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ABSTRACT Neural schedulers based on deep reinforcement learning (DRL) have shown considerable
potential for solving real-world resource allocation problems, as they have demonstrated significant per-
formance gain in the domain of cluster computing. In this paper, we investigate the feasibility of neural
schedulers for the domain of System-on-Chip (SoC) resource allocation through extensive experiments and
comparison with non-neural, heuristic schedulers. The key finding is three-fold. First, neural schedulers
designed for cluster computing domain do not work well for SoC due to i) heterogeneity of SoC computing
resources and ii) variable action set caused by randomness in incoming jobs. Second, our novel neural
scheduler technique, Eclectic Interaction Matching (EIM), overcomes the above challenges, thus signifi-
cantly improving the existing neural schedulers. Specifically, we rationalize the underlying reasons behind
the performance gain by the EIM-based neural scheduler. Third, we discover that the ratio of the average
processing elements (PE) switching delay and the average PE computation time significantly impacts the
performance of neural SoC schedulers even with EIM. Consequently, future neural SoC scheduler design
must consider this metric as well as its implementation overhead for practical utility.
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INDEX TERMS Deep reinforcement learning, heuristic scheduler, neural scheduler, resource allocation,
system-on-chip scheduling.

I. INTRODUCTION16

Approaching the limit of Moore’s Law has spurred tremen-17

dous advances in System-on-Chip (SoC) which bestows18

unprecedented gain in computational and energy efficiency19

for a wide range of applications through an integrated archi-20

tecture of general-purpose and specialized processors [19].21

In particular, the domain-specific SoC (DSSoC), a class22

of heterogeneous chip architecture, empowers exploitation23

of distinct characteristics of compute different resources24

(i.e., CPU, GPU, FPGA, accelerator, etc.) for speed max-25

imization and energy efficiency via intelligent resource26

allocation [25], [33], [34]. The primary goal of a DSSoC27

scheduling policy is to optimally assign a variety of hierar-28

chically structured jobs, derived from many-core platforms29

executing streaming applications from wireless communi-30

cations and radar systems, to heterogeneous resources or31

processing elements (PEs). Over the years, researchers have32
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demonstrated effective performance for DSSoC with expert- 33

crafted, heuristic rules [5], [28]. 34

While heuristic schedulers have been dominant in a 35

wide range of domains for resource allocation, recent effort 36

on scheduling algorithm development started undergoing a 37

paradigm shift toward neural approaches as they demon- 38

strated state-of-the-art performance in complex resource 39

management domains [17], [20]. In particular, recent suc- 40

cesses in applying deep reinforcement learning (DRL) for 41

scheduling heterogeneous (cloud) cluster resources [11], [32] 42

have further motivated applying similar DRL approaches for 43

task scheduling onDSSoC, obtaining noticeable performance 44

gains over well-known heuristic schedulers under certain 45

operational conditions [37], [38], [40]. Through extensive 46

experimentation with both DRL and heuristic schedulers 47

under extremely wide ranges of DSSoC scenarios, we present 48

an in-depth comparative analysis between neural schedulers 49

and their heuristic counterparts for the DSSoC domain. The 50

key contribution of our research is that the high performance 51

of DRL schedulers previously observed in both cloud cluster 52
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TABLE 1. Design features of cluster and DSSoC scheduling approaches (DLT: Deep Learning Training).

and DSSoC domains is found to be highly sensitive to the53

ratio of the average PE switching delay and the average54

PE computation time. Specifically, when this ratio is close55

to one, neural schedulers tend to outperform their heuris-56

tic counterparts under various operational scenarios. On the57

other hand, when the ratio is much less than one and subject58

to other operational conditions, the anticipated high perfor-59

mance of neural schedulers does not materialize. We attribute60

this to two major factors: (i) heterogeneity of SoC computing61

resources; (ii) variable action set caused by randomness in62

incoming jobs. When combined, they exacerbate the problem63

of delayed reward because the accumulated rewards are likely64

to disrupt the backpropagation-based optimization method.65

With this finding, we present a realistic avenue for future66

DRL-based resource scheduler design.67

A. RELATED WORK68

Design of high-performance SoC resource schedulers has69

been active for many years [5], [28]. Scheduling algorithms70

are mostly heuristic in nature with specific optimization71

goals. Examples include First Come First Served (FCFS),72

Earliest Task First (ETF) [6], Minimum Execution Time73

(MET) [9], and Hierarchical Earliest First Time (HEFT) [44].74

While both MET and STF schedule tasks to PEs which75

take the shortest amount of execution time, HEFT schedules76

tasks by considering both task computation time and data77

transmission delays. A real-time heterogeneity-aware sched-78

uler HetSched [4] with task- and meta-scheduling compo-79

nents having multiple static DAG-represented jobs as input80

is built for autonomous vehicle applications. A new pruning81

Monte-Carlo Tree Search (MCTS)-based algorithm [26] has 82

been applied for workflow scheduling. It has improved per- 83

formance in makespan over the heuristics, Improved Predict 84

Priority Task Scheduling (IPPTS) [15], and a meta-heuristic 85

Genetic Algorithm approach [22]. However, much of the 86

gain depends on the specific heuristics and the nature of job 87

configurations. 88

Cluster resource management for cloud computing 89

(e.g., YARN [47] or Kubernetes [8]) is another orthogonal 90

approach in resource allocation. It is primarily designed to 91

schedule big-data, time-persistent jobs (i.e., MapReduce [12] 92

or Deep Learning Training (DLT) jobs1). A list of schedul- 93

ing approaches along with their design features is summa- 94

rized in Table 1. Themis [30] and Tiresias [18] allocate 95

tasks from distributed DLT jobs to homogeneous clusters 96

using two-dimensional scheduling algorithm. Gandiva [49] 97

schedules a set of heterogeneous DLT jobs to a fixed set 98

of GPU clusters. It allows preemption on jobs to share 99

overload jobs to available resources’ spaces. AlloX [27] 100

transforms a heterogeneous resources scheduling problem 101

into amin-cost bipartite matching problem in order to provide 102

performance optimization and fairness to users in Kuber- 103

netes. TetriSched [45] estimates job run-time heuristically for 104

placement options. Gavel [35] transforms existing scheduling 105

policies to heterogeneity-aware optimization problems for 106

generalization and improves the diversity of policy objec- 107

tives. Such cluster schedulers enhance run-time performance 108

by exploiting the simulation characteristics. 109

1A neural network represents a job, and each operation, such as matrix
multiplication or nonlinear function, acts as tasks.
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Neural schedulers have begun to surpass hand-crafted110

algorithms and show a significant performance gain in the111

cluster scheduling problem. DeepRM, the first DRL-based112

cluster scheduler reported in the literature, shows significant113

reduction in job slowdown2 over heuristics [31]. In com-114

parison to DeepRM, Decima [32] proposes an end-to-end115

neural scheduler for more realistic cluster environment with116

hierarchical cluster jobs. It extracts hierarchical job informa-117

tion with graph neural networks (GNNs) [16] and decides118

how many resources to execute each task. Decima addresses119

varying action selection caused by the hierarchical jobs using120

placeholder implementation [2], but it considers homoge-121

neous clusters. SCARL [11] aims to schedule jobs to hetero-122

geneous resources by exploiting attentive embedding [46] in123

policy networks. However, SCARL is not able to schedule124

non-hierarchical jobs, which differs from Decima, and is125

not applicable to the realistic environment [32]. Spear [21]126

applies MCTS to plan the task scheduling with a DRL model127

for guidance in the expansion and rollout steps in MCTS.128

Building on the success of neural schedulers for the cluster129

environment as described above, novel neural approaches130

have been proposed for the domain of SoC. Deep Resource131

Management (DRM) [37] is considered the first DRL-based132

SoC scheduler that schedules hierarchical jobs to heteroge-133

neous resources in the scenario with a single synthetic job.134

DeepSoCS [38], adapted from Decima, is proposed for han-135

dling more realistic SoC scenarios where multiple numbers136

of both synthetic and real-world SoC jobs are continuously137

generated. It is a hybrid approach that rearranges the tasks138

using the graph-structured information extracted by GNNs139

andmaps them to resources using a heuristic algorithm. How-140

ever, the performance gain achieved by DeepSoCS depends141

on operational conditions, as it is inherently imitating the142

expert policywith an exhaustive search employed by heuristic143

schedulers. In order to explore the feasibility of an end-to-end144

neural SoC scheduler with the goal of achieving significant145

performance gain over heuristic schedulers, the authors pro-146

posed SoCRATES [40] with a novel technique of Eclectic147

Interaction Matching (EIM). EIM remedies the concurrency148

problem in receiving observation and reward gains by match-149

ing the time-varying interaction and simulation time steps.150

Consequently, SoCRATES achieves considerable enhance-151

ment in performance over prior neural schedulers [37], [38].152

In this paper, we present key insights into how such per-153

formance gain is achieved by SoCRATES through extensive154

comparative experimentation.155

B. MOTIVATION156

Despite significant performance gains demonstrated by neu-157

ral schedulers for cluster computing management, they158

generally suffer from limited extensibility. For example,159

prior cluster schedulers address non-hierarchical workloads160

[27], [49] and homogeneous resources [31], [32] that cannot161

2This metric represents a relative value of actual job duration and ideal
job duration.

fully exhibit SoC resource allocation. Although a series of 162

research in the cluster application employs heterogeneous 163

machines [27], [30], [45], [49], their complexity is rela- 164

tively simpler than DSSoC. Schedulers in cluster applica- 165

tions allocate jobs to a set of CPUs or GPUs with different 166

performances, whereas schedulers in DSSoC applications 167

map a range of domain-specific jobs to various types of 168

PEs, e.g., CPUs, GPUs, accelerators, memory, each with 169

different performance and supported functionalities. Cluster 170

schedulers decide how many clusters to execute incoming 171

tasks, whereas SoC schedulers map which SoC computing 172

resource to an incoming task. Hence, the scheduler must be 173

aware of unsupported action for an individual task. Hence, 174

directly applying neural schedulers to SoC is non-trivial due 175

to the disparities in the environment properties, such as the 176

structures of jobs/resources and scheduling mechanisms. 177

In contrast, heuristic scheduling algorithms in the domain 178

of SoC steadily show state-of-the-art performance. We dis- 179

covered that their significant performance gains come from 180

rescheduling task assignments with exhaustive searches, such 181

as PE availability checks or gaps between consecutive task 182

assignments (see Section IV-B for more details). However, 183

such rule-based algorithms generally have limited robust per- 184

formance. For instance, heuristic schedulers are vulnerable to 185

system perturbation from external forces in the setting of a 186

single job execution [37]. Based on these robust and signifi- 187

cant performance gains in the domain of cluster computing, 188

we are interested in extending these neural schedulers to SoC. 189

While neural algorithms generally adapt to dynamic system 190

changes and have robust performance [41], subsequent works 191

have motivated and developed in a more complicated and 192

practical scenario with continuous job injection [38], [40]. 193

In this paper, we investigate the challenging standpoints for 194

designing DRL scheduling policy in the domain of SoC. 195

With the recently introduced EIM technique overcoming 196

such challenges, we rationalize the underlying reasons behind 197

the performance improvement in existing neural schedulers 198

by examining PE usages and action designs. Furthermore, 199

we investigate which operation condition impacts the perfor- 200

mance of neural SoC schedulers with EIM. To the end, the 201

questions we want to consider in this paper are the following: 202

• What is the main difference between SoC and other 203

domains? 204

• How does the neural scheduling policy effort change in 205

SoC domain? 206

• Under which operational conditions do neural sched- 207

ulers perform/cannot perform well? 208

• How does EIM technique improve the performance of 209

neural schedulers? 210

• What are the strengths/weaknesses of neural scheduler? 211

II. BACKGROUND AND SYSTEM MODEL 212

A large body of research in scheduling exists for a broad range 213

of domains. Cluster management in datacenters allocates 214

Spark or DLT jobs to a set of CPU and GPU machines. This 215

paper contributes to the domain of heterogeneous DSSoC 216
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FIGURE 1. An illustration of a set of synthetic job and resource profiles.
The diagram on the left depicts a job DAG, where a note represents a task
by its ID and the edge represents data transmission delay by its weights.
The table on the right shows a set of heterogeneous PEs with different
computation time for each task.

and its emulator in the form of high-fidelity Domain-Specific217

SoC Simulator (DS3) [5], [39]. DS3, which supports a218

heterogeneous SoC computing platform Odroid-XU3 [1],219

enables the allocation of a set of communication or radar220

jobs to various types of resources, such as general-purpose221

cores, hardware accelerators, and memory. The ARM het-222

erogeneous big.LITTLE architecture of the cores enables223

performance-oriented and energy-efficiency runs (the big224

cores of 2.1 Ghz Cortex-A15 are performance-oriented, the225

LITTLE cores of 1.5 GHz Cortex-A7 are energy-efficient).226

DS3 integrates system-level design features for hierarchical227

jobs and heterogeneous resources. The job and resource pro-228

files are given as a list specifying properties. The system229

parses them and generates workloads and PEs using the job230

and resource models.231

A. SYSTEM-ON-CHIP SIMULATION232

1) JOB MODEL233

We define a job as a collection of interleaved tasks. Jobs in234

DS3 implement real-world applications of wireless commu-235

nication and radar processing. The tasks represent operations,236

such as waveform generator, Fast Fourier Transform, vector237

multiplication, or decoder [5]. A job structure is in the form238

of a directed acyclic graph (DAG), illustrated in Fig. 1 [44].239

A job is denoted as G = (N ,E), where N is a set of nodes240

and E is a set of edges. Each node ni ∈ N represents a241

heterogeneous task in the job, and each directed edge ei,j ∈ E242

connects node ni to node nj. We interchangeably use the243

term ‘‘task’’ and ‘‘node’’ unless there is confusion. The edge244

encodes task dependency. To be specific, if there exists edge245

ei,j, task nj can start execution only after task ni finishes. Here,246

we call node ni a parent of node nj, and nj a child of ni.247

We define a set of parents of nj (predecessors) by pred(nj) and248

a set of child of ni (successors) by succ(ni). A node may have249

multiple parents or children, and nodes can be simultaneously250

executed. Each edge ei,j has a weight wi,j that represents data251

transmission delay between ni and nj. This delay is added to252

the task duration when the scheduler selects a different PE to 253

task i from task j. The labels with HEAD and TAIL refer to 254

the root parent node and the terminal leaf node, respectively. 255

Assume a job G has v tasks, N = {n1, . . . , nv}, then the 256

job is considered complete when all tasks in N have been 257

completed. Here, n1 is HEAD node and nv is TAIL node. 258

According to the job model aforementioned, multiple jobs 259

are generated. Each job is generated based on the following 260

parameters [44]: 261

1) v: the number of tasks in the directed acyclic graph 262

2) α: the shape parameter of the graph. α controls the 263

width and depth of a graph structure. We sample the 264

average width of each level in a graph from a normal 265

distribution with a mean of
√
v × α. The depth of a 266

graph is equal to the
√
v
α

(see Appendix A for details on 267

job DAG construction). If α � 1.0, a shallow but wide 268

graph is generated; if α � 1.0, a deep but narrow graph 269

is generated. 270

3) ν: the average value of communication delay. The 271

weight of ei,j, representing communication delay, is set 272

to max(1, b|w|c), where w ∼ N (ν, 0). 273

4) CCR: the communication-to-computation ratio. We 274

calculate an average communication cost by the sum 275

of the scheduled PE bandwidth and the weights of 276

edges between the current task and the previous task. 277

An average computation cost is defined in the SoC job 278

profile. If the CCR value in a DAG is high, the job is a 279

communication-intensive workload. Conversely, if the 280

CCR value is low, the job is a computation-intensive 281

workload. 282

5) din: an average value of in-degree of nodes 283

6) dout: an average value of out-degree of nodes 284

2) RESOURCE MODEL 285

Resource profile defines the characteristics of PEs, and each 286

PE is defined with a set of different, fixed supported tasks 287

and operating performance points (OPP). OPP is a utilization 288

set for a tuple of power consumption and task run-time fre- 289

quency. OPP for PE q, for instance, can be defined by a set 290

of voltage-frequency pairs, OPPq = {(V
q
1 , f

q
1 ), . . . , (V

q
O, f

q
O)} 291

where O is the number of operating points. Once the fre- 292

quency parameter is given, the resource model creates the 293

corresponding PE. Since PE running with high frequency, 294

generally, executes tasks faster but consumes more power and 295

energy, a trade-off exists between run-time performance and 296

energy efficiency. Moreover, each PEs has a bandwidth that 297

contribute to the communication delay when the simulator 298

switches over PEs during task execution. 299

3) OBJECTIVE 300

DS3 is heavily shaped by the peculiarities of the SoC domain. 301

DS3 comes with real-world reference applications from 302

wireless communications and radar processing domains. 303

Each supported workload consists of various operations 304

(i.e., tasks), which require a short amount of duration. The 305

run-time overhead of each task includes the task duration and 306
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FIGURE 2. An overview of DS3 workflow. At initialization, a set of
workloads and PEs are generated for given job and resource profiles. The
job generator continuously generates multiple jobs using the set of
workloads and distributes them to the task queues. The scheduler takes
any tasks in the ready queue and maps each task to one of the PEs. If the
PE is idle, it starts task execution. The task dependency graph prescribes
which next task to move onto the ready queue after the completion of its
predecessors.

data transmission delay. The allocation of different processors307

at the same time for task ni and its parent task set {nj} =308

pred(ni) would incur the data transmission delay. Let task309

ni is mapped to PE Pi and its task computation time with310

operating frequency f io by comp(ni|Pi, f io). Then, the overall311

task duration is equated by312

exec(ni) = µ · comp(ni|Pi, f io)+ delay(ni), (1)313

where µ indicates a scaling parameter for extending the314

task execution time. On the right-hand side, the first term is315

task computation time on a PE, and the second term is data316

communication delay, given by:317

delay(ni) = max
nj∈pred(ni)

wi,j
B(Pi,Pj)

, (2)318

where wi,j is the weight of edges between task i and task j,319

and B(Pi,Pj) is the PE bandwidth from Pi to Pj. The self-loop320

bandwidth of the same processors is assumed to be negligible,321

B(Pi,Pi) = 0. Due to the communication delay, frequent322

resource switching leads to an increasing loss in task com-323

pletion time. The objective to optimize, the average latency324

minimization, is given by325

L =

∑
G∈Gcomp

∑
i∈|G| exec(ni)

|Gcomp|
, (3)326

where Gcomp is a set of completed job DAGs, and |G| is the327

number of tasks in the job G.328

Previous work [44] introduced additional evaluation met-329

rics of run-time overhead for a single completed job: Sched-330

ule Length Ratio (SLR) and Speedup. The SLR and Speedup331

metrics are given by332

SLR =
makespan∑

ni∈CPMIN
minpj∈Q{wi,j}

(4)333

Algorithm 1 DS3 Environment
1: Input: job inter-arrival rate scale, clock signal clk, max-

imum simulation length CLK, job model MJ , resource
model MR, job capacity C , job queue Qjob, ready
task queue Qready, job profile job, resource profile
resource,W number of jobs, Q number of PEs

2: Output: average latency L
3: for each episode do
4: clk← 0
5: {Gi}i=1:W ← MJ (job)
6: {Pi}i=1:Q← MR(resource)
7: repeat
8: # Generate jobs
9: if |Qjob| < C then
10: clkinj ∼ Exp(scale)
11: Qjob← G at clkinj
12: end if
13: for each task i in Qready do
14: # Schedule tasks in ready list to PE
15: end for
16: if P is idle then
17: # PE execution
18: start P execution corresponding to the scheduled

tasks
19: end if
20: clk← clk+ 1
21: until clk = CLK
22: Compute L using (3)
23: end for

Speedup =
minpj∈Q

{∑
ni∈v wi,j

}
makespan

, (5) 334

where the denominator of SLRk represents the ideal lower 335

limit time for scheduling for the job DAG. CPMIN is the min- 336

imal critical path of jobDAG, andQ is the number of PEs. The 337

nominator of Speedup represents the overall task computation 338

time when each of the v tasks in a job DAG is scheduled onto 339

the same processor. This indicates the ability of the algorithm 340

to schedule tasks to explore parallel performance. The lower 341

SLR and the higher Speedup, the more optimal scheduling 342

performance. 343

Since this paper seeks to evaluate performance over mul- 344

tiple jobs, we average out SLR and Speedup over the entire 345

completed jobs per simulation length. Let a set of completed 346

jobs by {Gi}
|Gcomp|

i=1 , each of the completed jobs corresponds 347

to the set of generated workloads at DS3 initialization. Since 348

heterogeneous jobs are generated, each job likely has a dif- 349

ferent minimal critical path and parallel performance with the 350

same processors. The average SLR and the average Speedup 351

are given by 352

SLR =

∑|Gcomp|

k=1 SLRk
|Gcomp|

(6) 353
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TABLE 2. A comparison between DS3 and Spark properties. Due to the
differences in applicability, DS3 and Spark have different characteristics
of job and resource. On DS3, a representative real-world profile, WiFi-TX,
is included. Note that the shape parameter controls the diversity in the
number of job types and their average graph levels, α.

Speedup =

∑|Gcomp|

k=1 Speedupk
|Gcomp|

. (7)354

The DS3 workflow is given in Algorithm 1 and Fig. 2.355

After initialization, DS3 continuously generates indefinite356

hierarchical-structured workloads with respect to the job357

model at stochastic job inter-arrival rates. While the number358

of injected workloads is below the job capacity C , the job359

generator injects a mix of multiple instances of the workloads360

in a stream fashion, G = {G1, . . . ,GW }, where W ≤ C .361

The workloads are generated at every clkinj, where clkinj ∼362

Exp(scale), where scale is the mean of job inter-arrival rate.363

A large value of job inter-arrival leads to high frequency in job364

injection. Then, DS3 loads a set of tasks that have no depen-365

dency onto the ready queue, otherwise onto the outstanding366

queue. Each ready task, which is derived dynamically based367

on the prior task scheduling, is ready to be scheduled by368

PEs using a scheduling policy. The task then moves to the369

executable queue, and the corresponding PE, if idle, starts370

executing the task. The tasks are non-preemptive, as DS3371

runs in a non-preemptive setting during task execution. The372

job generator, distributed PEs, and simulation kernel, all of373

which are executed in parallel, share the same clock signal.374

For convenience, we describe a list of key notations and their375

definitions in Table 3.376

B. SIMULATION ANALYSIS377

Elucidating the distinction in simulation behaviors, we com-378

pare DS3 against Spark [32], one of the representative real-379

istic simulations for cluster applications. Both simulations380

support the scheduling of multiple graph-structured jobs, but381

differ greatly in the mechanism of resource allocation in their382

domains. We list the job and resource characteristics after383

normalization in Table 2.384

The scheduling policy in Spark decides on how many385

resource machines to allocate for the ready tasks with respect386

to the given job profile. DS3 scheduling policy, on the other387

hand, decides which PE to execute the ready tasks, and the388

TABLE 3. A list of key notations used in this paper.

task run-time is solely dependent on the selected PE perfor- 389

mance. After task completion, Spark applies a static moving 390

delay, whereas DS3 applies a dynamic data transmission 391

delay. Cluster jobs generally consist of numerous tasks and 392

last for a long time. Spark, for instance, supports 154 types 393

of jobs with approximately 5.8 levels (DAG depth). Alterna- 394

tively, DSSoC jobs are executed in a short range of duration. 395

DS3 provides several types of real-world job profiles, but 396

this paper focuses on one real-world job, WiFi-TX, and one 397

synthetic job. These jobs have 4 and 7 levels, respectively. 398

Endowing with heterogeneous resources, DS3 has 4 PEs 399

on a synthetic profile and 17 PEs on a real-world profile. 400

Each has a different run-time performance for tasks and dif- 401

ferent supported functionalities. In that sense, an individual 402

scheduling task must check whether it can be executed in 403

PE. Regarding CCR, the synthetic profile has a similar range 404

of computation and communication costs. In contrast, the 405

real-world profile is chain-structured and compute-intensive. 406

That being said, the communication time for the synthetic job 407

has at most 22x larger than that for the real-world job, and 408

the task computation time for real-world resources is at most 409

13.4x larger than that for synthetic resources. In practice, 410

we modify the job characteristics using shaping parameters 411

α, µ, and ν to grant more variability. (see Section II-A1 for 412

details on the parameter description). The difference in the 413
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FIGURE 3. The edge density and chain ratio of cluster and SoC workloads.
The results of TPC-DS and TPC-H are reproduced by referring to [43].

mechanisms in two different domains limits the scope of the414

applicability of each scheduling algorithm, and the extent or415

range of run-time is largely different.416

Additional metrics are given here for hierarchical job417

DAGs [43]: (i) The edge density measures the sparsity of job418

DAGs. The density computed by 2E
V (V−1) , where E denotes419

the number of edges, V the number of vertices (tasks), and420

V (V − 1) the possible maximum number of edges for a job421

DAG—the higher density results in denser job DAG with422

more complexity. (ii) The chain ratio measures the prevalence423

of chained tasks. The rate is computed by C
V , whereC denotes424

the number of chained tasks that have an exact one child425

and one parent. Fig. 3 reports that the synthetic job DAG is426

relatively sparse, and SoC jobs have a larger number of chains427

than cluster jobs.428

A major difficulty in designing a DS3 scheduler is that429

the number of available actions (scheduling decisions) varies430

over time due to the mixes of incoming heterogeneous jobs431

and their different task dependency graphs. Fig. 4 illus-432

trates an exemplary scenario where tasks 4, 5, and 6 are433

a child of task 2. Although task 1 and task 3 have been434

completed earlier, per the dependency graph, the next obser-435

vation can be received after completing task 2. Then, the436

immediate reward signals for tasks 1 and 3 are naturally437

delayed. With heterogeneous PEs- and dependency-graph-438

induced variations incurring abrupt dynamic run-time of439

tasks, it becomes an entangled affair in pairing action and440

its reward to compute returns properly. Indeed, this entan-441

glement of the task dependency graph and heterogeneous442

resources leads to the misalignment of the order and timing443

of observation and reward gains. In that sense, the agent444

has a mismatched reward timestamp with the actual sim-445

ulation running clock signal. As a result, the interactions446

become inconsistent, and rewards (returns) will be incorrectly447

assessed and backpropagated.448

Based on the above analysis, DS3 exhibits dynamic, realis-449

tic operational behaviors but differs significantly from other450

domains of resource allocations. Due to task dependencies451

frommixes in various jobs, the scheduler must address a vari-452

able action set (i), shown in the list below. The distributed PE453

executes each scheduled task accordingly (ii). By combining454

(i) and (ii), the agent naturally has delayed rewards likely to455

disrupt DRL optimization. That is the last difficulty, (iii).456

FIGURE 4. An illustration of irregular interactions. T refers to task, and P
refers to processor. Although tasks 1 and 3 have been completed earlier,
the next tasks 4, 5, and 6 are scheduled after task 2 has been completed.
As a result, the reward gains for scheduling decisions for tasks 1 and
3 are truncated due to the task dependencies.

1) Variable action sets: Mixes in various jobs with dif- 457

ferent task dependency graphs cause variable action 458

sets. Since the job queue holds multiple heterogeneous 459

jobs, the agent must recognize multiple job graphs 460

and respond to the fact that action sets are irregu- 461

lar. At every scheduling interaction, the agent receives 462

tasks free of dependencies for the given state. 463

2) Heterogeneous resources: As heterogeneity in both 464

jobs and SoC computing resources, the DS3 sched- 465

uler must consider different task execution times and 466

data transmission delays. The SoC scheduler computes 467

which task to be executed on which PE. Based on 468

the task-PE mappings from a scheduling policy, the 469

average job duration becomes highly unpredictable. 470

3) Delayed rewards: A combination of the varying 471

actions caused by randomness in incoming jobs and 472

heterogeneous resources exacerbates the problem of 473

delayed rewards. The accumulated rewards tend to 474

disrupt DRL optimization. With the previous action 475

commitments and a varying number of observations, 476

the returns must match the interaction steps and the 477

actual simulation clock signal. 478

C. BENCHMARK SCHEDULER 479

1) RULE-BASED SCHEDULER 480

The task duration depends on task computation time on a PE 481

and communication delay computed by the PE bandwidth 482

and data transmission delay in the job DAGs, as described 483

in (1). Shortest Time First (STF) and Minimum Execution 484

Time (MET) [7] iteratively schedule ready tasks to the PE that 485

hasminimal execution time. After the schedules,MET checks 486

whether the PE is busy or idle. If the scheduled PE is busy, 487

then MET revises the task assignment to alternate PE. Het- 488

erogeneous Earliest Finish Time (HEFT) [44] is effective at 489

hierarchical job scheduling. HEFT first sort ready tasks based 490

on the upward rank values, which are importance weights, 491

and greedily map tasks to heterogeneous PEs. An upward 492

rank of a ready task ni can be recursively calculated by 493

ranku(ni) = wi + max
nj∈succ(ni)

(ci,j + ranku(nj)), (8) 494

where succ(ni) is a set of successors of task ni, ci,j is the 495

average communication cost of edge (i, j), and wi is the 496

average computation cost of task ni. Essentially, the upward 497
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rank is the length of the critical path from task ni to the exit498

task. While the original research seeks the critical path [44],499

a jobDAG inDS3 is deemed complete when all of its tasks are500

finished. Therefore, the performance of HEFT relies heavily501

on the heuristic task-PE mapping, which iteratively computes502

the earliest execution finish time (EFT) of a ready task. EFT503

of task ni and processor pk is equated by504

EFT(ni, pk ) = max{avail[k], max
nj∈pred(ni)

(AFT(nj)+ ci,j)}, (9)505

where avail[k] is the earliest time at which the processor pk506

is ready for task execution, pred(ni) is the set of predecessor507

tasks of ni, and AFT(nj) is the actual finish time of the task508

nj. ci,j = wi,j/B(pi, pj), where wi,j is the weight of edge509

(i, j) and B is bandwidth between given processors, is the510

data transmission delay as referred to (2). Essentially, EFT511

algorithm calculates actual delay-aware computation time512

and exhaustively schedules the task to the PE with minimal513

cost. HEFT particularly applies an insertion-based policy that514

seeks whether the scheduled task can be executed prior to the515

previous task assignment. If HEFT finds residual gaps due516

to transmission delays associated with previous scheduling517

decisions, it reschedules the tasks. Recent improvement via518

execution-focused heuristic in dynamic run-time scenarios519

resulted in a run-time variant of HEFT, HEFTRT [28].520

2) NEURAL SCHEDULER521

DeepSoCS [38] first introduced in the DSSoC with the real-522

istic setting. It sorts tasks using the topological knowledge523

extracted by graph neural networks andmaps each task to PEs524

using exhaustive search, EFT algorithm [44], accordingly.525

DeepSoCS shows a promising result in the SoC application526

by exploiting the insertion policy and imitating the expert527

policy, HEFT. However, mapping the tasks to PEs crucially528

impacts the performance rather than sorting the tasks in DS3529

due to counting job completion after all tasks are finished.530

SCARL [11] is designed for scheduling a single-level job531

input to heterogeneous machines in a pre-defined number of532

injecting jobs. SCARL employs attentive embedding [46] to533

share representation from the job and resource embedding534

and allocate each job to the available machine. The scheduler535

conducted experiments in the extended version of the simple536

cluster simulation [31].537

III. PROPOSED METHOD538

The critical challenges for designing a DRL scheduler in539

DS3 are that the scheduler requires to i) adaptively allocate a540

varying number of tasks to heterogeneous PEs by considering541

system dynamics and data transmission delays, and ii) cor-542

rectly align task returns to scheduling actions according to543

respective time-varying agent experiences. An overall sys-544

tematic workflow of DS3 with scheduling policies is depicted545

in Fig. 5. After the tasks enter the ready queue, the scheduler546

receives an observation and maps each task to corresponding547

PEs. For the following subsections, we provide the state,548

action, and reward statements tailored to DS3. As the set of549

actions varies in order and time, we provide cases on how 550

to design actions. Also, we delineate a straightforward and 551

effective EIM technique and how this technique addresses the 552

alignment of return. 553

A. AGENT DESCRIPTION 554

Applying RL to sequential decision-making problems is natu- 555

ral, as it collects experiences via interactionswith the environ- 556

ment. In general, conventional RL is formalized by Markov 557

Decision Processes (MDP), which is consisted of a 5-tuple 558

〈S,A,R,P, γ 〉 [41]. Here, S ∈ Rd is the state space,A ∈ Rn
559

is the action space, and R ∈ R is the reward signal that is 560

generally defined over states or state-action pairs. P : S × 561

A → S is a matrix representing transition probabilities to 562

next states given a state and an action. γ ∈ [0, 1] is the dis- 563

count factor determining how much to care about rewards in 564

maximizing immediate reward myopically or weighing more 565

on future rewards. RL aims to discover an optimal policy π 566

that maximizes the expected cumulative (discounted) rewards 567

or (discounted) returns. At every interaction, the RL agent 568

samples a (discrete) action from its policy, which is the prob- 569

ability distribution of actions given a state, at ∼ π (st ). The 570

agent then computes the return with E[
∑T

t=0 γ
t−1R(st , at )], 571

where t is the interaction time step. In this paper, we assume 572

a finite state, finite action, and finite-horizon problem. 573

1) STATE 574

The state representation is designed to capture information of 575

simulation dynamics. Considering the SoC domain-specific 576

knowledge, we select the attributes of the overlapping 577

tasks/jobs and resource information. The observation features 578

at every interaction are 579

Concat((PGn ,Stat
G
n ,TWTGn , |pred

G
n |)

v,W
n=0,G=0, 580

(DepG, JWTG)WG=0,Nchild), (10) 581

where n is a task in every job G, v is the number of tasks in 582

job G, and W is the number of job DAGs in job queue. Each 583

of the observation features is described as follows. 584

• PGn , the assigned PE ID. 585

• StatGn , one-hot embedded task status. Status is classified 586

by one of the labels from ready, running, or outstanding. 587

• TWTGn , the relative task waiting time from the ready 588

status to the current time. 589

• |predGn |, the number of remaining predecessors. 590

• DepG, the number of hops (levels) for the remaining 591

tasks as referred to task dependency graph. 592

• JWTG, the relative job waiting time from injected to the 593

system to the execution time. 594

• Nchild, the number of all awaiting child tasks in the 595

outstanding and ready statuses. 596

Time in observation features refers to the actual clock signal 597

in an SoC simulation. Based on the choices of neural archi- 598

tecture designs, state representation includes graph embed- 599

dings that capture topological information using graph neural 600

networks [11], [32], [38]. 601

VOLUME 10, 2022 98055



T. T. Sung, B. Ryu: Deep Reinforcement Learning for System-on-Chip: Myths and Realities

FIGURE 5. The architecture of neural schedulers applied to DS3 simulator. Schedulers receive N tasks in the ready queue and map each task to
SoC computing resources. Due to the varying number of tasks, scheduling policies feed each task iteratively. SoCRATES applies Eclectic Interaction
Matching to post-process the return (bottom-left). DeepSoCS returns sorted tasks and uses the EFT algorithm to map them to resources
(bottom-right).

2) ACTION602

At every task assignment, shown in the top-middle stage603

from Fig. 2, the agent performs a scheduling decision on604

an individual task that is free from dependency. Since the605

number of ready tasks varies by the previous scheduling606

decisions following their dependencies, the feasible action607

set varies. Let the ready tasks by at ∈ Tready, where Tready608

is a set of ready tasks. For every task {ai}
|Tready|
i=1 , an action609

i is sampled from the policy distribution with parameter θ ,610

ai ∼ πθ (a|s), which can be represented by multinomial611

distribution, πθ (a|s)
d
= Multinomial(p,m). Here, p ∈ R1×Q

612

is the probabilities of each PEs, Q is the number of PEs, and613

m ∈ R1×Q is a masking vector to filter out PEs not supporting614

the task.615

One approach is to consider a set of actions as a group616

action. The group action at RL interaction time step t can617

be represented by ai,t ∼ πθ (st ), where the set of actions are618

sampled from the same probabilities with respect to policy619

distribution. In practice, we define the size of the action620

vector to a large enough number and apply zero-padding621

whenever the number of ready tasks is less than that [48].622

An alternative approach is to treat each ready task as an623

individual action. In lieu of the group action, the agent pulls624

out each for a PE selection with respect to different policy625

distribution iteratively, ai,t ∼ πθ,(i)(st ). In this case, each 626

action is sampled from different probabilities with respect to 627

policy distribution. 628

3) REWARD 629

DS3 schedulers aim to minimize average latency over simu- 630

lation length. As described in (3), the number of completion 631

jobs is largely dependent on the latency. While the negative 632

job duration reward is an adequate reward metric in a cluster 633

environment [32], this is not effective for latency. Minimizing 634

the elapsed time of the completed jobs is a local optimiza- 635

tion, while increasing the number of completed jobs is a 636

global optimization to entail latency minimization in overall. 637

Moreover, maximizing the number of tasks is not adequate 638

optimization because leaving one task out of a job did not 639

contribute to the job completion.We state the reward function 640

as follows. 641

R(clk) = C1 · |Ĝcomp| + C2, (11) 642

where |Ĝcomp| is the number of newly completed jobs at 643

clk, C1 and C2 are the weights of job completion bonus 644

and penalty for clock signal, respectively. The second term 645

on the right-hand side (C2) represents a penalty and acts as 646

continuous reward feedback on every running clock signal. 647
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In general, C2 is a negative value that encourages the agent to648

complete jobs quickly.C1 is a positive value that is likely to be649

higher than previously accumulated penalties. It is non-trivial650

to verify the relationship between the number of completed651

jobs and accumulated penalties due to the combinatorics652

in the task-resource mapping and the combined effect on653

workload characteristics and stochastic job injection rate. The654

values of +50 for C1 and −0.5 for C2 were chosen empiri-655

cally for our study, which has shown effective performance656

gain over various workload scenarios. Note that this reward657

function is computed per clock signal to enable the EIM658

technique, which is discussed in the following section. For the659

standard RL approach, the reward is computed per interaction660

step t instead of clock signal clk.661

B. ECLECTIC INTERACTION MATCHING662

Conventional RL environments formalized in standard MDP663

assumption return the next observation and action conse-664

quences right after the previous action has been completed.665

However, as introduced in the example case in Fig. 4, the666

action in DS3 is performed with the ready tasks, and it is667

highly not regularly performed due to the variability in task668

dependency from amix of incoming jobs. As a result, the next669

observation is not immediately generated after executing the670

previous scheduled task. Moreover, treating a reward and the671

next observation at the same time leads to incorrect reward672

propagation, because the scheduler assigns multiple tasks at673

the same time, and each of the scheduled tasks readily be674

completed at different time due to the different performance675

of heterogeneous PEs. In that sense, the task dependencies676

and different task duration inherently cause delayed rewards,677

and this phenomenon leads to incorrect reward propagation678

in the optimization updates. Therefore, the scheduling agent679

must handle a varying number of action sets and the mis-680

matches between the interaction and the action effects during681

the action decision stage, for which we address right below.682

A standard RL experience comes down to a sequence of683

〈s, a, r, s′〉. We first decouple the receiving reward and next684

state to have i) a sequence of {si, ai}Ti=1, where T is the last685

interaction step, and ii) a list of rewards collected upon the686

simulation clock signal {rclk}CLKclk=1 = {R(clk)}
CLK
clk=1, where687

R(clk) is a reward function described in (11). As discussed688

in Section II-B, an amount of interactions T and entire clock689

signal CLK are not generally matched due to the different690

task dependencies in a mix of hierarchical jobs and perfor-691

mances in heterogeneous PEs. We compute the immediate692

reward per clock signal independent of the interaction step.693

Additionally, we append the ‘start’ flag to the state-action694

tuple and stored in the buffer. While traversing the simu-695

lation, at the completion of any scheduled task, we store696

the ‘complete’ flag and completed clock signal ω in the697

buffer. Hence, the experiences in the buffer is described as698

{st , {a(n,t)}n
′

n=1, {ω(n,t)}
n′
n=1}

T
t=1, where n′ is the number of699

ready tasks at interaction step t .700

Fig. 6 showcases an exemplary experience of schedul-701

ing three ready tasks and return computations using two702

Algorithm 2 SoCRATES Scheduler
1: Input: clock signal clk, job queue J , ready task queue

Tready
2: for each episode do
3: state-action buffer BSA← ∅

4: clock buffer Bclk← ∅

5: reward buffer BR← ∅
6: for each task i in Tready do
7: Construct state st
8: ai,t ∼ πθ,(i)(st )
9: Assign ai,t to PE for task i

10: BSA← (st , ai,t )
11: end for
12: if task i complete then
13: Bclk← (i, ω)
14: end if
15: BR← rclk
16: end for
17: # Update the agent model
18: θ ← θ + ηγ t∇θLSoC

t (θ )

different strategies. On the upper-left diagram, an agent 703

receives an observation and sequentially selects an action. 704

The state, action, and task starting/completing clock sig- 705

nal are marked green. Next, we compute returns based 706

on the accumulated rewards. In the standard approach 707

performing the Monte-Carlo return with the accumulated 708

rewards [42], partial reward sequences that overlap ongoing 709

tasks and subsequent observation are not counted; the miss- 710

ing sequences incur incorrect return matching and instability 711

in training. 712

The EIM technique instead aligns Monte-Carlo returns 713

with the committed actions spanning individual task dura- 714

tion, referred to the ‘start’ and ‘end’ task signals. The return 715

for each action reflects the length of task duration, and 716

each action correctly matches outcomes without any dis- 717

carded information. Moreover, task flags and actual clock 718

signals allow the agent to sequentially select actions within 719

a set of varying actions. EIM technique thus enables the 720

agent to receive a correct form of state-action-return triplets, 721

regardless of varying action sets. EIM is a straightforward 722

post-process that is proven effective in training an agent when 723

the agent interaction and simulation clock signal is incon- 724

sistent. The bottom diagram of Fig. 6 depicts the task and 725

action with the return computation. The x-axis denotes the 726

simulation clock signal, and the y-axis is the RL interaction 727

time step. Partitions of second and third task duration in the 728

standard approach are discarded for return assignment. EIM, 729

by contrast, properly pairs the state-action tuple with returns 730

by aligning returns to task assignments. 731

In training, we use the Actor-Critic algorithm [24]. We use 732

shared neural networks on both actor and critic and update 733

parameters with REINFORCE [42]. While the actor network 734

selects actions with respect to the policy distribution, πθ , 735
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FIGURE 6. An experience with different strategies. Top figure depicts the experiences and rearranged state-action-return sequential
triplets after processing different strategies: standard and EIM. EIM preserves the integrity of task execution for return calculation via
accounting for returns spanning task duration. Bottom figure describes three tasks coming with concurrency and inconsistent interaction
due to task dependency and heterogeneous resources. Two orthogonal axes show interaction time step and actual simulation clock
signal. For standard strategy, delayed consequences are discarded, as depicted by shaded regions.

the critic network estimates the value using the value func-736

tion, V̂ πθ . At the end of the episode, EIM post-processes the737

expected returns as described in (12):738

Ĝ(st , ω) =
ω∑

clk=0

γ clkrclk+1. (12)739

The actor loss is equated by740

LACT
t (θ ) = −

T∑
t=0

logπθ (at |st )
[
Ĝ(st , ω)− V̂ πθ (st )

]
, (13)741

and the critic loss is computed by the standard mean squared742

loss,743

LCRI
t (θ ) =

1
2

(
Ĝ(st , ω)− V̂ πθ (st )

)2
. (14)744

The overall loss is given as:745

LSoC
t (θ ) = LACT

t (θ )+ LCRI
t (θ )+ ξH(st ), (15)746

where the last term on the right-hand side is the entropy747

regularization, H(st ) = Eπθ [logπθ (st )], with its coefficient748

ξ introduced for exploration. Pseudocode for the proposed749

algorithm is given in Algorithm 2.750

IV. EVALUATION751

This section demonstrates the feasibility of neural schedulers752

in a high-fidelity SoC simulation, DS3. We present evalu-753

ations in three ways: (a) we revisit rule-based schedulers754

and observe their benefits on performance, (b) we verify the755

efficacy of EIM technique on neural schedulers by investi-756

gating PE usage with various reward functions and different757

TABLE 4. A table of hyperparameters used for training neural schedulers.

action designs, and (c) we empirically validate that neu- 758

ral schedulers can have competitive and generalized perfor- 759

mance on run-time overhead in a series of experiments where 760

job DAG topology and PE performance are varied. Specif- 761

ically, we examine in which operational conditions existing 762

neural schedulers with EIM have significant performance 763

gains. 764

A. EXPERIMENTAL SETUP 765

Table 4 describes a list of training parameters. We use 766

Adam optimizer [23] and clip the gradients to avoid gra- 767

dient explosion. To engender more interactions and a more 768

dynamic environment, we randomly inject jobs with a set 769

of 200 workloads. As we empirically discovered that the 770
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job DAG topologies of synthetic or real-world profiles are771

structured with α = 0.8, we synthesize job structures with772

α = 0.8 based on the given job profile. The job inter-arrival773

rate (scale) is set to 25; the system stochastically injects a774

job at every 25 clock signals on average. At every episode,775

the simulation executes until 10,000 clock signals. To reduce776

the training and evaluation time, we conduct all experiments777

with the initial condition of quasi steady state, that is, each778

experiment begins with all jobs already stacked in the job779

queue [38]. All evaluations have been conducted by 20 trials780

with different random seeds.781

B. REVISITING RULE-BASED SCHEDULERS782

Rule-based algorithms have continue to demonstrate state-783

of-the-art performance in SoC run-time scheduling [5], [28].784

In order to establish a baseline for comparative study, first we785

extensively investigate the run-time performance of existing786

heuristic schedulers. As described in Section II-C1, the main787

discrepancy between STF and MET is that MET reschedules788

the scheduling assignment by checking whether the selected789

PE is busy or idle. Likewise, HEFTRT iteratively computes790

the actual run-time of given tasks using computation time791

and data transmission delay. It then applies an insertion pol-792

icy, which exhaustively searches for a possible empty slot793

between each task assignment.794

The top plot in Fig. 8 shows an overall run-time perfor-795

mance of different heuristic schedulers using synthetic (Syn)796

and real-world (RW) profiles. The x-axis indicates CCR,797

and the y-axis indicates the average latency. The jobs798

are communicative-intensive, if CCR � 1.0, and are799

computation-intensive, if CCR � 1.0. For synthetic profiles800

structured with a similar range of CCR, STF and MET have801

comparable performance and surpass HEFTRT. On the other802

hand, MET and HEFTRT significantly improve performance803

for real-world profiles, where jobs are computation-intensive,804

by checking the availabilities in PEs and exhaustively search-805

ing the empty slot between task assignments. Particularly,806

when increasing CCR on real-world profiles, MET and STF807

show similar performance and surpass HEFTRT. We observe808

that the increasing gap between computation time and com-809

munication delay leads to large variances in the distribution810

of task run-time. The high variances in profile statistics result811

in more chances to improve the performance by rescheduling812

task assignments.813

The bottom plot in Fig. 8 shows an experimental result for814

real-world profile using two types of HEFTRT, with and with-815

out insertion policy. The insertion policy effectively seeks816

better placements due to the divergent distribution of task817

computation time. Hence, the rescheduling task assignment818

in the heuristic schedulers instrumentally improves run-time819

performance. In that sense, rescheduling task assignments820

can largely improve performance, and HEFTRT can show821

almost optimal performance within a myopic scope by its822

exhaustive search when the variations in task run-time are823

large.824

C. PERFORMANCE COMPARISON 825

This section describes our extensive evaluation of the perfor- 826

mance of existing schedulers specifically designed for hetero- 827

geneous resources in the SoC domain. We compare two types 828

of representative scheduling algorithms: i) SoCRATES [40], 829

DeepSoCS [38], and SCARL [11] for neural, and ii) STF, 830

MET [7], and HEFTRT [28], [44] for heuristics. Since 831

SCARL does not support hierarchical workloads, we modi- 832

fied SCARL as follows: (1) State: We take the same job rep- 833

resentation with the SoCRATES. We select PE performance, 834

types of PE, capacity, available time to execute tasks, task 835

remaining execution time, idle rate, and normalized values 836

of PE run-time and expected total task time for features of 837

PE representation. (2) Action: Original SCARL selects both 838

workload and resource. Since SCARL does not support task 839

selections for hierarchical workloads, the action maps the 840

selected resource to the task in sequence. (3) Reward: We 841

use the same reward function of job completion, described 842

as (11). At the update stage, we compute the returns with the 843

collected rewards after post-processing with EIM. 844

Throughout the evaluations, we primarily concentrate on 845

average latency, which indicates the average run-time per- 846

formance. We observe how the schedulers behave in a wide 847

range of experiments by varying the types and structures 848

of the jobs, transmission delay, and performance in het- 849

erogeneous PEs. Fig. 7 reports the run-time performance 850

using a synthetic workload. The right and left plots depict 851

the experimental results after varying job structures and 852

PE performance. For the former case, we control the job 853

structure parameter α while holding the parameter of PE 854

performance µ, and for the latter case, vice versa. Large 855

α generates shallow but wide job graphs, while small α 856

generates deep but narrow job graphs. All evaluations are 857

conducted with the highest job inter-arrival rate (the smallest 858

scale value), leading to a high frequency of job injection. 859

From the holistic viewpoint, the trends in SLR and Speedup 860

follow the curve of the average latency. Among all other 861

schedulers, we can observe that SoCRATES has surpassed 862

under a wide range of experiment settings. Since the neural 863

schedulers have been evaluated using a single trained model, 864

SoCRATES has generalized and competitive performance 865

in various scenarios in job structures and PE performances. 866

As described in Section IV-B, CCR for the synthetic workload 867

closely reaches 1.0, meaning that the task computation time 868

and data transmission delay lie in a similar range. As a result, 869

the task ordering in heuristics did not impact much, and their 870

performances fell behind the SoCRATES. When the number 871

of tasks was varied, SCARL’s attentive embedding of tasks 872

and resources was unable to take advantages of attentive 873

representation and even further deteriorates the overall run- 874

time performance. As a result, SCARL shows comparable 875

performance to random policy. 876

Synthetic and real-world profiles differ in the number of 877

tasks and resources, job DAG topology, and supported func- 878

tionalities on individual resources. Table 2 indicates that the 879

real-world profile has a much higher task computation time 880
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FIGURE 7. Performances evaluation on neural and non-neural schedulers with various job structures and PE performances using synthetic
profiles. The left and right figures show run-time performance on varying topologies in job DAGs and PE performances, respectively.

FIGURE 8. An experimental analysis of heuristic schedulers. The top
figure compares run-time performance with different data transmission
delays. The cross and triangle marks depict fixed job profiles from
synthetic and real-world workloads. We report the results with a solid
line for real-world (RW) and a dotted line for synthetic (Syn) workloads
for the increase in data transmission delay compared to task
computation time. Both lines are plotted by varying the job structure with
α = 0.8. The bottom figure shows the effectiveness of insertion policy in
HEFTRT scheduler using violin chart. An insertion policy significantly
improves performance for average latency (bottom-left) and increases
the number of completed jobs (bottom-right).

cost than the data transmission delay. Hence, the actual task881

run-time is more varied, and rescheduling task assignments882

from heuristic schedulers can largely improve the run-time883

performance. As a result, SCARL significantly improves884

performance, and HEFTRT shows the most optimal run-time885

behavior in the real-world profile, as shown in Fig. 9.886

We observe that SoCRATES surpassed other schedulers in887

the synthetic profile, but it was limited in the real-world888

profile. Although EIM remedies fundamental difficulties in889

DS3 and improves SoCRATES performance, it cannot reduce890

the performance gap for the optimal task scheduling in a891

myopic range using an exhaustive search. We hypothesize 892

that the characteristics of the real-world profile, such as 893

various availabilities of task executions in resources, invokes 894

cohesive challenges to designing a DRL scheduler. Addition- 895

ally, a large number of tasks leads to increased complexity 896

in task dependency composition and large variance because 897

completing all tasks counts as job completion. Hence, the 898

end-to-end neural approach could not surpass HEFTRT when 899

the task duration has high variance and computing resources 900

cannot compute all tasks. Although SoCRATES shows lim- 901

ited performance in the real-world profile, DeepSoCS shows 902

comparable performance to HEFTRT by imitating experi- 903

ences from the expert algorithm. 904

In conclusion, Fig. 10 demonstrates the overall evalu- 905

ation of neural and non-neural schedulers using synthetic 906

and real-world profiles with various job DAG topology by 907

controlling α. The left figure shows that SoCRATES has 908

largely improved behavior when the computation time and 909

communication delay lie in a similar range. The right figure 910

shows that DeepSoCS and HEFTRT shows the most opti- 911

mistic performance when the composition of task duration 912

has a large variance. Thus, if we adaptively choose a neural 913

scheduler between EIM-based policy and imitated expert pol- 914

icy depending on different scenarios, the neural SoC sched- 915

ulers can obtain an improved performance over other neural 916

and non-neural schedulers. 917

D. ANATOMY OF SOCRATES 918

SoCRATES is the fully differential decision-making algo- 919

rithm [40]. The crucial component in SoCRATES is EIM 920

technique that alleviates both delayed rewards and variable 921

action selection, caused by hierarchical job graphs, mixes 922

of different jobs, and heterogeneous computing resources. 923

Although the recently introduced EIM technique overcoming 924

such challenges, it lacks the validation of the efficacy of 925

EIM. In this section, we rationalize the underlying reasons 926

behind the performance improvement of EIM by examining 927

PE usages and action designs. 928

1) ANALYSIS OF ECLECTIC INTERACTION MATCHING 929

First, we examine how EIM affects the scheduling policy 930

decisions with the PE selection behavior. The top plot in 931
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FIGURE 9. Performances evaluation on neural and non-neural schedulers with various job structures and PE performances using real-world
profiles. The left and right figures show run-time performance on varying topologies in job DAGs and PE performances, respectively.

FIGURE 10. An overall result of average latency with various job DAG
topology by controlling α. The left plot shows the synthetic profile, and
the right shows the real-world profile.

Fig. 11 shows the counts on each PE execution and the total932

amount of time for PE in active and blocking time. Active933

time represents the amount of time in PE execution, and934

blocking time represents the duration when a PE is busy while935

the assigned tasks are ready. The simulation clock signal936

measures each time. Intuitively, optimized performance in937

PE usage can be achieved when active time increases but938

blocking time decreases. SoCRATES with EIM technique,939

in effect, utilizes a greater number of PEs and achieves higher940

resource active time than that with other policies. Its high941

blocking time derives from the fact that the policy weights942

encourage achieving long-term returns while blocking the943

cost of immediate returns. The same policy without EIM944

technique also has similar values of active and blocking times.945

However, its low number of PE counts leads to poor PE uti-946

lization and latency behavior. MET also uses a large quantity947

of PEs, but its low active time in PEs invokes additional948

bottlenecks in PE usage. Random and SCARL policies show949

high value in active time. However, their absolute number950

of PE counts is much lower. As a result, they have poor951

performance compared to other schedulers.952

Next, as shown in the bottom plot, we train SoCRATES953

using various types of reward functions with and without954

the EIM technique for generalization. We train the policy955

using synthetic workload, and each two types of dense and956

sparse reward functions are used (see Appendix B for more957

details). The solid line represents the average values, and958

the shaded region bounds the maximum and minimum val-959

ues among 8 runs in random seeds. The standard strategy960

seemingly cannot train the model by observing its steady961

and straight performance curve. On the other hand, the EIM962

FIGURE 11. Experiments for the analysis of EIM technique. Top plot
shows PE selection and active/block time for PEs in different scheduling
algorithms. Bottom plot compares latency performance using EIM and
standard strategies with various sparse and dense reward functions. All
experiments are conducted with synthetic workloads with a fixed job
topology.

strategy enables to show learning curve. The EIM iteratively 963

matches each return in actions with respective task duration 964

at the cost of storing extra flags on task start and completion. 965

This additional post-processing is very cheap in operations 966

and achieves substantially better latency performance in any 967

kind of reward function than the standard strategy. From the 968

reward function perspective, the sparse reward apparently 969

exacerbates unstable latency performance due to its limited 970

feedback for an RL agent. Hence, it is commonly modified to 971

dense forms using the shaping technique [36]. 972

2) ACTION DESIGN 973

To design a DRL agent in an environment with varying 974

actions, one can set an action space to the number of maximal 975

actions and mask out every varying action [48]. In the case 976

of group actions, we distribute the returns, computed by 977

the longest task duration, to the set of actions. It turns out, 978
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FIGURE 12. A set of performance metrics for selecting a group action
and independent actions in the training phase. Top-left: total rewards,
top-right: returns, bottom-left: explained variance [13], and bottom-right:
average job execution time (µs).

however, that the approach to group actions is inadequate due979

to the rapid convergence of gradients. The action probabili-980

ties quickly devolve to the local minima, and the losses in981

policy and value increase exponentially. Also, a set of group982

actions and their respective returns cannot be distributed to983

individual actions, since each task has a respective reward and984

estimated return or value in the task duration. On the other985

hand, individual action selection with the EIM technique con-986

verts a varying action problem into a conventional sequential987

decision-making problem, with no need to be aware of invalid988

actions from the agent perspective. Fig. 12 shows that the989

policy with independent actions produces much higher values990

in the expected returns by 270% and has improved run-time991

performance by 30%. We applied the EIM technique to both992

approaches. Additionally, we report the explained variance,993

EV, denoted by (16).994

EV(st ) =
1− V[G(st )− Ĝ(st )]

V[G(st )]
, (16)995

where G(st ) is empirical return of state st and Ĝ(st ) is996

predicted return of state st . EV measures the difference997

between the expected return and the predicted return [14].998

By observing the decreases in explained variance for the999

group action, we empirically validate that group action does1000

not fully understand the environment while reconciling the1001

experiences.1002

V. CONCLUSION AND FUTURE WORK1003

In this paper, we unveil myths and realities of DRL-based1004

SoC job/task schedulers. We identify key practical chal-1005

lenges in designing high-fidelity neural SoC schedulers:1006

(1) varying action sets, (2) high degree of heterogeneity in1007

incoming jobs and available SoC compute resources, and1008

(3) misalignment between agent interactions and delayed1009

rewards. We propose and analyze a novel end-to-end neu-1010

ral scheduler (SoCRATES) by detailing its core tech-1011

nique (EIM) which aligns returns with proper time-varying1012

agent experiences. EIM successfully addresses the aforemen- 1013

tioned challenges, endowing SoCRATES with a significant 1014

gain in average latency and generalized performance over a 1015

wide range of job structures and PE performances. We also 1016

rationalize the underlying reasons behind the substantial per- 1017

formance improvement in existing neural schedulers with 1018

EIM by examining actual PE usages and disparate action 1019

designs. Through extensive experiments, we discover that 1020

CCR significantly impacts the performance of neural SoC 1021

schedulers even with EIM. At the same time, we find that the 1022

action of rescheduling task assignments by heuristic sched- 1023

ulers leads to significant performance gain under certain oper- 1024

ational conditions, often outperforming neural counterparts. 1025

With these findings, we intend to investigate further 1026

whether EIM technique can bring additional performance 1027

gains in other learning-based and planning algorithms, both 1028

empirically and theoretically. Further research on analyzing 1029

the performance bounds of the EIM technique is being con- 1030

ducted. With the advantage of task rescheduling in heuristic 1031

schedulers, we plan to improve neural schedulers by convert- 1032

ing such technique to a differential function and integrating 1033

it into the optimization. Alternatively, offline reinforcement 1034

learning using expert or trace replay [3] is another possible 1035

approach to improve neural schedulers. Moreover, leveraging 1036

the structure of the underlying action space to parameterize 1037

the policy is a candidate approach to tackle a varying action 1038

set [10]. We also plan to leverage GNNs to bestow the struc- 1039

tural knowledge from job DAGs [50], and demonstrate the 1040

performance gain of the improved neural schedulers by using 1041

the Compiler Integrated Extensible DSSoC Runtime (CEDR) 1042

tool, a successor to DS3 emulator, as it enables the gathering 1043

of low-level and fine-grain timing and performance counter 1044

characteristics [29]. 1045

APPENDIX A 1046

JOB DAG CONSTRUCTION 1047

The simulator can synthesize a variety of workloads given 1048

the job profile and hyperparameters, which are described in 1049

Section II-A1. First, we compute average values of widths, 1050

w, and depths, d , with the hyperparameter α based on the job 1051

model description in Section II-A1. We compute the number 1052

of nodes by w ∼ max(1,N (bwc, 0)) per d − 2 job levels. 1053

Here, we exclude two levels in which the HEAD and TAIL 1054

nodes are located. Then we check whether the total number of 1055

nodes matches v (the number of nodes). If the total number 1056

of nodes is less or greater than v, then we randomly select 1057

nodes from the job DAG and add/subtract them in order 1058

to exactly have v nodes. As illustrated in Fig. 13, small α 1059

generates deep but narrow job graphs (left figure), and large 1060

α generates shallow but wide job graphs (right figure). Next, 1061

the job model generates the task dependency by the following 1062

iterative process. Let the number of predecessors and the 1063

number of nodes at level l by |pred(ni)| and |l|, respectively. 1064

Then, the number of dependent tasks for node i at level l is 1065

computed by max(1,min(N ( |l−1|3 , 0), |l − 1|)). We connect 1066

ni to randomly selected |pred(ni)| nodes in l − 1 level. 1067
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FIGURE 13. An illustration of two types of job DAGs based on α. Left
diagram shows that small α generates a deep but narrow job graph.
Dotted lines in the middle represent hidden nodes and edges. Right
diagram shows that large α generates a shallow but wide job graph.

APPENDIX B1068

DESCRIPTION OF REWARD FUNCTIONS1069

Two types of dense and sparse reward functions are used to1070

validate the efficacy of EIM technique. The reward functions1071

are described as follows.1072

Rdense(clk) = C1 · |Ĝcomp| + C2 (17)1073

Rdense2(clk) = C1 · |Ĝcomp| (18)1074

Rsparse(clk) = 0 · 1[clk<CLK−m]1075

+C1 · |Ĝcomp| · 1[clk≥CLK−m] (19)1076

Rsparse2(clk) = 0 · 1[clk6=CLK]1077

+C1 · |Ĝcomp| · 1[clk=CLK], (20)1078

where |Ĝcomp| is the number of newly completed jobs at clk,1079

CLK is the end of simulation length, and m is the number of1080

the lastly completed tasks. C1 and C2 are the weights of job1081

completion bonus and penalty for clock signal, respectively.1082

We set +50 for C1 and -0.5 for C2 empirically. All reward1083

functions are computed per simulation clock signal.1084
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