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ABSTRACT This paper presents a concept of a 4D multimodal speaker model (4D-MSM) for asynchronous
remote speech diagnosis. Recording and archiving diagnostically significant articulation material remain
an issue in computer-aided speech diagnosis. Therefore, we propose a workflow for preparing and storing
reliable and easily interpretable multimodal data regarding pronunciation. According to our assumptions,
data acquisition should be non-invasive, comfortable for both the patient and therapist, not interfere with
the articulation process, and provide essential data of high quality. We developed and employed a dedicated
device, obtaining a 15-channel spatially distributed audio signal and stable stereovision stream from two
cameras focused on the lower part of the face. Our framework for data preprocessing covers digital
beamforming of the multichannel audio signal, audio-video synchronization, and segmentation of words
in the audio signal. Then, we use stereo data to calculate and adjust the depth map and prepare point clouds.
Simultaneously, we delineate the mouth in video frames using a dedicated semi-automated segmentation
algorithm. The point clouds are then textured with the camera images with superimposed mouth regions.
Finally, we add the audio track to constitute the 4D-MSM. In the paper, we show the concept and detailed
specification of the model and present experiments to justify the methodology. Proposed 4D-MSMs may be
employed in remote speech diagnosis for objectifying and archiving diagnoses, conducting asynchronous
consultations, and documenting the progress in therapy.
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INDEX TERMS Articulation data acqusition, audio-video processing, computer-aided speech diagnosis,
remote speech diagnosis and therapy, stereovision.

I. INTRODUCTION19

Understandable communication between people is the basis20

of society’s functioning. Therefore, speech disorders con-21

stitute a significant social problem, especially for children.22

Poorly developed or disordered speech may cause rejection23

by peers, alienation, low self-esteem, and later difficulties24

in getting an adequate job [1]. Therefore, speech screen-25

ings in kindergartens and schools are crucial, as they allow26

for the early detection of communication difficulties [2].27

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

Subsequently, the children in need can undergo a more 28

profound speech and hearing diagnosis and benefit from 29

appropriate therapy. This process depends mainly on the 30

availability of speech and language pathologists (SLPs). 31

In Poland, 6-year-old children should be provided with 32

speech diagnosis and therapy in their preschools. However, 33

still over 50% (7,789 of 15,552) of Polish kindergartens do 34

not hire a speech therapist [3]. SLPs often work simultane- 35

ously as teachers, so it is impossible to provide profound 36

therapy to all children in need, especially those younger 37

than 6. For this reason, parents often decide to choose private 38

consultations and speech therapy. Such solutions are available 39
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mainly to people living in cities. Access to qualified speech40

therapists can be difficult or impossible in rural areas and41

small towns. The problem of worse availability of speech42

therapists in rural areas is a global problem also reported, e.g.,43

in the United States [4] and Australia [5].44

The popularization of remote consultations, diagnosis, and45

speech therapy is a recent attempt to solve the expert avail-46

ability problem. Supported by telemedicine tools, this field47

has been consistently developing for years. Nevertheless,48

only the outbreak of the COVID-19 pandemic accelerated49

the process of opening the speech therapy community to new50

technologies. For many therapists and their patients, using51

computer tools was the only way to continue their work52

since 2020 [6].53

A. STATE OF THE ART54

Speech diagnosis and therapy can be assisted with vari-55

ous computer-based methods. Videoconferences of a thera-56

pist and a patient (and possibly additional external experts)57

can be easily conducted with standard teletransmission58

tools [4], [7]. Internet platforms providing the patient with59

access to speech therapy exercises are technologically one60

step further. In some cases, the therapist can adjust the61

therapy programming module apart from standard access to62

the patient’s performance or statistics [8], [9]. The gathered63

diagnostic material can be subjected to comprehensive anal-64

ysis with automated computerized methods to provide mea-65

surable parameters of speech and hearing. Finally, the data66

can be used to estimate the probability of selected disorders67

(e.g., [10], [11], [12], [13], [14], [15]).68

Remote speech therapy and diagnosis can be carried69

out synchronously, with the simultaneous presence of the70

speech therapist and the patient, or asynchronously based on71

mutually transmitted data [16]. Synchronous mode usually72

employs videoconferencing software activated on a laptop73

or smartphone. It is considered comparable to stationary74

therapy, e.g., Coufal et al. [17] found no significant differ-75

ences between the therapeutic effects in a group of over76

1,700 children with dyslalia. Other studies reported simi-77

lar conclusions [4]. Raman et al. [7] described synchronous78

remote speech screening in rural India, demonstrating com-79

parable effects of in-person and telemedicine studies. Despite80

the significant development of the field, both technical issues81

(computer equipment access and stable Internet connection)82

and the skeptical attitude of some speech therapists remain83

an issue [6]. Hence, the ease of installation, user-friendliness,84

and reliability of the designed solutions are of particular85

importance [18].86

Asynchronousmode covers primarily therapy, not the diag-87

nosis. It is employed mainly in cases where the diagnosis88

is already known, and the patient performs online exercises89

ordered by the SLP. Multiple studies describe asynchronous90

remote speech therapy based on Internet platforms contain-91

ing multimedia training material for both children [8], [9]92

and adults with various disorders (e.g., the Polish platform93

‘‘Afast! Say it’’ for aphasia patients [19]).94

Computer-aided speech diagnosis (CASD) is a less 95

explored topic. Automated diagnosis based on speech mainly 96

concerns the detection of early signs of Parkinson’s dis- 97

ease [10], [11], [20] or autism [21]. There are reports on 98

the detection of mispronunciations and pronunciation disor- 99

ders [13], [22], [23], nasality [24], stuttering [12], and auto- 100

mated recognition of incorrect pronunciation patterns within 101

selected pathology [14], [25]. Other papers also describe 102

methods for aiding speech therapy using audio and video 103

processing [26], [27], [28], [29]. However, the proposed solu- 104

tions feature two main drawbacks: they rely on relatively 105

small groups of speakers, and they are rarely implemented 106

in practice so far. 107

To document the patient’s pronunciation, speech therapists 108

often use notes or videos recorded with a smartphone during 109

the examination. They can use such recordings to verify the 110

patient’s diagnosis, consult questionable issues with other 111

experts, and monitor the therapy progress over time. Such a 112

solution has several drawbacks. Simultaneous video record- 113

ing with the phone and examining the patient is inconve- 114

nient for the therapist. The image is often unstable, and the 115

data covers only short parts of the examination, so not all 116

essential elements of the articulation are captured. In turn, 117

recording using a tripod reduces the quality and diagnostic 118

content of the data due to the greater distance between the 119

camera/microphone and the articulators. The lack of con- 120

venient and reliable techniques for registration, archiving, 121

and sharing of articulation data forms a significant gap in 122

the current speech diagnosis and therapy, both remote and 123

stationary. 124

The articulation registration methods proposed in the liter- 125

ature include electromagnetic articulation (EMA) [30], [31], 126

electropalatography (EPG), [32], [33], electromyography 127

(EMG), and various imaging methods (computed tomogra- 128

phy, magnetic resonance imaging, ultrasound, fluoroscopy). 129

These methods are expensive and hardly available and, 130

in most cases, also invasive, so their use impacts the patient’s 131

pronunciation. Another disadvantage is also the problematic 132

interpretability of the data. Without appropriate software and 133

expert knowledge of the measurement specificity, it is impos- 134

sible to conclude from the obtained results. 135

During an in-person speech diagnosis, a speech therapist 136

can analyze how sounds are produced using the sense of 137

hearing, touch, and sight. A single-camera view hardly allows 138

for comprehensive observation of the speaker’s articulation 139

organs during pronunciation. A stereovision system enables 140

3D mapping of the surroundings thanks to a point cloud 141

based on the images from a pair of cameras. Stereoscopic 142

vision is the most natural way for humans to perceive three- 143

dimensional images, as it allows feeling the depth of the 144

observed scenes [34]. 3D mapping finds many applications, 145

i.a., in monitoring, tracking, robotics control, terrain recon- 146

struction based on aerial photography, or generating mod- 147

els for virtual reality [34], [35], [36]. Therefore, the use 148

of spatial animations generated based on stereoscopic data 149

collected while speaking may be a promising direction for 150
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articulation archiving. Steiner et al. [37] proposed to process151

the EMA measurements as motion-capture data. The ani-152

mated 3D models presented the tongue motion during articu-153

lation. Busso et al. [38] reported high-quality speaker models154

produced using markers attached to the face. Xie et al. [39]155

generated three-dimensional VSA (visual speech animation)156

face models based on a video. However, there are no reports157

that this idea has been implemented or used to present articu-158

lation data. Also, the literature review suggests that, at the159

moment, there are no non-invasive methods for the acqui-160

sition, archiving, and visualization of 3D articulation data.161

Such a solution could immensely increase the possibilities of162

asynchronous remote speech diagnosis and consultations.163

B. AIMS AND SCOPE OF THE CURRENT STUDY164

In our previous works, we described our portable device that165

aims at a spatial recording of the speech [40]. The device is166

placed on the patient’s head. It does not affect the articulation167

process but slightly reduces the child’s face visibility for the168

therapist. We used 15 spatially distributed microphones to169

acquire the data and reported our analyses and results on170

sigmatism detection and recognition in various setups [14],171

[15], [25]. However, as that device recorded audio signals172

only, specific information on articulatory movements in time173

could not be obtained.174

In this paper, we propose a workflow for generating a175

4D multimodal speaker model (4D-MSM) for remote speech176

diagnosis and therapy. We developed an enhanced version of177

the acquisition device to record speech signals synchronized178

with a stereovision stream of the articulators. The 15-channel179

microphone array is supported by two cameras that cover the180

image of the lower part of the speaker’s face. The data are181

then processed in a novel approach to prepare a virtual, mul-182

timodal representation of the speaker, which provides new183

opportunities for remote speech diagnosis and articulation184

archiving. The paper presents a set of experiments concerning185

the image analysis and parameter settings for the point cloud186

generation. We also provide exemplary 4D-MSM animations187

available as a supplementary material.188

The paper is structured as follows. After the introduction in189

Section I, we present our 4D-MSM in Section II. That covers190

the description of a dedicated multimodal data acquisition191

device and a whole audio/video data processing workflow192

that produces the model (digital beamforming, synchroniza-193

tion, word extraction in the audio signal, mouth segmentation194

in the video stream, generation and texturing of point clouds195

from disparity maps, and combining the data to a 4D-MSM).196

Section III describes the speech therapy examination and197

data acquisition protocol as well as a series of experiments198

justifying our 4D-MSM generation. First, we quantitatively199

assess the mouth segmentation algorithm. Then, we describe,200

illustrate, and qualitatively validate the parameter setting pro-201

cess in multiple stages of the point cloud generation and202

adjustment. The essential part of the paper is included in203

Section IV, where we profoundly discuss our concept and204

FIGURE 1. General scheme of the 4D multimodal speaker model
generation.

provide perspectives for its application and development. 205

Finally, Section V concludes the study. 206

II. METHODS 207

Our 4D multimodal speaker model is prepared according to 208

the general scheme presented in Fig. 1. The method relies on 209

audio and video data recorded using a dedicated multimodal 210

data acquisition device. We use a newly designed device 211

based on our experiences with the former equipment [40]. 212

Double-camera stereovision module is the main addition, 213

though we have also redesigned other features for feasibility 214

and data quality. More details are given in Section II-A. 215

The processing starts with digital beamforming applied to 216

the spatial audio signals from 15 channels. Then, both audio 217

and video paths are connected with the time synchronization 218

module. After that, we segment individual words based 219

on the audio signal. These three procedures constitute the 220

preprocessing stage of our method. Then, we simultane- 221

ously generate a cloud of points based on videos from two 222

stereo cameras and perform mouth segmentation in the video 223

frames within words. Finally, we texture the point cloud 224

using the left camera image and highlight the mouth area. 225

The entire animated model (point cloud, video, segmentation 226

mask, audio) of a single word is stored in a file for further 227

analysis. 228
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FIGURE 2. Illustration of the multimodal data acquisition device.

FIGURE 3. Illustration of a central unit and measuring arcs.

A. MULTIMODAL DATA ACQUISITION DEVICE229

As mentioned, the concept of the acoustic mask described230

in [40] was verified and upgraded by a stereovision module.231

The current multimodal device is presented in Fig. 2.232

The device consists of a central unit (CU) and three mea-233

suring arcs (MA). CU is powered by 5 volts and communi-234

cates with the computer via the USB interface. The MAs are235

connected to the CU as they exchange data using the serial236

peripheral interface (SPI). Two printed circuit boards (PCB)237

of the CU are also a mechanical frame for measuring arcs238

(note the illustration of the device’s PCBs in Fig. 3).239

Each MA records an audio signal using five micro- 240

phones WM-61a [41] with omnidirectional characteristics, 241

each equipped with a preamplifier TS472 and an amplifier 242

TLV6741. Fifteen microphones form a 3× 5 semicylindrical 243

array with a 5-centimeter distance between the mics. The 244

device records acoustic signals synchronized in time, with a 245

sampling frequency of 44.1 kHz. 246

Finally, two cameras (Arducam 8MP 1080P Auto 247

Focus [42]) are installed between two bottom MAs, con- 248

stituting a stereovision optical system. To illuminate the 249

speaker’s face and increase the quality of the video, each MA 250

is equipped with LEDs. With such a setup, we get a direct, 251

unobstructed, and relatively stable view of the articulators 252

during pronunciation from a short distance (ca. 15 cm) 253

regardless of the head movements. 254

Major data registration parameters of the device are given 255

in Table 1. 256

The construction is made of light materials with good 257

mechanical properties, mainly through rapid prototyping (3D 258

printing). The element put on the head is equipped with addi- 259

tional sponges from the inner side to increase the speaker’s 260

comfort. We can easily adjust the position of the mobile part 261

of the mask and the sensor’s distance from the sound source. 262
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TABLE 1. Technical parameters of the multimodal data acquisition device.

Although being adjustable, the device ensures mechanical263

stability during the registration.264

We designed the device to enable repeatable interspeaker265

and intraspeaker data acquisition. For this purpose, we adjust266

the mask position on a subject’s head by superimposing267

reference lines on the camera images (Fig. 4). We use them to268

align the stereovision viewpoint with the characteristic points269

of the face, e.g., the philtrum.270

B. CALIBRATION OF STEREO CAMERAS271

We estimated the extrinsic and intrinsic geometric param-272

eters of the stereo system for calibration purposes. It was273

performed by finding the geometrical relationship between274

two cameras by observing the same point (Fig. 5) [43], [44].275

We captured 342 shots of a template with known dimensions276

and geometry: a 6 × 7 chessboard pattern with a grid size277

of 0.9 cm. Each projection presented a different view of the278

chessboard regarding viewpoint position and angle.279

The calibration was divided into two stages. First, we cal-280

ibrated individual cameras (left and right) separately using281

the position of the vertices of the chessboard fields. Then,282

we determined the translation and rotation matrices between283

the cameras and obtained an average calibration error of284

0.39 pixels [45]. The optical system calibration was per-285

formed using OpenCV library tools (OpenCV: Camera286

Calibration) [46].287

C. DIGITAL BEAMFORMING AND AUDIO-VIDEO288

SYNCHRONIZATION289

We applied digital beamforming to 15 audio signals recorded290

at different points in space. As a result, we obtained a sin-291

gle signal with an improved signal-to-noise ratio (SNR).292

We employed the delay-and-sum beamforming (DAS) [47]293

that can reduce noise coming from non-central directions294

(Fig. 6). Since that point, the methodology involves the beam-295

formed single-channel audio signal.296

The audio-video synchronization in time is done by297

adjusting the beamformed audio signal to match the video298

timescale. There are several reasons for the desynchroniza-299

tion (delays caused by the components, electronics, or mul-300

tithreaded software), yet we found the time shift between301

TABLE 2. Summary of video-audio delay measurements.

signals relatively constant. We measured it in multiple exper- 302

iments to be 670±78 ms (Table 2). The measurement is 303

based on the difference in the start times of the two software 304

threads for communicating with the device: one for handling 305

the audio data stream and the other for the video data. For 306

certainty, we employed an additional expert assessment of the 307

synchronization outcome and confirmed that the automated 308

approach provides correct synchronization. Thus, we apply 309

the measured latency to the audio signal before combining it 310

with the stereovision stream. 311

D. WORD SEGMENTATION IN AUDIO SIGNAL 312

One of the assumptions for the 4D-MSM is its association 313

with diagnostically important speech segments. Thus, we use 314

a framework for extracting words or possibly other sections 315

related to speech therapy exercises. This step affects the 316

following time-consuming procedures by avoiding unneces- 317

sary computations. For word segmentation in a beamformed 318

signal, we employed the method described by Giannakopou- 319

los [48] based on the statistical analysis of the acoustic spec- 320

trum.Word boundaries are then applied to indicate and extract 321

video frames for further analysis (Fig. 6). 322

E. MOUTH SEGMENTATION IN VIDEO STREAM 323

We prepared a semi-automated framework for mouth 324

segmentation in video frames (Fig. 7). Each frame is pro- 325

cessed individually, though consecutive images use informa- 326

tion from previous iterations. The workflow described below 327

applies to a single camera stream. 328

The data preprocessing begins with reducing image dimen- 329

sions by embracing the mouth area. We determine the region 330

of interest (ROI) by indicating the middle point on the upper 331

lip in the first frame. Since the mouth appearance does not 332

vary widely among children, the size and position of the 333

ROI in the first frame are constant regarding the seed point 334

(80 × 120 pixel size; seed point in the middle of the ROI, 335

horizontally, and in the 7/8 of the height, vertically). Note 336

that the ROI size and location vary during iterating through 337

video frames, as it follows the segmentation results from the 338

previous image. The cropped ROI is subjected to preprocess- 339

ing, including RGB color space suppression to grayscale by 340

modifying the I3 feature for lips enhancement [49] and image 341

filtering using morphological opening for reducing minor 342

artifacts while preserving edges (disk-shaped structuring ele- 343

ment with radius equal to 5). 344
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FIGURE 4. Illustration of the adjustment interface used to position the data acquisition device on the subject’s head. Left and
right images are produced by the stereo cameras.

FIGURE 5. Workflow of the stereo cameras calibration.

Then, we transform the ROI intensities using a Gaus-345

sian fuzzy membership function [50]. The Gaussian mean346

and standard deviation follow the lips intensity and homo-347

geneity retrieved from the ROI. The resulting fuzzy scene348

reinforces the mouth region and attenuates the background.349

The binarization followed by morphological corrections con-350

stitutes the initial contour for the fine segmentation using351

distance-regularized level set evolution (DRLSE) [51] over 352

the fuzzy ROI scene. The segmentation result serves as the 353

initial contour for the next frame. It also adjusts the cor- 354

responding ROI bounding box, assuming that the DRLSE 355

segmentation can robustly chase the frame-to-frame differ- 356

ences. We determined the DRLSE parameters experimentally 357

to α = −3.0, λ = 5.0, and the number of iterations to 5. 358

F. POINT CLOUD GENERATION 359

The point cloud generation diagram is shown in Fig. 8. Based 360

on the optical system parameters (Section II-B), we first rec- 361

tify corresponding pairs of frames from both stereo cameras. 362

The images are transformed so that the related epipolar lines 363

become collinear and parallel to the horizontal edges of the 364

frames. Rectification also significantly reduces the computa- 365

tional cost of the following alignment stages [52], [53]. Then, 366

we determine the face ROI through manual delineation to 367

preliminarily reduce artifacts in the resulting point cloud. 368

Then, we compute the disparity (depth) map from a recti- 369

fied pair of grayscale stereovision frames by using the stereo 370

semi-global block matching (StereoSGBM) algorithm [54]. 371

StereoSGBM is one of the most widely used stereovision 372

algorithms since the OpenCV library provides a fast and 373

robust implementation [46]. 374

Various matching errors can appear in the disparity 375

map. They are usually concentrated in uniform texture-less 376

areas, half-occlusions, and regions near depth discontinu- 377

ities [55]. To reduce this effect, we apply filtering by using a 378

left-right disparity-difference threshold and obtain a signif- 379

icant reduction of alignment errors. Another filtering tech- 380

nique used to restore the map continuity is the disparity 381

weighted least squares filter (WLS) [56]. It removes holes 382
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FIGURE 6. Workflow for preparation of audio and video data for the 4D-MSM. The scheme covers digital beamforming, audio-video
synchronization, and word segmentation in audio signal.

from half-occlusions while preserving edges, as it calculates383

smoothing weights for pixels based on their isotropy and384

gradients [57], [58].385

The depth map is transformed into the point cloud using386

camera parameters and the acquisition system geometry [36],387

[59]. In the final step, the cloud is limited to the face ROI388

and textured with the image data from the left camera. In a389

stereovision system, one of the cameras serves as a reference390

data source, and the other is a side camera [34]. The individual391

disparitymap points correspond to the reference camera view.392

Here, we use the left camera as a reference.393

G. 4D SPEAKER MODEL GENERATION394

To generate a 4D-MSM, we combine the textured point395

clouds with the remaining data (Fig. 9). Each frame of the396

model consists of a single point cloud with a texture image397

and an overlaid mouth segmentation result plus an audio398

frame. The resulting 4D-MSMs can be stored as the .gltf files399

(graphics language transmission format binary file) [60] to400

allow flexible viewing angle or, for presentation purposes,401

as mp4 files.402

III. EXPERIMENTS AND RESULTS403

A. MATERIALS404

We used the multimodal data acquisition device to record a405

dataset containing samples of the speech signal and video406

data in one of the preschools in the Silesia region. The 407

recording team included two speech engineers and one SLP. 408

Participating children were included in the study based on the 409

inclusion criteria: age 4 to 7 years old and oral consent to 410

participation in the experiment. Exclusion criteria included 411

epilepsy and seizure states and ongoing respiratory tract 412

infection. All speakers provided written consent to participate 413

in the study, signed by their legal guardians. As a result, 414

we obtained speech and video data from five speakers for this 415

study (four girls and one boy aged 4 to 7). The study protocol 416

was approved by the Biomedical Committee at the Academy 417

of Physical Education in Katowice (decision No. 3/2021), 418

as it followed all the required legal and ethical standards. 419

During the recording session, the child was invited to the 420

room, and the recording team member presented the measur- 421

ing device to them. If the child consented to participate in 422

the study, the acquisition device was placed on their head and 423

adjusted to fit securely. The team member made sure that the 424

speaker was comfortable and proceeded with the recordings. 425

The recorded material consisted of two parts. In the first 426

one, the speaker’s task was to name the pictures presented on 427

the screen. The selected pictures included everyday objects, 428

professions, and animals that could be easily recognized 429

and named by a preschool child. In the second part of the 430

recording, the SLP asked the participant to repeat after them 431

different facial expressions, including smiling and tongue 432
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FIGURE 7. Mouth segmentation workflow.

TABLE 3. Summary of mouth segmentation performance.

exercises. This set included movements that are useful for433

visual assessment of the articulators.434

B. MOUTH SEGMENTATION ASSESSMENT435

We evaluated mouth segmentation performance using Dice436

index (DI) and intersection-over-union (IoU) over a total of437

3,572 images (1,786 for both left and right camera) taken438

FIGURE 8. Diagram of the point cloud generation and texturing.

TABLE 4. Parameter settings for the StereoSGBM algorithm.

from five speakers. Tab. 3 gathers both speaker-wise and 439

overall results for either camera independently. Differences 440

in metrics values between cameras are minor. Overall, the left 441

camera segmentation performs slightly better (DI = 0.97 ± 442

0.05 and IoU= 0.96± 0.08 vs. DI= 0.97± 0.07 and IoU= 443

0.95 ± 0.10). Possible reasons for decreased effectiveness 444

in some speakers (mainly Speaker #3) can be found in poor 445

data quality, illumination issues, and rapid movements of the 446

child’s articulators and head. 447

C. PARAMETER SETTINGS FOR POINT CLOUD 448

GENERATION 449

We conducted a series of experiments to select the appropriate 450

StereoSGBM and WLS filtering parameters securing low 451
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FIGURE 9. 4D multimodal speaker model workflow.

rates of depth map matching errors (Tables 4 and 5). With452

a relatively close distance between the stereo cameras and453

mouth (15 cm) and a known fixed arrangement of the optical454

system, we experimentally set the minimum disparity for the455

StereoSGMB to 125 and the disparity levels to 96 (maximum456

disparity at 221).457

First, we investigated the alignment block size BS and,458

simultaneously, two penalty factors, P1 and P2, controlling459

the disparity map smoothness [54]. A small block size pro-460

duces a detailed disparity map for a price of more matching461

TABLE 5. Parameter settings for the WLS filtering.

errors. An increasing block size reduces the noise, but the 462

smoothed disparity map can lose essential details, e.g., depth 463

edges. We tested multiple BS values from the range of 1–15 464

(Table 4) and eventually set it to 3. Penalties P1 and P2 can 465

depend on the number of chromatic channels Nch and the 466

block size [54], [61], and we used the proposed formulae in 467

our study: 468

P1 = 8 · Nch · BS2 (1) 469

P2 = 32 · Nch · BS2 (2) 470

Disparity maps produced by different block sizes are shown 471

in Fig. 10. 472

Then, we tested the maximum allowed difference dmax 473

between the left and right disparity maps. It specifies the 474

threshold in pixels above which the disparity is filtered from 475

the resulting map. We obtained the optimal value of 128 from 476

a 0–256 range. The dmax-dependent illustrations are shown 477

in Fig. 11. 478

We also verified two properties of the speckle filter used 479

to handle noise blobs: the speckle window size SWS and 480

speckle range SR. SWS is the window size for smooth dis- 481

parity regions to be checked for noise speckles, whereas SR 482

specifies the maximum disparity variation within a connected 483

component. Fig. 12 presents the effects of disparity map 484

filtering with pairs of SWS and SR from 50–3000 and 16–48 485

ranges, respectively. 486

FIGURE 10. Disparity maps produced by different block size BS and corresponding penalties P1, P2.
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FIGURE 11. Disparity maps produced by different maximum disparity distance dmax .

FIGURE 12. Disparity maps produced by different speckle window size SWS (fixed in columns) and speckle range SR (fixed in rows).

Verification of theWLSfiltering involved twomain param-487

eters: λ and σ . λ controls regularization during filtering488

to match the disparity map edges to the image edges. The489

smoothing factor σ sets the filtering sensitivity to image 490

edges. Large σ may cause disparity leakage through low- 491

contrast edges, while small σ leaves noise and textures in 492
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FIGURE 13. Textured point clouds produced from disparity maps by different σ (fixed in columns) and λ (fixed in rows) in the front (a) and
side (b) views.

homogeneous regions. Our experiments confirmed the above493

general rules. To show the effects obtained over disparity494

maps more clearly, we use two views of the point clouds495

eventually textured with the image of the speaker’s face496

in Fig. 13. Parametrized double-filtering effects are shown497

in Fig. 14.498

Based on the above experiments, we selected a set 499

of parameters for calculating the disparity maps. Then, 500

we assessed the algorithm’s robustness by evaluating the 501

generated disparity maps with and without WLS filtering 502

for individual speakers. Since we operate on videos of real 503

objects moving in time, it was not possible to directly 504
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FIGURE 14. Illustration of the disparity map generation and filtering with
parameters set in our experiments.

obtain reference images (ground truth) with methods pro-505

posed in the literature, e.g., by using data produced with506

Blender [62], [63]. Therefore, ground-truth images were507

prepared by an expert by manually removing artifacts and 508

alignment errors for individual disparity maps. Then, using 509

the reference images, we determined the mean-squared error 510

(MSE) and the structural similarity index (SSIM) for every 511

fifth frame for subsequent speakers [64]. Before calculating 512

the errors, the images were cropped to the face area. The 513

results are presented in Fig. 15. 514

Finally, some illustrations of a textured 4D-MSM are 515

shown in Fig. 16. Note that some views of complete 4D- 516

MSMs can be found as the supplementary online material. 517

IV. DISCUSSION 518

Despite the significant increase in the popularity and avail- 519

ability of telemedicine solutions in speech diagnosis and ther- 520

apy during the COVID-19 pandemic, some problems remain 521

unresolved [6]. Supporting speech therapy with remote exer- 522

cises has already been well researched, and there are no 523

significant differences in the effectiveness of this type of syn- 524

chronous therapy compared to stationary treatment. However, 525

doubts about the possibility of a reliable diagnosis without 526

an in-person examination of the patient remain an essential 527

issue [65]. 528

The proposed speaker model can be generated based on 529

one short measurement session and then viewed and ana- 530

lyzed at any time. Thanks to that, additional verification and 531

FIGURE 15. Summary of disparity map determination assessment. Mean-squared error (a) and structural similarity index (b) without (left)
and with (right) WLS filtering. Each box covers 25th to 75th percentile interval with a median indicated by a central line. Whiskers refer to
1.5 times the interquartile range. Outliers indicated with red +.
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FIGURE 16. Illustration of the 4D-MSM in a child speaker: a single frame from different angles (a) and frames covering the production of a vowel a (b).

reevaluation of the diagnosis are possible, and more com-532

plex or questionable cases may be consulted with another533

specialist. Recorded material can be archived and consti-534

tute the basis for tracking the patient’s progress over time.535

Archive models can support the diagnosis of more chal-536

lenging health problems, which only show visible symptoms537

over time. The data acquisition device we use in this study538

can be considered non-invasive for articulation or ease of539

speaking. Also, we did not experience any problems with540

children’s willingness to try the device on. Note that the same541

conclusions came from our previous study with the former542

version of the device, used to examine over 100 children aged543

5–6 using the picture-naming protocol [40]. Both devices544

share main architecture concepts and solutions, e.g., remov-545

able sponges inside the mask or bicycle-helmet-like head546

mount.547

The innovation of the proposed solution lies mainly in548

the possibility of documenting the depth of the articulator’s549

image, which is not possible with the typical documentation550

of the diagnosis using videos recorded with a smartphone.551

Stereovision techniques and high-resolution dynamic spatial552

models of the speaker can provide diagnostically important553

information. A vital contribution to a remote diagnosis is 554

brought by watching the movement of the speech organs from 555

the front and side and listening to the high-quality denoised 556

audio data. It is particularly important when observing the 557

pathological features of the articulation. 558

The resolution and preservation of the actual depth of 559

the model and the possibility of its free observation (from 560

any viewing angle) in real-time are crucial for the speech 561

diagnosis. Providing this kind of effect without the need for 562

additional markers applied to the face opens new perspectives 563

to the process, especially since it is considered a challenging 564

issue [66], [67]. The number of depth levels and the precision 565

of their extraction from the stereoscopic image depends on the 566

cameras’ resolution and the distance between the cameras’ 567

optical axes. Higher resolution provides more levels of depth 568

for the price of increasing time consumption and stereo set 569

expense. The greater distance between the cameras offers 570

higher precision of location in space. However, toowide spac- 571

ing of the cameras does not allow for the reconstruction of the 572

close plan due to the disparity exceeding the camera’s resolu- 573

tion. Our optical system allows for an accurate reconstruction 574

of the face surface, including the mouth. Consequently, the 575
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observation angle range is limited while maintaining the576

appropriate number of details. We consider increasing the577

number of stereo cameras in future studies, likely allowing578

for a more accurate representation of the recorded speaker at579

any observation angle.580

The segmentation of articulatory organs, e.g., mouth, lips,581

tongue, or the detection of the frenulum of the tongue582

along with a synchronized audio signal may be crucial in583

systems for screening child articulation. Quick, automated584

detection of abnormal movements of the tongue or lips585

during articulation can enable early detection of speech586

disorders and abnormalities in the articulation apparatus587

development. Our mouth segmentation method yields accu-588

rate results, with the Dice index at 0.97 for both left and589

right cameras. Several factors impact the video data qual-590

ity, leading to lower segmentation metrics (e.g., Speaker #3591

in Tab. 3). These include external lumination and shadows592

in the examination room, interspeaker differences in the593

anatomical structure of the bottom part of the speaker’s face,594

lips color, or rapid head movements. With possible goals of595

extending the segmentation scope to other anatomical struc-596

tures relevant to speech therapy, we consider employing the597

machine learning tools when developing the 4D-MSM in the598

future.599

Based on the literature review, we conclude that there600

are no works on the Polish language combining articulatory601

features with those of a video image. For the development602

of CASD systems, linking the image features describing603

segmented speech organs with the acoustic signal features604

and articulatory cues becomes essential. The proposed 4D-605

MSM may provide input data for CASD systems based on606

image analysis and artificial intelligence. Robust segmen-607

tation of different articulators, which is the main direction608

for our future research, will enable the analysis of anatom-609

ical and physiological features, such as the mandible size610

and position, occlusion, or asymmetry in the lips position.611

Also, computer-aided analysis of the lingual frenulum behav-612

ior during speech exercises can be a promising direction,613

as the shortening of the frenulum (ankyloglossia) signifi-614

cantly reduces the tongue motor skills, influencing speech615

development, occlusion, and physiological functions, e.g.,616

swallowing. The SLPs must have adequate experience and617

training to evaluate the frenulum, and they often order further618

consultation with an ankyloglossia expert. A computer sys-619

tem supporting the evaluation of the frenulum could signifi-620

cantly shorten the diagnosis and decision on possible cutting621

the frenulum (frenotomy).622

In the future, we plan to create an online platform for thera-623

pists, teachers, and parents for remote and computer-assisted624

speech diagnosis and therapy using 4D-MSM. The625

multimodal data eventually processed with the artificial intel-626

ligence techniques will allow reporting on the speaker’s artic-627

ulation state. This solution can be used to conduct screening628

tests in schools and kindergartens efficiently. The model of629

the speaker generated and available on the diagnostic plat-630

form will enable further consultations by a multidisciplinary631

team, including orthodontists, neurologists, and physiothera- 632

pists. As a result, the in-depth diagnostic process can be accel- 633

erated, which is particularly important for children living in 634

areas lacking appropriate specialists. 635

V. CONCLUSION 636

This paper presents the concept and framework for recording 637

multimodal data and generating a 4D multimodal speaker 638

model, which can be widely used in remote speech diag- 639

nosis and therapy. A novel device allows for repeatable 640

registration of the multichannel acoustic signal and stere- 641

ovision stream of the face part during the speech therapy 642

examination. Our data processing workflow leads to an ani- 643

mated, spatial model of the speaker with a segmented mouth 644

area. 4D-MSMs may become the essential tool for objec- 645

tifying and archiving diagnoses, conducting asynchronous 646

expert consultations, and documenting the progress in ther- 647

apy. In the future, we plan to build a computer-aided speech 648

diagnosis system – an expert system linking the audio 649

and video features with the occurrence of selected speech 650

disorders. 651
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