
Received 22 August 2022, accepted 30 August 2022, date of publication 5 September 2022, date of current version 13 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204175

Automated Deep Learning BLACK-BOX Attack for
Multimedia P-BOX Security Assessment
ZAKARIA TOLBA 1, MAKHLOUF DERDOUR2,
MOHAMED AMINE FERRAG 3, (Senior Member, IEEE),
S. M. MUYEEN 4, (Senior Member, IEEE), AND MOHAMED BENBOUZID 5, (Fellow, IEEE)
1Laboratory of Mathematics, Informatics and Systems (LAMIS), Larbi Tebessi University, Tebessa 12022, Algeria
2Networks and Systems RSI Laboratory–Annaba, University of Oum El Bouaghi, Oum El Bouaghi 04000, Algeria
3Department of Computer Science, Guelma University, Guelma 24000, Algeria
4Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
5UMR CNRS 6027, University of Brest, 29238 Brest, France

Corresponding authors: Mohamed Amine Ferrag (ferrag.mohamedamine@univ-guelma.dz) and S. M. Muyeen (sm.muyeen@qu.edu.qa)

The publication of this article was funded by Qatar National Library.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ABSTRACT Resistance to differential cryptanalysis is a fundamental security requirement for symmetric
block ciphers, and recently, deep learning has attracted the interest of cryptography experts, particularly in the
field of block cipher cryptanalysis, where the bulk of these studies are differential distinguisher based black-
box attacks. This paper provides a deep learning-based decryptor for investigating the permutation primitives
used in multimedia block cipher encryption algorithms.We aim to investigate how deep learning can be
used to improve on previous classical works by employing ciphertext pair aspects to maximize information
extraction with low-data constraints by using convolution neural network features to discover the correlation
among permutable atoms to extract the plaintext from the ciphered text without any P-box expertise. The
evaluation of testing methods has been conceptualized as a regression task in which neural networks are
supervised using a variety of parameters such as variations between input and output, number of iterations,
and P-box generation patterns. On the other hand, the transfer learning skills demonstrated in this study
indicate that discovering suitable testing models from the ground is also achievable using our model with
optimum prior cryptographic expertise, where we contribute the results of deep learning in the field of deep
learning based differential cryptanalysis development.Various experiments were performed on discrete and
continuous chaotic and non-chaotic permutation patterns, and the best-performing model had an MSE of
1.8217e−04 and an R2 of 1, demonstrating the practicality of the suggested technique.
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INDEX TERMS Cryptanalysis, deep learning, convolution, deconvolution, plaintext, ciphertext, block
cipher, P-Box, attack.

I. INTRODUCTION19

A. MOTIVATION AND GOALS OF THIS PAPER20

Block ciphers are famous cryptographic alternatives that21

improve data confidentiality while also providing the frame-22

work for a wide range of other cryptographic algorithms and23

network protocols [1].24

A block cipher uses a key-dependent transformation to25

handle axed-length (block) data, which frequently includes26
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generic operations like substitution and permutation. The 27

key-dependent modification should be carried out over 28

several rounds until the complete ciphertext is generated 29

(multiple rounds).A key scheduling technique is used to 30

produce round keys from a master key for each encryp- 31

tion round. Among the algorithms that use this technique 32

are the modern block ciphers, whose basic structures are 33

divided into several categories, including the generalized 34

Feistel structure (GFS), addition-XOR-rotate (ARX), and 35

substitution-permutation network (SPN). Aside to that, per- 36

mutation techniques (P-boxes) are widely applied to various 37
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image and video encrypted communication processes, and38

they are recommended as a straightforward solution in39

the design of business and privacy engineering fields in40

social-use network systems where the recommended security41

level, as well as the potential cost demanded for a potential42

threat, are both low.43

On the other hand,cryptanalysis is an assessment step in44

the process of the development of those ciphers that assists45

developers in designing more secure cryptosystems as well46

as measuring the overall operational efficiency of the pro-47

posed algorithm. This step could be performed during the48

construction process of cipher architecture or even after the49

final deployment.From this perspective, attempts to reduce50

the complicated task of cryptanalysis toward a computational51

analysis requiring only a basic understanding of cryptography52

have inspired scientists to explore the use of machine learn-53

ing. Rather than relying heavily on cryptanalysts to develop54

a stronger cryptosystem structure, machine learning models55

have been widely implemented using data provided by the56

cryptosystem itself to simplify this audit step [1].57

The early implementations of machine learning models58

in cryptanalysis focused primarily on training the models to59

imitate cipher behavior under the assumption of an available60

secret key, and while deep learning has recently piqued the61

interest of cryptography experts, particularly those special-62

izing in block cipher cryptanalysis, the great majority of63

research has concentrated on deep learning-based black-box64

cipher attacks [2]. A block cipher is properly secured enough65

for effective use in cryptography if it has proven tolerance66

to different breaking cryptanalysis strategies over a specified67

time period, and it should be highlighted that resistance to68

differential cryptanalysis is among the most important secu-69

rity necessities for symmetric block ciphers. In this sense,70

differential cryptanalysis methodologies have recently been71

used for something altogether new: training machine learn-72

ing algorithms for cryptanalysis applications. In this context,73

Rivest [3] studied the interactions between machine learning74

and cryptanalysis many years ago, whereas Gohr [4], who75

provided the first effective application of deep learning in the76

field of traditional cipher attacks, which has only recently77

gained popularity. By applying a machine learning-based78

differential distinguisher developed on differential data, the79

greatest cryptanalytic attack to date was achieved against80

a round-reduced Speck32/64. His results demonstrated that81

machine learning distinctions outperformed classical differ-82

ential distinctions, opening the path for further study in the83

subject. As a result, further investigation is devoted to under-84

standing the possibilities and limits of machine learning,85

which is often designed to evaluate the strength of cryp-86

tographic systems. In the classical investigation works on87

permutation techniques used for image encryption [43], [44],88

[46], [54], the researchers employed a known plain attack89

(KPA) to restrict the number of pairs required to partially90

or completely infer the permutation used key. The problem91

is that all of these studies concentrate on generating pictures92

with a uniform color distribution to reinforce the results while93

minimizing computation time and storage space. This uni- 94

form distribution of elements does not occur in natural images 95

when using images without unified distribution or when 96

deploying permutation algorithms in the operational mode, 97

which reflects the work’s weakness. Despite the higher recov- 98

ery performance, it’s indeed insufficient and cannot properly 99

determine the appropriate permutation aspects. In the fre- 100

quent circumstances of non-uniform color distribution, where 101

the calculated size of the key search space rises appropriately, 102

the outcome does not appear to be sufficiently pleasing. 103

Furthermore, those linked research appears to be infeasible 104

against lower color number ciphers, particularly white-and- 105

black images, where reconstructing the real shape of the 106

encrypted picture is impossible. However, these studies do 107

not address another critical issue in the field of cryptog- 108

raphy because all prior research is based on a black box 109

attack that uses a predetermined number of (cipher/plain) 110

pairs encrypted by permutation with no specification of the 111

permutation rounds number or key generator pattern type. 112

B. CONTRIBUTIONS 113

This paper extends prior researches [43], [44], [46], [54] to 114

overcome their drawbacks by using deep learning to assess 115

P-box permutation methods and technologies widely used in 116

multimedia encryption. Most studies that fit this condition 117

in the literature attempt to recover the whole plain form of 118

a particular cipher using classical research approaches and 119

various optimization methods to find the used key or most 120

parts of it by using black-box attacks. At the same time, those 121

methods make it impractical in many situations because they 122

go into important details and constraints of the optimiza- 123

tion algorithms and parameters of methods used, whereas 124

cryptanalysis’s real purpose is limited to the acquisition of 125

just the cipher sense and its basic concept, which can be 126

reached by black-box based deep learning attacks without any 127

complicated task of cryptanalysis and hard algorithm details. 128

Furthermore, these approaches appear to be hard to reuse. 129

On the other hand, our technique provides a relatively basic 130

process that can easily be reused in the testing processes. 131

Image files, unlike text files, have unique characteristics such 132

as large data capacity, redundancy, and strong adjacent pixel 133

correlation that necessitate the use of specialized strategies 134

to deal with them in the encryption process to break the 135

correlation of adjacent pixels. Among these are permutation 136

algorithms, which are based on non-linear systems, and chaos 137

theory.This technique appears to be beneficial in transfer- 138

ring media files and high-resolution pictures across insecure 139

channels. 140

We explore the advantages of deep learning cryptanalysis 141

techniques on the evaluation process, employing convolution 142

neural network features ,by a black box attack, to discover 143

the correlation among permutable entities to effectively and 144

efficiently extract the plaintext from the ciphered text without 145

any P-box knowledge. 146

We provide an automated decryptor based on deep convo- 147

lutional neural networks that outperforms related work that 148
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relies on traditional methods. We define a decryptor as a149

neural network model with the capability of decrypting a150

plaintext/plainimage without knowledge of additional details151

such as the small difference distribution [54],number of iter-152

ations, and P-box generation patterns.153

– In our scenario, we focused on data that did not have a154

unified distribution. Because the data-driven methodologies155

utilized in prior research to demonstrate their potential ben-156

efits are based on the unified distribution of atoms, which157

fully matches the theoretical tests, which is a performance158

mismatch between the theoretical approaches and measured159

experimental execution. We show that even with limited160

data distribution, our neural decryptor successfully employs161

ciphertext pair aspects to maximize information extraction162

with low-data constraints in terms of the absence of uniform163

distribution that were not addressed in previous differential164

attack works implemented in previous studies. [43], [44],165

[46], [54].166

– Also, this study focuses on applying machine learning167

techniques to expand the generally used model of differen-168

tial cryptanalysis . We contribute to this area of study by169

studying the capabilities of deep learning to support differ-170

ential cryptanalysis to measure the security of block ciphers.171

The assessment of block cipher security in which artificial172

neural networks are developed and employs a multitude of173

elements such as input and output distinctions, the number of174

iterations, and P-boxes used patterns. – The transfer learning175

skills exhibited in this study, on the other hand, demonstrate176

that determining approved input differences from scratch is177

also achievable by the networks with optimal background178

cryptography knowledge.179

C. OUTLINE180

The following is the structure of this document. Section 2 con-181

tains the famous published research on the use of machine182

learning in cryptanalysis. Section 3 provides an overview of183

the P-box block cipher for multimedia, as well as a brief nota-184

tion and definition of the cipher. Many classical attacks on185

permutation ciphers are presented. In Section 4, many exper-186

iments to test the effectiveness of training DL-decryptors are187

presented. In Section 5, considerable experimental evidence188

is explored.Finally, in section 6, a brief overview of the189

relationship between our solution and previous literature190

works is provided.191

II. RELATED WORKS OF USE MACHINE LEARNING IN192

CRYPTANALYSIS193

Aron Gohr employed machine learning to construct an194

8-round differential distinguisher for the SPECK32/64 cipher195

in 2019 [4], and based on it, an 11-round attack that surpassed196

earlier conventional techniques was built. Gohr’s core aim197

was to use artificial intelligence to create new cryptanalysis198

attacks. By analyzing the output differences of the ciphertexts199

for a certain plaintext difference, he constructed a neural200

classifier in SPECK32/64 to discriminate between a block201

cipher and a random permutation.202

Then, he evaluated this neural distinguisher against 203

the famous SPECK32/64 all-in-one difference distribution 204

database, which is also able to commute because of the small 205

block size of the encryption, and the results showed that 206

ML-distinguishers are an acceptable model behind it. 207

Recently, machine learning has been deployed to perform 208

linear cryptanalysis. Hou et al. applied machine learning to 209

achieve a linear attack on the DES encryption [5], employing 210

known plaintext and ciphertexts. The findings show that in 211

the DES cipher, a neural network can distinguish the XOR 212

distribution of a linear expression. Other attacks, such as 213

integral, have also been studied in connection with machine 214

learning [6]. 215

Modern studies in this field are not restricted to block 216

ciphers: Liu et al. [7] use deep learning to evaluate the 217

security of Xoodyak hash mode variations against preimage 218

attacks. They developed a model to predict the message of a 219

hash function for one round of permutation and reported that 220

the accuracy was great. However, as the number of rounds 221

increases, the efficacy of the deep learning preimage attack 222

decreases. 223

With modest success, a similar method is employed to 224

cryptanalysis lightweight cryptographic algorithms, FeW and 225

PRESENT [9], [16] deep learning models were trained, veri- 226

fied, and validated on data that included plaintext, ciphertext, 227

and intermediate round data created with the same encryp- 228

tion key. In the work of [10], he developed a learning algo- 229

rithm to recover the secret keys of the Caesar and Vigenere 230

poly-alphabetic and substitution ciphers. In [11] also genera- 231

tive adversarial networks have been employed to break these 232

traditional cryptosystems. Machine learning algorithms and 233

classification skills have been used to detect cryptographic 234

algorithms from ciphertexts in the works of [12] and [13]. 235

Classifiers were trained using known ciphertexts produced 236

by a collection of six widely used cryptographic methods. 237

Benamira et al [8] conducted a more detailed investigation 238

of the operation of ML-based distinguishers, focusing on 239

what information they employ, Their results demonstrate that 240

these machines not only perform the differential distribu- 241

tion on ciphertext combinations but that the distinguisher 242

is influenced by the penultimate or ante-penultimate round. 243

They suggest a new pure cryptanalysis distinguisher with the 244

same accuracy as Gohr’s neural distinguisher based on their 245

findings. [1] investigated the influence of block cipher char- 246

acteristics on prediction accuracy by training deep learning 247

algorithms to estimate the amount of active S-boxes for GFS 248

cryptosystems. Deep learning has been used in both of these 249

strategies, rather than just simpler, conventional machine 250

learning techniques. 251

Further machine learning algorithm distinguishers and 252

cryptanalysis against Simon, Speck, and non-Markov ciphers 253

have also been introduced [14], [15]. The findings in [64] add 254

another contribution by investigating the capability of lin- 255

ear and nonlinear machine learning classifiers in evaluating 256

block cipher security in cryptanalysis usingmachine learning. 257

According to their findings, machine learningmodels identify 258
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a given block cipher result as secure or insecure depending259

on the number of active S-boxes. Nonlinear machine learning260

model types outperform linearmodels when evaluating inputs261

from previously observed ciphers during training, achieving262

prediction accuracy of up to 93%. But when evaluating inputs263

from other unobserved ciphers, nonlinear models outperform264

linear models with an accuracy of up to 71 %. These crypt-265

analysis works motivate us to investigate the use of deep266

learning techniques to overcome traditional cryptanalysis267

challenges in the most efficient manner possible.268

III. BACKGROUNDS269

A. PERMUTATION P-BOXES270

A basic encryption scheme includes two major alterna-271

tives for accomplishing Shannon’s confusion and diffu-272

sion metrics: substitution (S-box) and permutation (P-box)273

phases [17]. While the permutation stage changes the loca-274

tions of atoms, the substitution stage changes the values of275

atoms. These two alternatives appear to be able to deal effec-276

tively with digital multimedia encryption while minimizing277

distraction, accidental deletion, and obfuscations caused by278

the encryption operation, and it must be noted that many279

block-cipher multimedia cryptographic structures involve280

independent processes for all permutation and substitution281

procedures [18].282

Many block ciphers, including AES, substitution-283

permutation networks (SPN), and generalized Feistel284

structures (GFS), lightweight block ciphers, employ public285

permutation, and it is also a symmetric cipher for secret286

permutation, with the key being the secret for generating the287

permutation sequence [1].288

B. DEFINITION AND NOTATION289

Definition:290

The function P : Bn→ Bm291

P is called P-BOX if there exists a sequence (ik)mk = 1,292

Where ik ∈ {1, . . . , n}293

such that for all b ∈ Bn and k = 1, . . . ,m294

we have: P(b)k = bik .295

• It just says: theK−th item ofP(b) represents the i−thK item296

of b.297

• P-BOX is a special type of S-BOX.298

• P-BOXES permute, repeat or discard the elements of the299

input but do not change them.300

• Because P-BOXES are a special type of S-BOXES,301

we denote that ‘‘n = m’’.302

For multimedia permutation, the imageM is represented as303

a two-dimensional array of positive integers with size (MN ).304

• Each element of M entry variable Ms is an image pixel305

s defined as:Mls(i, j).306

• Where (i, j) and l are the pixel coordinates inM and the307

intensity value, respectively.308

• Each element position is shifted to another place during309

the permutation step, to reconstruct the ciphered image310

without distortion, this technique must be a one-to-one 311

correspondence. 312

• The secret permutation phase could be seen as a two- 313

dimensional table, with each table member holding the 314

new element location. 315

Prm is a permutation table (P-box) of size MN that is 316

defined as in following: 317

Prm =


p11 . . . . . . . . . p1n
p21 . . . . . . . . . p2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

pm1 . . . . . . . . . pmn

 318

• The permutation Prm, represented by the function Tk in 319

the following : C = MTk = Tk (M ). 320

• Tk is a bijection function that converts each element eij of 321

Mwith location (i, j) to e′ij a new location (i′, j′) referring 322

to a key k over a set number of rounds with i 6= i′ and 323

j 6= j′ and i, i′ ∈ {1, · · ·m} and j, j′ ∈ {1, · · · n}. 324

C =


e11 . . . . . . . . . e1n
e21 . . . . . . . . . e2n
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

em1 . . . . . . . . . emn

Tk 325

C =


e′11 . . . . . . . . . e

′

1n
e′21 . . . . . . . . . e

′

2n

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

e′m1 . . . . . . . . . e
′
mn

 326

• The permutation relationship can be expressed as a 327

matrix Prm[MN ] that contains the cipher image pixels’ 328

positions of every clear image. 329

• This notion assumes that those cryptographic algorithms 330

based on permutation can be deciphered using the same 331

technique. 332

• As a result, the starting location of pixel p must be 333

determined using the inverse function T−1k . 334

• The Tk function as well as its inversion T−1k are formed 335

by the encryption private key k and have the same 336

dimension as the considered plaintext witch is the block 337

cipher size (P-box size). 338

• As a result, this framework reveals that image encryption 339

reflects a symmetric block cipher, with an input size of 340

(MN ) as well as a key size of (MN ). 341

• We conclude that all permutation approaches will be 342

included within the [MN ]! possible scenarios that also 343

reflect the greatest number of selected plaintexts that 344

outcomes in a conclusion, and that permutation crypt- 345

analysis should thus concentrate on those dimensions as 346

a problem space [54]. 347

Permutation methods are frequently included as multi- 348

media content encryption techniques, and they are strongly 349
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advised as an attractive option in the composition of mar-350

keting and security engineering disciplines in insecure chan-351

nels where the requested security measures and the related352

impacts of a security threat are generally low [54].353

Because of its simplicity, flexibility, size conservation,354

and effectiveness in masking apparent visual information,355

permutation is a common method in many secure multimedia356

systems. It is divided into two sorts, dependent on whether or357

not it is linked to a secret key: public permutations and secret358

permutations.359

According to the digitized multimedia’s particular format,360

the quantity of items that could be shifted is higher than its361

analog counterpart. Such items include bits [19], [20], [21],362

[22], bit-planes [21], [22], pixels [23], [24], [25], pixel blocks363

[23], [26], [27], transform coefficients [23], [28], [29], [30],364

variable-length code-words [30], tree nodes [31] motion vec-365

tors [30], [32], prediction errors [23], [32], [33], and several366

different sorts of those types [30], [32].367

The encryption strategy is implemented directly on the368

picture frame in the spatial domain, and efforts in this aspect369

rely on direct modification of the picture intensities. The370

encryption in this field eliminates the correlation between the371

pixels. Using the opposite procedure, the pixel intensities in372

the picture could be fully restored without any errors.373

Schemes in the frequencies field of cryptographic algo-374

rithms are focused on altering the frequency of the picture by375

transformations. Hence, recuperation of the original picture376

pixel intensities in the decryption process frequently results377

in distortion and information degradation.378

The permutation transitional period is often carried out379

by using a variety of chaotic and non-chaotic strategies,380

such as using the logistic and Arnold’s map [34], [35]381

for discrete chaotic maps. Furthermore, the Lorenz attrac-382

tor and Chen’s hyper-chaotic system are used to generate383

chaotic permutations [35], [36] with continuous attractors.384

A range of different techniques, including the chess-based385

horse movement [35] and the trajectory of a water wave386

movement [37], could be processed to create non-chaotic387

alternatives.388

C. MULTIPLE CLASSICAL ATTACKS ON PERMUTATION389

CIPHERS390

For a long time, researchers have been interested in the391

security of permutation encryption techniques. Because the392

unique architecture of analog video signals limits the flexi-393

bility of building elaborate permutations, the cipher text-only394

attack (COA) has an effect on Numerous permutation-only395

broadcast-TV devices [39].396

For example, Bertilsson et al. [38] presented another397

approach to the famous architecture of Matias and398

Shamir [40], wherein every structure of a video is examined399

over to the other multiple pseudo-random space-filling curves400

to selectively retrieve the contents of the video by using the401

connection between subsequent frames.402

Whenever secret permutations are used to encrypt multi- 403

media content information, the situation appears to improve 404

dramatically. 405

Furthermore, a cipher text-only attack (COA) can still be 406

successful if certain correlations emerge between the items 407

to be permuted. In [41], Li et al. showed a COA attack on 408

row-column shuffled pictures by taking advantage of any 409

connection between distinct rows and columns. 410

The above approach has been further expanded in [42] to 411

break permutation-only picture encryption of pixel bits. 412

However, if the atoms of each element L are not low and the 413

entropy contained in each element is significant, it is evident 414

that finding for all (L!) possibilities is very complex, and it 415

hence COA is practically infeasible. 416

As a result, several research strategies propose building 417

more complicated ways to generate secret permutations in 418

order to provide higher security while also satisfying various 419

additional application-dependent needs [25], [26], [30], [32]. 420

Despite efforts to improve the resilience of permutation- 421

only ciphers to cipher text-only attacks, most cryptographic 422

algorithms of this type are vulnerable to plaintext attacks. 423

The impact of a chosen-plaintext attack (CPA), in which 424

the adversary obtains the cipher text of a chosen plaintext, 425

is increased by making all elements of the plaintext distinct 426

from one another (input difference). 427

From the results of [43], Jolfaei et al. [44] demonstrated 428

that the minimum constraint on the number of selected plain- 429

text to completely extract the fundamental permutation pat- 430

tern is (Logr l), where r seems to be the number of potential 431

intensity. 432

It was hard to calculate how often these known plaintexts 433

are required to properly break the fundamental permutation 434

pattern in the case of a targeted attack (KPA), which rep- 435

resents an attack model that varies from CPA only in the 436

implication that the adversary cannot choose the plaintext 437

arbitrarily. 438

In general, L is much larger than r in multimedia data. 439

According to the pigeonhole principle, certain values in 440

0, 1, . . . , r1 must occur more than once. The same pixel 441

quantity of 0 should occur approximately 512 times within 442

the permutation encrypted ciphered image when a known 443

plainimage of size (512x512) has a uniform distribution. As a 444

result of witnessing this clear picture and the accompanying 445

cipher one, there must be ([512]!) possibilities for one item 446

in the permutation pattern whose pixel value corresponds to 447

zero [54]. 448

– Viewing many more pairs of known plainimages and 449

encrypted images instinctively should eventually remove the 450

uncertainty from such experiences [54]. 451

Li et al. gave a quantitative analysis of the known plaintext 452

attack on permutation-only multimedia algorithms in [43] 453

by expanding the work in [45]. Their approach consists of 454

two phases: partitioning a permutation sequence into various 455

groups based on the atom values in every plaintext/ciphertext 456

combination and finding the intersection of the sets between 457

different pairings. 458
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By establishing a tree structure, this approach was459

enhanced in terms of storage and computational complexity460

in [46]. Both of these studies came to the conclusion that the461

number of known plaintext is in the rang of (LogrL) [54].462

These two publications are famous for the development463

and study of lightweight multimedia encryption systems464

due to their universality [22], [44], [49], [50], [51], [52],465

[53]. From the standpoint of composite representation, Leo466

Yu Zhang re-analyzes the KPA attack on permutation-only467

ciphers.468

Bianchi et al. [47], [48] confirmed it in a series of469

publications, suggesting that it is used tominimize the dimen-470

sion of secret text and increase the speed of linear pro-471

cesses on ciphered data created using additive homomorphic472

cryptograms.473

He provides a complete theoretical study of the KPA474

cryptanalysis on permutation-only systems using compos-475

ite representation. Many KPA algorithms are implied by476

the composite representation, one of which outperforms the477

well-known ‘‘optimal’’ approach in terms of faster com-478

putation with the same storage. Leo Yu et al. [54] present479

a complete theoretical investigation of the KPA attack on480

permutation-only ciphers, in contrast to prior work [43], [44],481

[46], Many KPA algorithms are implied by the composite482

representation, one of which outperforms the recognized483

‘‘optimal’’ approach in terms of faster computation with the484

same storage [54].485

IV. OUR NEURAL DECRYPTOR486

A. DATA SETS487

For training and cracking tests, the MNIST [55] and488

FASHION MNIST [56] data sets are utilized.489

Specifically, we use 60000 plain pictures from the MNIST490

and FASHION MNIST data sets to generate our encrypted491

images, which represent the training set, and the remaining492

10000 ciphered images from the same dataset for the test set.493

The non-uniform distribution of colors in each image494

would be the main motivation for selecting such a dataset495

where the intensity of the picture is stored as a number496

between 0 and 255, providing each pixel with 256 different497

possibilities. The number 0 represents black, whereas the498

value 255 represents white, and the intermediate values are499

grayscale levels ranging from black to white.500

The histogram is an effective instrument in image process-501

ing because it illustrates the intensity (or color) distribution502

of a picture.503

The distribution of color intensity created by the MNIST504

and Fashion MNIST databases has been calculated, as illus-505

trated in the graphics below. In which we can see the table506

values as well as the shades of gray that describe the image507

in the absence of a uniform distribution.508

Figures 1 and 2 demonstrate 16 samples from the fashion509

MNIST and MNIST data sets, respectively, while tables 3510

and 4 indicate the intensity distribution of their corresponding511

samples from the two data sets.512

B. DEEP LEARNING MODEL 513

1) NEURAL DECRYPTOR 514

The model computes the difference between various inputs 515

and outputs based on the dataset, using numerous parameters 516

such as batch size and pixel values, and the present key char- 517

acteristic is the correlation between adjacent pixels in two- 518

dimensional space.The decryptors’ objective is to extract the 519

visual difference between the inputs and the outputs, which 520

would be formally defined as follows: 521

• 1d = Input1 ⊗ Input2 522

where Input1 and Input2 are two distinctive plainimages 523

and ⊗ denotes to the dissimilar function. 524

Because we work in a two-dimensional space, the dis- 525

similar function represents the distance between two 526

images.For more details, if we place two images that 527

have the same size on top of each other, the function 528

represents the number of pixels in the same position in 529

the two images that have different colors and this can be 530

noted as follows: 531

Input1 = Img1 and Input2 = Img2. 532

The dissimilar function represents the number of pix- 533

els Pij with the condition P1ij 6=P2ij and P1ij ∈ Img1, 534

P2ij ∈ Img2. 535

• 1d ′ = Output1⊗Output2,For an outputting distinction, 536

1d ′ can be alternatively constructed by exploiting a pair 537

of relative cipher images Output1 and Output2. 538

• The underlined I-iteration differential pathway like the 539

propagation of1d to1d ′ after i iteration of permutation 540

is represented by: 1d
i
→ 1d ′. 541

• Every differential direction must have a specific proba- 542

bility of holding: Pr(1d
i
→ 1d ′) = a−p in the case of 543

unified distribution of the intensity I with I ∈ {0, . . . , a}. 544

witch the current work seeks to reduce because differential 545

patterns can be used as a statistical or quantitative distin- 546

guisher [43], [44], [46], [54] for permutation cryptanalysis 547

attacks. 548

In the case of a non-unified distribution, every differential 549

direction must have a specific probability of holding: 550

Pr(1d
i
→ 1d ′) = a−b with b > p, posing a performance 551

gap in current works [43], [44], [46], [54]. We show in this 552

paper that, even with the absence of data distribution, our 553

neural decryptor successfully employs aspects of ciphertext 554

pairs that are not addressed by the previous differential works. 555

2) THE CHOICE OF MACHINE LEARNING MODEL 556

Test evaluation is conceptualized as a regression problem 557

for a supervised model in which layers of the model are 558

trained by many characteristics such as variations between 559

input and output, number of iterations, and P-box generation 560

patterns. 561

Deep learning algorithms are used to find a decryptor 562

because they can detect hidden structures in digital informa- 563

tion besides the need for explicit intentional feature extraction 564

engineering. 565

94024 VOLUME 10, 2022



Z. Tolba et al.: Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

FIGURE 1. Fashion MNIST samples.

FIGURE 2. MNIST samples.

We experimented with several neural network types, such566

as the basic Multi-Layer Perceptron (MLP), deep neural net-567

work (DNN), convolutional neural network (CNN), and long-568

short-term memory network (LSTM).569

FIGURE 3. Corresponding Fashion Mnist samples color intensity
distribution.

FIGURE 4. Corresponding MNIST samples color intensity distribution.

To get the highest accuracy and learning speed, we investi- 570

gated the width (number of neurons for every layer) and depth 571

(number of hidden layers) of the latter. 572
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We also performed experiments including several sorts573

of activation functions as well as the weights initialization574

technique.575

After many experiments, we found that the CNNs [57] are576

appropriate for the task of identifying a decryptor .577

The main reason for this choice is that CNNs are designed578

to recognize patterns in input data, which aids the differential579

process, and it works for every input where two-dimensional580

data is connected in any manner.581

Convolution is based on three key techniques that can help582

in the enhancement of a machine learning approach, which583

are:584

• Sparse interactions: Classical neural networks employ585

matrix multiplication by a table of features with distinc-586

tive parameters specifying the relationship between each587

incoming and outgoing unit. This signifies that each588

element of output communicates with each element of589

entry, which is not the case with convoluted neural net-590

works. This is accomplished by making the core lower591

than the entry.592

This ensures that the model must store fewer parameters,593

which reduces the model’s memory requirements and594

improves its efficiency. This also means that the calcu-595

lation of the departure requires fewer operations. These596

efficiency improvements are often significant. Despite597

the limited distribution of data, this property enables our598

proposedmodel to establish a strong distinction between599

the corresponding inputs and outputs, as well as the600

different color intensities [57].601

• Parameter sharing: This refers to the use of the same602

characteristic for more than one function in a model.603

In a convolution network of neurons, each core element604

is used at each entry location. The parameter sharing605

performed by the kernel size ensures that instead of606

learning a set of different parameters for each location,607

we just discover one set, which minimizes the model’s608

size of the data requirements even further [57].609

• Equivariant representations: In the case of convolution,610

the layer has equivariant interpretations due to the spe-611

cial property of parameter sharing.612

When a function is said to be equivariant, it appears to613

mean that even if the input changes, so too does the614

output. In particular, a function H (x) is equivalent to615

a function K if H (K (x)) = K (H (x)). This property616

enables our proposed model to establish a strong link617

between the plain and cipher pairs [57].618

3) ARCHITECTURE619

We proceed by recovering permutation pattern information620

from cipher images using a convolutional encoder network.621

Furthermore, using a symmetric deconvolutional generator622

network, we construct encrypted pictures from the features623

to match their equivalent plainimages. To decrypt the P-box624

encryption technique, we must first involve a strong map-625

ping function that can be expressed as the inverse transform626

between encrypted and plainimages.627

• Deep convolutional neural networks (CNN) [57] are 628

used to mimic such complex inverse characteristics. In 629

Fig.5, the system is split into convolutional and decon- 630

volutional groups. 631

• The input is encrypted images specifically mentioned 632

as X in convolutional groups, and we start generating 633

six convolutional layers to quantify input image compo- 634

sition that gets low-dimensional characteristic features, 635

with the operating condition described as Y = O(X ). 636

• All these characteristic features will be used to define 637

the dense layer parameters for profound understanding 638

to detect hidden features in data sets without the need for 639

intentional feature selection. 640

• Form the dense layer we reverse the convolution stage in 641

deconvolutional groups and reestablish the basic images 642

with good accuracy. 643

• The inverted procedure is expressed by the following 644

equation: X = H (Y ). 645

• The regenerated images are compared to corresponding 646

ground truth plainimages presented as objective T , with 647

the error functionMeanSquaredError(MSE). 648

4) HYPER-PARAMETERS 649

When deploying machine learning algorithms, the hyper- 650

parameters that make the biggest difference for a particular 651

task must be chosen. These parameters are often determined 652

experimentally by analyzing multiple network topologies and 653

adhering to best practices. There are automated ways of 654

tuning the hyper-parameters [60], but they demand significant 655

resources that can be difficult to replicate. Following that, 656

we provide the results of the manual architectural search. 657

The remaining hyper-parameters that were correctly 658

applied in our interesting experiments are listed below: 659

• Initial Learning rate: 0.1. 660

• Batch Size: 2000. 661

• Epochs: fixed in 1500. 662

• Trainable parameters: 679 338. 663

• Weights initialization: Xavier Initialization [61], also 664

known as Glorot Initialization, is a neural network ini- 665

tialization strategy. Biases are set to zero, and for each 666

level, the weightsWij are established as: 667

Wij = Ds
[
−

1
√
Prv

,
1
√
Prv

]
(1) 668

whereDs is a uniform distribution and Prv is the dimen- 669

sion of the preceding layer (the number of columns 670

in W ). 671

• Optimizer: As an optimizer, we used the Adam algo- 672

rithm [58]. Since it slightly differs from the classical 673

gradient descent we presented before, we give a brief 674

explanation here. We denote two sequences: 675

xt = γ1x(t−1) + (1− γ1)ft (2) 676

yt = γ2y(t−1) + (1− γ2)f 2t (3) 677

xt and yt are respectively 1st order (mean) and 2nd order 678

(variance) gradient estimates. 679
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and ft = ∇Eθ (t−1)680

where θ (t) represents as before our trainable parameters,681

E is our loss function and γ1, γ2 are constants.682

• Error function:683

– The mean squared error (MSE) [59] of a regression684

line indicates how near it is to a set of values by685

squaring the distances between the values and the686

regression line (the ‘‘errors’’). Squaring is essential687

to remove any negative parameters. Larger differ-688

ences are also found to be more significant. The689

mean squared error is so named because we are690

computing the average of a sequence of errors. The691

smaller theMSE , the more accurate the prediction.692

Below is the description of the mean squared error:693

MSE =
1
a

n∑
i=1

(
yi − ŷi

)2 (4)694

With:695

∗ n is the number of items.696

∗ 6 is summation notation.697

∗ yi represent original ground of truth or observed698

y-value.699

∗ ŷi is the predicted y-value from the model.700

– Instead of single-point predictions, the quantile loss701

function is used to forecast intervals or ranges of702

predictions. The quantile regression loss function703

is used to predict quantiles, as both the title and704

subheading indicate. A quantile is indeed the value705

from which a particular amount of observations in706

a group are derived.707

• The coefficient of determination (R− squared) is a met-708

ric that offers information about a model’s goodness of709

fit. In the framework of regression, this is a measurable710

statistic about how well the linear regression accurately711

simulates the correct information. It’s indeed significant712

when using a quantitative model to better estimate out-713

comes or validate hypotheses. There are other versions714

(see reminder below); the one shown here is the most715

commonly used:716

R− squared = 1−
SSR
SST

, (5)717

= 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

. (6)718

with SSR is the sum squared regression and SST rep-719

resents the total sum of squares. The complete sum of720

squares would be the sum of the information’s distance721

from the average squared, whereas the sum multiplied722

regression is the total of the residuals squared. It would723

only handle values between 0 and 1 because it is a724

percentage.725

The residual, according to each measurement, is the726

difference between the estimated and observed values of727

the parameter y.728

Residual = actual y value− predicted y value, (7)729

TABLE 1. Convolutional groups parameters.

TABLE 2. Dense layer parameters.

ri = yi − ŷi. (8) 730

A negative residual indicates that the desired value was 731

too great, whereas a positive residual indicates that the 732

value obtained was too lower. A regression line’s goal is 733

to minimize the sum of residuals. 734

For calculating residuals, recognizing that:ri = yi − ŷi 735

and understanding that the regression contains the equa- 736

tion: ŷi = a+ bxi 737

The residual of observation is calculated as follows: 738

ri = yi − ŷi = yi − (a+ bxi) 739

• Activation function: The linear activation function was 740

chosen for any situation in which activation is roughly 741

proportional to the input. It is also known as ‘‘no activa- 742

tion’’ or ‘‘identity function’’. 743

The functionmakes zero variations to the weighted com- 744

bination of the parameters; it really just returns the value 745

that was therefore provided. In our situation, using this 746

function well preserves the parameters generated by the 747

Adam optimizer and strengthens the effectiveness of the 748

convolution features. 749

5) PADDING, STRIDES, KERNELS AND FILTERS 750

• The first important Conv-2D measurement is the total of 751

filters that the convolutional layer should receive. 752

• The depth of the kernel, which is a 2-tuple indicating the 753

size of the 2D convolution frame, is the next essential 754

factor that must be supplied to the Conv-2D class. The 755

kernel size must be an integer value as well. 756

• The strides configuration is a pair of integers that 757

describes the movement of the convolution along the 758

input volume’s x and y dimensions. 759

• The padding argument of the Conv-2D class could have 760

one of the two possible paratetrs: valid or the same. 761

By using the valid measurement, the entry dimension 762

is not zero-padded, so the spatial perception has been 763

restricted naturally through the use of convolution. 764

Figure 5 illustrates the model architecture and tables 1, 2 765

and 3 represent the convolutional groups parameters, Dense 766

layer and De-convolutional groups parameters respectively. 767

6) THE TRAINING GOALS OF THE DEEP LEARNING MODEL 768

One of the main goals of image encryption algorithms is 769

to break down the correlation between adjacent pixels as 770
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TABLE 3. De-convolutional groups parameters.

TABLE 4. Pseudo code of the model training algorithm.

much as possible. Because images contain important visual771

information that can be seen by simply overlaying the correla-772

tions of adjacent pixels. In order to predict clear images from773

encrypted images by implicit exploration of this correlation,774

one of the important features of our model is to rediscover and775

reconstruct this correlation by training the model with several776

different input and output (plain/cipher) pairs for permutation777

feature extraction.778

The main goal is to train a model that can predict a clear779

image from its corresponding ciphered image. but at the780

same time to find a model that can be trained with differ-781

ent characteristics to distinguish the clear image from its782

encrypted counterpart, whatever the permutation technique783

and the number of rounds.784

The problem was designed as a regression problem for785

a supervised model. It mean that the model will be trained786

to predict the clear image from its corresponding encrypted787

image or in other words the inputs of the model are encrypted788

images and the outputs are images generated to be like the789

originals plainimages. In the output, the resulting images790

obtained will be compared to the labeled data, which are the791

original image of Mnist and fashion Mnist, by an error func-792

tion which will measure the results of the model. Then, after793

each iteration, an update to the parameters of the model will794

be carried out according to the chosen optimizer. The system795

will save the weights and biases corresponding to the best796

results obtained at the end of each iteration, and the training797 FIGURE 5. Model architecture.
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FIGURE 6. The model training process.

will remain in loop until the number of iterations (epochs)798

completed. To examine permutation pattern measurements in799

the context of visual cryptography, we used four chaotic and800

non-chaotic system permutation algorithms on images from801

the Mnist and Fashion mnist data sets and to strengthen our802

study and better validate the established model, we employed803

these patterns as permutation key generators.804

Following the production of these permutation keys, the805

datasets Mnist and Fashion mnist are encrypted by these806

patterns to produce 60000 encrypted images of each, which807

are used as inputs to the trained model, and the remaining808

10000 images are encrypted for use in the model validation809

step. To simplify training, the encrypted images are arranged810

in the same sequence as the clear original images of theMnist811

and Fashion mnist datasets. The model additionally makes812

use of the original images from the Mnist and Fashion mnist813

datasets as label data. Figure 6 depicts the training procedure,814

and table 4 provides a pseudo-code of the training algorithm’s815

strategy.816

V. EXPERIMENTAL RESULTS817

A. PERMUTATION PATTERNS FOR P-BOXES GENERATION818

We applied four chaotic and non-chaotic system permutation819

algorithms on pictures from the Mnist and fashion mnist data820

sets to investigate permutation patternmeasures in the context 821

of visual cryptography. The methodological approach was 822

used to generate P-box permutations of overall pictures with 823

dimensions of 28× 28 as follows: 824

1) DISCRETE CHAOS 825

The logistic map is utilized in this study case to produce a 826

series of numbers, However, any discrete chaotic map can 827

also be employed in the same manner. 828

After sorting these values ascendingly, the scoring system 829

for every integer in the sorted series is used to fill the permu- 830

tation P-BOX. 831

The standard logistic map with parameter λ looks like this: 832

rn+1 = λrn (1− rn) (9) 833

The discrete chaotic system was iterated (MNspc ) rounds for 834

P-Box of sizeMN , where spc is the value of algorithm output 835

parameters and it represents the lowest integer higher than or 836

equal to (MNspc ). 837

2) CONTINUOUS CHAOS 838

The Lorenz system is utilized in this study case to produce a 839

series of numbers, However, any continuous chaotic system 840
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can also be employed in the same manner.841  .
a
.

b
.
c

−10 10 0
8 4 0
0 0 −8/3

 a
b
c

+
 0
−ac
ab

 (10)842

To begin, the three output frames are modified to remove843

short-term dependability. Then, every variable from every844

sequence is combined together to form a single sequence.845

To complete the permutation matrix, this series is sorted in846

ascending order, and a scoring system is supplied for each847

value in the sorted series. For a P-Box of sizeMN , the chaotic848

system is iterated (MNspc ) times.849

3) GRAY CODE BASED PERMUTATION METHOD (GCBPM)850

In [64] method, a basic Gray-code-based permutation strat-851

egy is used, using the bijective non-linear map described by852

the following equation as the basis.853

γ = θ ⊕ (θ � (β + 1)) (11)854

where θ is a k − bit number, γ is a Gray-code value of k bits,855

⊕ is the binary XOR operation, β is an integer, and� is the856

binary right shift. A k-bit number’s Gray-code is also a k-bit857

number.858

The image is turned into a one-dimensional array of pixels859

in order for this code to complete the permutation procedure.860

This method takes four digits β1, β2, δ1 and δ2 as input. It is861

worth noting that δ1 and δ2 are k-bit integers. Two Gray-862

code values, I1 and I2, are calculated for each pixel location.863

Where: I1 = GRAY (θ, β1)⊕ δ1 and I2 = GRAY (θ, β2)⊕ δ2864

Then, in the permuted image, take the pixel at position865

X1 and insert it in spot X2.866

4) COUPLED MAP LATTICE(CML)867

Coupled map lattice [63], a dynamical system with discrete868

time and discrete space, is employed in the manner stated869

by (12). This system has a long enough period to be employed870

in crypto-systems, and its output is transformed to integer871

numbers using (13). The generated numbers are then used to872

conduct right cyclic shifts to the image’s rows and up cyclic873

shifts to the image’s columns.874

fd+1(k) = (1− ε) τ (fd (k))+ ετ (fd (k − 1)) (12)875

sd = mod
(
fd
(
k
)
1016,X

)
(13)876

where k = 1, 2, . . . ,L is the lattice site indices, L is the lattice877

width, and fd (k)is the constant variable for the Kth site at the878

instant d . ε is the coupling parameter, which is one or zero,879

X= N for row shifts and X=M for column shifts. When the880

map τ is chaotic, the entire system is chaotic. The coupled881

map lattice system is then repeated Max(MN )times for a882

MN -sized P-box.883

B. TRAINING EXPERIMENTS, TRANSFER LEARNING AND884

PREDICTION885

All of the following experiments has been carried out886

on Google Collaboratory with the Back-end Google Com-887

pute Engine (Free GPU NVIDIA Tesla K80) and 12 GB888

RAM employing Python 3.7.13, TensorFlow 2.8, and Keras 889

API,The source code is available from GitHub.1 890

We were using the Keras checkpoint called Call Backs 891

to preserve the much more intended results during every 892

iteration, as well as the weight and bias of the CNN model. 893

To demonstrate the scope of training a machine learning- 894

based decryptor by exploiting significant differences between 895

(Plainimages) and (cipherimages), we set up an experiment 896

in which DL-decryptors are trained in a single round, eight 897

rounds, and sixteen rounds with the following parameters: 898

First, we trained the model on data from the Mnist data set 899

and the results are presented as following. 900

1) TRAINING EXPERIMENTS WITH ONE ROUND P-BOX 901

BASED ENCRYPTION 902

We conduct preliminary experiments on smaller-scale one- 903

permutation ciphers before moving on to larger 8 and 904

16 rounds equivalents to assess the effectiveness of the exper- 905

imental evaluation. Mnist data set images are used to produce 906

samples with four distinct permutation mechanisms and the 907

following are the pattern specifications designed to automat- 908

ically generate one round permutation keys: 909

• Chaotic system 1: The logistic map with r0 = 0.448 and 910

λ = 3.988. 911

• Chaotic system 2: The Lorenz system with a0 = 912

6.293,b0 = -6.749 and c0 = 2.886. 913

• Non chaotic system 1: Coupled map lattice with x1 = 914

0.31457,y2 = 0.6532 and ε = 0.94. 915

• Non chaotic system 2: Gray code based permutation 916

with d1 = 1, d2 = 28, δ1 = 29493, δ2 = 23749. 917

This makes it possible to create a large number 918

of encrypted images in a reasonable amount of time: 919

60,000 encrypted images for training and 10,000 encrypted 920

images for testing. The structure of the ciphered pictures is 921

described as a two-dimensional array with elements rang- 922

ing from 0 to 255. The numbers 0 and 255 indicate black 923

and white, respectively, while the intermediate values are 924

grayscale levels ranging from black to white. 925

Each sample of the dataset used to train a deep learning 926

model contains block cipher-related characteristics. In this 927

initial experience, we have four models. The labeled data of 928

the model is the clear pictures that correspond to the data sets. 929

To simplify training, the encrypted images are arranged in the 930

same sequence as the clear original images of the Mnist data 931

set. The model additionally makes use of the original images 932

from the Mnist dataset as label data. Our experimentation is 933

divided into these main phases: 934

-With one encryption process cycle, generating the permu- 935

tation keys of the four permutation patterns structured for the 936

encryption algorithm of the block cipher. 937

-The generation of cipher Mnist training dataset based on 938

generated keys: 60,000 samples for training and 10,000 sam- 939

ples for model validation. 940

1This paper’s supplementary code is accessible at https://github.com/
zakariatolba/multimedia-p-box-assessment.git.
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TABLE 5. Pseudo code of P-box based permutation encryption algorithm.

FIGURE 7. Data set generation and labeled data for one round
experiments.

-Generation of ciphered Fashion Mnist encryption training941

datasets based on the same produced keys for the four per-942

mutation patterns: 60,000 samples for a transfer learning test943

and 10,000 samples for each model’s prediction.944

-Training the four models with the ciphered mnist data sets945

and saving the best results for each one.946

-The reusing of the four models trained by encrypted mnist947

images as deployment models for prediction images from the948

ciphered fashion mnist data set.949

Figure 7 depicts the data sets generation procedure, and950

table 6 provides the training results for the Mnist data set.951

2) TRAINING EXPERIMENTS WITH 8 ROUNDS P-BOX BASED952

ENCRYPTION953

To conduct a more in-depth investigation and better test our954

model, we increase the number of rounds of parmation from955

one to eight in order to complicate the operation of permuta-956

tion, effectively break the correlation between the pixels, and957

make the developed models predict the text from the more958

TABLE 6. The ciphered Mnist data set one round training results.

FIGURE 8. Data set generation and labeled data for 8 rounds
experiments.

difficult ciphertext. The specifications designed to automati- 959

cally generate the first round of permutation keys are the same 960

as for the first experiments, but it should be highlighted that 961

in the case of multiple rounds, the key generation stage will 962

be conducted in accordance with the number of rounds. In the 963

case of eight rounds, the first key is created from the baseline 964

parameters specified above, the second key from the first one, 965

the third key from the second one, and so on until the last 966

round. 967

This experimentation is divided into these main phases: 968

-After employing the encryption approach given in Table 5 969

we get: 970

-The generation of cipher Mnist training dataset based on 971

generated keys: 60,000 samples for training and 10,000 sam- 972

ples for model validation. 973

-Generation of ciphered Fashion Mnist encryption training 974

datasets based on the same produced keys for the four per- 975

mutation patterns: 60,000 samples for a transfer learning test 976

and 10,000 samples for each model’s prediction. 977

-Training the four models with the ciphered mnist data sets 978

and saving the best results for each one. 979

-The reusing of the four models trained by encrypted mnist 980

images as deployment models for prediction images from the 981

ciphered fashion mnist data set. 982

Figure 8 depicts the data sets generation procedure, and 983

table 7 provides the training results for the Mnist data set. 984
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TABLE 7. The ciphered Mnist data set for 8 rounds training results.

TABLE 8. The ciphered Mnist data set for 16 rounds training results.

3) TRAINING EXPERIMENTS WITH 16 ROUNDS P-BOX985

BASED ENCRYPTION986

To conduct a more in-depth investigation and better test our987

model, we increase the number of rounds of parmation from988

‘‘8’’ to ‘‘16’’ in order to complicate the operation of permuta-989

tion, effectively break the correlation between the pixels, and990

make the developed models predict the text from the more991

difficult ciphertext. The specifications designed to automat-992

ically generate the first round of permutation keys are the993

same as for the first experiments, but it should be highlighted994

that in the case of multiple rounds, the key generation stage995

will be conducted in accordance with the number of rounds.996

In the case of 16 rounds, the first key is created from the997

baseline parameters specified above, the second key from the998

first one, the third key from the second one, and so on until999

the last round. This experimentation is divided into thesemain1000

phases:1001

-We receive after employing the encryption approach given1002

in Table 6: -The generation of cipher Mnist training dataset1003

based on generated keys: 60,000 samples for training and1004

10,000 samples for model validation.1005

-Generation of ciphered Fashion Mnist encryption training1006

datasets based on the same produced keys for the four per-1007

mutation patterns: 60,000 samples for a transfer learning test1008

and 10,000 samples for each model’s prediction.1009

-Training the four models with the ciphered mnist data sets1010

and saving the best results for each one.1011

-The reusing of the four models trained by encrypted mnist1012

images as deployment models for prediction images from the1013

ciphered fashion mnist data set.1014

Figure 9 depicts the data sets generation procedure, and1015

table 8 provides the training results for the Mnist data set.1016

4) TRANSFER LEARNING EXPERIMENTS1017

The objective of the patterns which used to produce the1018

p-boxes is really to construct permutation keys in such a1019

FIGURE 9. Data set generation and labeled data for 16 rounds
experiments.

TABLE 9. Transfer learning experiments with one round P-box based
encryption.

way that they seem random (pseudo-random generators), but 1020

these patterns simultaneously allow for the inverse opera- 1021

tion, which is decryption without loss of data. The model is 1022

not distinct in itself, but it improves in the identification of 1023

decryptors . In other terms, a model trained on data encrypted 1024

with one round CML is distinguishable from a P-box-based 1025

CML one-round encryption algorithm. All of the models 1026

have the same architecture, layers, and hyper parameters, but 1027

the key difference between them is the parameters acquired 1028

during the training process (weights and bias). 1029

After training the four models with the Mnist data set, 1030

we attempted to employ learning transfer by using theweights 1031

and bias of the models from the first model trained by the 1032

Mnist data set for one, eight, and sixteen rounds as deploy- 1033

ment models for the FashionMnist models for one, eight, and 1034

sixteen rounds with the same permutation patterns and the 1035

same algorithms parameters, respectively. 1036

The most remarkable conclusion is that, without any train- 1037

ing, the assessment process converges toward desirable find- 1038

ings and the error function is reduced. 1039

It should be highlighted that by combining transfer learn- 1040

ing with optimal prior cryptographic competence, it is 1041

also possible to develop acceptable decryptors from the 1042

ground up by utilizing the transfer learning techniques 1043

described in this paper. The results obtained are presented in 1044

tables 9, 10 and 11 respectively. Furthermore, the experience 1045

of learning transfer reusability to improvemodel performance 1046
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TABLE 10. Transfer learning experiments with 8 rounds P-box based
encryption.

TABLE 11. Transfer learning experiments with 16 rounds P-box based
encryption.

is the best proof of the concept distinguishability emphasized1047

in this research.1048

5) PREDICTION1049

The prediction was accomplished by combining the search1050

results; in other words, with models trained by the Mnist data1051

set, the estimation was done by the Fashion Mnist data set.1052

in which both models are predicted with the same weight1053

and bias parameters.1054

As an illustration of our results, the figures below reflect1055

a sample of the best results obtained by the model of the1056

CML-encrypted images from the two data sets and the predic-1057

tion of the corresponding images as an example of our results.1058

Visually, we can also see a distinction in the distribution of1059

colors in the encrypted images (Fig10, Fig12), like those of1060

their counterparts dictated by the predicted model of simple1061

images (Fig11, Fig13).1062

Besides, the images (Fig 14, Fig15) represent the predic-1063

tion of the encrypted images of the worst results of the chaotic1064

discrete models with 16 iterations, where it is very clear1065

visually the degradation of image quality in prediction.1066

VI. DISCUSSIONS1067

A. MEASURING THE DECRYPTOR RESULTS1068

To examine and fully understand the research results, we need1069

to have a measuring tool that quantifies the visual original1070

plaintext from the Mnist and Fashion mnist data sets to the1071

prediction results, allowing us to demonstrate the attack using1072

a more reliable technique.1073

In order to monitor the effectiveness of our achievements,1074

we deployed a pre-trained deep learning model with accept-1075

able accuracy to distinguish and examine the outcomes. The1076

model has pre-trained using Adam optimizer and Sparse Cat-1077

egorical Cross entropy error function.This model has a good1078

level of accuracy in recognizingMnist and FashionMnist data1079

FIGURE 10. Fashion Mnist ciphered images with one round CML.

sets. It has a precision of (98.05 %) for Fashion Mnist and 1080

(99.00 %) percent for Mnist, and its design is fairly simple. 1081

It is also suitable for implementation as an experimental 1082

investigation. Figure 16 represents the architecture of this pre- 1083

trained model. 1084

We examined the model’s prediction performance on the 1085

original MNIST and Fashion MNIST test sets first and then 1086

used it to monitor the effectiveness of our predicted encrypted 1087

images. Figure 17 and 18 demonstrate the visual results of the 1088

quantitative prediction analysis. 1089

B. QUANTITATIVE RESULTS AND COMPARISON 1090

The first factor we saw was that when the number of rounds 1091

increased, so the effectiveness of the deep learning attack 1092

decreased. But this degradation is relative to several parame- 1093

ters and it differs from one permutation alternative to another. 1094

Discrete chaos permutation patterns, for example, are more 1095

strong to attacks than continuous chaotic, and coupled map 1096

lattice is more secure and robust than the Gray code based 1097

permutation technique. 1098

As a result, we find that discrete chaos is more resistant to 1099

our attack when the number of rounds increases, followed by 1100

some little resistance from continuous chaos; the scientific 1101

interpretation of the resistance is the discrete generation of 1102

permutation patterns, which makes the attack more difficult 1103

by more efficiently destroying the correlation between the 1104

swappable atoms. 1105
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TABLE 12. Related literature works Comparison.

FIGURE 11. Fashion Mnist corresponding predicted images of one round
CML.

Despite a large number of rounds, CML and GCBPM are1106

very weak in this test.1107

What should also be mentioned is another very important1108

parameter, which is the redundancy of atoms (pixels) in1109

the plain text with a non-uniform distribution. Despite the1110

non-uniform distribution of colors in the Mnit and fashion1111

mnist databases, the attack findings vary dramatically; it1112

inherently comes down to the number of duplicated atoms,1113

which is highly visible intuitively.1114

FIGURE 12. Mnist ciphered images with one round CML.

It should also be highlighted that our work is sensitive to 1115

the kind of data. For example, if we use an image with all 1116

of the intensities and a total number of pixels equal to zero or 1117

any other value between zero and 255, the model cannot learn 1118

anything as well as the loss function, which is represented by 1119

the limitation of differential cryptanalysis in the case of zero 1120

difference. 1121

C. RELATED LITERATURE WORKS COMPARISON 1122

Shujun Li at al[43] established the quantitative cryptanalysis 1123

concept for recovering the permutation key for use in the 1124
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FIGURE 13. Mnist corresponding predicted images of one round CML.

encryption of images encrypted only by permutation. This1125

approach to expressing his efforts is based on the black box1126

attack employing KPA pairs, which is primarily based on1127

the uniform distribution of colors in the pairs involved. This1128

attack was successful in retrieving 50% of the permutation1129

key that was tested. However, their findings are entirely1130

based on considerable computational and storage resources.1131

Chengqing Li at al[44], inspired by the work of [43], opti-1132

mized the findings of [43] by reducing the number of KPA1133

pairs required towork as well as the computational and spatial1134

complexity. Their approach can be expanded to perform any1135

attack as a permutation cipher only with KPA pairs that pro-1136

vide uniform distribution; he effectively enhanced the attack1137

and retrieved more than half of the permutation key used in1138

the test. Alireza Jolfaei et al. [46] improved previous research1139

and showed that the right permutation mapping is totally1140

retrieved by aKPA attack and selected in all permutation-only1141

image ciphers, independent of cipher construction. He is also1142

reduced the number of KPA pairs required to work as well as1143

the computational and complexity. Leo Yu Zhang et al. [54]1144

build on previous studies by addressing how to balance stor-1145

age cost and computational complexity while performing the1146

KPA strategy. focuses on these two issues. He also bridged1147

the assessed KPA gap between artificial noise-like images1148

that fully match the theoretical model and the equivalent real1149

images using a novel idea of the composite representation.1150

Despite their relevance, all of these efforts have one important1151

FIGURE 14. Mnist corresponding predicted images of 16 rounds Discrete
chaos.

weakness: the uniform distribution of colors in KPA pairs. 1152

Among the restrictions, wemaymention that all of these stud- 1153

ies are based on the black box attack with classical research 1154

approaches and various optimization methods, and none of 1155

these works discussed the scenario of applying many rounds 1156

of permutation. Because of the unavailability of uniform dis- 1157

tribution in real data, their reuse in a process of evaluating the 1158

permutation approach remains a concern in real-world practi- 1159

cal scenarios. Table 12 provides a comparison between all of 1160

these works. In our contribution, we examined the problem 1161

from a different perspective than that taken by the previous 1162

research. As the main viewpoint, we considered the absence 1163

of uniform color distribution as a focus point. We also dis- 1164

cussed this topic in terms of the number of rounds and key 1165

generation strategies. We consider that our technique has the 1166

first advantage of being easily reusable. This technique can 1167

be used to test the strength of image encryption algorithms 1168

during the deployment phase or to select the best permutation 1169

strategy during the development phase. 1170

For further illustration, designers can use the same dataset 1171

used in our study to produce images encrypted by different 1172

algorithms that are under test evaluation and then train our 1173

model on these generated data with different rounds, algo- 1174

rithm parameters, and configurations in order to select the 1175

best permutation algorithm to use, as well as its best choice of 1176

the optimal algorithms’ parameters and the adequate number 1177

of rounds. 1178
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FIGURE 15. Mnist corresponding predicted images of 16 rounds Discrete
chaos.

FIGURE 16. The measure model architecture.

It can also aid in decision-making by encrypting images1179

with multiple rounds and then testing the results provided by1180

the models to customize the number of rounds and compare1181

many methods.1182

The notion of reuse refers to two aspects. The first is to1183

provide themodel as we have illustrated in this article with the1184

same datasets, model architecture, and parameters to test the1185

desired permutation algorithm. The second aspect is to use the1186

encryption algorithm to be evaluated to generate encrypted1187

images of the size of 28×28 from other datasets and reuse the1188

same model architecture. However, if designers want to test1189

ciphers in a larger space with large images, we recommend1190

focusing on our convolution and deconvolution strategies,1191

FIGURE 17. Quantitative results for Mnist dataset.

FIGURE 18. Quantitative results for fashion mnist dataset.

which are used to build deep learning models with different 1192

more suitable layers. to the needs of the designer, as long as 1193

the hyper-parameters are preserved. 1194

Despite that, our approach necessitates preprocessing 1195

dataset procedures and a large number of computational 1196

resources, as well as computation time and a vast number of 1197

experiments in the search for the desired model, highlighting 1198

the technique’s limitations. 1199

VII. CONCLUSION 1200

In this research, our findings provide an innovative method- 1201

ology for leveraging deep learning to identify decryptors 1202
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on symmetric permutation primitives. Our approaches are1203

applicable to any number of (non-zero) input variations. At its1204

heart, we adopt frequent dissimilarities to solve the challenge1205

of discriminating in two-dimensional space.1206

The presented research is intended to be used separately1207

from the operational mode of cryptography implementations.1208

It should be used a prior, such that, during the design stage of1209

cipher architecture, it can be used to examine the strongest1210

permutation mechanism to be used.1211

Otherwise, it can be implemented to assess and compare1212

different permutation patterns algorithms with a scientific1213

hypothesis. However, the time required to calculate those1214

assessments is a significant factor influencing their utility.1215

We do not claim that deep-learning tools will eventually1216

replace classical cryptanalysis. However, we believe that our1217

findings demonstrate that deep learning models are able to1218

be trained to do cryptanalysis at a level that is attractive to1219

cryptographers and that deep learning approaches can be a1220

helpful addition to the arsenal of cryptographic assessors.1221

The interpretability of deep learning-based black box attacks1222

is still a problem. The fact that a neural model is a black1223

box tells us very little concerning the real weakness of the1224

studied cryptosystem. This opens the doors for the possibility1225

of future studies to better answer this question.1226

In future research, we will look at deep learning-based1227

cryptanalysis for video and sound encryption as well as other1228

multimedia encryption systems. We will also attempt to solve1229

and optimize conventional classical cryptanalysis challenges1230

using artificial intelligence techniques and tools.1231

REFERENCES1232

[1] M. F. Idris, J. S. Teh, J. L. S. Yan, and W.-Z. Yeoh, ‘‘A deep learning1233

approach for active S-box prediction of lightweight generalized feistel1234

block ciphers,’’ IEEE Access, vol. 9, pp. 104205–104216, 2021.1235

[2] E. Amirhossein, R. Francesco, and P. Paolo, ‘‘Reducing the cost of1236

machine learning differential attacks using bit selection and aPartial ML-1237

Distinguisher,’’ School Comput. Sci. IT, Cryptol. ePrint Arch., Cork,1238

Irland, Tech. Rep. 1479, 2021.1239

[3] R. L. Rivest, ‘‘Cryptography and machine learning,’’ in Advances in1240

Cryptology—ASIACRYPT. Berlin, Germany: Springer, 1993, pp. 427–439.1241

[4] A. Gohr, ‘‘Improving attacks on round-reduced Speck32/64 using deep1242

learning,’’ in Advances in Cryptology. Cham, Switzerland: Springer, 2019,1243

pp. 150–179.1244

[5] B. Hou, Y. Li, H. Zhao, and B. Wu, ‘‘Linear attack on round-reduced1245

DES using deep learning,’’ in Computer Security—ESORICS. Cham,1246

Switzerland: Springer, 2020, pp. 131–145.1247

[6] B. Zahednejad and J. Li, ‘‘An improved integral distinguisher scheme based1248

on neural networks,’’ Inst. Artif. Intell. Blockchain, Guangzhou, China,1249

Tech. Rep. 4735, 2020.1250

[7] G. Liu, J. Lu, H. Li, P. Tang, and W. Qiu, ‘‘Preimage attacks against1251

lightweight scheme Xoodyak based on deep learning,’’ in Advances1252

in Information and Communication, Vancouver, BC, Canada. Cham,1253

Switzerland: Springer, 2021, pp. 637–648.1254

[8] A. Benamira, D. Gerault, T. Peyrin, and Q. Q. Tan, ‘‘A deeper look1255

at machine learning-based cryptanalysis,’’ in Advances in Cryptology1256

(Lecture Notes Comput. Science). Cham, Switzerland: Springer, 2021,1257

pp. 805–835.1258

[9] A. Jain and G. Mishra, ‘‘Analysis of lightweight block cipher few on1259

the basis of neural network,’’ in Harmony Search and Nature Inspired1260

Optimization Algorithms. Singapore: Springer, Aug. 2018, pp. 1041–1047.1261

[10] R. Focardi and F. L. Luccio, ‘‘Neural cryptanalysis of classical ciphers,’’ in1262

Proc. Italian Conf. Theor. Comput. Sci., Urbino, Italy, 2018, pp. 104–115.1263

[11] A. Gomez, S. Huang, I. Zhang, B. Li, M. Osama, and L. Kaiser, ‘‘Unsu- 1264

pervised cipher cracking using discrete GANs,’’ in Proc. Int. Conf. Learn. 1265

Represent., 2018, pp. 1–15. 1266

[12] C. Tan and Q. Ji, ‘‘An approach to identifying cryptographic algorithm 1267

from ciphertext,’’ in Proc. 8th IEEE Int. Conf. Commun. Softw. Netw. 1268

(ICCSN), Beijing, China, Jun. 2016, pp. 19–23. 1269

[13] W. Zhang, Y. Zhao, and S. Fan, ‘‘Cryptosystem identification scheme based 1270

on ASCII code statistics,’’ Secur. Commun. Netw., vol. 2020, pp. 1–10, 1271

Dec. 2020. 1272

[14] A. Baksi, J. Breier, Y. Chen, and X. Dong, ‘‘Machine learning assisted 1273

differential distinguishers for lightweight ciphers (extended version),’’ 1274

Cryptol. ePrint Arch., Nanyang Technol. Univ., Singapore, Tech. Rep. 571, 1275

Dec. 2020. 1276

[15] J. So, ‘‘Deep learning-based cryptanalysis of lightweight block ciphers,’’ 1277

Secur. Commun. Netw., vol. 2020, pp. 1–11, Jul. 2020. 1278

[16] G. Mishra, S. V. S. S. N. V. G. K. Murthy, and S. K. Pal, ‘‘Neural 1279

network based analysis of lightweight block cipher present,’’ in Harmony 1280

Search and Nature Inspired Optimization Algorithms. Singapore: Springer, 1281

Aug. 2018, pp. 969–978. 1282

[17] E. M. Rogers, ‘‘Claude Shannon’s cryptography research during world 1283

war II and the mathematical theory of communication,’’ in Proc. IEEE 1284

Int. Carnahan Conf. Security Technol. (CCST), Albuquerque, NM, USA, 1285

Oct. 1994, pp. 1–5. 1286

[18] S. K. Abd-El-Hafiz, S. H. Abdelhaleem, and A. G. Radwan, ‘‘Novel 1287

permutation measures for image encryption algorithms,’’Opt. Lasers Eng., 1288

vol. 85, pp. 72–83, Oct. 2016. 1289

[19] A.-V. Diaconu, ‘‘Circular inter–intra pixels bit-level permutation and 1290

chaos-based image encryption,’’ Inf. Sci., vols. 355–356, pp. 314–327, 1291

Aug. 2016. 1292

[20] C. Fu, B.-B. Lin, Y.-S. Miao, X. Liu, and J.-J. Chen, ‘‘A novel chaos- 1293

based bit-level permutation scheme for digital image encryption,’’ Opt. 1294

Commun., vol. 284, no. 23, pp. 5415–5423, 2011. 1295

[21] G. Ye, ‘‘Image scrambling encryption algorithm of pixel bit based on chaos 1296

map,’’ Pattern Recognit. Lett., vol. 31, no. 5, pp. 347–354, 2010. 1297

[22] Z.-L. Zhu, W. Zhang, K.-W. Wong, and H. Yu, ‘‘A chaos-based symmetric 1298

image encryption scheme using a bit-level permutation,’’ Inf. Sci., vol. 181, 1299

no. 6, pp. 1171–1186, 2011. 1300

[23] N. Bourbakis and A. Dollas, ‘‘SCAN-based compression-encryption- 1301

hiding for video on demand,’’ IEEE Multimedia, vol. 10, no. 3, pp. 79–87, 1302

Jul. 2003. 1303

[24] M. Zanin and A. N. Pisarchik, ‘‘Gray code permutation algorithm for high- 1304

dimensional data encryption,’’ Inf. Sci., vol. 270, no. 20, pp. 288–297, 1305

2014. 1306

[25] X. Zhang, ‘‘Lossy compression and iterative reconstruction for encrypted 1307

image,’’ IEEE Trans. Inf. Forensics Security, vol. 6, no. 1, pp. 53–58, 1308

Mar. 2011. 1309

[26] F. Huang, J. Huang, and Y.-Q. Shi, ‘‘New framework for reversible data 1310

hiding in encrypted domain,’’ IEEE Trans. Inf. Forensics Security, vol. 11, 1311

no. 12, pp. 2777–2789, Dec. 2016. 1312

[27] S. M. M. Rahman, M. A. Hossain, H. Mouftah, A. E. Saddik, and 1313

E. Okamoto, ‘‘Chaos-cryptography based privacy preservation technique 1314

for video surveillance,’’ Multimedia Syst., vol. 18, no. 2, pp. 145–155, 1315

2012. 1316

[28] F. Dufaux and T. Ebrahimi, ‘‘Scrambling for privacy protection in video 1317

surveillance systems,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 18, 1318

no. 8, pp. 1168–1174, Aug. 2008. 1319

[29] C. Wang, H.-B. Yu, and M. Zheng, ‘‘A DCT-based MPEG-2 transparent 1320

scrambling algorithm,’’ IEEE Trans. Consum. Electron., vol. 49, no. 4, 1321

pp. 1208–1213, Nov. 2003. 1322

[30] W. Zeng and S. Lei, ‘‘Efficient frequency domain selective scrambling 1323

of digital video,’’ IEEE Trans. Multimedia, vol. 5, no. 1, pp. 118–129, 1324

Mar. 2003. 1325

[31] H. Cheng and X. Li, ‘‘Partial encryption of compressed images and 1326

videos,’’ IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2439–2451, 1327

Aug. 2000. 1328

[32] H. Sohn, W. De Neve, and Y. M. Ro, ‘‘Privacy protection in video surveil- 1329

lance systems: Analysis of subband-adaptive scrambling in JPEG XR,’’ 1330

IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 2, pp. 170–177, 1331

Feb. 2011. 1332

[33] J. Zhou, X. Liu, O. C. Au, and Y. Y. Tang, ‘‘Designing an efficient image 1333

encryption-then-compression system via prediction error clustering and 1334

random permutation,’’ IEEE Trans. Inf. Forensics Security, vol. 9, no. 1, 1335

pp. 39–50, Nov. 2014. 1336

VOLUME 10, 2022 94037



Z. Tolba et al.: Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

[34] Q. Zhang, L. Liu, and X. Wei, ‘‘Improved algorithm for image encryption1337

based on DNA encoding and multi-chaotic maps,’’ Int. J. Electron. Com-1338

mun., vol. 68, no. 3, pp. 186–192, Mar. 2014.1339

[35] A. G. Radwan, S. H. AbdElHaleem, and S. K. Abd-El-Hafiz, ‘‘Sym-1340

metric encryption algorithms using chaotic and non-chaotic generators:1341

A review,’’ J. Adv. Res., vol. 7, no. 2, pp. 193–208, 2016.1342

[36] Q. Zhang and X. Wei, ‘‘A novel couple images encryption algorithm based1343

on DNA subsequence operation and chaotic system,’’ Optik, vol. 124,1344

no. 23, pp. 6276–6281, Dec. 2013.1345

[37] X. Wang and L. Yang, ‘‘A novel chaotic image encryption algorithm based1346

on water wave motion and water drop diffusion models,’’ Opt. Commun.,1347

vol. 285, no. 20, pp. 4033–4042, Sep. 2012.1348

[38] M. Bertilsson, E. F. Brickell, and I. Ingemarsson, ‘‘Cryptanalysis of video1349

encryption based on space-filling curves,’’ in Advances in Cryptology—1350

EUROCRYPT, Houthalen, Belgium. Berlin, Germany: Springer, 1989,1351

pp. 403–411.1352

[39] R. F. Graf, More Scrambling & Descrambling Techniques, Video Scram-1353

bling & Descrambling: For Satellite & Cable TV, 2nd ed. London, U.K.:1354

Newnes, 1999, ch. 5, pp. 39–43.1355

[40] Y. Matias and A. Shamir, ‘‘A video scrambling technique based on space1356

filling curves (extended abstract),’’ in Advances in Cryptology—CRYPTO,1357

Athens, GA, USA. Berlin, Germany: Springer, 1988, pp. 398–417.1358

[41] W. Li, Y. Yan, and N. Yu, ‘‘Breaking row-column shuffle based image1359

cipher,’’ in Proc. 20th ACM Int. Conf. Multimedia (MM), Nara, Japan,1360

2012, pp. 1097–1100.1361

[42] C. Li, D. Lin, and J. Lü, ‘‘Cryptanalyzing an image-scrambling encryption1362

algorithm of pixel bits,’’ IEEE Multimedia, vol. 24, no. 3, pp. 64–71,1363

Mar. 2017.1364

[43] S. Li, C. Li, G. Chen, N. G. Bourbakis, and K.-T. Lo, ‘‘A general quantita-1365

tive cryptanalysis of permutation-onlymultimedia ciphers against plaintext1366

attacks,’’ Image Commun., vol. 23, no. 3, pp. 212–223, 2008.1367

[44] A. Jolfaei, X.-W. Wu, and V. Muthukkumarasamy, ‘‘On the security of1368

permutation-only image encryption schemes,’’ IEEE Trans. Inf. Forensics1369

Security, vol. 11, no. 2, pp. 235–246, Feb. 2016.1370

[45] X.-Y. Zhao, G. Chen, D. Zhang, X.-H.Wang, andG.-C. Dong, ‘‘Decryption1371

of pure-position permutation algorithms,’’ J. Zhejiang Univ. Sci., vol. 5,1372

no. 7, pp. 803–809, 2004.1373

[46] C. Li and K.-T. Lo, ‘‘Optimal quantitative cryptanalysis of permutation-1374

only multimedia ciphers against plaintext attacks,’’ Signal Process.,1375

vol. 91, no. 4, pp. 949–954, 2011.1376

[47] T. Bianchi, A. Piva, and M. Barni, ‘‘Efficient linear filtering of encrypted1377

signals via composite representation,’’ inProc. 16th Int. Conf. Digit. Signal1378

Process., Santorini, Greece, Jul. 2009, pp. 1–6.1379

[48] T. Bianchi, T. Veugen, A. Piva, andM. Barni, ‘‘Processing in the encrypted1380

domain using a composite signal representation: Pros and cons,’’ in Proc.1381

1st IEEE Int. Workshop Inf. Forensics Secur. (WIFS), London, U.K.,1382

Dec. 2009, pp. 176–180.1383

[49] Z. Hua and Y. Zhou, ‘‘Image encryption using 2D logistic-adjusted-sine1384

map,’’ Inf. Sci., vol. 339, pp. 237–253, Apr. 2016.1385

[50] T. Stutz and A. Uhl, ‘‘A survey of H.264 AVC/SVC encryption,’’ IEEE1386

Trans. Circuits Syst. Video Technol., vol. 22, no. 3, pp. 325–339,Mar. 2012.1387

[51] L. Y. Zhang, X. Hu, Y. Liu, K.-W. Wong, and J. Gan, ‘‘A chaotic image1388

encryption scheme owning temp-value feedback,’’ Commun. Nonlinear1389

Sci. Numer. Simul., vol. 19, no. 10, pp. 3653–3659, Oct. 2014.1390

[52] Q. Zhang, H. Zhong, L. T. Yang, Z. Chen, and F. Bu, ‘‘PPHOCFS: Privacy1391

preserving high-order CFS algorithm on the cloud for clustering multi-1392

media data,’’ ACM Trans. Multimedia Comput., Commun., Appl., vol. 12,1393

no. 4s, pp. 1–15, Nov. 2016.1394

[53] L. Zhao, A. Adhikari, D. Xiao, and K. Sakurai, ‘‘On the security analysis of1395

an image scrambling encryption of pixel bit and its improved scheme based1396

on self-correlation encryption,’’ Commun. Nonlinear Sci. Numer. Simulat.,1397

vol. 17, no. 8, pp. 3303–3327, 2012.1398

[54] L. Y. Zhang, Y. Liu, C. Wang, J. Zhou, Y. Zhang, and G. Chen, ‘‘Improved1399

known-plaintext attack to permutation-only multimedia ciphers,’’ Inf. Sci.,1400

vols. 430–431, pp. 228–239, Mar. 2018.1401

[55] L. Deng, ‘‘The MNIST database of handwritten digit images for machine1402

learning research [best of the web],’’ IEEE Signal Process. Mag., vol. 29,1403

no. 6, pp. 141–142, Nov. 2012.1404

[56] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel1405

image dataset for benchmarking machine learning algorithms,’’ 2017,1406

arXiv:1708.07747.1407

[57] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,1408

no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.1409

[58] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ 1410

in Proc. ICLR, San Diego, CA, USA, 2015, pp. 1–15. 1411

[59] M. Ishikawa, ‘‘Structural learning with forgetting,’’ Neural Netw., vol. 9, 1412

no. 3, pp. 509–521, Apr. 1996. 1413

[60] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza- 1414

tion,’’ J. Mach. Learn. Res., vol. 13, no. 2, pp. 281–305, Feb. 2012. 1415

[61] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep 1416

feedforward Neural Networks,’’ in Proc. AISTATS, Sardinia, Italy, 2010, 1417

pp. 1–8. 1418

[62] X.-Y. Wang, Y.-Q. Zhang, and X.-M. Bao, ‘‘A novel chaotic image encryp- 1419

tion scheme using DNA sequence operations,’’ Opt. Lasers Eng., vol. 73, 1420

pp. 53–61, Oct. 2015. 1421

[63] J.-X. Chen, Z.-L. Zhu, C. Fu, H. Yu, and L. Zhang, ‘‘An efficient image 1422

encryption scheme using Gray code based permutation approach,’’ Opt. 1423

Lasers Eng., vol. 67, pp. 191–204, Apr. 2015. 1424

[64] T. R. Lee, J. S. Teh, N. Jamil, J. L. S. Yan, and J. Chen, ‘‘Lightweight block 1425

cipher security evaluation based on machine learning classifiers and active 1426

S-Boxes,’’ IEEE Access, vol. 9, pp. 134052–134064, 2021. 1427

ZAKARIA TOLBA was born in Oum El Bouaghi, 1428

Algeria. He received the B.Eng. degree in parallel 1429

and distributed systems and the M.Sc. degree in 1430

distributed software architectures from Oum El 1431

Bouaghi University, Algeria, in 2010 and 2017, 1432

respectively. He is currently pursuing the Ph.D. 1433

degree with the Department of Computer Sci- 1434

ence and Mathematics, Larbi Tebessi University, 1435

Algeria, in the areas of machine learning appli- 1436

cations in cryptography, security, privacy, and 1437

cryptanalysis. 1438

From 2011 to 2015, he worked as an Engineer and a SystemAdministrator 1439

in the military sector. Since 2017, he has been the Head of the Center for 1440

Information and Communication Systems, Networks, Distance Education, 1441

and Videoconferencing, Om El Bouaghi University. 1442

MAKHLOUF DERDOUR received the Engineer- 1443

ing degree in computer sciences from the Univer- 1444

sity of Constantine, Algeria, in 2004, the Magister 1445

degree in computer sciences from the University 1446

of Tebessa, and the Ph.D. degree in computer net- 1447

works from the University of Pau and Pays de 1448

l’Adour (UPPA), France, in 2012. He is currently 1449

a Full Professor at the Computer Science Depart- 1450

ment, University of Oum El Bouaghi, Algeria. 1451

His research interests include software architec- 1452

ture, multimedia applications, adaptation and self-adaptation of applications, 1453

design and modeling of systems, and systems security. He is a General 1454

Chair of the International Conference on Pattern Recognition and Intelligent 1455

Systems (PAIS). 1456

MOHAMED AMINE FERRAG (Senior 1457

Member, IEEE) received the bachelor’s, master’s, 1458

Ph.D., and Habilitation degrees in computer sci- 1459

ence from Badji Mokhtar—Annaba University, 1460

Annaba, Algeria, in June 2008, June 2010, June 1461

2014, and April 2019, respectively. 1462

Since October 2014, he has been a Senior Lec- 1463

turer with the Department of Computer Science, 1464

Guelma University, Guelma, Algeria. Since July 1465

2019, he has been a Visiting Senior Researcher 1466

with the NAU-Lincoln Joint Research Center of Intelligent Engineering, 1467

Nanjing Agricultural University, Nanjing, China. His current H-index is 1468

24, i10-index is 42, and 3388 citations in Google Scholar Citation. His 1469

research interests include wireless network security, network coding security, 1470

and applied cryptography. He has published over 90 papers in international 1471

journals and conferences in the above areas. He has been conducting several 1472

research projects with international collaborations on these topics. 1473

94038 VOLUME 10, 2022

http://dx.doi.org/10.1038/nature14539


Z. Tolba et al.: Automated Deep Learning BLACK-BOX Attack for Multimedia P-BOX Security Assessment

He is featured in Stanford University’s list of the world’s Top 2 % sci-1474

entists for the years 2019 and 2020. Some of his research findings are1475

published in top-cited journals, such as the IEEE COMMUNICATIONS SURVEYS1476

AND TUTORIALS, IEEE INTERNET OF THINGS JOURNAL, IEEE TRANSACTIONS ON1477

ENGINEERINGMANAGEMENT, IEEE ACCESS, IEEE/CAA JOURNALOFAUTOMATICA1478

SINICA, Sensors (MDPI), Journal of Information Security and Applications1479

(Elsevier), Transactions on Emerging Telecommunications Technologies1480

(Wiley), Telecommunication Systems (Springer), International Journal of1481

Communication Systems (Wiley), Sustainable Cities and Society (Elsevier),1482

and Journal of Network and Computer Applications (Elsevier). He is also1483

serving on various editorial positions, such as an Editorial Board Mem-1484

ber in journals (indexed SCI and Scopus), such as ICT Express (JCR IF1485

4.317), IET Networks (Citescore 4.1), International Journal of Internet1486

Technology and Secured Transactions (Citescore 1.0), Security and Com-1487

munication Networks (JCR IF 1.791), and Journal of Sensor and Actuator1488

Networks (Citescore 6.2). He reviewed more than 1160 articles (verified1489

by publons) for top-cited journals, including Nature, IEEE TRANSACTIONS,1490

Elsevier, Springer, and Wiley journals. He was a recipient of the 2021 IEEE1491

TRANSACTIONS ON ENGINEERING MANAGEMENT Best Paper Award.1492

S. M. MUYEEN (Senior Member, IEEE) received1493

the B.Sc.Eng. degree in electrical and electronic1494

engineering from the Rajshahi University of Engi-1495

neering and Technology (RUET), Bangladesh,1496

formerly known as the Rajshahi Institute of Tech-1497

nology, in 2000, and theM.Eng. and Ph.D. degrees1498

in electrical and electronic engineering from the1499

Kitami Institute of Technology, Japan, in 2005 and1500

2008, respectively. He is currently working as1501

a Full Professor with the Electrical Engineering1502

Department, Qatar University. He has been a keynote speaker and an invited1503

speaker at many international conferences, workshops, and universities.1504

He has published more than 250 papers in different journals and interna-1505

tional conferences. He has published seven books as an author or editor.1506

His research interests include power system stability and control, electrical1507

machine, FACTS, energy storage systems (ESS), renewable energy, and1508

HVDC systems. He is a fellow of Engineers Australia. He is serving as1509

an Editor/Associate Editor for many prestigious journals from IEEE, IET,1510

and other publishers, including IEEE TRANSACTIONS ON ENERGY CONVERSION,1511

IEEE POWER ENGINEERING LETTERS, IET Renewable Power Generation, and1512

IET Generation, Transmission & Distribution.1513

MOHAMED BENBOUZID (Fellow, IEEE) 1514

received the B.Sc. degree in electrical engineering 1515

from the University of Batna, Batna, Algeria, 1516

in 1990, the M.Sc. and Ph.D. degrees in electrical 1517

and computer engineering from the National Poly- 1518

technic Institute of Grenoble, Grenoble, France, 1519

in 1991 and 1994, respectively, and the Habili- 1520

tation à Diriger des Recherches degree from the 1521

University of Picardie ‘‘Jules Verne,’’ Amiens, 1522

France, in 2000. After receiving the Ph.D. degree, 1523

he joined the Professional Institute of Amiens, University of Picardie ‘‘Jules 1524

Verne,’’ where he was an Associate Professor of electrical and computer 1525

engineering. Since September 2004, he has been with the University of 1526

Brest, Brest, France, where he is currently a Full Professor of electrical 1527

engineering. He is also a Distinguished Professor and a 1000 Talent Expert 1528

at the Shanghai Maritime University, Shanghai, China. His main research 1529

interests include analysis, design, and control of electric machines, variable- 1530

speed drives for traction, propulsion, and renewable energy applications, 1531

and fault diagnosis of electric machines. He is a fellow of the IET. He is 1532

the Editor-in-Chief of the International Journal on Energy Conversion 1533

and the Applied Sciences (MDPI) Section on Electrical, Electronics and 1534

Communications Engineering. He is a Subject Editor of the IET Renewable 1535

Power Generation. 1536

1537

VOLUME 10, 2022 94039


