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ABSTRACT As an indispensable technology of intelligent education, intelligent tutorial algorithms for
solving mathematical or physical problems have attracted much attention in recent years. Nevertheless,
since solving mechanics problems requires complex force analysis and motion analysis, current researches
are mainly focus on solving geometry proof problems and direct circuit problems. There are some inherent
challenges on developing such algorithms, including the low intelligence, mobility and interpretability of the
comprehension algorithm. Therefore, this article develops a novel algorithm for solvingmechanics problems.
First, we propose a comprehension model for mechanics problems and convert problem understanding
into relation extraction. Furthermore, a novel neural model combining pretrained model BERT and graph
attention network (GAT) is proposed to extract the direct conditions of input mechanics problems. Second,
a hidden information mining method is proposed for supplementing the conditions of the input problem.
Third, a predicate logic based algorithm is proposed for force analysis. Finally, a solving algorithm is
presented for choosing equations to acquire the solutions. Solving experiments and sensitivity analysis are
provided to demonstrate the effectiveness of the proposed algorithm.
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INDEX TERMS Intelligent tutoring, mechanics problems, graph attention network, predicate logic,
knowledge graph.

I. INTRODUCTION16

As an interdisciplinary subject of pedagogy and artificial17

intelligence (AI), educational information technology (EIT)18

plays an increasingly important role around the world. Thus,19

intelligent tutorial algorithms for solving different subjects,20

which convert input problems into readable solutions, have21

attractedmuch attention from both industry and academia [1],22

[2], [3], [4], [5]. However, current researches on intelligent23

tutorial algorithms are mainly concentrated on mathematical24

word problems, geometry proof problems and direct cir-25

cuit problems. There are rare study on mechanics problems.26

Moreover, as most algorithms cannot automatically under-27

standing problem, solving problems or explain the generated28

answers in detail, most existed tutorial functions are not29

in high intelligence. Finally, existing algorithms can only30

solve a single problem, and cannot integrate different types31
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approving it for publication was Bo Pu .

of problems to solve them together. Therefore, constructing 32

an intelligent tutorial algorithms with high capabilities for 33

solving mechanics problems is of great significance and can 34

promote the development of EIT. 35

Current researches on intelligent tutorial algorithms can be 36

divided into four categories. The first category is rule based 37

method, which are constructed by rules or templates. This 38

type methods are adopted in the early stage and studies were 39

reported in [6], [7], [8], and [9]. The second category is statis- 40

tics basedmethod, which are constructed by traditional classi- 41

fier. For example,Mitra et al. [10] presented three pre-defined 42

template for solving math problems. Roy et al. [11] proposed 43

three classifiers to detect the attributes of word problems 44

for solving one operator arithmetic problems. He et al. [12] 45

employ a S2 [13]model to acquire relations of circuit problem 46

for the solution. Other researches include [10] and [14]. The 47

third category is tree based method. These methods solving 48

a problem by transforming the arithmetic expression into 49

formula tree. Roy et al. [15] proposed the first tree based 50

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 92971

https://orcid.org/0000-0002-5112-7170
https://orcid.org/0000-0001-7084-2439


J. Zhang et al.: Artificial Intelligence Technology Based Algorithm for Solving Mechanics Problems

algorithm for solving arithmetic word problem. The algo-51

rithm regards solution as tree construction and turns it into a52

classification task. A brute force search method based on lin-53

ear programming presented by Koncel-Kedziorski et al. [16]54

for parsing algebraic word problems into equations. The final55

category is deep learning (DL) based method, which using56

deep neural network (DNN) to train an end-to-end model.57

Wang et al. [17] proposed deep neural solver (DNS) for58

math word problems by constructing a sequence-to-sequence59

(Seq2Seq) model based on recurrent neural network (RNN).60

Wang et al. [18] presented an ensemble model math equa-61

tion normalization (Math-EN) method on the basis of DNS.62

Xie et al. [19] conducted an algorithmwhich generate expres-63

sion tree in a goal-driven manner by using a tree structured64

(GTS) neural model. They generate expression trees step by65

step by decomposing the encoded target into sub-goals and a66

two-layer gated-feedforward networks is designed for imple-67

menting each step of goal decomposition. Zhang et al. [20]68

combined a graph-based encoder and a tree-based decoder to69

propose a novel deep learning framework GTL for improving70

performance on mathematical problems. Zhang et al. [21]71

combined deep learning with predicate logic to propose an72

intelligent tutorial algorithm DLR for solving kinematics73

problems. They employ BERT [22] to extract information74

of the input question and use predicate logic to interpret the75

output solutions.76

These algorithms still has many limitations and shortcom-77

ings. First, the rule based method and the statistics based78

method require manual formulation of rules and templates,79

which resulting in low generalization capabilities. Second,80

a deficiency of tree-based methods is the search space of the81

tree grow exponentially while the increasing of the quantities.82

Third, for deep learning-based algorithms, it is impossible83

to achieve readable understanding, analysis and solutions84

through a unified framework. Finally, most researches are85

focus onmathematics problems and direct circuit problems in86

elementary or junior high schools. The research onmechanics87

problems falls behind these fields, and existing mechanics88

tutorial algorithms are not competent to force analysis. There-89

fore, it is high time to construct an intelligent algorithms for90

solving mechanics problems.91

There are three challenges in developing such an algorithm.92

First, mechanics is composed of kinematics and dynamics,93

the main task of dynamics is force analysis while motion94

analysis for kinematics. How to accomplish the kinematics95

analysis and force analysis through a unified framework is the96

basic challenge. Second, different from mathematical word97

problems, geometry proof problems and direct circuit prob-98

lems, mechanics studies specific objects in life, such as cars99

and airplanes. Thus, solving a mechanics problem requires100

not only model knowledge like mathematical problems, but101

also general knowledge. For example, the description of102

problem 1 (P1) is ‘‘A car starts to move in a straight line103

from a standstill under constant traction, and passes 8m in104

4s. After that, the engine is turned off and the car moves for105

2s to stop. The mass of the car is known to be m = 2∗ 103kg,106

ask: (1) the speed of the car when the engine is turned off; 107

(2) the traction of the car.’’. The friction of the car from the 108

ground is not given in the text and people solve P1 by using 109

the common sense that cars usually drive on the ground and 110

the friction factor between the car and the ground is not equal 111

to zero.Moreover, information such as the next state of the car 112

after braking is stationary, and the final speed of the current 113

state is equal to the initial speed of the next state, etc. may not 114

given in the description. This article refers to this situation as 115

hidden conditions missing. Third, developing an automatic 116

force analysis algorithms is the final challenge for solving 117

mechanics problems. 118

To overcome these obstacles, we employ BERT [22], graph 119

attention network (GAT) [23], reasoning and knowledge 120

graph (KG) [24] to construct an intelligent algorithm for solv- 121

ing mechanics problems. For the first challenge, we propose 122

a sharing framework based on dual process theory (DPT) 123

[25] in cognitive science. The sharing framework integrates 124

the kinematics problems solving and the dynamics problems 125

solving. And a BERT and graph attention neural network 126

(GAT) based model is presented for acquiring the direct 127

entities of the input problem. For the second challenge, this 128

article constructs a general knowledge graph and employs 129

the idea of default logic [26] to mine hidden conditions. For 130

the final challenge, we propose a predicate logic based force 131

analysis method and a equation selection algorithm to reason 132

the answer. 133

This work develops an intelligent algorithm for solving 134

mechanics problems. The specific contributions are listed as 135

follows. 136

1) We develop an intelligent tutorial algorithm for solv- 137

ing mechanics problems, filling the gap in intelligent 138

education on physical domain. 139

2) We propose an comprehension model for mechanics 140

problems to convert problem understanding into rela- 141

tion extraction, and propose a neural model based on 142

BERT and GAT for acquiring given conditions of input 143

problem. 144

3) We propose a logic-based hidden information mining 145

algorithm to complement the given conditions of the 146

input mechanics problem. 147

4) We propose a predicate logic based method for force 148

analysis and a template based method for transform 149

predicate into equations. And an equation generation 150

algorithm and an equation selection algorithm are pro- 151

posed to reason the answer. 152

The rest of this article is organized as follows. Section II 153

presents the modeling framework, including deep learning 154

based natural language understanding, knowledge graph 155

based comprehension reasoning and predicate logic based 156

solution reasoning. In section III, extensive experiments are 157

presented, including a performance evaluation, a comparison 158

experiment and a sensitivity analysis. Finally, Section IV 159

provides a discussion and Section V concludes this 160

article. 161
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FIGURE 1. Overview of the proposed algorithm. Natural Language Understanding aims to convert natural language into named entities. Comprehension
reasoning aims to transform entities sequences into physical models represented by predicate logic by reasoning. Solution Reasoning aims to acquire the
answer.

II. MODELING FRAMEWORK OF THE PROPOSED162

ALGORITHM163

We aim to acquire the readable analysis and solution based164

on the input mechanics problem. As the given conditions165

are provided by natural language, we first need to convert166

it to a structured physical model and then solve the input167

problem accurately. The overview of the proposed algorithm168

is provided in FIGURE 1. There are three main steps in169

the algorithm. First, the input natural language are proposed170

by a natural language understanding procedure incorporating171

input management, sequence labeling and slot filling. Sec-172

ond, a comprehension reasoning is built by using predicate173

logic based on the results from the first step. Third, a solution174

reasoning procedure is applied to solve the problem when the175

predicate representation of the physical model is obtained.176

The details are illustrated in the following sections.177

A. DEEP LEARNING BASED NATURAL LANGUAGE178

UNDERSTANDING179

People usually transform the problem in natural language180

into a structured physical model to understand mechanics181

problems. Thus, in this section, we first propose a com-182

prehension model for mechanics problems. Then, we struc-183

turally represent the proposed model in the form of relational184

triples. In this way, the mapping from natural language to185

comprehension model of input problem is transformed into186

a relation extraction task. However, there are overlapping187

entities in the input problem, and existing methods cannot188

achieve satisfactory results. Moreover, the hidden condition189

of the input problem are usually attributes of entities in the190

text. Therefore, we use a novel tagging scheme based on the191

proposed comprehension model and propose a BERT-GAT192

based algorithm to recognize the entities first. And then 193

reasoning the relations according the tagging schema. 194

1) COMPREHENSION MODEL OF MECHANICS PROBLEMS 195

As mentioned above, we understand the input problem by 196

mapping the problem to a comprehension model. To clarify 197

this model, we use an example for demonstration, as shown 198

in FIGURE 2. The description of problem 2 (P2) is ‘‘The car 199

changes from a static state to a uniformly accelerated linear 200

motion with an acceleration of a1 = 0.5m/s2, and changes to 201

a uniform linear motion after 10s. When the uniform motion 202

lasts for 10s, the car brakes suddenly because it encounters 203

an obstacle. The acceleration of the brake is known. a2 = 204

−2m/s2, find: (1) The speed of the car at a constant speed; (2) 205

The displacement of the car within 36s.’’. It can be concluded 206

from the description that P2 has only one object and four 207

states, where UALM denotes uniformly accelerated linear 208

motion, ULM denotes uniform linear motion. 209

Two observations can be made from FIGURE 2: First, 210

the tree-like comprehension model can be divided into four 211

levels: object, ORstate, state and condition. The first level 212

aims to demonstrate the research object of the input problem. 213

The second level is used to clarify the overall movement of the 214

object. The third level is composed of several specific motion 215

state which detail the motion of the object. The last level 216

demonstrates the given conditions of the input problem, such 217

as velocity, time, force, etc. Second, each entity in the figure 218

is connected to other entities by one or more directed lines. 219

This is the same representation as relational triples. So we use 220

a set of relational triples to represent the proposed compre- 221

hension model. In turn, the understanding the input problem 222

is transformed into a relation extraction task. Denoting D(P) 223

VOLUME 10, 2022 92973



J. Zhang et al.: Artificial Intelligence Technology Based Algorithm for Solving Mechanics Problems

FIGURE 2. The proposed comprehension model, which contains four
levels: object, ORstate, state, condition. Each rectangle represents an
entity in the problem. UALM indicates uniformly accelerated linear
motion, ULM indicates uniform linear motion.

as the discription of input problem, the transformation can be224

written as225

D(P)→ T (1)226

where T = {r1, r2, . . . , rm} denotes the triples set of compre-227

hension model, m is the number of triple. Each elements in T228

called a triple, which can be expressed as229

ri = (ei1, pi, ei2) (2)230

where ri denotes the i-th element of T , ei1 is an entity called231

the subject of ri, p is a relation called predicate of ri, ei2 is an232

entity called the object of ri.233

2) A NOVEL TAGGING SCHEMA FOR RELATION EXTRACTION234

As mentioned, understanding is to extract triples in input235

problem. As the needs of solving mechanics problems,236

we propose a novel tagging scheme and using named entity237

recognition (NER) and reasoning for extracting triples. The238

reasons are as follows:239

First, a description of a mechanics problem is usually a240

long text. The text usually contains many (greater than 5)241

relation triples. Existing end-to-end algorithms cannot handle242

such complex situations.243

Second, as provided in FIGURE 2, there are two ‘‘10s’’244

in the model. But they have different meanings, and we call245

this situation as entity overlap. These overlapping entities246

affect the performance of relation extraction. Moreover, the247

proposed model is a tree model, which an entity and different248

entities form multiple triples, which is a difficulty in rela-249

tion extraction. For mechanics problems, entities in the text250

contain various information, direct end-to-end extractionmay251

ignore these important information.252

Third, using conditions provided in FIGURE 2 to calculate253

will lead to erroneous results. The reason is the next state254

of brake is static according the general knowledge, but there255

is no caption in the input text. Therefore, the complete state256

level of P2 should add a static after brake. Moreover, some257

FIGURE 3. The proposed tagging schema, which contain four parts. Part 1
is the boundary label. Part 2 is the category label. Part 3 is object label.
Part 4 is state label.

critical conditions are not given in the input text, such as the 258

velocity of static is 0m/s, the result force of static is 0N , 259

the final velocity of UALM is equal to the initial velocity of 260

ULM, etc. These hidden conditions are requisite when listing 261

equations. All these conditions are associated with recog- 262

nized entities in FIGURE 2. So those end-to-end algorithms 263

don’t work for this scenario. 264

Therefore, we employ the model based on the pipeline 265

structure, which first use a neural model to identify enti- 266

ties, and then determine the relationship between entities 267

through another neural model. To eliminate error propaga- 268

tion, we replace the second neural model with label informa- 269

tion based reasoning. 270

Although reasoning outperforms neural networks when 271

knowledge is complete, the premise is that sufficient infor- 272

mation is available. Traditional tagging schemes only contain 273

boundary information and category information, which can- 274

not infer correct relation triples. For example, we cannot infer 275

the relation between 0.5m/s2 and UAML in P2 from these 276

two information. By analyzing the proposed understanding 277

model, we find that for any entity, when we know which 278

object and which state is its parent node, we can infer its 279

relation with other entities. So we establish a novel tagging 280

schema by adding object information and state information to 281

the traditional schema. An example is provided in FIGURE 3 282

to clarify the proposed tagging schema. There four part for 283

each entity. First, part 1 is the boundary label to illustrate the 284

begin (B), inside (I) or out (O) of an entity. Second, part 2 is 285

the category label to represent the category of an entity, object 286

(O), velocity (V) or another type. Third, part 3 is the object 287

label to indicate which object is the parent node of current 288

entity. Finally, part 4 is state label which aims to determine 289

the state information of current entity. 290

3) NAMED ENTITY RECOGNITION USING BERT-GAT 291

Different with English sentences, lexicons in Chinese 292

sentences are difficult to demarcate. However, lexical infor- 293

mation is beneficial for Chinese named entity recogni- 294

tion. To efficiently recognize named entities from Chinese 295

text using lexical information, different models have been 296
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FIGURE 4. The architecture of the proposed neural model, containing BERT encoder, graph based encoder and sequence learning based decoder.

proposed in the literature. Zhang et al. [27] proposed Lattice297

LSTM model to reduce word segmentation errors. However,298

this method only uses the boundary information of lexicons299

and ignores the composition information of the vocabulary.300

With a similar purpose, graph neural networks [28] are301

also widely used in Chinese named entity recognition [29].302

Although these methods are easy to implement, they do not303

fully utilize the lexical information, including composition304

information and transmission information.305

In this work, we adopt BERT [22] and GAT [23] for306

recognizing entities in Chinese text, which take advantage of307

large-scale pretraining model and graph model. The model308

architecture is provided in FIGURE 4. There are main three309

steps in the method. First, the raw sentence is processed by310

BERTmodel to acquire the node features, including character311

features and lexicon features. Second, two graphmodel (com-312

position graph and transmission graph) and a fusion model313

are proposed to obtain final embedding. Third, a Bi-LSTM314

& CRF model is applied to achieve tagged sequence based315

on the results from the second step. The detailed procedure is316

provided as follows.317

BERT is a pretraining model based on transformer encoder318

[30]. Different with traditional convolutional neural networks319

(CNNs) and recurrent neural networks (RNNs), transformer320

encoder employ a multi-head self attention mechanism321

for long-term dependencies. The propagation formulas are322

written as323 {
Multihead(Q,K ,V ) = concat(headi)WO

headi = Attention(QiW
Q
i ,KiW

K
i ,ViW

V
i )

(3)324

where Q, K , and V denote the query vector, key vector and325

value vector respectively; headi denotes the single-head self-326

attention mechanism layer; WO denotes the weight matrix;327

WQ
i ,W

K
i , andWV

i denote the projection matrices. Moreover,328

the calculation of attention uses the scaled dot-product for-329

mat, which can be written as330

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (4)331

where dk denotes the dimension of the input vector.332

BERT for Chinese can only output the vector of input 333

characters, where as, lexical vectors are essential information 334

for processing Chinese sentences. To acquire the lexicon 335

features, we propose an averaging method. The propagation 336

formula is 337

Twi =
1
N

N∑
j=1

Tcj (5) 338

where Twi denotes the node feature of the i-th word wi, Tcj 339

denotes the node feature of character cj. Moreover, cj denotes 340

the j-th character makes up wi, and there wi is composed of 341

N characters. 342

To fully use the contextual information and lexical infor- 343

mation, two character and lexicon based graph are proposed 344

for modeling a Chinese sentence. The first graph is transmis- 345

sion graph which is constructed for contextual information 346

and the second is composition graph which is constructed for 347

lexical information. As the characters and words are fixed for 348

the same sentence, the two graphs share the same nodes set, 349

but the connection patterns are different. 350

There are two types of nodes in a sentence: character node 351

and lexicon node. Denoting S as the input sentence, then each 352

character in S corresponds to a character node and each word 353

in S that matches the predefined vocabulary corresponds to a 354

word node. In this work, c represents a character node and w 355

represent a lexicon node. Assuming that sentence 1 (S1) has 356

nine characters (c1−c9) and six lexicons (w1−w6) matching 357

the predefined vocabulary, in which c1 − c2 constitute w1, 358

c1−c3 constitute w2, c4−c5 constitute w3, c4−c9 constitute 359

w4, c6 − c7 constitute w5, c8 − c9 constitute w6. The details 360

of constructing the two graphs of S1 are as follows. 361

The contextual information can be divided into charac- 362

ter contextual information and word contextual information. 363

Character contextual information is the sequential infor- 364

mation of characters, while word contextual information 365

describe the word-to-word information. As provided in FIG- 366

URE 5, if i and j are two adjacent character nodes, and j is 367

the following node of i, then (i, j) of the transmission graph 368

adjacency matrix AT will be assigned 1. Furthermore, if k is 369
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FIGURE 5. The transmission graph of S1, where c denotes character node
and w denotes lexicon node.

FIGURE 6. The composition graph of S1, where c denotes character node
and w denotes lexicon node.

a word node and node i is the nearest preceding node of k ,370

node j is the nearest following node of k , then (i, k) and (k , j)371

of AT are be assigned 1.372

The composition graph describe the begin, inside and end373

relation between characters and lexicons. Compared with374

lattice LSTM [27], the composition graph can better delin-375

eate the inside information between characters and lexicons,376

which is crucial to extract named entities. As provided in377

FIGURE 6, if character node i is the begin, middle or end378

of word node j, then (j, i) of the forward composition graph379

adjacent matrix AFI will be assigned 1. If character node i380

is the begin, middle or end of word node j, then (i, j) of381

the backward composition graph adjacent matrix ABI will be382

assigned 1. Finally, perform anOR operation on each position383

element of AFI and ABI to get the composition graph adjacent384

matrix AI .385

In this work, we employGAT [23] to integrate the proposed386

two graphs. GAT is a representative work of spatial graph387

neural networks. Let Fj = {f Nj,1, . . . , f
N
j,k} be the input node388

feature of the j-th layer GAT, where f Nj,i is an N -dimensional389

vector denoting the i-th component of Fj. Take Fj+1 =390

{f N
′

j+1,1, . . . , f
N ′
j+1,k} as the output of this layer, where f

N ′
j+1,i is an391

N ′-dimensional vector denoting the i-th component of Fj+1.392

The feature update formulas can be written as393

αkij =
exp(LeakyRelu(aT [W k f Nj,i ‖W

K f Nj,j ]))∑
q∈�i exp(LeakyRelu(a

T [W k f Nj,i ‖W
K f Nj,q]))

(6)394

f N
′

j+1,i =
K
‖
k=1
σ (

∑
j∈�i

αkijW
k f Nj,j ) (7) 395

where αkij denotes attention coefficients; W k
∈ RF

′
×F , a ∈ 396

R2F
′

are trainable parameters; �i is the neighborhood node 397

set of node i;K is the number of attention heads. Additionally, 398

the output of the final GAT layer is 399

f N
f

f ,i = σ (
1
K

K∑
k=1

∑
j∈�i

αkijW
k f N

f−1

f−1,j ) (8) 400

As mentioned above, the input character features and 401

lexicon features of a sentence contains n characters and m 402

lexicons are expressed as 403

vI = {Tc1 , . . . ,Tcn ,Tw1 , . . . ,Twm} (9) 404

where vI denotes the out of BERT. To make the calculation 405

clear, we rewrite the above formula as 406

F = {f N0 , f
N
1 , f

N
2 , . . . , f

N
n+m+1} (10) 407

where f N0 and f Nn+m+2 denotes the start feature and end feature 408

of input sentence, f Ni denotes the i-th node feature. Denoting 409

GAT as the function of a GAT layer, the updated node features 410

are 411

U = GAT (F,A) = {f U0 , f
U
2 , . . . , f

U
n+m+1} (11) 412

where U denotes the updated node features, A ∈ RN∗U 413

denotes the adjacent matrix of the input nodes, f Ui denotes the 414

i-th node feature is a vector with U dimension. As there are 415

two graph models are needed, we employ two independent 416

GATs to capture the node feature and the details are written 417

as 418

UT = GAT (F,AT )UC = GAT (F,AC ) (12) 419

where UT denotes the updated node feature of transmission 420

graph, UC denotes the updated node feature of composition 421

graph, AT denotes the transmission graph adjacency matrix, 422

AC denotes the composition graph adjacency matrix. Finally, 423

only the first n columns of the node feature are retained as the 424

final node feature 425

ET = UT [:, 0 :, n]EC = UC [:, 0 :, n] (13) 426

where ET denotes the final node features of transmission 427

graph, EC denotes the final node feature of composition 428

graph. The Fusion Layer aims to integrate the transmission 429

node feature and the composition node feature. The propaga- 430

tion formulas of the fusion layer in this article is 431

I = WTET ‖WCEC (14) 432

where I denotes the output of Fusion Layer, WT denotes a 433

trainable matrix for ET , WC denotes a trainable matrix for 434

EC . 435

To capture the sequence information, we applied a Bi- 436

LSTM [31] to the results of fusion layer. Denoting LSTM as 437
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the function as LSTM [32]. Then the propagation formulas438

can be expressed as439 
−→
hi =

−−−→
LSTM (xi,

−−→
hi−1)

←−
hi =

←−−−
LSTM (xi,

←−−
hi+1)

ḣi = [
−→
hi ,
←−
hi ]

(15)440

where
−→
hi and

←−
hi denote the positive LSTM hidden state and441

the reverse LSTM hidden state of the i-th vector xi respec-442

tively,
−−−→
LSTM denotes the positive LSTM function,

←−
hi denotes443

the reverse LSTM function, ḣi denotes the final hidden state444

of xi.445

CRF [33] has transfer characteristics, which can consider446

the order of output tags. Therefore, a CRF is chosen for447

processing the output of Bi-LSTM. After decoding the output448

of Bi-LSTM layer by using Viterbi algorithm [34], the tagged449

sequence is acquired.450

B. KNOWLEDGE GRAPH BASED COMPREHENSION451

REASONING452

Comprehension reasoning aims to acquire the complete rela-453

tion set of comprehension model and output a readable454

model based on the results of natural language understand-455

ing. We divide relations into two categories: direct relations,456

which can be obtained directly in the text, and hidden rela-457

tions, which require common sense knowledge. The details458

of comprehension reasoning are provided as follows.459

1) DIRECT RELATION REASONING460

Predicate logic, which consists of variables, constants, predi-461

cates, etc., has been widely used in knowledge based systems462

for its naturalness. In this work, we use uppercase letters463

indicate constants and lowercase letters indicate variables.464

It is well known that predicate logic can modeling modeling465

complex relationships. For example, denotingHuman(x) as x466

is human,Male(x) as x is male. By common sense, we know467

that if x is human and x is male, we can conclude that x is a468

man. LetMan(x) means x is a man, this rule can be expressed469

as470

Human(x) ∧Male(x)→ Man(x) (16)471

where Human(x) and Male(x) called the body and Man(x)472

called head.473

As the proposed comprehension model is a tree model, the474

triple set acquiring of comprehension model can be trans-475

formed into a process of finding leaf nodes based on root476

nodes. Thus, we sequentially reason the direct relationship477

in the following order.478

1) Relations between objects.479

2) Relations between objects and overall state (ORstate).480

3) Relations between overall state (ORstate) and states.481

4) Relations between states and conditions or between482

objects and conditions.483

Relations between objects can be divided into three cat-484

egories: the relation between research objects, the relation485

between research object and reference object and the relation486

between power source (electric motor or engine) and research 487

object. As objects are the root node of the comprehension 488

model, these relations can be acquired by using category label 489

and object label. The rule for reasoning the relation between 490

research objects is as follows 491

Object(e1) ∧ Object(e2) ∧ RAction(e3) 492

∧ OBJ_LAB(e1, o1) ∧ OBJ_LAB(e2, o2) 493

∧ OBJ_LAB(e3, o3) ∧ STA_LAB(e3, s3) 494

∧ EQ_TO(o1, o3) ∧ EQ_TO(o2, s3) 495

→ RACT_S(e3, e1) ∧ RACT_O(e3, e2) (17) 496

where Object(x) denotes the category information of x 497

research object, RAction(x) denotes the category information 498

of x is action between research objects (catch up, opposite 499

move, etc.), OBJ_LAB(x, y) denotes the object information 500

of x is y, STA_LAB(x, y) denote the state information of x is 501

y,EQ_TO(x, y) denotes x is equal to y,RACT_S(x, y) denotes 502

the subject of x is y and the category information of x is action 503

between research objects, RACT_O(x, y) denotes the object 504

of x is y and the category information of x is action between 505

research objects. 506

The rule for reasoning the relation between research 507

objects and reference object is as follows 508

Object(e1) ∧ RObject(e2) ∧ Position(e3) 509

∧ OBJ_LAB(e1, o1) ∧ OBJ_LAB(e2, o2) 510

∧ OBJ_LAB(e3, o3) ∧ STA_LAB(e3, s3) 511

∧ EQ_TO(o1, o3) ∧ EQ_TO(o2, s3) 512

→ POSI_S(e3, e1) ∧ POSI_O(e3, e2) (18) 513

where RObject(x) denotes the category information of x is 514

position, Position(x) denotes the category information of x is 515

position, POSI_S(x, y) denotes the subject of x is y and the 516

category information of x is position, POSI_O(x, y) denotes 517

the object of x is y and the category information of x is 518

position. 519

The rule for reasoning the relation between power source 520

and research object is as follows 521

Object(e1) ∧ PSource(e2) ∧ OBJ_LAB(e1, o1) 522

∧ OBJ_LAB(e2, o2) ∧ EQ_TO(o1, o2) 523

→ HAS_PSOUR(e1, e2) (19) 524

where PSource(x) denotes the category information of x is 525

power source, HAS_PSOUR(x, y) denotes x is the power 526

source of x. 527

As the overall state entity is usually not given in the text, 528

we use the default logic, if an object is a research object, then 529

it is assumed that it has a overall motion. The rule can be 530

written as 531

Object(e1) ∧ OBJ_LAB(e1, o1) ∧ STA_LAB(e1, s1) 532

→ HAS_ORS(e1,ORS_o1_s1) (20) 533

where HAS_ORS(x, y) denotes x has a overall state y. 534
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Relations between overall state and states details the move-535

ment process of research object, the rule can be expressed as536

ORState(e1) ∧ State(e2) ∧ OBJ_LAB(e1, o1)537

∧ OBJ_LAB(e2, o2)→ HAS_STATE(e1, e2)538

(21)539

whereORState(x) denotes the category information is overall540

state, State(x) denotes the category information of x is state,541

HAS_STATE(x, y) denotes x has a state y.542

The rule for reasoning relations between states and condi-543

tions is as544

State(e1) ∧ CON (e2) ∧ OBJ_LAB(e1, o1)545

∧ OBJ_LAB(e2, o2) ∧ STA_LAB(e1, s1)546

∧ STA_LAB(e2, s2) ∧ EQ_TO(o1, o2)547

∧ EQ_TO(s1, s2)→ HAS_CON (e1, e2) (22)548

where CON (x) denotes the category information of x549

is condition (including displacement, acceleration, etc.),550

HAS_CON (x, y) denotes state x has a condition (including551

HAS_DISP, HAS_ACC , etc.) y.552

Finally, relations between objects and conditions details553

some properties of objects, including mass, efficiency, etc.554

The rule can be written as555

OBJ (e1) ∧ Condition(e2) ∧ OBJ_LAB(e1, o1)556

∧ OBJ_LAB(e2, o2) ∧ EQ_TO(o1, o2)557

→ HAS_CON (e1, e2) (23)558

where OBJ (x) denotes the category information of x is559

object (including research object, reference object and power560

source).561

2) HIDDEN RELATION MINING562

Hidden information is indispensable for solving a mechanics563

problem. This article divides hidden information into two564

categories. The first category is general knowledge which565

aims to complete the comprehension model and the second566

is mechanics hidden knowledge for listing equations.567

The general knowledge mainly store inherent properties or568

default conditions of objects. For example, without special569

declaration, a car (sports car, truck, etc.) usually move on570

road (ground, highway, etc.), an airplane or aircraft usually571

fly on the sky and is subject to air resistance, turning off572

the engine (break, decelerate, etc.) means that the moving573

object will maintain uniform deceleration linear motion and574

will eventually come to static, etc. This type of knowledge is575

related to objects or actions. As the objects and actions are576

usually fixed, we use knowledge graph to store these general577

knowledge. And general knowledge of P2 are provided in578

FIGURE 7.579

The other type hidden information is mechanics hidden580

knowledge. For example, the final velocity of current state is581

equal to the initial velocity of the next state, the result force of582

ULM is 0N , the acceleration of static is 0m/s2, etc. This type583

of knowledge is related to mechanics noun. As the number of584

FIGURE 7. The general knowledge storage details of P2, where the ellipse
represents the instance (subject or object), the directed line represent the
predicate, the text next to the directed line indicates the predicate name,
the ellipse connected to the arrow is the object, the ellipse connected to
the nock is the subject, UDLM is abbreviation of uniform deceleration
linear motion.

TABLE 1. The mechanics hidden knowledge mining algorithm, where P(s,
o) denotes s has a relation P with o.

state of an input problem is not fixed, we employ reasoning 585

to mine these knowledge. The mining algorithm is provided 586

in TABLE 1. 587

Nevertheless, there may be a conflict between direct infor- 588

mation and mined hidden information. Thus, we borrow the 589

idea of default logic to set different priorities for direct infor- 590

mation and mined information by setting a conflict predicate 591

set. We stipulated that the priority of direct information is 592

higher than that of mined hidden information, and the conflict 593
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TABLE 2. The given information of P2, where HAS_ORS denotes has overall state, HAS_STA denotes has state, HAS_ACC denotes has acceleration,
HAS_MTI denotes has motion time, HAS_VELO denotes has velocity, HAS_TI denotes has time, HAS_DISP denotes has displacement, HAS_EFFI denotes
has efficiency, HAS_PROP denotes has property, CUR_STA denotes current state, NEXT _STA denotes next state, HAS_GRA denotes has gravity,
HAS_RFORCE denotes has result force, HAS_IVELO denotes has initial velocity, HAS_FVELO denotes has final velocity, EQ_TO denotes equal to.

resolution rule is594

DIRECT (t1) ∧ HAS_SUB(t1, s1) ∧ HAS_PRE(t1, p1)595

∧ MINED(t2) ∧ HAS_SUB(t2, s2)596

∧ HAS_PRE(t2,P2) ∧ SAME(p1, p2)597

∧ SAME(s1, s2)→ DEL_TRI (t2) (24)598

where DIRECT (t1) denotes triple t1 is belong to direct599

information, HAS_SUB(t1, s1) denotes the subject of t1 is600

s1, HAS_PRE(t1, p1) denotes the predicate of t1 is p1,601

MINED(t2) denotes triple t2 is belong to mined infor-602

mation, HAS_SUB(t2, s2) denotes the subject of t2 is603

s2, HAS_PRE(t2, p2) denotes the predicate of t2 is p2,604

SAME(s1, s2) denotes s1 and s2 are the same, SAME(p1, p2)605

denotes p1 and p2 are the same, DEL_TRI (t2) denotes t2606

is in deleted information set. Finally, the triple in deleted607

information set will not used for the analysis and calculation.608

This work acquire all the given conditions through five609

steps. First, the solver employs a predicate reasoner to610

extract the direct conditions. Second, a query is employed for611

acquiring the general knowledge conditions of input prob-612

lem according to object entities and action entities. Third,613

updating given conditions by deconflicting the direct condi-614

tions with the general knowledge. Fourth, the mining algo-615

rithm is used for acquiring mechanics hidden conditions.616

Finally, the final given conditions are obtained by combining617

the mechanics hidden conditions with the given conditions618

in step 3.619

According to the above procedure, the recognized entity620

and corresponding label of P2 are: static (STATE_1_1), uni-621

formly accelerated linear motion (STATE_1_2), 0.5m/s2622

(ACC_1_2), uniform linear motion (STATE_1_3), 20s623

(MTI_1_2), 10s (MTI_1_3), brakes (ACC_1_4), −2m/s2624

(ACC_1_4), speed (VELO_1_3), 36s (TIME_1_OR), dis-625

placement (DISP_1_OR), where the bold word indicates the626

entity and the italic word in brackets indicates the label.627

TABLE 2 provides the total given information of P2.628

TABLE 3. The procedure of force analysis.

C. PREDICATE LOGIC BASED SOLUTION REASONING 629

1) FORCE ANALYSIS 630

Solving dynamic problems is mainly to analyze the relations 631

of forces on the object and to express these relationships with 632

equations. The hidden information of dynamics problems is 633

mainly the unannounced of friction and pressure. We exploit 634

the position between objects and reasoning to mine these 635

information. For example, if a car in on a road, then the 636

car is subject to the friction of the road through reasoning. 637

Additionally, if a box is move on a desktop and the dynamic 638

friction factor between the box and the desktop is not equal to 639

zero (default knowledge), then the box is subject to the fric- 640

tion of the desktop through reasoning. This work sets these 641

position information as default knowledge and proposed an 642

predicate logic-based method for force analysis. As provided 643

in TABLE 3, the procedure is mainly divided into three steps: 644

judging the number of forces, force decomposition and force 645

synthesis. 646

For example, the description of problem 3 (P3) is ‘‘There 647

is a wooden box on the level ground. The mass of the wooden 648

box is m = 20kg, and the coefficient of kinetic friction 649
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TABLE 4. The pool of calculation predicates and templates built in this paper.

between the wooden box and the ground is u = 0.20. A child650

pushes the wooden box to the right with a thrust F to make a651

uniform linear motion, take g = 10m/s2, what is the sliding652

friction on the wooden box.’’653

The recognized entities of P3 are:wooden box (OBJ_1_0),654

on (POS_1_1), ground (ROBJ_1_1), 20kg (MASS_1_0), 0.2655

(FFAC_1_1), child (AOBJ_1_1), F (FORCE_1_1), right656

(MDIR_1_1), uniform linear motion (STATE_1_1), 10m/s2657

(GACC), sliding friction (FRIC_1_1), where the bold word658

indicates the entity and the italic word in brackets indicates659

the label.660

Due to space reasons, the force analysis of P3 is given661

in Attached Table 1. In this article, we define calculation662

predicates and employ a template based method transform663

predicate to equations for computing the answer. TABLE 4664

provides the calculation predicates and templates used in this665

work.666

2) MOTION ANALYSIS667

Different from existing studies, physical formulas are used as668

rules for solving problems in this article. The names, units,669

and symbols of the variables which make up the formula, the670

specific form and the application scenarios of the formula are671

essential for applyingmeta information based reasoning algo-672

rithm. We employ knowledge graph to store these physical673

rules. For example, the rule that sliding friction is equal to674

the product of pressure and friction factor can be stored as675

the schema provided in FIGURE 8.676

From FIGURE 8 we can see that there are four predicates677

and six objects of rule 10. The content of the formula is678

F_f = F_N ∗ u, which means that the friction is equal to679

the product of presure and the friction factor. Moreover, the680

number of rule 10 is P10 which denotes the 10-th physical681

rule. Additionally, the application scenario of rule 10 is FA682

which is the abbreviation of force analysis. Finally, there683

three variables: friction, presure and friction factor in the684

formula. The symbol of friction isF_f and the unit isN which685

indicates Newton, the symbol of presure is F_N and the unit686

is N too, the symbol of friction factor is u and the unit is null687

which indicates that u is just a coefficient.688

FIGURE 8. The storing schema of a physical rule, where has_application
and has_number are object property, has_variable and has_formula are
datatype property, ellipses denote instances, rectangles denote data
instance expressed by s string, FA denotes force analysis, the object of
has_variable consists of symbols, variable names, and units, separated by
commas.

Current works employ the forward reasoning algorithm 689

for computing solutions, which is space-consuming and 690

produces useless conditions for complex mechanics prob- 691

lems. Zhang et al [21] proposed a meta information based 692

backward reasoning algorithm to select equations for calcu- 693

lation. However, the algorithm needs to store the same for- 694

mula with different objects information or states information 695

separately, which consumes a lot of storage space. Therefore, 696

we proposed a reasoning algorithm based on their work. The 697

reasoning method can be divided into two steps, equation 698

generating and equation selecting. The details are provided 699

in TABLE 5. 700

To choose the suitable equations, we propose the con- 701

cept of reasoning loss to constraint the reasoning direction. 702

We stipulate that the smaller the reasoning loss of the current 703

step, the more correct the reasoning direction. Define the 704

reasoning cost as 705
cost = Ii(Qi,R)− Si(Ci,R),
Qi = IQi−1(Q,C,R)
Ci = ICi−1(Q,C,R)

(25) 706

whereQ denotes the question, C denotes the given condition, 707

R denotes the rule cost denotes the reasoning cost of question 708

Q, condition C and rule R, Ii(Qi,R) denotes the i-th order 709

initial reasoning loss of question Q and rule R, Si(Ci,R) 710
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TABLE 5. The meta information based equation selection algorithm.

denotes the i-th order reasoning score of given condition C711

and rule R, IQi−1 denotes the i − 1-th question reasoning712

function and ICi−1 denotes the i − 1-th given condition713

reasoning function. Moreover, when there are multiple rules714

with the smallest reasoning cost, the algorithm will calculate715

a high-order loss of the current rule until there is only one rule716

has the smallest cost.717

III. EXPERIMENTS718

A. EXPERIMENTAL DATA719

1) PROBLEM CLASSIFICATION720

We divided the mechanics problems into three categories721

according to the test point: Newton’s laws, linear motion,722

power & energy. TABLE 6 provides examples of each cate-723

gory. Linear motion problems refer to problems only require724

motion analysis. These problems do not require force analysis725

and do not involve energy and power, Newton’s law problems726

refer to problems require both force and motion analysis but727

do not involve power and energy. Power and energy problems728

refer to the problems adding the knowledge of energy and729

power to the Newton’s law problem.730

TABLE 6. Examples of each category, including Linear Motion, Newton’s
Laws, Power & Energy.

TABLE 7. The properties of training data, including training set, validation
set and test set. Character Num denotes the total number of characters in
the set, Entity Num denotes the total number of entities in the set,
Problem Num denotes the total number of problems in the set, Ave
characters denotes the average number of characters per problem in the
set.

2) TRAINING DATA 731

We collect training data through the Internet 1 2 for the 732

experiment. There are a total of 6822 mechanics problems in 733

three categories, including 2816 problems of linear motion, 734

2234 problems of Newton’s laws, and 1772 problems of 735

power & energy. However, due to the large number of labels 736

involved in the experiments, and the huge amount of data 737

is the basis of deep learning algorithm, we perform data 738

enhancement by replacing some words in the problem with 739

synonyms or changing some entity values. For example, 740

replace car with bus, 10m/s with 20m/s, etc. Additionally, 741

we expand 10 more problems on the basis of each problem 742

and the number of total training data is 75042. Finally, the 743

training data is divided into training set, validation set and 744

test set with a ratio of 8 : 1 : 1. The properties of the training 745

data are provided in TABLE 7. 746

3) TEST DATA 747

The test data are collected from teaching materials, exer- 748

cise books and test papers. A total of 1416 pure text prob- 749

lems are acquired for testing, including 712 linear motion 750

problems, 356 newton’s laws problems and 348 power & 751

energy problems. Additionally, we divide these problems into 752

three categories according to the solving variable: solving 753

kinematics, solving dynamtics and solving power. Solving 754

kinematics denotes that the question is kinematics variables 755

such as displacement, velocity and acceleration etc., solving 756

dynamtics denotes that the question is dynamtics variables 757

such as friction, presure and pulling force etc., solving power 758

denotes that the question is power variables such as power, 759

kinetic energy and potential energy etc. The property of our 760

test data are provided in TABLE 8. 761

1https://zujuan.xkw.com/
2https://zujuan.21cnjy.com/
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TABLE 8. The properties of test data, where kinematics denotes problem
solving kinematics variables, Dynamtics denotes problem solving
dynamics variables, Power denotes problem solving power variables.

B. EVALUATION METRICS762

We use three levels of comprehension to evaluate the763

proposed method: complete comprehension, partial compre-764

hension and incomprehension. To better define the three type765

comprehension, we define two measures as follows:766

1) Identifying all direct conditions of the input problem,767

that is, correctly identify the type, boundary of each768

entity and correctly determine the relationship type769

between entities.770

2) Identifying all hidden conditions of the input problem,771

which means mining all hidden relationships of the772

input problem.773

Then the three levels are defined by using the two mea-774

sures:775

Complete comprehension: if and only if the solver fulfills776

the above two measures;777

Partial comprehension: if and only if the solver can acquire778

but not all direct relations and hidden relations;779

Incomprehension: if and only if fails to acquire any direct780

relations and hidden relations.781

Take P2 as an example, if the algorithm acquire all the rela-782

tions in TABLE 2, the comprehension level of the algorithm783

to P2 is complete comprehension. Moreover, if the algorithm784

fails to acquire any relation in TABLE 2, the comprehension785

level of the algorithm to P2 is incomprehension. Finally,786

the comprehension level of the algorithm to P2 is partial787

comprehension in other cases.788

C. EXPERIMENT: EVALUATION OF THE PROPOSED789

ALGORITHM790

1) IMPLEMENT DETAILS791

We collect 46533 words from textbooks, workbooks, and test792

papers as our lexicon for experiment. Additionally, an anal-793

ysis on the matching between the entities and the word794

vocabulary is given to demonstrate the conflict matching795

problem. Defining the entity conflict rate (ECR) as the ratio796

of non-identical overlapping entity of a dataset matches with797

the lexicon [21]. The ECR of our experiment is 27.31%.798

Considering the size of the lexicons, as the using of BERT799

base for Chinese, the character embedding dimension and800

word embedding dimension of our experiment are set to801

768. The maximum number of training epochs is set to 60.802

Moreover, the optimizer is Adam [35] and the decay rate of803

learning rate is set to 1e-2. Additionally, the attention head804

of GAT is set to 3, the number of GAT layer is set to 2,805

the input dimension, hidden dimension and output dimension806

are set to 768, 384 and 192. Finally, the back-propagation807

algorithm is used to solve the optimal value of all trainable 808

parameters. To prevent overfitting, we use an early stop 809

mechanism during the training process. When the F1 score 810

does not increase for 10 consecutive batches, the training is 811

terminated. 812

2) PERFORMANCE EVALUATION 813

In this experiment, we aim to evaluate the comprehension 814

level and the solving accuracy of the proposed algorithm. 815

First, we train the model on the collected training data. Then, 816

we use the test data to evaluate the performance of the model 817

which performs best on test set of the training data. The 818

evaluation metrics values are provided in TABLE 9. 819

Several observations can bemade fromTABLE 9. First, the 820

comprehension level of all test problems was either complete 821

comprehension or partial comprehension, that is, there were 822

no problems that were incomprehension. This is a good result. 823

Second, for linear motion problems, among the 712 prob- 824

lems, the comprehension level of 49 problems is partial com- 825

prehension, and the complete comprehension rate reaches 826

93.12%. Third, the proportion of complete comprehension 827

of Newton’s laws problems reached 85.11%. Among them, 828

20 of the 159 problems of solving kinematic variables were 829

partial comprehension, and the complete comprehension rate 830

reached 87.42%; 33 of the 197 problems of solving kinematic 831

variables were partial comprehension, and the complete com- 832

prehension rate reached 83.25%. Fourth, 81 of the 348 power 833

& energy problems have a partial comprehension level and a 834

complete comprehension rate of 76.72%. Among them, 17 of 835

the 60 solving kinematic variables were partially understood, 836

28 of the 109 dynamic variables were partially understood, 837

and 36 of the 179 power problems were partially understood. 838

Moreover, the Reason Acc column shows that all problems 839

fully understood were answered correctly. Finally, with the 840

increase of test points, the accuracy of the proposed method 841

has shown a downward trend. There are two main reasons for 842

this phenomenon. One is that with the increase of knowledge 843

points, the categories of entities will also increase; secondly, 844

most of Newton’s laws problems and power & energy prob- 845

lems are given in the form of a combination of pictures 846

and texts, the pure text data is not a lot. We will focus on 847

developing algorithms to address these two defects in feature 848

work. 849

D. EXPERIMENT: COMPARISON WITH OTHER 850

ALGORITHMS 851

To further evaluate the proposed algorithm, we conduct a 852

comparative experiment between our algorithm and some 853

existing algorithms. In specifically, we exam these algorithms 854

on the 1416 test problems we collected. However, since some 855

of these algorithms are DL based method which can not 856

output an analysis and readable solutions, we take the solving 857

accuracy as the evaluation metrics. Additionally, we define 858

the accuracy improvement ratio to intuitively compare the 859

solving accuracy between different algorithms. 860
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TABLE 9. The statistical experimental results, where category denotes the category of problem, Question type denotes the type of various questions,
Problem num denotes the number of problems, False num denotes the number of incorrectly solved problems, Complete comp denotes the ratio of
complete comprehension, Partial comp denotes the ratio of partial comprehension, Incomp denotes the ratio of incomprehension, Reason Acc denotes
the reasoning accuracy.

1) BASELINE ALGORITHMS861

In addition to the proposed method, we choose five other862

algorithms, DNS [17], Math-EN [18], GTS [19], GTL [20]863

and DLR [21] to construct the experiment. DNS is the first864

DL based algorithm for solving word problem. Math-EN865

employs a equation normalization algorithm to reduce the866

target sample space. GTS is a goal-driven method, which867

completes the goals by decomposing expressions. GTL is a868

work that uses GNN for encoding and tree based decoder to869

generate formulas. DLR is the first work that integrating DL870

and predicate logic for solving kinematics problems.871

2) PARAMETERS SETTING872

The details of the implement parameters are provided in873

TABLE 10. Since the bert-base model is employed, the874

embedding dimension of DLR and our method are set to 768.875

The embedding dimension of DNS, Math-EN, GTS and GTL876

are set to 128. In addition, the maximum training epoch of our877

algorithm is set to 60, while DLR to 40, and other baselines878

are set to 80. Furthermore, due to the using of GNN, the batch879

size of our algorithm and GTL are set to 2. The batch size of880

DLR are set to 8 and other baseline algorithms are set to 32.881

Moreover, all the experimental algorithms set the Shuffle to882

True. Additionally, the initial learning rate of DLR is set to883

different parameters according to the fitting ability of each884

layer: 5e-5 for the BERT layer, 1e-3 for the LSTM layer, and885

1e-2 for the CRF layer. The initial learning rate of the other886

baseline algorithms are set to 1e-3. Besides, the learning rate887

decay rate, minimum learning and dropout ratio are set to 1e-888

2, 1e-5 and 0.5 for all the algorithms. Finally, we employed889

the Adam optimizer to train all models.890

3) MAIN RESULTS891

The main results of the comparative experiment are provided892

in FIGURE 9. It can be observed that the proposed algo-893

rithm has a better performance compared to other baselines.894

First, for all 1416 test questions, the proposed method has895

achieved an accuracy over 80%, while the best of other896

algorithms reached over 70%. Second, for the 712 Linear897

Motion problems, in addition to DNS, the accuracy of other898

TABLE 10. The parameters setting of the comparative experiment, where
Emb Dim denotes embedding dimension, Epoch denotes the maximum
epoch, Batch denotes batch size, Ini LR denotes initial learning rate,
LR Dec denotes the decay ratio of learning rate, Min LR denotes minimum
learning rate, Drop denotes the ratio of dropout.

FIGURE 9. The solving accuracy of the proposed algorithm between
baseline algorithms.

methods have exceeded 80%. The proposed algorithm has an 899

accuracy of 90% which is the best among all the algorithms. 900

Third, for the 356 Newton’s Laws problems, the accuracy of 901

each algorithm varies greatly, and the difference between the 902

maximum accuracy and the minimum accuracy is close to 903

30%. Fourth, the performance difference of each algorithm is 904

mainly reflected in the solving of the 348 Power % Energy 905

problems. The best performing is nearly twice as accurate 906

as the worst. The reason contributed to this result is the 907

hidden information. Although DL based methods can learn 908

to list formulas, the process is still a black box. Additionally, 909

inherent general knowledge and hidden physical knowledge 910

are difficult to learn through training. Solving a Newton’s 911

Laws problem or a Power & Energy problem need general 912

knowledge and hidden physical knowledge, so the proposed 913

algorithm significantly outperforms these methods in these 914

two category. 915
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TABLE 11. The accuracy improvement ratio between the proposed
algorithm and baselines, where + denotes the proposed improves the
baseline.

TABLE 12. The ME, MV and SD of each algorithm.

To compare the solving accuracy of the proposed method916

with baselines, we introduce a new evaluation metric. Define917

the accuracy improvement ratio as the ratio of the accuracy918

difference to the accuracy of the baseline algorithm, which919

can be written as920

AIR =
AO− AT

AT
∗ 100% (26)921

where AIR denotes the accuracy improvement ratio, AO922

denotes the accuracy of our method, AT denotes the accu-923

racy of other algorithms. The results of accuracy improve-924

ment ratio between the proposed algorithm and baselines are925

provided in TABLE 11. DLR performs the best except for926

the proposed algorithm. Additionally, compared with DLR,927

the proposed method improves by 3.59% on linear motion928

problems, 15.20% on Newton’s law problems, 27.15% on929

power and energy problems, and 10.79% overall.930

E. SENSITIVITY ANALYSIS931

It is well known that the DLmethods are sensitive to variation932

in input data. To further evaluate the sensitivity, we perform a933

sensitivity experiment on the test data between the proposed934

algorithm and the baselines. We conducted a total of 10 sets935

of sensitivity experiments, and the test data of each set of936

experiments were 1000 questions randomly selected from937

1416 test data.938

The mean value (ME), median value (MV) and standard939

deviation (SD) of the solving accuracy of each algorithm are940

provided in Table 12. It can be observed that the solving941

accuracy of the proposed algorithm is noticeably better than942

other baselines. Additionally, the SD provided in the table can943

prove that the proposed method has better stability than other944

methods.945

To statistically evaluate the performance of the proposed946

method, we also conduct a Wilcoxon signed rank test.947

We conducted a total of five groups of tests, each of which948

compared the proposed algorithm with one of the baselines.949

The null hypothesis of the test is that there is no significant950

difference between the two groups of data, whereas, the951

alternative hypothesis is that there is a significant difference952

between the two groups of data. The results of the Wilcoxon953

signed rank test are provided in Table 13. We can see that p954

values are significantly lower than 0.05 (5%). This is strong955

TABLE 13. The results of the Wilcoxon signed rank test between the
proposed algorithm and the baselines.

evidence for rejecting the null hypothesis and accepting the 956

alternative hypothesis. Combining the previous statistical 957

results, we observe that the proposed method significantly 958

outperforms baselines. 959

IV. DISCUSSION 960

We can observed that the proposed system achieve an accu- 961

racy of 87.08% (1233 of 1416) for solving mechanics prob- 962

lems. The proposed method simulates the human cognitive 963

process, first understanding the input problem, and then find- 964

ing the answer through reasoning. Additionally, as there is no 965

complex syntactic analysis of the natural language, but the 966

model information is integrated into the labels, the proposed 967

method can also be applied to other languages. And only an 968

ontology model and an general knowledge base are required 969

to work on a different domain. We differentiate the reasons 970

for the improvement of the proposed algorithm as follows. 971

1) The first is the architecture of the proposed method. 972

Although has made critical breakthrough, current DL 973

algorithm still in the status of perceptual intelligence. 974

Whereas, people solve mechanics problems through 975

systematic knowledge, and reasoning. However, per- 976

ceptual intelligence cannot learn these knowledge effi- 977

ciently. Therefore, obtaining various information in the 978

problem first and then solving the problem through 979

reasoning achieves better performance than solving the 980

problem directly through a neural network. 981

2) General knowledge and hidden mechanics knowledge 982

are also indispensable for solving a mechanics prob- 983

lem. Mechanics differs from circuits and mathematics 984

in that it studies interactions and the motion of objects, 985

which are related to real life. Therefore, comprehend- 986

ing a mechanics problem requires an understanding of 987

the object properties. Moreover, the properties of some 988

physical variables such as speed cannot be abruptly 989

changed are particularly important in inferential calcu- 990

lations. 991

3) Lexical information is essential for Chinese sentences. 992

Combining the pretrained model with graph neural 993

network is an effective method to utilize the lexical 994

information and contextual information of sentences. 995

V. CONCLUSION 996

In this work, we propose an intelligent tutorial algorithm 997

for solving mechanics problems which fills the gap of intel- 998

ligent tutoring in mechanics domain. Different from previ- 999

ous works, our method can solve both dynamics problems 1000

and kinematics problems combining neural network (NN), 1001

knowledge graph (KG) and reasoning. Moreover, a novel 1002

model combining pretrained model and graph attention 1003
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network is proposed for extract the information of input prob-1004

lem. Additionally, a hidden information mining algorithm1005

is presented to supplement the conditions of input problem.1006

Finally, a equation selection algorithm is introduced to reason1007

the answer. The experimental results demonstrate the advan-1008

tages of the proposed algorithm.1009
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