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ABSTRACT As an indispensable technology of intelligent education, intelligent tutorial algorithms for
solving mathematical or physical problems have attracted much attention in recent years. Nevertheless,
since solving mechanics problems requires complex force analysis and motion analysis, current researches
are mainly focus on solving geometry proof problems and direct circuit problems. There are some inherent
challenges on developing such algorithms, including the low intelligence, mobility and interpretability of the
comprehension algorithm. Therefore, this article develops a novel algorithm for solving mechanics problems.
First, we propose a comprehension model for mechanics problems and convert problem understanding
into relation extraction. Furthermore, a novel neural model combining pretrained model BERT and graph
attention network (GAT) is proposed to extract the direct conditions of input mechanics problems. Second,
a hidden information mining method is proposed for supplementing the conditions of the input problem.
Third, a predicate logic based algorithm is proposed for force analysis. Finally, a solving algorithm is
presented for choosing equations to acquire the solutions. Solving experiments and sensitivity analysis are
provided to demonstrate the effectiveness of the proposed algorithm.

INDEX TERMS Intelligent tutoring, mechanics problems, graph attention network, predicate logic,

knowledge graph.

I. INTRODUCTION

As an interdisciplinary subject of pedagogy and artificial
intelligence (Al), educational information technology (EIT)
plays an increasingly important role around the world. Thus,
intelligent tutorial algorithms for solving different subjects,
which convert input problems into readable solutions, have
attracted much attention from both industry and academia [1],
[2], [3], [4], [5]. However, current researches on intelligent
tutorial algorithms are mainly concentrated on mathematical
word problems, geometry proof problems and direct cir-
cuit problems. There are rare study on mechanics problems.
Moreover, as most algorithms cannot automatically under-
standing problem, solving problems or explain the generated
answers in detail, most existed tutorial functions are not
in high intelligence. Finally, existing algorithms can only
solve a single problem, and cannot integrate different types
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of problems to solve them together. Therefore, constructing
an intelligent tutorial algorithms with high capabilities for
solving mechanics problems is of great significance and can
promote the development of EIT.

Current researches on intelligent tutorial algorithms can be
divided into four categories. The first category is rule based
method, which are constructed by rules or templates. This
type methods are adopted in the early stage and studies were
reported in [6], [7], [8], and [9]. The second category is statis-
tics based method, which are constructed by traditional classi-
fier. For example, Mitra et al. [10] presented three pre-defined
template for solving math problems. Roy et al. [11] proposed
three classifiers to detect the attributes of word problems
for solving one operator arithmetic problems. He ef al. [12]
employ a S? [13] model to acquire relations of circuit problem
for the solution. Other researches include [10] and [14]. The
third category is tree based method. These methods solving
a problem by transforming the arithmetic expression into
formula tree. Roy et al. [15] proposed the first tree based
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algorithm for solving arithmetic word problem. The algo-
rithm regards solution as tree construction and turns it into a
classification task. A brute force search method based on lin-
ear programming presented by Koncel-Kedziorski ef al. [16]
for parsing algebraic word problems into equations. The final
category is deep learning (DL) based method, which using
deep neural network (DNN) to train an end-to-end model.
Wang et al. [17] proposed deep neural solver (DNS) for
math word problems by constructing a sequence-to-sequence
(Seq2Seq) model based on recurrent neural network (RNN).
Wang et al. [18] presented an ensemble model math equa-
tion normalization (Math-EN) method on the basis of DNS.
Xie et al. [19] conducted an algorithm which generate expres-
sion tree in a goal-driven manner by using a tree structured
(GTS) neural model. They generate expression trees step by
step by decomposing the encoded target into sub-goals and a
two-layer gated-feedforward networks is designed for imple-
menting each step of goal decomposition. Zhang et al. [20]
combined a graph-based encoder and a tree-based decoder to
propose a novel deep learning framework GTL for improving
performance on mathematical problems. Zhang er al. [21]
combined deep learning with predicate logic to propose an
intelligent tutorial algorithm DLR for solving kinematics
problems. They employ BERT [22] to extract information
of the input question and use predicate logic to interpret the
output solutions.

These algorithms still has many limitations and shortcom-
ings. First, the rule based method and the statistics based
method require manual formulation of rules and templates,
which resulting in low generalization capabilities. Second,
a deficiency of tree-based methods is the search space of the
tree grow exponentially while the increasing of the quantities.
Third, for deep learning-based algorithms, it is impossible
to achieve readable understanding, analysis and solutions
through a unified framework. Finally, most researches are
focus on mathematics problems and direct circuit problems in
elementary or junior high schools. The research on mechanics
problems falls behind these fields, and existing mechanics
tutorial algorithms are not competent to force analysis. There-
fore, it is high time to construct an intelligent algorithms for
solving mechanics problems.

There are three challenges in developing such an algorithm.
First, mechanics is composed of kinematics and dynamics,
the main task of dynamics is force analysis while motion
analysis for kinematics. How to accomplish the kinematics
analysis and force analysis through a unified framework is the
basic challenge. Second, different from mathematical word
problems, geometry proof problems and direct circuit prob-
lems, mechanics studies specific objects in life, such as cars
and airplanes. Thus, solving a mechanics problem requires
not only model knowledge like mathematical problems, but
also general knowledge. For example, the description of
problem 1 (P1) is “A car starts to move in a straight line
from a standstill under constant traction, and passes 8m in
4s. After that, the engine is turned off and the car moves for
2s to stop. The mass of the car is known to be m = 2 % 103kg,
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ask: (1) the speed of the car when the engine is turned off;
(2) the traction of the car.”. The friction of the car from the
ground is not given in the text and people solve P1 by using
the common sense that cars usually drive on the ground and
the friction factor between the car and the ground is not equal
to zero. Moreover, information such as the next state of the car
after braking is stationary, and the final speed of the current
state is equal to the initial speed of the next state, etc. may not
given in the description. This article refers to this situation as
hidden conditions missing. Third, developing an automatic
force analysis algorithms is the final challenge for solving
mechanics problems.

To overcome these obstacles, we employ BERT [22], graph
attention network (GAT) [23], reasoning and knowledge
graph (KG) [24] to construct an intelligent algorithm for solv-
ing mechanics problems. For the first challenge, we propose
a sharing framework based on dual process theory (DPT)
[25] in cognitive science. The sharing framework integrates
the kinematics problems solving and the dynamics problems
solving. And a BERT and graph attention neural network
(GAT) based model is presented for acquiring the direct
entities of the input problem. For the second challenge, this
article constructs a general knowledge graph and employs
the idea of default logic [26] to mine hidden conditions. For
the final challenge, we propose a predicate logic based force
analysis method and a equation selection algorithm to reason
the answer.

This work develops an intelligent algorithm for solving
mechanics problems. The specific contributions are listed as
follows.

1) We develop an intelligent tutorial algorithm for solv-
ing mechanics problems, filling the gap in intelligent
education on physical domain.

2) We propose an comprehension model for mechanics
problems to convert problem understanding into rela-
tion extraction, and propose a neural model based on
BERT and GAT for acquiring given conditions of input
problem.

3) We propose a logic-based hidden information mining
algorithm to complement the given conditions of the
input mechanics problem.

4) We propose a predicate logic based method for force
analysis and a template based method for transform
predicate into equations. And an equation generation
algorithm and an equation selection algorithm are pro-
posed to reason the answer.

The rest of this article is organized as follows. Section II
presents the modeling framework, including deep learning
based natural language understanding, knowledge graph
based comprehension reasoning and predicate logic based
solution reasoning. In section III, extensive experiments are
presented, including a performance evaluation, a comparison
experiment and a sensitivity analysis. Finally, Section IV
provides a discussion and Section V concludes this
article.
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FIGURE 1. Overview of the proposed algorithm. Natural Language Understanding aims to convert natural language into named entities. Comprehension
reasoning aims to transform entities sequences into physical models represented by predicate logic by reasoning. Solution Reasoning aims to acquire the

answer.

Il. MODELING FRAMEWORK OF THE PROPOSED
ALGORITHM

We aim to acquire the readable analysis and solution based
on the input mechanics problem. As the given conditions
are provided by natural language, we first need to convert
it to a structured physical model and then solve the input
problem accurately. The overview of the proposed algorithm
is provided in FIGURE 1. There are three main steps in
the algorithm. First, the input natural language are proposed
by a natural language understanding procedure incorporating
input management, sequence labeling and slot filling. Sec-
ond, a comprehension reasoning is built by using predicate
logic based on the results from the first step. Third, a solution
reasoning procedure is applied to solve the problem when the
predicate representation of the physical model is obtained.
The details are illustrated in the following sections.

A. DEEP LEARNING BASED NATURAL LANGUAGE
UNDERSTANDING

People usually transform the problem in natural language
into a structured physical model to understand mechanics
problems. Thus, in this section, we first propose a com-
prehension model for mechanics problems. Then, we struc-
turally represent the proposed model in the form of relational
triples. In this way, the mapping from natural language to
comprehension model of input problem is transformed into
a relation extraction task. However, there are overlapping
entities in the input problem, and existing methods cannot
achieve satisfactory results. Moreover, the hidden condition
of the input problem are usually attributes of entities in the
text. Therefore, we use a novel tagging scheme based on the
proposed comprehension model and propose a BERT-GAT
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based algorithm to recognize the entities first. And then
reasoning the relations according the tagging schema.

1) COMPREHENSION MODEL OF MECHANICS PROBLEMS
As mentioned above, we understand the input problem by
mapping the problem to a comprehension model. To clarify
this model, we use an example for demonstration, as shown
in FIGURE 2. The description of problem 2 (P2) is “The car
changes from a static state to a uniformly accelerated linear
motion with an acceleration of a; = 0.5m/ 52, and changes to
a uniform linear motion after 10s. When the uniform motion
lasts for 10s, the car brakes suddenly because it encounters
an obstacle. The acceleration of the brake is known. ap =
—2m/s?, find: (1) The speed of the car at a constant speed; (2)
The displacement of the car within 36s.”. It can be concluded
from the description that P2 has only one object and four
states, where UALM denotes uniformly accelerated linear
motion, ULM denotes uniform linear motion.

Two observations can be made from FIGURE 2: First,
the tree-like comprehension model can be divided into four
levels: object, ORstate, state and condition. The first level
aims to demonstrate the research object of the input problem.
The second level is used to clarify the overall movement of the
object. The third level is composed of several specific motion
state which detail the motion of the object. The last level
demonstrates the given conditions of the input problem, such
as velocity, time, force, etc. Second, each entity in the figure
is connected to other entities by one or more directed lines.
This is the same representation as relational triples. So we use
a set of relational triples to represent the proposed compre-
hension model. In turn, the understanding the input problem
is transformed into a relation extraction task. Denoting D(P)
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The car changes from a static state to a uniformly accelerated linear motion with an acceleration of
a;=0.5m/s?, and changes to a uniform linear motion after 10s. When the uniform motion lasts for 10s,
the car brakes suddenly because it encounters an obstacle. The acceleration of the brake is known. a, =
-2m/s?, find: (1) The speed of the car at a constant speed; (2) The displacement of the car within 36s.
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FIGURE 2. The proposed comprehension model, which contains four
levels: object, ORstate, state, condition. Each rectangle represents an
entity in the problem. UALM indicates uniformly accelerated linear
motion, ULM indicates uniform linear motion.

as the discription of input problem, the transformation can be
written as

DP)—T 1)

where T = {ry, r2, ..., 1y} denotes the triples set of compre-
hension model, m is the number of triple. Each elements in 7
called a triple, which can be expressed as

ri = (ej1, pi, €i) 2)

where r; denotes the i-th element of 7', ¢;; is an entity called
the subject of r;, p is a relation called predicate of r;, e;> is an
entity called the object of r;.

2) A NOVEL TAGGING SCHEMA FOR RELATION EXTRACTION
As mentioned, understanding is to extract triples in input
problem. As the needs of solving mechanics problems,
we propose a novel tagging scheme and using named entity
recognition (NER) and reasoning for extracting triples. The
reasons are as follows:

First, a description of a mechanics problem is usually a
long text. The text usually contains many (greater than 5)
relation triples. Existing end-to-end algorithms cannot handle
such complex situations.

Second, as provided in FIGURE 2, there are two “10s”
in the model. But they have different meanings, and we call
this situation as entity overlap. These overlapping entities
affect the performance of relation extraction. Moreover, the
proposed model is a tree model, which an entity and different
entities form multiple triples, which is a difficulty in rela-
tion extraction. For mechanics problems, entities in the text
contain various information, direct end-to-end extraction may
ignore these important information.

Third, using conditions provided in FIGURE 2 to calculate
will lead to erroneous results. The reason is the next state
of brake is static according the general knowledge, but there
is no caption in the input text. Therefore, the complete state
level of P2 should add a static after brake. Moreover, some
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Chinese: "OFE M OE E OB 1 0o Xk &8 B
Part 1 B | B | | | |
Part 2 (0} (e} O (0} (¢} (0} (e}
Tag: [¢] [¢] o (¢}
Part 3 1 1 1 1 1 1 1
Part 4 0 0 1 1 1 1 1
English: The speed of the car is 1 0  metes per second
Part 1 B B | I I I I
Part 2 o O O (¢} (¢} (e}
Tag: (0] (0] o OpFH—o
Part 3 1 1 1 1 1 1
Part 4 0 1 1 1 1 1

FIGURE 3. The proposed tagging schema, which contain four parts. Part 1
is the boundary label. Part 2 is the category label. Part 3 is object label.
Part 4 is state label.

critical conditions are not given in the input text, such as the
velocity of static is Om/s, the result force of static is ON,
the final velocity of UALM is equal to the initial velocity of
ULM, etc. These hidden conditions are requisite when listing
equations. All these conditions are associated with recog-
nized entities in FIGURE 2. So those end-to-end algorithms
don’t work for this scenario.

Therefore, we employ the model based on the pipeline
structure, which first use a neural model to identify enti-
ties, and then determine the relationship between entities
through another neural model. To eliminate error propaga-
tion, we replace the second neural model with label informa-
tion based reasoning.

Although reasoning outperforms neural networks when
knowledge is complete, the premise is that sufficient infor-
mation is available. Traditional tagging schemes only contain
boundary information and category information, which can-
not infer correct relation triples. For example, we cannot infer
the relation between 0.5m/s*> and UAML in P2 from these
two information. By analyzing the proposed understanding
model, we find that for any entity, when we know which
object and which state is its parent node, we can infer its
relation with other entities. So we establish a novel tagging
schema by adding object information and state information to
the traditional schema. An example is provided in FIGURE 3
to clarify the proposed tagging schema. There four part for
each entity. First, part 1 is the boundary label to illustrate the
begin (B), inside (I) or out (O) of an entity. Second, part 2 is
the category label to represent the category of an entity, object
(O), velocity (V) or another type. Third, part 3 is the object
label to indicate which object is the parent node of current
entity. Finally, part 4 is state label which aims to determine
the state information of current entity.

3) NAMED ENTITY RECOGNITION USING BERT-GAT

Different with English sentences, lexicons in Chinese
sentences are difficult to demarcate. However, lexical infor-
mation is beneficial for Chinese named entity recogni-
tion. To efficiently recognize named entities from Chinese
text using lexical information, different models have been
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FIGURE 4. The architecture of the proposed neural model, containing BERT encoder, graph based encoder and sequence learning based decoder.

proposed in the literature. Zhang et al. [27] proposed Lattice
LSTM model to reduce word segmentation errors. However,
this method only uses the boundary information of lexicons
and ignores the composition information of the vocabulary.
With a similar purpose, graph neural networks [28] are
also widely used in Chinese named entity recognition [29].
Although these methods are easy to implement, they do not
fully utilize the lexical information, including composition
information and transmission information.

In this work, we adopt BERT [22] and GAT [23] for
recognizing entities in Chinese text, which take advantage of
large-scale pretraining model and graph model. The model
architecture is provided in FIGURE 4. There are main three
steps in the method. First, the raw sentence is processed by
BERT model to acquire the node features, including character
features and lexicon features. Second, two graph model (com-
position graph and transmission graph) and a fusion model
are proposed to obtain final embedding. Third, a Bi-LSTM
& CRF model is applied to achieve tagged sequence based
on the results from the second step. The detailed procedure is
provided as follows.

BERT is a pretraining model based on transformer encoder
[30]. Different with traditional convolutional neural networks
(CNNs) and recurrent neural networks (RNNSs), transformer
encoder employ a multi-head self attention mechanism
for long-term dependencies. The propagation formulas are
written as

Multihead(Q, K, V) = concat(head[)WO

head; = Attention(QiWZ2, KWK, viw))
where Q, K, and V denote the query vector, key vector and
value vector respectively; head; denotes the single-head self-
attention mechanism layer; WO denotes the weight matrix;
WiQ, Wl.K ,and Wl.V denote the projection matrices. Moreover,
the calculation of attention uses the scaled dot-product for-
mat, which can be written as

3

Attention(Q, K, V) ft (QKT
ention(Q, K, = softmax
Vi

where dy denotes the dimension of the input vector.

W “
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BERT for Chinese can only output the vector of input
characters, where as, lexical vectors are essential information
for processing Chinese sentences. To acquire the lexicon
features, we propose an averaging method. The propagation
formula is

N
Ty = ZI: T, ®)
j=

where T,,, denotes the node feature of the i-th word w;, T;
denotes the node feature of character c¢;. Moreover, c; denotes
the j-th character makes up w;, and there w; is composed of
N characters.

To fully use the contextual information and lexical infor-
mation, two character and lexicon based graph are proposed
for modeling a Chinese sentence. The first graph is transmis-
sion graph which is constructed for contextual information
and the second is composition graph which is constructed for
lexical information. As the characters and words are fixed for
the same sentence, the two graphs share the same nodes set,
but the connection patterns are different.

There are two types of nodes in a sentence: character node
and lexicon node. Denoting S as the input sentence, then each
character in S corresponds to a character node and each word
in S that matches the predefined vocabulary corresponds to a
word node. In this work, ¢ represents a character node and w
represent a lexicon node. Assuming that sentence 1 (S1) has
nine characters (c; — ¢g) and six lexicons (w; — wg) matching
the predefined vocabulary, in which ¢; — ¢ constitute wi,
c1 — c3 constitute wyp, ¢4 — c5 constitute w3, ¢4 — cg constitute
w4, Cg — C7 constitute ws, cg — cg constitute wg. The details
of constructing the two graphs of S1 are as follows.

The contextual information can be divided into charac-
ter contextual information and word contextual information.
Character contextual information is the sequential infor-
mation of characters, while word contextual information
describe the word-to-word information. As provided in FIG-
URE 5, if i and j are two adjacent character nodes, and j is
the following node of i, then (i, j) of the transmission graph
adjacency matrix Ay will be assigned 1. Furthermore, if k is
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FIGURE 5. The transmission graph of S1, where ¢ denotes character node
and w denotes lexicon node.
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FIGURE 6. The composition graph of S1, where c denotes character node
and w denotes lexicon node.

a word node and node i is the nearest preceding node of k,
node j is the nearest following node of k, then (i, k) and (k, j)
of Ar are be assigned 1.

The composition graph describe the begin, inside and end
relation between characters and lexicons. Compared with
lattice LSTM [27], the composition graph can better delin-
eate the inside information between characters and lexicons,
which is crucial to extract named entities. As provided in
FIGURE 6, if character node i is the begin, middle or end
of word node j, then (j, i) of the forward composition graph
adjacent matrix Apy will be assigned 1. If character node i
is the begin, middle or end of word node j, then (i, j) of
the backward composition graph adjacent matrix Ap; will be
assigned 1. Finally, perform an OR operation on each position
element of Ary and Apy to get the composition graph adjacent
matrix Ay.

In this work, we employ GAT [23] to integrate the proposed
two graphs. GAT is a representative work of spatial graph
neural networks. Let F; = ﬁ, R j{\,’{} be the input node
feature of the j-th layer GAT, where f N is an N-dimensional
vector denotlng the i-th component of Fj. Take FJ_H =
{le e ]§+1 &) as the output of this layer, WherefJrl ;isan
N’ d1mens1onal vector denoting the i-th component of Fj .
The feature update formulas can be written as

‘ exp(LeakyRelu(a” [W* ];'\l/ WK Jj’}l 1) 6
%= > g exp(LeakyRelu(aT[WkJS-{\l{IIWK];{YI])) ©
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where ozf‘j denotes attention coefficients; W* € RF IxF ,a €
R?F" are trainable parameters; €2; is the neighborhood node
setof node i; K is the number of attention heads. Additionally,

the output of the final GAT layer is

fw&ZZkWM‘ ®)

k=1je;

As mentioned above, the input character features and
lexicon features of a sentence contains n characters and m
lexicons are expressed as

v[:{TC15""TcnaTW17"‘9TWm} (9)

where v; denotes the out of BERT. To make the calculation
clear, we rewrite the above formula as

F={ 5 fn+m+1} (10)

where fo andf, +m o denotes the start feature and end feature
of input sentence, le denotes the i-th node feature. Denoting
GAT as the function of a GAT layer, the updated node features

are

U = GAT(F,A) = Sl AD

RN*U

U (U
o 5,

where U denotes the updated node features, A €
denotes the adjacent matrix of the input nodes, fiU denotes the
i-th node feature is a vector with U dimension. As there are
two graph models are needed, we employ two independent
GATs to capture the node feature and the details are written
as

Ur = GAT(F,Ar)Uc = GAT(F,Ac) (12)

where Ut denotes the updated node feature of transmission
graph, Uc denotes the updated node feature of composition
graph, Ar denotes the transmission graph adjacency matrix,
Ac denotes the composition graph adjacency matrix. Finally,
only the first n columns of the node feature are retained as the
final node feature

Er =Ur[:,0:,nlEc = Ucl:,0:,n] (13)

where E7 denotes the final node features of transmission
graph, Ec denotes the final node feature of composition
graph. The Fusion Layer aims to integrate the transmission
node feature and the composition node feature. The propaga-
tion formulas of the fusion layer in this article is

I = WrEr||WcEc (14)

where I denotes the output of Fusion Layer, W7 denotes a
trainable matrix for E7, W denotes a trainable matrix for
Ec.

To capture the sequence information, we applied a Bi-
LSTM [31] to the results of fusion layer. Denoting LSTM as
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the function as LSTM [32]. Then the propagation formulas
can be expressed as

Ty = LSTM (xi, hi_1)

T = LSTM(x;, hiyy) (15)
. — <
hi =[hi, hi]

where E) and ;; denote the positive LSTM hidden state and
the revﬂ,STM hidden state of the i-th vector i respec-
tively, LSTM denotes the positive LSTM function, h; denotes
the reverse LSTM function, ﬁi denotes the final hidden state
of x;.

CRF [33] has transfer characteristics, which can consider
the order of output tags. Therefore, a CRF is chosen for
processing the output of Bi-LSTM. After decoding the output
of Bi-LSTM layer by using Viterbi algorithm [34], the tagged
sequence is acquired.

B. KNOWLEDGE GRAPH BASED COMPREHENSION
REASONING

Comprehension reasoning aims to acquire the complete rela-
tion set of comprehension model and output a readable
model based on the results of natural language understand-
ing. We divide relations into two categories: direct relations,
which can be obtained directly in the text, and hidden rela-
tions, which require common sense knowledge. The details
of comprehension reasoning are provided as follows.

1) DIRECT RELATION REASONING

Predicate logic, which consists of variables, constants, predi-
cates, etc., has been widely used in knowledge based systems
for its naturalness. In this work, we use uppercase letters
indicate constants and lowercase letters indicate variables.
It is well known that predicate logic can modeling modeling
complex relationships. For example, denoting Human(x) as x
is human, Male(x) as x is male. By common sense, we know
that if x is human and x is male, we can conclude that x is a
man. Let Man(x) means x is a man, this rule can be expressed
as

Human(x) A Male(x) — Man(x) (16)

where Human(x) and Male(x) called the body and Man(x)
called head.

As the proposed comprehension model is a tree model, the
triple set acquiring of comprehension model can be trans-
formed into a process of finding leaf nodes based on root
nodes. Thus, we sequentially reason the direct relationship
in the following order.

1) Relations between objects.

2) Relations between objects and overall state (ORstate).

3) Relations between overall state (ORstate) and states.

4) Relations between states and conditions or between

objects and conditions.

Relations between objects can be divided into three cat-
egories: the relation between research objects, the relation
between research object and reference object and the relation
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between power source (electric motor or engine) and research
object. As objects are the root node of the comprehension
model, these relations can be acquired by using category label
and object label. The rule for reasoning the relation between
research objects is as follows

Object(e1) N Object(ez) N RAction(e3)
A OBJ_LAB(e1,01) AN OBJ_LAB(ez, 02)
A OBJ_LAB(e3, 03) A STA_LAB(e3, s3)
A EQ_TO(o1, 03) ANEQ_TO(03, s3)
— RACT_S(e3, e1) ARACT _O(e3, ex) (17)

where Object(x) denotes the category information of x
research object, RAction(x) denotes the category information
of x is action between research objects (catch up, opposite
move, etc.), OBJ_LAB(x,y) denotes the object information
of x is y, STA_LAB(x, y) denote the state information of x is
v, EQ_TO(x, y) denotes x is equal to y, RACT _S(x, y) denotes
the subject of x is y and the category information of x is action
between research objects, RACT _O(x, y) denotes the object
of x is y and the category information of x is action between
research objects.

The rule for reasoning the relation between research
objects and reference object is as follows

Object(e1) N RObject(ez) N Position(e3)
A OBJ_LAB(e1,01) AN OBJ_LAB(ez, 02)
A OBJ_LAB(e3, 03) A STA_LAB(e3, s3)
A EQ_TO(o1, 03) ANEQ_TO(03, s3)
— POSI_S(e3, e1) APOSI_O(e3,e3) (18)

where RObject(x) denotes the category information of x is
position, Position(x) denotes the category information of x is
position, POSI_S(x, y) denotes the subject of x is y and the
category information of x is position, POSI_O(x, y) denotes
the object of x is y and the category information of x is
position.

The rule for reasoning the relation between power source
and research object is as follows

Object(e1) N PSource(ea) N OBJ_LAB(eq, 01)
A OBJ_LAB(ez, 00) N EQ_TO(01, 03)
— HAS_PSOUR(eq, e2) (19)

where PSource(x) denotes the category information of x is
power source, HAS_PSOUR(x,y) denotes x is the power
source of x.

As the overall state entity is usually not given in the text,
we use the default logic, if an object is a research object, then
it is assumed that it has a overall motion. The rule can be
written as

Object(e1) N OBJ_LAB(e1,01) A STA_LAB(eq, s1)
— HAS_ORS(e1, ORS_01_s1) (20)

where HAS_ORS(x, y) denotes x has a overall state y.
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Relations between overall state and states details the move-
ment process of research object, the rule can be expressed as

ORState(e1) N State(ep) A OBJ_LAB(eq, 01)
A OBJ_LAB(ey, 07) — HAS_STATE (e, e2)
(21)

where ORState(x) denotes the category information is overall
state, State(x) denotes the category information of x is state,
HAS_STATE (x, y) denotes x has a state y.

The rule for reasoning relations between states and condi-
tions is as

State(e;) A CON(ez) A OBJ_LAB(eq, 01)
A OBJ_LAB(ey, 02) A STA_LAB(eq, s1)
A STA_LAB(e>, s2) AN EQ_TO(o1, 02)
A EQ_TO(s1, sp) — HAS_CON (e1,e2) (22)

where CON(x) denotes the category information of x
is condition (including displacement, acceleration, etc.),
HAS_CON (x, y) denotes state x has a condition (including
HAS_DISP, HAS_ACC, etc.) y.

Finally, relations between objects and conditions details
some properties of objects, including mass, efficiency, etc.
The rule can be written as

OBJ(e1) A Condition(ez) N OBJ_LAB(eq, 01)
A OBJ_LAB(ez, 02) N EQ_TO(01, 03)
— HAS_CON ey, e2) (23)

where OBJ(x) denotes the category information of x is
object (including research object, reference object and power
source).

2) HIDDEN RELATION MINING

Hidden information is indispensable for solving a mechanics
problem. This article divides hidden information into two
categories. The first category is general knowledge which
aims to complete the comprehension model and the second
is mechanics hidden knowledge for listing equations.

The general knowledge mainly store inherent properties or
default conditions of objects. For example, without special
declaration, a car (sports car, truck, etc.) usually move on
road (ground, highway, etc.), an airplane or aircraft usually
fly on the sky and is subject to air resistance, turning off
the engine (break, decelerate, etc.) means that the moving
object will maintain uniform deceleration linear motion and
will eventually come to static, etc. This type of knowledge is
related to objects or actions. As the objects and actions are
usually fixed, we use knowledge graph to store these general
knowledge. And general knowledge of P2 are provided in
FIGURE 7.

The other type hidden information is mechanics hidden
knowledge. For example, the final velocity of current state is
equal to the initial velocity of the next state, the result force of
ULM is ON, the acceleration of static is Om/s?, etc. This type
of knowledge is related to mechanics noun. As the number of
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FIGURE 7. The general knowledge storage details of P2, where the ellipse
represents the instance (subject or object), the directed line represent the
predicate, the text next to the directed line indicates the predicate name,
the ellipse connected to the arrow is the object, the ellipse connected to
the nock is the subject, UDLM is abbreviation of uniform deceleration
linear motion.

TABLE 1. The mechanics hidden knowledge mining algorithm, where P(s,
o) denotes s has a relation P with o.

Algorithm: Mechanics Hidden Knowledge Mining.

Input: The named entity list NE, label list LAB.

Output: The mechanics hidden knowledge list MHK.

1: Initialize M HK = ), i = 0, type list T = @, object list O = (),

state list S = (.

2: Get [, where [ denotes the length of NE.

3:for Lin LAB do

4: Get I; e, Io,e and I ¢, where Iy ¢ is the type information of e,

I, denotes the object information of e, I; . denotes the state

information of e.

T+ I UT, 0O+ 15U0,S+ I;cUS.

: end for

:while ¢ < [ do

if the i-th element of T"is STATFE

and the i-th element of N E is Static then

90 MHK + HAS_RFORCE(It,e_Ioe_Ise,0N)UMHK,
MHK <~ HAS_IVELO(It,e_Io,e_Is,e,0m/s) U MHK,
MHK <~ HAS_FVELO(Ite_Ioe_Ise,0m/s)UMHK,
MHK <+ HAS _DISP(It,e_Ioe_Ise,0m)UMHK,
MHK «+ HAS_ACC(It,e_Ipe_Ise,0m/s?) UMHK.

10: end if

11: if the i-th element of T" is STATE
and the ¢-th element of N E is ULM then

122 MHK < HAS_RFORCE(It,e_Ioe_Ise,0N)UMHK,

MHK + HAS_ACC(It,e_Ioe_Is,e,0m/s?) U MHK.

13: end if

14: i=i+4+1

15: end while

16: Get s, where s denotes the number of state.

17: while: < s — 1 do

18: MHK «+
EQ_TO(FVelo_Iye Ise,IVelo_Ipe Ise+1)UMHK.

19: i=i+1

20: end while

N

state of an input problem is not fixed, we employ reasoning
to mine these knowledge. The mining algorithm is provided
in TABLE 1.

Nevertheless, there may be a conflict between direct infor-
mation and mined hidden information. Thus, we borrow the
idea of default logic to set different priorities for direct infor-
mation and mined information by setting a conflict predicate
set. We stipulated that the priority of direct information is
higher than that of mined hidden information, and the conflict
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TABLE 2. The given information of P2, where HAS_ORS denotes has overall state, HAS_STA denotes has state, HAS_ACC denotes has acceleration,
HAS_MTI denotes has motion time, HAS_VELO denotes has velocity, HAS_TI denotes has time, HAS_DISP denotes has displacement, HAS_EFFI denotes
has efficiency, HAS_PROP denotes has property, CUR_STA denotes current state, NEXT _STA denotes next state, HAS_GRA denotes has gravity,
HAS_RFORCE denotes has result force, HAS_IVELO denotes has initial velocity, HAS_FVELO denotes has final velocity, EQ_TO denotes equal to.

Direct Information

Hidden Information
General Knowledge

Mechanics Hidden Knowledge

HAS_ORS(OBJ_1.0,0RS_1_OR)
HAS_STA(ORS_1_OR, STATE_1_1)
HAS_STA(ORS_1_OR, STATE_1_2)
HAS_STA(ORS_1_OR, STATE_1_3)
HAS_STA(ORS_1_OR, ACT_1_4)
HAS_ACC(STATE_1_2, ACC_1_2)
HAS_MTI(STATE_1_2, MTI_1_2)
HAS_MTI(STATE_1_3, MTI_1_3)
HAS_VELO(STATE_1_3,VELO_1_3)
HAS_ACC(ACT_1_4, ACC_1_4)
HAS_TI(ORS_1_OR,TIME_1_OR)
HAS_DISP(ORS_1_OR,DISP_1_OR)

TS_ON(OBJ_1_0, ROAD)
HAS_EFFI(OBJ_1_0,100%)
HAS_PROP(ROAD, ROUGH)
CUR_STA(ACT_1_4,UDLM)
NEXT_STA(ACT_1_4, Static)
HAS_FVELO(ACT_1_4,0m/s)
HAS_GRA(OBJ_1_.0,GRA_1_1)

HAS_RFORCE(STATE_1_1,0N)
HAS_IVELO(STATE_1_1,0m/s)
HAS_FVELO(STATE_1_1,0m/s)
HAS_ACC(STATE_1_1,0m/s?)
HAS_DISP(STATE_1_1,0m)
HAS_RFORCE(STATE_1_3,0N)
HAS_ACC(STATE_1_3,0m/s?)
HAS_RFORCE(STATE_1_5,0N)
HAS_IVELO(STATE_1_5,0m/s)
HAS_FVELO(STATE_1_5,0m/s)
HAS_ACC(STATE_1_5,0m/s?)
HAS_DISP(STATE_1_5,0m)
EQ_TO(FVelo_1_1,IVelo_1_2)
EQ_TO(FVelo_1_2,1Velo_1_3)
EQ_TO(FVelo_1_3,1Velo_1_4)
EQ_TO(FVelo_1_4,IVelo_1_5)

resolution rule is

DIRECT (t1) N HAS_SUB(t1, s1) A HAS_PRE(t1, p1)
A MINED(t;) N HAS_SUB(t3, 52)
A HAS_PRE(t, Py) AN SAME(p1, p2)
A SAME(sy, so) — DEL_TRI (1) (24)

where DIRECT(t1) denotes triple #; is belong to direct
information, HAS_SUB(t1, s1) denotes the subject of #; is
s1, HAS_PRE(t1, p1) denotes the predicate of #; is pi,
MINED(t;) denotes triple t is belong to mined infor-
mation, HAS_SUB(t;, s2) denotes the subject of 1, is
s2, HAS_PRE(t>, p2) denotes the predicate of #, is pa,
SAME(s1, s2) denotes s1 and s, are the same, SAME (p1, p2)
denotes p; and p, are the same, DEL_TRI(t>) denotes t»
is in deleted information set. Finally, the triple in deleted
information set will not used for the analysis and calculation.

This work acquire all the given conditions through five
steps. First, the solver employs a predicate reasoner to
extract the direct conditions. Second, a query is employed for
acquiring the general knowledge conditions of input prob-
lem according to object entities and action entities. Third,
updating given conditions by deconflicting the direct condi-
tions with the general knowledge. Fourth, the mining algo-
rithm is used for acquiring mechanics hidden conditions.
Finally, the final given conditions are obtained by combining
the mechanics hidden conditions with the given conditions
in step 3.

According to the above procedure, the recognized entity
and corresponding label of P2 are: static (STATE_1_1), uni-
formly accelerated linear motion (S7TATE_1_2), 0.5m/s2
(ACC_1_2), uniform linear motion (STATE_1_3), 20s
(MTI_1_2), 10s (MTI_1_3), brakes (ACC_1_4), —2m/s2
(ACC_1_4), speed (VELO_1_3), 36s (TIME_1_OR), dis-
placement (DISP_1_OR), where the bold word indicates the
entity and the italic word in brackets indicates the label.
TABLE 2 provides the total given information of P2.
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TABLE 3. The procedure of force analysis.

Procedure: Force Analysis

Input:Given conditions, Rule Base.

Output: Predicates, Equations.

1 : for each state do

2 : Compute the number of forces on the research object, m;
3: initialize i = O;

4: while: < mdo

5: if f; satisfies the decomposition conditions then

6: Generate the component force predicate of f;;
7 .

8

9

elif f; does not satisfies the decomposition conditions then
Generate the force predicate of f;;

¢ endif
10 i=1i+1
11: end while
12:  Generate the synthetic force predicate;
13: Generate equations according to predicates.
14: end for

C. PREDICATE LOGIC BASED SOLUTION REASONING
1) FORCE ANALYSIS
Solving dynamic problems is mainly to analyze the relations
of forces on the object and to express these relationships with
equations. The hidden information of dynamics problems is
mainly the unannounced of friction and pressure. We exploit
the position between objects and reasoning to mine these
information. For example, if a car in on a road, then the
car is subject to the friction of the road through reasoning.
Additionally, if a box is move on a desktop and the dynamic
friction factor between the box and the desktop is not equal to
zero (default knowledge), then the box is subject to the fric-
tion of the desktop through reasoning. This work sets these
position information as default knowledge and proposed an
predicate logic-based method for force analysis. As provided
in TABLE 3, the procedure is mainly divided into three steps:
judging the number of forces, force decomposition and force
synthesis.

For example, the description of problem 3 (P3) is “There
is a wooden box on the level ground. The mass of the wooden
box is m = 20kg, and the coefficient of kinetic friction
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TABLE 4. The pool of calculation predicates and templates built in this paper.

Predicate Template Explicate

EQ_TO(A, B) A=B Variable A is equal to variable B.
LEFT_ROTATE_QUATER(A, B) A=90+B Angle A is equal to angle B plus 90.
LEFT_ROTATE_HALF(A,B) A=180+B Angle A is equal to angle B plus 180.
RIGHT_ROTATE_QUATER(A, B) A=270+B Angle A is equal to angle B plus 270.

ADD_EQ(A, B,C) A=B+C Variable A is equal to variable B plus variable C.
MINUS_EQ(A,B,C) A=B-C Variable A is equal to variable B minus variable C'.
MULTY_EQ(A, B,C) A=BxC Variable A is equal to variable B multiply variable C'
DIVID_EQ(A,B,C) A=B/C Variable A is equal to variable B divided by variable C'.
SINE_EQ(A, B) A = sin(B) Variable A is equal to the sine function of B.
COSINE_EQ(A,B) A = cos(B) Variable A is equal to the cosine function of B.
TANGENT_EQ(A, B) A = tan(B) Variable A is equal to the tangenet function of B.
LSEE THAN(A,B) A<B Variable A is less than variable B.

MORE_THAN (A, B) A>B Variable A is more than variable B.

SUM (A, #) A+ =# Variable A is equal to the sum of all subsequent variables.

between the wooden box and the ground is # = 0.20. A child
pushes the wooden box to the right with a thrust F to make a
uniform linear motion, take g = 1Om/52, what is the sliding
friction on the wooden box.”

The recognized entities of P3 are: wooden box (OBJ_1_0),
on (POS_1_1), ground (ROBJ_1_1), 20kg (MASS_1_0), 0.2
(FFAC_1_1), child (AOBJ_1_1), F (FORCE_1_1), right
(MDIR_1_1), uniform linear motion (STATE _1_1), 10m/s2
(GACC), sliding friction (FRIC_1_1), where the bold word
indicates the entity and the italic word in brackets indicates
the label.

Due to space reasons, the force analysis of P3 is given
in Attached Table 1. In this article, we define calculation
predicates and employ a template based method transform
predicate to equations for computing the answer. TABLE 4
provides the calculation predicates and templates used in this
work.

2) MOTION ANALYSIS

Different from existing studies, physical formulas are used as
rules for solving problems in this article. The names, units,
and symbols of the variables which make up the formula, the
specific form and the application scenarios of the formula are
essential for applying meta information based reasoning algo-
rithm. We employ knowledge graph to store these physical
rules. For example, the rule that sliding friction is equal to
the product of pressure and friction factor can be stored as
the schema provided in FIGURE 8.

From FIGURE 8 we can see that there are four predicates
and six objects of rule 10. The content of the formula is
F_f = F_N * u, which means that the friction is equal to
the product of presure and the friction factor. Moreover, the
number of rule 10 is P10 which denotes the 10-th physical
rule. Additionally, the application scenario of rule 10 is FA
which is the abbreviation of force analysis. Finally, there
three variables: friction, presure and friction factor in the
formula. The symbol of friction is F_f and the unitis N which
indicates Newton, the symbol of presure is F'_N and the unit
is N too, the symbol of friction factor is u# and the unit is null
which indicates that u is just a coefficient.
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F_N, pressure, N

FIGURE 8. The storing schema of a physical rule, where has_application
and has_number are object property, has_variable and has_formula are
datatype property, ellipses denote instances, rectangles denote data
instance expressed by s string, FA denotes force analysis, the object of
has_variable consists of symbols, variable names, and units, separated by
commas.

Current works employ the forward reasoning algorithm
for computing solutions, which is space-consuming and
produces useless conditions for complex mechanics prob-
lems. Zhang et al [21] proposed a meta information based
backward reasoning algorithm to select equations for calcu-
lation. However, the algorithm needs to store the same for-
mula with different objects information or states information
separately, which consumes a lot of storage space. Therefore,
we proposed a reasoning algorithm based on their work. The
reasoning method can be divided into two steps, equation
generating and equation selecting. The details are provided
in TABLE 5.

To choose the suitable equations, we propose the con-
cept of reasoning loss to constraint the reasoning direction.
We stipulate that the smaller the reasoning loss of the current
step, the more correct the reasoning direction. Define the
reasoning cost as

cost = I;(Q;, R) — Si(C;, R),

0;=10;-1(0,C,R)
Ci=ICi_1(Q0,C,R)

(25)

where Q denotes the question, C denotes the given condition,
R denotes the rule cost denotes the reasoning cost of question
0, condition C and rule R, I;(Q;, R) denotes the i-th order
initial reasoning loss of question Q and rule R, S;(C;, R)
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TABLE 5. The meta information based equation selection algorithm.

Algorithm: Equation Generating and Selection.

Input: Tagged Sequence 1'S, Rule Base R B, Entity to Application
Mapping E2A, Given Conditions GC, Hidden Equation Set
HE, Force Equation Set F'E, Question Q).

Output: Selected Equation SE.

1 : /* Equation Generating */

2 : Initialize S =0, UR = 0

3:foreach E'inT'S do

4 : if the type information of E is ST AT E then

Get object information of E denote as o,

state information of E denote as s.

6: Generate variables of current state and marked by o and s.

7: Getapplication of E, A = E2A(E).

8 .

W

: foreach Rin RB do
9:  if application of R is A then
10: Replacing variables in R with generated variables
11: UR+~ RUUR
12: end if
13:  end for
14: end if
15: end for

16: UR<+— HEUUR

17"UR+ FEUUR

18: /* Equation selection */

19: Initialize RP = (), max reasoning step ms, current step s = 0
20: while s < ms do

21: Initialize C = ()

22: for each Rin UR do

23: if @ in meta information of R then

24: Compute the reasoning cost of GC, @ and R, denote as ¢
25:  Update C <—cUC

26: endif

27:  Get the minimum reasoning cost ¢y,

28: if ¢;, = O then

20: Update SE < RUSE, s = ms

30:  endif

31:  if ¢y, > 0 then

32 SE+ RUSE,s+ =1

33: Get new question according to C and R
34:  endif

35: end for

36: end while

denotes the i-th order reasoning score of given condition C
and rule R, IQ;_1 denotes the i — 1-th question reasoning
function and IC;_; denotes the i — 1-th given condition
reasoning function. Moreover, when there are multiple rules
with the smallest reasoning cost, the algorithm will calculate
a high-order loss of the current rule until there is only one rule
has the smallest cost.

Ill. EXPERIMENTS

A. EXPERIMENTAL DATA

1) PROBLEM CLASSIFICATION

We divided the mechanics problems into three categories
according to the test point: Newton’s laws, linear motion,
power & energy. TABLE 6 provides examples of each cate-
gory. Linear motion problems refer to problems only require
motion analysis. These problems do not require force analysis
and do not involve energy and power, Newton’s law problems
refer to problems require both force and motion analysis but
do not involve power and energy. Power and energy problems
refer to the problems adding the knowledge of energy and
power to the Newton’s law problem.
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TABLE 6. Examples of each category, including Linear Motion, Newton’s
Laws, Power & Energy.

Category Example
A car is driving at a constant speed on a straight highway with a speed of v = 108km /h. Due

Linear to the danger ahead, the driver brakes urgently. When braking, the acceleration of the car is
Motion 5m / s2, then the car closes the accelerator for 10.s. What is the distance to glide inside?
There is a metal block with a mass of m = 1k g on the horizontal ground. The kinetic friction
coefficient between it and the horizontal ground is « = 0.20. Under the action of the horizontal
Newton’s pulling force F© = 5N, it starts to move in a straight line with uniform acceleration to the right
Laws from rest, and g is 10m./ s 2 , find: (1) the acceleration of the metal block in the uniform accele-
ration motion; (2) the speed of the metal block starting to move 1.0s from rest.

Lifta 20k g object vertically by 4 at an acceleration of 2m / s2 from a standstill, find (1) the
work W done by the pulling force on the object; (2) the average power P 1 of the pulling force;
(3) the amount of instantaneous power P 2 of the pulling force when it reaches a height of 4m.
(g takes 10m / s2)

Power &
Energy

TABLE 7. The properties of training data, including training set, validation
set and test set. Character Num denotes the total number of characters in
the set, Entity Num denotes the total number of entities in the set,
Problem Num denotes the total number of problems in the set, Ave
characters denotes the average number of characters per problem in the
set.

Project Train Set Validation Set | Test Set
Character Num | 7838489 1019727 988392
Entity Num 462254 59931 60134
Problem Num | 60033 7504 7505
Ave characters | 130.57 135.89 131.70

2) TRAINING DATA

We collect training data through the Internet ! 2 for the
experiment. There are a total of 6822 mechanics problems in
three categories, including 2816 problems of linear motion,
2234 problems of Newton’s laws, and 1772 problems of
power & energy. However, due to the large number of labels
involved in the experiments, and the huge amount of data
is the basis of deep learning algorithm, we perform data
enhancement by replacing some words in the problem with
synonyms or changing some entity values. For example,
replace car with bus, 10m/s with 20m/s, etc. Additionally,
we expand 10 more problems on the basis of each problem
and the number of total training data is 75042. Finally, the
training data is divided into training set, validation set and
test set with a ratio of 8 : 1 : 1. The properties of the training
data are provided in TABLE 7.

3) TEST DATA

The test data are collected from teaching materials, exer-
cise books and test papers. A total of 1416 pure text prob-
lems are acquired for testing, including 712 linear motion
problems, 356 newton’s laws problems and 348 power &
energy problems. Additionally, we divide these problems into
three categories according to the solving variable: solving
kinematics, solving dynamtics and solving power. Solving
kinematics denotes that the question is kinematics variables
such as displacement, velocity and acceleration etc., solving
dynamtics denotes that the question is dynamtics variables
such as friction, presure and pulling force etc., solving power
denotes that the question is power variables such as power,
kinetic energy and potential energy etc. The property of our
test data are provided in TABLE 8.

1https://zuj uan.xkw.com/
2https://zujuan.Zlcnjy.com/
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TABLE 8. The properties of test data, where kinematics denotes problem
solving kinematics variables, Dynamtics denotes problem solving
dynamics variables, Power denotes problem solving power variables.

Project Kinematics | Dynamics Power
Character Num | 123293 40934 24203
Entity Num 6803 2538 1415
Problem Num | 931 306 179
Ave characters | 132.43 133.77 135.21

B. EVALUATION METRICS

We use three levels of comprehension to evaluate the
proposed method: complete comprehension, partial compre-
hension and incomprehension. To better define the three type
comprehension, we define two measures as follows:

1) Identifying all direct conditions of the input problem,
that is, correctly identify the type, boundary of each
entity and correctly determine the relationship type
between entities.

2) Identifying all hidden conditions of the input problem,
which means mining all hidden relationships of the
input problem.

Then the three levels are defined by using the two mea-

sures:

Complete comprehension: if and only if the solver fulfills
the above two measures;

Partial comprehension: if and only if the solver can acquire
but not all direct relations and hidden relations;

Incomprehension: if and only if fails to acquire any direct
relations and hidden relations.

Take P2 as an example, if the algorithm acquire all the rela-
tions in TABLE 2, the comprehension level of the algorithm
to P2 is complete comprehension. Moreover, if the algorithm
fails to acquire any relation in TABLE 2, the comprehension
level of the algorithm to P2 is incomprehension. Finally,
the comprehension level of the algorithm to P2 is partial
comprehension in other cases.

C. EXPERIMENT: EVALUATION OF THE PROPOSED
ALGORITHM
1) IMPLEMENT DETAILS
We collect 46533 words from textbooks, workbooks, and test
papers as our lexicon for experiment. Additionally, an anal-
ysis on the matching between the entities and the word
vocabulary is given to demonstrate the conflict matching
problem. Defining the entity conflict rate (ECR) as the ratio
of non-identical overlapping entity of a dataset matches with
the lexicon [21]. The ECR of our experiment is 27.31%.
Considering the size of the lexicons, as the using of BERT
base for Chinese, the character embedding dimension and
word embedding dimension of our experiment are set to
768. The maximum number of training epochs is set to 60.
Moreover, the optimizer is Adam [35] and the decay rate of
learning rate is set to le-2. Additionally, the attention head
of GAT is set to 3, the number of GAT layer is set to 2,
the input dimension, hidden dimension and output dimension
are set to 768, 384 and 192. Finally, the back-propagation
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algorithm is used to solve the optimal value of all trainable
parameters. To prevent overfitting, we use an early stop
mechanism during the training process. When the F1 score
does not increase for 10 consecutive batches, the training is
terminated.

2) PERFORMANCE EVALUATION

In this experiment, we aim to evaluate the comprehension
level and the solving accuracy of the proposed algorithm.
First, we train the model on the collected training data. Then,
we use the test data to evaluate the performance of the model
which performs best on test set of the training data. The
evaluation metrics values are provided in TABLE 9.

Several observations can be made from TABLE 9. First, the
comprehension level of all test problems was either complete
comprehension or partial comprehension, that is, there were
no problems that were incomprehension. This is a good result.
Second, for linear motion problems, among the 712 prob-
lems, the comprehension level of 49 problems is partial com-
prehension, and the complete comprehension rate reaches
93.12%. Third, the proportion of complete comprehension
of Newton’s laws problems reached 85.11%. Among them,
20 of the 159 problems of solving kinematic variables were
partial comprehension, and the complete comprehension rate
reached 87.42%; 33 of the 197 problems of solving kinematic
variables were partial comprehension, and the complete com-
prehension rate reached 83.25%. Fourth, 81 of the 348 power
& energy problems have a partial comprehension level and a
complete comprehension rate of 76.72%. Among them, 17 of
the 60 solving kinematic variables were partially understood,
28 of the 109 dynamic variables were partially understood,
and 36 of the 179 power problems were partially understood.
Moreover, the Reason Acc column shows that all problems
fully understood were answered correctly. Finally, with the
increase of test points, the accuracy of the proposed method
has shown a downward trend. There are two main reasons for
this phenomenon. One is that with the increase of knowledge
points, the categories of entities will also increase; secondly,
most of Newton’s laws problems and power & energy prob-
lems are given in the form of a combination of pictures
and texts, the pure text data is not a lot. We will focus on
developing algorithms to address these two defects in feature
work.

D. EXPERIMENT: COMPARISON WITH OTHER
ALGORITHMS

To further evaluate the proposed algorithm, we conduct a
comparative experiment between our algorithm and some
existing algorithms. In specifically, we exam these algorithms
on the 1416 test problems we collected. However, since some
of these algorithms are DL based method which can not
output an analysis and readable solutions, we take the solving
accuracy as the evaluation metrics. Additionally, we define
the accuracy improvement ratio to intuitively compare the
solving accuracy between different algorithms.
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TABLE 9. The statistical experimental results, where category denotes the category of problem, Question type denotes the type of various questions,
Problem num denotes the number of problems, False num denotes the number of incorrectly solved problems, Complete comp denotes the ratio of
complete comprehension, Partial comp denotes the ratio of partial comprehension, Incomp denotes the ratio of incomprehension, Reason Acc denotes

the reasoning accuracy.

Category Question Type | Problem Num | False Num Complete Comp(%) | Partial Comp(%) | Incomp(%) Reason Acc(%)
Linear Motion | kinematics 712 49 93.12 6.88 0.00 100.00
dynamics - - - - - -
power - - - - - -
total 712 49 93.12 6.88 0.00 100.00
Newton’s Laws | kinematics 159 20 87.42 12.58 0.00 100.00
dynamics 197 33 83.25 16.75 0.00 100.00
power - - - - - -
total 356 53 85.11 14.89 0.00 100.00
Power & kinematics 60 17 71.67 28.33 0.00 100.00
Energy dynamics 109 28 74.31 25.69 0.00 100.00
power 179 36 79.89 20.11 0.00 100.00
total 348 81 76.72 23.28 0.00 100.00
Total - 1416 183 87.08 12.92 0.00 100.00

1) BASELINE ALGORITHMS

In addition to the proposed method, we choose five other
algorithms, DNS [17], Math-EN [18], GTS [19], GTL [20]
and DLR [21] to construct the experiment. DNS is the first
DL based algorithm for solving word problem. Math-EN
employs a equation normalization algorithm to reduce the
target sample space. GTS is a goal-driven method, which
completes the goals by decomposing expressions. GTL is a
work that uses GNN for encoding and tree based decoder to
generate formulas. DLR is the first work that integrating DL
and predicate logic for solving kinematics problems.

2) PARAMETERS SETTING

The details of the implement parameters are provided in
TABLE 10. Since the bert-base model is employed, the
embedding dimension of DLR and our method are set to 768.
The embedding dimension of DNS, Math-EN, GTS and GTL
are set to 128. In addition, the maximum training epoch of our
algorithm is set to 60, while DLR to 40, and other baselines
are set to 80. Furthermore, due to the using of GNN, the batch
size of our algorithm and GTL are set to 2. The batch size of
DLR are set to 8 and other baseline algorithms are set to 32.
Moreover, all the experimental algorithms set the Shuffle to
True. Additionally, the initial learning rate of DLR is set to
different parameters according to the fitting ability of each
layer: 5e-5 for the BERT layer, le-3 for the LSTM layer, and
le-2 for the CRF layer. The initial learning rate of the other
baseline algorithms are set to le-3. Besides, the learning rate
decay rate, minimum learning and dropout ratio are set to le-
2, le-5 and 0.5 for all the algorithms. Finally, we employed
the Adam optimizer to train all models.

3) MAIN RESULTS

The main results of the comparative experiment are provided
in FIGURE 9. It can be observed that the proposed algo-
rithm has a better performance compared to other baselines.
First, for all 1416 test questions, the proposed method has
achieved an accuracy over 80%, while the best of other
algorithms reached over 70%. Second, for the 712 Linear
Motion problems, in addition to DNS, the accuracy of other
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TABLE 10. The parameters setting of the comparative experiment, where
Emb Dim denotes embedding dimension, Epoch denotes the maximum
epoch, Batch denotes batch size, Ini LR denotes initial learning rate,

LR Dec denotes the decay ratio of learning rate, Min LR denotes minimum
learning rate, Drop denotes the ratio of dropout.

Model Emb Dim Epoch Batch Shuffle Ini LR LR Dec Min LR Drop
DNS 128 80 32 True le-3 le-2 le-5 0.5
Math-EN 128 80 32 True le-3 le-2 le-5 0.5
GTS 128 80 32 True le-3 le-2 le-5 0.5
GTL 128 80 2 True le-3 le-2 le-5 0.5
BERT: 5e-5 BERT: le-5
DLR 768 40 8 True LSTM: le-3 le-2 LSTM: le-5 | 0.5
CRF: le-2 CRF: le-5
BERT: 5e-5 BERT: le-5
GAT: le-4 GAT: le-5
Proposed 768 60 2 True LSTM: 1e-3 le-2 LSTM: 1e-5 0.5
CREF: le-2 CREF: le-5
[N DNS EEE Math-EN BN GTS B GTL FZJ DLR [ Proposed

Solving Accuracy (%)

Overall

Linear Motion Nweton's Lows

FIGURE 9. The solving accuracy of the proposed algorithm between
baseline algorithms.

methods have exceeded 80%. The proposed algorithm has an
accuracy of 90% which is the best among all the algorithms.
Third, for the 356 Newton’s Laws problems, the accuracy of
each algorithm varies greatly, and the difference between the
maximum accuracy and the minimum accuracy is close to
30%. Fourth, the performance difference of each algorithm is
mainly reflected in the solving of the 348 Power % Energy
problems. The best performing is nearly twice as accurate
as the worst. The reason contributed to this result is the
hidden information. Although DL based methods can learn
to list formulas, the process is still a black box. Additionally,
inherent general knowledge and hidden physical knowledge
are difficult to learn through training. Solving a Newton’s
Laws problem or a Power & Energy problem need general
knowledge and hidden physical knowledge, so the proposed
algorithm significantly outperforms these methods in these
two category.
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TABLE 11. The accuracy improvement ratio between the proposed
algorithm and baselines, where + denotes the proposed improves the
baseline.

Category DLR GTL GTS Math-EN | DNS
Linear Motion +3.59 +6.94 +7.80 +15.30 +27.75
Newton’s Laws | +15.20 | +23.67 | +29.48 | +50.00 +91.78
Power & Energy | +27.15 | 436.93 | +57.05 | +65.85 +118.82
Overall +10.79 | +16.32 | +21.01 | +31.46 +54.32

TABLE 12. The ME, MV and SD of each algorithm.

Proposed | DLR GTL GTS Math-EN | DNS
ME | 0.8594 0.7646 | 0.7161 | 0.6526 | 0.6107 0.5209
MV | 0.8635 0.7730 | 0.7275 | 0.6465 | 0.6025 0.5215
SD | 0.0303 0.0602 | 0.0634 | 0.0825 | 0.0873 0.0944

To compare the solving accuracy of the proposed method
with baselines, we introduce a new evaluation metric. Define
the accuracy improvement ratio as the ratio of the accuracy
difference to the accuracy of the baseline algorithm, which
can be written as

AO — AT
AIR = ———

* 100% (26)
where AIR denotes the accuracy improvement ratio, AQ
denotes the accuracy of our method, AT denotes the accu-
racy of other algorithms. The results of accuracy improve-
ment ratio between the proposed algorithm and baselines are
provided in TABLE 11. DLR performs the best except for
the proposed algorithm. Additionally, compared with DLR,
the proposed method improves by 3.59% on linear motion
problems, 15.20% on Newton’s law problems, 27.15% on
power and energy problems, and 10.79% overall.

E. SENSITIVITY ANALYSIS

It is well known that the DL methods are sensitive to variation
in input data. To further evaluate the sensitivity, we perform a
sensitivity experiment on the test data between the proposed
algorithm and the baselines. We conducted a total of 10 sets
of sensitivity experiments, and the test data of each set of
experiments were 1000 questions randomly selected from
1416 test data.

The mean value (ME), median value (MV) and standard
deviation (SD) of the solving accuracy of each algorithm are
provided in Table 12. It can be observed that the solving
accuracy of the proposed algorithm is noticeably better than
other baselines. Additionally, the SD provided in the table can
prove that the proposed method has better stability than other
methods.

To statistically evaluate the performance of the proposed
method, we also conduct a Wilcoxon signed rank test.
We conducted a total of five groups of tests, each of which
compared the proposed algorithm with one of the baselines.
The null hypothesis of the test is that there is no significant
difference between the two groups of data, whereas, the
alternative hypothesis is that there is a significant difference
between the two groups of data. The results of the Wilcoxon
signed rank test are provided in Table 13. We can see that p
values are significantly lower than 0.05 (5%). This is strong
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TABLE 13. The results of the Wilcoxon signed rank test between the
proposed algorithm and the baselines.

DLR | GTL | GTS | Math-EN | DNS
p value (1-tail) | 0.0068 | 0.0037| 0.0027| 0.0027 0.0027
p value (2-tail) | 0.0135| 0.0074| 0.0054| 0.0054 0.0054

evidence for rejecting the null hypothesis and accepting the
alternative hypothesis. Combining the previous statistical
results, we observe that the proposed method significantly
outperforms baselines.

IV. DISCUSSION

We can observed that the proposed system achieve an accu-
racy of 87.08% (1233 of 1416) for solving mechanics prob-
lems. The proposed method simulates the human cognitive
process, first understanding the input problem, and then find-
ing the answer through reasoning. Additionally, as there is no
complex syntactic analysis of the natural language, but the
model information is integrated into the labels, the proposed
method can also be applied to other languages. And only an
ontology model and an general knowledge base are required
to work on a different domain. We differentiate the reasons
for the improvement of the proposed algorithm as follows.

1) The first is the architecture of the proposed method.
Although has made critical breakthrough, current DL
algorithm still in the status of perceptual intelligence.
Whereas, people solve mechanics problems through
systematic knowledge, and reasoning. However, per-
ceptual intelligence cannot learn these knowledge effi-
ciently. Therefore, obtaining various information in the
problem first and then solving the problem through
reasoning achieves better performance than solving the
problem directly through a neural network.

2) General knowledge and hidden mechanics knowledge
are also indispensable for solving a mechanics prob-
lem. Mechanics differs from circuits and mathematics
in that it studies interactions and the motion of objects,
which are related to real life. Therefore, comprehend-
ing a mechanics problem requires an understanding of
the object properties. Moreover, the properties of some
physical variables such as speed cannot be abruptly
changed are particularly important in inferential calcu-
lations.

3) Lexical information is essential for Chinese sentences.
Combining the pretrained model with graph neural
network is an effective method to utilize the lexical
information and contextual information of sentences.

V. CONCLUSION

In this work, we propose an intelligent tutorial algorithm
for solving mechanics problems which fills the gap of intel-
ligent tutoring in mechanics domain. Different from previ-
ous works, our method can solve both dynamics problems
and kinematics problems combining neural network (NN),
knowledge graph (KG) and reasoning. Moreover, a novel
model combining pretrained model and graph attention
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network is proposed for extract the information of input prob-
lem. Additionally, a hidden information mining algorithm
is presented to supplement the conditions of input problem.
Finally, a equation selection algorithm is introduced to reason
the answer. The experimental results demonstrate the advan-
tages of the proposed algorithm.
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