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ABSTRACT In the last years, our society’s high energy demand has led to the proposal of novel ways
of consuming and producing electricity. In this sense, many countries have encouraged micro generation,
including the use of renewable sources such as solar irradiation and wind generation, or considering
the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal
active—reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids
considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios,
in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE
118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed
the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-
DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators.
The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms
of millions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.

INDEX TERMS Energy efficiency, optimal power flow, microgrids, swarm intelligence, C-DEEPSO.

I. INTRODUCTION presence of plug-in electric vehicles (PEVs), there is also the

In recent years it has been understood that Renewable Energy
Sources (RESs) will reduce ecological and financial issues in
our technological societies. The concerns regarding environ-
mental impacts associated with the constant increasing in fos-
sil fuel use has led to a massive deployment of RESs, such as
photovoltaic (PV) or wind-based (WT), and Energy Storage
Systems (ESSs) in modern electrical power systems [1], [2].
However, an important problem that comes along with the
RESs penetration in the grid is the uncertainty in forecasting
wind speed and solar irradiation [3]. Moreover, with the
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uncertainty related to consuming power from the grid (Grid
to Vehicle (G2V)) and injecting power in the grid (Vehicle to
Grid (V2G)) [4]. Hence, these uncertainties in the dynamics
of the RESs must be taken into consideration to maintain a
safe and profitable functioning of a power system.

The integration of RESs in smart grids provides not only
benefits but also challenges related to the environment and
countries’ policies [5]. Among the numerous benefits of
including both PV and WT generators in the grid, it is
important to highlight the reduction in peak energy demand
and consequently, a lessening in energy losses. However,
these RESs rely on weather conditions, so this uncertainty
may affect the reliability of the grid, and increase generation
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costs [6]. As an alternative to reduce voltage variations
and power losses, energy storage services (ESS) are often
employed [7]. Additionally, as the market absorption of elec-
tric vehicles (EVs) increases [8], PEVs play an important
role in the grid. Unmanaged G2V may raise the load demand
during peak hours leading to congestion of lines, therefore
shortening the equipment’s life due to the additional load
burden and voltage fluctuations [9]. A possible alternative is
to use management systems in EV charging stations.

A. RELATED WORK

According to Wu et al. [10], to maintain the system stability,
charging stations must work in a coordinated way to meet
the consumers’ demand, while varying power balance within
specified conditions. This can be done with either centralized
or decentralized control. The decentralized control is also
targeted in [11], in which the authors propose a stochastic
model for the uncertain households’ behaviour, EVs and
distributed RESs, and bi-level stochastic programming to
optimize the operation schedule under the proposed model.
An attempt to control load demand through a price-responsive
model for PEVs is presented in [12]. The proposed model
is evaluated and tested in the IEEE 24-bus reliability test
system, with results showing a reduction in the operation cost
along with an increase in the security of the system. As an
alternative to smart grids connected to the public grid that rely
on thermal energy co-generators, Calise et al. [13] present a
work that analyzes the integration of PEVs in G2V mode in
such grids. The results showed that it was possible to detect an
optimal strategy to charge the PEVs’ fleet while minimizing
the public grid power consumed.

Reversely to G2V operation, PEVs can also be used as
ESSs to reduce intermittency in grid power in a V2G oper-
ation. A risk-averse strategy that attempts to optimize the
profit of EV aggregators while providing a reasonable price
for EV users is proposed in [14]. In this approach, a stochastic
programming method is combined with an information gap
decision theory (IGDT) model to take into account EV own-
ers’ behavior, charging electricity price, V2G degradation
cost, and delivering PEVs with full SoC batteries at the time
of departure under different scenarios. Another attempt to
address both station owners and EV owners is presented
in [15], with the co-existence of different types of charging
stations in the grid, for instance, home charging (HCSs),
battery swapping (BSSs), and public battery charging stations
(BCSs). Then, the approach is analyzed in case studies using
Australian electricity data.

A case study of a university campus in Pakistan with
the presence of both PEVs and PV generators is used
by Nasir et al. [16] to propose a linear programming-based
energy management system that ensures power supply con-
tinuity. In [17], the authors propose a control approach
for integrating PV generators and PEVs by allowing both
to exchange electrical power. To address the problem of
extreme weather events, Roudbari et al. [18] proposed a
stochastic framework that takes into account both hourly
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reconfiguration of PEVs management and scheduling of
resources considering the movement of PEVs’ fleet and the
weather effects.

In power systems, the optimal active-reactive power dis-
patch (OARPD) is a branch of optimal power flow (OPF)
that aims at minimizing the operational cost of conven-
tional generators while fulfilling constraints like nodal volt-
age limits, nodal balance power, and power flow equations,
to name a few [19], [20]. OARPD involves complex nonlinear
and non-convex minimization problems that, combined with
the uncertainties of renewable energy sources, pose serious
challenges in scheduling [21]. From the optimization point
of view, besides being nonlinear and non-convex, OARPD
problems also contain mixed integer and continuous design
variables. These characteristics make such types of problems
difficult to be solved using standard mathematical optimiza-
tion techniques such as linear programming, non-linear pro-
gramming or Newton’s method [22], [23].

On the other hand, meta-heuristics methods do not
come with the aforementioned disadvantages and have been
widely applied to OPF problems [24]. Among the many
meta-heuristics present in the literature, it is worth men-
tioning the Particle Swarm Optimization (PSO) [25], [26],
Differential Evolution (DE) [27], [28] and Genetic Algorithm
(GA) [29], [30]. In [31], the authors present a combination
of a PSO-based algorithm and gravitational search algorithm
(GSA) [32] that can achieve competitive results in a modifica-
tion of the IEEE 30-bus test system to include two renewable
energy sources, one WT and one PV. Another combination of
a PSO-based algorithm, GSA, and Shannon Entropy is pre-
sented in [33]. This algorithm, named FPSOGSA, is applied
to minimizing not only power losses but also voltage devia-
tion regarding reactive power dispatch in both IEEE 30-Bus
and IEEE 57-Bus test systems.

Similarly, Dabhi and Pandya [4] proposed HL_PS_VNSO,
which is a combination of PSO and Levy Flight to compute
step length with the Variable Neighborhood Search Opti-
mization (VNS) algorithm to initialize the population near
the optimal solution. The proposed algorithm achieved com-
petitive performance when evaluated in a 25-bus microgrid
network under 500 scenarios of uncertainty regarding RESs.
Differential Evolution (DE) is also widely employed to solve
OPF problems, as in [34], where an improved version of DE
is proposed for reactive power management (RPM), in which
the mutant vector is obtained from the average of three mutant
vectors obtained by randomly selecting three best solutions
from the current generation. The algorithm is then evaluated
in IEEE 30-bus, 57-bus, 118-bus, and 300-bus test scenarios.
However, the authors did not evaluate the inclusion of RESs
in any of the test scenarios.

Wang et al. [35] proposed an adaptative genetic algorithm
to improve resilience of microgrids with mobile energy stor-
age systems to attackers. The solution presented relies on
a three-level model that involves power surplus/shortage,
power exchange and re-scheduling. In [36], a modified GA
is employed in a AC OPF problem to ensure network’s
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minimal stability conditions, in which capacity and opera-
tional costs are included in a linearized version of the OPF
problem.

Niu et al. [37] proposed a composite differential evolution
algorithm that searches the parameters F' and CR from an
adaptative range of values (ARCoDE). ARCoDE obtained
competitive results in a 41-bus wind power plant ORPD prob-
lem that contains 18 WTs. ORPD is a variation of OARPD
that only targets reactive power. Another DE approach is
presented in [38], where a step disturbance is employed to
avoid local optima along with the CR decrease according to
the number of iterations elapsed. Moreover, an adaption step
is also employed to allow larger steps in the first iterations
and smaller steps in the final iterations. The proposal is then
evaluated in the IEEE 30-bus test system, targeting to mini-
mize the expected security cost under six different scenarios,
some including ESSs. A combination of DE operators and
PSO algorithm, namely Canonical Differential Evolutionary
Particle Swarm Optimization (C-DEEPSO), is employed to
build an automatic electric dispatch controller for a 41-bus
test system containing 18 wind generators under 96 differ-
ent scenarios. Results showed that C-DEEPSO was able to
reduce the daily losses by 6% [20].

B. CONTRIBUTIONS

In this paper, we tackle a problem of optimal active-reactive
power dispatch in microgrids, considering renewable energy
sources and electric vehicles. We propose the use of the
C-DEEPSO approach in a problem over IEEE 57-bus test
system, containing both WTs and PVs, and also in a larger
system, the IEEE 118-bus test, containing WTs, PVs, and
a fleet of PEVs. We propose a local search operator for
PSO-based algorithms such as C-DEEPSO, which explores
the neighbourhood of each particle by using not only the
particle’s velocity, but also fewer features than the original
high dimensional space. Moreover, we also propose a new
version of C-DEEPSO algorithm that uses the Cross-Entropy
(CE) method for an initial deep search, which we dubbed
CE-CDEEPSO. Therefore, the contributions of the present
work are:

1) We propose an efficient way of solving active-reactive
power dispatch problems in microgrids, considering
renewable energy sources and electric vehicles.

2) We propose a novel combination of the Cross-Entropy
(CE) [39] method with the C-DEEPSO algorithm, for
an initial deep search mechanism, to find a promising
basin of attraction to initialize C-DEEPSO’s popula-
tion.

3) We develop a local search mechanism that allows
C-DEEPSO to explore the neighbourhood of each par-
ticle to find better solutions.

4) We analyze the robustness of the proposed algorithm
in a scenario containing uncertainty from both PVs and
WTs, and in a larger scenario that contains PVs, WTs,
and also PEVs.
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5) Finally, we use a statistical method entitled Connover
Test with Holm-Bonferroni correction, for effective
pairwise comparative studies.

The remainder of the paper is organized as follows:
Section II provides the definitions of the addressed OARPD
problem. Section III presents C-DEEPSO, along with CE and
the proposed local search operator. Section IV contains the
evaluations of the different test case scenarios and discussions
of the results. Finally, Section V concludes the paper with
some final remarks and future lines of research.

1. OPTIMAL POWER FLOW MODELING
In conventional OPF modeling, the Optimal Active-Reactive
Power Dispatch Problem (OARPD) is addressed with the goal
of minimizing the operational cost by means of total fuel
cost [40], [41], [42], [43]. The associated objective function
corresponds to a summation over quadratic equations of the
scheduled power output of each generator. Equation (1) rep-
resents the total power production costs in ($/h)
Ng
min Cior = ) _a;+ i - Pei+vi- P&, ($/h), (1)
i=1
in which Gy, is the total fuel cost of the system. The term
Py, is the power output of the i-th generator. Ng indicates
the number of generators. The terms «, 8, y are the cost
coefficients associated with each generator measured in ($/h),
($/MWh) and ($/MWh?), respectively.

In this study, the OARPD benchmark used are the IEEE
57-Bus system and IEEE 118-Bus system, presented at
the 2018 PES general meeting [44], which takes into account
the stochastic behaviour of solar, wind and electric vehicles
generation. To handle these new sources, three additional
costs are added to Equation (1), which are the cost of wind
power generators, solar photovoltaic generators and plug-in
electric vehicles. Due to the stochasticity of the renewable
energy generators, each cost must comprise factor for overes-
timated and underestimated condition [3]. An underestimated
condition is defined as follows:

C, = Cu(Pa,' - Ps,-) )
and P, > Py, 3)

Equation (2) specifies that, if the scheduled power from
renewable generator i (Py,) is less than the power available
at generator i (Pg,), the difference P, — Py, of power that
will not be used by the system is wasted. However, in real
applications, this excess generation is directed to a energy
storage system with a related cost given by c,,.

On the other hand, an overestimated condition is given by

Co = Co(Psi - Pa,') 4

and P, > P,,. (&)

In an overestimated condition, the scheduled power from
renewable generator i is higher than the total power available

at generator i. In this situation, the lacking power given
by Equation (4) must be requested from another renewable
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(or not) energy source with a related cost ¢,. Although the
exact value of the available power at each renewable genera-
tor P,, is not available, a probability distribution of its value
can be estimated using Monte Carlo [45]. Hence, it is possible
to compute the overestimated and underestimated costs.

Based on the above definitions, the total cost of each each
renewable energy generator can be calculated as:

Nw

CW[O[ = Z CW,'(WS,') + CO,W[(WS‘,‘ - th,’)
i=1

+CM,W;(WL1,' - WS;)7 (6)
Npy

Crv = Y Crv,(PVy) + co pvi(PVs, — PV
i=1
+cu,PV,'(PVui - PVS,‘)’ (7)
Ngy

Cevi = Y Cev(EVy) + co pvi(EVs, — EVa)

i=1

+cu,EVi(EVai - EVS,‘)' (8)

Then, Equation (1) can be modified to account for not
only the total fuel cost but also the uncertainty costs of each
renewable energy generator as follows:

min Gy = CWmt +Cp Vi T CEth
Ng
+> i+ Bi-Pgi+vi-Pgi. ($/h).  (9)
i=1
Furthermore, the problem must also satisfy the following
constraints:

(10)

NB -
o _ G,:/' cos(8; — Sj)—i-

Pj = Pg; — Pl; = 21: Uit [ Bjjsin(8; — §))
Jj= -

V; € NB,Y, € NS; (11)
Gjjsin(8; — 8)+|

Qi =08 — Ol = X]:UU |:Bljcos(8 -8 | (12)
"~ V; € NB,V, € NS; (13)

U; <U; < U,V €NB VY, eNS; (14)

|Sij| < Sy, Vi € NC,¥s € NS;  (15)

|| < S5, Vi € NC, Y, € NS;  (16)

Pgi < Pgi < P;,¥i € NG, Vs € NS;  (17)

Qgi < 0gi < 0;,Vi € NG, Y, € NS; (18)

25<;VEN0LTCt,ev eNS: (19)
0<qi <1,Y; € NSHUNT, g; € Z,V; € NS. (20)

Table 1 presents an explanation of the meaning of each
quantity variable in the constraints given by Equation (10).

Ill. IMPROVED C-DEEPSO WITH LOCAL

SEACH APROACHES

Particle Swarm Optimization (PSO) is an evolutionary-type
algorithm (EA) inspired by the swarm intelligence phenom-
ena, firstly proposed in [46]. In the PSO, the new velocity of
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TABLE 1. Constraint variables.

Symbol Quantity Unit

P; Active power injected MW

Qi Reactive power MVar

Pl Active power load MW

U; Voltage magnitude kV

& Voltage angle radians
Apparent power flow injection at the sending

Sij . . . > | MVA
end of transmission connecting bus ¢ to bus j
Apparent power flow injection at the receiving

Sji 4 of transmissi tine bus 7 to bus 4 MVA
end of transmission connecting bus ¢ to bus j

Py, Active power generation MW

Qg; Reactive power generation MVar

£ Tap setting position of

v the On-Load Tap Changer (OLTC)

qi State of the capacitor/reactor bank -

NG Number of generators -

NB Number of buses -

NC Number of circuits in the network -

NOLTC Number of OLTC transformers -

NSHUNT | Number of capacitor/reactor banks -
Number of scenarios for

NS . . -
the expected operation scenario

an individual particle is updated towards the directions of the
past velocity, the particle’s best position ever found and the
best position found by the swarm. Thus, the new particle’s
position is obtained by adding the new velocity to its current
position. Canonical Differential Evolutionary Particle Swarm
Optimization (C-DEEPSO) proposed in [41] is a different
approach based on PSO foundations, that merges both PSO
and Differential Evolution (DE) concepts. In C-DEEPSO,
a particle is controlled by a movement rule that is calculated
according to Equation (21):

Vi=wi x Vi1 +w) x Xy + FXy — X;-1))
+WCXCX(Xb_Xt 1), 2n
X =Xi—1 + Vi,

where Xj; is a different individual from X;_; obtained from
DE operator. Unlike classic PSO, that uses only each parti-
cle’s best position, C-DEEPSO uses not only particle’s best
position, but also a collective memory of solutions, to provide
a wider view of the search space for each individual. In this
work we chose to generate X;; according to rand/1/bin DE
strategy.

In Equation (21), the subscript ¢ indicates the current
generation, X is the current solution or particle’s position, V
denotes the velocity of the particle and Xy, is the best solution
ever found by the swarm. Moreover, the term C represents a
n x n diagonal matrix of Bernoulli random variables that are
sampled for each particle. The probability used to generate
the matrix C is a parameter denoted communication probabil-
ity, P. The intuition behind using matrix C is based on a tech-
nique named ‘‘stochastic star communication topology™ [47].
This technique restricts the amount of information that can be
used from the global best at each iteration. After a generation,
C-DEEPSO saves a small subset of the best solutions in the
swarm in a memory called Memory B [48]. Hence, with this
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memory mechanism, the term X is obtained according to the
following strategies:
1) Sg — rnd: sampled as a uniform recombination from
particles of the current generation;
2) Pp — rnd: sampled as a uniform recombination from
particles in Memory B, and
3) SgPp — rnd: sampled as a uniform recombination from
the union of both particles in the current generation
and particles in Memory B, which is a combination of
Se — rnd and P, — rnd.
Furthermore, the inertia, assimilation and communication
weights are mutated according to the rule

w =w+1 xN(,1), (22)

where t is the mutation rate controlled by the user. This rule
adds a standard Gaussian noise scaled by 7 to weights. It is
important to note that the mutation must guarantee weights
to be within [0, 1] interval. Besides, to avoid getting trapped
in a particular region of the search space, X, is also mutated
in Equation 21. Similarly to the mutation in the weights, the
mutation in X, is obtained by Equation (23),

X;,‘b = Xgp[1 + 7 x N(O, 1)]. (23)

A. INITIAL DEEP SEARCH USING CROSS-ENTROPY
METHOD

The Cross-Entropy (CE) method was proposed by [39] for
estimating probabilities of rare events in complex stochas-
tic networks. CE is a Monte-Carlo technique for sampling
and optimization that can be applied to combinatorial and
continuous problems. According to [49] the CE method is
composed by a iterative procedure having each step divided
into two main moves:

o Generate a random data sample (trajectories, vectors,
etc.) according to a specified mechanism;

« Update the parameters of the random mechanism based
on the data to produce a ‘“better”’ sample in the next
iteration.

The basic idea for using CE in complex optimization tasks
is to interpret them as rare event estimation problems. From
this, Carvalho et al. [50] proposed a version to solve continu-
ous problems and applied it to solve a OARDP problem. The
implemented code is available on [44] sources. Here, we use
the CE method as an initial deep search operator for the
C-DEEPSO algorithm.

B. SWARM MEMORY VELOCITY WITH LOCAL SEARCH
MECHANISM

When dealing with real-world optimization problems, algo-
rithms have to be carefully designed to handle difficulties,
such as the presence of several local minima in the search
space or a high number of optimization variables, among
others. Based on such difficulties, we propose a local search
mechanism that explores the awareness of the each particle,
prior to moving to the next position. In this awareness mech-
anism, particles look in other three directions besides the new
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Algorithm 1 CE Method for Initial Deep Search
Require: p(, X9, N, o, B and rarity parameter p
k<0
while max(X;) < € do
k< k+1
Sample X1, ..., Xy ~ N(r_1, Zk—1)
Compute P < {S(X1), ..., SXn)}
Sort P in ascending order
y < pth quantile of P
Neiite < pN; ¥ < {}
for S(X;) € Pdo
if S(Xi) <y A Y] < Neiire then
Vv < ¢ U{X;}
else
break
end if
end for
Rk < ﬁ Zigw X;
X < Noe—1 Z,’E,/,(Xi - Mfk)2
M < op + (1 —o)pg—1
Yp<—aXp+ (1 —-ao)X
end while
return Xq, ..., Xy

V;. These new directions are dubbed V,us, Veasr and Viyes:.
The Vsousm direction is obtained by inverting the direction
of V;. The V,, direction is calculated as a random vector
with X,_; as origin, that lies in a randomly generated plane
perpendicular to V; passing through X;_1.

This plane is generated by choosing at random d < D —
1 features from the original D—dimensional space. Similarly
to Viousn direction, V. direction is generated by inverting
the vector V. Figure 1 illustrates the local search mecha-
nism. Then, four new positions for the particle are evaluated:
Xisouths Xeast » Xwesr and the position obtained by following V;,
namely Xy, . The position and velocity that lead to the best fit-
ness are assigned to X; and V;, respectively. This mechanism
helps particles to search in the whereabouts of their current
position in the search space for better movements than the
one calculated by the movement rule. By choosing a small
d, each particle can search for a better movement in fewer
dimensions than the original decision space. However, since
this local search mechanism requires four times more func-
tion evaluations, it can only be applied a predefined number
of times and at random iterations. The Algorithm 2 shows the
local search mechanism. As a result, Algorithm 3 presents the
proposed algorithm combining both Cross-Entropy Method
and proposed local search operator.

IV. EXPERIMENTAL DESIGN AND RESULTS

In this work we are measuring the performance of the pop-
ulation based algorithms named PSO, CE-EPSO [50] and
the improved C-DEEPSO (applying local search operator’s
— the CE-CDEESPO) proposed here to solve the OARDP
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I/rea&‘t

Vsouth

FIGURE 1. lllustration of the three search directions generated by the
local search mechanism for one particle.

Algorithm 2 Local Search Mechanism
Require: X;_1, Xpp, Xyp, d
Compute velocity V;
Vsouth <~ -1 Vt
Xplane < {O}D
Sample y1, ..., Y4, Ya+1 ~ U(1, D)
forie (1,d)do
Xptanelyil <= UXpplyil, Xuplyi])
end for
Xrand <~ (Xrand - Xt—l) O] Vt
if V;[y4+1] > O then
Xptanelya+1] < Xe—1[ya+11 — 1/Vilya+11x
3 vt Xplaneli
else
Xplane[yd-H] <~ Xi—1lya+1] — Zyﬁéde Xplane[yi]
end if
Vt <~ argminve{vtstouth»Vea.w»Vwe.w }f(XT*I + V)
X < X1+ V2

problem in the IEEE 57 and 118 Bus-Systems, with renew-
able generators aggregated. The population size was defined
as 100 particles for all algorithms. As initialization parame-
ters of the CE-EPSO and CE-CDEEPSO algorithms, we have
empirically defined a weight mutation rate equal to 70%, and
a communication rate equal to 20%. PSO used as parameters:
0.9 for inertia weight and 2.0 for both cognitive and social
coefficients. For all algorithms, the rates used in the local
search phase performed by the cross-entropy method have
been sigma equal to 80%.

Specifically for Cross-Entropy, we used 1.5 x 10* fitness
evaluations to perform the CE local search procedure. The
number of local search operator calls (swarm memory veloc-
ity) is 20. The stopping criterion defined for all algorithms
in IEEE 57 Bus systems was 3 x 10* fitness evaluations
(FEs). For the IEEE 118-Bus systems the stop criterion was
9 x 10* power flows fitness evaluations (FEs), where that
in every time it is calculate 6 (time instances) power flows
for each set of decision variables. We perform the compu-
tational simulation using an Intel(R) Core(TM) 19-10900X
CPU@3.70GHz and 64 GB RAM, with Windows 10 Pro.
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Algorithm 3 Improved C-DEEPSO With Local Search Oper-
ators
Require: population size (NP), mutation rate T, commu-
nication rate (P), memory size (MB), dimension (D),
dimension (d), number of local search operator calls
(ny5), number of CE calls (N¢cg), lower bounds (X;) and
upper bounds (X,;;,)
Set the generation number t = 0
Initialize the NP individuals in the population at random
according to U(Xpp, Xup)
Evaluate the current population
Update the global best X,
Sample n;s generation numbers to apply local search
operator and store in Ny
while stopping criterion is not satisfied do
if t < Ncg then
Run CE
else
for individual i in the population NP do
Calculate X, using the strategy SoPg — rnd
Copy current individual X;_
Mutate strategy parameters wy, wa, we and
ng‘b
Apply movement rule in current individual
Xi—1
if t € Nj; then
V; < LocalSearch(X;_1, Xip, Xyp, d)
end if
Evaluate current individual X; and its copy
Select the fittest individual to proceed to next
generation
Update personal best individual
end for
Update memory MB
t=t+1
end if
end while

The evolutionary meta-heuristics’ code is implemented in
Matlab R2020b.

A. PRELIMINARY EXPERIMENT

A preliminary experiment is run using two benchmark func-
tions from literature, Rastringin and Rosenbrock. The ratio-
nale behind this experiment is to verify the results obtained by
the CE-CDEEPSO with local search, compared to CE-EPSO
with local search and results by standard PSO, with and
without local search procedure. The initialization parameters
for both CE-EPSO and CE-CDEEPSO are the following:
Mutation rate 0.6 and Communication rate 0.2. The number
of total fitness values was set as 5 x 10°. For each dimension
(30, 50, 100), the algorithm are tested using the population
size of 60 and 10 independent runs. Equations (24) and (25)
show the benchmark functions:
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FIGURE 2. Diagram of IEEE 57 bus system.
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Table 2 shows the results of the PSO, CE-EPSO
and CE-CDEEPSO algorithms. The results indicated that
CE-CDEEPSO obtained a competitive performance com-
pared to both standard PSO and CE-EPSO algorithms in
solving Rastringin and Rosenbrock functions with different
dimensions. Furthermore, regarding standard PSO perfor-
mance, the proposed local search mechanism was able to
significantly improve the results. Hence, CE-CDEEPSO is
able to outperform the results obtained by the base algorithms

in benchmark functions.

B. STATIC OPF PROBLEM IN A MICROGRID
We choose simulate in a first moment the IEEE 57 Bus-
System (see Figure 2)). To use the mathematical modeling
described in Section II. In this case, for the IEEE 57 only
equations (6) and (7) are considered as an additional cost
for generation via solar panels and wind turbines. Two test
scenarios were considered: (1) Replacing three thermoelec-
tric generators with wind generators, and; (2) Replacing three
thermoelectric generators with wind and solar generators.
The IEEE 57 Bus-system presented in Figure (2) is
composed by 7 generators, 42 loads, 63 lines, 16 stepwise
transformers, 2 fixed tap transformers, and 3 shunt compen-
sation. Usually, the goal in the ORAPD is to minimize the
total fuel cost while fulfilling constraints (nodal balance of
power, nodal voltages, allowable branch power flows, gen-
erator reactive power capability, and maximum active power
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output of slack generator) for normal (non-contingency) and
selected N-1 conditions. In this work, the goal is to mini-
mize the total fuel cost of the traditional generators plus the
expected uncertainty cost for renewable energy generators (as
explained in Section II). We conduct a experimental design
to verify the efficiency of some evolutionary meta-heuristics
when solving the OARPD problem. The simulation follows
the characteristics:

o Optimization variables: 35 variables, comprising
13 continuous variables related to generator’s active
power outputs (6, the slack is not considered here, since
the injected power is given by the power flow) and gen-
erator’s bus voltage set-points (7), 15 discrete variables
related to stepwise adjustable on-load transformers’ tap
positions, 3 binary variables related to switchable shunt
compensation devices, and 4 controllable loads, and;

o Considered contingencies (N-1 conditions): outages at
branches 8 and 50.

The first experiment consists of validating the performance
of each algorithm by solving the OARPD problem in which
generators 2, 6, and 9 have been replaced by wind genera-
tors. In this case, PSO, CE-EPSO and CE-CDEEPSO were
executed a total of 12 times. Figure (3) shows the mean
convergence line obtained by each algorithm. Visually, it is
possible to notice that the standard PSO algorithm converges
faster in relation to others. CE-CDEEPSO shows a consistent
decline before 5000 function evaluations. Moreover, we can
see that C-DEEPSO obtains the smallest average fitness func-
tion value over 12 runs outperforming PSO and CE-EPSO.
However, a better way to evaluate the results obtained is
through the analysis of some performance measure.

A non-parametric test can be performed and in this work
we analyzed the Boxplot behaviour. Boxplots are not only
useful to analyze the range and distribution of the data, but
sometimes it can provide information about the true differ-
ence among the means. If the notches in the boxplots do
not overlap, it can be concluded, with 95% confidence, that
the true means do differ [51]. Figure (4) shows the boxplot
graphs. Since the boxplots presented do not show overlap,
we can conclude that there are differences among the true
means of algorithms.

As visualized by Figure (3), CE-CDEEPSO generates
savings of $14312.12/h when compared to CE-EPSO. In a
monthly projection, this economy reaches in average ten
million dollars. As a solution to be applied to the system,
we chose the median result of 12 runs. Table 3! represents
the median optimized solution for the IEEE Bus System with
Wind generators.

The same test case (IEEE 57 Bus-System) was used for
the second experiment in static optimization. the change
made include a solar generator in place of one wind turbine.
Figure (5) shows the average line of convergence of 12 runs
of each algorithm. We can see that around 10000 fitness

]Legend: Generator’s active power outputs (Ggpo); Generator’s bus volt-
age set-points (Gbvsp); Tap positions (7p); Shunt compensation devices
(Scd)-

VOLUME 10, 2022



C. G. Marcelino et al.: Improved C-DEEPSO Algorithm for OARPD in Microgrids With Electric Vehicles

IEEE Access

TABLE 2. Summary of the obtained results on each benchmark function.

Rastringin Rosenbrock
Dimension ~ Algorithm Mean Std Mean Std
PSO 161.86  19.74  1528.38 567.20
30 PSO w/ Local Search 0.32 0.68 28.95 0.17
CE-EPSO w/ Local Search 0.00 0.00 25.26 0.32
CE-CDEEPSO w/ Local Search ~ 0.00 0.00 22.65 0.75
PSO 332.02 26.65 5479.05 1731.33
50 PSO w/ Local Search 1.11 0.88 48.96 0.26
CE-EPSO w/ Local Search 0.00 0.00 45.65 0.66
CE-CDEEPSO w/ Local Search ~ 0.00 0.00 43.48 0.79
PSO 824.74 5857 17446.13  5763.48
100 PSO w/ Local Search 2.31 3.12 98.99 0.12
CE-EPSO w/ Local Search 0.00 0.00 96.63 1.16
CE-CDEEPSO w/ Local Search  0.00 0.00 94.85 1.31
. TABLE 3. IEEE 57 bus-system: optimized results of the median solution:
10 PSO CE-EPSO  — CE-CDEEPSO grid with Wind generators.
1011 J
IEEE 57 Bus-System with Wind generators
100 Variables | CE-DEEPSO  CE+EPSO  PSO
Gapo 128.40 133.05 121.79
10%4 117977.341 apo 42.18 46.33 119.72
. \ Gapo 135.28 130.14 121.78
107 94954.90 of \ Gapo 25191 27544 48595
Gapo 128.35 133.45 141.90
17 A e Cpe 250.89 22853 34391
106 B Gbusp 1.03 1.03 1.04
B N\ Gbusp 1.02 1.03 1.03
1051 — Gbusp 1.02 1.02 1.04
. . v v . / Gbusp 1.03 1.04 1.04
0 5000 10000 15000 20000 25000 30000 Gbusp 1.04 1.05 1.04
Gbusp 1.01 1.01 1.02
FIGURE 3. Convergence line of the IEEE 57 bus system with wind Gbusp 1.02 1.01 1.03
generators. Tp 5 -6 9
T, -4 -2 6
Tp -5 3 -6
Tp 1 -1 8
200000 * ;P ; g '28
b - -
Ty -6 -5 0
180000 1 Tp 0 1 1
Tp -3 -3 -1
160000 * Tp -6 2 0
T, 1 -3 7
140000 | T, 5 1 2
T, 0 0 -3
1200001 - Ty 0 6 -1
100000 1 Ty 0 0 1
500001 gp 1 1(()) 55 50175 1si 25
; ‘ ‘ cd - - -
CE-CDEEPSO CEEPSO PO Sed 191.11 30000 415.03
L Secd 10.63 10.75 40.12
FIGURE 4. Boxplot results of the IEEE 57 bus system with wind Sea 11.27 10.40 47.36

generators.

The average behavior of the results remains as seen in

function evaluations, the algorithms begin to stabilize their
convergences. The standard PSO algorithm clearly has a
very high average value. We can see that when replacing
a wind generator with solar generation sources, the cost of
the operation decreases. The convergences of CE-CDEEPSO
and CE-EPSO visually appear to be close. When perform-
ing an enlargement of the graph, we see that on average
CE-CDEEPSO outperforms CE-EPSO.

VOLUME 10, 2022

the system only with the replacement of thermometric gen-
erators by wind turbines. Through the analysis of the box-
plots presented in Figure (6), we can see that with 95%
confidence, that the true algorithms means results do differ.
Therefore, we can say that CE-CDEEPSO has lower average
results than those presented by CE-EPSO. Our algorithm
CE-CDEEPSO was able to save $4484.20/h. Following it,
in a monthly projection CE-CDEEPSO saves an average of
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TABLE 4. IEEE 57 bus-system: optimized results of the median solution:
grid with wind/solar generators.

1012, — PSO CE-EPSO —— CE-CDEEPSO
1011 i
1010 4

1001 110281.18 \

\
108 4 \
77211.41 o] \.\
1074 67727.21 {= \\
— .
10° TS N\
105 —
0 5000 10000 15000 20000 25000 30000

FIGURE 5. Diagram of the IEEE 57 bus system with wind/solar generators.
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120000 |

110000 1

100000 |

90000 A

80000

70000 A

CE-CDEEPSO CE-EPSO PSO

FIGURE 6. Diagram of the IEEE 57 bus system with wind/solar generators.

3.2 million dollars. Table 4 presents the median solution of
each algorithm to be applied to the problem.

C. DYNAMIC OPF PROBLEM IN MICROGRIDS INCLUDING
ELECTRIC VEHICLES
The dynamic OPF approach has been adopted in 2018 by
IEEE PES using as test scenario the IEEE 118 Bus-System.
The test case includes two wind turbine-generator and two
solar photovoltaic (PV) systems replacing thermoelectric
generators in the grid. Additionally, four electric vehicles
are considered, and the problems are evaluated over six
time instances (so, the number of decision variables and
constraints will be multiplied by six). Thus, this problem
is recognized as a Dynamic OPF [38], in which a solution
comprises the power flow for each of the time instances.
Figure (7) represents the unifilar diagram of IEEE 118 Bus-
System in witch the grid is composed by 54 generators,
99 loads, 177 lines/cables, 9 stepwise transformers, and
14 shunt compensation. The system addressed here consid-
ers security constraints to the normal (non-contingency) and
selected N-1 conditions. In this work, the goal is to mini-
mize the total fuel cost of the traditional generators plus the
expected uncertainty cost for renewable energy generators (as
explained in Section (II). We conduct a experimental design
to verify the efficiency of some evolutionary meta-heuristics
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IEEE 57 Bus-System with Wind/Solar generators
Variables | CE-DEEPSO  CE+EPSO PSO
Gapo 131.23 132.39 128.87
Gapo 53.00 42.00 130.21
Gapo 45.99 46.38 65.38
Gapo 290.60 323.19 460.02
Gapo 141.31 136.30 144.21
Gapo 244.94 255.43 345.69
Gbusp 1.05 0.97 1.04
Gbusp 1.04 0.98 1.03
Gbvusp 1.02 0.98 1.04
Gbusp 1.04 0.98 1.05
Gbusp 1.05 0.98 1.05
Gbusp 1.02 0.96 1.03
Gbusp 1.03 0.97 1.04
Tp 4.00 -1.00 9.00
Ty 1.00 -4.00 -4.00
Tp 4.00 1.00 -2.00
Tp 0.00 -2.00 9.00
Ty 2.00 -10.00 2.00
Tp -3.00 -5.00 -1.00
Tp -6.00 -10.00 5.00
Ty -6.00 -7.00 -8.00
Tp -10.00 -8.00 -1.00
Tp -1.00 -7.00 -1.00
Ty -8.00 -9.00 -2.00
Tp -6.00 -10.00 -6.00
Tp 8.00 -2.00 -1.00
Tp 2.00 -5.00 -1.00
Tp 0.00 -9.00 9.00
Ty 0.00 1.00 1.00
Tp 1.00 1.00 1.00
Tp 0.00 1.00 1.00
Scd 58.22 50.00 141.01
Sed 196.01 300.00 418.42
Scd 23.69 9.90 43.52
Scd 10.62 9.91 45.40

= 118 buses
= 186 branches

) 54 thermal units

4 9llcads

FIGURE 7. Diagram of IEEE 118 bus system.

when solving the OARPD problem. The simulation follows
the characteristics:
« Optimization variables: 6 x 130 variables, comprising
107 continuous variables describing generator active
power outputs (53, the slack is not considered here, since
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FIGURE 8. Histograms of the characteristics, power and costs associated to each renewable energy source.

the injected power is given by the power flow) and gen-
erator bus voltage set-points (54), 9 discrete variables
related to stepwise adjustable on-load transformers’ tap
positions, 14 binary variables linked to switchable shunt
compensation devices, and;

e 493 constraints for non-contingency conditions, and
492 constraints for each N-1 condition in each time
instance (outages at branches 21, 50, 16 and 48). Con-
straints penalized in the fitness function: (i) Nodal volt-
ages for load buses: 6 x (99 4+ 99); (ii) Allowable branch
power flows: 6 x (186); (iii) Generator reactive power
capability: 6 x (54 + 54), and (iv). Maximum active
power output of a slack generator: 6 x (1).

Figure 8 shows one example of the Weibull probabilis-
tic distribution [52] generated by Monte Carlo Simulation,
meaning the calculated power for the randomly generates
samples of renewable sources. It is important to note that
the available power for each renewable is drawn according
to its probability distribution that incurs in associated costs
of underestimation and overestimation.

The uncertainty of power generation for the clean gener-
ators it also displayed. Regarding power available, we can
see that the distribution of power in MW across the different
scenarios is similar to a Gaussian distribution with mean
value equal to 50 MW for PV and between 19 and 20 MW
for electric vehicles. However, for WT the majority of the
scenarios provide 150MW of power available. Due to the
huge amount of wind power available, the cost due to under-
estimation is very high in most of the scenarios. On the other
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hand, the cost of underestimating solar power is concentrated
in the smaller values, indicating that it is cheaper to store
excess energy from PV.

For the electric vehicles the cost of underestimation is
approximately normally distributed with mean at $300/MW.
With respect to the overestimation costs, as the electric vehi-
cles generator contributes with a smaller power, its overesti-
mation cost is small in most of the scenarios. As the power
contribution to the grid increases, the cost due to overes-
timating power increases, as show in the PV costs. In the
majority of the scenarios, WT power generated constitutes
the major part of the power available in the grid, thus its cost
of demanding more power than what is available is very high
most of the simulated scenarios.

Considering renewable sources in this system, some ther-
mal generators were replaced by solar, wind and vehicles. For
the reliable and stable operation of an EV charging micro-grid
system with a stochastic charging load, a robust coordinated
controller is an essential requirement [10]. In this context
we evaluated three techniques based on swarm intelligence
properties, namely PSO, CE-EPSO and CE-CDEEPSO, who
acted on the OARPD problem as a power grid controller
system. Additionally, for each technique we also evaluated
its modified version including the proposed local search

operator.
Figure (9) illustrated the neighbor solutions obtained for
one time instance for d = 3. It is important to note that

although a solution considers all the six time instances, hence
it lies in R780. We are illustrating the local search operation on
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FIGURE 9. lllustration of the local search operator applied to solution
vector in R130. In X;,,4p, all values are inverted. In Xgqg¢ and X, eg¢, only d
values are modified plus one as previously showed by Algorithm 1.

=== P50 CE-EPSO CE-CDEEPSO
PSO W/ _ CEEPSOw/ ~ __ CE-CDEEPSOw/
Local Search Local Search Local Search
107 ol
829542.00 o}
819887.00 o
816165001 o
796889001 9
106 |
0 3000 6000 9000 12000 15000

FIGURE 10. Convergence line of IEEE 118 bus system with electric
vehicles and solar and wind generators.

only one time instance to facilitate understanding. However,
the operation is carried in the solution vector composed by
all the six time instances. Moreover, all the algorithms treat
every variable as continuous. When inputting a solution to the
test case system, discrete and binary variables are rounded to
the closest integer value.

Due to the stochasticity of the solar, wind and vehicles gen-
erators, each algorithm was executed 10 times. Figure (10)
shows the mean convergence line for each algorithm. Initially,
it is possible to see that the standard PSO algorithm converged
very early to a local minima and did not manage to escape
from it. Even though the algorithm was trapped, the local
search operator managed to converge to a lower cost. On the
other hand, both CE-EPSO and CE-CDEEPSO showed a
consistent decrease in the cost until iteration 12000. Further-
more, after 15000 iterations we can see that CE-EPSO was
able to obtain a smaller average fitness than CE-CDEEPSO.
Similarly to the outcome of employing the proposed local
search operator in the standard PSO algorithm, the com-
bination of the operator to CE-CDEEPSO and CE-EPSO
achieved the smallest average fitness values. Moreover, the
combination of CE-CDEEPSO with the proposed operator
managed to achieve the smallest cost, saving $77104.00/day
when compared to CE-EPSO with the local search.
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FIGURE 11. Boxplot results of IEEE 118 bus system with electric vehicles
and solar and wind generators.
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FIGURE 12. Heatmap of the p-values obtained after applying Connover
test with Holm-Bonferroni correction to results of IEEE 118 bus system
with electric vehicles and solar and wind generators. NS stands for
non-significant.

Nevertheless, to provide a robust evaluation of the results
obtained, we performed two non-parametric tests. Firstly we
analyze the boxplot behaviour, then we conducted a pairwise
comparison using Connover Test with Holm-Bonferroni cor-
rection. Figure (11) show the boxplots. We can see that the
boxplot for CE-CDEEPSO with local search do not overlap
any of the other. Hence, as stated in the previous subsection,
we can affirm that there are differences from its mean to the
other algorithms. However, it is not possible to attest whether
there are differences between the using or not the local search
operator in CE-EPSO. Thus, we performed pairwise cor-
rections using a non-parametric statistical test entitled Con-
nover Test along with Holm-Bonferroni correction to reduce
the effect of multiple pairwise comparisons. Figure (12)
shows a heat-map containing the p-values obtained for each
comparison of algorithms.

At first we can see that, as attest from boxplot analysis,
there are differences from CE-CDEEPSO with local search
(LS) average fitness value to teh version with out LS, and both
versions of CE-EPSO. Furthermore, the test shows that we
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TABLE 5. Summary of the obtained results on each test case. A plus sign (+) indicates that there are statistical differences from the algorithm to the

others with minus sign (-).

Metrics Best ($/h) Median ($/h)  Worst ($/h) Mean ($/h) Std. ($/h)
Case 1: IEEE 57-Bus System with Wind generators
(+) CE-CDEEPSO 80379.81 80659.30 80949.57 80642.78 241.15
(-) CE-EPSO 85296.86 89882.94 117365.53 94954.90 10334.12
(-) PSO 96794.92 105563.41 201752.63 117977.34 31372.45
Case 2: IEEE 57-Bus System with Wind/Solar generators
(+) CE-CDEEPSO 67186.45 67876.21 68178.53 67727.21 347.29
(-) CE-EPSO 70487.19 75083.86 89745.12 77211.40 6633.53
(-) PSO 92747.21 111436.35 141810.91 110281.18 16495.95
Case 3: IEEE 118-Bus System with Wind/Solar/EVs generators
(+) CE-CDEEPSO w/LS  772583.24 793191.45 827311.48 796891.53 17700.14
(-) CE-CDEEPSO 777221.63 822076.18 924404.59 829542.51 39380.09
(-) CE-EPSO w/ LS 799479.63 813215.51 841548.23 816164.13 12372.24
(-) CE-EPSO 784300.38 819285.38 845968.28 819887.99 16080.07
(-) PSOw/LS 9263248.90 12255295.00  13598071.00  12252020.49  1183083.00
(-) PSO 11951245.00  12983657.50  13493854.00  12876826.10  542501.70

can attest that CE-CDEEPSO with LS differ from CE-EPSO
(with and without LS) with 99% confidence. Another impor-
tant information is that, although CE-EPSO (with LS) achieve
a smaller average fitness value than its counterpart without
local search, they are not statistically different. As a result,
we can say that our algorithm CE-CDEEPSO combined to
the proposed local search operator is suitable for the dynamic
OPF problem, saving an average of 2.3 million dollars in a
monthly average projection.

To summarize, Table 5 presents an overview of the
obtained results for the two test cases evaluated under IEEE
57-Bus System and the third test case evaluated under IEEE
118-Bus System. As a validation of the mininum average
fitness value obtained by CE-CDEEPSO in both IEEE 57-Bus
System test cases, the plus sign (+) besides CE-CDEEPSO
indicates that the mean fitness value is statistically different
from the other mean fitness values with a minus sign (—).
Moreover, CE-CDEEPSO standard deviation was more than
10 times smaller when compared to CE-EPSO and more than
20 times smaller when compared to PSO in both Case 1 and 2.
This indicates that our algorithm managed to consistently
achieve small fitness values throughout the different runs.
Likewise, in the IEEE 118 Bus-System, the plus sign (+)
indicates that CE-CDEEPSO with LS achieved the minimum
average fitness value and it also statistically differ from the
other algorithms. Regarding the local search operator, its
combination to both CE-CDEEPSO and CE-EPSO led to not
only smaller average fitness values but also a reduction in the
standard deviation, providing more robust results.

V. CONCLUSION

In this work we have proposed an improvement of an
evolutionary algorithm based on differential evolution (DE)
and particle swarm optimization (PSO), entitled Canonical
Differential Evolutionary Particle Swarm Optimization algo-
rithm (C-DEEPSO). In the proposed modification we have
included the cross-entropy (CE) method as a initial deep
search to find a good basin of attraction for the initial pop-
ulation of C-DEEPSO. Then, we have also presented a novel
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local search operator that explores the neighborhood of each
particle to try to find a better position.

This novel approach, known as CE-CDEEPSO, has been
evaluated in solving the Optimal Active-Reactive Power Dis-
patch (OARPD) problem in microgrids, under two different
test cases containing renewable energy sources. The first
test case contained three wind turbines (WT) generators and
the second test case contained two WT generators and one
photovoltaic (PV) generator. The second test case was a
bigger microgrid containing both WT and PV along with the
addition of plugin electric vehicles (PEVs).

Results showed that CE-CDEEPSO outperformed alter-
native algorithms in IEEE 57 Bus-System test case (both
scenarios), leading to a projected monthly saving average
of 10 million dollars and 3.2 million dollars, respectively.
Furthermore, in IEEE 118 Bus-system, CE-CDEEPSO with
local search outperformed not only its counterpart without
local search, but also the other algorithms considered. As a
result, by using our proposal we were able to provide a
projected monthly saving average of 2.3 million dollars in
the microgrids systems considered. To conclude, both ver-
sions of CE-CDEEPSO proved to be suitable algorithms to
solving OARPD problems involving wind turbines, photo-
voltaic panels and electric vehicles with a minimal cost and
maintaining a reliable and stable operation. As future work
lines, it would be important to evaluate our algorithm in
even larger test cases, with an increased number of PV, WT
generators and PEVs.
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