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ABSTRACT In the last years, our society’s high energy demand has led to the proposal of novel ways
of consuming and producing electricity. In this sense, many countries have encouraged micro generation,
including the use of renewable sources such as solar irradiation and wind generation, or considering
the insertion of electric vehicles as dispatchable units on the grid. This work addresses the Optimal
active–reactive power dispatch (OARPD) problem (a type of optimal power flow (OPF) task) in microgrids
considering electric vehicles. We used the modified IEEE 57 and IEEE 118 bus-systems test scenarios,
in which thermoelectric generators were replaced by renewable generators. In particular, under the IEEE
118 bus system, electric vehicles were integrated into the grid. To solve the OARDP problem, we proposed
the use and improvement of the Canonical Differential Evolutionary Particle Swarm Optimization (C-
DEEPSO) algorithm. For further refinement in the search space, C-DEEPSO relies on local search operators.
The results indicated that the proposed improved C-DEEPSO was able to show generation savings (in terms
of millions of dollars) acting as a dispatch controller against two algorithms based on swarm intelligence.

13 INDEX TERMS Energy efficiency, optimal power flow, microgrids, swarm intelligence, C-DEEPSO.

I. INTRODUCTION14

In recent years it has been understood that Renewable Energy15

Sources (RESs) will reduce ecological and financial issues in16

our technological societies. The concerns regarding environ-17

mental impacts associated with the constant increasing in fos-18

sil fuel use has led to a massive deployment of RESs, such as19

photovoltaic (PV) or wind-based (WT), and Energy Storage20

Systems (ESSs) in modern electrical power systems [1], [2].21

However, an important problem that comes along with the22

RESs penetration in the grid is the uncertainty in forecasting23

wind speed and solar irradiation [3]. Moreover, with the24
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presence of plug-in electric vehicles (PEVs), there is also the 25

uncertainty related to consuming power from the grid (Grid 26

to Vehicle (G2V)) and injecting power in the grid (Vehicle to 27

Grid (V2G)) [4]. Hence, these uncertainties in the dynamics 28

of the RESs must be taken into consideration to maintain a 29

safe and profitable functioning of a power system. 30

The integration of RESs in smart grids provides not only 31

benefits but also challenges related to the environment and 32

countries’ policies [5]. Among the numerous benefits of 33

including both PV and WT generators in the grid, it is 34

important to highlight the reduction in peak energy demand 35

and consequently, a lessening in energy losses. However, 36

these RESs rely on weather conditions, so this uncertainty 37

may affect the reliability of the grid, and increase generation 38
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costs [6]. As an alternative to reduce voltage variations39

and power losses, energy storage services (ESS) are often40

employed [7]. Additionally, as the market absorption of elec-41

tric vehicles (EVs) increases [8], PEVs play an important42

role in the grid. Unmanaged G2V may raise the load demand43

during peak hours leading to congestion of lines, therefore44

shortening the equipment’s life due to the additional load45

burden and voltage fluctuations [9]. A possible alternative is46

to use management systems in EV charging stations.47

A. RELATED WORK48

According to Wu et al. [10], to maintain the system stability,49

charging stations must work in a coordinated way to meet50

the consumers’ demand, while varying power balance within51

specified conditions. This can be done with either centralized52

or decentralized control. The decentralized control is also53

targeted in [11], in which the authors propose a stochastic54

model for the uncertain households’ behaviour, EVs and55

distributed RESs, and bi-level stochastic programming to56

optimize the operation schedule under the proposed model.57

An attempt to control load demand through a price-responsive58

model for PEVs is presented in [12]. The proposed model59

is evaluated and tested in the IEEE 24-bus reliability test60

system, with results showing a reduction in the operation cost61

along with an increase in the security of the system. As an62

alternative to smart grids connected to the public grid that rely63

on thermal energy co-generators, Calise et al. [13] present a64

work that analyzes the integration of PEVs in G2V mode in65

such grids. The results showed that it was possible to detect an66

optimal strategy to charge the PEVs’ fleet while minimizing67

the public grid power consumed.68

Reversely to G2V operation, PEVs can also be used as69

ESSs to reduce intermittency in grid power in a V2G oper-70

ation. A risk-averse strategy that attempts to optimize the71

profit of EV aggregators while providing a reasonable price72

for EV users is proposed in [14]. In this approach, a stochastic73

programming method is combined with an information gap74

decision theory (IGDT) model to take into account EV own-75

ers’ behavior, charging electricity price, V2G degradation76

cost, and delivering PEVs with full SoC batteries at the time77

of departure under different scenarios. Another attempt to78

address both station owners and EV owners is presented79

in [15], with the co-existence of different types of charging80

stations in the grid, for instance, home charging (HCSs),81

battery swapping (BSSs), and public battery charging stations82

(BCSs). Then, the approach is analyzed in case studies using83

Australian electricity data.84

A case study of a university campus in Pakistan with85

the presence of both PEVs and PV generators is used86

by Nasir et al. [16] to propose a linear programming-based87

energy management system that ensures power supply con-88

tinuity. In [17], the authors propose a control approach89

for integrating PV generators and PEVs by allowing both90

to exchange electrical power. To address the problem of91

extreme weather events, Roudbari et al. [18] proposed a92

stochastic framework that takes into account both hourly93

reconfiguration of PEVs management and scheduling of 94

resources considering the movement of PEVs’ fleet and the 95

weather effects. 96

In power systems, the optimal active-reactive power dis- 97

patch (OARPD) is a branch of optimal power flow (OPF) 98

that aims at minimizing the operational cost of conven- 99

tional generators while fulfilling constraints like nodal volt- 100

age limits, nodal balance power, and power flow equations, 101

to name a few [19], [20]. OARPD involves complex nonlinear 102

and non-convex minimization problems that, combined with 103

the uncertainties of renewable energy sources, pose serious 104

challenges in scheduling [21]. From the optimization point 105

of view, besides being nonlinear and non-convex, OARPD 106

problems also contain mixed integer and continuous design 107

variables. These characteristics make such types of problems 108

difficult to be solved using standard mathematical optimiza- 109

tion techniques such as linear programming, non-linear pro- 110

gramming or Newton’s method [22], [23]. 111

On the other hand, meta-heuristics methods do not 112

come with the aforementioned disadvantages and have been 113

widely applied to OPF problems [24]. Among the many 114

meta-heuristics present in the literature, it is worth men- 115

tioning the Particle Swarm Optimization (PSO) [25], [26], 116

Differential Evolution (DE) [27], [28] and Genetic Algorithm 117

(GA) [29], [30]. In [31], the authors present a combination 118

of a PSO-based algorithm and gravitational search algorithm 119

(GSA) [32] that can achieve competitive results in amodifica- 120

tion of the IEEE 30-bus test system to include two renewable 121

energy sources, oneWT and one PV. Another combination of 122

a PSO-based algorithm, GSA, and Shannon Entropy is pre- 123

sented in [33]. This algorithm, named FPSOGSA, is applied 124

to minimizing not only power losses but also voltage devia- 125

tion regarding reactive power dispatch in both IEEE 30-Bus 126

and IEEE 57-Bus test systems. 127

Similarly, Dabhi and Pandya [4] proposed HL_PS_VNSO, 128

which is a combination of PSO and Levy Flight to compute 129

step length with the Variable Neighborhood Search Opti- 130

mization (VNS) algorithm to initialize the population near 131

the optimal solution. The proposed algorithm achieved com- 132

petitive performance when evaluated in a 25-bus microgrid 133

network under 500 scenarios of uncertainty regarding RESs. 134

Differential Evolution (DE) is also widely employed to solve 135

OPF problems, as in [34], where an improved version of DE 136

is proposed for reactive power management (RPM), in which 137

themutant vector is obtained from the average of threemutant 138

vectors obtained by randomly selecting three best solutions 139

from the current generation. The algorithm is then evaluated 140

in IEEE 30-bus, 57-bus, 118-bus, and 300-bus test scenarios. 141

However, the authors did not evaluate the inclusion of RESs 142

in any of the test scenarios. 143

Wang et al. [35] proposed an adaptative genetic algorithm 144

to improve resilience of microgrids with mobile energy stor- 145

age systems to attackers. The solution presented relies on 146

a three-level model that involves power surplus/shortage, 147

power exchange and re-scheduling. In [36], a modified GA 148

is employed in a AC OPF problem to ensure network’s 149
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minimal stability conditions, in which capacity and opera-150

tional costs are included in a linearized version of the OPF151

problem.152

Niu et al. [37] proposed a composite differential evolution153

algorithm that searches the parameters F and CR from an154

adaptative range of values (ARCoDE). ARCoDE obtained155

competitive results in a 41-bus wind power plant ORPD prob-156

lem that contains 18 WTs. ORPD is a variation of OARPD157

that only targets reactive power. Another DE approach is158

presented in [38], where a step disturbance is employed to159

avoid local optima along with the CR decrease according to160

the number of iterations elapsed. Moreover, an adaption step161

is also employed to allow larger steps in the first iterations162

and smaller steps in the final iterations. The proposal is then163

evaluated in the IEEE 30-bus test system, targeting to mini-164

mize the expected security cost under six different scenarios,165

some including ESSs. A combination of DE operators and166

PSO algorithm, namely Canonical Differential Evolutionary167

Particle Swarm Optimization (C-DEEPSO), is employed to168

build an automatic electric dispatch controller for a 41-bus169

test system containing 18 wind generators under 96 differ-170

ent scenarios. Results showed that C-DEEPSO was able to171

reduce the daily losses by 6% [20].172

B. CONTRIBUTIONS173

In this paper, we tackle a problem of optimal active-reactive174

power dispatch in microgrids, considering renewable energy175

sources and electric vehicles. We propose the use of the176

C-DEEPSO approach in a problem over IEEE 57-bus test177

system, containing both WTs and PVs, and also in a larger178

system, the IEEE 118-bus test, containing WTs, PVs, and179

a fleet of PEVs. We propose a local search operator for180

PSO-based algorithms such as C-DEEPSO, which explores181

the neighbourhood of each particle by using not only the182

particle’s velocity, but also fewer features than the original183

high dimensional space. Moreover, we also propose a new184

version of C-DEEPSO algorithm that uses the Cross-Entropy185

(CE) method for an initial deep search, which we dubbed186

CE-CDEEPSO. Therefore, the contributions of the present187

work are:188

1) We propose an efficient way of solving active-reactive189

power dispatch problems in microgrids, considering190

renewable energy sources and electric vehicles.191

2) We propose a novel combination of the Cross-Entropy192

(CE) [39] method with the C-DEEPSO algorithm, for193

an initial deep search mechanism, to find a promising194

basin of attraction to initialize C-DEEPSO’s popula-195

tion.196

3) We develop a local search mechanism that allows197

C-DEEPSO to explore the neighbourhood of each par-198

ticle to find better solutions.199

4) We analyze the robustness of the proposed algorithm200

in a scenario containing uncertainty from both PVs and201

WTs, and in a larger scenario that contains PVs, WTs,202

and also PEVs.203

5) Finally, we use a statistical method entitled Connover 204

Test with Holm-Bonferroni correction, for effective 205

pairwise comparative studies. 206

The remainder of the paper is organized as follows: 207

Section II provides the definitions of the addressed OARPD 208

problem. Section III presents C-DEEPSO, along with CE and 209

the proposed local search operator. Section IV contains the 210

evaluations of the different test case scenarios and discussions 211

of the results. Finally, Section V concludes the paper with 212

some final remarks and future lines of research. 213

II. OPTIMAL POWER FLOW MODELING 214

In conventional OPF modeling, the Optimal Active-Reactive 215

PowerDispatch Problem (OARPD) is addressedwith the goal 216

of minimizing the operational cost by means of total fuel 217

cost [40], [41], [42], [43]. The associated objective function 218

corresponds to a summation over quadratic equations of the 219

scheduled power output of each generator. Equation (1) rep- 220

resents the total power production costs in ($/h) 221

min Ctot =
NG∑
i=1

αi + βi · Pgi + γi · Pg2i , ( $/h), (1) 222

in which Ctot is the total fuel cost of the system. The term 223

Pgi is the power output of the i-th generator. NG indicates 224

the number of generators. The terms α, β, γ are the cost 225

coefficients associated with each generator measured in ($/h), 226

($/MWh) and ($/MWh2), respectively. 227

In this study, the OARPD benchmark used are the IEEE 228

57-Bus system and IEEE 118-Bus system, presented at 229

the 2018 PES general meeting [44], which takes into account 230

the stochastic behaviour of solar, wind and electric vehicles 231

generation. To handle these new sources, three additional 232

costs are added to Equation (1), which are the cost of wind 233

power generators, solar photovoltaic generators and plug-in 234

electric vehicles. Due to the stochasticity of the renewable 235

energy generators, each cost must comprise factor for overes- 236

timated and underestimated condition [3]. An underestimated 237

condition is defined as follows: 238

Cu = cu(Pai − Psi ) (2) 239

and Pai > Psi . (3) 240

Equation (2) specifies that, if the scheduled power from 241

renewable generator i (Psi ) is less than the power available 242

at generator i (Pai ), the difference Pai − Psi of power that 243

will not be used by the system is wasted. However, in real 244

applications, this excess generation is directed to a energy 245

storage system with a related cost given by cu. 246

On the other hand, an overestimated condition is given by 247

Co = co(Psi − Pai ) (4) 248

and Psi > Pai . (5) 249

In an overestimated condition, the scheduled power from 250

renewable generator i is higher than the total power available 251

at generator i. In this situation, the lacking power given 252

by Equation (4) must be requested from another renewable 253
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(or not) energy source with a related cost co. Although the254

exact value of the available power at each renewable genera-255

tor Pai is not available, a probability distribution of its value256

can be estimated usingMonte Carlo [45]. Hence, it is possible257

to compute the overestimated and underestimated costs.258

Based on the above definitions, the total cost of each each259

renewable energy generator can be calculated as:260

CWtot =

NW∑
i=1

CWi (Wsi )+ co,Wi (Wsi −Wai )261

+cu,Wi (Wai −Wsi ), (6)262

CPVtot =
NPV∑
i=1

CPVi (PVsi )+ co,PVi (PVsi − PVai )263

+cu,PVi (PVai − PVsi ), (7)264

CEVtot =
NEV∑
i=1

CEVi (EVsi )+ co,EVi (EVsi − EVai )265

+cu,EVi (EVai − EVsi ). (8)266

Then, Equation (1) can be modified to account for not267

only the total fuel cost but also the uncertainty costs of each268

renewable energy generator as follows:269

min Ctot = CWtot + CPVtot + CEVtot270

+

NG∑
i=1

αi + βi · Pgi + γi · Pg2i , ( $/h). (9)271

Furthermore, the problem must also satisfy the following272

constraints:273

Pi = Pgi − Pli =
NB∑
j=1

UiUj

[
Gij cos(δi − δj)+
Bij sin(δi − δj)

]
, (10)274

∀i ∈ NB,∀s ∈ NS; (11)275

Qi = Qgi − Qli =
NB∑
j=1

UiUj

[
Gij sin(δi − δj)+
Bij cos(δi − δj)

]
, (12)276

∀i ∈ NB,∀s ∈ NS; (13)277

U i 6 Ui 6 U i,∀i ∈ NB,∀s ∈ NS; (14)278 ∣∣Sij∣∣ 6 Sij,∀i ∈ NC,∀s ∈ NS; (15)279 ∣∣Sji∣∣ 6 Sij,∀i ∈ NC,∀s ∈ NS; (16)280

Pgi 6 Pgi 6 Pi,∀i ∈ NG,∀s ∈ NS; (17)281

Qgi 6 Qgi 6 Qi,∀i ∈ NG,∀s ∈ NS; (18)282

ti 6 ti 6 ti,∀i ∈ NOLTC, ti ∈ ∀s ∈ NS; (19)283

0 6 qi 6 1,∀i ∈ NSHUNT , qi ∈ Z ,∀s ∈ NS. (20)284

Table 1 presents an explanation of the meaning of each285

quantity variable in the constraints given by Equation (10).286

III. IMPROVED C-DEEPSO WITH LOCAL287

SEACH APROACHES288

Particle Swarm Optimization (PSO) is an evolutionary-type289

algorithm (EA) inspired by the swarm intelligence phenom-290

ena, firstly proposed in [46]. In the PSO, the new velocity of291

TABLE 1. Constraint variables.

an individual particle is updated towards the directions of the 292

past velocity, the particle’s best position ever found and the 293

best position found by the swarm. Thus, the new particle’s 294

position is obtained by adding the new velocity to its current 295

position. Canonical Differential Evolutionary Particle Swarm 296

Optimization (C-DEEPSO) proposed in [41] is a different 297

approach based on PSO foundations, that merges both PSO 298

and Differential Evolution (DE) concepts. In C-DEEPSO, 299

a particle is controlled by a movement rule that is calculated 300

according to Equation (21): 301
Vt = w∗I × Vt−1 + w

∗
A × (Xst + F(Xr − Xt−1))

+w∗C × C × (X∗gb − Xt−1),

Xt = Xt−1 + Vt ,

(21) 302

where Xst is a different individual from Xt−1 obtained from 303

DE operator. Unlike classic PSO, that uses only each parti- 304

cle’s best position, C-DEEPSO uses not only particle’s best 305

position, but also a collective memory of solutions, to provide 306

a wider view of the search space for each individual. In this 307

work we chose to generate Xst according to rand/1/bin DE 308

strategy. 309

In Equation (21), the subscript t indicates the current 310

generation, X is the current solution or particle’s position, V 311

denotes the velocity of the particle and Xgb is the best solution 312

ever found by the swarm. Moreover, the term C represents a 313

n× n diagonal matrix of Bernoulli random variables that are 314

sampled for each particle. The probability used to generate 315

the matrixC is a parameter denoted communication probabil- 316

ity, P. The intuition behind using matrix C is based on a tech- 317

nique named ‘‘stochastic star communication topology’’ [47]. 318

This technique restricts the amount of information that can be 319

used from the global best at each iteration. After a generation, 320

C-DEEPSO saves a small subset of the best solutions in the 321

swarm in a memory called Memory B [48]. Hence, with this 322
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memory mechanism, the term Xr is obtained according to the323

following strategies:324

1) Sg − rnd : sampled as a uniform recombination from325

particles of the current generation;326

2) Pb − rnd : sampled as a uniform recombination from327

particles inMemory B, and328

3) SgPb− rnd : sampled as a uniform recombination from329

the union of both particles in the current generation330

and particles in Memory B, which is a combination of331

Sg − rnd and Pb − rnd .332

Furthermore, the inertia, assimilation and communication333

weights are mutated according to the rule334

w∗ = w+ τ × N (0, 1), (22)335

where τ is the mutation rate controlled by the user. This rule336

adds a standard Gaussian noise scaled by τ to weights. It is337

important to note that the mutation must guarantee weights338

to be within [0, 1] interval. Besides, to avoid getting trapped339

in a particular region of the search space, Xgb is also mutated340

in Equation 21. Similarly to the mutation in the weights, the341

mutation in Xgb is obtained by Equation (23),342

X∗gb = Xgb[1+ τ × N (0, 1)]. (23)343

A. INITIAL DEEP SEARCH USING CROSS-ENTROPY344

METHOD345

The Cross-Entropy (CE) method was proposed by [39] for346

estimating probabilities of rare events in complex stochas-347

tic networks. CE is a Monte-Carlo technique for sampling348

and optimization that can be applied to combinatorial and349

continuous problems. According to [49] the CE method is350

composed by a iterative procedure having each step divided351

into two main moves:352

• Generate a random data sample (trajectories, vectors,353

etc.) according to a specified mechanism;354

• Update the parameters of the random mechanism based355

on the data to produce a ‘‘better’’ sample in the next356

iteration.357

The basic idea for using CE in complex optimization tasks358

is to interpret them as rare event estimation problems. From359

this, Carvalho et al. [50] proposed a version to solve continu-360

ous problems and applied it to solve a OARDP problem. The361

implemented code is available on [44] sources. Here, we use362

the CE method as an initial deep search operator for the363

C-DEEPSO algorithm.364

B. SWARM MEMORY VELOCITY WITH LOCAL SEARCH365

MECHANISM366

When dealing with real-world optimization problems, algo-367

rithms have to be carefully designed to handle difficulties,368

such as the presence of several local minima in the search369

space or a high number of optimization variables, among370

others. Based on such difficulties, we propose a local search371

mechanism that explores the awareness of the each particle,372

prior to moving to the next position. In this awareness mech-373

anism, particles look in other three directions besides the new374

Algorithm 1 CE Method for Initial Deep Search
Require: µ0, 60,N , α, β and rarity parameter ρ
k ← 0
while max(6k ) < ε do

k ← k + 1
Sample X1, . . . ,XN ∼ N (µk−1, 6k−1)
Compute P← {S(X1), . . . , S(XN )}
Sort P in ascending order
γ ← ρth quantile of P
Nelite← ρN ;ψ ← {}
for S(Xi) ∈ P do

if S(Xi) < γ ∧ |ψ | < Nelite then
ψ ← ψ ∪ {Xi}

else
break

end if
end for
µk←

1
Nelite

∑
i∈ψ Xi

6k ←
1

Nelite−1

∑
i∈ψ (Xi − µk)

2

µk← αµk + (1− α)µk−1

6k ← α6k + (1− α)6k−1
end while
return X1, . . . ,XN

Vt . These new directions are dubbed Vsouth, Veast and Vwest . 375

The Vsouth direction is obtained by inverting the direction 376

of Vt . The Veast direction is calculated as a random vector 377

with Xt−1 as origin, that lies in a randomly generated plane 378

perpendicular to Vt passing through Xt−1. 379

This plane is generated by choosing at random d ≤ D − 380

1 features from the original D−dimensional space. Similarly 381

to Vsouth direction, Vwest direction is generated by inverting 382

the vector Veast . Figure 1 illustrates the local search mecha- 383

nism. Then, four new positions for the particle are evaluated: 384

Xsouth,Xeast ,Xwest and the position obtained by following Vt , 385

namely XVt . The position and velocity that lead to the best fit- 386

ness are assigned to Xt and Vt , respectively. This mechanism 387

helps particles to search in the whereabouts of their current 388

position in the search space for better movements than the 389

one calculated by the movement rule. By choosing a small 390

d , each particle can search for a better movement in fewer 391

dimensions than the original decision space. However, since 392

this local search mechanism requires four times more func- 393

tion evaluations, it can only be applied a predefined number 394

of times and at random iterations. The Algorithm 2 shows the 395

local search mechanism. As a result, Algorithm 3 presents the 396

proposed algorithm combining both Cross-Entropy Method 397

and proposed local search operator. 398

IV. EXPERIMENTAL DESIGN AND RESULTS 399

In this work we are measuring the performance of the pop- 400

ulation based algorithms named PSO, CE-EPSO [50] and 401

the improved C-DEEPSO (applying local search operator’s 402

– the CE-CDEESPO) proposed here to solve the OARDP 403
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FIGURE 1. Illustration of the three search directions generated by the
local search mechanism for one particle.

Algorithm 2 Local Search Mechanism
Require: Xt−1,Xlb,Xub, d

Compute velocity Vt
Vsouth←−1 · Vt
Xplane← {0}D

Sample y1, . . . , yd , yd+1 ∼ U(1,D)
for i ∈ (1, d) do

Xplane[yi]← U(Xlb[yi],Xub[yi])
end for
Xrand ← (Xrand − Xt−1)� Vt
if Vt [yd+1] > 0 then

Xplane[yd+1]← Xt−1[yd+1]− 1/Vt [yd+1]×∑
yi 6=yd+1 Xplane[yi]

else
Xplane[yd+1]← Xt−1[yd+1]−

∑
yi 6=yd+1 Xplane[yi]

end if
Vt ← argminV∈{Vt ,Vsouth,Veast ,Vwest }f (Xt−1 + V )
Xt ← Xt−1 + Vt

problem in the IEEE 57 and 118 Bus-Systems, with renew-404

able generators aggregated. The population size was defined405

as 100 particles for all algorithms. As initialization parame-406

ters of the CE-EPSO and CE-CDEEPSO algorithms, we have407

empirically defined a weight mutation rate equal to 70%, and408

a communication rate equal to 20%. PSO used as parameters:409

0.9 for inertia weight and 2.0 for both cognitive and social410

coefficients. For all algorithms, the rates used in the local411

search phase performed by the cross-entropy method have412

been sigma equal to 80%.413

Specifically for Cross-Entropy, we used 1.5 × 104 fitness414

evaluations to perform the CE local search procedure. The415

number of local search operator calls (swarm memory veloc-416

ity) is 20. The stopping criterion defined for all algorithms417

in IEEE 57 Bus systems was 3 × 104 fitness evaluations418

(FEs). For the IEEE 118-Bus systems the stop criterion was419

9 × 104 power flows fitness evaluations (FEs), where that420

in every time it is calculate 6 (time instances) power flows421

for each set of decision variables. We perform the compu-422

tational simulation using an Intel(R) Core(TM) i9-10900X423

CPU@3.70GHz and 64 GB RAM, with Windows 10 Pro.424

Algorithm 3 Improved C-DEEPSOWith Local Search Oper-
ators
Require: population size (NP), mutation rate τ , commu-

nication rate (P), memory size (MB), dimension (D),
dimension (d), number of local search operator calls
(nls), number of CE calls (NCE ), lower bounds (Xlb) and
upper bounds (Xub)
Set the generation number t = 0
Initialize the NP individuals in the population at random
according to U(Xlb,Xub)
Evaluate the current population
Update the global best Xgb
Sample nls generation numbers to apply local search
operator and store in Nls
while stopping criterion is not satisfied do

if t < NCE then
Run CE

else
for individual i in the population NP do

Calculate Xr using the strategy SgPB − rnd
Copy current individual Xt−1
Mutate strategy parameters wI ,wA,wC and
X∗gb
Apply movement rule in current individual
Xt−1
if t ∈ Nls then

Vt ← LocalSearch(Xt−1,Xlb,Xub, d)
end if
Evaluate current individual Xt and its copy
Select the fittest individual to proceed to next
generation
Update personal best individual

end for
Update memoryMB
t = t + 1

end if
end while

The evolutionary meta-heuristics’ code is implemented in 425

Matlab R2020b. 426

A. PRELIMINARY EXPERIMENT 427

A preliminary experiment is run using two benchmark func- 428

tions from literature, Rastringin and Rosenbrock. The ratio- 429

nale behind this experiment is to verify the results obtained by 430

the CE-CDEEPSO with local search, compared to CE-EPSO 431

with local search and results by standard PSO, with and 432

without local search procedure. The initialization parameters 433

for both CE-EPSO and CE-CDEEPSO are the following: 434

Mutation rate 0.6 and Communication rate 0.2. The number 435

of total fitness values was set as 5× 105. For each dimension 436

(30, 50, 100), the algorithm are tested using the population 437

size of 60 and 10 independent runs. Equations (24) and (25) 438

show the benchmark functions: 439
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FIGURE 2. Diagram of IEEE 57 bus system.

• Rastringin function - Multimodal - Goal = 0,440

f (x) =
D∑
i=1

[x2i − 10 cos(2πxi)+ 10]. (24)441

• Rosenbrock function - Unimodal - Goal = 0,442

f (x) =
D−1∑
i=1

[100(x2i − xi+1)
2
+ (xi − 1)2]. (25)443

Table 2 shows the results of the PSO, CE-EPSO444

and CE-CDEEPSO algorithms. The results indicated that445

CE-CDEEPSO obtained a competitive performance com-446

pared to both standard PSO and CE-EPSO algorithms in447

solving Rastringin and Rosenbrock functions with different448

dimensions. Furthermore, regarding standard PSO perfor-449

mance, the proposed local search mechanism was able to450

significantly improve the results. Hence, CE-CDEEPSO is451

able to outperform the results obtained by the base algorithms452

in benchmark functions.453

B. STATIC OPF PROBLEM IN A MICROGRID454

We choose simulate in a first moment the IEEE 57 Bus-455

System (see Figure 2)). To use the mathematical modeling456

described in Section II. In this case, for the IEEE 57 only457

equations (6) and (7) are considered as an additional cost458

for generation via solar panels and wind turbines. Two test459

scenarios were considered: (1) Replacing three thermoelec-460

tric generators with wind generators, and; (2) Replacing three461

thermoelectric generators with wind and solar generators.462

The IEEE 57 Bus-system presented in Figure (2) is463

composed by 7 generators, 42 loads, 63 lines, 16 stepwise464

transformers, 2 fixed tap transformers, and 3 shunt compen-465

sation. Usually, the goal in the ORAPD is to minimize the466

total fuel cost while fulfilling constraints (nodal balance of467

power, nodal voltages, allowable branch power flows, gen-468

erator reactive power capability, and maximum active power469

output of slack generator) for normal (non-contingency) and 470

selected N-1 conditions. In this work, the goal is to mini- 471

mize the total fuel cost of the traditional generators plus the 472

expected uncertainty cost for renewable energy generators (as 473

explained in Section II). We conduct a experimental design 474

to verify the efficiency of some evolutionary meta-heuristics 475

when solving the OARPD problem. The simulation follows 476

the characteristics: 477

• Optimization variables: 35 variables, comprising 478

13 continuous variables related to generator’s active 479

power outputs (6, the slack is not considered here, since 480

the injected power is given by the power flow) and gen- 481

erator’s bus voltage set-points (7), 15 discrete variables 482

related to stepwise adjustable on-load transformers’ tap 483

positions, 3 binary variables related to switchable shunt 484

compensation devices, and 4 controllable loads, and; 485

• Considered contingencies (N-1 conditions): outages at 486

branches 8 and 50. 487

The first experiment consists of validating the performance 488

of each algorithm by solving the OARPD problem in which 489

generators 2, 6, and 9 have been replaced by wind genera- 490

tors. In this case, PSO, CE-EPSO and CE-CDEEPSO were 491

executed a total of 12 times. Figure (3) shows the mean 492

convergence line obtained by each algorithm. Visually, it is 493

possible to notice that the standard PSO algorithm converges 494

faster in relation to others. CE-CDEEPSO shows a consistent 495

decline before 5000 function evaluations. Moreover, we can 496

see that C-DEEPSO obtains the smallest average fitness func- 497

tion value over 12 runs outperforming PSO and CE-EPSO. 498

However, a better way to evaluate the results obtained is 499

through the analysis of some performance measure. 500

A non-parametric test can be performed and in this work 501

we analyzed the Boxplot behaviour. Boxplots are not only 502

useful to analyze the range and distribution of the data, but 503

sometimes it can provide information about the true differ- 504

ence among the means. If the notches in the boxplots do 505

not overlap, it can be concluded, with 95% confidence, that 506

the true means do differ [51]. Figure (4) shows the boxplot 507

graphs. Since the boxplots presented do not show overlap, 508

we can conclude that there are differences among the true 509

means of algorithms. 510

As visualized by Figure (3), CE-CDEEPSO generates 511

savings of $14312.12/h when compared to CE-EPSO. In a 512

monthly projection, this economy reaches in average ten 513

million dollars. As a solution to be applied to the system, 514

we chose the median result of 12 runs. Table 31 represents 515

the median optimized solution for the IEEE Bus System with 516

Wind generators. 517

The same test case (IEEE 57 Bus-System) was used for 518

the second experiment in static optimization. the change 519

made include a solar generator in place of one wind turbine. 520

Figure (5) shows the average line of convergence of 12 runs 521

of each algorithm. We can see that around 10000 fitness 522

1Legend: Generator’s active power outputs (Gapo); Generator’s bus volt-
age set-points (Gbvsp); Tap positions (Tp); Shunt compensation devices
(Scd ).
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TABLE 2. Summary of the obtained results on each benchmark function.

FIGURE 3. Convergence line of the IEEE 57 bus system with wind
generators.

FIGURE 4. Boxplot results of the IEEE 57 bus system with wind
generators.

function evaluations, the algorithms begin to stabilize their523

convergences. The standard PSO algorithm clearly has a524

very high average value. We can see that when replacing525

a wind generator with solar generation sources, the cost of526

the operation decreases. The convergences of CE-CDEEPSO527

and CE-EPSO visually appear to be close. When perform-528

ing an enlargement of the graph, we see that on average529

CE-CDEEPSO outperforms CE-EPSO.530

TABLE 3. IEEE 57 bus-system: optimized results of the median solution:
grid with Wind generators.

The average behavior of the results remains as seen in 531

the system only with the replacement of thermometric gen- 532

erators by wind turbines. Through the analysis of the box- 533

plots presented in Figure (6), we can see that with 95% 534

confidence, that the true algorithms means results do differ. 535

Therefore, we can say that CE-CDEEPSO has lower average 536

results than those presented by CE-EPSO. Our algorithm 537

CE-CDEEPSO was able to save $4484.20/h. Following it, 538

in a monthly projection CE-CDEEPSO saves an average of 539
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FIGURE 5. Diagram of the IEEE 57 bus system with wind/solar generators.

FIGURE 6. Diagram of the IEEE 57 bus system with wind/solar generators.

3.2 million dollars. Table 4 presents the median solution of540

each algorithm to be applied to the problem.541

C. DYNAMIC OPF PROBLEM IN MICROGRIDS INCLUDING542

ELECTRIC VEHICLES543

The dynamic OPF approach has been adopted in 2018 by544

IEEE PES using as test scenario the IEEE 118 Bus-System.545

The test case includes two wind turbine-generator and two546

solar photovoltaic (PV) systems replacing thermoelectric547

generators in the grid. Additionally, four electric vehicles548

are considered, and the problems are evaluated over six549

time instances (so, the number of decision variables and550

constraints will be multiplied by six). Thus, this problem551

is recognized as a Dynamic OPF [38], in which a solution552

comprises the power flow for each of the time instances.553

Figure (7) represents the unifilar diagram of IEEE 118Bus-554

System in witch the grid is composed by 54 generators,555

99 loads, 177 lines/cables, 9 stepwise transformers, and556

14 shunt compensation. The system addressed here consid-557

ers security constraints to the normal (non-contingency) and558

selected N-1 conditions. In this work, the goal is to mini-559

mize the total fuel cost of the traditional generators plus the560

expected uncertainty cost for renewable energy generators (as561

explained in Section (II). We conduct a experimental design562

to verify the efficiency of some evolutionary meta-heuristics563

TABLE 4. IEEE 57 bus-system: optimized results of the median solution:
grid with wind/solar generators.

FIGURE 7. Diagram of IEEE 118 bus system.

when solving the OARPD problem. The simulation follows 564

the characteristics: 565

• Optimization variables: 6 x 130 variables, comprising 566

107 continuous variables describing generator active 567

power outputs (53, the slack is not considered here, since 568
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FIGURE 8. Histograms of the characteristics, power and costs associated to each renewable energy source.

the injected power is given by the power flow) and gen-569

erator bus voltage set-points (54), 9 discrete variables570

related to stepwise adjustable on-load transformers’ tap571

positions, 14 binary variables linked to switchable shunt572

compensation devices, and;573

• 493 constraints for non-contingency conditions, and574

492 constraints for each N-1 condition in each time575

instance (outages at branches 21, 50, 16 and 48). Con-576

straints penalized in the fitness function: (i) Nodal volt-577

ages for load buses: 6 x (99+ 99); (ii) Allowable branch578

power flows: 6 x (186); (iii) Generator reactive power579

capability: 6 x (54 + 54), and (iv). Maximum active580

power output of a slack generator: 6 x (1).581

Figure 8 shows one example of the Weibull probabilis-582

tic distribution [52] generated by Monte Carlo Simulation,583

meaning the calculated power for the randomly generates584

samples of renewable sources. It is important to note that585

the available power for each renewable is drawn according586

to its probability distribution that incurs in associated costs587

of underestimation and overestimation.588

The uncertainty of power generation for the clean gener-589

ators it also displayed. Regarding power available, we can590

see that the distribution of power in MW across the different591

scenarios is similar to a Gaussian distribution with mean592

value equal to 50 MW for PV and between 19 and 20 MW593

for electric vehicles. However, for WT the majority of the594

scenarios provide 150MW of power available. Due to the595

huge amount of wind power available, the cost due to under-596

estimation is very high in most of the scenarios. On the other597

hand, the cost of underestimating solar power is concentrated 598

in the smaller values, indicating that it is cheaper to store 599

excess energy from PV. 600

For the electric vehicles the cost of underestimation is 601

approximately normally distributed with mean at $300/MW. 602

With respect to the overestimation costs, as the electric vehi- 603

cles generator contributes with a smaller power, its overesti- 604

mation cost is small in most of the scenarios. As the power 605

contribution to the grid increases, the cost due to overes- 606

timating power increases, as show in the PV costs. In the 607

majority of the scenarios, WT power generated constitutes 608

the major part of the power available in the grid, thus its cost 609

of demanding more power than what is available is very high 610

most of the simulated scenarios. 611

Considering renewable sources in this system, some ther- 612

mal generators were replaced by solar, wind and vehicles. For 613

the reliable and stable operation of an EV chargingmicro-grid 614

system with a stochastic charging load, a robust coordinated 615

controller is an essential requirement [10]. In this context 616

we evaluated three techniques based on swarm intelligence 617

properties, namely PSO, CE-EPSO and CE-CDEEPSO, who 618

acted on the OARPD problem as a power grid controller 619

system. Additionally, for each technique we also evaluated 620

its modified version including the proposed local search 621

operator. 622

Figure (9) illustrated the neighbor solutions obtained for 623

one time instance for d = 3. It is important to note that 624

although a solution considers all the six time instances, hence 625

it lies inR780.We are illustrating the local search operation on 626
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FIGURE 9. Illustration of the local search operator applied to solution
vector in R130. In Xsouth all values are inverted. In Xeast and Xwest , only d
values are modified plus one as previously showed by Algorithm 1.

FIGURE 10. Convergence line of IEEE 118 bus system with electric
vehicles and solar and wind generators.

only one time instance to facilitate understanding. However,627

the operation is carried in the solution vector composed by628

all the six time instances. Moreover, all the algorithms treat629

every variable as continuous.When inputting a solution to the630

test case system, discrete and binary variables are rounded to631

the closest integer value.632

Due to the stochasticity of the solar, wind and vehicles gen-633

erators, each algorithm was executed 10 times. Figure (10)634

shows themean convergence line for each algorithm. Initially,635

it is possible to see that the standard PSO algorithm converged636

very early to a local minima and did not manage to escape637

from it. Even though the algorithm was trapped, the local638

search operator managed to converge to a lower cost. On the639

other hand, both CE-EPSO and CE-CDEEPSO showed a640

consistent decrease in the cost until iteration 12000. Further-641

more, after 15000 iterations we can see that CE-EPSO was642

able to obtain a smaller average fitness than CE-CDEEPSO.643

Similarly to the outcome of employing the proposed local644

search operator in the standard PSO algorithm, the com-645

bination of the operator to CE-CDEEPSO and CE-EPSO646

achieved the smallest average fitness values. Moreover, the647

combination of CE-CDEEPSO with the proposed operator648

managed to achieve the smallest cost, saving $77104.00/day649

when compared to CE-EPSO with the local search.650

FIGURE 11. Boxplot results of IEEE 118 bus system with electric vehicles
and solar and wind generators.

FIGURE 12. Heatmap of the p-values obtained after applying Connover
test with Holm-Bonferroni correction to results of IEEE 118 bus system
with electric vehicles and solar and wind generators. NS stands for
non-significant.

Nevertheless, to provide a robust evaluation of the results 651

obtained, we performed two non-parametric tests. Firstly we 652

analyze the boxplot behaviour, then we conducted a pairwise 653

comparison using Connover Test with Holm-Bonferroni cor- 654

rection. Figure (11) show the boxplots. We can see that the 655

boxplot for CE-CDEEPSO with local search do not overlap 656

any of the other. Hence, as stated in the previous subsection, 657

we can affirm that there are differences from its mean to the 658

other algorithms. However, it is not possible to attest whether 659

there are differences between the using or not the local search 660

operator in CE-EPSO. Thus, we performed pairwise cor- 661

rections using a non-parametric statistical test entitled Con- 662

nover Test along with Holm-Bonferroni correction to reduce 663

the effect of multiple pairwise comparisons. Figure (12) 664

shows a heat-map containing the p-values obtained for each 665

comparison of algorithms. 666

At first we can see that, as attest from boxplot analysis, 667

there are differences from CE-CDEEPSO with local search 668

(LS) average fitness value to teh versionwith out LS, and both 669

versions of CE-EPSO. Furthermore, the test shows that we 670
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TABLE 5. Summary of the obtained results on each test case. A plus sign (+) indicates that there are statistical differences from the algorithm to the
others with minus sign (−).

can attest that CE-CDEEPSO with LS differ from CE-EPSO671

(with and without LS) with 99% confidence. Another impor-672

tant information is that, althoughCE-EPSO (with LS) achieve673

a smaller average fitness value than its counterpart without674

local search, they are not statistically different. As a result,675

we can say that our algorithm CE-CDEEPSO combined to676

the proposed local search operator is suitable for the dynamic677

OPF problem, saving an average of 2.3 million dollars in a678

monthly average projection.679

To summarize, Table 5 presents an overview of the680

obtained results for the two test cases evaluated under IEEE681

57-Bus System and the third test case evaluated under IEEE682

118-Bus System. As a validation of the mininum average683

fitness value obtained byCE-CDEEPSO in both IEEE 57-Bus684

System test cases, the plus sign (+) besides CE-CDEEPSO685

indicates that the mean fitness value is statistically different686

from the other mean fitness values with a minus sign (−).687

Moreover, CE-CDEEPSO standard deviation was more than688

10 times smaller when compared to CE-EPSO and more than689

20 times smaller when compared to PSO in both Case 1 and 2.690

This indicates that our algorithm managed to consistently691

achieve small fitness values throughout the different runs.692

Likewise, in the IEEE 118 Bus-System, the plus sign (+)693

indicates that CE-CDEEPSO with LS achieved the minimum694

average fitness value and it also statistically differ from the695

other algorithms. Regarding the local search operator, its696

combination to both CE-CDEEPSO and CE-EPSO led to not697

only smaller average fitness values but also a reduction in the698

standard deviation, providing more robust results.699

V. CONCLUSION700

In this work we have proposed an improvement of an701

evolutionary algorithm based on differential evolution (DE)702

and particle swarm optimization (PSO), entitled Canonical703

Differential Evolutionary Particle Swarm Optimization algo-704

rithm (C-DEEPSO). In the proposed modification we have705

included the cross-entropy (CE) method as a initial deep706

search to find a good basin of attraction for the initial pop-707

ulation of C-DEEPSO. Then, we have also presented a novel708

local search operator that explores the neighborhood of each 709

particle to try to find a better position. 710

This novel approach, known as CE-CDEEPSO, has been 711

evaluated in solving the Optimal Active-Reactive Power Dis- 712

patch (OARPD) problem in microgrids, under two different 713

test cases containing renewable energy sources. The first 714

test case contained three wind turbines (WT) generators and 715

the second test case contained two WT generators and one 716

photovoltaic (PV) generator. The second test case was a 717

bigger microgrid containing both WT and PV along with the 718

addition of plugin electric vehicles (PEVs). 719

Results showed that CE-CDEEPSO outperformed alter- 720

native algorithms in IEEE 57 Bus-System test case (both 721

scenarios), leading to a projected monthly saving average 722

of 10 million dollars and 3.2 million dollars, respectively. 723

Furthermore, in IEEE 118 Bus-system, CE-CDEEPSO with 724

local search outperformed not only its counterpart without 725

local search, but also the other algorithms considered. As a 726

result, by using our proposal we were able to provide a 727

projected monthly saving average of 2.3 million dollars in 728

the microgrids systems considered. To conclude, both ver- 729

sions of CE-CDEEPSO proved to be suitable algorithms to 730

solving OARPD problems involving wind turbines, photo- 731

voltaic panels and electric vehicles with a minimal cost and 732

maintaining a reliable and stable operation. As future work 733

lines, it would be important to evaluate our algorithm in 734

even larger test cases, with an increased number of PV, WT 735

generators and PEVs. 736
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