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ABSTRACT This paper presents a concept of a 4D multimodal speaker model (4D-MSM) for asynchronous
remote speech diagnosis. Recording and archiving diagnostically significant articulation material remain
an issue in computer-aided speech diagnosis. Therefore, we propose a workflow for preparing and storing
reliable and easily interpretable multimodal data regarding pronunciation. According to our assumptions,
data acquisition should be non-invasive, comfortable for both the patient and therapist, not interfere with
the articulation process, and provide essential data of high quality. We developed and employed a dedicated
device, obtaining a 15-channel spatially distributed audio signal and stable stereovision stream from two
cameras focused on the lower part of the face. Our framework for data preprocessing covers digital
beamforming of the multichannel audio signal, audio-video synchronization, and segmentation of words
in the audio signal. Then, we use stereo data to calculate and adjust the depth map and prepare point clouds.
Simultaneously, we delineate the mouth in video frames using a dedicated semi-automated segmentation
algorithm. The point clouds are then textured with the camera images with superimposed mouth regions.
Finally, we add the audio track to constitute the 4D-MSM. In the paper, we show the concept and detailed
specification of the model and present experiments to justify the methodology. Proposed 4D-MSMs may be
employed in remote speech diagnosis for objectifying and archiving diagnoses, conducting asynchronous
consultations, and documenting the progress in therapy.

INDEX TERMS Articulation data acqusition, audio-video processing, computer-aided speech diagnosis,
remote speech diagnosis and therapy, stereovision.

I. INTRODUCTION

Understandable communication between people is the basis
of society’s functioning. Therefore, speech disorders con-
stitute a significant social problem, especially for children.
Poorly developed or disordered speech may cause rejection
by peers, alienation, low self-esteem, and later difficulties
in getting an adequate job [1]. Therefore, speech screen-
ings in kindergartens and schools are crucial, as they allow
for the early detection of communication difficulties [2].
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Subsequently, the children in need can undergo a more
profound speech and hearing diagnosis and benefit from
appropriate therapy. This process depends mainly on the
availability of speech and language pathologists (SLPs).
In Poland, 6-year-old children should be provided with
speech diagnosis and therapy in their preschools. However,
still over 50% (7,789 of 15,552) of Polish kindergartens do
not hire a speech therapist [3]. SLPs often work simultane-
ously as teachers, so it is impossible to provide profound
therapy to all children in need, especially those younger
than 6. For this reason, parents often decide to choose private
consultations and speech therapy. Such solutions are available
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mainly to people living in cities. Access to qualified speech
therapists can be difficult or impossible in rural areas and
small towns. The problem of worse availability of speech
therapists in rural areas is a global problem also reported, e.g.,
in the United States [4] and Australia [5].

The popularization of remote consultations, diagnosis, and
speech therapy is a recent attempt to solve the expert avail-
ability problem. Supported by telemedicine tools, this field
has been consistently developing for years. Nevertheless,
only the outbreak of the COVID-19 pandemic accelerated
the process of opening the speech therapy community to new
technologies. For many therapists and their patients, using
computer tools was the only way to continue their work
since 2020 [6].

A. STATE OF THE ART

Speech diagnosis and therapy can be assisted with vari-
ous computer-based methods. Videoconferences of a thera-
pist and a patient (and possibly additional external experts)
can be easily conducted with standard teletransmission
tools [4], [7]. Internet platforms providing the patient with
access to speech therapy exercises are technologically one
step further. In some cases, the therapist can adjust the
therapy programming module apart from standard access to
the patient’s performance or statistics [8], [9]. The gathered
diagnostic material can be subjected to comprehensive anal-
ysis with automated computerized methods to provide mea-
surable parameters of speech and hearing. Finally, the data
can be used to estimate the probability of selected disorders
(e.g., [10], [11], [12], [13], [14], [15]).

Remote speech therapy and diagnosis can be carried
out synchronously, with the simultaneous presence of the
speech therapist and the patient, or asynchronously based on
mutually transmitted data [16]. Synchronous mode usually
employs videoconferencing software activated on a laptop
or smartphone. It is considered comparable to stationary
therapy, e.g., Coufal et al. [17] found no significant differ-
ences between the therapeutic effects in a group of over
1,700 children with dyslalia. Other studies reported simi-
lar conclusions [4]. Raman et al. [7] described synchronous
remote speech screening in rural India, demonstrating com-
parable effects of in-person and telemedicine studies. Despite
the significant development of the field, both technical issues
(computer equipment access and stable Internet connection)
and the skeptical attitude of some speech therapists remain
an issue [6]. Hence, the ease of installation, user-friendliness,
and reliability of the designed solutions are of particular
importance [18].

Asynchronous mode covers primarily therapy, not the diag-
nosis. It is employed mainly in cases where the diagnosis
is already known, and the patient performs online exercises
ordered by the SLP. Multiple studies describe asynchronous
remote speech therapy based on Internet platforms contain-
ing multimedia training material for both children [8], [9]
and adults with various disorders (e.g., the Polish platform
“Afast! Say it” for aphasia patients [19]).
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Computer-aided speech diagnosis (CASD) is a less
explored topic. Automated diagnosis based on speech mainly
concerns the detection of early signs of Parkinson’s dis-
ease [10], [11], [20] or autism [21]. There are reports on
the detection of mispronunciations and pronunciation disor-
ders [13], [22], [23], nasality [24], stuttering [12], and auto-
mated recognition of incorrect pronunciation patterns within
selected pathology [14], [25]. Other papers also describe
methods for aiding speech therapy using audio and video
processing [26], [27], [28], [29]. However, the proposed solu-
tions feature two main drawbacks: they rely on relatively
small groups of speakers, and they are rarely implemented
in practice so far.

To document the patient’s pronunciation, speech therapists
often use notes or videos recorded with a smartphone during
the examination. They can use such recordings to verify the
patient’s diagnosis, consult questionable issues with other
experts, and monitor the therapy progress over time. Such a
solution has several drawbacks. Simultaneous video record-
ing with the phone and examining the patient is inconve-
nient for the therapist. The image is often unstable, and the
data covers only short parts of the examination, so not all
essential elements of the articulation are captured. In turn,
recording using a tripod reduces the quality and diagnostic
content of the data due to the greater distance between the
camera/microphone and the articulators. The lack of con-
venient and reliable techniques for registration, archiving,
and sharing of articulation data forms a significant gap in
the current speech diagnosis and therapy, both remote and
stationary.

The articulation registration methods proposed in the liter-
ature include electromagnetic articulation (EMA) [30], [31],
electropalatography (EPG), [32], [33], electromyography
(EMG), and various imaging methods (computed tomogra-
phy, magnetic resonance imaging, ultrasound, fluoroscopy).
These methods are expensive and hardly available and,
in most cases, also invasive, so their use impacts the patient’s
pronunciation. Another disadvantage is also the problematic
interpretability of the data. Without appropriate software and
expert knowledge of the measurement specificity, it is impos-
sible to conclude from the obtained results.

During an in-person speech diagnosis, a speech therapist
can analyze how sounds are produced using the sense of
hearing, touch, and sight. A single-camera view hardly allows
for comprehensive observation of the speaker’s articulation
organs during pronunciation. A stereovision system enables
3D mapping of the surroundings thanks to a point cloud
based on the images from a pair of cameras. Stereoscopic
vision is the most natural way for humans to perceive three-
dimensional images, as it allows feeling the depth of the
observed scenes [34]. 3D mapping finds many applications,
i.a., in monitoring, tracking, robotics control, terrain recon-
struction based on aerial photography, or generating mod-
els for virtual reality [34], [35], [36]. Therefore, the use
of spatial animations generated based on stereoscopic data
collected while speaking may be a promising direction for
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articulation archiving. Steiner et al. [37] proposed to process
the EMA measurements as motion-capture data. The ani-
mated 3D models presented the tongue motion during articu-
lation. Busso e al. [38] reported high-quality speaker models
produced using markers attached to the face. Xie et al. [39]
generated three-dimensional VSA (visual speech animation)
face models based on a video. However, there are no reports
that this idea has been implemented or used to present articu-
lation data. Also, the literature review suggests that, at the
moment, there are no non-invasive methods for the acqui-
sition, archiving, and visualization of 3D articulation data.
Such a solution could immensely increase the possibilities of
asynchronous remote speech diagnosis and consultations.

B. AIMS AND SCOPE OF THE CURRENT STUDY

In our previous works, we described our portable device that
aims at a spatial recording of the speech [40]. The device is
placed on the patient’s head. It does not affect the articulation
process but slightly reduces the child’s face visibility for the
therapist. We used 15 spatially distributed microphones to
acquire the data and reported our analyses and results on
sigmatism detection and recognition in various setups [14],
[15], [25]. However, as that device recorded audio signals
only, specific information on articulatory movements in time
could not be obtained.

In this paper, we propose a workflow for generating a
4D multimodal speaker model (4D-MSM) for remote speech
diagnosis and therapy. We developed an enhanced version of
the acquisition device to record speech signals synchronized
with a stereovision stream of the articulators. The 15-channel
microphone array is supported by two cameras that cover the
image of the lower part of the speaker’s face. The data are
then processed in a novel approach to prepare a virtual, mul-
timodal representation of the speaker, which provides new
opportunities for remote speech diagnosis and articulation
archiving. The paper presents a set of experiments concerning
the image analysis and parameter settings for the point cloud
generation. We also provide exemplary 4D-MSM animations
available as a supplementary material.

The paper is structured as follows. After the introduction in
Section I, we present our 4D-MSM in Section II. That covers
the description of a dedicated multimodal data acquisition
device and a whole audio/video data processing workflow
that produces the model (digital beamforming, synchroniza-
tion, word extraction in the audio signal, mouth segmentation
in the video stream, generation and texturing of point clouds
from disparity maps, and combining the data to a 4D-MSM).
Section III describes the speech therapy examination and
data acquisition protocol as well as a series of experiments
justifying our 4D-MSM generation. First, we quantitatively
assess the mouth segmentation algorithm. Then, we describe,
illustrate, and qualitatively validate the parameter setting pro-
cess in multiple stages of the point cloud generation and
adjustment. The essential part of the paper is included in
Section IV, where we profoundly discuss our concept and
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FIGURE 1. General scheme of the 4D multimodal speaker model
generation.

provide perspectives for its application and development.
Finally, Section V concludes the study.

Il. METHODS

Our 4D multimodal speaker model is prepared according to
the general scheme presented in Fig. 1. The method relies on
audio and video data recorded using a dedicated multimodal
data acquisition device. We use a newly designed device
based on our experiences with the former equipment [40].
Double-camera stereovision module is the main addition,
though we have also redesigned other features for feasibility
and data quality. More details are given in Section II-A.
The processing starts with digital beamforming applied to
the spatial audio signals from 15 channels. Then, both audio
and video paths are connected with the time synchronization
module. After that, we segment individual words based
on the audio signal. These three procedures constitute the
preprocessing stage of our method. Then, we simultane-
ously generate a cloud of points based on videos from two
stereo cameras and perform mouth segmentation in the video
frames within words. Finally, we texture the point cloud
using the left camera image and highlight the mouth area.
The entire animated model (point cloud, video, segmentation
mask, audio) of a single word is stored in a file for further
analysis.
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FIGURE 3. lllustration of a central unit and measuring arcs.

A. MULTIMODAL DATA ACQUISITION DEVICE

As mentioned, the concept of the acoustic mask described
in [40] was verified and upgraded by a stereovision module.
The current multimodal device is presented in Fig. 2.

The device consists of a central unit (CU) and three mea-
suring arcs (MA). CU is powered by 5 volts and communi-
cates with the computer via the USB interface. The MAs are
connected to the CU as they exchange data using the serial
peripheral interface (SPI). Two printed circuit boards (PCB)
of the CU are also a mechanical frame for measuring arcs
(note the illustration of the device’s PCBs in Fig. 3).

93190

Each MA records an audio signal using five micro-
phones WM-61a [41] with omnidirectional characteristics,
each equipped with a preamplifier TS472 and an amplifier
TLV6741. Fifteen microphones form a 3 x 5 semicylindrical
array with a 5-centimeter distance between the mics. The
device records acoustic signals synchronized in time, with a
sampling frequency of 44.1 kHz.

Finally, two cameras (Arducam 8MP 1080P Auto
Focus [42]) are installed between two bottom MAS, con-
stituting a stereovision optical system. To illuminate the
speaker’s face and increase the quality of the video, each MA
is equipped with LEDs. With such a setup, we get a direct,
unobstructed, and relatively stable view of the articulators
during pronunciation from a short distance (ca. 15 cm)
regardless of the head movements.

Major data registration parameters of the device are given
in Table 1.

The construction is made of light materials with good
mechanical properties, mainly through rapid prototyping (3D
printing). The element put on the head is equipped with addi-
tional sponges from the inner side to increase the speaker’s
comfort. We can easily adjust the position of the mobile part
of the mask and the sensor’s distance from the sound source.
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TABLE 1. Technical parameters of the multimodal data acquisition device.

Device
Number of audio channels | 15
Sampling frequency | 44.1 kHz
Number of cameras | 2

Microphone
Type | Panasonic WM-61A (electret)
Bandpass | 20 Hz - 16 kHz

Sound pressure level | 120 dB
Signal-to-noise ratio | 62 dB

Sensitivity (1 kHz, 94 dB SPL): -35+4dB
Camera
Type | Arducam 8MP 1080P Auto Focus
Resolution | 640x480 VGA

Frames per second | 30

Although being adjustable, the device ensures mechanical
stability during the registration.

We designed the device to enable repeatable interspeaker
and intraspeaker data acquisition. For this purpose, we adjust
the mask position on a subject’s head by superimposing
reference lines on the camera images (Fig. 4). We use them to
align the stereovision viewpoint with the characteristic points
of the face, e.g., the philtrum.

B. CALIBRATION OF STEREO CAMERAS

We estimated the extrinsic and intrinsic geometric param-
eters of the stereo system for calibration purposes. It was
performed by finding the geometrical relationship between
two cameras by observing the same point (Fig. 5) [43], [44].
We captured 342 shots of a template with known dimensions
and geometry: a 6 x 7 chessboard pattern with a grid size
of 0.9 cm. Each projection presented a different view of the
chessboard regarding viewpoint position and angle.

The calibration was divided into two stages. First, we cal-
ibrated individual cameras (left and right) separately using
the position of the vertices of the chessboard fields. Then,
we determined the translation and rotation matrices between
the cameras and obtained an average calibration error of
0.39 pixels [45]. The optical system calibration was per-
formed using OpenCV library tools (OpenCV: Camera
Calibration) [46].

C. DIGITAL BEAMFORMING AND AUDIO-VIDEO
SYNCHRONIZATION

We applied digital beamforming to 15 audio signals recorded
at different points in space. As a result, we obtained a sin-
gle signal with an improved signal-to-noise ratio (SNR).
We employed the delay-and-sum beamforming (DAS) [47]
that can reduce noise coming from non-central directions
(Fig. 6). Since that point, the methodology involves the beam-
formed single-channel audio signal.

The audio-video synchronization in time is done by
adjusting the beamformed audio signal to match the video
timescale. There are several reasons for the desynchroniza-
tion (delays caused by the components, electronics, or mul-
tithreaded software), yet we found the time shift between
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TABLE 2. Summary of video-audio delay measurements.

Speaker Video-to-audio delay
Speaker #1 601 ms
Speaker #2 746 ms
Speaker #3 698 ms
Speaker #4 733 ms
Speaker #5 574 ms
Average 670 4+ 78 ms

signals relatively constant. We measured it in multiple exper-
iments to be 670178 ms (Table 2). The measurement is
based on the difference in the start times of the two software
threads for communicating with the device: one for handling
the audio data stream and the other for the video data. For
certainty, we employed an additional expert assessment of the
synchronization outcome and confirmed that the automated
approach provides correct synchronization. Thus, we apply
the measured latency to the audio signal before combining it
with the stereovision stream.

D. WORD SEGMENTATION IN AUDIO SIGNAL

One of the assumptions for the 4D-MSM is its association
with diagnostically important speech segments. Thus, we use
a framework for extracting words or possibly other sections
related to speech therapy exercises. This step affects the
following time-consuming procedures by avoiding unneces-
sary computations. For word segmentation in a beamformed
signal, we employed the method described by Giannakopou-
los [48] based on the statistical analysis of the acoustic spec-
trum. Word boundaries are then applied to indicate and extract
video frames for further analysis (Fig. 6).

E. MOUTH SEGMENTATION IN VIDEO STREAM

We prepared a semi-automated framework for mouth
segmentation in video frames (Fig. 7). Each frame is pro-
cessed individually, though consecutive images use informa-
tion from previous iterations. The workflow described below
applies to a single camera stream.

The data preprocessing begins with reducing image dimen-
sions by embracing the mouth area. We determine the region
of interest (ROI) by indicating the middle point on the upper
lip in the first frame. Since the mouth appearance does not
vary widely among children, the size and position of the
ROI in the first frame are constant regarding the seed point
(80 x 120 pixel size; seed point in the middle of the ROI,
horizontally, and in the 7/8 of the height, vertically). Note
that the ROI size and location vary during iterating through
video frames, as it follows the segmentation results from the
previous image. The cropped ROI is subjected to preprocess-
ing, including RGB color space suppression to grayscale by
modifying the I3 feature for lips enhancement [49] and image
filtering using morphological opening for reducing minor
artifacts while preserving edges (disk-shaped structuring ele-
ment with radius equal to 5).

93191



IEEE Access

M. Krecichwost et al.: 4D Multimodal Speaker Model for Remote Speech Diagnosis

central
microphone line

central
microphone

top line of
microphones

middle line of
microphones

bottom line of
microphones

reference axis

FIGURE 4. Illustration of the adjustment interface used to position the data acquisition device on the subject’s head. Left and

right images are produced by the stereo cameras.
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FIGURE 5. Workflow of the stereo cameras calibration.

Then, we transform the ROI intensities using a Gaus-
sian fuzzy membership function [50]. The Gaussian mean
and standard deviation follow the lips intensity and homo-
geneity retrieved from the ROI. The resulting fuzzy scene
reinforces the mouth region and attenuates the background.
The binarization followed by morphological corrections con-
stitutes the initial contour for the fine segmentation using
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distance-regularized level set evolution (DRLSE) [51] over
the fuzzy ROI scene. The segmentation result serves as the
initial contour for the next frame. It also adjusts the cor-
responding ROI bounding box, assuming that the DRLSE
segmentation can robustly chase the frame-to-frame differ-
ences. We determined the DRLSE parameters experimentally
to o = —3.0, A = 5.0, and the number of iterations to 5.

F. POINT CLOUD GENERATION

The point cloud generation diagram is shown in Fig. 8. Based
on the optical system parameters (Section II-B), we first rec-
tify corresponding pairs of frames from both stereo cameras.
The images are transformed so that the related epipolar lines
become collinear and parallel to the horizontal edges of the
frames. Rectification also significantly reduces the computa-
tional cost of the following alignment stages [52], [53]. Then,
we determine the face ROI through manual delineation to
preliminarily reduce artifacts in the resulting point cloud.

Then, we compute the disparity (depth) map from a recti-
fied pair of grayscale stereovision frames by using the stereo
semi-global block matching (StereoSGBM) algorithm [54].
StereoSGBM is one of the most widely used stereovision
algorithms since the OpenCV library provides a fast and
robust implementation [46].

Various matching errors can appear in the disparity
map. They are usually concentrated in uniform texture-less
areas, half-occlusions, and regions near depth discontinu-
ities [55]. To reduce this effect, we apply filtering by using a
left-right disparity-difference threshold and obtain a signif-
icant reduction of alignment errors. Another filtering tech-
nique used to restore the map continuity is the disparity
weighted least squares filter (WLS) [56]. It removes holes
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FIGURE 6. Workflow for preparation of audio and video data for the 4D-MSM. The scheme covers digital beamforming, audio-video

synchronization, and word segmentation in audio signal.

from half-occlusions while preserving edges, as it calculates
smoothing weights for pixels based on their isotropy and
gradients [57], [58].

The depth map is transformed into the point cloud using
camera parameters and the acquisition system geometry [36],
[59]. In the final step, the cloud is limited to the face ROI
and textured with the image data from the left camera. In a
stereovision system, one of the cameras serves as a reference
data source, and the other is a side camera [34]. The individual
disparity map points correspond to the reference camera view.
Here, we use the left camera as a reference.

G. 4D SPEAKER MODEL GENERATION

To generate a 4D-MSM, we combine the textured point
clouds with the remaining data (Fig. 9). Each frame of the
model consists of a single point cloud with a texture image
and an overlaid mouth segmentation result plus an audio
frame. The resulting 4D-MSMs can be stored as the .gltf files
(graphics language transmission format binary file) [60] to
allow flexible viewing angle or, for presentation purposes,
as mp4 files.

IIl. EXPERIMENTS AND RESULTS

A. MATERIALS

We used the multimodal data acquisition device to record a
dataset containing samples of the speech signal and video
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data in one of the preschools in the Silesia region. The
recording team included two speech engineers and one SLP.
Participating children were included in the study based on the
inclusion criteria: age 4 to 7 years old and oral consent to
participation in the experiment. Exclusion criteria included
epilepsy and seizure states and ongoing respiratory tract
infection. All speakers provided written consent to participate
in the study, signed by their legal guardians. As a result,
we obtained speech and video data from five speakers for this
study (four girls and one boy aged 4 to 7). The study protocol
was approved by the Biomedical Committee at the Academy
of Physical Education in Katowice (decision No. 3/2021),
as it followed all the required legal and ethical standards.
During the recording session, the child was invited to the
room, and the recording team member presented the measur-
ing device to them. If the child consented to participate in
the study, the acquisition device was placed on their head and
adjusted to fit securely. The team member made sure that the
speaker was comfortable and proceeded with the recordings.
The recorded material consisted of two parts. In the first
one, the speaker’s task was to name the pictures presented on
the screen. The selected pictures included everyday objects,
professions, and animals that could be easily recognized
and named by a preschool child. In the second part of the
recording, the SLP asked the participant to repeat after them
different facial expressions, including smiling and tongue
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FIGURE 7. Mouth segmentation workflow.

TABLE 3. Summary of mouth segmentation performance.

Speaker No. of frames  Camera DI IoU

Speakersl 412 pEl 000t00) 0974003
Speaker#2 16 pEl 0081003 0964005
Sheaker 3 24 Rl (00015 088 %020
Sheakertd 294 gl 057 00s 008 £ 007
Sheaker#S 40 gl 0o7s004 004008
Al 178 pgh 0975007 095010

exercises. This set included movements that are useful for
visual assessment of the articulators.

B. MOUTH SEGMENTATION ASSESSMENT

We evaluated mouth segmentation performance using Dice
index (DI) and intersection-over-union (IoU) over a total of
3,572 images (1,786 for both left and right camera) taken
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TABLE 4. Parameter settings for the StereoSGBM algorithm.

Parameter | Value | Tested values
Block size (BS) 3 1,3,5,7,9,11, 13, 15
Max. disparity difference (dmaz) 128 1,2,4,8, 16,64, 128,256
Speckle window size (SW.S) 300 | 50,300, 1000, 3000
Speckle range (SR) 32 16, 32, 48

from five speakers. Tab. 3 gathers both speaker-wise and
overall results for either camera independently. Differences
in metrics values between cameras are minor. Overall, the left
camera segmentation performs slightly better (DI = 0.97 £
0.05 and IoU = 0.96 £ 0.08 vs. DI = 0.97 £ 0.07 and IoU =
0.95 £ 0.10). Possible reasons for decreased effectiveness
in some speakers (mainly Speaker #3) can be found in poor
data quality, illumination issues, and rapid movements of the
child’s articulators and head.

C. PARAMETER SETTINGS FOR POINT CLOUD
GENERATION

We conducted a series of experiments to select the appropriate
StereoSGBM and WLS filtering parameters securing low
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FIGURE 9. 4D multimodal speaker model workflow.

rates of depth map matching errors (Tables 4 and 5). With
a relatively close distance between the stereo cameras and
mouth (15 cm) and a known fixed arrangement of the optical
system, we experimentally set the minimum disparity for the
StereoSGMB to 125 and the disparity levels to 96 (maximum
disparity at 221).

First, we investigated the alignment block size BS and,
simultaneously, two penalty factors, P; and P», controlling
the disparity map smoothness [54]. A small block size pro-
duces a detailed disparity map for a price of more matching

BS=1P =24, P, =9 BS =3, P, =216, P, = 864

¥ -
L ]

TABLE 5. Parameter settings for the WLS filtering.

Parameter | Value | Tested values
Regularization factor (A\) | 1000 | 10, 100, 1000, 10000
Smoothing factor (o) 1.5 0.2,0.5,1.0,1.5,2.0,2.5

errors. An increasing block size reduces the noise, but the
smoothed disparity map can lose essential details, e.g., depth
edges. We tested multiple BS values from the range of 1-15
(Table 4) and eventually set it to 3. Penalties P; and P> can
depend on the number of chromatic channels N, and the
block size [54], [61], and we used the proposed formulae in
our study:

P, = 8N, - BS? )
P> = 32N, - BS? )

Disparity maps produced by different block sizes are shown
in Fig. 10.

Then, we tested the maximum allowed difference dqx
between the left and right disparity maps. It specifies the
threshold in pixels above which the disparity is filtered from
the resulting map. We obtained the optimal value of 128 from
a 0-256 range. The d,;4-dependent illustrations are shown
in Fig. 11.

We also verified two properties of the speckle filter used
to handle noise blobs: the speckle window size SWS and
speckle range SR. SWS is the window size for smooth dis-
parity regions to be checked for noise speckles, whereas SR
specifies the maximum disparity variation within a connected
component. Fig. 12 presents the effects of disparity map
filtering with pairs of SWS and SR from 50-3000 and 1648
ranges, respectively.

BS =5, P, = 600, P, = 2400 BS =7, P, = 1176, P, = 4704

BS =13, P, = 4056, P, = 16224 BS =15, P; = 5400, P, = 21600

FIGURE 10. Disparity maps produced by different block size BS and corresponding penalties P, P,.
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FIGURE 11. Disparity maps produced by different maximum disparity distance dmax.

SWS =50, SR =16 SWS = 3000, SR = 16

SWS =300, SR =16 SWS = 1000, SR = 16
. 4 L

& -

)|

SWS =300, SR =32 SWS = 1000, SR = 32 SWS = 3000, SR = 32

SWS =300, SR =48 SWS = 1000, SR = 48 SWS = 3000, SR = 48

FIGURE 12. Disparity maps produced by different speckle window size SWS (fixed in columns) and speckle range SR (fixed in rows).

Verification of the WLS filtering involved two main param- smoothing factor o sets the filtering sensitivity to image
eters: A and o. A controls regularization during filtering edges. Large o may cause disparity leakage through low-
to match the disparity map edges to the image edges. The contrast edges, while small o leaves noise and textures in
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A: 10000, o: 0.2 A: 10000, o: 0.5

A: 1000, o: 1.5 A: 1000, o: 2.5

A: 10000, o: 1.5 A: 10000, o: 2.5

(a) front view

A 10, 0: 0.2

A: 1000, o: 0.5

A: 10000, o: 0.2

A: 10, 0: 1.5 A: 10, 0: 2.5

A: 1000, o: 1.5 A: 1000, o: 2.5

A: 10000, o: 1.5 A: 10000, o: 2.5

(b) side view

FIGURE 13. Textured point clouds produced from disparity maps by different ¢ (fixed in columns) and A (fixed in rows) in the front (a) and

side (b) views.

homogeneous regions. Our experiments confirmed the above
general rules. To show the effects obtained over disparity
maps more clearly, we use two views of the point clouds
eventually textured with the image of the speaker’s face
in Fig. 13. Parametrized double-filtering effects are shown
in Fig. 14.

VOLUME 10, 2022

Based on the above experiments, we selected a set
of parameters for calculating the disparity maps. Then,
we assessed the algorithm’s robustness by evaluating the
generated disparity maps with and without WLS filtering
for individual speakers. Since we operate on videos of real
objects moving in time, it was not possible to directly

93197



IEEE Access

M. Krecichwost et al.: 4D Multimodal Speaker Model for Remote Speech Diagnosis

RAW DISPARITY MAP

POST FILTERING

WLS FILTERING

FIGURE 14. Illustration of the disparity map generation and filtering with
parameters set in our experiments.

obtain reference images (ground truth) with methods pro-
posed in the literature, e.g., by using data produced with
Blender [62], [63]. Therefore, ground-truth images were

Raw disparity

700 T T

600 [ H 1

500 -

w 400 F ! 1

o

+
-, 3 |
200 F % = |

300 F i

100 b

Speaker #1 Speaker #2 Speaker #3 Speaker#4 Speaker #5

prepared by an expert by manually removing artifacts and
alignment errors for individual disparity maps. Then, using
the reference images, we determined the mean-squared error
(MSE) and the structural similarity index (SSIM) for every
fifth frame for subsequent speakers [64]. Before calculating
the errors, the images were cropped to the face area. The
results are presented in Fig. 15.

Finally, some illustrations of a textured 4D-MSM are
shown in Fig. 16. Note that some views of complete 4D-
MSMs can be found as the supplementary online material.

IV. DISCUSSION
Despite the significant increase in the popularity and avail-
ability of telemedicine solutions in speech diagnosis and ther-
apy during the COVID-19 pandemic, some problems remain
unresolved [6]. Supporting speech therapy with remote exer-
cises has already been well researched, and there are no
significant differences in the effectiveness of this type of syn-
chronous therapy compared to stationary treatment. However,
doubts about the possibility of a reliable diagnosis without
an in-person examination of the patient remain an essential
issue [65].

The proposed speaker model can be generated based on
one short measurement session and then viewed and ana-
lyzed at any time. Thanks to that, additional verification and

WLS-filtered disparity
700 T T T T

600 1

500 1
W 400 b 1
300 1
200 ! |

= |
 e—] — —+ .

Speaker #1 Speaker #2 Speaker #3 Speaker #4 Speaker #5

(a) Mean-squared error (MSE)

Raw disparity

1.00 T T
0.95r b
0.90 b
2 0.85 i
v v.oor
3 + = . =
080F — —i - = il 1
L 1
0.70 . .
Speaker #1 Speaker #2 Speaker #3 Speaker#4 Speaker #5

0.75F

WLS-filtered disparity
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- —_ hi
0.95} E] - -

090F —— 1
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» 085 1
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0.80F .

0.75F b
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Speaker #1 Speaker #2 Speaker #3 Speaker #4 Speaker #5

(b) Structural similarity index (SSIM)

FIGURE 15. Summary of disparity map determination assessment. Mean-squared error (a) and structural similarity index (b) without (left)
and with (right) WLS filtering. Each box covers 25th to 75th percentile interval with a median indicated by a central line. Whiskers refer to

1.5 times the interquartile range. Outliers indicated with red +.
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(b) frame-by-frame animation showing the production of the vowel a

FIGURE 16. lllustration of the 4D-MSM in a child speaker: a single frame from different angles (a) and frames covering the production of a vowel a (b).

reevaluation of the diagnosis are possible, and more com-
plex or questionable cases may be consulted with another
specialist. Recorded material can be archived and consti-
tute the basis for tracking the patient’s progress over time.
Archive models can support the diagnosis of more chal-
lenging health problems, which only show visible symptoms
over time. The data acquisition device we use in this study
can be considered non-invasive for articulation or ease of
speaking. Also, we did not experience any problems with
children’s willingness to try the device on. Note that the same
conclusions came from our previous study with the former
version of the device, used to examine over 100 children aged
5-6 using the picture-naming protocol [40]. Both devices
share main architecture concepts and solutions, e.g., remov-
able sponges inside the mask or bicycle-helmet-like head
mount.

The innovation of the proposed solution lies mainly in
the possibility of documenting the depth of the articulator’s
image, which is not possible with the typical documentation
of the diagnosis using videos recorded with a smartphone.
Stereovision techniques and high-resolution dynamic spatial
models of the speaker can provide diagnostically important

VOLUME 10, 2022

information. A vital contribution to a remote diagnosis is
brought by watching the movement of the speech organs from
the front and side and listening to the high-quality denoised
audio data. It is particularly important when observing the
pathological features of the articulation.

The resolution and preservation of the actual depth of
the model and the possibility of its free observation (from
any viewing angle) in real-time are crucial for the speech
diagnosis. Providing this kind of effect without the need for
additional markers applied to the face opens new perspectives
to the process, especially since it is considered a challenging
issue [66], [67]. The number of depth levels and the precision
of their extraction from the stereoscopic image depends on the
cameras’ resolution and the distance between the cameras’
optical axes. Higher resolution provides more levels of depth
for the price of increasing time consumption and stereo set
expense. The greater distance between the cameras offers
higher precision of location in space. However, too wide spac-
ing of the cameras does not allow for the reconstruction of the
close plan due to the disparity exceeding the camera’s resolu-
tion. Our optical system allows for an accurate reconstruction
of the face surface, including the mouth. Consequently, the
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observation angle range is limited while maintaining the
appropriate number of details. We consider increasing the
number of stereo cameras in future studies, likely allowing
for a more accurate representation of the recorded speaker at
any observation angle.

The segmentation of articulatory organs, e.g., mouth, lips,
tongue, or the detection of the frenulum of the tongue
along with a synchronized audio signal may be crucial in
systems for screening child articulation. Quick, automated
detection of abnormal movements of the tongue or lips
during articulation can enable early detection of speech
disorders and abnormalities in the articulation apparatus
development. Our mouth segmentation method yields accu-
rate results, with the Dice index at 0.97 for both left and
right cameras. Several factors impact the video data qual-
ity, leading to lower segmentation metrics (e.g., Speaker #3
in Tab. 3). These include external lumination and shadows
in the examination room, interspeaker differences in the
anatomical structure of the bottom part of the speaker’s face,
lips color, or rapid head movements. With possible goals of
extending the segmentation scope to other anatomical struc-
tures relevant to speech therapy, we consider employing the
machine learning tools when developing the 4D-MSM in the
future.

Based on the literature review, we conclude that there
are no works on the Polish language combining articulatory
features with those of a video image. For the development
of CASD systems, linking the image features describing
segmented speech organs with the acoustic signal features
and articulatory cues becomes essential. The proposed 4D-
MSM may provide input data for CASD systems based on
image analysis and artificial intelligence. Robust segmen-
tation of different articulators, which is the main direction
for our future research, will enable the analysis of anatom-
ical and physiological features, such as the mandible size
and position, occlusion, or asymmetry in the lips position.
Also, computer-aided analysis of the lingual frenulum behav-
ior during speech exercises can be a promising direction,
as the shortening of the frenulum (ankyloglossia) signifi-
cantly reduces the tongue motor skills, influencing speech
development, occlusion, and physiological functions, e.g.,
swallowing. The SLPs must have adequate experience and
training to evaluate the frenulum, and they often order further
consultation with an ankyloglossia expert. A computer sys-
tem supporting the evaluation of the frenulum could signifi-
cantly shorten the diagnosis and decision on possible cutting
the frenulum (frenotomy).

In the future, we plan to create an online platform for thera-
pists, teachers, and parents for remote and computer-assisted
speech diagnosis and therapy using 4D-MSM. The
multimodal data eventually processed with the artificial intel-
ligence techniques will allow reporting on the speaker’s artic-
ulation state. This solution can be used to conduct screening
tests in schools and kindergartens efficiently. The model of
the speaker generated and available on the diagnostic plat-
form will enable further consultations by a multidisciplinary
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team, including orthodontists, neurologists, and physiothera-
pists. As aresult, the in-depth diagnostic process can be accel-
erated, which is particularly important for children living in
areas lacking appropriate specialists.

V. CONCLUSION

This paper presents the concept and framework for recording
multimodal data and generating a 4D multimodal speaker
model, which can be widely used in remote speech diag-
nosis and therapy. A novel device allows for repeatable
registration of the multichannel acoustic signal and stere-
ovision stream of the face part during the speech therapy
examination. Our data processing workflow leads to an ani-
mated, spatial model of the speaker with a segmented mouth
area. 4D-MSMs may become the essential tool for objec-
tifying and archiving diagnoses, conducting asynchronous
expert consultations, and documenting the progress in ther-
apy. In the future, we plan to build a computer-aided speech
diagnosis system — an expert system linking the audio
and video features with the occurrence of selected speech
disorders.
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