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ABSTRACT We have designed a fully-integrated analog CMOS cognitive image sensor based on a two-layer
artificial neural network and targeted to low-resolution image classification. We have used a single poly
180 nm CMOS process technology, which includes process modules for realizing the building blocks of
the CMOS image sensor. Our design includes all the analog sub-circuits required to perform the cognitive
sensing task, from image sensing to output classification decision. The weights of the network are stored
in single-poly floating-gate memory cells, using a single transistor per analog weight. This enables the
classifier to be intrinsically reconfigurable, and to be trained for various classification problems, based on
low-resolution images. As a case study, the classifier capability is tested using a low-resolution version
of the MNIST dataset of handwritten digits. The circuit exhibits a classification accuracy of 87.8%, that is
comparable to an equivalent software implementation operating in the digital domain with floating point data
precision, with an average energy consumption of 6 nJ per inference, a latency of 22.5 µs and a throughput
of up to 133.3 thousand inferences per second.

13 INDEX TERMS Analog neural network, cognitive image sensor, neuromorphic engineering.

I. INTRODUCTION14

End devices or edge devices in the Internet of Things (IoT)15

paradigm, with embedded intelligent visual sensor systems,16

are key components of recent visions of cyberphysical sys-17

tems [1], where latency, scalability, and privacy represent18

important challenges. In a conventional machine vision sys-19

tem, information is captured by image sensors to be then20

converted into a digital format, before being stored in a local21

memory or being transmitted to an external computing unit22

for required processing tasks. With the main goal of reducing23

The associate editor coordinating the review of this manuscript and
approving it for publication was Alireza Sadeghian.

the impact of energy- and time-inefficient operations, such 24

as analog-to-digital conversion and data transmission, the 25

concept of a cognitive image sensor, with embedded classifi- 26

cation capabilities becomes an attractive solution for future 27

applications [2], [3] such as wearable and mobile health- 28

care electronics [4], or battery-powered systems, such as 29

autonomous robots and drones [5]. 30

Intelligent vision sensors provide cognitive capabilities to 31

image sensors through the implementation of artificial neural 32

networks (ANNs), which represent powerful modeling meth- 33

ods to perform human-like tasks, such as object classification 34

and detection [1]. As a recent milestone for the CMOS image 35

sensor (CIS) market, the world’s first commercial image 36
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FIGURE 1. Concept of the proposed low resolution all-analog CMOS image sensor classifier, composed of a 5 × 5 image sensor and a 2-layer analog
neural network.

sensor with artificial intelligence (AI) processing capability37

has been launched in May 2020 [6]: the intelligent CIS has38

been designed by equipping a conventional image sensor with39

a digital signal processor (DSP) dedicated to AI processing40

tasks and the memory for the AI model.41

ANNs are composed of layers of artificial neurons. The42

basic computation in the ANNs is the multiply-accumulate43

(MAC) operation [7], [8], [9], that is the elementary operation44

of a vector-matrix multiplication, where an input data vector45

is multiplied by a matrix of fixed weights. As the size of the46

ANN increases, the increased number of MAC operations,47

as well as storage requirements and weight access opera-48

tions, result in a huge energy consumption in conventional49

digital systems [10], [11], [12]. In order to reduce power50

consumption per inference, thus enabling battery-powered51

systems to be equipped with ANNs, a lot of research effort is52

today being devoted to the design of analog ANN integrated53

circuits [2], [13], [14], [15], [16], [17], [18], which exploit54

basic properties of CMOS devices and circuits to allow a55

very high degree of parallelism inMACoperations alongwith56

in-memory computation.57

Reduced precision of both input data and of processing58

tasks, typical of the analog domain, has been demonstrated59

to be well tolerated by neural networks [14]. For instance,60

a fully integrated, on-chip ANN classifier architecture based61

on analog circuits for low-resolution image classification62

has been presented in [17]. There are many applications of63

low-resolution image classification [19], for instance when 64

the object to be detected (i.e., the region-of-interest) is con- 65

fined in just a portion of the image, or when the image has a 66

deliberately low resolution for privacy reasons (e.g., remote 67

health monitoring of patients). 68

Inspired by the above mentioned research papers, and in 69

particular by [16] and [17], we propose the design of an 70

analog CMOS image sensor classifier based on a two-layer 71

ANN operating in a low-resolution context, as depicted in 72

Fig. 1. As a main difference with respect to previous works, 73

which typically show only partial on-chip implementations, 74

this is the first demonstration of a fully analog design, which 75

includes all the building blocks required to perform the 76

whole processing task, from the image sensing to the image 77

classification. 78

Our system is designed using a single-poly 180 nm com- 79

mercial CMOS process, with an additional process option 80

including specific modules for the implementation of photo 81

diodes and supplementary building blocks of modern CMOS 82

image sensors. Matrices of single-poly, single-transistor 83

floating-gate memory cells store the weights of the ANN, 84

and are part of time-domain based vector-matrix multipli- 85

ers (VMMs), both proposed in [15]. All the other building 86

blocks, such as the pixel array, sample and hold (S&H) 87

arrays, voltage-to-time converters and activation functions 88

[20] are carefully designed in the analog domain. In addition, 89

as opposed to [17], where the weights are encapsulated in 90
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the design, here the weights are programmable, so that the91

proposed classifier is intrinsically re-configurable, and can92

be trained to operate on a range of classification tasks based93

on low resolution images.94

As a case study, the classifier inference capability is vali-95

dated using a low-resolution dataset derived from theMNIST96

database of handwritten digits [21]. The resulting inference97

accuracy is 87.8% at room temperature (27 ◦C), which is98

comparable to a software implementation of the same ANN99

architecture operating in the digital domain with floating100

point data precision. The accuracy is maintained over the101

80% in a broad temperature range, from −10 ◦C to 70 ◦C.102

Our design consumes only 6 nJ per inference (where roughly103

half of the energy is consumed by the pixel sensing matrix),104

while assuring a throughput of 133k images per second with105

a latency of 22.5 µs. It also exhibits a very small footprint of106

only 4000 µm2 for a pixel pitch of 10 µm.107

The rest of the paper is organized as follows. The design108

methodology is presented in Section II, with discussion of109

the entire design flow based on the ANN architectural syn-110

thesis and training performed in a software environment111

(MATLAB), along with the architectural integration of the112

network in the corresponding CMOS implementation. Design113

and operation of each building block implementing the full114

CMOS engine are discussed in Section III. Results and dis-115

cussions are reported in Section IV, also presenting a compar-116

ison with similar networks proposed in the literature. Finally,117

conclusions are drawn in section V.118

II. ANALOG CMOS NEURAL NETWORK CLASSIFIER:119

OFF-CHIP TRAINING AND HARDWARE ARCHITECTURE120

Fig. 1 sketches the basic block diagram of the proposed121

image sensor classifier. The analog CMOS chip is based122

on two main blocks, a low resolution image sensor and a123

two-layer ANN trained to perform inferences on the acquired124

images. In order to evaluate the functionality of our design125

and to benchmark it against other similar proposals, we have126

trained a software implementation of the ANN with a down-127

sampled set of images extracted from the MNIST database.128

MNIST handwritten digit images from both training and129

test databases (with original 28 × 28 resolution) have been130

reduced to 5 × 5 by using a Bilinear interpolation [22],131

as the input of the ANN is represented by a 5 × 5 pixel132

image, which is assumed to be captured by the low-resolution133

image sensor. Some examples of the images are shown in134

Fig. 1. In the following sub-sections we provide the details135

of the software off-chip training of the neural network (II-A),136

as well as the block diagram of the full hardware implemen-137

tation of the chip (II-B). Circuit details of the single blocks138

will be provided in Section III.139

A. NEURAL NETWORK OFF-CHIP TRAINING140

The proposed ANN is composed by a 28-node hidden layer,141

exploiting Rectified Linear Unit (ReLU) as activation func-142

tion, and a 10-node output layer followed by a Softmax143

activation function to yield the final inference result (similar144

architecture as in [17], but with different activation function 145

at the hidden layer). 146

FIGURE 2. Distributions of weights and weighted sums corresponding to
hidden (a-b) and output (c-d) layers used for proper selection of full-scale
values; (e) impact of resolution truncation on network accuracy.

TheANNwas trained inMATLAB applying themini batch 147

method with momentum for weight updates. After 20 epochs, 148

the network reached an accuracy of 90.6% for the whole set of 149

10k test images. After the training stage, the weight matrices, 150

as well as the values of the input and output variables of each 151

layer, have been obtained for all testing images. All weights 152

and signals are dimensionless variables with floating point 153

precision of 16 decimal digits. However, for each variable, the 154

data precision can be deliberately reduced to a given number 155

of bits to reach the minimum precision actually required to 156

obtain the target classifier inference accuracy. On the other 157

hand, when considering the corresponding analog network to 158

be designed, all signals are analog quantities (i.e, charges, 159

currents or voltages). Thus, distributions of each quantity 160

must be accurately analyzed at a software level to perform an 161

adequate normalization, with definition of full-scale values. 162

In addition, a target accuracy (in terms of equivalent number 163

of bits) has to be decided for the weights and for the outputs 164

of the analog operations representing critical quantities. The 165

distributions for weights and weighted sums of the two ANN 166

layers are shown in Fig. 2(a-d), evaluated on the whole set of 167

tested images. They allow to predict the magnitude that each 168

variable can assume during the inference operation. In fact, 169

while in a software environment we can rely on perfectly 170
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FIGURE 3. Hardware neural network block diagram.

linear operations as the only limitation is the digital data171

precision, in an analog hardware environment we need to172

cope with non-linear and noisy functions. However, hard-173

ware blocks can be optimized to feature an adequate signal-174

to-noise and distortion ratio (SINAD) in a limited operating175

range, therefore it is crucial to have the expected values of176

all quantities fall in their corresponding range. When con-177

sidering the conversion factors from software variables to178

electrical signals, the full-scale ranges have been chosen to179

comprise about 99% of the data of the distributions: [-4,4],180

[-3,3], [-4,4] and [-20,20] were selected for the hidden layer181

weights, hidden layer weighted sums, output layer weights182

and output layer weighted sums, respectively.183

Starting from the selected full-scale range, we have repeat-184

edly tested the ANN via software by truncating the pre-185

cision of each variable (inputs, weights and summations),186

by dividing the full range by 2N , where N is the considered187

number of bits. The inference accuracy has been extracted188

for each instance of the reduced-precision ANN. In Fig. 2(e)189

the inference accuracy as a function of the number of bits N190

is shown: already with 4 bits, a precision higher than 80%191

is achieved, while with 5 and 6 bits we have comparable192

inference accuracy to full floating-point precision.193

B. HARDWARE ARCHITECTURE OF THE PROPOSED194

ANALOG CMOS NEURAL NETWORK CLASSIFIER195

The complete hardware implementation of the proposed196

CMOS image sensor classifier is shown in Fig. 3. The archi-197

tecture has been split in three sections, one related to the198

sensing and the other two implementing the two layers of the199

ANN. Two S&H arrays are interposed between two adjacent200

sections in order to store intermediate data, to obtain a systolic201

architecture that makes it possible to execute all the three202

phases in parallel.203

The sensing stage is represented by a 5 × 5 pixel image204

sensors. Each pixel provides a differential voltage signal205

(1Vpix) proportional to the incident light. These differential206

voltage signals are converted into voltage pulses, with their207

pulse width (PW) proportional to the captured light, by a208

Differential Voltage to Time Converter (DVTC) array. Two 209

identical 25 × 28 VMMs, denoted as VMM+ and VMM−, 210

receive the PW signals as inputs and implement a differential 211

VMM stage to deal with signed weights (see Fig. 2(a,c)). The 212

outputs of VMM+ and VMM− are sampled in a 2×28 S&H 213

array, and each 1VOUT is converted to a PW signal by a 214

second DTVC block, to be transferred to the output layer. The 215

array of 28 DVTCs also plays the role of the ReLU activation 216

function. Then, the output layer is realized with two identical 217

28×10 VMMs (again VMM+ and VMM−), and the1VOUT 218

results are translated into probabilities by a softmax block, 219

providing the final inference. 220

The whole system, sketched in Fig. 3, with each block 221

independently optimized as discussed in the following 222

section, has been integrated in a single circuit schematic in 223

Virtuoso Schematic Editor (within Cadence IC 6.1.8 envi- 224

ronment) and the full operation flow has been electrically 225

simulated in ADE XL, from image capture to final inference. 226

Thanks to the two S&H arrays, which break the chain at 227

two intermediate points, the proposed network has a systolic 228

architecture that can realize a pipelined implementation. For 229

instance, when data related to the first image is in the second 230

phase and is being processed in the first hidden layer of 231

the network, the sensing block can start the acquisition of a 232

new image in parallel. With this assumption, the network can 233

produce a new inference every 7.5 µs, for a throughput of 234

133.3 thousand inferences per second, after the initial latency 235

of 22.5 µs, and by consuming on average a total of 6 nJ per 236

inference (with 3 nJ consumed by the pixel sensing matrix, 237

and 3 nJ by the ANN). The obtained inference accuracy is 238

87.8%,which is comparablewith the onewe have obtained by 239

means of the idealized software network, with floating point 240

data precision (90.6%). 241

III. DESIGN OF THE BUILDING BLOCKS OF THE ANALOG 242

CMOS CHIP 243

In this section we discuss the design and operation of each 244

building block implementing the classifier. The analog design 245

exploits the time-domain VMMs (TD-VMMs) with two- 246
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FIGURE 4. 5 × 5 pixel CMOS image sensor architecture, with details of the 4T pixel and S&H schematics.

terminal non-volatile memory [15] and the softmax activa-247

tion function [20]. Purposely designed differential voltage248

to pulse-width converters are used to provide proper input249

data to the TD-VMMs. The design of the analog circuit250

implementation of each individual block has been optimized251

to get a SINAD corresponding to an effective number of252

bits, ENOB = (SINAD − 1.76)/6.02, between 5 and 6 for253

the analog signals and the analog operations, as a trade-off254

between design complexity and power consumption on one255

side, and achievable inference accuracy on the other side (see256

Fig. 2(e)). The conversion factor from each software variable257

to the corresponding physical quantity (i.e, voltage, electric258

charge and current) will be presented in the corresponding259

block subsection.260

A. 4T PIXEL SENSING MATRIX261

A standard pixel architecture is used as a building block for262

the CMOS image sensor with a resolution of 5×5 pixels. The263

pixel schematic and its sensing scheme are shown in Fig. 4.264

The pixel is based on a light-sensitive pinned photo-diode265

(PD), complemented with four transistors. The pixel read-out266

is performed with a correlated double sampling approach,267

in which the light captured by each pixel is proportional to268

1Vpix , defined as the difference between a reference voltage269

(i.e., R, the pixel output voltage after reset) and the sig-270

nal voltage (i.e., S, the pixel output voltage at the end of 271

integration), in order to cancel the thermal noise associated 272

to the voltage on the PD capacitance (i.e., the so-called 273

KTC noise). However, as opposed to the standard 4T pixel 274

architecture [23], only a transfer gate (the one driven by the 275

TG signal in Fig. 4), reset (driven by the Rst signal) and a 276

source-follower amplifier are used (driven by the floating 277

diffusion FD node). The row-select transistor is not needed 278

here, since all the 25 pixels are directly connected to the 279

corresponding S&H blocks, 25 in total, each realized with 280

two selectors and two MIM capacitors, to store the 1Vpix in 281

terms of R and S values, with R > S. This translates into the 282

fact that all the 25 pixels can be exposed at the same time, 283

in a global shutter mode, which is indeed feasible due to the 284

extremely low resolution. In our case, the fourth transistor 285

of each pixel is a biasing nMOS, operated at a constant gate 286

voltage, used to set the working point of the source-follower 287

amplifier. This gate voltage is provided by a diode-connected 288

transistor, in common to the whole pixel array, realizing a 289

current mirror. 290

In order to perform circuit simulations and extract the 291

SINAD of the sensing chain, we have relied on an ideal- 292

ized Verilog-A model for the pinned PD, calibrated against 293

photo-diode test-structures realized in a 0.18 µm CMOS IS 294

technology [24]. It is important to highlight that the actual 295
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pixel response is heavily dependent on the real layout imple-296

mentation, but semiconductor companies normally do not297

provide parametric cells for the PD within the standard pro-298

cess design kit. In addition, in order to simulate the light-299

to-charge conversion (i.e., the photoelectric effect) taking300

place in the n-region of each PD (i.e., the nPD), we have used301

a 5 × 5 matrix of idealized current pulse sources injecting a302

certain amount of charge in each pixel, by assuming a quan-303

tum efficiency of 0.722. The simulated pixel has a conversion304

gain of 70 µV/electron, with a full well of 9000 electrons305

(at 1Vpix = 630 mV ). This charge will be collected in an306

integration time of 6.25µs under a 500W/m2 maximum light307

intensity exposure.308

The 25 S&H are implemented with minimum size nMOS309

transistors as selectors, and 2.4 × 2.4 µm2 MIM capacitors,310

for a total capacitance of 6.48 fF. This value has been calcu-311

lated to guarantee a KTC noise on the S&H capacitors lower312

than 0.1 % of the pixel output voltage dynamic range. With313

these values as starting points, the MIM capacitors have been314

enlarged in order to guarantee a 6 bit ENOB on the sensing315

chain.316

FIGURE 5. (a) Voltage to pulse width converter schematic, (b) ramp
generator, (c) control circuit.

B. DIFFERENTIAL VOLTAGE TO PULSE WIDTH CONVERTER317

The light intensity collected by each pixel during its integra-318

tion time, stored as 1Vpix , needs to be converted to a time319

PW to be used as input for the TD-VMM. Similarly, also320

the input data to be provided to the second VMM is encoded321

as a voltage difference, as it will be clear in the following322

sections. Thus, for both stages, a DVTC array is required323

for the conversion. In order to perform such task, we have324

relied on the circuits reported in Figure 5. The goal is to325

create a time pulse whose duration is proportional to 1Vpix .326

The basic approach relies on the comparison of a voltage 327

signal Vc which, starting from 0V, is increased over time 328

with a constant slope; as reported in Fig. 5(a), two dynamic 329

comparators (proposed in [25]) and two logic gates are used 330

to recognize the time frame where Vc is comprised between 331

S and R. Note that the signal c2 is high when Vc > S, while 332

the signal c1 is high when Vc < R, thus the PW is active 333

(n.b. active low) when both c1 and c2 are high, that is when 334

S < Vc < R. The voltage ramp signal Vc is generated by 335

charging a MIM capacitor with constant current, as shown in 336

Fig. 5(b). 337

In the same figure, a low-complexity logic network is 338

reported, exploited to activate and deactivate the dynamic 339

comparators, while minimizing their power consumption 340

through clock gating. 341

The operation of the DVTC can be easily observed by the 342

time diagram in Fig. 6, which highlights how the1Vpix signal 343

is translated into the time duration of the PW signal. 344

The same building block is employed to adapt the result 345

of the first VMM layer, which is provided in the form of a 346

voltage difference, to a time signal to be provided as input for 347

the VMM of the second layer. In this regard, it is important to 348

highlight that it also includes the ReLU activation function. 349

In fact, if1Vpix < 0, the converter does not provide any out- 350

put pulse, since the condition AND(c1, c2) is never satisfied 351

during the Vc ramp up. 352

FIGURE 6. Voltage to pulse width converter timing diagram example.

There are several design trade-offs, which can limit the 353

linearity of the DVTC, both at Vc ramp generation as well 354

as at the comparison stages. It would be desirable to have 355

a very fast voltage ramp in order to minimize the inference 356

latency and to maximize the throughput of the classifier. 357

However, this would require high charging current and/or 358

small (and consequently noisy) capacitance. Current over- 359

shoots could degrade the linearity of the Vc ramp, which can 360

be achieved only with actually constant charging current and 361

capacitance. Furthermore, the dynamic comparators perform 362
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FIGURE 7. DVTC energy/conversion as a function of the nominal number
of bits.

one comparison at each clock period Tclk , and the ratio of363

the Vc ramp duration to Tclk set a theoretical limit to the364

achievable resolution.365

We have first optimized the Vc ramp generation circuit as366

follows: a current of 30 nA charging a capacitor of 100 fF367

results in a slope of 300mV/ µs. This slope corresponds to368

a conversion factor of 3.33 µs/ V, thus for a maximum1Vpix369

of 0.63V we get a maximum pulse duration TMAX of 2.1 µs:370

such value falls within the range in which the TD-VMM that371

we have proposed in [15] can operate with 6-bit precision.372

In addition, an optimization of the comparator stage was also373

needed in order to perform a conversion with at least 5-bit374

precision, which is required for our test case. The desired375

clock speed and negligible input offsets can only be obtained376

at the cost of high power consumption of the comparators.377

Due to its dynamic nature, the comparator implementing the378

DVTC block performs a comparison between the Vc input379

ramp and the R (and S) signal every Tclk . Thus, resolution can380

be improved by decreasing the Tclk duration, as the Tclk /Tramp381

ratio corresponds to the number of conversion levels. On the382

other hand, the increased clock frequency would adversely383

impact the dynamic power consumption due to increased cir-384

cuit activity. This energy/precision tradeoff can be observed385

in Fig. 7, where the energy consumed per each conversion386

is plotted against the nominal number of bits calculated as387

log2(TMAX/Tclk). For each 1V -to-PW conversion, the con-388

verter circuitry consumes an average energy of about 40 pJ at389

a clock period of 45 ns for 6 nominal bits.390

C. TIME DOMAIN VECTOR-MATRIX MULTIPLIER391

The VMM is the most recurring building block of a neural392

network. It enables the multiplication of a vector of features393

(i.e., input signals of a layer) with a matrix of learning394

weights, which are normally stored in a non volatile memory395

since they are fixed quantities during the inference. In a dig-396

ital environment, this task is performed by recursively multi-397

plying each element of the input vector by the corresponding398

weights in the row, and then summing all the results in the399

same column, according to the block diagram in Fig. 8(a).400

However, the recurring nature of these arithmetic operations401

can be exploited by taking advantage of a parallel processing 402

in-memory approach, possibly by using analog nonvolatile 403

memory cells and basic device and circuit properties to imple- 404

ment such operations in an energy and time efficient way. 405

In our classifier, we exploit the TD-VMM, proposed by 406

some of us in [15]. The architecture of a generic M × N 407

VMM is shown in Fig. 8(a): the inputs xi (i = 1, . . . ,M ) 408

are connected to the rows of a M × N matrix of memory 409

cells, which stores the programmable weights wi,j where the 410

vector-matrix multiplication operation takes place. Then, the 411

results of such operations are summed together by connecting 412

each cell to its corresponding column yj (j = 1, . . . ,N ), 413

giving N outputs as result. 414

In the time-domain approach, each input is encoded in 415

the duration ti ∈ [0, . . . ,T ] of an active-low voltage pulse 416

(VOFF = 1.1 V , VON = 0V), applied to the i-th row, 417

i.e., wordline (WL), of the array. The M × N matrix is 418

realized with 1T-FG cells [15], which are minimum-area, 419

single-poly and single-transistor analog memory cells that 420

can be programmed by means of charge injection in their 421

floating-gate (FG): Fig. 8(b) presents the measured I-V char- 422

acteristics of the cell, showing the possibility of spanning 423

more than 3 decades of current levels for a read voltage on the 424

drain of 1.1V. The programmable weights wi,j are therefore 425

encoded in the currents Ii,j of 1T-FG cells. By connecting 426

the drains of all cells to the same column node, i.e., bitline 427

(BL), at a reference voltage VOFF , corresponding with the 428

off-state level of the input pulse, each cell is activated by 429

their corresponding WL input pulse, applied to their source 430

terminal, for its time duration. With the assumed protocol, 431

the current Ii,j is positive when it flows from the BL towards 432

the WL (when the WL is activated during the pulse on-state) 433

and cannot be negative. Therefore, each cell (i, j) injects a net 434

charge Qi,j = −Ii,j · ti into the BL. 435

Finally, the total negative charge injected in the BL j is 436

converted into a positive voltage by means of an inverting 437

charge amplifier, namely an integrator realized with an ampli- 438

fier followed by a feedback capacitor, which is reset at VOFF 439

at the beginning of each operation. The output result of the 440

operation is therefore the voltage: 441

Vout,j − VOFF = −
1
C

M∑
i

Qi,j =
1
C

M∑
i

Ii,j · ti. (1) 442

One should note that the proposed VMM block cannot 443

accept negative inputs or weights. Although in our ANN the 444

inputs of the VMM stages are always positive, weights can be 445

also negative as illustrated in Fig. 2(a) and (c), thus leading 446

to possible negative outputs as reported in Fig. 2(b) and (d). 447

In order to enable signed weights, we have implemented each 448

VMM of the ANN with a differential architecture realized 449

with a VMM+ and VMM−, one for positive and one for 450

negative weights, respectively. In particular, for wi,j > 0 we 451

have: 452

w+i,j = wi,j and w
−

i,j = 0, (2) 453
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FIGURE 8. Time-domain VMM: (a) system level block diagram of a M ×N VMM, with detail of the interconnection between the inputs (blue), weight matrix
(purple), and outputs (yellow); (b) 1T-FG NVM cell I-V characteristics; (c) implementation of the TD-VMM differential architecture for the proposed ANN.

where w+i,j and w−i,j are the weights stored in VMM+ and454

VMM−, respectively, and wi,j is the weight in the resulting455

VMM. On the other side, for wi,j < 0 we have:456

w+i,j = 0 and w−i,j = −wi,j. (3)457

The differential architecture leads to the same result of a458

VMMwith signed weights, if the result is taken as the voltage459

difference of VMM+ and VMM− outputs, according to:460

1Vout,j=V
+

out,j−V
−

out,j=
1
C

(
M∑
i

I+i,j · ti−
M∑
i

I−i,j · ti

)
. (4)461

In order to make the conversion from the variables of the462

software VMMs to the corresponding hardware implementa-463

tions, we have extracted in Fig. 9 the independent histograms464

for the VMM+ and VMM− output results of both layers.465

By identifying the ranges [0,5] and [0,25] for both VMM+466

and VMM− at hidden and output layer, respectively, and by467

assuming a voltage range Vout,j − VOFF of up to 700 mV468

for each VMM circuit implementation, we get a conver-469

sion factor of 140mV and of 28mV, respectively. Start-470

ing from these values and considering that the pixel inputs471

have been encoded into a PW according to a conversion472

factor of 3 µs (considering the full input chain, from image473

pixel to the DVTC output), we have selected a capacitance474

of 600 fF, resulting in a conversion factor for the hidden475

FIGURE 9. Hidden layer (a) positive, (b) negative sum results and Output
layer (c) positive, (d) negative sum results.

layer weights of 476

Ii,j
wi,j
= 28 nA. (5) 477

When considering the output layer, the sameDVTC and the 478

same charge amplifier have been used. Thus, starting from the 479

output of the first layer obtained with a conversion factor of 480

160mV, after the conversion in a time pulse it is encodedwith 481

a conversion factor of 5.333 µs. The computed conversion 482
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factor for the output layer weights is483

Ii,j
wi,j
= 3.15 nA. (6)484

D. SOFTMAX ACTIVATION FUNCTION485

For a given input of the ANN, the results of the output486

VMM layer include the information about the inference, but487

can generally be negative and the algebraic sum over all the488

outputs is not necessarily 1. For this reason, the output stage is489

normally followed by a softmax function, which is exploited490

in order to put the output in the form of a probability. There is491

one output signal for each class and, for a given input, the k-th492

output of the softmax represents the probability that this input493

is part of the corresponding class. The softmax is basically an494

activation function which normalizes the outputs of a network495

to a probability distribution over the predicted output classes,496

according to:497

Softmaxk =
exk∑N=10

j=1 exj
. (7)498

To realize the hardware implementation of softmax func-499

tion, we have exploited the circuit scheme proposed in [20]500

and depicted in Fig. 10(a). However, since the softmax inputs501

(i.e., the results of the output layer VMM) are available as502

1Vout signals stored in differential S&Hs, we have only used503

the inherent softmax circuit without the need to perform504

a preliminary current to differential voltage conversion as505

suggested in [20]. By selecting an ISCALE current of 100 nA,506

and by considering the conversion factor of the output VMM507

(28 mV), the probability of being part of the k-th class is508

IOUT ,k/ISCALE , which can be comprised between 0 and 1.509

As an example, Fig. 10(b) shows the probability for the510

generic class k as a function of the 1VOUT ,k = Vpk − Vnk511

of the output layer VMM, assuming that the outputs related512

to the other 9 classes are all fixed at 1VOUT ,i = 0. When513

the swept Vpk − Vnk is 0, all the 10 outputs have the same514

probability of 1/10. However, the probability quickly falls to515

0 for a1VOUT ,k < −100mV, or to a value very close to 1 for516

1VOUT ,k > 200mV. In the same figure, the softmax function517

from (7) was plotted, showing a good agreement between the518

simulated output characteristics and the actual function.519

IV. RESULTS AND DISCUSSION520

The whole system, sketched in Fig. 3, with each block inde-521

pendently optimized as discussed in the previous subsections,522

has been integrated in a single circuit schematic and the523

full operation flow has been simulated within the Cadence524

Virtuoso IC 6.1.8 design environment, from image capture to525

final inference.526

Fig. 11 shows the timing diagram of the designed architec-527

ture. The full operation is divided in three phases, in agree-528

ment with the block diagram in Fig. 3) sensing, i.e., the529

image capture; 2) data processing in the hidden layer; 3) data530

processing in the output layer. Based on the timing diagram,531

we have optimized each block in order to perform its task532

FIGURE 10. (a) Softmax schematic, (b) circuit output and desired
analytical function.

in a time frame of 7.5 µs. This allows pipelining, where all 533

the three stages work in parallel, while processing different 534

images. 535

In particular, a full inference process is performed as 536

follows: at time 0 µs the first image capture takes place, 537

with each pixel collecting electrons during the integration 538

phase. The pixel integration-time window is driven by Rst 539

and TG signals (see Fig. 4), which realize a correlated dou- 540

ble sampling readout with the cooperation of the SHR and 541

SHS pulses. After a reset pulse, all the pixel FD nodes are 542

depleted and the corresponding R signals are sampled at the 543

pixel outputs (triggered by SHR pulse). Then, all the charge 544

collected by the PDs is transferred to the FD nodes when the 545

TG is activated, so that the corresponding S signals can be 546

sampled at the pixel outputs (at the SHS pulse). Sampled R 547

and S values are stored in a S&H array. The second phase 548

begins at 7.5 µs, with the 25 DVTCs starting the conversion 549

of the1Vpix outputs into time pulses, which are then issued to 550

the first differential TD-VMM couple, that in turn computes 551

the first layer MAC operations, whose results are labeled as 552

VoP,NL1. 553

At the end of this phase, level-one VoP and VoN signals 554

are sampled in the second S&H array, with R2 and S2 volt- 555

ages, respectively. At this point, the third phase can begin 556

VOLUME 10, 2022 94425



B. Zambrano et al.: All-Analog Silicon Integration of Image Sensor and Neural Computing Engine

FIGURE 11. Proposed analog ANN timing diagram.

(at 15 µs), with the second DVTC array starting to provide557

the PWs to the output layer differential VMMs. This time,558

the differential outputs of the VMM are not sampled, but559

are directly connected to the softmax circuits performing the560

final inference evaluation. In conclusion, the very first result561

will be available after 22.5 µs, while the following inference562

results will be available every 7.5 µs for a throughput of563

133.3 thousand inferences per second.564

Due to the complexity of the circuit, the transient ana-565

log simulation of the whole network is a highly demanding566

task in terms of computing resources, and the inference of567

the whole 10k images set, as originally tested in software,568

would not be practical. Hence, in order to characterize our569

network through analog circuit simulations, a benchmark of570

500 randomly selected images was used. Simulations were571

performed including transient noise with a maximum fre-572

quency of 100MHz.573

Details of the results obtained with the proposed testbench574

are reported in the following. The proposed CMOS cognitive575

image sensor exhibits an inference accuracy of 87.8%, which576

is comparable with the one we have obtained by means of the577

idealized software network, with floating point data precision578

(90.6%). This can be observed from Fig. 12, showing the con-579

fusion matrix for both the software network (a) as well as for580

our hardware implementation (b). For classes related to dig-581

its 0, 1 and 9, both networks make exactly the same number of582

correct inferences. The class of digit 3 is the one in which the583

hardware network had more incorrect inferences, while, for 584

digits falling in classes 2 and 5, simulations reported more 585

correct inferences than the software case. It is important to 586

clarify that, considering the very low resolution, hand-written 587

digits are very difficult to be properly recognized even by 588

a human eye, and there are occurrences where two softmax 589

outputs have similar values, meaning that the probability of 590

being one of the two classes is very similar. 591

Beyond evaluating the inference accuracy, we have post- 592

processed the results of all the transient simulations in order 593

to extract the energy consumed by each block. Concerning 594

the energy efficiency, the full circuit consumes on average a 595

total of 6 nJ per inference, where roughly half of the energy 596

is consumed by the pixel sensing matrix, as depicted in 597

Fig. 13(a). These measurements were performed considering 598

the fully loaded pipeline, with each stage executing their own 599

task on data related to different images (see for instance the 600

4th cycle in Fig. 11). 601

The same analysis as for nominal devices, has been 602

repeated in order to include the effects of process variability, 603

by considering the four corners (i.e., FF, SS, SF, FS). One 604

should consider that the effect of process variations can have 605

a high impact on the performance of the network, potentially 606

affecting the correct operation of any stage. The most crit- 607

ical stages are the ones performing MAC operations in the 608

VMMs, where the currents of the FG-cells exhibit an expo- 609

nential dependence on threshold voltage. Fortunately, any 610
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FIGURE 12. Software neural network (a) and Hardware neural network
(b) confusion matrix for a 500-image benchmark.

FIGURE 13. (a) Average energy of each block composing the neural
network in the TT corner; (b) inference accuracy vs. average
energy/inference for different corner process.

threshold voltage process/mismatch variation in the FG-cell611

array can be compensated with an appropriate program-and-612

verify approach when writing the desired weight. On the613

other hand, the inference is very sensitive to variations in the614

softmax circuitry, with no easy correction methods, incurring615

in the possibility of obtaining process corner sensitivity of 616

inference accuracy. 617

Performance metrics of the network for different corners 618

are shown in Fig. 13(b), maintaining an average energy per 619

inference between 5.6 nJ and 6.3 nJ and an inference accuracy 620

in the 84% to 88% range across all corners, being TT corner 621

the best in terms of accuracy, since all blocks were optimized 622

for the typical case. 623

FIGURE 14. Inference accuracy vs. temperature in the TT corner.

The other critical variable parameter, which can have a 624

high impact in undermining the correct operation of analog 625

circuits, is the temperature. The assessment of circuit sen- 626

sitivity to temperature is thus of primary importance. The 627

proposed network was tested in the typical corner for dif- 628

ferent temperatures ranging from −20 ◦C to 90 ◦C (Fig. 14), 629

using the same weight encoding of the nominal temperature 630

(27 ◦C). There is a broad temperature range, from −10 ◦C to 631

70 ◦C, where an accuracy higher than 80% is ensured, while 632

it steadily falls to lower values outside this range (e.g. 28% at 633

−20 ◦C, or 62% at 90 ◦C). 634

Although the developed design has been investigated only 635

at schematic-level simulation, we have performed an estimate 636

of its potential area occupation on a silicon die. According 637

to such a layout area estimation, based on the transistor, 638

it is found that the intrinsic network (without considering 639

the image sensor pixel matrix) occupies about 1500 µm2. 640

In Fig. 15 the estimated total area and the pixel matrix area 641

are depicted as a function of the pixel pitch: considering a 642

pixel pitch of 2 µm, the sensing area would be negligible, 643

while with a pitch of 8 µm the pixel matrix would occupy 644

1600 µm2, which is close to the silicon area of the ANN. 645

Table 1 summarizes performance of the proposed CMOS 646

image sensor classifier along with other analog/mixed sig- 647

nal classifiers. The proposed circuit exploits the same ANN 648

topology as in [17], thus a direct comparison can be only 649

made with this work. However, differently from the work 650

described in [17], where weights are hard-coded in the siz- 651

ing of CMOS devices, our solution provides re-configurable 652

weights thanks to the use of floating-gate memory cells, 653

thus making our design suitable for a broad range of 654

low-resolution image recognition applications. 655

VOLUME 10, 2022 94427



B. Zambrano et al.: All-Analog Silicon Integration of Image Sensor and Neural Computing Engine

TABLE 1. Comparison with state-of-the-art.

FIGURE 15. Pixel matrix area and total area as a function of pixel layout
pitch.

Moreover, our proposal features higher accuracy and occu-656

pies an area that is two orders of magnitude smaller (a 1/280657

of the area, excluding the pixel matrix or 1/105 of the area658

assuming a 10 µm pixel pitch array). When focusing the659

comparison on the figures of merit of energy efficiency and660

throughput, by considering the specific design point we have661

optimized to maximize the overall accuracy, the proposal662

in [17] seems to show better performance, with 34.6× higher663

energy efficiency (number of inferences per unit energy) and664

37.6× higher throughput. However, data reported in [17]665

neglects the impact on throughput and energy consumption of666

the pixel sensing matrix, that is considered an external com-667

ponent and therefore should be taken into account separately668

(note that, the pixel sensing matrix is expected to consume669

a significant energy, as shown in Fig. 13(a) for our design).670

Moreover, high performance and energy hungryADC circuits671

would be needed to convert within a small time frame the672

analog signals acquired from the pixel matrix into the digital673

domain. Also the ADC timing and power overhead is not674

included in the estimate provided in [17].675

It essential to remark that these numbers should not be676

taken as absolute references, since they are the result of a677

different design optimization with a different target accuracy.678

Our design has been optimized for a 6-bit resolution to get679

an inference accuracy as close as possible to 90%, while680

the design in [17] has been optimized for a target weight 681

resolution of only 4 bits, resulting in an inference accuracy 682

close to 80%. As a general rule for a given design, the higher 683

the accuracy the higher the energy consumption: this tradeoff 684

can be also observed from Fig. 7 in [17], where the energy 685

consumption increases by more than one order of magnitude 686

moving from 4-bit to 6-bit resolution. Thus, by considering 687

the two classifiers with the same base network architecture 688

(i.e. both designed for the same 6-bit target) and excluding 689

the pixel sensor contribution (not considered in [17]) in our 690

design, we would get comparable energy consumption of a 691

few nJ. On the other hand, the throughput of our chip is 692

directly limited by the integration time of the image sen- 693

sor pixel matrix. Without considering the image acquisition 694

section, the throughput of our TD-VMM classifier can be 695

boosted up to 1M classifications/s for a 6-bit resolution, and 696

up to 5M classifications/s for a 4-bit resolution design (see 697

details in [15]). 698

Other works, such as [26], [27], solve the classification 699

problem based on an ensemble of binary classifiers and then 700

perform the network benchmark using the MNIST database 701

downscaled to 48 features, obtained as follows: the original 702

images in the database are resized from 784 to 81 pixels, then 703

Fisher’s criterion is applied to the 81-pixel image to further 704

reduce them to 48 pixels. In the case of [26], the network is 705

fully implemented with the exception of the sensing stage, 706

while in [27] only the binary classifiers were implemented, 707

while data input and vote extraction stages were performed 708

off-chip. Again, it is important to stress that a vis-à-vis 709

comparison with works reported [26], [27], only based on 710

throughput and energy consumption data, would be unfair, 711

due to intrinsic differences between the implemented ANN 712

structures and due to the fact that they do not explicitly con- 713

sider the energy and timing overhead coming from the pixel 714

sensor matrix and the analog-to-digital conversion stage. 715

V. CONCLUSION 716

We have presented the design of an all-analog cognitive 717

image sensor, including the hardware implementation of an 718

analog-domain artificial neural network, working as a low 719
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resolution image classifier integrated with a 5 × 5 image720

sensor. Weights are encoded as the injected charge in two-721

terminal floating-gate devices enabling the circuit to be722

re-programmable. The proposed CMOS cognitive image sen-723

sor was fully designed and simulated in a commercial 180 nm724

CMOS process, obtaining an accuracy of 87.8% which725

is comparable to a floating point software implementation726

(90.6%). It consumes only 6 nJ per inference with a latency727

of 22.5 µs and throughput of 133k images per second, also728

exhibiting a small footprint of 4000µm2 in the case of a pixel729

pitch of 10 µm.730
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