mnist data
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FIGURE 10. Fashion Mnist ciphered images with one round CML.

sets. It has a precision of (98.05 %) for Fashion Mnist and
(99.00 %) percent for Mnist, and its design is fairly simple.
It is also suitable for implementation as an experimental
investigation. Figure 16 represents the architecture of this pre-
trained model.

We examined the model’s prediction performance on the
original MNIST and Fashion MNIST test sets first and then
used it to monitor the effectiveness of our predicted encrypted
images. Figure 17 and 18 demonstrate the visual results of the
quantitative prediction analysis.

B. QUANTITATIVE RESULTS AND COMPARISON

The first factor we saw was that when the number of rounds
increased, so the effectiveness of the deep learning attack
decreased. But this degradation is relative to several parame-
ters and it differs from one permutation alternative to another.

Discrete chaos permutation patterns, for example, are more
strong to attacks than continuous chaotic, and coupled map
lattice is more secure and robust than the Gray code based
permutation technique.

As a result, we find that discrete chaos is more resistant to
our attack when the number of rounds increases, followed by
some little resistance from continuous chaos; the scientific
interpretation of the resistance is the discrete generation of
permutation patterns, which makes the attack more difficult
by more efficiently destroying the correlation between the
swappable atoms.
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TABLE 12. Related literature works Comparison.

Literature Attack Uniform KPA Computational Number of Recovered
related type Distribution (Cipher/Plain) complexity Rounds information Contribution
works Pairs
Shujun Li Black It has not 50 % of General
at al[43] box Required O(n(MN)?2) O(Logr,(MN)) been the key quantitative
addressed concept
Chengqing Li | Black O(32(MN)) O(Logr,(MN).MN) It has not More than 50 % Optimal
at al [44] box Required and and been of the Key quantitative
0O(16.n9.(MN)) O(MN) addressed concept
Alireza Jolfaei | Black It has not 100 % of Recovering
at al [46] box Required Logr, (M N) O(n(MN)) been the key completely
addressed the key
Leo Yu Zhang | Black It has not 100 % of Concept of
at al [54] box Required Logr, (MN) O(n(MN)) been the key composite
addressed representation
Black Not More pairs Depends on the Taken Plain Concept of
Our work box Required for more trained model into image non uniform
best results and parameters consideration distribution
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Despite a large number of rounds, CML and GCBPM are
very weak in this test.

What should also be mentioned is another very important
parameter, which is the redundancy of atoms (pixels) in
the plain text with a non-uniform distribution. Despite the
non-uniform distribution of colors in the Mnit and fashion
mnist databases, the attack findings vary dramatically; it
inherently comes down to the number of duplicated atoms,
which is highly visible intuitively.
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It should also be highlighted that our work is sensitive to
the kind of data. For example, if we use an image with all
of the intensities and a total number of pixels equal to zero or
any other value between zero and 255, the model cannot learn
anything as well as the loss function, which is represented by
the limitation of differential cryptanalysis in the case of zero
difference.

C. RELATED LITERATURE WORKS COMPARISON
Shujun Li at al[43] established the quantitative cryptanalysis
concept for recovering the permutation key for use in the

VOLUME 10, 2022



Z. Tolba et al.: Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

IEEE Access

<
>

=
&
=
2

|
=
=
O
|
o |

=
™
Fam

B
&

=
S
=

N
|
=

NE
=]

2 5 o
CECrs
-

=

S
==

N5
1IN U‘ii-ﬁ-

B
=
B
&
5

el
=]
{c]—
HS 2
o f-c]

e
&
=
1

<

&
=
8

e
Slor
&

&
=
&

-
Ny

nENE
20
o]

=R
i =]
=

E

[
o

Bl
B
5

25 o

=
s
=
s
S

=

=
%y
=
~
=

=
B3
=
&
5

12

=

¢

oA 0 W o2 0 W02 0 W HD 0 0 D

—

IEEEERIEE]

FIGURE 13. Mnist corresponding predicted images of one round CML.

encryption of images encrypted only by permutation. This
approach to expressing his efforts is based on the black box
attack employing KPA pairs, which is primarily based on
the uniform distribution of colors in the pairs involved. This
attack was successful in retrieving 50% of the permutation
key that was tested. However, their findings are entirely
based on considerable computational and storage resources.
Chengqing Li at al[44], inspired by the work of [43], opti-
mized the findings of [43] by reducing the number of KPA
pairs required to work as well as the computational and spatial
complexity. Their approach can be expanded to perform any
attack as a permutation cipher only with KPA pairs that pro-
vide uniform distribution; he effectively enhanced the attack
and retrieved more than half of the permutation key used in
the test. Alireza Jolfaei et al. [46] improved previous research
and showed that the right permutation mapping is totally
retrieved by a KPA attack and selected in all permutation-only
image ciphers, independent of cipher construction. He is also
reduced the number of KPA pairs required to work as well as
the computational and complexity. Leo Yu Zhang et al. [54]
build on previous studies by addressing how to balance stor-
age cost and computational complexity while performing the
KPA strategy. focuses on these two issues. He also bridged
the assessed KPA gap between artificial noise-like images
that fully match the theoretical model and the equivalent real
images using a novel idea of the composite representation.
Despite their relevance, all of these efforts have one important
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FIGURE 14. Mnist corresponding predicted images of 16 rounds Discrete
chaos.

weakness: the uniform distribution of colors in KPA pairs.
Among the restrictions, we may mention that all of these stud-
ies are based on the black box attack with classical research
approaches and various optimization methods, and none of
these works discussed the scenario of applying many rounds
of permutation. Because of the unavailability of uniform dis-
tribution in real data, their reuse in a process of evaluating the
permutation approach remains a concern in real-world practi-
cal scenarios. Table 12 provides a comparison between all of
these works. In our contribution, we examined the problem
from a different perspective than that taken by the previous
research. As the main viewpoint, we considered the absence
of uniform color distribution as a focus point. We also dis-
cussed this topic in terms of the number of rounds and key
generation strategies. We consider that our technique has the
first advantage of being easily reusable. This technique can
be used to test the strength of image encryption algorithms
during the deployment phase or to select the best permutation
strategy during the development phase.

For further illustration, designers can use the same dataset
used in our study to produce images encrypted by different
algorithms that are under test evaluation and then train our
model on these generated data with different rounds, algo-
rithm parameters, and configurations in order to select the
best permutation algorithm to use, as well as its best choice of
the optimal algorithms’ parameters and the adequate number
of rounds.
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FIGURE 15. Mnist corresponding predicted images of 16 rounds Discrete
chaos.

flatten_input input:

InputLayer
float32 output:

[(None, 28, 28)] | [(None, 28, 28)]

flatten input:
Flatten (None, 28, 28) | (None, 784)
floar32 | OUtPuUt

(None, 784) | (None, 128)

]

(None, 128) | (None, 10)

dense input:

Dense relu
float32 output:

dense_1 input:

Dense [ linear
float32 output:

FIGURE 16. The measure model architecture.

It can also aid in decision-making by encrypting images
with multiple rounds and then testing the results provided by
the models to customize the number of rounds and compare
many methods.

The notion of reuse refers to two aspects. The first is to
provide the model as we have illustrated in this article with the
same datasets, model architecture, and parameters to test the
desired permutation algorithm. The second aspect is to use the
encryption algorithm to be evaluated to generate encrypted
images of the size of 28 x 28 from other datasets and reuse the
same model architecture. However, if designers want to test
ciphers in a larger space with large images, we recommend
focusing on our convolution and deconvolution strategies,
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FIGURE 17. Quantitative results for Mnist dataset.
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96,63
Coupled map lattice 96,59
98,32
97,07
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98,32
88,79
Continuous chaos 97,81
93,69
31,16
Discrete chaos 96,14
98,29

FIGURE 18. Quantitative results for fashion mnist dataset.

which are used to build deep learning models with different
more suitable layers. to the needs of the designer, as long as
the hyper-parameters are preserved.

Despite that, our approach necessitates preprocessing
dataset procedures and a large number of computational
resources, as well as computation time and a vast number of
experiments in the search for the desired model, highlighting
the technique’s limitations.

VII. CONCLUSION
In this research, our findings provide an innovative method-
ology for leveraging deep learning to identify decryptors
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on symmetric permutation primitives. Our approaches are
applicable to any number of (non-zero) input variations. At its
heart, we adopt frequent dissimilarities to solve the challenge
of discriminating in two-dimensional space.

The presented research is intended to be used separately
from the operational mode of cryptography implementations.
It should be used a prior, such that, during the design stage of
cipher architecture, it can be used to examine the strongest
permutation mechanism to be used.

Otherwise, it can be implemented to assess and compare
different permutation patterns algorithms with a scientific
hypothesis. However, the time required to calculate those
assessments is a significant factor influencing their utility.

We do not claim that deep-learning tools will eventually
replace classical cryptanalysis. However, we believe that our
findings demonstrate that deep learning models are able to
be trained to do cryptanalysis at a level that is attractive to
cryptographers and that deep learning approaches can be a
helpful addition to the arsenal of cryptographic assessors.
The interpretability of deep learning-based black box attacks
is still a problem. The fact that a neural model is a black
box tells us very little concerning the real weakness of the
studied cryptosystem. This opens the doors for the possibility
of future studies to better answer this question.

In future research, we will look at deep learning-based
cryptanalysis for video and sound encryption as well as other
multimedia encryption systems. We will also attempt to solve
and optimize conventional classical cryptanalysis challenges
using artificial intelligence techniques and tools.
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