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ABSTRACT In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an
elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment
in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the
revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of
interest among the researchers. There exist various deep learning-based techniques which have been used
for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory
(LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a
model in which effective pre-processing steps are combined with LSTM network. C-MAPSS turbofan engine
degradation dataset released by NASA is used to validate the performance of the proposed model. One
important factor in RUL predictions is to determine the starting point of the engine degradation. This work
proposes an improved piecewise linear degradation model to determine the starting point of deterioration
and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose
only those sensors measurement which have a monotonous behavior with RUL, which is then filtered
through a moving median filter. The updated RUL labels from the degradation model together with the
pre-processed data are used to train a deep LSTM network. The deep neural network when combined with
dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance
on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in
C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in
their experimental work. It is concluded that our model yields improvement in RUL prediction and attains
minimum root mean squared error and score function values.

INDEX TERMS Deep learning, long short-term memory networks, remaining useful life, turbofan engine.

I. INTRODUCTION

We are living in an era of industrial automation where our
day-to-day activity depends heavily on a wide range of elec-
trical and mechanical equipments varying from agriculture,
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process industry, power systems to the feild of transporta-
tion [1]. Every system requires maintenance operation at
some point in time [2]. There are three types of maintenance
techniques used in industries, reactive maintenance, preven-
tive maintenance and predictive maintenance. In reactive
maintenance repair operation is consider only when machine
failure has occurred. In preventive maintenance the failure
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can be prevented by performing the time-based maintenance
operation, while the predictive maintenance (PdM) lets you
estimate the time-to-failure of an equipment for scheduling
the maintenance tasks [3]. PdM in contrast to the other two
approaches needs to acquire various machine parameters for
condition based monitoring (CBM) of industrial equipment.
This technique focuses on forecasting the error by model-
ing the degradation trends between input sensors and time-
to-failure duration of the machine. So, the benefits of this
maintenance strategy is that we can eliminate unplanned
downtime, reduced maintenance costs and maximize the
machine lifetime for safety critical circumstances. One such
example is aircraft engine which requires continuous mon-
itoring of the engine performance. The fault diagnostics
and prognostics of aircraft engine has gained great attention
over the last few decades [4], [5], [6], [7]. One important
component in aircraft engine maintenance is to accurately
determine its remaining useful life (RUL) for reducing the
maintenance costs while attaining the reliability [8], [9]. RUL
prediction model is developed based upon the degradation
trends among the various condition monitoring sensors. This
model helps in development of maintenance strategy in a
targeted manner to eliminate unplanned downtime and maxi-
mize machine lifetime for safety critical circumstances. Early
anomaly detection and timely warning of a failure is vital for
maximum utilization of the system. There are basically three
types of prognostics techniques used for estimating RUL,
physical model-based approaches [10], [11], data-driven
approaches [12], [13] and hybrid approaches [14].

Model based approach initially required a comprehensive
understanding of the physical architecture of the machine and
then applying the laws of physics to obtain the mathematical
model of the machine for RUL estimation [15]. Mathemat-
ical models often take some simplifying assumptions with
uncertainty management for a complex industrial machinery,
which can impose serious limitations on these techniques and
hence degrade the RUL prediction accuracy [16].

Data-driven based prognosis approaches use various sta-
tistical and machine leaning (ML) algorithms to discover the
trends or patterns in the underlying sensor data to estimate
RUL of the system. These techniques are suitable for com-
plex industrial machinery and further, it does not require a
thorough understanding of a complete engine or the process.
Hybrid method combines both the physics and data-driven
based model techniques [17].

In the past decade, data-driven based prognostics meth-
ods have been exploited by many researchers. These mod-
els estimate the RUL by analyzing the degradation trend
and target trajectory of sensor data. Deep learning methods
like autoencoder, convolutional neural networks (CNN), long
short-term memory (LSTM) networks and their varianta and
combinations have achieved a massive success in the fields
of computer vision, speech recognition, video segmentation
and predictive maintenance [18]. The major drawback of deep
learning algorithm is that it requires a large volume of data
for offline training and in the field of prognostics, it is very
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challenging to gather run time-to-failure sensor data espe-
cially for new machines. One way is that we can intentionally
run a new system upto the failure mode but it is very pro-
longed, highly undesirable and expensive approach. Due to
these limitations, researchers prefer some public datasets for
the evaluation. In this work we have used commercial mod-
ular aeropropulsion system simulation (C-MAPSS) dataset
which is basically a simulation of turbofan jet engine dataset
provided by NASA prognostics center of excellence [19].
C-MAPSS dataset consist of four different multivariate time
series units with different number of engines and each engine
having different RUL. The dataset consists of twenty one
sensors with three operating conditions with respect to time
cycle for each engine.

In recent times, various work has been done on estimating
the RUL of turbofan engine using deep learning methods such
as CNN, LSTM along with their combinations and variants.
LSTM networks have shown better results as compared to
CNN based models [20], [21]. LSTM have shown excellent
results because they are suitable for time-series data, they
can learn the temporal features in multivariate system and
minimize the root mean square error (RMSE) with respect
to target predictions. In this paper, a LSTM based model
has been proposed for RUL prediction of a turbofan engine.
LSTM network can learn the association between target RUL
values and sensor data but it alone cannot achieve state of the
art performance due to various limitations like outliers, noise
in the sensor values, un-normalized data and un-correlated
sensor values. These shortcomings can reduce the perfor-
mance of a LSTM network [22]. In this paper, we are focusing
on implementing some preprocessing steps on the sensor data
before it can be set as an input into the LSTM network. LSTM
network when combined with effective pre-processing steps
have the power to estimate the RUL with highly accuracy.
These added steps involve correlation analysis, data filtering,
normalization, and a modified piece linear degradation model
for determining starting point of the degradation. It has been
shown that the starting point of degradation which is also
called the initial RUL has a great impact in determining accu-
rate RUL predictions [23]. Our proposed modified piecewise
linear degradation models help in efficiently calculating the
starting point of degradation which in combination with the
other pre-processing steps and LSTM network accurately
predicts RUL for the given engines.

The main contributions of our work are enumerated as
follows:

1) Novel piecewise linear degradation model for deter-
mining the starting point of engine degradation is
proposed.

2) An LSTM network with effective pre-processing steps,
i.e. correlation analysis with data normalization and
moving median filter is proposed, which when aug-
mented with the linear degradation model leads to an
improved RUL prediction.

3) Hyperparameter for the proposed prediction model
has been selected through iterative grid search based
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approach [24] to further improve the accuracy of our
framework.

The organization of remaining paper is given as fol-
low. Section 2 gives the detailed literature review on
the existing methods on turbofan engine RUL estimation.
Section 3 explain the dataset taken for experimental testing.
Section 4 discusses the proposed methodology with compre-
hensive block diagram that elucidate the entire work flow.
Section 5 discusses the experimental results. Section 6 is the
conclusion.

Il. RELATED WORK

This section briefly reviews the existing literature on the tur-
bofan engine RUL estimation. [25]. Traditional model-based
techniques usually employ algorithms like Kalman filter
(KF), extended Kalman filter (EKF) and particles filters to
come up with mathematical formulation of machine based on
multi sensor time series sequence data [26], [27], [28]. Clas-
sical degradation method such as Eyring model or Weibull
distribution was implemented in [29]. Salahshoor et al. [30]
used a unified framework of EKF based design for sen-
sor data fusion algorithm to further enhanced the detec-
tion and diagnosis of degradation trends and system faults.
Ordonez et al. [31] implemented the auto-regressive inte-
grated moving average (ARIMA) model and support vector
machine (SVR) methods collectively to estimate the RUL.
The desired features can be created by analyzing prior learn-
ing about the degradation models as presented in [32]. In [33],
itis suggested that failure thresholds or degradation state esti-
mation is no longer required in learning-oriented approach.
Khelif et al. [33] presented machine learning based support
vector regression (SVR) model to project the direct associa-
tion between multivariate sensor data or health index and the
aircraft turbofan engine RUL.

Across all these techniques for turbofan engine RUL pre-
diction, deep neural network-based methods have gained vast
popularity. Zhang et al. [34] introduced a multi-objective
evolutionary algorithm to expand and organized the deep
belief network into multiple parallel networks simultane-
ously to accomplish the two convicting objectives i.e. diver-
sity and accuracy. These networks attained a fine RUL
prediction accuracy especially in case of complicated oper-
ations and in the presence of noise in input data [35], [36].
Saeidi et al. [37], proposed a naive Bayesian classification
algorithm to measure the health index for turbofan engine.
The pre-processing step takes the sensor data as input and
apply moving average filter for removing the noise. It further
categories the dataset into four different categories on the
basis of time cycles i.e. time cycle values between 0 to 50 is
labeled as urgent case which need immediate maintenance
and further categorization is also done in a similar manner.
Zheng et al. [38] proposed LSTM network combined with
piece wise linear function for RUL for estimating the degra-
dation trends. It achieves good results by applying piece
wise linear function and data normalization. Wei ef al. [39]
proposed a Bi-LSTM network which can learn high level
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features in both direction and it can run training pass from
forward to backward and backward to forward with back
propagation algorithm. Wang et al. [40] proposed a hybrid
network for turbofan engine in which trends and hidden
pattern in long sequence sensor data is identified through
LSTM network and short duration sequence was analyzed
through time window method with gradient boosting regres-
sion (GBR). This method has two stages, offline stage to
learn degradation pattern with LSTM network and TW-GBR
used in online stage for extracting short sequence data. It also
implemented standardization and sensor selection criteria.
Babu et al [41], proposed deep CNN regression network for
RUL estimation. The network consist of two dimensional
convolutional layers for feature extraction followed by a fully
connected regression layer for prediction. For 2-D convolu-
tion, first we have to convert our 1-D sensor data into 2-D with
one dimension was taken as time and other taken as sensors
amplitude. This model also extracts the spatial features very
efficiently. Li et al [42], proposed deep convolutional neural
network (CNN) for RUL estimation. The architecture of CNN
is modelled in such a way that feature can be extracted from
prepared 2-D sensor data by passing raw data into convolu-
tion layers, then flattened layer is added to convert extracted
2-D features into 1-D so that it can be given as an input to
multilayer perceptron model with dropout layer for predicting
RUL. Jayasinghe et al [43], proposed temporal convolution
in which combination of CNN-LSTM network was used for
turbofan engine dataset. The layers of the model have stacked
by first applying data augmentation to create similar type of
data for avoiding overfitting followed by data normalization
which was then followed by 1-D convolution for feature
extraction, lastly fully connected layer act as the bridge
between output of 1-D convolution layer and input of LSTM
layer. LSTM layer was then followed by fully connected layer
for output prognosis prediction. Hong et al. [44], proposed a
similar kind of network by stacking a 1-D convolution layer,
residual layer, LSTM layer and a Bi-LSTM layer. Correlation
analysis on sensor data for turbofan engine dataset was also
performed. Mo et al. [45], proposed multi-head neural net-
work for RUL prediction of turbofan engine. This network is
different from the series network in such a way that they have
implemented the parallel branches of CNN layer in series
with LSTM network. Furthermore, fisher method in com-
bination with recursive least squares and single exponential
smoothing was also employed to find the prediction error
and given it as an additional input into CNN-LSTM head for
optimum performance. Zhao et al. [46], proposed an adjacnet
neural network model for leanring the degradation pattern in a
sensor data. The degaradation pattern mapping learns through
morkov property i.e. estimating the next state of sequence
with the assist of only present states.

Many researchers have used a piecewise linear degradation
model in RUL prediction techniques. In this model, the start-
ing point of the degradation is estimated often referred to as
the initial RUL, many authors [47], [48], [49] have chosen its
value on the basis of observations and no clear mechanism
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of selecting it has been proposed. Lan et al. [23], proposed
an LSTM algorithm for RUL prediction, it presented a piece
wise linear degradation model. The dataset is divided into
time windows and difference between geometric distance
(Euclidian) of each window is used to determine the value
of initial RUL or the starting point of degradation. They have
validated their model on only FDOO1 sub-unit of the dataset
and selection of window size and thresholds are also not
explained. Inspired by the results of this model, we have pro-
posed an improved version of the algorithm, which is applied
to the complete dataset and results in overall increased in the
accuracy of our prediction model.

The existing methods presented so far showed impressive
performance on RUL tracking; our proposed method further
improves the performance of these networks — summarized
in the results and discussion section. This is mainly due to the
fact that we have incorporated and implemented effective data
preprocessing steps into our prediction pipeline. In the previ-
ous works, pre-processing stages have not been completely
exploited in order to find the right combination for enhanc-
ing the learning capability of deep learning algorithms. So,
we propose one such combination along with the training of
LSTM with a hyperparameter selected through grid search
algorithm in order to achieve the optimum performance.

A. PROBLEM STATEMENT

The predictive maintenance techniques is different from the
reactive and preventive maintenance techniques in terms of
safety, reliability, efficiency and unnecessary downtime for
aircraft turbofan engine [50]. These methods ensure reliable
solution managing the health of turbofan engine to reduce
the downtime, which leads to significant loss in revenue.
Therefore, failures in a turbofan engines can cause catas-
trophic accidents due to its sensitive nature and it needs to be
estimated prior in time so that we can provide maintenance
services in order prevent any fatal incident.

In current scenario, due to the implementation of
cyber-physical system (CPS, that link the cyber world with
a physical world, called smart manufacturing), the industrial
sector such as health care, nuclear power plant etc. gener-
ate enormous volume, velocity, veracity and variety of data.
Therefore, with the rise of Al and availability of hardware
computing resources, data driven based artificial intelligence
(AI) predictive maintenance models have a capability to pro-
cess big amount of real-world machines data with ease and
predict heath index of aircraft turbofan engine in time before
failure to prevent unwanted breakdown [51].

1Il. DESCRIPTION OF C-MAPSS TURBOFAN ENGINE
SIMULATION DATASET

C-MAPSS dataset released by NASA is developed in
MATLAB environment as a tool for simulation of turbofan
engines. C-MAPSS dataset was published in 2008 for 1%
International conference on PHM [19]. This dataset was pub-
lished some time ago but still it has been actively used in
research for evaluating the prognostics model with a focus on
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accurate estimation of RUL. This model have fourteen input
parameters related to five rotating components of engine to
simulate different degree of fault and deterioration of the
model. A total of twenty one variables out of fifty eight differ-
ent sensor responses is considered from the model for predict-
ing the RUL. The three operating parameters of C-MAPSS
simulation model are given in table-1 and the details of 2/
sensors are given in table-2. The legends of last column in
table-2 Trends indicates the degradation pattern of sensor data
with respect to time, where “~ ” represents irregular sensor
behavior, I represent the parameter increasing with time and
lastly, D is the variation of parameter that decreases with time.

TABLE 1. Operating parameters of C-MAPSS.

Parameter Operating Range
Mach Numbers 0t0 0.90
Altitude Sea level to 40,000 feet
Sea-level temperature -60 to 103° F

The main components of turbofan engine include nozzle,
low pressure turbine (LPT), high pressure turbine (HPT),
fan, low pressure chamber (LPH) and high pressure chamber
(HPC). There are total of fourteen editable input parameters
such as fuel flow, HPC efficiency modifier, LPT efficiency
modifier etc. that allows you to simulate various operating
behaviors. C-MAPSS sensor trajectories are further divided
into four different units namely FD0O1, FD002, FD003, and
FDO004 corresponding to different operating conditions and
fault modes. This dataset contains 709 engines for the training
and 707 engines for testing which are of same type but with
distinct manufacturing variation and initial wear, unknown to
the researcher. The description of four sub dataset units with
train and test trajectories and other details are given in table-3.
In the start, all the engines in each sub-dataset are operating
normally as seen from sensor behavior and originate the
fault sometime later in their life cycle. In training sequence,
complete run-to-failure data is available with a specified RUL
labels as faults grows in the system and in test time degrada-
tion values are given up to some time prior to engine failure.
Moreover, with different initial health conditions, there are
distinct number of time cycle even for the same engine in
dataset. The objective of this dataset is to predict remaining
useful life cycle of engines in each sub-unit. The actual RUL
label are given in the test data, which is used to validate the
prediction results.

It can be observed from table 3 that different sub-units of
the main dataset have different running life cycle time e.g.
in FDOO4 test data, the maximum life cycle time is 486 and
minimum time 19.

IV. PROPOSED METHODOLOGY

This paper proposes LSTM based RUL prediction model for
turbofan engines, which proves to be more robust than most of
the existing models available in the literature. The increased
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TABLE 2. Output parameters C-MAPSS turbofan engine datasets.

Sensor Parameter Description with units Trend

1 T2 Total Temperature in fan inlet (0R) ~
2 T24 Total Temperature at LPC outlet (0R) I
3 T30 Total Temperature at HPC outlet (oR) I
4 T50 Total Temperature at LPT outlet (oR) 1
5 P2 Pressure at fan inlet (psia) ~
6 P15 Total pressure in bypass-duct (psia) ~
7 P30 Total pressure at HPC outlet (psia) D
8 Nf Physical fan speed (rpm) I
9 Nc Physical core speed (rpm) I
10 Epr Engine pressure ratio (—) ~
11 Ps30 Static pressure at HPC outlet (psia) I
12 Phi Ratio of fuel flow to Ps30 (psi) D
13 NRf Corrected fan speed (rpm) I
14 Nrc Corrected core speed (rpm) D
15 BPR Bypass ratio (—) I
16 farB Burner fuel air ratio (—) ~
17 htBleed Bleed enthalpy (—) I
18 NF-dmd Demanded fan speed (rpm) ~
19 PCNR-dmd  Demanded corrected fan speed (rpm) ~
20 W3l HPT coolant bleed (Ibm/s) D
21 W32 LPT coolant bleed (Ibm/s) D

TABLE 3. Each sub-unit of C-MAPSS dataset.

Four-units of dataset FDO001 FD002 FDO003 FD004
Engines in training set 100 260 100 249
Engines in testing set 100 259 100 248

Training trajectories 17731 48558 21120 56815

Testing trajectories 100 259 100 248

Max/min cycle for train ~ 362/128  378/128  525/145  543/128

Max/min cycle for test 303/31 367/21 475/38 486/19
Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

robustness stems from the fact that we have integrated effi-
cacious techniques from multiple alternatives and presented
two types of improvements to be made in the LSTM based
prediction model. The first type of improvement is the addi-
tion of more effective pre-processing steps, which in return
puts a great influence on LSTM training. Secondly, enhancing
the LSTM training procedure by a grid search approach for
computing the effective hyper parameters. This framework
manages to achieve higher prediction accuracy, measured
in temrs of RMSE and score function values, than several
existing works — see Section 5 for details. The framework
of our proposed model is shown in Fig. 1. The specific steps
of the prediction model are explained below.

A. CORRELATION ANALYSIS

First, we must prepare our health-to-failure data into an
appropriate form for improving the accuracy of the LSTM
network for effective training operation. C-MAPSS dataset
consists of three operational settings and twenty one sen-
sor signals of engines with machine life span length. These
signals are then given as an input to correlation analysis
method [31], [44], [52], [53] to discover the relevance of
features with RUL. The algorithm excludes the sensor values
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which have a very little or zero correlation with RUL, this
includes some parameter in engines that are basically con-
trolled by a feedback controller and results into a near con-
stant values or having an oscillatory behavior. These kinds
of parameters do not play much part in RUL predictions. So,
the selected feature signals are then given as an input into the
data filtering stage. Statistical evaluation of turbofan engine
degradation dataset gives us certain insight into the multivari-
ate sensor data and furthermore reach towards the conclusion
that whether a considered sensor is adequate for training
the network or not. We can accomplish this abstraction by
computing the value of correlation coefficient ’»’ which is a
relationship between the sensors and RUL labels.

. conv(x, y) "
SxSy
_ i =00 =)
VI i =0 i — )

where conv (x,y) is covariance between input sensor data (x)
and output RUL label (y), x and y are the mean of input sensor
data and RUL label, n is the number of variables in a dataset
and Sy & Sy, are standard deviation of the two signals x and y
respectively.

In [44] a correlation analysis is employed for dimension-
ality reduction to obtain the accurate results and to reduces
the complexity of sensor data. This technique is primarily
limited to FDOOI sub-unit of C-MAPSS dataset, we have
extended this approach to entire degradation dataset and com-
prehensively investigate the trends and irregular behaviors by
analyzing the correlation matrix heat map [54] of C-MAPSS
turbofan engine dataset. The correlation matrix heat map
cells show the association of three operating settings and
21 sensors with output RUL labels as shown in Fig. 2. The
correlation matrices are converted into percentage with dark
green color representing higher correlation as opposed to
light color which depict a low correlation value. The number
of sensors selected from each sub-unit after the correlation
process are given in table 4. After analyzing the correlation
coefficient of sensor degradation dataset, we have concluded
that 14 out 24 parameters in FDOO1 and 16 out of 24 parame-
ters in FDOO3 reflect high strength of correlation with defined
or monotonous behavior and we have omitted those variables
that indicates less than 10% of correlation with the output
RUL label. For the case of FD002 and FD004, correlation
coefficient values in a heat map illustrated that these variables
have little degree of association with output RUL labels and

@

TABLE 4. Sensors selection based on correlation matrix.

Correlation(r) FDO001 FD002 FD003 FDO004

Correlation up to 25% 10 24 9 24
Correlation between 25 % to 50% 0 0 1 0
Correlation between 50 % to 100% 14 0 14 0

Sensor selected for training LSTM Model 14 24 16 24
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FIGURE 1. Proposed Framework for RUL predictions.

this correlation is more than 15% for best possible case.
After analyzes the correlation matrix, un-correlated sensors
are removed from the training process which are listed in table
5. So, only highly correlated sensor data are used for training

The choice of filter is made on its ability in removing the
outlier while preserving the high and low frequency contents
in sensor data and avoids any loss of data values. The time
window size of moving median filter is adaptive and vary with

the LSTM network which also increases the speed of learning
for estimating RUL.

B. FILTERING
The correlated data is passsed through a moving median filter
for removing the outliers and noises in the sensors data.
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respect to sensor values. The moving median filter belong to
a type of non-linear digital filter, which is used to remove
random unwanted noise especially when there is a high spike
and short-term outlier present in the data points but preserving
the high frequency information contents [55]. Median filter is
used to identify such sensor values in turbofan engine which
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Heat may
B

FIGURE 2. Correlation Matrix of C-MAPSS Dataset.

TABLE 5. Excluded sensor list.

C-MAPSS Sub- Excluded Sensor Sensor Selection
unit List Criteria

op-1,0p-2,0p-3, s1, s5, .

FDO0O01 $6. 510,516, 518, 519 Correlation (r) > 10%

FD002 Correlation (r) > 5%
op-1,0p-2,0p-3,s1, s5, .

FD003 516,518, 519 Correlation (r) > 10%

FD004 Correlation (r) > 5%

are considerably different from the other data points and then
eliminate them. The algorithm of moving median filter is
accomplished by sliding the window of appropriate length
over the sensor data entries by entries and then replacing the
corresponding values by computing the median of neighbor-
ing points specified in the window. Mathematically it can be
expressed as:

Yilnl = median(¥i[n), ..., X}[n + T1) 3)

where n = total number of sensor data points in each engine,
i = sensor variable, j = engines, xf[n] denotes input data for
sensor i in engine j and yé[n] returns the medians values across
each sensor variables from FD0O1 to FD004 with a same
dimension as of input data.

The algorithm of filter is accomplished by sliding the
window of length T over the neighboring elements in sensor
data and computed the median for each considered window
and median operation is then performed on these array vector
to get the filtered output after applying ascending operation.
So this processed data is then given to the next stages and
hence put a significant impact on the output.

C. DATA NORMALIZATION

The range of sensor output after analyzing from the graphs
is from tens to thousands and if we use these raw values
for training the network then accuracy will drop signifi-
cantly [56]. The filtered signals are normalized to have same
degree of range for efficient training of the network. Z-Score
normalization [57] is used in this paper which first compute
the mean () and standard deviation (o) of each feature vector
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and then apply the following operation on each sensor output.

xf—u
no__ i
yi = —o" 4)
where, y! is the normalized value at i time cycle for sensor
n, u" is the mean value of all output of sensor n, o” is the

standard deviation of all n sensor output.

D. IMPROVED PIECEWISE LINEAR DEGRADATION MODEL
It is observed that RUL is linear decreasing function with
respect to time as the efficiency of the system degrades. How-
ever, as the system starts their operation, there is no degrada-
tion present in the sensor readings. This pre-processing step is
basically implemented on output labelled data that takes input
from previous correlation analysis stage and employs a piece
wise linear degradation function on sensor values for finding
the initial RUL or the starting point of degradation. All the
labels till this deterioration point are constant out to the initial
RUL value while the remaining RUL lables are represented
as a linear line from that degrdation point up to zero life cycle
time.

In this paper, we have presented an improved version of
the automatic piece wise linear function [23] for output RUL
labeling. This approach is self-governing that is sensitive on
variation of the degradation trends and will automatically
calculate the early point of sensor deterioration. The com-
putation of initial RUL starts by dividing entire sensor time
cycle with non-overlapping pattern into equal sized window
length of w and extract the sensor data from a given windows.
We then calculate the centroid of each considered window
by determining their mean values and geometric distance
calculation is performed by subtracting the two subsequent
windows to generate the trends in sensor data. As there are N
number of time cycles for given variable and window length
of wresults into (g=N/w) geometric points for a given dataset.
These geometric distances are computed using Euclidean
distance method which is then squared and the degradation
pattern from g values is evidently detectable from the result-
ing plot as shown in Fig. 3. The centroid of window wy is
first computed and subtracted from the other windows in a
sequence to compute the variation in sensor values to reach
on a point of deterioration based on the threshold value. The
inflection point of the curve indicates the increase in sensor
trends which is the initial RUL value.

The proposed algorithm is given as Algorithm-1 is imple-
mented for each engine. The minimum value of initial RUL
among all the engines in a sub-unit is taken as the initial RUL
for that sub-unit. Threshold level is dependent on the rate of
rise in raw sensor data, its visual perception and how early
we need to predict the faults in the machines for maintenance
purpose.

In this paper, we have set different ranges of threshold
(0.01 to0 0.2) and window size (5, 12) for calculating the initial
RUL and validating the performance of our model. We have
used different values of window sizes in order to compute
the knee point in sensor data effectively. This choice stems
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Automatic Piece-Wise Linear Function: Interpretation

Amplitude

0 20 40 60 80 100 120 140 160 180 200
Time Cycles

FIGURE 3. Degradation process represented in the form of windows of
time cycle.

Algorithm 1 Improved Piece-Wise Linear Function for Initial
RUL Calcultion for Each Engine
1: Inputs: Time cycle values (fc) and Sensors data after
filtering and normalization
2: Parameters: w = window length, g = total num-
ber of windows, wi,ws...w, = subsequent windows,
Th=threshold
3: Output: Initial RUL label (irul)
4: e = Extract sensors values from the given windows
wi,wa...wyg)
5. m = Calculate the centroid of each window by
computing the mean for each window
6: fori=(21tog—1)do
7: s = Subtract the mean of two windows (w1,w;)
8
9

sq = square (s)
if sq >= Th then

10: irul =tc-w *i
11: else
12: =i+ 1

End

from the fact that by further increasing the window size, the
algorithm bypasses the knee point, which is the starting point
of increasing/decreasing trend in sensor variables. Fig. 3 con-
firms that the trend in sensor data changes within few cycles,
and if we further increase the window size then we cannot
achieve true inflection point in these variations. As a result,
initial RUL computation will not reflect the ideal knee point
in the sensors’ behavior.

E. LSTM MODEL DEVELOPMENT

The data from the normalization stage with updated RUL
labels from the degradation model is used to train a deep
LSTM network. Our proposed LSTM model consists of
LSTM layers, dropout layers, fully connected layers and the
regression layer. The output node of fully connected layer is
a regression layer that gives the estimated RUL of turbofan
engine. Our proposed model consists of four layers connected
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FIGURE 4. Structure of a LSTM cell.

in a sequential manner with different number of hidden units
and a dropout layer is also added in between the LSTM
layers for enhancing the generalization of network to avoid
over fitting. It is then followed by two fully connected layer
with dropout layers and the final layer is the regression layer
as shown in Fig. 1. Fig.4 shows a basic LSTM cell that is
essentially consist of three control gates: input gate, forget
gate and output gate. The output of the cell is denoted by #;,
which is a short-term memory sate in a network and C; is
considered as a long-term cell state. The first gate in an
LSTM cell is forgot gate f;, which is used to unlearn selective
information stored in previous LSTM cell. The forget gate
equation is given below.

Jr = oWr.[hi—1, x;]1 + by) &)

where o (), is called sigmoid activation function, which can
control operation of forget gate. Wy is the weight matrix, h;_;
short term state from previous cell, x; is the input of cell, and
by is the bias vector of LSTM cell. The input gate controls the
new information entering into the cell through following two
equations:

ir = o(Wilhi—1, x:1 + by) (©6)
C; = tanh(We.lhi—1, x;] + be) (7

where tanh = (¢ —e™)/(e* 4+ e™). This value is calculated
by the same short term state vector 4,1 which is further used
to update the new state of cell. W; and b; is the weight matrix
and bias vector of an input gate respectively. The C, computed
from above equation is first filtered by it and then added to
the long term state of the cell. W, and b, are the weight matrix
and bias vector. After computing the value of forget gate (f;),
input gate (i;) and (C)), long term state C; of LSTM cell is
updated after applying given below matrix operation

C=/C1+i:® G ()

where, ® is basically element wise matrix multiplication
operation between a specified variable and C;_; is the pre-
vious state of LSTM cell. Finally the output of LSTM cell is
generated by the following two equation,
or = o(Wo.lhi—1, x:] + b,) )
hl‘ = O¢ ® tanh(C,) (10)
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The output state of LSTM cell %, is obtained by filtering
the output gate o; equation with a matrix of C;. W, and b,
are the weight matrix and bias vector of the output equation.
The values of the weight matrix and biases are computed by
training the LSTM network.

F. DROPOUT LAYER

The dropout layer is added to avoid the overfitting which
inherently occur while training the deep neural network [58].
This regularization layer is added in between the fully con-
nected layers and LSTM layers to increase the generalization
of the whole algorithm to better track the predicted RUL
with high accuracy. It drops some random portion of neuron
according to the probability parameter defined in a network
while remaining weights are trained by the backpropagation
algorithm [59]. The expression for a dropout layer by choos-
ing a linear activation function and considering the activity in
unit 7 at layer % is given by the expression.

Sy = Zzwf}’S} with ) = I (1)
I<h j

where w is the weight and 7 is the input vector.

G. FULLY CONNECTED LAYER

The fully connected layers gets the data from the final com-
bination of LSTM and dropiut layer, so that the features
extracted from LSTM layer are used to generate the out-
put [60]. Due to its fully connected nature between all the
neuron present in the network, it has a large amount of
weight parameters which needs to be computed by training
the network. Fully connected layer along with a dropout
layer is followed by single regression layer for predicting the
RUL. The mathematical calculation of fully connected layer
is expressed below.

Hy=1 (12)
H; = ¢(hq—1yWre + by) (13)

where [ is the input vector, ¢ is activation function of a
neuron which is primarily a ReLu fucntion, &;_; is output
from the previous layer, Wy, is weight matrix of a specified
fully connected layer, by is the bias vector and H; is output
at ™" layer.

H. INTERPRETATION OF OUR APPROACH

We implement deep neural network combined with
per-processing steps for efficient RUL prediction of turbo-
fan engine. Furthermore, we have separately discussed the
above-mentioned stages of prediction pipeline breifly in order
to delineate a comprehensive understanding of our work.
Therefore, to summarize our approach, we have presented
a pseudo code of our proposed pipeline in Algorithm 2.

I. HYPER PARAMETERS SELECTION
LSTM training process involves many different parameters.
These parameters have a great impact on the accuracy of
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Algorithm 2 Proposed Methodology

1: Inputs: Training Data,{d7 = (xll,y%),(le ,yé). .. .(xf,,yf,)}
2: Parameters: N < No. of sensor variables, £ < No.
of Engines, 5 < Filtered data, §¢ <— Correlated sen-
sors, M < No of correlated sensors, §p < Normal-
ized data, §p < Piece-wise linear RUL function, Ly <
No. of layers in LSTM, Lp <« Doprout layers, Ry <«
Regression layer, Lr < No. of neuron in FC layer, W
< Window Length, o <— Learning rate, Gp <— Gradient
descent optimizer, Vy < Validation set, S/, <— Network
architecture parameters
Output: Performance Parameter, O, <—[RMSE,Score]
fori = (1t E)do

forj=(1toN)do

8c = Correlation Analysis (x; ,y]’:)

end forj
end for!
7: for k = (1 to M) do
8: &y =Median Filter(sf,W)
9: ép = Data Normalization(Sjli,, mean(§y ), SD(6y))
10: Sp = Piece-wise linear function((S]é)

end for*
11: Sfm, <~ (Ly,Ly,Lr,2,Gp,Lp,V,R1,6p,0p)
12: for [ = (1 to T) do
13:  Fp =Forward Pass (S!,.)
14: E; = Error(Fp)
15: B, = Back Propagation(E;)

AN

16: Wiew = Woiq + a*derivative(B),)
17: buew = bola + a*derivative(B))
end for!

18: 0}, < Calculate RMSE using equation 14.
19: 0;;;1 <«—Calculate score function using equation 15.

the model. These parameters include learning rate, batch
size, number of layers, number of neurons in each layer,
optimizer and the training epochs. There is no definite rule
or process by which the best values of these parameters are
selected, generally an iterative grid search method is used to
get the best results. The model is run against different values
of these parameters and combination of values with best
result are recorded. Addition of more layers makes system
more complex and timing consuming for training but could
result in better predictions as compared to the single layer
network which are more suited to the simple problems. The
ranges/types of hyper parameters used for LSTM network
training are given in table 6.

J. EVALUATION METRICS

After network development, training of LSTM network is
carried out and selection of hyper parameters is made on
the basis of root mean square error (RMSE) between actual
RUL and predicted RUL for each engine of the turbofan
dataset. Our proposed LSTM model is evaluated using two
widely used evaluation methods: RMSE and scoring function.
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TABLE 6. Ranges/types of hyper parameters in LSTM model training.

Hyper parameter Range
Learning Rate 0.01 to 0.05
Mini-Batch Size 10 to 30
Max Epoch 10 to 300
No. of LSTM layers 2t08
No. of neurons in each
LSTM layer 3010 100
Dropout probability 0.11t00.5
. Adam, Stochastic Gradient
Optimizer

Descent, RMSProp

RMSE is the most used evaluation metric for predictions
used by the researcher for past decades. It is a symmetrical
scoring function which means it can assign equals weights or
penalties to both early and late prediction. The equation of
RMSE is given below.

N
D ic ei2
N

where ¢;, is the prediction error and N is the total number
of samples. In PHMOS data challenge competition, a score
function was employed to evaluate the performance of the
prediction model [61]. It is an asymmetrical score function
which means it can assign more weights to late prediction as
opposed to early prediction. It is described mathematically as:

RMSE = (14)

N
score = ZSJ‘ (15)
j=1
1, ifh <0
el —1, 1th <
5=1° i (16)
e —1, ifh >0

The performance of the model will degrade at greater extent
in case of delayed prediction as compared to the early predic-
tion. The prediction error between the actual and predicted
RUL is close to zero then the value of score and RMSE is
also smaller with advancing towards zero.

V. RESULTS AND DISCUSSION

In this section, a detail analysis on RUL prediction results by
our proposed model is presented. There are various param-
eters that affects the model’s accuracy. We can categorized
them into two sets, first are the parameters related to the initial
RUL value, these includes window size and threshold values.
Second ones are LSTM hyper parameters. Combining these
two sets of parameters gives a very large set of parameters
affecting the model’s accuracy. It is evident from the existing
literature on deep learning techniques that there is no straight
forward way of determining a single best set of values for
these parameters. This requires very extensive and detailed
simulations to analyze it further and an iterative grid search
approach is followed. The simulation model is developed in
MATLAB and hundreds of runs were carried out against the
parameters ranges defined in the last section. For comparison,
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TABLE 7. Selected LSTM models with hyper-parameters values.

LSTM Hyper-parameters
Models No. of
Learning ~ Mini- Max No.of  Neurons Dropout Optimizer
Rate Batch  Epoch LSTM in each Probability
Layers LSTM
Layer
Model 1 0.01 10 20 2 30 0.1 Adam
Model 2 0.02 15 150 4 60 0.1 Adam
Model 3 0.001 20 250 6 90 0.1 Adam
Model 4 0.001 25 300 8 100 0.1 Adam
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FIGURE 5. RUL Prediction on Test Set, (a) FD0O01 (b) FD002, (c) FD003,
(d) FD0OA4.

four LSTM models which gave us encouraging results were
further tested and tuned for best performance. The models
along with the hyper parameters are given in table-7, LSTM
model structure remains same as described in the Fig.1. The
output of the pre-processing stages which processed sensor
data and RUL output labels are given as an input into the
LSTM network. The network is trained using the different
values of the hyper parameters given in the table-7 and the
window size and threshold ranges defined in the last section.
After following an iterative grid search approach, the best
hyper parameters are selected for the proposed model on the
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TABLE 8. Model accuracy in term of RMSE and Score function values for the four LSTM models.

FDOO1 FDO002 FD003 FDO04
W“?d"w Threshold
Size
0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2
RMSE  Score RMSE Score RMSE Score RMSE Score RMSE Score RMSE Score RMSE  Score RMSE  Score
LSTM Model 1
5 18.04 451 1563 290 2274 2448 2283 3006 17.54 716 1593 414 2761 10533 2876 7632
8 1585 342 141 225 2270 2447 2274 2347 156 391 1287 222 2786 7138 2264 6804
10 1607 324 13.86 254 2204 2330 2047 1431 1596 550 1268 204 2476 7135 1996 6168
2 157 335 121 206 2160 2207 1850 1319 1577 440 1106 158 2076 3257  17.63 2395
LSTM Model 2
5 1796 879 1709 472 3007 20902 3249 9876 1933 522 1245 292 30 27246 301 20228
8 1775 606 983 144 3001 20903 19.69 4719 1206 258  10.60 234  28.67 26596 307 23291
10 1575 362 860 112 2145 5508 1858 2460 1231 264 998 142 2635 23432 2469 8752
12 1571 361 778 100 2232 2984  17.64 1443 1194 230 1160 189  27.86 29082 2093 2530
LSTM Model 3
5 1801 746 1399 325 292 7347 2920 7349 1616 1022 1486 525  39.81 57200 39.53 45067
8 1589 390 1436 434 2921 7346 2811 6420 1269 372 920 137  38.10 37646 3448 16586
10 1460 323 983 156 2932 9195 2681 498 1272 374 907 135 3873 47543 3265 13664
12 1459 322 938 152 2834 6428 2676 5697 1180 279 830 104 3343 18125 2932 16852
LSTM Model 4
5 2063 959 1541 409 3005 9270 2998 9271 1636 600 1510 510  39.40 38185 3921 3781l
8 1679 516 1328 266 2993 9188 2852 7650 1385 329 896 128  39.99 69027 3676 36792
10 13.68 304 932 143 2906 7685 2699 5378 1399 333 878 124 3872 50620 3327 15922
12 1367 303 1010 181 2853 7648 2663 5239 1383 371 866 126 3507 28303 3026 9694
basis of lowest RMSE and score function values. The results . RMSE = 7.78 RMSE = 17.64
. . 100
of the these four LSTM models against different thresholds
and window sizes values are given in table 8. £ 5 o
The results in table-8 show that there is no single set of o g
best values parameters for the whole data.set. The best values , , ﬂ —‘_I_|_|1
of parameters for RMSE and score function are different for oo 0B wo e 50
each sub-unit. For FDOO1 case the best results are with using st s.30 amse 17,63
LSTM Model-2 and window size and threshold values of & 100 E
12 and 0.2 respectively. Similarly, for FD002 best results are Ban 5
with using LSTM Model-2 and window size and threshold : 3 50
. s 20 i
values of 12 and 0.2 respectively. For FD0O03, best results are * - ¢ . —H_hﬂ
with LSTM Model-3 and window size and threshold values . s o - v 5 poy
of 12 and 0.2 respectively and for FD004, best results are with E(g" E&;"

using LSTM Model-1 and window size and threshold values
of 12 and 0.2 respectively. It can be observed that although
LSTM model hyper parameters are different for different
sub-units, the best values of window size and threshold are
same. The minimum initial RUL value among all engines
in a sub dataset is selected as its initial RUL. The initial
RUL values achieved from the training part of sub-units
FDO001 to FD0O04 are 78, 103, 79 and 87 respectively. These
values are then used in the testing stage for each sub-unit.
So, instead of using a single initial RUL value for the entire
dataset which is used in most of the existing literature, we can
achieve improve prediction accuracy by using separate initial
RUL value and LSTM hyper parameters values for each
sub-unit.

The prediction results using the best models are shown in
Fig. 5, which shows highly accurate RUL predictions. The
x-axis denotes the number of engines in a specific sub-unit
and y-axis is the result of RUL prediction for each engine.
The red and blue legends on the graph indicate the predicted
and true value of RUL. Moreover, these results are further
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FIGURE 6. Histogram Distribution of Error, (a) FD0O1, (b) FD002,
(c) FD003, (d) FD004.

observed by histogram distribution of prediction error in
Fig. 6.

The histogram distribution of four sub-units indicates the
variation of RMSE across the dataset. The x-axis indicates
the error or difference between predicted observation and true
RUL while the y-axis indicates the frequency of occurrence
for the given error. It can be seen from the figure that large
concentration for frequency of error lies in the range of
[-5 0] in FDOO1 & FDO003 while for FD002 and FDO004,
it is concentrated in [-10 0]. The data description in section
I shows that FD002 and FD004 has 6 operating conditions
with more than 200 tracking trajectories. In correlation anal-
ysis, we have demonstrated that these two sub-units pos-
sess irregular behavior so RUL prediction for these complex
sequences is a challenge for the prediction model. FDOO1 has

95435



IEEE Access

O. Asif et al.: Deep Learning Model for RUL Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset

TABLE 9. Comparison of RMSE and score with other methods.

Methods Year Pre-Processing FDO001 FD002 FDO003 FDO004
Steps RMSE  Score RMSE Score RMSE Score RMSE  Score
CNN [41] 2016 Daanormalization, g 4009003 3020 136x10* 19.81 1.60x10° 29.15 7.89x10°
RUL target function
LSTM [38] 2017 Datanormalization, 100 336102 2449 445x10° 1618 8.52x10° 28.17 5.55x10°
RUL target function
Feature selection,
BiLSTM [62] 2018 Datanormalization, 13.65 2.95x10%2 23.18 4.13x10% 13.74 3.17x10° 24.86 5.43x10°
RUL target function
Feature selection,
DAG [63] 2019 Datanormalization, 11.96 229x10% 20.34 2.73x10®> 1246 5.35x10% 2243 3.37x10°
Piece-wise function
Variance threshold,
CNN+LSTM [64] 2019 Datanormalization, 16.16 3.03x10® 20.44 3.44x10° 17.12 1.42x10° 2325 4.63x10°
Health indicator
Multi-head Feature selection, 9 3 2 3
CNN+LSTM [45] 2020 RUL target function 12.19 2.59x10¢ 19.93 4.35x10° 12.85 3.43x10° 22.89 4.34x10
Correlation analysis,
ggﬁ,}ﬁm{f 2020  Min-max scaling, 1041  — — — — — — —
RUL target function
Feature selection,
AGCNN [65] 2020 Data normalization, 12.42 225x10% 1943 1.49x10° 13.39 227x10%> 21.50 3.39x10°
RUL target function
LSTM+ Feature selection,
FCLCNN [66] 2021 Data normalization, 11.17 2.04x102 — — 9.99 234x10®2 — —
RUL target function
Hybrid Feature selection,
model [67] 2021 Data normalization, 15.68 — 22.26 — 16.89 — 22.32 —
Piece-wise RUL
BLS + Feature selection,
TCN [68] 2022 Datanormalization, 12.08 2.43x10%> 16.87 1.60x10° 11.43 2.44x10% 18.12 2.09x10°

Piece-wise RUL
Bi-LSTM based
Attention method [69]

Proposed (without
automatic piece-wise 2022
linear RUL function)

2022 RUL target function 13.78

Correlation analysis,
Median filter, Data 13.5
normalization,

Correlation analysis,
Median filter, Data
normalization, 7.78
Automatic piece-wise
linear RUL function

Proposed 2022

2.55x10% 15.94 1.28x10° 14.36

2.38x10% 23.37

1.00x102% 17.64

4.38x10%> 16.96 1.65x102

2.6x10° 13.54 4.11x10% 23.36 3.97x10°

1.44x10°  8.03 1.04x10%2 17.63 2.39x10°

lowest RMSE and score because of one fault mode. Finally,
we have compared our proposed LSTM model with other
method published in the last few years on C-MAPSS sensor
degradation dataset. The validation of model is investigated
by RMSE and score function values which is presented in
table 9. Our proposed model achieves state of the art per-
formance on FDOO1 and FDOO3 sub-dataset with minimum
RMSE, score values and it shows second best result on FD002
and FD004 sub-dataset. The minimum values of FDOO1 and
FDO003 are lower than FD002 and FDO004 because of the
irregular behavior of sensor degradation data. The accuracy
significantly depends on the improved automatic piece wise
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linear degradation function which decides how early you
need to provide the maintenance operation by determining
the starting point of the degradation.

The robustness of our proposed model is showed by pre-
dicting the full life cycle time of few randomly selected test
engines in Figures 7-10. Fig. 7 shows the actual and predicted
degradation results of RUL of four different types of engines
from a total set of 100 engines for validating the performance
of model for FDOOI. In a similar manner, Fig. 8-10 shows
the actual and predicted results of full cycle for other three
sub-units. From these prediction graphs, we analyze that the
predicted and actual degradation of test engine in FDOO1 and
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FIGURE 7. RUL Prediction of 4 engines in FD0OO1 sub-dataset (a) engine
# 6 (b) engine # 20 (c) engine # 42 (d) engine # 90.
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FIGURE 8. RUL Prediction of 4 engines in FD002 sub-dataset (a) engine
# 1 (b) engine # 40 (c) engine # 84 (d) engine # 150.

FDO003 sub-dataset are very efficient and accurate as shown in
Fig. 7 and Fig. 9 but for FD002 and FD004, we have seen that
there was some irregular and abrupt changes in the predicted
results while tracking the actual target RUL of test engine due
to the complex nature of theses sub-datasets, this is shown
in Fig. 8 and Fig. 10. In case of prediction on actual RUL
having a plot similar to a straight line as shown in Fig. 9(b),
our model performs quite good on tracking the degradation
trends obtained by applying piecewise linear function on a
target labels.
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FIGURE 9. RUL Prediction of 4 engines in FD003 sub-dataset (a) engine
# 1 (b) engine # 18 (c) engine # 48 (d) engine # 75.
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FIGURE 10. RUL Prediction of 4 engines in FD004 sub-dataset (a) engine
# 15 (b) engine # 73 (c) engine # 155 (d) engine # 202.

To conclude, in what follows we reason why the pro-
posed prediction framework is able to yield better results
than the existing equivalent models. The proposed frame-
work consists of multiple stages from correlation analysis
to LSTM network. The significant stages in this framework
that greatly enhance the overall accuracy of model are cor-
relation function to filter out irrelevant sensor variables as
given in Fig. 2, and the estimation of initial RUL value
with piecewise linear function as given in algorithm 1. This
function gives the starting point of degradation for sensor
data, and hence, we have used those values for training
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our deep LSTM network. Moreover, the hyper-parameters
selection for the neural network plays a significant role on
the effectiveness of model. Therefore, in our research work,
the hyper-parameters have been picked through an iterative
grid search based approach as shown in Table-6. Thus, these
steps when combined in a single prediction pipeline achieved
optimum results compared to the existing methods on all the
four sub-units, and its tracking performance on the complete
life cycle time prediction will be beneficial in preventing the
real life failures of machines.

VI. CONCLUSION & FUTURE DIRECTION
This work presented a LSTM based model for predicting
the RUL of turbofan engines. The proposed work shows that
LSTM model when combined with effective pre-processing
steps results in highly accurate RUL predictions. In addition
to widely used pre-processing steps like feature selection,
filtering and normalization, this work proposed an improved
piecewise linear degradation model which estimated the ini-
tial RUL valuewhich is the starting point of the degradation.
This value had a great impact on the RUL prediction accuracy.
LSTM network of the proposed model which consisted of a
combination of multiple LSTM layers, dropout layers, fully
connected layers and a regression layer, was tested on multi-
ple hyper parameter combinations to achieve the best result.
The proposed model was tested on the C-MAPSS turbofan
engine simulation dataset. the prediction accuracy depends
upon various number of parameters which include parameters
for initial RUL calculations and hyper parameters for LSTM
model. It was observed that due to different dynamics of each
sub dataset, it is better to use a separate prediction model for
each sub-units instead of a single model for the whole dataset.
RUL predictions of the proposed model were compared with
recent benchmark publications and showed higher prediction
accuracy. The threshold value and the window size are two
important parameters in the degradation model which had
great impact on the model accuracy. In future, this approach
can be considered for online problems and other machines.
In future, we will further integrate novel deep learning
algorithms into our prediction pipeline for processing the
complex and real-world sensor data as opposed to traditional
techniques. In the field of prognostics, normally we don’t
get large amount of real-world data for industrial machines
specially in-case of faulty conditions. Therfore, we need to
develop such novel methods that can be able to train on small
dataset, but, it predict the output effectively on large scale
practical data. Basically, we requires such types of models,
which have strong generalization capability with respect to
output. Morever, for further improvements, we have to eval-
uate the performance of models on other publicly available
dataset.
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