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ABSTRACT In the era of industry 4.0, safety, efficiency and reliability of industrial machinery is an
elementary concern in trade sectors. The accurate remaining useful life (RUL) prediction of an equipment
in due time allows us to effectively plan the maintenance operation and mitigate the downtime to raise the
revenue of business. In the past decade, data driven based RUL prognostic methods had gained a lot of
interest among the researchers. There exist various deep learning-based techniques which have been used
for accurate RUL estimation. One of the widely used technique in this regard is the long short-term memory
(LSTM) networks. To further improve the prediction accuracy of LSTM networks, this paper proposes a
model in which effective pre-processing steps are combinedwith LSTMnetwork. C-MAPSS turbofan engine
degradation dataset released by NASA is used to validate the performance of the proposed model. One
important factor in RUL predictions is to determine the starting point of the engine degradation. This work
proposes an improved piecewise linear degradation model to determine the starting point of deterioration
and assign the RUL target labels. The sensors data is pre-processed using the correlation analysis to choose
only those sensors measurement which have a monotonous behavior with RUL, which is then filtered
through a moving median filter. The updated RUL labels from the degradation model together with the
pre-processed data are used to train a deep LSTM network. The deep neural network when combined with
dimensionality reduction and piece-wise linear RUL function algorithms achieves improved performance
on aircraft turbofan engine sensor dataset. We have tested our proposed model on all four sub-datasets in
C-MAPSS and the results are then compared with the existing methods which utilizes the same dataset in
their experimental work. It is concluded that our model yields improvement in RUL prediction and attains
minimum root mean squared error and score function values.

21 INDEX TERMS Deep learning, long short-term memory networks, remaining useful life, turbofan engine.

I. INTRODUCTION22

We are living in an era of industrial automation where our23

day-to-day activity depends heavily on a wide range of elec-24

trical and mechanical equipments varying from agriculture,25

The associate editor coordinating the review of this manuscript and

approving it for publication was Fu-Kwun Wang .

process industry, power systems to the feild of transporta- 26

tion [1]. Every system requires maintenance operation at 27

some point in time [2]. There are three types of maintenance 28

techniques used in industries, reactive maintenance, preven- 29

tive maintenance and predictive maintenance. In reactive 30

maintenance repair operation is consider only when machine 31

failure has occurred. In preventive maintenance the failure 32
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can be prevented by performing the time-based maintenance33

operation, while the predictive maintenance (PdM) lets you34

estimate the time-to-failure of an equipment for scheduling35

the maintenance tasks [3]. PdM in contrast to the other two36

approaches needs to acquire various machine parameters for37

condition based monitoring (CBM) of industrial equipment.38

This technique focuses on forecasting the error by model-39

ing the degradation trends between input sensors and time-40

to-failure duration of the machine. So, the benefits of this41

maintenance strategy is that we can eliminate unplanned42

downtime, reduced maintenance costs and maximize the43

machine lifetime for safety critical circumstances. One such44

example is aircraft engine which requires continuous mon-45

itoring of the engine performance. The fault diagnostics46

and prognostics of aircraft engine has gained great attention47

over the last few decades [4], [5], [6], [7]. One important48

component in aircraft engine maintenance is to accurately49

determine its remaining useful life (RUL) for reducing the50

maintenance costs while attaining the reliability [8], [9]. RUL51

prediction model is developed based upon the degradation52

trends among the various condition monitoring sensors. This53

model helps in development of maintenance strategy in a54

targeted manner to eliminate unplanned downtime and maxi-55

mize machine lifetime for safety critical circumstances. Early56

anomaly detection and timely warning of a failure is vital for57

maximum utilization of the system. There are basically three58

types of prognostics techniques used for estimating RUL,59

physical model-based approaches [10], [11], data-driven60

approaches [12], [13] and hybrid approaches [14].61

Model based approach initially required a comprehensive62

understanding of the physical architecture of the machine and63

then applying the laws of physics to obtain the mathematical64

model of the machine for RUL estimation [15]. Mathemat-65

ical models often take some simplifying assumptions with66

uncertainty management for a complex industrial machinery,67

which can impose serious limitations on these techniques and68

hence degrade the RUL prediction accuracy [16].69

Data-driven based prognosis approaches use various sta-70

tistical and machine leaning (ML) algorithms to discover the71

trends or patterns in the underlying sensor data to estimate72

RUL of the system. These techniques are suitable for com-73

plex industrial machinery and further, it does not require a74

thorough understanding of a complete engine or the process.75

Hybrid method combines both the physics and data-driven76

based model techniques [17].77

In the past decade, data-driven based prognostics meth-78

ods have been exploited by many researchers. These mod-79

els estimate the RUL by analyzing the degradation trend80

and target trajectory of sensor data. Deep learning methods81

like autoencoder, convolutional neural networks (CNN), long82

short-term memory (LSTM) networks and their varianta and83

combinations have achieved a massive success in the fields84

of computer vision, speech recognition, video segmentation85

and predictivemaintenance [18]. Themajor drawback of deep86

learning algorithm is that it requires a large volume of data87

for offline training and in the field of prognostics, it is very88

challenging to gather run time-to-failure sensor data espe- 89

cially for new machines. One way is that we can intentionally 90

run a new system upto the failure mode but it is very pro- 91

longed, highly undesirable and expensive approach. Due to 92

these limitations, researchers prefer some public datasets for 93

the evaluation. In this work we have used commercial mod- 94

ular aeropropulsion system simulation (C-MAPSS) dataset 95

which is basically a simulation of turbofan jet engine dataset 96

provided by NASA prognostics center of excellence [19]. 97

C-MAPSS dataset consist of four different multivariate time 98

series units with different number of engines and each engine 99

having different RUL. The dataset consists of twenty one 100

sensors with three operating conditions with respect to time 101

cycle for each engine. 102

In recent times, various work has been done on estimating 103

the RUL of turbofan engine using deep learningmethods such 104

as CNN, LSTM along with their combinations and variants. 105

LSTM networks have shown better results as compared to 106

CNN based models [20], [21]. LSTM have shown excellent 107

results because they are suitable for time-series data, they 108

can learn the temporal features in multivariate system and 109

minimize the root mean square error (RMSE) with respect 110

to target predictions. In this paper, a LSTM based model 111

has been proposed for RUL prediction of a turbofan engine. 112

LSTM network can learn the association between target RUL 113

values and sensor data but it alone cannot achieve state of the 114

art performance due to various limitations like outliers, noise 115

in the sensor values, un-normalized data and un-correlated 116

sensor values. These shortcomings can reduce the perfor- 117

mance of a LSTMnetwork [22]. In this paper, we are focusing 118

on implementing some preprocessing steps on the sensor data 119

before it can be set as an input into the LSTMnetwork. LSTM 120

network when combined with effective pre-processing steps 121

have the power to estimate the RUL with highly accuracy. 122

These added steps involve correlation analysis, data filtering, 123

normalization, and a modified piece linear degradation model 124

for determining starting point of the degradation. It has been 125

shown that the starting point of degradation which is also 126

called the initial RUL has a great impact in determining accu- 127

rate RUL predictions [23]. Our proposed modified piecewise 128

linear degradation models help in efficiently calculating the 129

starting point of degradation which in combination with the 130

other pre-processing steps and LSTM network accurately 131

predicts RUL for the given engines. 132

The main contributions of our work are enumerated as 133

follows: 134

1) Novel piecewise linear degradation model for deter- 135

mining the starting point of engine degradation is 136

proposed. 137

2) An LSTM network with effective pre-processing steps, 138

i.e. correlation analysis with data normalization and 139

moving median filter is proposed, which when aug- 140

mented with the linear degradation model leads to an 141

improved RUL prediction. 142

3) Hyperparameter for the proposed prediction model 143

has been selected through iterative grid search based 144
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approach [24] to further improve the accuracy of our145

framework.146

The organization of remaining paper is given as fol-147

low. Section 2 gives the detailed literature review on148

the existing methods on turbofan engine RUL estimation.149

Section 3 explain the dataset taken for experimental testing.150

Section 4 discusses the proposed methodology with compre-151

hensive block diagram that elucidate the entire work flow.152

Section 5 discusses the experimental results. Section 6 is the153

conclusion.154

II. RELATED WORK155

This section briefly reviews the existing literature on the tur-156

bofan engine RUL estimation. [25]. Traditional model-based157

techniques usually employ algorithms like Kalman filter158

(KF), extended Kalman filter (EKF) and particles filters to159

come up with mathematical formulation of machine based on160

multi sensor time series sequence data [26], [27], [28]. Clas-161

sical degradation method such as Eyring model or Weibull162

distribution was implemented in [29]. Salahshoor et al. [30]163

used a unified framework of EKF based design for sen-164

sor data fusion algorithm to further enhanced the detec-165

tion and diagnosis of degradation trends and system faults.166

Ordonez et al. [31] implemented the auto-regressive inte-167

grated moving average (ARIMA) model and support vector168

machine (SVR) methods collectively to estimate the RUL.169

The desired features can be created by analyzing prior learn-170

ing about the degradationmodels as presented in [32]. In [33],171

it is suggested that failure thresholds or degradation state esti-172

mation is no longer required in learning-oriented approach.173

Khelif et al. [33] presented machine learning based support174

vector regression (SVR) model to project the direct associa-175

tion between multivariate sensor data or health index and the176

aircraft turbofan engine RUL.177

Across all these techniques for turbofan engine RUL pre-178

diction, deep neural network-based methods have gained vast179

popularity. Zhang et al. [34] introduced a multi-objective180

evolutionary algorithm to expand and organized the deep181

belief network into multiple parallel networks simultane-182

ously to accomplish the two convicting objectives i.e. diver-183

sity and accuracy. These networks attained a fine RUL184

prediction accuracy especially in case of complicated oper-185

ations and in the presence of noise in input data [35], [36].186

Saeidi et al. [37], proposed a naive Bayesian classification187

algorithm to measure the health index for turbofan engine.188

The pre-processing step takes the sensor data as input and189

apply moving average filter for removing the noise. It further190

categories the dataset into four different categories on the191

basis of time cycles i.e. time cycle values between 0 to 50 is192

labeled as urgent case which need immediate maintenance193

and further categorization is also done in a similar manner.194

Zheng et al. [38] proposed LSTM network combined with195

piece wise linear function for RUL for estimating the degra-196

dation trends. It achieves good results by applying piece197

wise linear function and data normalization. Wei et al. [39]198

proposed a Bi-LSTM network which can learn high level199

features in both direction and it can run training pass from 200

forward to backward and backward to forward with back 201

propagation algorithm. Wang et al. [40] proposed a hybrid 202

network for turbofan engine in which trends and hidden 203

pattern in long sequence sensor data is identified through 204

LSTM network and short duration sequence was analyzed 205

through time window method with gradient boosting regres- 206

sion (GBR). This method has two stages, offline stage to 207

learn degradation pattern with LSTM network and TW-GBR 208

used in online stage for extracting short sequence data. It also 209

implemented standardization and sensor selection criteria. 210

Babu et al [41], proposed deep CNN regression network for 211

RUL estimation. The network consist of two dimensional 212

convolutional layers for feature extraction followed by a fully 213

connected regression layer for prediction. For 2-D convolu- 214

tion, first we have to convert our 1-D sensor data into 2-Dwith 215

one dimension was taken as time and other taken as sensors 216

amplitude. This model also extracts the spatial features very 217

efficiently. Li et al [42], proposed deep convolutional neural 218

network (CNN) for RUL estimation. The architecture of CNN 219

is modelled in such a way that feature can be extracted from 220

prepared 2-D sensor data by passing raw data into convolu- 221

tion layers, then flattened layer is added to convert extracted 222

2-D features into 1-D so that it can be given as an input to 223

multilayer perceptronmodel with dropout layer for predicting 224

RUL. Jayasinghe et al [43], proposed temporal convolution 225

in which combination of CNN-LSTM network was used for 226

turbofan engine dataset. The layers of the model have stacked 227

by first applying data augmentation to create similar type of 228

data for avoiding overfitting followed by data normalization 229

which was then followed by 1-D convolution for feature 230

extraction, lastly fully connected layer act as the bridge 231

between output of 1-D convolution layer and input of LSTM 232

layer. LSTM layer was then followed by fully connected layer 233

for output prognosis prediction. Hong et al. [44], proposed a 234

similar kind of network by stacking a 1-D convolution layer, 235

residual layer, LSTM layer and a Bi-LSTM layer. Correlation 236

analysis on sensor data for turbofan engine dataset was also 237

performed. Mo et al. [45], proposed multi-head neural net- 238

work for RUL prediction of turbofan engine. This network is 239

different from the series network in such a way that they have 240

implemented the parallel branches of CNN layer in series 241

with LSTM network. Furthermore, fisher method in com- 242

bination with recursive least squares and single exponential 243

smoothing was also employed to find the prediction error 244

and given it as an additional input into CNN-LSTM head for 245

optimum performance. Zhao et al. [46], proposed an adjacnet 246

neural networkmodel for leanring the degradation pattern in a 247

sensor data. The degaradation patternmapping learns through 248

morkov property i.e. estimating the next state of sequence 249

with the assist of only present states. 250

Many researchers have used a piecewise linear degradation 251

model in RUL prediction techniques. In this model, the start- 252

ing point of the degradation is estimated often referred to as 253

the initial RUL, many authors [47], [48], [49] have chosen its 254

value on the basis of observations and no clear mechanism 255
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of selecting it has been proposed. Lan et al. [23], proposed256

an LSTM algorithm for RUL prediction, it presented a piece257

wise linear degradation model. The dataset is divided into258

time windows and difference between geometric distance259

(Euclidian) of each window is used to determine the value260

of initial RUL or the starting point of degradation. They have261

validated their model on only FD001 sub-unit of the dataset262

and selection of window size and thresholds are also not263

explained. Inspired by the results of this model, we have pro-264

posed an improved version of the algorithm, which is applied265

to the complete dataset and results in overall increased in the266

accuracy of our prediction model.267

The existing methods presented so far showed impressive268

performance on RUL tracking; our proposed method further269

improves the performance of these networks − summarized270

in the results and discussion section. This is mainly due to the271

fact that we have incorporated and implemented effective data272

preprocessing steps into our prediction pipeline. In the previ-273

ous works, pre-processing stages have not been completely274

exploited in order to find the right combination for enhanc-275

ing the learning capability of deep learning algorithms. So,276

we propose one such combination along with the training of277

LSTM with a hyperparameter selected through grid search278

algorithm in order to achieve the optimum performance.279

A. PROBLEM STATEMENT280

The predictive maintenance techniques is different from the281

reactive and preventive maintenance techniques in terms of282

safety, reliability, efficiency and unnecessary downtime for283

aircraft turbofan engine [50]. These methods ensure reliable284

solution managing the health of turbofan engine to reduce285

the downtime, which leads to significant loss in revenue.286

Therefore, failures in a turbofan engines can cause catas-287

trophic accidents due to its sensitive nature and it needs to be288

estimated prior in time so that we can provide maintenance289

services in order prevent any fatal incident.290

In current scenario, due to the implementation of291

cyber-physical system (CPS, that link the cyber world with292

a physical world, called smart manufacturing), the industrial293

sector such as health care, nuclear power plant etc. gener-294

ate enormous volume, velocity, veracity and variety of data.295

Therefore, with the rise of AI and availability of hardware296

computing resources, data driven based artificial intelligence297

(AI) predictive maintenance models have a capability to pro-298

cess big amount of real-world machines data with ease and299

predict heath index of aircraft turbofan engine in time before300

failure to prevent unwanted breakdown [51].301

III. DESCRIPTION OF C-MAPSS TURBOFAN ENGINE302

SIMULATION DATASET303

C-MAPSS dataset released by NASA is developed in304

MATLAB environment as a tool for simulation of turbofan305

engines. C-MAPSS dataset was published in 2008 for 1st306

International conference on PHM [19]. This dataset was pub-307

lished some time ago but still it has been actively used in308

research for evaluating the prognostics model with a focus on309

accurate estimation of RUL. This model have fourteen input 310

parameters related to five rotating components of engine to 311

simulate different degree of fault and deterioration of the 312

model. A total of twenty one variables out of fifty eight differ- 313

ent sensor responses is considered from themodel for predict- 314

ing the RUL. The three operating parameters of C-MAPSS 315

simulation model are given in table-1 and the details of 21 316

sensors are given in table-2. The legends of last column in 317

table-2 Trends indicates the degradation pattern of sensor data 318

with respect to time, where ‘‘∼ ’’ represents irregular sensor 319

behavior, I represent the parameter increasing with time and 320

lastly,D is the variation of parameter that decreases with time. 321

TABLE 1. Operating parameters of C-MAPSS.

The main components of turbofan engine include nozzle, 322

low pressure turbine (LPT), high pressure turbine (HPT), 323

fan, low pressure chamber (LPH) and high pressure chamber 324

(HPC). There are total of fourteen editable input parameters 325

such as fuel flow, HPC efficiency modifier, LPT efficiency 326

modifier etc. that allows you to simulate various operating 327

behaviors. C-MAPSS sensor trajectories are further divided 328

into four different units namely FD001, FD002, FD003, and 329

FD004 corresponding to different operating conditions and 330

fault modes. This dataset contains 709 engines for the training 331

and 707 engines for testing which are of same type but with 332

distinct manufacturing variation and initial wear, unknown to 333

the researcher. The description of four sub dataset units with 334

train and test trajectories and other details are given in table-3. 335

In the start, all the engines in each sub-dataset are operating 336

normally as seen from sensor behavior and originate the 337

fault sometime later in their life cycle. In training sequence, 338

complete run-to-failure data is available with a specified RUL 339

labels as faults grows in the system and in test time degrada- 340

tion values are given up to some time prior to engine failure. 341

Moreover, with different initial health conditions, there are 342

distinct number of time cycle even for the same engine in 343

dataset. The objective of this dataset is to predict remaining 344

useful life cycle of engines in each sub-unit. The actual RUL 345

label are given in the test data, which is used to validate the 346

prediction results. 347

It can be observed from table 3 that different sub-units of 348

the main dataset have different running life cycle time e.g. 349

in FD004 test data, the maximum life cycle time is 486 and 350

minimum time 19. 351

IV. PROPOSED METHODOLOGY 352

This paper proposes LSTM based RUL prediction model for 353

turbofan engines, which proves to bemore robust thanmost of 354

the existing models available in the literature. The increased 355
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TABLE 2. Output parameters C-MAPSS turbofan engine datasets.

TABLE 3. Each sub-unit of C-MAPSS dataset.

robustness stems from the fact that we have integrated effi-356

cacious techniques from multiple alternatives and presented357

two types of improvements to be made in the LSTM based358

prediction model. The first type of improvement is the addi-359

tion of more effective pre-processing steps, which in return360

puts a great influence on LSTM training. Secondly, enhancing361

the LSTM training procedure by a grid search approach for362

computing the effective hyper parameters. This framework363

manages to achieve higher prediction accuracy, measured364

in temrs of RMSE and score function values, than several365

existing works − see Section 5 for details. The framework366

of our proposed model is shown in Fig. 1. The specific steps367

of the prediction model are explained below.368

A. CORRELATION ANALYSIS369

First, we must prepare our health-to-failure data into an370

appropriate form for improving the accuracy of the LSTM371

network for effective training operation. C-MAPSS dataset372

consists of three operational settings and twenty one sen-373

sor signals of engines with machine life span length. These374

signals are then given as an input to correlation analysis375

method [31], [44], [52], [53] to discover the relevance of376

features with RUL. The algorithm excludes the sensor values377

which have a very little or zero correlation with RUL, this 378

includes some parameter in engines that are basically con- 379

trolled by a feedback controller and results into a near con- 380

stant values or having an oscillatory behavior. These kinds 381

of parameters do not play much part in RUL predictions. So, 382

the selected feature signals are then given as an input into the 383

data filtering stage. Statistical evaluation of turbofan engine 384

degradation dataset gives us certain insight into the multivari- 385

ate sensor data and furthermore reach towards the conclusion 386

that whether a considered sensor is adequate for training 387

the network or not. We can accomplish this abstraction by 388

computing the value of correlation coefficient ’r’ which is a 389

relationship between the sensors and RUL labels. 390

r =
conv(x, y)
sxsy

(1) 391

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)(
∑n

i=1(yi − ȳ))
(2) 392

where conv (x,y) is covariance between input sensor data (x) 393

and output RUL label (y), x̄ and ȳ are the mean of input sensor 394

data and RUL label, n is the number of variables in a dataset 395

and Sx & Sy are standard deviation of the two signals x and y 396

respectively. 397

In [44] a correlation analysis is employed for dimension- 398

ality reduction to obtain the accurate results and to reduces 399

the complexity of sensor data. This technique is primarily 400

limited to FD001 sub-unit of C-MAPSS dataset, we have 401

extended this approach to entire degradation dataset and com- 402

prehensively investigate the trends and irregular behaviors by 403

analyzing the correlation matrix heat map [54] of C-MAPSS 404

turbofan engine dataset. The correlation matrix heat map 405

cells show the association of three operating settings and 406

21 sensors with output RUL labels as shown in Fig. 2. The 407

correlation matrices are converted into percentage with dark 408

green color representing higher correlation as opposed to 409

light color which depict a low correlation value. The number 410

of sensors selected from each sub-unit after the correlation 411

process are given in table 4. After analyzing the correlation 412

coefficient of sensor degradation dataset, we have concluded 413

that 14 out 24 parameters in FD001 and 16 out of 24 parame- 414

ters in FD003 reflect high strength of correlation with defined 415

or monotonous behavior and we have omitted those variables 416

that indicates less than 10% of correlation with the output 417

RUL label. For the case of FD002 and FD004, correlation 418

coefficient values in a heat map illustrated that these variables 419

have little degree of association with output RUL labels and 420

TABLE 4. Sensors selection based on correlation matrix.
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FIGURE 1. Proposed Framework for RUL predictions.

this correlation is more than 15% for best possible case.421

After analyzes the correlation matrix, un-correlated sensors422

are removed from the training process which are listed in table423

5. So, only highly correlated sensor data are used for training424

the LSTM network which also increases the speed of learning425

for estimating RUL.426

B. FILTERING427

The correlated data is passsed through a moving median filter428

for removing the outliers and noises in the sensors data.429

The choice of filter is made on its ability in removing the 430

outlier while preserving the high and low frequency contents 431

in sensor data and avoids any loss of data values. The time 432

window size ofmovingmedian filter is adaptive and varywith 433

respect to sensor values. The moving median filter belong to 434

a type of non-linear digital filter, which is used to remove 435

random unwanted noise especially when there is a high spike 436

and short-term outlier present in the data points but preserving 437

the high frequency information contents [55]. Median filter is 438

used to identify such sensor values in turbofan engine which 439
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FIGURE 2. Correlation Matrix of C-MAPSS Dataset.

TABLE 5. Excluded sensor list.

are considerably different from the other data points and then440

eliminate them. The algorithm of moving median filter is441

accomplished by sliding the window of appropriate length442

over the sensor data entries by entries and then replacing the443

corresponding values by computing the median of neighbor-444

ing points specified in the window. Mathematically it can be445

expressed as:446

yji[n] = median(x ji [n], . . . , x
j
i [n+ T ]) (3)447

where n = total number of sensor data points in each engine,448

i = sensor variable, j = engines, x ji [n] denotes input data for449

sensor i in engine j and yji[n] returns themedians values across450

each sensor variables from FD001 to FD004 with a same451

dimension as of input data.452

The algorithm of filter is accomplished by sliding the453

window of length T over the neighboring elements in sensor454

data and computed the median for each considered window455

and median operation is then performed on these array vector456

to get the filtered output after applying ascending operation.457

So this processed data is then given to the next stages and458

hence put a significant impact on the output.459

C. DATA NORMALIZATION460

The range of sensor output after analyzing from the graphs461

is from tens to thousands and if we use these raw values462

for training the network then accuracy will drop signifi-463

cantly [56]. The filtered signals are normalized to have same464

degree of range for efficient training of the network. Z-Score465

normalization [57] is used in this paper which first compute466

themean (µ) and standard deviation (σ ) of each feature vector467

and then apply the following operation on each sensor output. 468

yni =
xci − µ

n

σ n
(4) 469

where, yni is the normalized value at ith time cycle for sensor 470

n, µn is the mean value of all output of sensor n, σ n is the 471

standard deviation of all n sensor output. 472

D. IMPROVED PIECEWISE LINEAR DEGRADATION MODEL 473

It is observed that RUL is linear decreasing function with 474

respect to time as the efficiency of the system degrades. How- 475

ever, as the system starts their operation, there is no degrada- 476

tion present in the sensor readings. This pre-processing step is 477

basically implemented on output labelled data that takes input 478

from previous correlation analysis stage and employs a piece 479

wise linear degradation function on sensor values for finding 480

the initial RUL or the starting point of degradation. All the 481

labels till this deterioration point are constant out to the initial 482

RUL value while the remaining RUL lables are represented 483

as a linear line from that degrdation point up to zero life cycle 484

time. 485

In this paper, we have presented an improved version of 486

the automatic piece wise linear function [23] for output RUL 487

labeling. This approach is self-governing that is sensitive on 488

variation of the degradation trends and will automatically 489

calculate the early point of sensor deterioration. The com- 490

putation of initial RUL starts by dividing entire sensor time 491

cycle with non-overlapping pattern into equal sized window 492

length of w and extract the sensor data from a given windows. 493

We then calculate the centroid of each considered window 494

by determining their mean values and geometric distance 495

calculation is performed by subtracting the two subsequent 496

windows to generate the trends in sensor data. As there are N 497

number of time cycles for given variable and window length 498

ofw results into (g=N/w) geometric points for a given dataset. 499

These geometric distances are computed using Euclidean 500

distance method which is then squared and the degradation 501

pattern from g values is evidently detectable from the result- 502

ing plot as shown in Fig. 3. The centroid of window w1 is 503

first computed and subtracted from the other windows in a 504

sequence to compute the variation in sensor values to reach 505

on a point of deterioration based on the threshold value. The 506

inflection point of the curve indicates the increase in sensor 507

trends which is the initial RUL value. 508

The proposed algorithm is given as Algorithm-1 is imple- 509

mented for each engine. The minimum value of initial RUL 510

among all the engines in a sub-unit is taken as the initial RUL 511

for that sub-unit. Threshold level is dependent on the rate of 512

rise in raw sensor data, its visual perception and how early 513

we need to predict the faults in the machines for maintenance 514

purpose. 515

In this paper, we have set different ranges of threshold 516

(0.01 to 0.2) and window size (5,12) for calculating the initial 517

RUL and validating the performance of our model. We have 518

used different values of window sizes in order to compute 519

the knee point in sensor data effectively. This choice stems 520
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FIGURE 3. Degradation process represented in the form of windows of
time cycle.

Algorithm1 Improved Piece-Wise Linear Function for Initial
RUL Calcultion for Each Engine
1: Inputs: Time cycle values (tc) and Sensors data after

filtering and normalization
2: Parameters: w = window length, g = total num-

ber of windows, w1,w2. . .wg = subsequent windows,
Th=threshold

3: Output: Initial RUL label (irul)
4: e = Extract sensors values from the given windows

(w1,w2. . .wg)
5: m = Calculate the centroid of each window by

computing the mean for each window
6: for i = (2 to g− 1) do
7: s = Subtract the mean of two windows (w1,wi)
8: sq = square (s)
9: if sq >= Th then

10: irul = tc - w * i
11: else
12: i = i+ 1

End

from the fact that by further increasing the window size, the521

algorithm bypasses the knee point, which is the starting point522

of increasing/decreasing trend in sensor variables. Fig. 3 con-523

firms that the trend in sensor data changes within few cycles,524

and if we further increase the window size then we cannot525

achieve true inflection point in these variations. As a result,526

initial RUL computation will not reflect the ideal knee point527

in the sensors’ behavior.528

E. LSTM MODEL DEVELOPMENT529

The data from the normalization stage with updated RUL530

labels from the degradation model is used to train a deep531

LSTM network. Our proposed LSTM model consists of532

LSTM layers, dropout layers, fully connected layers and the533

regression layer. The output node of fully connected layer is534

a regression layer that gives the estimated RUL of turbofan535

engine. Our proposedmodel consists of four layers connected536

FIGURE 4. Structure of a LSTM cell.

in a sequential manner with different number of hidden units 537

and a dropout layer is also added in between the LSTM 538

layers for enhancing the generalization of network to avoid 539

over fitting. It is then followed by two fully connected layer 540

with dropout layers and the final layer is the regression layer 541

as shown in Fig. 1. Fig.4 shows a basic LSTM cell that is 542

essentially consist of three control gates: input gate, forget 543

gate and output gate. The output of the cell is denoted by ht , 544

which is a short-term memory sate in a network and Ct is 545

considered as a long-term cell state. The first gate in an 546

LSTM cell is forgot gate ft , which is used to unlearn selective 547

information stored in previous LSTM cell. The forget gate 548

equation is given below. 549

ft = σ (Wf .[ht−1, xt ]+ bf ) (5) 550

where σ ( ), is called sigmoid activation function, which can 551

control operation of forget gate.Wf is the weight matrix, ht−1 552

short term state from previous cell, xt is the input of cell, and 553

bf is the bias vector of LSTM cell. The input gate controls the 554

new information entering into the cell through following two 555

equations: 556

it = σ (Wi.[ht−1, xt ]+ bi) (6) 557

C̄t = tanh(Wc.[ht−1, xt ]+ bc) (7) 558

where tanh = (ex − e−x)/(ex + e−x). This value is calculated 559

by the same short term state vector ht−1 which is further used 560

to update the new state of cell.Wi and bi is the weight matrix 561

and bias vector of an input gate respectively. The C̄t computed 562

from above equation is first filtered by it and then added to 563

the long term state of the cell.Wc and bc are the weight matrix 564

and bias vector. After computing the value of forget gate (ft ), 565

input gate (it ) and (C̄t ), long term state Ct of LSTM cell is 566

updated after applying given below matrix operation 567

Ct = ft ⊗ Ct−1 + it ⊗ C̄t (8) 568

where, ⊗ is basically element wise matrix multiplication 569

operation between a specified variable and Ct−1 is the pre- 570

vious state of LSTM cell. Finally the output of LSTM cell is 571

generated by the following two equation, 572

ot = σ (Wo.[ht−1, xt ]+ bo) (9) 573

ht = ot ⊗ tanh(Ct ) (10) 574
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The output state of LSTM cell ht , is obtained by filtering575

the output gate ot equation with a matrix of Ct . Wo and bo576

are the weight matrix and bias vector of the output equation.577

The values of the weight matrix and biases are computed by578

training the LSTM network.579

F. DROPOUT LAYER580

The dropout layer is added to avoid the overfitting which581

inherently occur while training the deep neural network [58].582

This regularization layer is added in between the fully con-583

nected layers and LSTM layers to increase the generalization584

of the whole algorithm to better track the predicted RUL585

with high accuracy. It drops some random portion of neuron586

according to the probability parameter defined in a network587

while remaining weights are trained by the backpropagation588

algorithm [59]. The expression for a dropout layer by choos-589

ing a linear activation function and considering the activity in590

unit i at layer h is given by the expression.591

Shi (I ) =
∑
I<h

∑
j

whlij S
l
j with S

0
j = Ij (11)592

where w is the weight and I is the input vector.593

G. FULLY CONNECTED LAYER594

The fully connected layers gets the data from the final com-595

bination of LSTM and dropiut layer, so that the features596

extracted from LSTM layer are used to generate the out-597

put [60]. Due to its fully connected nature between all the598

neuron present in the network, it has a large amount of599

weight parameters which needs to be computed by training600

the network. Fully connected layer along with a dropout601

layer is followed by single regression layer for predicting the602

RUL. The mathematical calculation of fully connected layer603

is expressed below.604

H0 = I (12)605

Hl = φ(h(l−1)Wfc + bfc) (13)606

where I is the input vector, φ is activation function of a607

neuron which is primarily a ReLu fucntion, hl−1 is output608

from the previous layer, Wfc is weight matrix of a specified609

fully connected layer, bfc is the bias vector and Hl is output610

at l th layer.611

H. INTERPRETATION OF OUR APPROACH612

We implement deep neural network combined with613

per-processing steps for efficient RUL prediction of turbo-614

fan engine. Furthermore, we have separately discussed the615

above-mentioned stages of prediction pipeline breifly in order616

to delineate a comprehensive understanding of our work.617

Therefore, to summarize our approach, we have presented618

a pseudo code of our proposed pipeline in Algorithm 2.619

I. HYPER PARAMETERS SELECTION620

LSTM training process involves many different parameters.621

These parameters have a great impact on the accuracy of622

Algorithm 2 Proposed Methodology

1: Inputs: Training Data,{δT = (x11 ,y
1
1),(x

1
2 ,y

1
2). . . .(x

E
N ,y

E
N )}

2: Parameters: N ← No. of sensor variables, E ← No.
of Engines, δN ← Filtered data, δC ← Correlated sen-
sors, M ← No of correlated sensors, δD ← Normal-
ized data, δP← Piece-wise linear RUL function, LN ←
No. of layers in LSTM, LD ← Doprout layers, RL ←
Regression layer, LF ← No. of neuron in FC layer, W
←Window Length, α← Learning rate, GD← Gradient
descent optimizer, Vs← Validation set, S tarc← Network
architecture parameters

3: Output: Performance Parameter,Opp←[RMSE,Score]
4: for i = (1 to E) do
5: for j = (1 to N ) do
6: δC = Correlation Analysis (x ij ,y

i
j)

end for j
end for i

7: for k = (1 to M ) do
8: δN = Median Filter(δkC ,W)
9: δD = Data Normalization(δkN , mean(δN ), SD(δN ))
10: δP = Piece-wise linear function(δkC )

end fork

11: S tarc← (LN ,LH ,LF ,α,GD,LD,Vs,RL ,δD,δP)
12: for l = (1 to T ) do
13: FD =Forward Pass (S tarc)
14: Et = Error(FD)
15: Bp = Back Propagation(Et )
16: Wnew = Wold + α*derivative(Bp)
17: bnew = bold + α*derivative(Bp)

end for l

18: Oipp← Calculate RMSE using equation 14.
19: Oi+1pp ←Calculate score function using equation 15.

the model. These parameters include learning rate, batch 623

size, number of layers, number of neurons in each layer, 624

optimizer and the training epochs. There is no definite rule 625

or process by which the best values of these parameters are 626

selected, generally an iterative grid search method is used to 627

get the best results. The model is run against different values 628

of these parameters and combination of values with best 629

result are recorded. Addition of more layers makes system 630

more complex and timing consuming for training but could 631

result in better predictions as compared to the single layer 632

network which are more suited to the simple problems. The 633

ranges/types of hyper parameters used for LSTM network 634

training are given in table 6. 635

J. EVALUATION METRICS 636

After network development, training of LSTM network is 637

carried out and selection of hyper parameters is made on 638

the basis of root mean square error (RMSE) between actual 639

RUL and predicted RUL for each engine of the turbofan 640

dataset. Our proposed LSTM model is evaluated using two 641

widely used evaluationmethods: RMSE and scoring function. 642
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TABLE 6. Ranges/types of hyper parameters in LSTM model training.

RMSE is the most used evaluation metric for predictions643

used by the researcher for past decades. It is a symmetrical644

scoring function which means it can assign equals weights or645

penalties to both early and late prediction. The equation of646

RMSE is given below.647

RMSE =

√∑N
i=1 e

2
i

N
(14)648

where ei, is the prediction error and N is the total number649

of samples. In PHM08 data challenge competition, a score650

function was employed to evaluate the performance of the651

prediction model [61]. It is an asymmetrical score function652

which means it can assign more weights to late prediction as653

opposed to early prediction. It is describedmathematically as:654

score =
N∑
j=1

sj (15)655

sj =

e
−hj
13 − 1, if hj < 0

e
−hj
10 − 1, if hj ≥ 0

(16)656

The performance of the model will degrade at greater extent657

in case of delayed prediction as compared to the early predic-658

tion. The prediction error between the actual and predicted659

RUL is close to zero then the value of score and RMSE is660

also smaller with advancing towards zero.661

V. RESULTS AND DISCUSSION662

In this section, a detail analysis on RUL prediction results by663

our proposed model is presented. There are various param-664

eters that affects the model’s accuracy. We can categorized665

them into two sets, first are the parameters related to the initial666

RUL value, these includes window size and threshold values.667

Second ones are LSTM hyper parameters. Combining these668

two sets of parameters gives a very large set of parameters669

affecting the model’s accuracy. It is evident from the existing670

literature on deep learning techniques that there is no straight671

forward way of determining a single best set of values for672

these parameters. This requires very extensive and detailed673

simulations to analyze it further and an iterative grid search674

approach is followed. The simulation model is developed in675

MATLAB and hundreds of runs were carried out against the676

parameters ranges defined in the last section. For comparison,677

TABLE 7. Selected LSTM models with hyper-parameters values.

FIGURE 5. RUL Prediction on Test Set, (a) FD001 (b) FD002, (c) FD003,
(d) FD004.

four LSTM models which gave us encouraging results were 678

further tested and tuned for best performance. The models 679

along with the hyper parameters are given in table-7, LSTM 680

model structure remains same as described in the Fig.1. The 681

output of the pre-processing stages which processed sensor 682

data and RUL output labels are given as an input into the 683

LSTM network. The network is trained using the different 684

values of the hyper parameters given in the table-7 and the 685

window size and threshold ranges defined in the last section. 686

After following an iterative grid search approach, the best 687

hyper parameters are selected for the proposed model on the 688
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TABLE 8. Model accuracy in term of RMSE and Score function values for the four LSTM models.

basis of lowest RMSE and score function values. The results689

of the these four LSTM models against different thresholds690

and window sizes values are given in table 8.691

The results in table-8 show that there is no single set of692

best values parameters for the whole dataset. The best values693

of parameters for RMSE and score function are different for694

each sub-unit. For FD001 case the best results are with using695

LSTM Model-2 and window size and threshold values of696

12 and 0.2 respectively. Similarly, for FD002 best results are697

with using LSTM Model-2 and window size and threshold698

values of 12 and 0.2 respectively. For FD003, best results are699

with LSTM Model-3 and window size and threshold values700

of 12 and 0.2 respectively and for FD004, best results are with701

using LSTM Model-1 and window size and threshold values702

of 12 and 0.2 respectively. It can be observed that although703

LSTM model hyper parameters are different for different704

sub-units, the best values of window size and threshold are705

same. The minimum initial RUL value among all engines706

in a sub dataset is selected as its initial RUL. The initial707

RUL values achieved from the training part of sub-units708

FD001 to FD004 are 78, 103, 79 and 87 respectively. These709

values are then used in the testing stage for each sub-unit.710

So, instead of using a single initial RUL value for the entire711

dataset which is used in most of the existing literature, we can712

achieve improve prediction accuracy by using separate initial713

RUL value and LSTM hyper parameters values for each714

sub-unit.715

The prediction results using the best models are shown in716

Fig. 5, which shows highly accurate RUL predictions. The717

x-axis denotes the number of engines in a specific sub-unit718

and y-axis is the result of RUL prediction for each engine.719

The red and blue legends on the graph indicate the predicted720

and true value of RUL. Moreover, these results are further721

FIGURE 6. Histogram Distribution of Error, (a) FD001, (b) FD002,
(c) FD003, (d) FD004.

observed by histogram distribution of prediction error in 722

Fig. 6. 723

The histogram distribution of four sub-units indicates the 724

variation of RMSE across the dataset. The x-axis indicates 725

the error or difference between predicted observation and true 726

RUL while the y-axis indicates the frequency of occurrence 727

for the given error. It can be seen from the figure that large 728

concentration for frequency of error lies in the range of 729

[-5 0] in FD001 & FD003 while for FD002 and FD004, 730

it is concentrated in [-10 0]. The data description in section 731

III shows that FD002 and FD004 has 6 operating conditions 732

with more than 200 tracking trajectories. In correlation anal- 733

ysis, we have demonstrated that these two sub-units pos- 734

sess irregular behavior so RUL prediction for these complex 735

sequences is a challenge for the prediction model. FD001 has 736
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TABLE 9. Comparison of RMSE and score with other methods.

lowest RMSE and score because of one fault mode. Finally,737

we have compared our proposed LSTM model with other738

method published in the last few years on C-MAPSS sensor739

degradation dataset. The validation of model is investigated740

by RMSE and score function values which is presented in741

table 9. Our proposed model achieves state of the art per-742

formance on FD001 and FD003 sub-dataset with minimum743

RMSE, score values and it shows second best result on FD002744

and FD004 sub-dataset. The minimum values of FD001 and745

FD003 are lower than FD002 and FD004 because of the746

irregular behavior of sensor degradation data. The accuracy747

significantly depends on the improved automatic piece wise748

linear degradation function which decides how early you 749

need to provide the maintenance operation by determining 750

the starting point of the degradation. 751

The robustness of our proposed model is showed by pre- 752

dicting the full life cycle time of few randomly selected test 753

engines in Figures 7-10. Fig. 7 shows the actual and predicted 754

degradation results of RUL of four different types of engines 755

from a total set of 100 engines for validating the performance 756

of model for FD001. In a similar manner, Fig. 8-10 shows 757

the actual and predicted results of full cycle for other three 758

sub-units. From these prediction graphs, we analyze that the 759

predicted and actual degradation of test engine in FD001 and 760
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FIGURE 7. RUL Prediction of 4 engines in FD001 sub-dataset (a) engine
# 6 (b) engine # 20 (c) engine # 42 (d) engine # 90.

FIGURE 8. RUL Prediction of 4 engines in FD002 sub-dataset (a) engine
# 1 (b) engine # 40 (c) engine # 84 (d) engine # 150.

FD003 sub-dataset are very efficient and accurate as shown in761

Fig. 7 and Fig. 9 but for FD002 and FD004, we have seen that762

there was some irregular and abrupt changes in the predicted763

results while tracking the actual target RUL of test engine due764

to the complex nature of theses sub-datasets, this is shown765

in Fig. 8 and Fig. 10. In case of prediction on actual RUL766

having a plot similar to a straight line as shown in Fig. 9(b),767

our model performs quite good on tracking the degradation768

trends obtained by applying piecewise linear function on a769

target labels.770

FIGURE 9. RUL Prediction of 4 engines in FD003 sub-dataset (a) engine
# 1 (b) engine # 18 (c) engine # 48 (d) engine # 75.

FIGURE 10. RUL Prediction of 4 engines in FD004 sub-dataset (a) engine
# 15 (b) engine # 73 (c) engine # 155 (d) engine # 202.

To conclude, in what follows we reason why the pro- 771

posed prediction framework is able to yield better results 772

than the existing equivalent models. The proposed frame- 773

work consists of multiple stages from correlation analysis 774

to LSTM network. The significant stages in this framework 775

that greatly enhance the overall accuracy of model are cor- 776

relation function to filter out irrelevant sensor variables as 777

given in Fig. 2, and the estimation of initial RUL value 778

with piecewise linear function as given in algorithm 1. This 779

function gives the starting point of degradation for sensor 780

data, and hence, we have used those values for training 781
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our deep LSTM network. Moreover, the hyper-parameters782

selection for the neural network plays a significant role on783

the effectiveness of model. Therefore, in our research work,784

the hyper-parameters have been picked through an iterative785

grid search based approach as shown in Table-6. Thus, these786

steps when combined in a single prediction pipeline achieved787

optimum results compared to the existing methods on all the788

four sub-units, and its tracking performance on the complete789

life cycle time prediction will be beneficial in preventing the790

real life failures of machines.791

VI. CONCLUSION & FUTURE DIRECTION792

This work presented a LSTM based model for predicting793

the RUL of turbofan engines. The proposed work shows that794

LSTM model when combined with effective pre-processing795

steps results in highly accurate RUL predictions. In addition796

to widely used pre-processing steps like feature selection,797

filtering and normalization, this work proposed an improved798

piecewise linear degradation model which estimated the ini-799

tial RUL valuewhich is the starting point of the degradation.800

This value had a great impact on the RUL prediction accuracy.801

LSTM network of the proposed model which consisted of a802

combination of multiple LSTM layers, dropout layers, fully803

connected layers and a regression layer, was tested on multi-804

ple hyper parameter combinations to achieve the best result.805

The proposed model was tested on the C-MAPSS turbofan806

engine simulation dataset. the prediction accuracy depends807

upon various number of parameters which include parameters808

for initial RUL calculations and hyper parameters for LSTM809

model. It was observed that due to different dynamics of each810

sub dataset, it is better to use a separate prediction model for811

each sub-units instead of a single model for the whole dataset.812

RUL predictions of the proposed model were compared with813

recent benchmark publications and showed higher prediction814

accuracy. The threshold value and the window size are two815

important parameters in the degradation model which had816

great impact on the model accuracy. In future, this approach817

can be considered for online problems and other machines.818

In future, we will further integrate novel deep learning819

algorithms into our prediction pipeline for processing the820

complex and real-world sensor data as opposed to traditional821

techniques. In the field of prognostics, normally we don’t822

get large amount of real-world data for industrial machines823

specially in-case of faulty conditions. Therfore, we need to824

develop such novel methods that can be able to train on small825

dataset, but, it predict the output effectively on large scale826

practical data. Basically, we requires such types of models,827

which have strong generalization capability with respect to828

output. Morever, for further improvements, we have to eval-829

uate the performance of models on other publicly available830

dataset.831
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