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ABSTRACT We have designed a fully-integrated analog CMOS cognitive image sensor based on a two-layer
artificial neural network and targeted to low-resolution image classification. We have used a single poly
180 nm CMOS process technology, which includes process modules for realizing the building blocks of
the CMOS image sensor. Our design includes all the analog sub-circuits required to perform the cognitive
sensing task, from image sensing to output classification decision. The weights of the network are stored
in single-poly floating-gate memory cells, using a single transistor per analog weight. This enables the
classifier to be intrinsically reconfigurable, and to be trained for various classification problems, based on
low-resolution images. As a case study, the classifier capability is tested using a low-resolution version
of the MNIST dataset of handwritten digits. The circuit exhibits a classification accuracy of 87.8%, that is
comparable to an equivalent software implementation operating in the digital domain with floating point data
precision, with an average energy consumption of 6 nJ per inference, a latency of 22.5 us and a throughput
of up to 133.3 thousand inferences per second.

INDEX TERMS Analog neural network, cognitive image sensor, neuromorphic engineering.

I. INTRODUCTION

End devices or edge devices in the Internet of Things (IoT)
paradigm, with embedded intelligent visual sensor systems,
are key components of recent visions of cyberphysical sys-
tems [1], where latency, scalability, and privacy represent
important challenges. In a conventional machine vision sys-
tem, information is captured by image sensors to be then
converted into a digital format, before being stored in a local
memory or being transmitted to an external computing unit
for required processing tasks. With the main goal of reducing
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the impact of energy- and time-inefficient operations, such
as analog-to-digital conversion and data transmission, the
concept of a cognitive image sensor, with embedded classifi-
cation capabilities becomes an attractive solution for future
applications [2], [3] such as wearable and mobile health-
care electronics [4], or battery-powered systems, such as
autonomous robots and drones [5].

Intelligent vision sensors provide cognitive capabilities to
image sensors through the implementation of artificial neural
networks (ANNGs), which represent powerful modeling meth-
ods to perform human-like tasks, such as object classification
and detection [1]. As a recent milestone for the CMOS image
sensor (CIS) market, the world’s first commercial image
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FIGURE 1. Concept of the proposed low resolution all-analog CMOS image sensor classifier, composed of a 5 x 5 image sensor and a 2-layer analog

neural network.

sensor with artificial intelligence (Al) processing capability
has been launched in May 2020 [6]: the intelligent CIS has
been designed by equipping a conventional image sensor with
a digital signal processor (DSP) dedicated to Al processing
tasks and the memory for the AI model.

ANNs are composed of layers of artificial neurons. The
basic computation in the ANNSs is the multiply-accumulate
(MAC) operation [7], [8], [9], that is the elementary operation
of a vector-matrix multiplication, where an input data vector
is multiplied by a matrix of fixed weights. As the size of the
ANN increases, the increased number of MAC operations,
as well as storage requirements and weight access opera-
tions, result in a huge energy consumption in conventional
digital systems [10], [11], [12]. In order to reduce power
consumption per inference, thus enabling battery-powered
systems to be equipped with ANNS, a lot of research effort is
today being devoted to the design of analog ANN integrated
circuits [2], [13], [14], [15], [16], [17], [18], which exploit
basic properties of CMOS devices and circuits to allow a
very high degree of parallelism in MAC operations along with
in-memory computation.

Reduced precision of both input data and of processing
tasks, typical of the analog domain, has been demonstrated
to be well tolerated by neural networks [14]. For instance,
a fully integrated, on-chip ANN classifier architecture based
on analog circuits for low-resolution image classification
has been presented in [17]. There are many applications of
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low-resolution image classification [19], for instance when
the object to be detected (i.e., the region-of-interest) is con-
fined in just a portion of the image, or when the image has a
deliberately low resolution for privacy reasons (e.g., remote
health monitoring of patients).

Inspired by the above mentioned research papers, and in
particular by [16] and [17], we propose the design of an
analog CMOS image sensor classifier based on a two-layer
ANN operating in a low-resolution context, as depicted in
Fig. 1. As a main difference with respect to previous works,
which typically show only partial on-chip implementations,
this is the first demonstration of a fully analog design, which
includes all the building blocks required to perform the
whole processing task, from the image sensing to the image
classification.

Our system is designed using a single-poly 180 nm com-
mercial CMOS process, with an additional process option
including specific modules for the implementation of photo
diodes and supplementary building blocks of modern CMOS
image sensors. Matrices of single-poly, single-transistor
floating-gate memory cells store the weights of the ANN,
and are part of time-domain based vector-matrix multipli-
ers (VMMs), both proposed in [15]. All the other building
blocks, such as the pixel array, sample and hold (S&H)
arrays, voltage-to-time converters and activation functions
[20] are carefully designed in the analog domain. In addition,
as opposed to [17], where the weights are encapsulated in
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the design, here the weights are programmable, so that the
proposed classifier is intrinsically re-configurable, and can
be trained to operate on a range of classification tasks based
on low resolution images.

As a case study, the classifier inference capability is vali-
dated using a low-resolution dataset derived from the MNIST
database of handwritten digits [21]. The resulting inference
accuracy is 87.8% at room temperature (27 °C), which is
comparable to a software implementation of the same ANN
architecture operating in the digital domain with floating
point data precision. The accuracy is maintained over the
80% in a broad temperature range, from —10°C to 70 °C.
Our design consumes only 6 nJ per inference (where roughly
half of the energy is consumed by the pixel sensing matrix),
while assuring a throughput of 133k images per second with
a latency of 22.5 us. It also exhibits a very small footprint of
only 4000 z2m? for a pixel pitch of 10 um.

The rest of the paper is organized as follows. The design
methodology is presented in Section II, with discussion of
the entire design flow based on the ANN architectural syn-
thesis and training performed in a software environment
(MATLAB), along with the architectural integration of the
network in the corresponding CMOS implementation. Design
and operation of each building block implementing the full
CMOS engine are discussed in Section III. Results and dis-
cussions are reported in Section IV, also presenting a compar-
ison with similar networks proposed in the literature. Finally,
conclusions are drawn in section V.

Il. ANALOG CMOS NEURAL NETWORK CLASSIFIER:
OFF-CHIP TRAINING AND HARDWARE ARCHITECTURE
Fig. 1 sketches the basic block diagram of the proposed
image sensor classifier. The analog CMOS chip is based
on two main blocks, a low resolution image sensor and a
two-layer ANN trained to perform inferences on the acquired
images. In order to evaluate the functionality of our design
and to benchmark it against other similar proposals, we have
trained a software implementation of the ANN with a down-
sampled set of images extracted from the MNIST database.
MNIST handwritten digit images from both training and
test databases (with original 28 x 28 resolution) have been
reduced to 5 x 5 by using a Bilinear interpolation [22],
as the input of the ANN is represented by a 5 x 5 pixel
image, which is assumed to be captured by the low-resolution
image sensor. Some examples of the images are shown in
Fig. 1. In the following sub-sections we provide the details
of the software off-chip training of the neural network (II-A),
as well as the block diagram of the full hardware implemen-
tation of the chip (II-B). Circuit details of the single blocks
will be provided in Section III.

A. NEURAL NETWORK OFF-CHIP TRAINING

The proposed ANN is composed by a 28-node hidden layer,
exploiting Rectified Linear Unit (ReLU) as activation func-
tion, and a 10-node output layer followed by a Softmax
activation function to yield the final inference result (similar
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architecture as in [17], but with different activation function
at the hidden layer).
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FIGURE 2. Distributions of weights and weighted sums corresponding to
hidden (a-b) and output (c-d) layers used for proper selection of full-scale
values; (e) impact of resolution truncation on network accuracy.

The ANN was trained in MATLAB applying the mini batch
method with momentum for weight updates. After 20 epochs,
the network reached an accuracy of 90.6% for the whole set of
10k test images. After the training stage, the weight matrices,
as well as the values of the input and output variables of each
layer, have been obtained for all testing images. All weights
and signals are dimensionless variables with floating point
precision of 16 decimal digits. However, for each variable, the
data precision can be deliberately reduced to a given number
of bits to reach the minimum precision actually required to
obtain the target classifier inference accuracy. On the other
hand, when considering the corresponding analog network to
be designed, all signals are analog quantities (i.e, charges,
currents or voltages). Thus, distributions of each quantity
must be accurately analyzed at a software level to perform an
adequate normalization, with definition of full-scale values.
In addition, a target accuracy (in terms of equivalent number
of bits) has to be decided for the weights and for the outputs
of the analog operations representing critical quantities. The
distributions for weights and weighted sums of the two ANN
layers are shown in Fig. 2(a-d), evaluated on the whole set of
tested images. They allow to predict the magnitude that each
variable can assume during the inference operation. In fact,
while in a software environment we can rely on perfectly
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FIGURE 3. Hardware neural network block diagram.

linear operations as the only limitation is the digital data
precision, in an analog hardware environment we need to
cope with non-linear and noisy functions. However, hard-
ware blocks can be optimized to feature an adequate signal-
to-noise and distortion ratio (SINAD) in a limited operating
range, therefore it is crucial to have the expected values of
all quantities fall in their corresponding range. When con-
sidering the conversion factors from software variables to
electrical signals, the full-scale ranges have been chosen to
comprise about 99% of the data of the distributions: [-4,4],
[-3,3], [-4.,4] and [-20,20] were selected for the hidden layer
weights, hidden layer weighted sums, output layer weights
and output layer weighted sums, respectively.

Starting from the selected full-scale range, we have repeat-
edly tested the ANN via software by truncating the pre-
cision of each variable (inputs, weights and summations),
by dividing the full range by 2V, where N is the considered
number of bits. The inference accuracy has been extracted
for each instance of the reduced-precision ANN. In Fig. 2(e)
the inference accuracy as a function of the number of bits N
is shown: already with 4 bits, a precision higher than 80%
is achieved, while with 5 and 6 bits we have comparable
inference accuracy to full floating-point precision.

B. HARDWARE ARCHITECTURE OF THE PROPOSED
ANALOG CMOS NEURAL NETWORK CLASSIFIER

The complete hardware implementation of the proposed
CMOS image sensor classifier is shown in Fig. 3. The archi-
tecture has been split in three sections, one related to the
sensing and the other two implementing the two layers of the
ANN. Two S&H arrays are interposed between two adjacent
sections in order to store intermediate data, to obtain a systolic
architecture that makes it possible to execute all the three
phases in parallel.

The sensing stage is represented by a 5 x 5 pixel image
sensors. Each pixel provides a differential voltage signal
(AVpix) proportional to the incident light. These differential
voltage signals are converted into voltage pulses, with their
pulse width (PW) proportional to the captured light, by a
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Differential Voltage to Time Converter (DVTC) array. Two
identical 25 x 28 VMMs, denoted as VMM™ and VMM ™,
receive the PW signals as inputs and implement a differential
VMM stage to deal with signed weights (see Fig. 2(a,c)). The
outputs of VMM™ and VMM ™ are sampled in a 2 x 28 S&H
array, and each AVpyr is converted to a PW signal by a
second DTVC block, to be transferred to the output layer. The
array of 28 DVTC:s also plays the role of the ReLU activation
function. Then, the output layer is realized with two identical
28 x 10 VMM s (again VMM™ and VMM ™), and the AVoyr
results are translated into probabilities by a softmax block,
providing the final inference.

The whole system, sketched in Fig. 3, with each block
independently optimized as discussed in the following
section, has been integrated in a single circuit schematic in
Virtuoso Schematic Editor (within Cadence IC 6.1.8 envi-
ronment) and the full operation flow has been electrically
simulated in ADE XL, from image capture to final inference.

Thanks to the two S&H arrays, which break the chain at
two intermediate points, the proposed network has a systolic
architecture that can realize a pipelined implementation. For
instance, when data related to the first image is in the second
phase and is being processed in the first hidden layer of
the network, the sensing block can start the acquisition of a
new image in parallel. With this assumption, the network can
produce a new inference every 7.5 us, for a throughput of
133.3 thousand inferences per second, after the initial latency
of 22.5 pus, and by consuming on average a total of 6 nJ per
inference (with 3 nJ consumed by the pixel sensing matrix,
and 3nJ by the ANN). The obtained inference accuracy is
87.8%, which is comparable with the one we have obtained by
means of the idealized software network, with floating point
data precision (90.6%).

Ill. DESIGN OF THE BUILDING BLOCKS OF THE ANALOG
CMOS CHIP

In this section we discuss the design and operation of each
building block implementing the classifier. The analog design
exploits the time-domain VMMs (TD-VMMs) with two-
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FIGURE 4. 5 x 5 pixel CMOS image sensor architecture, with details of the 4T pixel and S&H schematics.

terminal non-volatile memory [15] and the softmax activa-
tion function [20]. Purposely designed differential voltage
to pulse-width converters are used to provide proper input
data to the TD-VMMs. The design of the analog circuit
implementation of each individual block has been optimized
to get a SINAD corresponding to an effective number of
bits, ENOB = (SINAD — 1.76)/6.02, between 5 and 6 for
the analog signals and the analog operations, as a trade-off
between design complexity and power consumption on one
side, and achievable inference accuracy on the other side (see
Fig. 2(e)). The conversion factor from each software variable
to the corresponding physical quantity (i.e, voltage, electric
charge and current) will be presented in the corresponding
block subsection.

A. 4T PIXEL SENSING MATRIX

A standard pixel architecture is used as a building block for
the CMOS image sensor with a resolution of 5 x 5 pixels. The
pixel schematic and its sensing scheme are shown in Fig. 4.
The pixel is based on a light-sensitive pinned photo-diode
(PD), complemented with four transistors. The pixel read-out
is performed with a correlated double sampling approach,
in which the light captured by each pixel is proportional to
AV, defined as the difference between a reference voltage
(i.e., R, the pixel output voltage after reset) and the sig-
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nal voltage (i.e., S, the pixel output voltage at the end of
integration), in order to cancel the thermal noise associated
to the voltage on the PD capacitance (i.e., the so-called
KTC noise). However, as opposed to the standard 4T pixel
architecture [23], only a transfer gate (the one driven by the
TG signal in Fig. 4), reset (driven by the Rst signal) and a
source-follower amplifier are used (driven by the floating
diffusion FD node). The row-select transistor is not needed
here, since all the 25 pixels are directly connected to the
corresponding S&H blocks, 25 in total, each realized with
two selectors and two MIM capacitors, to store the AV); in
terms of R and S values, with R > S. This translates into the
fact that all the 25 pixels can be exposed at the same time,
in a global shutter mode, which is indeed feasible due to the
extremely low resolution. In our case, the fourth transistor
of each pixel is a biasing nMOS, operated at a constant gate
voltage, used to set the working point of the source-follower
amplifier. This gate voltage is provided by a diode-connected
transistor, in common to the whole pixel array, realizing a
current mirror.

In order to perform circuit simulations and extract the
SINAD of the sensing chain, we have relied on an ideal-
ized Verilog-A model for the pinned PD, calibrated against
photo-diode test-structures realized in a 0.18 um CMOS IS
technology [24]. It is important to highlight that the actual
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pixel response is heavily dependent on the real layout imple-
mentation, but semiconductor companies normally do not
provide parametric cells for the PD within the standard pro-
cess design kit. In addition, in order to simulate the light-
to-charge conversion (i.e., the photoelectric effect) taking
place in the n-region of each PD (i.e., the nPD), we have used
a5 x 5 matrix of idealized current pulse sources injecting a
certain amount of charge in each pixel, by assuming a quan-
tum efficiency of 0.722. The simulated pixel has a conversion
gain of 70 uV/electron, with a full well of 9000 electrons
(at AVpix = 630 mV). This charge will be collected in an
integration time of 6.25 us under a 500 W/m? maximum light
intensity exposure.

The 25 S&H are implemented with minimum size nMOS
transistors as selectors, and 2.4 x 2.4 /un2 MIM capacitors,
for a total capacitance of 6.48 fF. This value has been calcu-
lated to guarantee a KTC noise on the S&H capacitors lower
than 0.1 % of the pixel output voltage dynamic range. With
these values as starting points, the MIM capacitors have been
enlarged in order to guarantee a 6 bit ENOB on the sensing
chain.

+
R -
clk1lo—clk cl
Vc PW
+ c2
S -
clk2 5—clk
(a)
AVpp

Ibias

FIGURE 5. (a) Voltage to pulse width converter schematic, (b) ramp
generator, (c) control circuit.

B. DIFFERENTIAL VOLTAGE TO PULSE WIDTH CONVERTER
The light intensity collected by each pixel during its integra-
tion time, stored as AV, needs to be converted to a time
PW to be used as input for the TD-VMM. Similarly, also
the input data to be provided to the second VMM is encoded
as a voltage difference, as it will be clear in the following
sections. Thus, for both stages, a DVTC array is required
for the conversion. In order to perform such task, we have
relied on the circuits reported in Figure 5. The goal is to
create a time pulse whose duration is proportional to AV);y.
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The basic approach relies on the comparison of a voltage
signal V. which, starting from OV, is increased over time
with a constant slope; as reported in Fig. 5(a), two dynamic
comparators (proposed in [25]) and two logic gates are used
to recognize the time frame where Vc is comprised between
S and R. Note that the signal ¢2 is high when V. > S, while
the signal c1 is high when V. < R, thus the PW is active
(n.b. active low) when both c1 and ¢2 are high, that is when
S < Ve < R. The voltage ramp signal V. is generated by
charging a MIM capacitor with constant current, as shown in
Fig. 5(b).

In the same figure, a low-complexity logic network is
reported, exploited to activate and deactivate the dynamic
comparators, while minimizing their power consumption
through clock gating.

The operation of the DVTC can be easily observed by the
time diagram in Fig. 6, which highlights how the AV),;, signal
is translated into the time duration of the PW signal.

The same building block is employed to adapt the result
of the first VMM layer, which is provided in the form of a
voltage difference, to a time signal to be provided as input for
the VMM of the second layer. In this regard, it is important to
highlight that it also includes the ReLU activation function.
In fact, if AV, < 0, the converter does not provide any out-
put pulse, since the condition AND(c1, c2) is never satisfied
during the V. ramp up.

2 R : I Ve
168 ; —
0 : : Reset ——
2F ! OUPULS
— 1} ¢ !
>, !
o O0F : it
= H
@ | 1 :
s T -
> qF 1 il
c2 1 HH
0—# 1 ".,:-
1 |
TFPw _
0.5 Time pulse a (R-S)
O 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Time [us]

FIGURE 6. Voltage to pulse width converter timing diagram example.

There are several design trade-offs, which can limit the
linearity of the DVTC, both at V, ramp generation as well
as at the comparison stages. It would be desirable to have
a very fast voltage ramp in order to minimize the inference
latency and to maximize the throughput of the classifier.
However, this would require high charging current and/or
small (and consequently noisy) capacitance. Current over-
shoots could degrade the linearity of the V. ramp, which can
be achieved only with actually constant charging current and
capacitance. Furthermore, the dynamic comparators perform
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one comparison at each clock period T, and the ratio of
the V. ramp duration to T set a theoretical limit to the
achievable resolution.

We have first optimized the V. ramp generation circuit as
follows: a current of 30 nA charging a capacitor of 100 fF
results in a slope of 300 mV/ us. This slope corresponds to
a conversion factor of 3.33 us/ 'V, thus for a maximum AV,
of 0.63 V we get a maximum pulse duration Tyax of 2.1 us:
such value falls within the range in which the TD-VMM that
we have proposed in [15] can operate with 6-bit precision.
In addition, an optimization of the comparator stage was also
needed in order to perform a conversion with at least 5-bit
precision, which is required for our test case. The desired
clock speed and negligible input offsets can only be obtained
at the cost of high power consumption of the comparators.
Due to its dynamic nature, the comparator implementing the
DVTC block performs a comparison between the V. input
ramp and the R (and S) signal every T, . Thus, resolution can
be improved by decreasing the Ty duration, as the Teg/Tramp
ratio corresponds to the number of conversion levels. On the
other hand, the increased clock frequency would adversely
impact the dynamic power consumption due to increased cir-
cuit activity. This energy/precision tradeoff can be observed
in Fig. 7, where the energy consumed per each conversion
is plotted against the nominal number of bits calculated as
log2(Tmax/Tcik). For each AV-to-PW conversion, the con-
verter circuitry consumes an average energy of about 40 pJ at
a clock period of 45 ns for 6 nominal bits.

C. TIME DOMAIN VECTOR-MATRIX MULTIPLIER

The VMM is the most recurring building block of a neural
network. It enables the multiplication of a vector of features
(i.e., input signals of a layer) with a matrix of learning
weights, which are normally stored in a non volatile memory
since they are fixed quantities during the inference. In a dig-
ital environment, this task is performed by recursively multi-
plying each element of the input vector by the corresponding
weights in the row, and then summing all the results in the
same column, according to the block diagram in Fig. 8(a).
However, the recurring nature of these arithmetic operations
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can be exploited by taking advantage of a parallel processing
in-memory approach, possibly by using analog nonvolatile
memory cells and basic device and circuit properties to imple-
ment such operations in an energy and time efficient way.

In our classifier, we exploit the TD-VMM, proposed by
some of us in [15]. The architecture of a generic M x N
VMM is shown in Fig. 8(a): the inputs x; i = 1,..., M)
are connected to the rows of a M x N matrix of memory
cells, which stores the programmable weights w; ; where the
vector-matrix multiplication operation takes place. Then, the
results of such operations are summed together by connecting
each cell to its corresponding column y; (j = 1,...,N),
giving N outputs as result.

In the time-domain approach, each input is encoded in
the duration #; € [0, ..., T] of an active-low voltage pulse
(Vorr = 1.1 V, Von = 0V), applied to the i-th row,
i.e., wordline (WL), of the array. The M x N matrix is
realized with 1T-FG cells [15], which are minimum-area,
single-poly and single-transistor analog memory cells that
can be programmed by means of charge injection in their
floating-gate (FG): Fig. 8(b) presents the measured I-V char-
acteristics of the cell, showing the possibility of spanning
more than 3 decades of current levels for a read voltage on the
drain of 1.1V. The programmable weights w; ; are therefore
encoded in the currents /;; of 1T-FG cells. By connecting
the drains of all cells to the same column node, i.e., bitline
(BL), at a reference voltage Vorr, corresponding with the
off-state level of the input pulse, each cell is activated by
their corresponding WL input pulse, applied to their source
terminal, for its time duration. With the assumed protocol,
the current /; ; is positive when it flows from the BL towards
the WL (when the WL is activated during the pulse on-state)
and cannot be negative. Therefore, each cell (7, j) injects a net
charge Q;; = —1I;; - t; into the BL.

Finally, the total negative charge injected in the BL j is
converted into a positive voltage by means of an inverting
charge amplifier, namely an integrator realized with an ampli-
fier followed by a feedback capacitor, which is reset at Vorr
at the beginning of each operation. The output result of the
operation is therefore the voltage:

M M
1 1
Vourj — Vorr = -C E Qij= ol E lij - t. (D
; i

One should note that the proposed VMM block cannot
accept negative inputs or weights. Although in our ANN the
inputs of the VMM stages are always positive, weights can be
also negative as illustrated in Fig. 2(a) and (c), thus leading
to possible negative outputs as reported in Fig. 2(b) and (d).
In order to enable signed weights, we have implemented each
VMM of the ANN with a differential architecture realized
with a VMM™T and VMM, one for positive and one for
negative weights, respectively. In particular, for w;; > 0 we
have:

Wi

= Wi and wl_] =0, 2)

94423



IEEE Access

B. Zambrano et al.: All-Analog Silicon Integration of Image Sensor and Neural Computing Engine

(@ N (c)
RS el ottty | VMM~
I | N
W Wi Win| | y (m—————————= ]
I | Al | [ o
X | : tp,]_L___I _____ oy 1
1 7 7T 1 v |, A 7. I
L Wi wn| 1M VMM* ittt - :I_ -
| | - Y
l Vvus5s— vwoS— vwes—| | e
Xum : : [F { - : : : :
! ! ! i : ]_ + ' U0 g |
LW Wig| | wan| ! miTTTooo ey [reoo
! ! f--mmm - A S iy
(U AR L J v | I (A
T R
X T |
(b) i } : 1 __)
-5 I i samp
10 I 0 ] h C L
-6 ' 'T res T 1
10 o ____ o + } C-
— 107 _ L0,
% Vo,]'=2'% Vo
c e - C samp
o 108 i C = - J L
3 - -
Voff + +
.l c
3% I
N = C)

Drain Voltage [V]

FIGURE 8. Time-domain VMM: (a) system level block diagram of a M x N VMM, with detail of the interconnection between the inputs (blue), weight matrix
(purple), and outputs (yellow); (b) 1T-FG NVM cell I-V characteristics; (c) implementation of the TD-VMM differential architecture for the proposed ANN.

where w;’j and w,;; are the weights stored in VMM™ and

VMM, respectively, and w; ; is the weight in the resulting
VMM. On the other side, for w; ; < 0 we have:

W:_j = 0and Wl_j = —Wi,. (3)
The differential architecture leads to the same result of a
VMM with signed weights, if the result is taken as the voltage

difference of VMM™ and VMM ™~ outputs, according to:

M M
1
+ - + -
AVour i =Vt j=Vour j= & Y IS u=Y 15 ). @)
i i

In order to make the conversion from the variables of the
software VMM s to the corresponding hardware implementa-
tions, we have extracted in Fig. 9 the independent histograms
for the VMM™ and VMM ™ output results of both layers.

By identifying the ranges [0,5] and [0,25] for both VMM ™
and VMM™ at hidden and output layer, respectively, and by
assuming a voltage range Vo j — Vorr of up to 700 mV
for each VMM circuit implementation, we get a conver-
sion factor of 140mV and of 28 mV, respectively. Start-
ing from these values and considering that the pixel inputs
have been encoded into a PW according to a conversion
factor of 3 us (considering the full input chain, from image
pixel to the DVTC output), we have selected a capacitance
of 600 fF, resulting in a conversion factor for the hidden
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FIGURE 9. Hidden layer (a) positive, (b) negative sum results and Output
layer (c) positive, (d) negative sum results.

layer weights of

Il,j
—= = 28nA. )

Wi j
When considering the output layer, the same DVTC and the
same charge amplifier have been used. Thus, starting from the
output of the first layer obtained with a conversion factor of
160 mV, after the conversion in a time pulse it is encoded with
a conversion factor of 5.333 us. The computed conversion
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factor for the output layer weights is

Il,j

—~ =3.15nA. 6)

Wi j
D. SOFTMAX ACTIVATION FUNCTION
For a given input of the ANN, the results of the output
VMM layer include the information about the inference, but
can generally be negative and the algebraic sum over all the
outputs is not necessarily 1. For this reason, the output stage is
normally followed by a softmax function, which is exploited
in order to put the output in the form of a probability. There is
one output signal for each class and, for a given input, the k-th
output of the softmax represents the probability that this input
is part of the corresponding class. The softmax is basically an
activation function which normalizes the outputs of a network
to a probability distribution over the predicted output classes,
according to:

etk

N=10
Zj:l el

Softmax; =

)

To realize the hardware implementation of softmax func-
tion, we have exploited the circuit scheme proposed in [20]
and depicted in Fig. 10(a). However, since the softmax inputs
(i.e., the results of the output layer VMM) are available as
AV, signals stored in differential S&Hs, we have only used
the inherent softmax circuit without the need to perform
a preliminary current to differential voltage conversion as
suggested in [20]. By selecting an Iscapg current of 100 nA,
and by considering the conversion factor of the output VMM
(28 mV), the probability of being part of the k-th class is
lourt .k /IscaLe, which can be comprised between 0 and 1.
As an example, Fig. 10(b) shows the probability for the
generic class k as a function of the AVoyrx = Vpr — Vi
of the output layer VMM, assuming that the outputs related
to the other 9 classes are all fixed at AVoyr,; = 0. When
the swept Vjp — Vi is 0, all the 10 outputs have the same
probability of 1/10. However, the probability quickly falls to
0fora AVoyr x < —100mV, or to a value very close to 1 for
AVour .k > 200mV. In the same figure, the softmax function
from (7) was plotted, showing a good agreement between the
simulated output characteristics and the actual function.

IV. RESULTS AND DISCUSSION

The whole system, sketched in Fig. 3, with each block inde-
pendently optimized as discussed in the previous subsections,
has been integrated in a single circuit schematic and the
full operation flow has been simulated within the Cadence
Virtuoso IC 6.1.8 design environment, from image capture to
final inference.

Fig. 11 shows the timing diagram of the designed architec-
ture. The full operation is divided in three phases, in agree-
ment with the block diagram in Fig. 3) sensing, i.e., the
image capture; 2) data processing in the hidden layer; 3) data
processing in the output layer. Based on the timing diagram,
we have optimized each block in order to perform its task
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FIGURE 10. (a) Softmax schematic, (b) circuit output and desired
analytical function.

in a time frame of 7.5 us. This allows pipelining, where all
the three stages work in parallel, while processing different
images.

In particular, a full inference process is performed as
follows: at time O ps the first image capture takes place,
with each pixel collecting electrons during the integration
phase. The pixel integration-time window is driven by Rst
and 7G signals (see Fig. 4), which realize a correlated dou-
ble sampling readout with the cooperation of the SHR and
SHS pulses. After a reset pulse, all the pixel FD nodes are
depleted and the corresponding R signals are sampled at the
pixel outputs (triggered by SHR pulse). Then, all the charge
collected by the PDs is transferred to the D nodes when the
TG is activated, so that the corresponding S signals can be
sampled at the pixel outputs (at the SHS pulse). Sampled R
and S values are stored in a S&H array. The second phase
begins at 7.5 us, with the 25 DVTCs starting the conversion
of the AV),;, outputs into time pulses, which are then issued to
the first differential TD-VMM couple, that in turn computes
the first layer MAC operations, whose results are labeled as
VoP, NL1.

At the end of this phase, level-one VoP and VoN signals
are sampled in the second S&H array, with R2 and S2 volt-
ages, respectively. At this point, the third phase can begin
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FIGURE 11. Proposed analog ANN timing diagram.

(at 15 ws), with the second DVTC array starting to provide
the PWs to the output layer differential VMMSs. This time,
the differential outputs of the VMM are not sampled, but
are directly connected to the softmax circuits performing the
final inference evaluation. In conclusion, the very first result
will be available after 22.5 us, while the following inference
results will be available every 7.5 us for a throughput of
133.3 thousand inferences per second.

Due to the complexity of the circuit, the transient ana-
log simulation of the whole network is a highly demanding
task in terms of computing resources, and the inference of
the whole 10k images set, as originally tested in software,
would not be practical. Hence, in order to characterize our
network through analog circuit simulations, a benchmark of
500 randomly selected images was used. Simulations were
performed including transient noise with a maximum fre-
quency of 100 MHz.

Details of the results obtained with the proposed testbench
are reported in the following. The proposed CMOS cognitive
image sensor exhibits an inference accuracy of 87.8%, which
is comparable with the one we have obtained by means of the
idealized software network, with floating point data precision
(90.6%). This can be observed from Fig. 12, showing the con-
fusion matrix for both the software network (a) as well as for
our hardware implementation (b). For classes related to dig-
its 0, 1 and 9, both networks make exactly the same number of
correct inferences. The class of digit 3 is the one in which the
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hardware network had more incorrect inferences, while, for
digits falling in classes 2 and 5, simulations reported more
correct inferences than the software case. It is important to
clarify that, considering the very low resolution, hand-written
digits are very difficult to be properly recognized even by
a human eye, and there are occurrences where two softmax
outputs have similar values, meaning that the probability of
being one of the two classes is very similar.

Beyond evaluating the inference accuracy, we have post-
processed the results of all the transient simulations in order
to extract the energy consumed by each block. Concerning
the energy efficiency, the full circuit consumes on average a
total of 6 nJ per inference, where roughly half of the energy
is consumed by the pixel sensing matrix, as depicted in
Fig. 13(a). These measurements were performed considering
the fully loaded pipeline, with each stage executing their own
task on data related to different images (see for instance the
4th cycle in Fig. 11).

The same analysis as for nominal devices, has been
repeated in order to include the effects of process variability,
by considering the four corners (i.e., FF, SS, SF, FS). One
should consider that the effect of process variations can have
a high impact on the performance of the network, potentially
affecting the correct operation of any stage. The most crit-
ical stages are the ones performing MAC operations in the
VMMs, where the currents of the FG-cells exhibit an expo-
nential dependence on threshold voltage. Fortunately, any
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FIGURE 12. Software neural network (a) and Hardware neural network
(b) confusion matrix for a 500-image benchmark.
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FIGURE 13. (a) Average energy of each block composing the neural
network in the TT corner; (b) inference accuracy vs. average
energy/inference for different corner process.

threshold voltage process/mismatch variation in the FG-cell
array can be compensated with an appropriate program-and-
verify approach when writing the desired weight. On the
other hand, the inference is very sensitive to variations in the
softmax circuitry, with no easy correction methods, incurring
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in the possibility of obtaining process corner sensitivity of
inference accuracy.

Performance metrics of the network for different corners
are shown in Fig. 13(b), maintaining an average energy per
inference between 5.6 nJ and 6.3 nJ and an inference accuracy
in the 84% to 88% range across all corners, being TT corner
the best in terms of accuracy, since all blocks were optimized
for the typical case.
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FIGURE 14. Inference accuracy vs. temperature in the TT corner.

The other critical variable parameter, which can have a
high impact in undermining the correct operation of analog
circuits, is the temperature. The assessment of circuit sen-
sitivity to temperature is thus of primary importance. The
proposed network was tested in the typical corner for dif-
ferent temperatures ranging from —20 °C to 90 °C (Fig. 14),
using the same weight encoding of the nominal temperature
(27°C). There is a broad temperature range, from —10 °C to
70 °C, where an accuracy higher than 80% is ensured, while
it steadily falls to lower values outside this range (e.g. 28% at
—20°C, or 62% at 90 °C).

Although the developed design has been investigated only
at schematic-level simulation, we have performed an estimate
of its potential area occupation on a silicon die. According
to such a layout area estimation, based on the transistor,
it is found that the intrinsic network (without considering
the image sensor pixel matrix) occupies about 1500 pum?.
In Fig. 15 the estimated total area and the pixel matrix area
are depicted as a function of the pixel pitch: considering a
pixel pitch of 2 um, the sensing area would be negligible,
while with a pitch of 8 um the pixel matrix would occupy
1600 wm?, which is close to the silicon area of the ANN.

Table 1 summarizes performance of the proposed CMOS
image sensor classifier along with other analog/mixed sig-
nal classifiers. The proposed circuit exploits the same ANN
topology as in [17], thus a direct comparison can be only
made with this work. However, differently from the work
described in [17], where weights are hard-coded in the siz-
ing of CMOS devices, our solution provides re-configurable
weights thanks to the use of floating-gate memory cells,
thus making our design suitable for a broad range of
low-resolution image recognition applications.
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TABLE 1. Comparison with state-of-the-art.

JETCAS’2021[26] TCAS-I’'17[27] TCAS-1’2021 [17] This work
Technology [nm] 180 130 65 180
Fabricated No Yes Yes No
On-Chip implementation Partial (®) Partial(®) (®) Partial (¢) Full
Area [mm?] 0.0276/classifier 0.0206/classifier 0.42 (pixel p?tcol(l) i 10pm)
Reconfigurable Yes Yes No Yes
Type mixed signal analog analog analog
Classifier Binary Binary ANN ANN
Data set MNIST MNIST MNIST MNIST
Number of features (number of pixels) 48 (81) 48 (81) 25 (25) 25 (25)
Accuracy [%] 92 90 81.3 87.8
Throughput [classifications/s] 100M (@) 1.3M(@)(®) 5M(@) 133.3k
Energy/classification [J] 67.3p(@) 534p(a)(b) 173p(@) 6n

(a) No sensing stage.

(b) Only binary classifiers implemented, final voting performed off-chip.
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FIGURE 15. Pixel matrix area and total area as a function of pixel layout
pitch.

Moreover, our proposal features higher accuracy and occu-
pies an area that is two orders of magnitude smaller (a 1/280
of the area, excluding the pixel matrix or 1/105 of the area
assuming a 10 um pixel pitch array). When focusing the
comparison on the figures of merit of energy efficiency and
throughput, by considering the specific design point we have
optimized to maximize the overall accuracy, the proposal
in [17] seems to show better performance, with 34.6 x higher
energy efficiency (number of inferences per unit energy) and
37.6x higher throughput. However, data reported in [17]
neglects the impact on throughput and energy consumption of
the pixel sensing matrix, that is considered an external com-
ponent and therefore should be taken into account separately
(note that, the pixel sensing matrix is expected to consume
a significant energy, as shown in Fig. 13(a) for our design).
Moreover, high performance and energy hungry ADC circuits
would be needed to convert within a small time frame the
analog signals acquired from the pixel matrix into the digital
domain. Also the ADC timing and power overhead is not
included in the estimate provided in [17].

It essential to remark that these numbers should not be
taken as absolute references, since they are the result of a
different design optimization with a different target accuracy.
Our design has been optimized for a 6-bit resolution to get
an inference accuracy as close as possible to 90%, while
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the design in [17] has been optimized for a target weight
resolution of only 4 bits, resulting in an inference accuracy
close to 80%. As a general rule for a given design, the higher
the accuracy the higher the energy consumption: this tradeoff
can be also observed from Fig. 7 in [17], where the energy
consumption increases by more than one order of magnitude
moving from 4-bit to 6-bit resolution. Thus, by considering
the two classifiers with the same base network architecture
(i.e. both designed for the same 6-bit target) and excluding
the pixel sensor contribution (not considered in [17]) in our
design, we would get comparable energy consumption of a
few nJ. On the other hand, the throughput of our chip is
directly limited by the integration time of the image sen-
sor pixel matrix. Without considering the image acquisition
section, the throughput of our TD-VMM classifier can be
boosted up to 1M classifications/s for a 6-bit resolution, and
up to 5M classifications/s for a 4-bit resolution design (see
details in [15]).

Other works, such as [26], [27], solve the classification
problem based on an ensemble of binary classifiers and then
perform the network benchmark using the MNIST database
downscaled to 48 features, obtained as follows: the original
images in the database are resized from 784 to 81 pixels, then
Fisher’s criterion is applied to the 81-pixel image to further
reduce them to 48 pixels. In the case of [26], the network is
fully implemented with the exception of the sensing stage,
while in [27] only the binary classifiers were implemented,
while data input and vote extraction stages were performed
off-chip. Again, it is important to stress that a vis-a-vis
comparison with works reported [26], [27], only based on
throughput and energy consumption data, would be unfair,
due to intrinsic differences between the implemented ANN
structures and due to the fact that they do not explicitly con-
sider the energy and timing overhead coming from the pixel
sensor matrix and the analog-to-digital conversion stage.

V. CONCLUSION

We have presented the design of an all-analog cognitive
image sensor, including the hardware implementation of an
analog-domain artificial neural network, working as a low
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resolution image classifier integrated with a 5 x 5 image
sensor. Weights are encoded as the injected charge in two-
terminal floating-gate devices enabling the circuit to be
re-programmable. The proposed CMOS cognitive image sen-
sor was fully designed and simulated in a commercial 180 nm
CMOS process, obtaining an accuracy of 87.8% which
is comparable to a floating point software implementation
(90.6%). It consumes only 6 nJ per inference with a latency
of 22.5 us and throughput of 133k images per second, also
exhibiting a small footprint of 4000 zm? in the case of a pixel
pitch of 10 pm.
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