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ABSTRACT Neural schedulers based on deep reinforcement learning (DRL) have shown considerable
potential for solving real-world resource allocation problems, as they have demonstrated significant per-
formance gain in the domain of cluster computing. In this paper, we investigate the feasibility of neural
schedulers for the domain of System-on-Chip (SoC) resource allocation through extensive experiments and
comparison with non-neural, heuristic schedulers. The key finding is three-fold. First, neural schedulers
designed for cluster computing domain do not work well for SoC due to i) heterogeneity of SoC computing
resources and ii) variable action set caused by randomness in incoming jobs. Second, our novel neural
scheduler technique, Eclectic Interaction Matching (EIM), overcomes the above challenges, thus signifi-
cantly improving the existing neural schedulers. Specifically, we rationalize the underlying reasons behind
the performance gain by the EIM-based neural scheduler. Third, we discover that the ratio of the average
processing elements (PE) switching delay and the average PE computation time significantly impacts the
performance of neural SoC schedulers even with EIM. Consequently, future neural SoC scheduler design
must consider this metric as well as its implementation overhead for practical utility.

INDEX TERMS Deep reinforcement learning, heuristic scheduler, neural scheduler, resource allocation,

system-on-chip scheduling.

I. INTRODUCTION

Approaching the limit of Moore’s Law has spurred tremen-
dous advances in System-on-Chip (SoC) which bestows
unprecedented gain in computational and energy efficiency
for a wide range of applications through an integrated archi-
tecture of general-purpose and specialized processors [19].
In particular, the domain-specific SoC (DSSoC), a class
of heterogeneous chip architecture, empowers exploitation
of distinct characteristics of compute different resources
(i.e., CPU, GPU, FPGA, accelerator, etc.) for speed max-
imization and energy efficiency via intelligent resource
allocation [25], [33], [34]. The primary goal of a DSSoC
scheduling policy is to optimally assign a variety of hierar-
chically structured jobs, derived from many-core platforms
executing streaming applications from wireless communi-
cations and radar systems, to heterogeneous resources or
processing elements (PEs). Over the years, researchers have
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demonstrated effective performance for DSSoC with expert-
crafted, heuristic rules [5], [28].

While heuristic schedulers have been dominant in a
wide range of domains for resource allocation, recent effort
on scheduling algorithm development started undergoing a
paradigm shift toward neural approaches as they demon-
strated state-of-the-art performance in complex resource
management domains [17], [20]. In particular, recent suc-
cesses in applying deep reinforcement learning (DRL) for
scheduling heterogeneous (cloud) cluster resources [11], [32]
have further motivated applying similar DRL approaches for
task scheduling on DSSoC, obtaining noticeable performance
gains over well-known heuristic schedulers under certain
operational conditions [37], [38], [40]. Through extensive
experimentation with both DRL and heuristic schedulers
under extremely wide ranges of DSSoC scenarios, we present
an in-depth comparative analysis between neural schedulers
and their heuristic counterparts for the DSSoC domain. The
key contribution of our research is that the high performance
of DRL schedulers previously observed in both cloud cluster
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TABLE 1. Design features of cluster and DSSoC scheduling approaches (DLT: Deep Learning Training).

Algorithm Application Approach Job Resource Objective
. Estimates job run-time heuristically and plans MapReduce Heterogeneous Minimization of errors
TetriSched [45] Cluster for placement options jobs clusters in job execution timing
. Allocates a quantity of resources to ready tasks . Homogeneous Minimization in avg.
Decima [32] Cluster using graph-structured information Spark jobs clusters job completion time
. Exploits job predictability to time-slice . Heterogeneous Improvement on
Gandiva [49] Cluster resources efficiently across multiple jobs DLT jobs clusters cluster utilization
- Assigns job priority using Gittins index to . Homogeneous Minimization in avg.
Tiresias [18] Cluster schedule distributed jobs DLT jobs clusters job completion time
. Uses a two-level architecture to capture . Heterogeneous Improvement on
Themis [30] Cluster placement sensitivity and ensure efficiency DLT jobs clusters cluster utilization
Transforms the scheduling problem into a . Heterogeneous Minimization in avg.
Allox [27] Cluster min-cost bipartite matching problem DLT jobs clusters job completion time
) Generalizes existing scheduling policies by s Heterogeneous Minimization in avg.
Gavel [35] Cluster expressing them as optimization problems DLT jobs clusters job completion time.
) Includes backlog information on remaining jobs; e . ) Minimization in avg.
DeepRM [31] Cluster rain the agent using REINFORCE Cluster jobs Single cluster slowdown
) Employs attentive embedding and schedules o Heterogeneous Minimization in avg.
SCARL [11] Cluster tasks using factorization of action Cluster jobs clusters slowdown
DRM [37 SoC Iteratively maps tasks to resources and updates Single Heterogeneous Minimization in job
1371 0 the agent using REINFORCE algorithm synthetic job resources completion time
Re-arranges task orders using graph-structured Synthetic and Heterogeneous Minimization in avg.
DeepSoCS [38] SoC information and greedily maps tasks to resources SoC jobs resources latency
SoCRATES [40] SoC Iteratively maps tasks to resources and aligns Synthetic and Heterogeneous Minimization in avg.
0 0 post-processed returns to corresponding tasks SoC jobs resources latency

and DSSoC domains is found to be highly sensitive to the
ratio of the average PE switching delay and the average
PE computation time. Specifically, when this ratio is close
to one, neural schedulers tend to outperform their heuris-
tic counterparts under various operational scenarios. On the
other hand, when the ratio is much less than one and subject
to other operational conditions, the anticipated high perfor-
mance of neural schedulers does not materialize. We attribute
this to two major factors: (i) heterogeneity of SoC computing
resources; (ii) variable action set caused by randomness in
incoming jobs. When combined, they exacerbate the problem
of delayed reward because the accumulated rewards are likely
to disrupt the backpropagation-based optimization method.
With this finding, we present a realistic avenue for future
DRL-based resource scheduler design.

A. RELATED WORK

Design of high-performance SoC resource schedulers has
been active for many years [5], [28]. Scheduling algorithms
are mostly heuristic in nature with specific optimization
goals. Examples include First Come First Served (FCFS),
Earliest Task First (ETF) [6], Minimum Execution Time
(MET) [9], and Hierarchical Earliest First Time (HEFT) [44].
While both MET and STF schedule tasks to PEs which
take the shortest amount of execution time, HEFT schedules
tasks by considering both task computation time and data
transmission delays. A real-time heterogeneity-aware sched-
uler HetSched [4] with task- and meta-scheduling compo-
nents having multiple static DAG-represented jobs as input
is built for autonomous vehicle applications. A new pruning
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Monte-Carlo Tree Search (MCTS)-based algorithm [26] has
been applied for workflow scheduling. It has improved per-
formance in makespan over the heuristics, Improved Predict
Priority Task Scheduling (IPPTS) [15], and a meta-heuristic
Genetic Algorithm approach [22]. However, much of the
gain depends on the specific heuristics and the nature of job
configurations.

Cluster resource management for cloud computing
(e.g., YARN [47] or Kubernetes [8]) is another orthogonal
approach in resource allocation. It is primarily designed to
schedule big-data, time-persistent jobs (i.e., MapReduce [12]
or Deep Learning Training (DLT) jobs'). A list of schedul-
ing approaches along with their design features is summa-
rized in Table 1. Themis [30] and Tiresias [18] allocate
tasks from distributed DLT jobs to homogeneous clusters
using two-dimensional scheduling algorithm. Gandiva [49]
schedules a set of heterogeneous DLT jobs to a fixed set
of GPU clusters. It allows preemption on jobs to share
overload jobs to available resources’ spaces. AlloX [27]
transforms a heterogeneous resources scheduling problem
into a min-cost bipartite matching problem in order to provide
performance optimization and fairness to users in Kuber-
netes. TetriSched [45] estimates job run-time heuristically for
placement options. Gavel [35] transforms existing scheduling
policies to heterogeneity-aware optimization problems for
generalization and improves the diversity of policy objec-
tives. Such cluster schedulers enhance run-time performance
by exploiting the simulation characteristics.

A neural network represents a job, and each operation, such as matrix
multiplication or nonlinear function, acts as tasks.
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Neural schedulers have begun to surpass hand-crafted
algorithms and show a significant performance gain in the
cluster scheduling problem. DeepRM, the first DRL-based
cluster scheduler reported in the literature, shows significant
reduction in job slowdown? over heuristics [31]. In com-
parison to DeepRM, Decima [32] proposes an end-to-end
neural scheduler for more realistic cluster environment with
hierarchical cluster jobs. It extracts hierarchical job informa-
tion with graph neural networks (GNNs) [16] and decides
how many resources to execute each task. Decima addresses
varying action selection caused by the hierarchical jobs using
placeholder implementation [2], but it considers homoge-
neous clusters. SCARL [11] aims to schedule jobs to hetero-
geneous resources by exploiting attentive embedding [46] in
policy networks. However, SCARL is not able to schedule
non-hierarchical jobs, which differs from Decima, and is
not applicable to the realistic environment [32]. Spear [21]
applies MCTS to plan the task scheduling with a DRL model
for guidance in the expansion and rollout steps in MCTS.

Building on the success of neural schedulers for the cluster
environment as described above, novel neural approaches
have been proposed for the domain of SoC. Deep Resource
Management (DRM) [37] is considered the first DRL-based
SoC scheduler that schedules hierarchical jobs to heteroge-
neous resources in the scenario with a single synthetic job.
DeepSoCS [38], adapted from Decima, is proposed for han-
dling more realistic SoC scenarios where multiple numbers
of both synthetic and real-world SoC jobs are continuously
generated. It is a hybrid approach that rearranges the tasks
using the graph-structured information extracted by GNNs
and maps them to resources using a heuristic algorithm. How-
ever, the performance gain achieved by DeepSoCS depends
on operational conditions, as it is inherently imitating the
expert policy with an exhaustive search employed by heuristic
schedulers. In order to explore the feasibility of an end-to-end
neural SoC scheduler with the goal of achieving significant
performance gain over heuristic schedulers, the authors pro-
posed SoOCRATES [40] with a novel technique of Eclectic
Interaction Matching (EIM). EIM remedies the concurrency
problem in receiving observation and reward gains by match-
ing the time-varying interaction and simulation time steps.
Consequently, SOCRATES achieves considerable enhance-
ment in performance over prior neural schedulers [37], [38].
In this paper, we present key insights into how such per-
formance gain is achieved by SOCRATES through extensive
comparative experimentation.

B. MOTIVATION

Despite significant performance gains demonstrated by neu-
ral schedulers for cluster computing management, they
generally suffer from limited extensibility. For example,
prior cluster schedulers address non-hierarchical workloads
[27], [49] and homogeneous resources [31], [32] that cannot

2This metric represents a relative value of actual job duration and ideal
job duration.
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fully exhibit SoC resource allocation. Although a series of
research in the cluster application employs heterogeneous
machines [27], [30], [45], [49], their complexity is rela-
tively simpler than DSSoC. Schedulers in cluster applica-
tions allocate jobs to a set of CPUs or GPUs with different
performances, whereas schedulers in DSSoC applications
map a range of domain-specific jobs to various types of
PEs, e.g., CPUs, GPUs, accelerators, memory, each with
different performance and supported functionalities. Cluster
schedulers decide how many clusters to execute incoming
tasks, whereas SoC schedulers map which SoC computing
resource to an incoming task. Hence, the scheduler must be
aware of unsupported action for an individual task. Hence,
directly applying neural schedulers to SoC is non-trivial due
to the disparities in the environment properties, such as the
structures of jobs/resources and scheduling mechanisms.

In contrast, heuristic scheduling algorithms in the domain
of SoC steadily show state-of-the-art performance. We dis-
covered that their significant performance gains come from
rescheduling task assignments with exhaustive searches, such
as PE availability checks or gaps between consecutive task
assignments (see Section IV-B for more details). However,
such rule-based algorithms generally have limited robust per-
formance. For instance, heuristic schedulers are vulnerable to
system perturbation from external forces in the setting of a
single job execution [37]. Based on these robust and signifi-
cant performance gains in the domain of cluster computing,
we are interested in extending these neural schedulers to SoC.
While neural algorithms generally adapt to dynamic system
changes and have robust performance [41], subsequent works
have motivated and developed in a more complicated and
practical scenario with continuous job injection [38], [40].
In this paper, we investigate the challenging standpoints for
designing DRL scheduling policy in the domain of SoC.
With the recently introduced EIM technique overcoming
such challenges, we rationalize the underlying reasons behind
the performance improvement in existing neural schedulers
by examining PE usages and action designs. Furthermore,
we investigate which operation condition impacts the perfor-
mance of neural SoC schedulers with EIM. To the end, the
questions we want to consider in this paper are the following:

o What is the main difference between SoC and other

domains?

« How does the neural scheduling policy effort change in

SoC domain?

o Under which operational conditions do neural sched-

ulers perform/cannot perform well?

o How does EIM technique improve the performance of

neural schedulers?

« What are the strengths/weaknesses of neural scheduler?

Il. BACKGROUND AND SYSTEM MODEL

A large body of research in scheduling exists for a broad range
of domains. Cluster management in datacenters allocates
Spark or DLT jobs to a set of CPU and GPU machines. This
paper contributes to the domain of heterogeneous DSSoC
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FIGURE 1. An illustration of a set of synthetic job and resource profiles.
The diagram on the left depicts a job DAG, where a note represents a task
by its ID and the edge represents data transmission delay by its weights.
The table on the right shows a set of heterogeneous PEs with different
computation time for each task.

and its emulator in the form of high-fidelity Domain-Specific
SoC Simulator (DS3) [5], [39]. DS3, which supports a
heterogeneous SoC computing platform Odroid-XU3 [1],
enables the allocation of a set of communication or radar
jobs to various types of resources, such as general-purpose
cores, hardware accelerators, and memory. The ARM het-
erogeneous big.LITTLE architecture of the cores enables
performance-oriented and energy-efficiency runs (the big
cores of 2.1 Ghz Cortex-A15 are performance-oriented, the
LITTLE cores of 1.5 GHz Cortex-A7 are energy-efficient).
DS3 integrates system-level design features for hierarchical
jobs and heterogeneous resources. The job and resource pro-
files are given as a list specifying properties. The system
parses them and generates workloads and PEs using the job
and resource models.

A. SYSTEM-ON-CHIP SIMULATION

1) JOB MODEL

We define a job as a collection of interleaved tasks. Jobs in
DS3 implement real-world applications of wireless commu-
nication and radar processing. The tasks represent operations,
such as waveform generator, Fast Fourier Transform, vector
multiplication, or decoder [5]. A job structure is in the form
of a directed acyclic graph (DAG), illustrated in Fig. 1 [44].
A job is denoted as G = (N, E), where N is a set of nodes
and E is a set of edges. Each node n; € N represents a
heterogeneous task in the job, and each directed edge ¢; ; € E
connects node n; to node n;. We interchangeably use the
term “‘task” and “node” unless there is confusion. The edge
encodes task dependency. To be specific, if there exists edge
e; j, task nj can start execution only after task #; finishes. Here,
we call node n; a parent of node n;, and n; a child of n;.
We define a set of parents of n; (predecessors) by pred(n;) and
a set of child of n; (successors) by succ(n;). A node may have
multiple parents or children, and nodes can be simultaneously
executed. Each edge e; j has a weight w; ; that represents data
transmission delay between n; and n;. This delay is added to
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the task duration when the scheduler selects a different PE to
task i from task j. The labels with HEAD and TAIL refer to
the root parent node and the terminal leaf node, respectively.
Assume a job G has v tasks, N = {ny,...,n,}, then the
job is considered complete when all tasks in N have been
completed. Here, n; is HEAD node and n, is TAIL node.
According to the job model aforementioned, multiple jobs
are generated. Each job is generated based on the following
parameters [44]:

1) v: the number of tasks in the directed acyclic graph

2) «: the shape parameter of the graph. o controls the
width and depth of a graph structure. We sample the
average width of each level in a graph from a normal
distribution with a mean of /v x «. The depth of a
graph is equal to the % (see Appendix A for details on
job DAG construction). If o >> 1.0, a shallow but wide
graph is generated; if « < 1.0, a deep but narrow graph
is generated.

3) v: the average value of communication delay. The
weight of ¢; ;, representing communication delay, is set
to max(1, | |w|]), where w ~ N (v, 0).

4) CCR: the communication-to-computation ratio. We
calculate an average communication cost by the sum
of the scheduled PE bandwidth and the weights of
edges between the current task and the previous task.
An average computation cost is defined in the SoC job
profile. If the CCR value in a DAG is high, the job is a
communication-intensive workload. Conversely, if the
CCR value is low, the job is a computation-intensive
workload.

5) din: an average value of in-degree of nodes

6) dou: an average value of out-degree of nodes

2) RESOURCE MODEL

Resource profile defines the characteristics of PEs, and each
PE is defined with a set of different, fixed supported tasks
and operating performance points (OPP). OPP is a utilization
set for a tuple of power consumption and task run-time fre-
quency. OPP for PE ¢, for instance, can be defined by a set
of voltage-frequency pairs, OPP, = {(V/, f), ..., (VS [}
where O is the number of operating points. Once the fre-
quency parameter is given, the resource model creates the
corresponding PE. Since PE running with high frequency,
generally, executes tasks faster but consumes more power and
energy, a trade-off exists between run-time performance and
energy efficiency. Moreover, each PEs has a bandwidth that
contribute to the communication delay when the simulator
switches over PEs during task execution.

3) OBJECTIVE

DS3 is heavily shaped by the peculiarities of the SoC domain.
DS3 comes with real-world reference applications from
wireless communications and radar processing domains.
Each supported workload consists of various operations
(i.e., tasks), which require a short amount of duration. The
run-time overhead of each task includes the task duration and
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Completed queue

‘ Job generator }(—{
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FIGURE 2. An overview of DS3 workflow. At initialization, a set of
workloads and PEs are generated for given job and resource profiles. The
job generator continuously generates multiple jobs using the set of
workloads and distributes them to the task queues. The scheduler takes
any tasks in the ready queue and maps each task to one of the PEs. If the
PE is idle, it starts task execution. The task dependency graph prescribes
which next task to move onto the ready queue after the completion of its
predecessors.

data transmission delay. The allocation of different processors
at the same time for task »; and its parent task set {n;} =
pred(n;) would incur the data transmission delay. Let task
n; is mapped to PE P; and its task computation time with
operating frequency foi by comp(n;|P;, f(f). Then, the overall
task duration is equated by

exec(n;) = p - comp(n;|P;. f) + delay(n;), (M

where w indicates a scaling parameter for extending the
task execution time. On the right-hand side, the first term is
task computation time on a PE, and the second term is data
communication delay, given by:

Wi j

max ————, 2
njepred(n;) B(P;, Pj)

delay(n;) =
where w; ; is the weight of edges between task i and task j,
and B(P;, P;) is the PE bandwidth from P; to P;. The self-loop
bandwidth of the same processors is assumed to be negligible,
B(P;, P;) = 0. Due to the communication delay, frequent
resource switching leads to an increasing loss in task com-
pletion time. The objective to optimize, the average latency
minimization, is given by

_ ZGegwmp ZielGl exec(n;)
Igcomp|

, 3

where Geomp is a set of completed job DAGs, and |G] is the
number of tasks in the job G.

Previous work [44] introduced additional evaluation met-
rics of run-time overhead for a single completed job: Sched-
ule Length Ratio (SLR) and Speedup. The SLR and Speedup
metrics are given by

makespan

SLR = :
Zn;ECPMIN m]nijQ {Wi,j}

“
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Algorithm 1 DS3 Environment
1: Input: job inter-arrival rate scale, clock signal clk, max-
imum simulation length CLK, job model M;, resource
model Mg, job capacity C, job queue Qjob, ready
task queue Qready, job profile job, resource profile
resource, W number of jobs, O number of PEs

2: Output: average latency L
3: for each episode do
4: clk < 0
50 {Gili=1:w < M;(3ob)
6:  {Pi}i=1.0 < Mgr(resource)
7:  repeat
8: # Generate jobs
9: if |Qjop| < C then
10: clkinj ~ Exp(scale)
11: Ojob < G at clkip;
12: end if
13: for each task i in Qreaqy do
14 # Schedule tasks in ready list to PE
15: end for
16: if P is idle then
17: # PE execution
18: start P execution corresponding to the scheduled
tasks
19: end if
20: clk < clk+ 1

21:  until clk = CLK
22:  Compute L using (3)
23: end for

MmiNp; e { Zniev Wi;j}

makespan

Speedup = (5

where the denominator of SLRy represents the ideal lower
limit time for scheduling for the job DAG. CPyn is the min-
imal critical path of job DAG, and Q is the number of PEs. The
nominator of Speedup represents the overall task computation
time when each of the v tasks in a job DAG is scheduled onto
the same processor. This indicates the ability of the algorithm
to schedule tasks to explore parallel performance. The lower
SLR and the higher Speedup, the more optimal scheduling
performance.

Since this paper seeks to evaluate performance over mul-
tiple jobs, we average out SLR and Speedup over the entire
completed jobs per simulation length. Let a set of completed

jobs by {G,-}Ecl"mp‘, each of the completed jobs corresponds
to the set of generated workloads at DS3 initialization. Since
heterogeneous jobs are generated, each job likely has a dif-
ferent minimal critical path and parallel performance with the
same processors. The average SLR and the average Speedup

are given by

Yy SLRy

SLR =
| gcomp |

(6)
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TABLE 2. A comparison between DS3 and Spark properties. Due to the
differences in applicability, DS3 and Spark have different characteristics
of job and resource. On DS3, a representative real-world profile, WiFi-TX,
is included. Note that the shape parameter controls the diversity in the
number of job types and their average graph levels, o.

DS3
. Spark
synthetic real-world

Job characteristic
Number of tasks 10 27 1137.6
Data transmission delays ~ 16.6 + 5.0 3.38+2.4 2000
Average job DAG level 4 7 5.8+2.6
Number of types 1 1 154
Average job arrival time 25 25000
Job duration Varied 1127.3 £ 441.9
Resource characteristic
Structure Heterogeneous Homogeneous
Task computation time 13.3+4.1 40.0+83.6
Number of type 4 17 1

[Geompl

Speedup = k=t Speedupy . @)
|gcomp|

The DS3 workflow is given in Algorithm 1 and Fig. 2.
After initialization, DS3 continuously generates indefinite
hierarchical-structured workloads with respect to the job
model at stochastic job inter-arrival rates. While the number
of injected workloads is below the job capacity C, the job
generator injects a mix of multiple instances of the workloads
in a stream fashion, G = {Gi,...,Gw}, where W < C.
The workloads are generated at every clkiyj, where clkiy; ~
Exp(scale), where scale is the mean of job inter-arrival rate.
A large value of job inter-arrival leads to high frequency in job
injection. Then, DS3 loads a set of tasks that have no depen-
dency onto the ready queue, otherwise onto the outstanding
queue. Each ready task, which is derived dynamically based
on the prior task scheduling, is ready to be scheduled by
PEs using a scheduling policy. The task then moves to the
executable queue, and the corresponding PE, if idle, starts
executing the task. The tasks are non-preemptive, as DS3
runs in a non-preemptive setting during task execution. The
job generator, distributed PEs, and simulation kernel, all of
which are executed in parallel, share the same clock signal.
For convenience, we describe a list of key notations and their
definitions in Table 3.

B. SIMULATION ANALYSIS

Elucidating the distinction in simulation behaviors, we com-
pare DS3 against Spark [32], one of the representative real-
istic simulations for cluster applications. Both simulations
support the scheduling of multiple graph-structured jobs, but
differ greatly in the mechanism of resource allocation in their
domains. We list the job and resource characteristics after
normalization in Table 2.

The scheduling policy in Spark decides on how many
resource machines to allocate for the ready tasks with respect
to the given job profile. DS3 scheduling policy, on the other
hand, decides which PE to execute the ready tasks, and the
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TABLE 3. A list of key notations used in this paper.

Notations Descriptions
G; Job graph ¢
N,n; A set of nodes and its node
E,e; A set of edges and its edge
w;, A weight value of edge e; ;
pred(n;) A set of parents of node n;
succ(n;) A set of children of node n;
@ The shape parameter of the job graph
v An average value of communication delay
CCR Communication-to-computation ratio
P; Computing PE ¢
o A scaling parameter to PE performance
L Average latency
g Number of completed jobs
T Task queue
J Job queue
clk Simulation clock signal
R(clk) Immediate reward at clk
G Expected cumulative discounted returns
G Post-processed expected cumulative discounted returns
0 Learnable neural network parameter
LACT () Loss on the policy network
LERI(B) Loss on the value network
£5°€C(6) Total loss on the neural SoC scheduler
¥ Discount factor
n Learning rate
£ Entropy coefficient

task run-time is solely dependent on the selected PE perfor-
mance. After task completion, Spark applies a static moving
delay, whereas DS3 applies a dynamic data transmission
delay. Cluster jobs generally consist of numerous tasks and
last for a long time. Spark, for instance, supports 154 types
of jobs with approximately 5.8 levels (DAG depth). Alterna-
tively, DSSoC jobs are executed in a short range of duration.
DS3 provides several types of real-world job profiles, but
this paper focuses on one real-world job, WiFi-TX, and one
synthetic job. These jobs have 4 and 7 levels, respectively.
Endowing with heterogeneous resources, DS3 has 4 PEs
on a synthetic profile and 17 PEs on a real-world profile.
Each has a different run-time performance for tasks and dif-
ferent supported functionalities. In that sense, an individual
scheduling task must check whether it can be executed in
PE. Regarding CCR, the synthetic profile has a similar range
of computation and communication costs. In contrast, the
real-world profile is chain-structured and compute-intensive.
That being said, the communication time for the synthetic job
has at most 22x larger than that for the real-world job, and
the task computation time for real-world resources is at most
13.4x larger than that for synthetic resources. In practice,
we modify the job characteristics using shaping parameters
o, [, and v to grant more variability. (see Section II-A1l for
details on the parameter description). The difference in the
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FIGURE 3. The edge density and chain ratio of cluster and SoC workloads.
The results of TPC-DS and TPC-H are reproduced by referring to [43].

mechanisms in two different domains limits the scope of the
applicability of each scheduling algorithm, and the extent or
range of run-time is largely different.

Additional metrics are given here for hierarchical job
DAGs [43]: (i) The edge density measures the sparsity of job
DAGs. The density computed by %, where E denotes
the number of edges, V the number of vertices (tasks), and
V(V — 1) the possible maximum number of edges for a job
DAG—the higher density results in denser job DAG with
more complexity. (ii) The chain ratio measures the prevalence
of chained tasks. The rate is computed by %, where C denotes
the number of chained tasks that have an exact one child
and one parent. Fig. 3 reports that the synthetic job DAG is
relatively sparse, and SoC jobs have a larger number of chains
than cluster jobs.

A major difficulty in designing a DS3 scheduler is that
the number of available actions (scheduling decisions) varies
over time due to the mixes of incoming heterogeneous jobs
and their different task dependency graphs. Fig. 4 illus-
trates an exemplary scenario where tasks 4, 5, and 6 are
a child of task 2. Although task 1 and task 3 have been
completed earlier, per the dependency graph, the next obser-
vation can be received after completing task 2. Then, the
immediate reward signals for tasks 1 and 3 are naturally
delayed. With heterogeneous PEs- and dependency-graph-
induced variations incurring abrupt dynamic run-time of
tasks, it becomes an entangled affair in pairing action and
its reward to compute returns properly. Indeed, this entan-
glement of the task dependency graph and heterogeneous
resources leads to the misalignment of the order and timing
of observation and reward gains. In that sense, the agent
has a mismatched reward timestamp with the actual sim-
ulation running clock signal. As a result, the interactions
become inconsistent, and rewards (returns) will be incorrectly
assessed and backpropagated.

Based on the above analysis, DS3 exhibits dynamic, realis-
tic operational behaviors but differs significantly from other
domains of resource allocations. Due to task dependencies
from mixes in various jobs, the scheduler must address a vari-
able action set (i), shown in the list below. The distributed PE
executes each scheduled task accordingly (ii). By combining
(i) and (ii), the agent naturally has delayed rewards likely to
disrupt DRL optimization. That is the last difficulty, (iii).
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FIGURE 4. An illustration of irregular interactions. T refers to task, and P
refers to processor. Although tasks 1 and 3 have been completed earlier,

the next tasks 4, 5, and 6 are scheduled after task 2 has been completed.
As a result, the reward gains for scheduling decisions for tasks 1 and

3 are truncated due to the task dependencies.

1) Variable action sets: Mixes in various jobs with dif-
ferent task dependency graphs cause variable action
sets. Since the job queue holds multiple heterogeneous
jobs, the agent must recognize multiple job graphs
and respond to the fact that action sets are irregu-
lar. At every scheduling interaction, the agent receives
tasks free of dependencies for the given state.

2) Heterogeneous resources: As heterogeneity in both
jobs and SoC computing resources, the DS3 sched-
uler must consider different task execution times and
data transmission delays. The SoC scheduler computes
which task to be executed on which PE. Based on
the task-PE mappings from a scheduling policy, the
average job duration becomes highly unpredictable.

3) Delayed rewards: A combination of the varying
actions caused by randomness in incoming jobs and
heterogeneous resources exacerbates the problem of
delayed rewards. The accumulated rewards tend to
disrupt DRL optimization. With the previous action
commitments and a varying number of observations,
the returns must match the interaction steps and the
actual simulation clock signal.

C. BENCHMARK SCHEDULER
1) RULE-BASED SCHEDULER
The task duration depends on task computation time on a PE
and communication delay computed by the PE bandwidth
and data transmission delay in the job DAGs, as described
in (1). Shortest Time First (STF) and Minimum Execution
Time (MET) [7] iteratively schedule ready tasks to the PE that
has minimal execution time. After the schedules, MET checks
whether the PE is busy or idle. If the scheduled PE is busy,
then MET revises the task assignment to alternate PE. Het-
erogeneous Earliest Finish Time (HEFT) [44] is effective at
hierarchical job scheduling. HEFT first sort ready tasks based
on the upward rank values, which are importance weights,
and greedily map tasks to heterogeneous PEs. An upward
rank of a ready task n; can be recursively calculated by
rank,(n;) = w; + max (¢;; + rank,(n;)), ®)
njesucc(n;)
where succ(n;) is a set of successors of task n;, ¢;; is the
average communication cost of edge (i,j), and w; is the
average computation cost of task n;. Essentially, the upward
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rank is the length of the critical path from task #; to the exit
task. While the original research seeks the critical path [44],
ajob DAG in DS3 is deemed complete when all of its tasks are
finished. Therefore, the performance of HEFT relies heavily
on the heuristic task-PE mapping, which iteratively computes
the earliest execution finish time (EFT) of a ready task. EFT
of task n; and processor py is equated by

EFT(n;, pr) = max{avail[k], max (AFT(nj)+c;j)}, (9)

njepred(n;)

where avail[k] is the earliest time at which the processor pi
is ready for task execution, pred(n;) is the set of predecessor
tasks of n;, and AFT(n;) is the actual finish time of the task
nj. ¢ij = w;ij/B(pi, pj), where w;; is the weight of edge
(i,j) and B is bandwidth between given processors, is the
data transmission delay as referred to (2). Essentially, EFT
algorithm calculates actual delay-aware computation time
and exhaustively schedules the task to the PE with minimal
cost. HEFT particularly applies an insertion-based policy that
seeks whether the scheduled task can be executed prior to the
previous task assignment. If HEFT finds residual gaps due
to transmission delays associated with previous scheduling
decisions, it reschedules the tasks. Recent improvement via
execution-focused heuristic in dynamic run-time scenarios
resulted in a run-time variant of HEFT, HEF TRt [28].

2) NEURAL SCHEDULER
DeepSoCS [38] first introduced in the DSSoC with the real-
istic setting. It sorts tasks using the topological knowledge
extracted by graph neural networks and maps each task to PEs
using exhaustive search, EFT algorithm [44], accordingly.
DeepSoCS shows a promising result in the SoC application
by exploiting the insertion policy and imitating the expert
policy, HEFT. However, mapping the tasks to PEs crucially
impacts the performance rather than sorting the tasks in DS3
due to counting job completion after all tasks are finished.
SCARL [11] is designed for scheduling a single-level job
input to heterogeneous machines in a pre-defined number of
injecting jobs. SCARL employs attentive embedding [46] to
share representation from the job and resource embedding
and allocate each job to the available machine. The scheduler
conducted experiments in the extended version of the simple
cluster simulation [31].

Ill. PROPOSED METHOD

The critical challenges for designing a DRL scheduler in
DS3 are that the scheduler requires to i) adaptively allocate a
varying number of tasks to heterogeneous PEs by considering
system dynamics and data transmission delays, and ii) cor-
rectly align task returns to scheduling actions according to
respective time-varying agent experiences. An overall sys-
tematic workflow of DS3 with scheduling policies is depicted
in Fig. 5. After the tasks enter the ready queue, the scheduler
receives an observation and maps each task to corresponding
PEs. For the following subsections, we provide the state,
action, and reward statements tailored to DS3. As the set of
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actions varies in order and time, we provide cases on how
to design actions. Also, we delineate a straightforward and
effective EIM technique and how this technique addresses the
alignment of return.

A. AGENT DESCRIPTION

Applying RL to sequential decision-making problems is natu-
ral, as it collects experiences via interactions with the environ-
ment. In general, conventional RL is formalized by Markov
Decision Processes (MDP), which is consisted of a 5-tuple
(S, A, R, P, y)[41]. Here, S € R is the state space, A € R”
is the action space, and R € R is the reward signal that is
generally defined over states or state-action pairs. P : S X
A — S is a matrix representing transition probabilities to
next states given a state and an action. y € [0, 1] is the dis-
count factor determining how much to care about rewards in
maximizing immediate reward myopically or weighing more
on future rewards. RL aims to discover an optimal policy &
that maximizes the expected cumulative (discounted) rewards
or (discounted) returns. At every interaction, the RL agent
samples a (discrete) action from its policy, which is the prob-
ability distribution of actions given a state, a; ~ 7w (s;). The
agent then computes the return with E[Z;T:o y! _IR(S,, ap)],
where ¢ is the interaction time step. In this paper, we assume
a finite state, finite action, and finite-horizon problem.

1) STATE

The state representation is designed to capture information of
simulation dynamics. Considering the SoC domain-specific
knowledge, we select the attributes of the overlapping
tasks/jobs and resource information. The observation features
at every interaction are

Concat((PS, Stat$, TWT, [predS )/ oo
(Dep®, IWT){_, Nenita), ~ (10)

where 7 is a task in every job G, v is the number of tasks in
job G, and W is the number of job DAGs in job queue. Each
of the observation features is described as follows.
o Pf, the assigned PE ID.
o Statfz;, one-hot embedded task status. Status is classified
by one of the labels from ready, running, or outstanding.
. TWT,?, the relative task waiting time from the ready
status to the current time.
o | predfl, the number of remaining predecessors.
« Dep?, the number of hops (levels) for the remaining
tasks as referred to task dependency graph.
o JWTO, the relative job waiting time from injected to the
system to the execution time.
e Nchild, the number of all awaiting child tasks in the
outstanding and ready statuses.
Time in observation features refers to the actual clock signal
in an SoC simulation. Based on the choices of neural archi-
tecture designs, state representation includes graph embed-
dings that capture topological information using graph neural
networks [11], [32], [38].
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FIGURE 5. The architecture of neural schedulers applied to DS3 simulator. Schedulers receive N tasks in the ready queue and map each task to
SoC computing resources. Due to the varying number of tasks, scheduling policies feed each task iteratively. SOCRATES applies Eclectic Interaction
Matching to post-process the return (bottom-left). DeepSoCS returns sorted tasks and uses the EFT algorithm to map them to resources

(bottom-right).

2) ACTION

At every task assignment, shown in the top-middle stage
from Fig. 2, the agent performs a scheduling decision on
an individual task that is free from dependency. Since the
number of ready tasks varies by the previous scheduling
decisions following their dependencies, the feasible action
set varies. Let the ready tasks by a; € Tready, Where Tready

. Tr .
is a set of ready tasks. For every task {ai}l.zrfady ‘, an action

i is sampled from the policy distribution with parameter 6,
a; ~ my(als), which can be represented by multinomial
distribution, g (als) 4 Multinomial(p, m). Here, p € R!*Q
is the probabilities of each PEs, Q is the number of PEs, and
m € R is a masking vector to filter out PEs not supporting
the task.

One approach is to consider a set of actions as a group
action. The group action at RL interaction time step ¢ can
be represented by a; ; ~ mg(s;), where the set of actions are
sampled from the same probabilities with respect to policy
distribution. In practice, we define the size of the action
vector to a large enough number and apply zero-padding
whenever the number of ready tasks is less than that [48].
An alternative approach is to treat each ready task as an
individual action. In lieu of the group action, the agent pulls
out each for a PE selection with respect to different policy
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distribution iteratively, a;; ~ g ;(s;). In this case, each
action is sampled from different probabilities with respect to
policy distribution.

3) REWARD

DS3 schedulers aim to minimize average latency over simu-
lation length. As described in (3), the number of completion
jobs is largely dependent on the latency. While the negative
job duration reward is an adequate reward metric in a cluster
environment [32], this is not effective for latency. Minimizing
the elapsed time of the completed jobs is a local optimiza-
tion, while increasing the number of completed jobs is a
global optimization to entail latency minimization in overall.
Moreover, maximizing the number of tasks is not adequate
optimization because leaving one task out of a job did not
contribute to the job completion. We state the reward function
as follows.

R(cIk) = C1 - [Geomp| + C2, (11)

where |,C';00mp| is the number of newly completed jobs at
clk, C1 and C, are the weights of job completion bonus
and penalty for clock signal, respectively. The second term
on the right-hand side (C») represents a penalty and acts as
continuous reward feedback on every running clock signal.
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In general, C; is a negative value that encourages the agent to
complete jobs quickly. Cy is a positive value that is likely to be
higher than previously accumulated penalties. It is non-trivial
to verify the relationship between the number of completed
jobs and accumulated penalties due to the combinatorics
in the task-resource mapping and the combined effect on
workload characteristics and stochastic job injection rate. The
values of +50 for C; and —0.5 for C, were chosen empiri-
cally for our study, which has shown effective performance
gain over various workload scenarios. Note that this reward
function is computed per clock signal to enable the EIM
technique, which is discussed in the following section. For the
standard RL approach, the reward is computed per interaction
step ¢ instead of clock signal clk.

B. ECLECTIC INTERACTION MATCHING
Conventional RL environments formalized in standard MDP
assumption return the next observation and action conse-
quences right after the previous action has been completed.
However, as introduced in the example case in Fig. 4, the
action in DS3 is performed with the ready tasks, and it is
highly not regularly performed due to the variability in task
dependency from a mix of incoming jobs. As a result, the next
observation is not immediately generated after executing the
previous scheduled task. Moreover, treating a reward and the
next observation at the same time leads to incorrect reward
propagation, because the scheduler assigns multiple tasks at
the same time, and each of the scheduled tasks readily be
completed at different time due to the different performance
of heterogeneous PEs. In that sense, the task dependencies
and different task duration inherently cause delayed rewards,
and this phenomenon leads to incorrect reward propagation
in the optimization updates. Therefore, the scheduling agent
must handle a varying number of action sets and the mis-
matches between the interaction and the action effects during
the action decision stage, for which we address right below.

A standard RL experience comes down to a sequence of
(s, a, r,s’). We first decouple the receiving reward and next
state to have i) a sequence of {s;, a,-}l.T: 1» where T is the last
interaction step, and ii) a list of rewards collected upon the
simulation clock signal {rclk}cclllgz1 = {R(Clk)}cclllél, where
R(clk) is a reward function described in (11). As discussed
in Section II-B, an amount of interactions 7" and entire clock
signal CLK are not generally matched due to the different
task dependencies in a mix of hierarchical jobs and perfor-
mances in heterogeneous PEs. We compute the immediate
reward per clock signal independent of the interaction step.
Additionally, we append the ‘start’ flag to the state-action
tuple and stored in the buffer. While traversing the simu-
lation, at the completion of any scheduled task, we store
the ‘complete’ flag and completed clock signal @ in the
buffer. Hence, the experiences in the buffer is described as
{1, {ann)1— s fwmn)'_;}_,, where n’ is the number of
ready tasks at interaction step ¢.

Fig. 6 showcases an exemplary experience of schedul-
ing three ready tasks and return computations using two
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Algorithm 2 SoOCRATES Scheduler

1: Imput: clock signal clk, job queue 7, ready task queue

7;eady

2: for each episode do

3:  state-action buffer By < @

4 clock buffer Bk < @

5. reward buffer Bg < ¢
6:  for each task i in Treaqy do
7
8
9

Construct state s;
aj,r ~ 7o i) (St)
: Assign a; ; to PE for task i
10: Bsa < (81, air)
11:  end for
12:  if task i complete then

13: B < (i, w)
14:  end if

15: BR < Iclk

16: end for

17: # Update the agent model
18: 6 < 0 + ny' Ve L3°C(9)

different strategies. On the upper-left diagram, an agent
receives an observation and sequentially selects an action.
The state, action, and task starting/completing clock sig-
nal are marked green. Next, we compute returns based
on the accumulated rewards. In the standard approach
performing the Monte-Carlo return with the accumulated
rewards [42], partial reward sequences that overlap ongoing
tasks and subsequent observation are not counted; the miss-
ing sequences incur incorrect return matching and instability
in training.

The EIM technique instead aligns Monte-Carlo returns
with the committed actions spanning individual task dura-
tion, referred to the ‘start’ and ‘end’ task signals. The return
for each action reflects the length of task duration, and
each action correctly matches outcomes without any dis-
carded information. Moreover, task flags and actual clock
signals allow the agent to sequentially select actions within
a set of varying actions. EIM technique thus enables the
agent to receive a correct form of state-action-return triplets,
regardless of varying action sets. EIM is a straightforward
post-process that is proven effective in training an agent when
the agent interaction and simulation clock signal is incon-
sistent. The bottom diagram of Fig. 6 depicts the task and
action with the return computation. The x-axis denotes the
simulation clock signal, and the y-axis is the RL interaction
time step. Partitions of second and third task duration in the
standard approach are discarded for return assignment. EIM,
by contrast, properly pairs the state-action tuple with returns
by aligning returns to task assignments.

In training, we use the Actor-Critic algorithm [24]. We use
shared neural networks on both actor and critic and update
parameters with REINFORCE [42]. While the actor network
selects actions with respect to the policy distribution, 7,
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FIGURE 6. An experience with different strategies. Top figure depicts the experiences and rearranged state-action-return sequential
triplets after processing different strategies: standard and EIM. EIM preserves the integrity of task execution for return calculation via
accounting for returns spanning task duration. Bottom figure describes three tasks coming with concurrency and inconsistent interaction
due to task dependency and heterogeneous resources. Two orthogonal axes show interaction time step and actual simulation clock
signal. For standard strategy, delayed consequences are discarded, as depicted by shaded regions.

the critic network estimates the value using the value func-
tion, V7. At the end of the episode, EIM post-processes the
expected returns as described in (12):

w
Glst,0) =Y y™rans. (12)
clk=0

The actor loss is equated by

T

£3T6) = — Y log malals)| Glsi. @) = Vi sn ] (13)
t=0

and the critic loss is computed by the standard mean squared
loss,
CRI Lio (7 2
£E¥0) = 5 (Gt 0) = Vi) (14)
The overall loss is given as:
L£3C0) = LITO) + LTVNO) + EHG), (15)

where the last term on the right-hand side is the entropy
regularization, H(s;) = Ey,[log g (s;)], with its coefficient
& introduced for exploration. Pseudocode for the proposed
algorithm is given in Algorithm 2.

IV. EVALUATION

This section demonstrates the feasibility of neural schedulers
in a high-fidelity SoC simulation, DS3. We present evalu-
ations in three ways: (a) we revisit rule-based schedulers
and observe their benefits on performance, (b) we verify the
efficacy of EIM technique on neural schedulers by investi-
gating PE usage with various reward functions and different
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TABLE 4. A table of hyperparameters used for training neural schedulers.

Hyperparameter Value
Optimizer Adam
~ (discount factor) 0.98
7 (learning rate) 0.0003
£ (entropy coefficient) 0.01
« (job structure) 0.8
1 (scale to PE performance) 0.5
v (avg. comm. delay) 0.0
Number of workloads 200
Simulation length 10,000
C (job capacity) 3
Gradient clip 1
Scale 25

action designs, and (c) we empirically validate that neu-
ral schedulers can have competitive and generalized perfor-
mance on run-time overhead in a series of experiments where
job DAG topology and PE performance are varied. Specif-
ically, we examine in which operational conditions existing
neural schedulers with EIM have significant performance
gains.

A. EXPERIMENTAL SETUP

Table 4 describes a list of training parameters. We use
Adam optimizer [23] and clip the gradients to avoid gra-
dient explosion. To engender more interactions and a more
dynamic environment, we randomly inject jobs with a set
of 200 workloads. As we empirically discovered that the
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job DAG topologies of synthetic or real-world profiles are
structured with ¢ = 0.8, we synthesize job structures with
o = 0.8 based on the given job profile. The job inter-arrival
rate (scale) is set to 25; the system stochastically injects a
job at every 25 clock signals on average. At every episode,
the simulation executes until 10,000 clock signals. To reduce
the training and evaluation time, we conduct all experiments
with the initial condition of quasi steady state, that is, each
experiment begins with all jobs already stacked in the job
queue [38]. All evaluations have been conducted by 20 trials
with different random seeds.

B. REVISITING RULE-BASED SCHEDULERS

Rule-based algorithms have continue to demonstrate state-
of-the-art performance in SoC run-time scheduling [5], [28].
In order to establish a baseline for comparative study, first we
extensively investigate the run-time performance of existing
heuristic schedulers. As described in Section II-C1, the main
discrepancy between STF and MET is that MET reschedules
the scheduling assignment by checking whether the selected
PE is busy or idle. Likewise, HEFTRr iteratively computes
the actual run-time of given tasks using computation time
and data transmission delay. It then applies an insertion pol-
icy, which exhaustively searches for a possible empty slot
between each task assignment.

The top plot in Fig. 8 shows an overall run-time perfor-
mance of different heuristic schedulers using synthetic (Syn)
and real-world (RW) profiles. The x-axis indicates CCR,
and the y-axis indicates the average latency. The jobs
are communicative-intensive, if CCR > 1.0, and are
computation-intensive, if CCR < 1.0. For synthetic profiles
structured with a similar range of CCR, STF and MET have
comparable performance and surpass HEFTgrt. On the other
hand, MET and HEFTgr significantly improve performance
for real-world profiles, where jobs are computation-intensive,
by checking the availabilities in PEs and exhaustively search-
ing the empty slot between task assignments. Particularly,
when increasing CCR on real-world profiles, MET and STF
show similar performance and surpass HEFTrt. We observe
that the increasing gap between computation time and com-
munication delay leads to large variances in the distribution
of task run-time. The high variances in profile statistics result
in more chances to improve the performance by rescheduling
task assignments.

The bottom plot in Fig. 8 shows an experimental result for
real-world profile using two types of HEFTRrt, with and with-
out insertion policy. The insertion policy effectively seeks
better placements due to the divergent distribution of task
computation time. Hence, the rescheduling task assignment
in the heuristic schedulers instrumentally improves run-time
performance. In that sense, rescheduling task assignments
can largely improve performance, and HEFTrT can show
almost optimal performance within a myopic scope by its
exhaustive search when the variations in task run-time are
large.
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C. PERFORMANCE COMPARISON

This section describes our extensive evaluation of the perfor-
mance of existing schedulers specifically designed for hetero-
geneous resources in the SoC domain. We compare two types
of representative scheduling algorithms: i) SOCRATES [40],
DeepSoCS [38], and SCARL [11] for neural, and ii) STF,
MET [7], and HEFTRrt [28], [44] for heuristics. Since
SCARL does not support hierarchical workloads, we modi-
fied SCARL as follows: (1) State: We take the same job rep-
resentation with the SOCRATES. We select PE performance,
types of PE, capacity, available time to execute tasks, task
remaining execution time, idle rate, and normalized values
of PE run-time and expected total task time for features of
PE representation. (2) Action: Original SCARL selects both
workload and resource. Since SCARL does not support task
selections for hierarchical workloads, the action maps the
selected resource to the task in sequence. (3) Reward: We
use the same reward function of job completion, described
as (11). At the update stage, we compute the returns with the
collected rewards after post-processing with EIM.

Throughout the evaluations, we primarily concentrate on
average latency, which indicates the average run-time per-
formance. We observe how the schedulers behave in a wide
range of experiments by varying the types and structures
of the jobs, transmission delay, and performance in het-
erogeneous PEs. Fig. 7 reports the run-time performance
using a synthetic workload. The right and left plots depict
the experimental results after varying job structures and
PE performance. For the former case, we control the job
structure parameter « while holding the parameter of PE
performance w, and for the latter case, vice versa. Large
o generates shallow but wide job graphs, while small o
generates deep but narrow job graphs. All evaluations are
conducted with the highest job inter-arrival rate (the smallest
scale value), leading to a high frequency of job injection.
From the holistic viewpoint, the trends in SLR and Speedup
follow the curve of the average latency. Among all other
schedulers, we can observe that SOCRATES has surpassed
under a wide range of experiment settings. Since the neural
schedulers have been evaluated using a single trained model,
SoCRATES has generalized and competitive performance
in various scenarios in job structures and PE performances.
As described in Section IV-B, CCR for the synthetic workload
closely reaches 1.0, meaning that the task computation time
and data transmission delay lie in a similar range. As a result,
the task ordering in heuristics did not impact much, and their
performances fell behind the SOCRATES. When the number
of tasks was varied, SCARL’s attentive embedding of tasks
and resources was unable to take advantages of attentive
representation and even further deteriorates the overall run-
time performance. As a result, SCARL shows comparable
performance to random policy.

Synthetic and real-world profiles differ in the number of
tasks and resources, job DAG topology, and supported func-
tionalities on individual resources. Table 2 indicates that the
real-world profile has a much higher task computation time
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FIGURE 8. An experimental analysis of heuristic schedulers. The top
figure compares run-time performance with different data transmission
delays. The cross and triangle marks depict fixed job profiles from
synthetic and real-world workloads. We report the results with a solid
line for real-world (RW) and a dotted line for synthetic (Syn) workloads
for the increase in data transmission delay compared to task
computation time. Both lines are plotted by varying the job structure with
o = 0.8. The bottom figure shows the effectiveness of insertion policy in
HEFTRy scheduler using violin chart. An insertion policy significantly
improves performance for average latency (bottom-left) and increases
the number of completed jobs (bottom-right).

cost than the data transmission delay. Hence, the actual task
run-time is more varied, and rescheduling task assignments
from heuristic schedulers can largely improve the run-time
performance. As a result, SCARL significantly improves
performance, and HEFTrT shows the most optimal run-time
behavior in the real-world profile, as shown in Fig. 9.
We observe that SOCRATES surpassed other schedulers in
the synthetic profile, but it was limited in the real-world
profile. Although EIM remedies fundamental difficulties in
DS3 and improves SOCRATES performance, it cannot reduce
the performance gap for the optimal task scheduling in a
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myopic range using an exhaustive search. We hypothesize
that the characteristics of the real-world profile, such as
various availabilities of task executions in resources, invokes
cohesive challenges to designing a DRL scheduler. Addition-
ally, a large number of tasks leads to increased complexity
in task dependency composition and large variance because
completing all tasks counts as job completion. Hence, the
end-to-end neural approach could not surpass HEFTrT when
the task duration has high variance and computing resources
cannot compute all tasks. Although SOCRATES shows lim-
ited performance in the real-world profile, DeepSoCS shows
comparable performance to HEFTrt by imitating experi-
ences from the expert algorithm.

In conclusion, Fig. 10 demonstrates the overall evalu-
ation of neural and non-neural schedulers using synthetic
and real-world profiles with various job DAG topology by
controlling «. The left figure shows that SOCRATES has
largely improved behavior when the computation time and
communication delay lie in a similar range. The right figure
shows that DeepSoCS and HEFTgrT shows the most opti-
mistic performance when the composition of task duration
has a large variance. Thus, if we adaptively choose a neural
scheduler between EIM-based policy and imitated expert pol-
icy depending on different scenarios, the neural SoC sched-
ulers can obtain an improved performance over other neural
and non-neural schedulers.

D. ANATOMY OF SOCRATES

SoCRATES is the fully differential decision-making algo-
rithm [40]. The crucial component in SOCRATES is EIM
technique that alleviates both delayed rewards and variable
action selection, caused by hierarchical job graphs, mixes
of different jobs, and heterogeneous computing resources.
Although the recently introduced EIM technique overcoming
such challenges, it lacks the validation of the efficacy of
EIM. In this section, we rationalize the underlying reasons
behind the performance improvement of EIM by examining
PE usages and action designs.

1) ANALYSIS OF ECLECTIC INTERACTION MATCHING
First, we examine how EIM affects the scheduling policy
decisions with the PE selection behavior. The top plot in
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FIGURE 9. Performances evaluation on neural and non-neural schedulers with various job structures and PE performances using real-world
profiles. The left and right figures show run-time performance on varying topologies in job DAGs and PE performances, respectively.
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FIGURE 10. An overall result of average latency with various job DAG
topology by controlling «. The left plot shows the synthetic profile, and
the right shows the real-world profile.

Fig. 11 shows the counts on each PE execution and the total
amount of time for PE in active and blocking time. Active
time represents the amount of time in PE execution, and
blocking time represents the duration when a PE is busy while
the assigned tasks are ready. The simulation clock signal
measures each time. Intuitively, optimized performance in
PE usage can be achieved when active time increases but
blocking time decreases. SOCRATES with EIM technique,
in effect, utilizes a greater number of PEs and achieves higher
resource active time than that with other policies. Its high
blocking time derives from the fact that the policy weights
encourage achieving long-term returns while blocking the
cost of immediate returns. The same policy without EIM
technique also has similar values of active and blocking times.
However, its low number of PE counts leads to poor PE uti-
lization and latency behavior. MET also uses a large quantity
of PEs, but its low active time in PEs invokes additional
bottlenecks in PE usage. Random and SCARL policies show
high value in active time. However, their absolute number
of PE counts is much lower. As a result, they have poor
performance compared to other schedulers.

Next, as shown in the bottom plot, we train SOCRATES
using various types of reward functions with and without
the EIM technique for generalization. We train the policy
using synthetic workload, and each two types of dense and
sparse reward functions are used (see Appendix B for more
details). The solid line represents the average values, and
the shaded region bounds the maximum and minimum val-
ues among 8 runs in random seeds. The standard strategy
seemingly cannot train the model by observing its steady
and straight performance curve. On the other hand, the EIM
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FIGURE 11. Experiments for the analysis of EIM technique. Top plot
shows PE selection and active/block time for PEs in different scheduling
algorithms. Bottom plot compares latency performance using EIM and
standard strategies with various sparse and dense reward functions. All
experiments are conducted with synthetic workloads with a fixed job
topology.

strategy enables to show learning curve. The EIM iteratively
matches each return in actions with respective task duration
at the cost of storing extra flags on task start and completion.
This additional post-processing is very cheap in operations
and achieves substantially better latency performance in any
kind of reward function than the standard strategy. From the
reward function perspective, the sparse reward apparently
exacerbates unstable latency performance due to its limited
feedback for an RL agent. Hence, it is commonly modified to
dense forms using the shaping technique [36].

2) ACTION DESIGN

To design a DRL agent in an environment with varying
actions, one can set an action space to the number of maximal
actions and mask out every varying action [48]. In the case
of group actions, we distribute the returns, computed by
the longest task duration, to the set of actions. It turns out,
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FIGURE 12. A set of performance metrics for selecting a group action
and independent actions in the training phase. Top-left: total rewards,
top-right: returns, bottom-left: explained variance [13], and bottom-right:
average job execution time (us).

however, that the approach to group actions is inadequate due
to the rapid convergence of gradients. The action probabili-
ties quickly devolve to the local minima, and the losses in
policy and value increase exponentially. Also, a set of group
actions and their respective returns cannot be distributed to
individual actions, since each task has a respective reward and
estimated return or value in the task duration. On the other
hand, individual action selection with the EIM technique con-
verts a varying action problem into a conventional sequential
decision-making problem, with no need to be aware of invalid
actions from the agent perspective. Fig. 12 shows that the
policy with independent actions produces much higher values
in the expected returns by 270% and has improved run-time
performance by 30%. We applied the EIM technique to both
approaches. Additionally, we report the explained variance,
EV, denoted by (16).

1= VIG(s;) — G(s))]
V) = VIGs)] (10

where G(s;) is empirical return of state s; and G(s,) is
predicted return of state s;. EV measures the difference
between the expected return and the predicted return [14].
By observing the decreases in explained variance for the
group action, we empirically validate that group action does
not fully understand the environment while reconciling the
experiences.

V. CONCLUSION AND FUTURE WORK

In this paper, we unveil myths and realities of DRL-based
SoC job/task schedulers. We identify key practical chal-
lenges in designing high-fidelity neural SoC schedulers:
(1) varying action sets, (2) high degree of heterogeneity in
incoming jobs and available SoC compute resources, and
(3) misalignment between agent interactions and delayed
rewards. We propose and analyze a novel end-to-end neu-
ral scheduler (SOCRATES) by detailing its core tech-
nique (EIM) which aligns returns with proper time-varying
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agent experiences. EIM successfully addresses the aforemen-
tioned challenges, endowing SOCRATES with a significant
gain in average latency and generalized performance over a
wide range of job structures and PE performances. We also
rationalize the underlying reasons behind the substantial per-
formance improvement in existing neural schedulers with
EIM by examining actual PE usages and disparate action
designs. Through extensive experiments, we discover that
CCR significantly impacts the performance of neural SoC
schedulers even with EIM. At the same time, we find that the
action of rescheduling task assignments by heuristic sched-
ulers leads to significant performance gain under certain oper-
ational conditions, often outperforming neural counterparts.

With these findings, we intend to investigate further
whether EIM technique can bring additional performance
gains in other learning-based and planning algorithms, both
empirically and theoretically. Further research on analyzing
the performance bounds of the EIM technique is being con-
ducted. With the advantage of task rescheduling in heuristic
schedulers, we plan to improve neural schedulers by convert-
ing such technique to a differential function and integrating
it into the optimization. Alternatively, offline reinforcement
learning using expert or trace replay [3] is another possible
approach to improve neural schedulers. Moreover, leveraging
the structure of the underlying action space to parameterize
the policy is a candidate approach to tackle a varying action
set [10]. We also plan to leverage GNNs to bestow the struc-
tural knowledge from job DAGs [50], and demonstrate the
performance gain of the improved neural schedulers by using
the Compiler Integrated Extensible DSSoC Runtime (CEDR)
tool, a successor to DS3 emulator, as it enables the gathering
of low-level and fine-grain timing and performance counter
characteristics [29].

APPENDIX A

JOB DAG CONSTRUCTION

The simulator can synthesize a variety of workloads given
the job profile and hyperparameters, which are described in
Section II-Al. First, we compute average values of widths,
w, and depths, d, with the hyperparameter « based on the job
model description in Section II-A1. We compute the number
of nodes by w ~ max(1, N([w], 0)) per d — 2 job levels.
Here, we exclude two levels in which the HEAD and TAIL
nodes are located. Then we check whether the total number of
nodes matches v (the number of nodes). If the total number
of nodes is less or greater than v, then we randomly select
nodes from the job DAG and add/subtract them in order
to exactly have v nodes. As illustrated in Fig. 13, small «
generates deep but narrow job graphs (left figure), and large
o generates shallow but wide job graphs (right figure). Next,
the job model generates the task dependency by the following
iterative process. Let the number of predecessors and the
number of nodes at level / by |pred(n;)| and |/|, respectively.
Then, the number of dependent tasks for node i at level [ is
computed by max(1, min(N (”_T”’ 0), |I — 1])). We connect
n; to randomly selected |pred(n;)| nodes in [ — 1 level.
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FIGURE 13. An illustration of two types of job DAGs based on «. Left
diagram shows that small « generates a deep but narrow job graph.
Dotted lines in the middle represent hidden nodes and edges. Right
diagram shows that large o generates a shallow but wide job graph.

APPENDIX B

DESCRIPTION OF REWARD FUNCTIONS

Two types of dense and sparse reward functions are used to
validate the efficacy of EIM technique. The reward functions
are described as follows.

Riense(€1k) = Ci - [Geomp| + C2 (17
Raense2(c1k) = C1 - |Geomp (18)
Rsparse(clk) = 0 - Teik<CLK—m
+C1 - [Geompl - LjetkzCLKk—m]  (19)
Rsparse2(clk) = 0 - Ljcik£cLK]
+Ci- I.C';compl * T[clk=CLK]5 (20)

where |§’;C(,mp| is the number of newly completed jobs at clk,
CLK is the end of simulation length, and m is the number of
the lastly completed tasks. C1 and C, are the weights of job
completion bonus and penalty for clock signal, respectively.
We set 4+-50 for C; and -0.5 for C, empirically. All reward
functions are computed per simulation clock signal.

REFERENCES

[1] ODROID-XU3. Accessed: Mar. 3, 2019. [Online].
https://wiki.odroid.com/old_product/odroid-xu3/odroid-xu3

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, “TensorFlow: A system
for large-scale machine learning,” in Proc. 12th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2016, pp. 265-283.

[3] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspective
on offline reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
Nov. 2020, pp. 104-114.

[4] A.Amarnath, S. Pal, H. T. Kassa, A. Vega, A. Buyuktosunoglu, H. Franke,
J.-D. Wellman, R. Dreslinski, and P. Bose, ‘‘Heterogeneity-aware schedul-
ing on SoCs for autonomous vehicles,” IEEE Comput. Archit. Lett., vol. 20,
no. 2, pp. 82-85, Jul. 2021.

[5S1 S. E. Arda, A. Krishnakumar, A. A. Goksoy, N. Kumbhare, J.
Mack, A.L. Sartor, A. Akoglu, R. Marculescu, and U. Y. Ogras,
“DS3: A system-level domain-specific system-on-chip simulation
framework,” IEEE Trans. Comput., vol. 69, no. 8, pp.1248-1262,
Aug. 2020.

[6] J.Blythe, S.Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy,
“Task scheduling strategies for workflow-based applications in grids,”
in Proc. IEEE Int. Symp. Cluster Comput. Grid, vol. 2, May 2005,
pp. 759-767.

Available:

VOLUME 10, 2022

[71

[8]

[9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran,
A. I. Reuther, J. D. Robertson, M. D. Theys, B. Yao, D. Hensgen, and
R. F. Freund, “A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems,”
J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810-837, Jun. 2001.

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade,” Queue, vol. 14, no. 1, pp. 70-93,
Jan. 2016.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Schedul-
ing Algorithms and Application, vol. 24. Springer, 2011.

Y. Chandak, G. Theocharous, C. Nota, and P. Thomas, “‘Lifelong learning
with a changing action set,” in Proc. AAAI Conf. Artif. Intell., vol. 34,2020,
pp. 3373-3380.

M. Cheong, H. Lee, I. Yeom, and H. Woo, “SCARL: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,” IEEE Access, vol. 7, pp. 153432-153444, 2019.

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
Jan. 2008.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” Github,
Tech. Rep., 2017. [Online]. Available: https://github.com/openai/baselines
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov. (2017). OpenAl Baselines.
[Online]. Available: https://github.com/openai/baselines

H. Djigal, J. Feng, J. Lu, and J. Ge, “IPPTS: An efficient algorithm
for scientific workflow scheduling in heterogeneous computing sys-
tems,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 5, pp. 1057-1071,
May 2021.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1263-1272.

A. A. Goksoy, A. Krishnakumar, M. S. Hassan, A. J. Farcas, A. Akoglu,
R. Marculescu, and U. Y. Ogras, “DAS: Dynamic adaptive scheduling for
energy-efficient heterogeneous SoCs,” IEEE Embedded Syst. Lett., vol. 14,
no. 1, pp. 51-54, Mar. 2022.

J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu, and
C. Guo, “Tiresias: A GPU cluster manager for distributed deep learning,”
in Proc. 16th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2019,
pp. 485-500.

J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48-60, Jan. 2019.

C. M. Holt, “Novel learning-based task schedulers for domain-specific
SoCs,” Ph.D. thesis, Dept. Elect. Comput. Eng., Arizona State Univ.,
Tempe, AZ, USA, 2020.

Z.Hu, J. Tu, and B. Li, “Spear: Optimized dependency-aware task schedul-
ing with deep reinforcement learning,” in Proc. IEEE 39th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 2037-2046.

B. Keshanchi, A. Souri, and N. Navimipour, “An improved genetic algo-
rithm for task scheduling in the cloud environments using the priority
queues: Formal verification, simulation, and statistical testing,” J. Syst.
Softw., vol. 124, pp. 1-21, Feb. 2017.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

V. Konda and J. Tsitsiklis, ““Actor-critic algorithms,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 12, 1999, pp. 1-7.

A. N. Krishnakumar, “Design run-time resource management of domain-
specific systems on chip (DSSoCs),” Ph.D. thesis, Dept. Elect. Comput.
Eng., Univ. Wisconsin-Madison, Madison, WI, USA, 2022.

H.-L. Kung, S.-J. Yang, and K.-C. Huang, “An improved Monte Carlo tree
search approach to workflow scheduling,” Connection Sci., vol. 34, no. 1,
pp. 1221-1251, Dec. 2022.

T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “AlloX: Compute allocation
in hybrid clusters,” in Proc. 15th Eur. Conf. Comput. Syst., Apr. 2020,
pp. 1-16.

J. Mack, S. E. Arda, U. Y. Ogras, and A. Akoglu, “Performant, multi-
objective scheduling of highly interleaved task graphs on heterogeneous
system on chip devices,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 9,
pp. 2148-2162, Sep. 2022.

J. Mack, S. Hassan, N. Kumbhare, M. C. Gonzalez, and A. Akoglu,
“CEDR—A compiler-integrated, extensible DSSoC runtime,” ACM
Trans. Embedded Comput. Syst. (TECS), 2022, pp. 1-10.

98063



IEEE Access

T. T. Sung, B. Ryu: Deep Reinforcement Learning for System-on-Chip: Myths and Realities

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman, A. Akella,
A. Phanishayee, and S. Chawla, “Themis: Fair and efficient GPU cluster
scheduling,” in Proc. 17th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2020, pp. 289-304.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. 15th ACM Workshop Hot
Topics Netw., Nov. 2016, pp. 50-56.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 270-288.

M. Mettler, M. Rapp, H. Khdr, D. Mueller-Gritschneder, J. Henkel, and
U. Schlichtmann, “An FPGA-based approach to evaluate thermal and
resource management strategies of many-core processors,” ACM Trans.
Archit. Code Optim., vol. 19, no. 3, pp. 1-24, Sep. 2022.

K. Moazzemi, “Runtime resource management of emerging applications
in heterogeneous architectures,” Ph.D. thesis, Dept. Comput. Eng., Univ.
California, Irvine, CA, USA, 2020.

D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, ‘“‘Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in Proc. 14th USENIX Symp. Operating Syst. Design
Implement. (OSDI), 2020, pp. 481-498.

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc.
ICML, vol. 99, Jun. 1999, pp. 278-287.

T. T. Sung, V. Chockalingam, A. Yahja, and B. Ryu, “Neural heteroge-
neous scheduler,” 2019, arXiv:1906.03724.

T. T. Sung, J. Ha, J. Kim, A. Yahja, C.-B. Sohn, and B. Ryu, “DeepSoCS:
A neural scheduler for heterogeneous system-on-chip (SoC) resource
scheduling,” Electronics, vol. 9, no. 6, p. 936, Jun. 2020.

T. T. Sung and B. Ryu, “A scalable and reproducible system-on-chip
simulation for reinforcement learning,” 2021, arXiv:2104.13187.

T. T. Sung and B. Ryu, “SoCRATES: System-on-chip resource adaptive
scheduling using deep reinforcement learning,” in Proc. 20th IEEE Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2021, pp. 496-501.

R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 12, 1999, pp. 1-7.

H. Tian, Y. Zheng, and W. Wang, “Characterizing and synthesizing task
dependencies of data-parallel jobs in Alibaba cloud,” in Proc. ACM Symp.
Cloud Comput., Nov. 2019, pp. 139-151.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for
heterogeneous processors,” in Proc. 8th Heterogeneous Comput. Work-
shop (HCW), 1999, pp. 3-14.

A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “TetriSched: Global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters,” in Proc. 11th Eur. Conf. Comput.
Syst., Apr. 2016, pp. 1-16.

98064

(46]

[47]

(48]

[49]

(50]

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1-11.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache Hadoop
YARN: Yet another resource negotiator,” in Proc. 4th Annu. Symp. Cloud
Comput., Oct. 2013, pp. 1-16.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Kiittler, J. Agapiou, J. Schrittwieser, and
J. Quan, “StarCraft II: A new challenge for reinforcement learning,” 2017,
arXiv:1708.04782.

W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,
P. Patel, X. Peng, H. Zhao, and Q. Zhang, “Gandiva: Introspective cluster
scheduling for deep learning,” in Proc. 13th USENIX Symp. Operating
Syst. Design Implement. (OSDI), 2018, pp. 595-610.

Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG structure learning
with graph neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 7154-7163.

TEGG TAEKYONG SUNG received the Ph.D.
degree from Kwangwoon University, South Korea.
He has worked as a Research Assistant at
Kwangwoon University and a Visiting Researcher
with the Electronics and Telecommunications
Research Institute, South Korea. He is currently an
Expert in the field of deep reinforcement learn-
ing with over three years of research and indus-
trial experience. He is also working as a Senior
Research Scientist at EpiSys Science Inc. He has

authored or coauthored more than ten publications. His research interests
include real-world reinforcement learning, machine learning, and graph
neural networks.

BO RYU (Member, IEEE) received the Ph.D.
degree from Columbia University. He is cur-
rently the Founder and the President of EpiSci,
a trusted Al autonomy development company
whose research and development projects are
sponsored by NASA and various the Department
of Defense agencies, including DARPA. Prior to
founding EpiSci, he worked in various techni-
cal positions at the Hughes Research Laborato-
ries, Boeing, the San Diego Research Center, and

Argon ST. He has authored or coauthored more than 50 publications and
holds 15 U.S. patents.

VOLUME 10, 2022



