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ABSTRACT In this paper, we review radio resource optimization methods for energy-efficient wireless
communication in links and networks using the Orthogonal Frequency Division Multiplexing (OFDM)
and Orthogonal Frequency Division Multiple Access (OFDMA) techniques. We first consider the
energy-efficiency metrics and optimization goals. We discuss the increasingly complex systems, starting
from (i) a single OFDM link, (ii) an OFDMA single-hop network to (iii) multi-hop relay OFDMA
interference networks. In each case, we elaborate on the transmission rate estimation, power consumption
modelling, existing optimization constraints and the optimization solutions. Specifically, in the power-
consumption modelling, we include the signal-processing (and related computing) power. We discuss the
practicality of the considered solutions. We also touch upon the problem of nonlinear power amplifier
characteristics (causing distortions typical for OFDM signals) to be taken into account for energy-efficient
resource allocation. We discuss trade-offs and provide recommendations for future energy-efficient OFDM
networks design. We also discuss the future works and challenges in the context of energy efficiency
resource allocation for OFDM/OFDMA and their derivative techniques. We conclude that the presented
design practices should include computational awareness in the networks to trade-off between information
communication, information processing and the required network management energy-efficiency.

INDEX TERMS Energy-efficiency, green communication, optimization, orthogonal frequency division
multiple access (OFDMA), power consumption estimation, relay networks, resource allocation, transmission
rate estimation.

I. INTRODUCTION

In the era of ubiquitous Internet access, exponential growth
of telecommunication traffic can be observed every year.
According to Cisco predictions there will be 4.8 billion of
global Internet users in 2022 and 28.5 billion networked
devices and connections [1]. Moreover, the mobile data traffic
will increase to 930 eksabytes in 2022. According to the
Ericsson Mobility Report [2], communication of 26,9 bil-
lions of machines and devices that are expected by 2026 to
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comprise the Internet of Things (IoT) poses challenges, never
encountered before. One of these challenges is an increase of
energy consumption associated with the data-traffic growth
worldwide. That is why reduced-energy wireless communica-
tion has been in the focus of research and industry interest for
the recent years, aiming at achieving 10 times the energy effi-
ciency (EE) in the Fifth Generation (5G) radio systems com-
pared with the Fourth Generation (4G) of these systems [3].
Moreover, so-called zero-energy radios are envisioned for
future Sixth Generation (6G) systems as their technology
enablers [4]. According to this vision, drivers from soci-
ety, including the United Nations sustainability goals, will
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shape 6G communication systems. Moreover, high energy
efficiency to reduce the overall network energy consumption
will be a critical requirement for these future systems.

On the completion of 3GPP Release 15 [5] and Release
16 [6] (as of today, Release 17 being under way), the set of
5G standards has been defined. As in 4G Long-Term Evo-
lution (LTE) standard, the Orthogonal Frequency Division
Multiplexing (OFDM) has been proposed for 5G systems.
Moreover, OFDM has been also successfully applied in other
radio communication systems, such as Wireless Local Area
Networks (WLANS), including IEEE 802.11a/g/n, Wireless
Metropolitan Area Networks (WMANS), including World-
wide Interoperability for Microwave Access (WiMAX) stan-
dard, Wireless Personal Area Networks (WPANSs), including
MultiBand-OFDM in the 3.1-10.6 GHz band, as well as
in the terrestrial Digital Audio- (DAB) or Video Broadcast-
ing (DVB-T) systems. Popularity of the OFDM technique
results from its known advantages: high spectral efficiency
compared to other double sideband modulation schemes,
flexibility and adaptation potential to channel conditions,
robustness against intersymbol interference (ISI), efficient
implementation using Fast Fourier Transform (FFT), low
sensitivity to time synchronization errors and facilitation of
the Single Frequency Networks (SFNs) [7]. Finally, Orthog-
onal Frequency Division Multiple Access (OFDMA) is the
popular OFDM-based method for Medium Access Control
(MAC) layer to facilitate multiple users network access.
Therefore, this paper focuses on the energy-efficient resource
allocation in OFDM/OFDMA systems instead of NOMA
(Non-Orthogonal Multiple Access), Slotted ALOHA, TDMA
(Time Division Multiple Access). The use of NOMA tech-
niques allows for higher spectral efficiency and lower latency
but each of the users needs to decode the information of all the
other users even if one has the worst channel gains. This leads
to complexity in the receiver. Moreover, energy consumption
is higher. In the case of the TDMA technique, the battery
consumption is low but the guard interval between time slots
and synchronisation is required. The synchronisation is also
required in slotted ALOHA technique which is simple and
decentralized protocol but due to frequent collisions, the
maximum throughput of the slotted Aloha is only 0.368.

Motivated by the increased mobile communication traffic,
required high data-rates and associated energy-consumption
on one hand, and the applicability of the OFDM/OFDMA
techniques in contemporary and prospective radio com-
munication systems on the other, here below, we review
approaches and promising methods to optimize wireless
OFDM/OFDMA links and networks. Contrarily to the
traditional approach to minimize the transmission power
for the assumed target bit-rate, we look at advanced
power-consumption models and optimization of the defined
energy-efficiency metric. This is because depending on
the link quality, power consumption of different causes,
e.g. RF signal radiation, or signal processing, may dom-
inate over each other, and may be worth minimization
for overall energy-efficiency. Moreover, non-linear Power
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Amplifier (PA) characteristic and high Peak-to-Average
Power Ratio (PAPR) are well known issues of OFDM-based
systems and they should also be taken into account (jointly
with other sources of power-consumption model) when opti-
mizing the energy-efficiency of those systems. Finally, the
optimization algorithm itself also consumes energy, that
needs to be taken into account.

Therefore, here below, we survey existing works that relate
to energy-efficiency in OFDM/OFDMA networks, and we
put a special emphasis on computational awareness of the
presented solutions, i.e., on energy-consumption models that
include energy consumed by digital and analog signal pro-
cessing, not just by radio signal emission.

The paper is organized as follows. First, in Section II,
we overview other surveys and tutorials that might be related
to ours to show in what aspects our work is original and
more focused. Then, in Section III, we provide definition of
energy-efficency, and consider the main optimization goals
related to energy-efficient wireless OFDM/OFDMA commu-
nication. We also review realistic power-consumption models
of an OFDM link. In Sections IV, V and VI, we overview
computationally-aware energy-efficiency optimization solu-
tions for OFDM links, OFDMA single-hop and relay net-
works respectively. Section VII presents example results of
energy-efficiency optimization for representative, carefully
selected use-cases. Then, in Section VIII, we discuss energy-
efficiency optimization that takes non-linear PA characteristic
into account. In Section IX, we discuss practicality of the
considered solutions, taking their computational complexity,
and other related costs into account. We also provide rec-
ommendations for future energy-efficient OFDM networks
design. The discussion about future works and challenges
in the context of energy efficiency resource allocation for
other techniques based on OFDM/OFDMA is provided in
Section X. Finally, in Section XI, we summarize key findings
of our survey and considerations.

Il. RELATED SURVEYS AND TUTORIALS

There are a few survey papers that relate to our topic.
Let us now overview these published surveys, and compare
them with the content of our work within the follow-
ing aspects that we undertake: (a) the considered radio
communication techniques and scenarios (b) complete-
ness of the power-consumption models, (c) considered
methods for energy-efficiency optimization and (d) for-
mal energy-efficiency radio resource management algo-
rithms and optimized solutions for radio communication
network.

In [8], Feng et al. discuss key enablers for energy-efficient
wireless communication: resource management exploiting
low traffic loads and service differentiation, network deploy-
ment strategies, utilizing diversities of heterogeneous net-
works and cooperative communications, as well as MIMO,
OFDMA and cross-layer design options. The paper is
not focused on OFDM/OFDMA radio resource optimiza-
tion for energy-efficiency, and does not provide complete
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transmitter-to-receiver power-consumption models. Simi-
larly, as in [8], the authors of [9] briefly review some inter-
national projects and indicate key challenges related to green
communications. Thus, [8] and [9] are different (more general
and less focused) from our work in all aspects (a)-(d). Note
that [8] indicates that energy-efficient resource allocation in
OFDMA systems with appropriate relay strategies is still an
open issue. It is in fact addressed in our paper below.

In [10] and [11], energy-efficiency of 5G networks is
addressed. The first paper presents very general view on
future networks before 5G era, focusing on renewable energy
resources for 5G base stations (BSs). The second presents
challenges of resource allocation, network planning, energy
harvesting and hardware design for 5G. It does not focus
on OFDM-specific problems. Thus, papers [10] and [11]
differ significantly from ours in the considered scenarios, i.e.
in aspect (a). Moreover, they do not address optimization
methods (our aspect (c)), neither present formal or practi-
cal design solutions of energy-efficient radio networks (our
aspect (d)).

In magazine paper [12] by Li et al., the authors discuss
general issues of energy-efficiency in wireless communica-
tion, in particular in OFDMA, multi-antenna and multi-hop
networks indicating trade-offs between energy- and spectral-
efficiency, as well as signalling overhead required for
energy-aware networks. The paper does not touch upon
computational awareness of networks, narrowing power con-
sumption to transmit (radio emission) power. Moreover,
it does not consider energy-efficiency optimization meth-
ods and their complexity. Likewise, in [13], Zhang et al.
discuss fundamental trade-offs that must be taken into
account in green wireless networks design: energy effi-
ciency versus spectrum efficiency, deployment efficiency,
latency and bandwidth. In this paper, the authors address
energy-efficiency of OFDM. However, the considered power
consumption model is limited to radio-emission power,
no optimization methods are considered and solutions are
not presented. Thus, similarly as [12], survey paper [13] is
different from ours in aspect (b) and does not address aspects
(c) and (d).

In [14], the EARTH project results are discussed,
in particular, beam forming and MIMO techniques for
energy-efficiency of LTE cellular systems. There, BS power
consumption breakdown among major transceiver blocks,
power supply and a cooling system is presented. Although an
LTE system uses OFDMA in a downlink, no OFDM/OFDMA
radio resource optimization is discussed. Consequently, this
paper is not addressing our aspects (c) and (d).

In [15], resource allocation strategies (rate-adaptive and
margin-adaptive algorithms) in the downlink OFDMA sys-
tems are considered. The focus of this paper is on
resource allocation efficiency vs. fairness. Likewise, the
authors of [16] overview resource allocation optimization
in the uplink direction of OFDMA systems. However,
the goals of the optimization methods considered in both
papers are not the energy-efficiency. Moreover, the power
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consumption model is simplified (narrowed to the radio-
emission power). Thus, these survey papers differ from our
work in aspects (b)-(d).

In [17], scenarios of multiple base stations co-existing
in the same area and sharing the available radio resources
are considered. The focus of the paper is on optimization
and game-theory-based (equilibrium) solutions for interfer-
ence coordination between base stations in homogeneous,
heterogeneous and cooperative cellular networks. There, the
power related to base-band signal processing is not taken into
account, rather the power allocated to coexisting base sta-
tions. Thus, this paper is different in the considered scenarios
(our aspect (a)) and energy-consumption model (aspect (b))
from our survey.

In [18], Zappone et al. review optimization methods for
energy efficiency maximization in wireless networks and
provide example numerical results. They consider maxi-
mization of network energy-efficiency metrics defined in
different ways (as global energy-efficiency, weighted min-
imum energy efficiency, weighted sum energy efficiency
and weighted product energy efficiency). The paper is not
considering resource allocation for OFDM/OFDMA net-
works, and assumes a different power model than our work
does. It presents optimization strategies (either monotonic
or sequential optimization merged with fractional program-
ming) for power control in a network with multiple links,
each characterized by a specific circuit power independent
of a bit rate. Considering a different technique and a different
power model, this paper is different from our work in aspects
(a) and (b).

Finally, it is worth mentioning that high PAPR in
OFDM/OFDMA transmitters translates to inefficient power
utilization. In [19] and [20], PAPR minimization techniques
in OFDM systems are surveyed, however, these papers do
not touch upon the problem of link- or network energy-
efficiency optimization, nor the global power-consumption
model. Thus, these surveys are narrowed with respect to our
aspect (a) and not addressing aspects (b)-(d).

To summarize, our survey presented below concerns
optimization methods of resource (subcarriers, resource-
blocks, transmission power levels, modulation and coding
schemes, relays) allocation for energy-efficiency maxi-
mization in OFDM/OFDMA links and networks. The
power-consumption model considered here encompasses
transmission (electromagnetic emission) power as well as
the circuit- and base-band signal processing (computa-
tional) power dependent on the transmission bit-rate. This is
why we call such methods computationally aware. To the
best of our knowledge, no prior papers tackle systematic
overview of the problems of OFDM/OFDMA networks
global energy-efficiency optimization and dynamic resource
allocation with computational awareness. The major contri-
butions of this paper are as follows:

o In this paper, the state of the art with the original

classification of the key aspects of energy-efficient
resource allocation in the context of OFDM is presented.
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FIGURE 1. Relation between the energy efficiency and transmit power for
different values of the Signal to Noise Ratio (SNR).

The definition of the EE metric with the ways its max-
imization are presented. Moreover, the analysis of each
aspect and the relation between them have been dis-
cussed.

« The investigated aspects, energy-efficient resource allo-
cation methods and solutions are presented for a single
OFDM link, multiuser OFDMA and multiuser OFDMA
relay networks.

o The practicality of the energy-efficient resource allo-
cation is discussed. We touch upon the problem of
nonlinear PA characteristics (causing distortions typi-
cal for OFDM signals) to be taken into account for
energy-efficient resource allocation.
In this paper, we discuss the design trade-offs, and
formulated recommendations for the energy-efficiency
maximization accounting for the optimization com-
plexity, required information availability, signalling
overhead and the available degrees of freedom in
OFDM/OFDMA resource allocation.
Thus, in the contrast to the existing papers, our paper provides
comprehensive knowledge about energy-efficient resource
allocation in the OFDM/OFDMA systems. In this paper the
approaches of the key aspects of energy-efficient resource
allocation with pros, cons and trade-offs are provided. The
methods and techniques used in the design of energy-efficient
resource allocation are presented and finally the practical
aspects of energy-efficient resource allocation, recommen-
dations for energy efficiency as well as future works and
challenges are provided.

Ill. DEFINITION AND ASPECTS OF ENERGY EFFICIENT
RESOURCE ALLOCATION IN WIRELESS
COMMUNICATIONS

Energy-saving or energy-efficient operation of communica-
tion and computing networks is typically evaluated using
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metrics related to either a total energy-consumption figure or
the expected performance per energy unit. The later is called
energy-efficiency, and can be expressed in the number of
successfully transmitted bits per Joule or the number of com-
putational operations (clock cycles) per Joule or the number
of transported and processed computational tasks per Joule.
In this paper, we concentrate on wireless networks exploiting
OFDM/OFDMA flexiblity for energy-efficient communica-
tion. For such networks, the energy-efficiency metric 1 is
commonly defined as a benefit-cost ratio, where the achieved
data rate is divided over the associated power consumption:

bit _ data rate [bit/s]
7 Joule |~ power consumption [W]’

ey

Thus, this EE metric determines the number of success-
fully transmitted, received and processed bits per energy unit
and should be maximized. Here, processing of bits refers
to signal processing at the transmitter and at the receiver,
which is required for successful transmission and reception
of information. In Figure 1, the relation between the energy
efficiency and transmit power for different values of the
Signal to Noise Ratio (SNR) is presented. Let us observe
that there exist the optimal point for the transmit power that
maximizes EE. It means that there exists a trade-off between
the data rate and power consumption which allows for energy-
efficient transmission. Moreover, for the higher SNR values,
the optimal point is reached for lower transmission power.
Thus, in order to maximize the energy efficiency of wireless
communications systems, one of three ways can be chosen:
(i) The maximization of the data rate, whilst minimizing
the total power consumption. This approach is practi-
cally infeasible because the achievable data rate strictly
depends on the transmit power (and the overall power
consumption) and vice versa.

(ii)) The maximization of the data rate with a minimum
possible increase in power consumption (e.g., minimum
increase of the transmit power can cause a significant
gain in the date rate, particularly for low SNR values).

(iii) The minimization of the power consumption with a min-
imum reduction of the data rate (e.g. by applying less
advanced coding decoding energy can be reduced, par-
ticularly at short communication distances).

In the context of the energy-efficient resource allocation
exploiting OFDM/OFDMA techniques, the second and third
approaches are usually chosen because in OFDM/OFDMA
based networks, the total available bandwidth and power are
partitioned into a number of subcarriers (SC) or resource
blocks (RB). For each of them, the transmission parameters
can be determined and adopted, depending on the channel
conditions. Moreover, the short time-scale approach can be
applied to maximize the energy-efficiency metric. It means
that the resource allocation is realized in the frequency
domain for a given time slot.

Here, by resources we mean energy-related commu-
nication means (such as transmit power, basic resource
blocks, modulation and coding schemes (MCS) and other

94103



IEEE Access

B. Bossy et al.: Energy-Efficient OFDM Radio Resource Allocation Optimization With Computational Awareness

SYSTEM MODEL

TRANSMISSION

POWER
CONSUMPTION
ESTIMATION

RATE
ESTIMATION

SYSTEM LIMITATIONS/REQUIREMENTS

SOLUTION

(O NIVIVANN (O

FIGURE 2. Interaction between the tasks of energy efficient resource
allocation in wireless communication systems.

transmission parameters) and network means (such as rely-
ing nodes) that can be adjusted, depending on channels and
network conditions. Optimization of resource allocation for
energy efficiency involves estimation of the transmission
rate and power consumption as well as taking all transmis-
sion limitations and network requirements into account what
has been elaborated in the following subsections, in detail.
Regarding the first two tasks, namely transmission rate-
and power consumption estimation, they are required for the
energy-efficiency metric definition. Based on the literature
review, we distinguish different approaches to estimate the
data rate and power consumption, and analyze them. Regard-
ing the system limitations/requirements identification task,
we concentrate on the system and network constraints and
requirements which have to be fulfilled, and we demonstrate
their impact on the energy efficiency. Finally, in the opti-
mization task, the challenges and problems related to the
design of the resource allocation algorithm for optimal energy
efficiency have to be solved.

Figure 2 shows how the considered tasks interact with each
other. specifically, the power consumption is determined by
the transmission rate estimation (e.g. if coded transmission is
considered, the power consumed by the encoder and decoder
should be taken into account). The system limitations and
requirements have an impact on transmission rate estimation
(for example, when the fairness constraint or/and subcarriers
grouping into resource blocks are considered). The transmis-
sion and power consumption estimations determine how the
system limitations/requirements are met, while all aspects
have an impact on the solution of the optimization problem
which allows for energy-efficient resource allocation.

A. TRANSMISSION RATE ESTIMATION

The crucial aspect of the energy-efficient resource allocation
is estimation of data rate and power consumption - the numer-
ator and denominator of (1) respectively. In this subsection,
the main approaches to the transmission rate estimation are
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described. Having in mind the diversity of wireless communi-
cation systems, the transmission rate estimation is not a trivial
task. In the literature (not just that related to energy-efficient
resource allocation), three main approaches of transmission
rate estimation can be distinguished:
(i) based on the Shannon formula,
(ii) estimated by the Shannon formula with scaling factors,
(iii) based on the error-rate function and the spectral effi-
ciency of the applied MCS.
The Shannon formula for transmission rate estimation is
the most commonly used approach. In general, the data rate
described by Shannon formula is given by:

bit
R|—|=W-log,
s

where W is the channel (and the signal) bandwidth, PR is
the average received signal power over that bandwidth, while
UI% and 012 are the average powers of the noise and interfer-
ence respectively over bandwidth W. The Shannon formula
can be easily adapted to OFDM/OFDMA subcarrier-channels
as well as to different network scenarios e.g. multi-cell,
heterogeneous or cooperative network. Moreover, according
to (2), R for 012 = 0 is the concave function of the signal
power PR, while when (712 # 0, there exist techniques which
allow to transform it into the concave one. (Note that con-
cavity of this function results in relative low computational
complexity of its optimization, as well as optimization of
the energy-efficiency, which is in the focus of this paper.)
The Shannon formula formulates the upper bound of the data
rate which is not achieved by any practical wireless system.
Therefore, using (2) for data rate estimation can be treated
as idealistic approach which does not take the limitations of
practical communication systems (e.g., such as a limited set
of the modulation and coding schemes) into account.

In order to account for practical limitations of a wireless
communication system, the data rate can be estimated by:

P
1+ ——— . )
GN+GI

bit v - PR
R|—|=&-W-log {1+ 55—, 3
s oN 1oy

where £ and v are the scaling factors fitting the Shannon
formula to a practical system. The scaling factors can fit
Shannon formula to the single MCS and spectral efficiency
or to the whole set of them. Such an approach for rate estima-
tion has been first considered in [21] where scaling factor v
depending on the bit error probability has been introduced.
Based on [21] and the assumed code rate, the coding gain
and bit error probability for various MCSs, the data rate has
been estimated in [22]. Similar approximations for a whole
range of the modulation and coding schemes can be found in
[23], [24], and [25]. In the last case (in [25]), the Shannon
formula is scaled just by factor £ (assuming v = 1). The
Shannon formula with scaling factors (formula (3)) reflects
achievable rate in a practical communication system, and can
still be the concave function of the signal power if the factors
are appropriately chosen. Thus, using it for rate estimation is
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FIGURE 3. The spectral efficiency as a function of SNR for three
approaches of the data rate estimation.

more accurate than using (2) and results in acceptable com-
putational complexity of the considered optimization tasks.

The third approach to data rate estimation which is consid-
ered as accurately characterizing practical wireless communi-
cation systems is based on the spectral efficiency and the error
rate function of the applied MCS e.g. the block-error rate
(BLER), the packet error rate (PER) or bit error rate (BER).
This approach depends on the parameters of the modulation
and coding scheme, e.g., on the applied (de)modulation and
(de)coding algorithms, the packet size, the number of decoder
iterations, etc. In general, the data rate in this approach can be
expressed by [26], [27], [28], [29]:

bit

R[?} =W-isg-[I —err(¥)], “
where ¢sg is the spectral efficiency in bit/s/Hz, err (-) is the
function of error rate, while x is the vector of the parameters
on which this function depends e.g. SNR, modulation and
coding scheme. The data rate estimation by BLER function
can be found in [27] where BLER curves have been approxi-
mated by the complementary error function erfc (-) with two
scaling factors in a function of effective signal to interference
and noise ratio (SINR). Moreover, in [29], the scaling factors
for the MCS set of Long-Term Evolution (LTE) network
are provided. The approximation of PER based on the non-
central chi-square distribution has been introduced in [30],
and then applied in [31] in the context of the energy-efficiency
maximization for hybrid automatic repeat request (HARQ)
in a Rician fading channel. Other approximations of PER in
systems applying HARQ be found in [32] and [33].

In Figure 3, the spectral efficiency as a function of SNR
for transmission rate estimation based on the Shannon for-
mula, estimated by the Shannon formula with scaling fac-
tors and based on the block-error rate are plotted. It can
be observed that the Shannon formula deviates significantly
from the real communication system. On the other hand, the
data rate resulting from the block error-rate is non-convex
function of the signal power (and SNR) making the prospec-
tive energy-efficiency optimization problem very difficult
to solve. In Figure 4, the trade-off between the accuracy
of data rate estimation and the complexity of the optimal,
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FIGURE 4. Trade-off observed in the data rate estimation.

TABLE 1. Pros and cons of the data rate estimation.

Pros Cons
o the universal approach al-
< lows for describing the dif-
= ferent systems o the ideal case which does
g o allows for determining the not take the aspects of the
= upper bound of the energy practical wireless commu-
S efficiency in the system nication systems into ac-
g e allows for applying opti- count
5 mization techniques with
low complexity
e brings the Shannon for-
mula closer to the prac-
tical wireless communica- | e does not take all aspects of
tion systems the practical wireless com-
wle allows for applying opti- munication systems into ac-
= B mization techniques with count
E 2 low complexity o worse representation of the
é %o | e better representation of the practical communication
g -c_% practical communication systems than approaches
£3 systems than Shannon for- based on error rate function
R mula without scaling fac- | e the need to obtain the scal-
2E tors ing factors
e scaling factors can con- | e the scaling factors depend
sider different aspects of on the considered system
the practical wireless com-
munication systems
e makes the optimization
problem non-convex which
is very difficult to solve
§ | e the best representation of | e the need to find the mathe-
- § the practical communica- matical function which de-
=} tion systems scribes the error-rate func-
§ o | e take the aspects of the prac- tion
8 g tical wireless communica- | e the error-rate function
g tion systems into account highly depends on
o the parameters of the
modulation and coding
scheme

energy-efficient resource allocation algorithm is illustrated.
Note that for the low accuracy of data rate estimation
(according to the Shannon formula), usually, the energy-
efficient resource allocation algorithm with low complexity
can be designed. On the other hand, the estimation with high
accuracy causes high complexity of the energy-efficiency
optimization problem. Therefore, the Shannon formula with
scaling factor seems to be a good trade-off between mapping
practical system data rates and the complexity of solving the
considered optimization problem.

Finally, the pros and cons of data rate estimation for the
three described approaches are summarized in Table 1.
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FIGURE 5. The general block diagram of the transmitter and receiver with the power consumption description related to each

element.

B. ESTIMATION OF THE POWER CONSUMPTION
Estimation of the power consumption (the denominator
in (1)) in a network is the crucial aspect in designing the
energy efficient wireless communication systems. In gen-
eral, the power consumption models consist of the power
required to transmit the signal Pt and the power consumed
by the circuits Pc which can be divided into power consumed
by the baseband signal processing Pgg and by the radio-
frequency (including intermediate-frequency) signal process-
ing PR (see Figure 5):

P[W] = Pt + Pp_1x + PBB—RX + PRE-TX + PRF-RX -

Ppp PRrr

Pc

&)

In case of the OFDM/OFDMA technique, the transmission
power is equal to the sum of powers allocated to subcarriers
which are determined by the designed resource allocation
algorithm that responds to instantaneous channel conditions.
The issue is more difficult in the case of the estimation
of power consumed by the transmitter and receiver cir-
cuits. The main difficulty results from different types of
transmission and reception techniques, applied technologies,
standards, algorithms implementations, etc. In the literature,
three approaches of power consumption modeling can be
distinguished:
(i) high-level power consumption model,
(ii) estimating power consumption based on the measure-
ments,
(iii) the estimation of the power consumed by each transmit-
ter and receiver components.

Their pros and cons are presented in Table 2.

The high-level models can determine the power consump-
tion of different techniques in a universal way but at the
expense of the low accuracy of estimation. The simplest total
power consumption model can be found in the early papers
focusing on the energy-efficient resource allocation [34],
[35]. In these papers, the total power consumption model
consists of the constant circuit power and the transmit power
allocated at each OFDM subchannel. The constant circuit
power includes the power consumed by the baseband- and
radio-frequency signal processing at the transmitter and at
the receiver, while the transmit power dynamically changes
according to instantaneous channel conditions.
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TABLE 2. Pros and cons of the power consumption estimation.

Pros

Cons

easy to define
the universal approach al-
lows for describing the dif-

E ferent systems
g e allows for applying opti- does not take all aspects
3 mization techniques with of the real systems into ac-
3 low complexity count
£ o low-dependent on the im-
= plementation, systems, pa-
rameters etc. and mathe-
matically simple
the measurements of the
power consumed by the
transmitter and receiver are
. | e better representation of the required
= real systems than high- the power consumption
§ Qé level model model depends on the im-
§ g o takes some aspects of the plementation, system, pa-
28 real systems e.g. data rate, rameter etc.
g path loss into account the energy consumption of

the individual components
of the transmitter and re-
ceiver is unknown

the best representation of
the real systems

takes the aspects of the real
systems e.g. parameters of

very difficult to determine
the power consumption
model of each component

the power consumption
model depends on the im-

transmission into account plementation, system, pa-

rameter etc.

each component
power estimation

In [22], [36], and [37], the power dissipation in a chip is
modelled as the sum of a static term and a dynamic term.
The latter depends on, among other parameters, the supply
voltage, the clock frequency and the circuit capacitance. It is
assumed that the dynamic term depending on the clock fre-
quency is scaled with the data rate. Thus, the circuit power is
modelled as the linear function of the achieved data rate:

Pc[Wl=a+pB "R, (6)

where « is the static term, and 8 is the implementation-
dependent factor determined in W/ (bit/s). These high-level
power consumption models are commonly used in the energy
efficient resource allocation optimization.

The second approach to estimate the power consumption of
wireless devices is based on measurements. Such an approach
guarantees high accuracy of power estimation but it highly
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FIGURE 6. The block diagram of OFDM transmitter and receiver with the power consumption description related to each element.

depends on the equipment/link/network configuration, imple-
mentation, vendors, etc. In this approach, the total consumed
power (including transmission power) is measured. It means
that the transmission power allocation algorithm can not be
applied with such models because the transmit power and
the circuit power are not separable, thus the relation between
them can not be determined a posteriori (after measurement).
In [38], [39], [40], [41], and [42], the authors describe mea-
surements of the power consumption of a set of commercially
available devices, in the number of configurations. In [39], the
stochastic power consumption models have been proposed
based on measurements of a range of transceivers offered
by various vendors. The authors of [39], [40], [41], and [42]
have focused on the WiFi standards while in [38] the set of
measured devices includes cellular network USB modem e.g.
LTE as well as WiFi USB modem. Moreover, these papers
provide the analytical models of the power consumed by
devices. Although the power consumption modelling based
on measurements highly depends on the devices hardware
and software implementation, application techniques, ven-
dors, etc., they can be useful to design the high-level mod-
els by the means of interpolation of measurement points or
statistical approach.

The most accurate but also the most complex approach
is to estimate the power consumption of each transmitter-
and receiver-component separately. Having in mind the fact
that the transceiver is integrated into one chip, the measure-
ment of each its component is very difficult and practically
impossible. Therefore, in the literature, the estimation of
each transceiver component power consumption is usually
based on its architecture. (The block diagram of the coded
OFDM transmitter and receiver is presented in Fig. 6.) In this
approach the power consumption model by circuits is given
by:

Pc [W]
= Pgnc + Pmobp + Pirrr + Ppac

Ppp_Tx

+ PrLpr + Papc + Prer + PpEMoD + PDEC

Ppp_Rrx
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+ Ppa + Pmix + PLo + Preg + PLNna + Pmix + Pro,

Prp-TX

Prr_Rrx

(N

where Ppa, Prna, PrLo, Prrr and Pygx describe the
power consumption of the power amplifier (PA), low noise
amplifier (LNA), local oscillators (LO), radio frequency (RF)
filter and mixer, respectively. The power consumed by base-
band (BB) processing includes power consumption of the
analog-to-digital converter Papc, the digital-to-analog con-
verter Ppac, modulation Pyop and demodulation Ppgmop,
encoding Penc and decoding Ppgc, low-pass filter Pppr,
inverse fast Fourier transform Prppr and fast Fourier trans-
form Pgpr. It can be observed that depending on the struc-
ture of a transceiver, the power consumption model can be
different. Nevertheless, some elements are common for the
most digital transmission systems. The power consumption
models of these components consuming most considerable
amount of power can be found in [43], [44], [45], and [46].
There, the total power spent in the communication link is
the sum of power consumed by the power amplifier, the
low noise amplifier, the analog-to-digital converter and the
error-correcting decoder. More system-level energy models
for the radio frequency front-end components of a wireless
transceiver with the exemplary power consumption values
from most commonly refereed publications can be found
in [47]. The components include ADC, DAC, the recon-
struction and anti-aliasing filters, the mixers, the frequency
synthesizer, PA, LNA, and the baseband amplifier. In [48],
more exemplary power consumption values are listed in
the context of Long Term Evolution (LTE) technology. The
power consumption models from the papers cited above have
been adapted to multi-user massive MIMO (multiple-input
and multiple-output) scenario in [49] and [50]. In addition to
adapting existing models of energy consumption, the model
has been extended by elements specific to the presented sce-
nario, such as energy consumption by the channel estimation
process, by the load-dependent backhaul or linear processing
at the base station.

In most of the papers cited above, the authors focus on
the power consumption of the RF front-end and channel
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FIGURE 7. Measured and modelled power consumption of the USB
transceivers as a function of the rate.

coding, neglecting the power consumed by other baseband
signal processing algorithms which have a significant share in
power consumption, in case of short links. In [51], [52], [53],
[54], and [55], more attention is put to this aspect. In [51]
and [52], the number of operations needed to encode or
decode the information bit for the channel coding algorithms
was determined. Then, knowing the energy consumption per
operation, the total power consumed by channel coding can
be determined. In [53], a dynamic power estimation method-
ology for Field Programmable Gate Arrays (FPGA) based
system has been presented. The methodology has been evalu-
ated on the LTE downlink physical layer and provides fast and
accurate power estimation. Similarly as in the general power
consumption model presented in [36], the power consumed
by FPGA is also divided into static and dynamic power.
In the proposed methodology, the total dynamic power is
determined by the power estimations of each sub-element
in the system e.g. in the wireless communication scenario,
the power is estimated for channel coding, modulation, Fast
Fourier Transform (FFT) etc. That work has been continued
in [54] and [55] where the more advanced scenarios are
considered, and the power consumption values of each sys-
tem element are presented. Moreover, the extension to other
FPGAs by introducing a scaling factor has been introduced.
As overviewed above, diverse power consumption models
can be considered for distinct transmitter and receiver com-
ponents. In Table 3, key parameters of the power consump-
tion models for distinct transmitter and receiver components
known from the literature are summarized.

Furthermore, in Figure 7 our measurement results for
different USB transceivers and based on them the power
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FIGURE 8. The consumed power for high-level power consumption model
and based on the estimation of the power consumed by each transmitter
and receiver components [25].

consumption model are presented [56]. The consumed power
was measured on the transmitting and receiving sides for dif-
ferent values of pathloss. Moreover, all measured transceivers
work in IEEE 802.11g standard and were selected so that
the WiFi chipset was different. It can be observed that the
power consumption increases with the rate and the values of
the consumed power and curve slope highly depend on the
vendor. There is also a noticeable impact of pathloss on the
power consumed, particularly on the receiving side, which
is related to the increasing power of transmission. Moreover,
in Figure 8 the consumed power for high-level power con-
sumption model and based on the estimation of the power
consumed by each transmitter and receiver components [25]
is presented. Note that in both approaches, the power con-
sumed grows exponentially with the throughput, in contrast to
the measurement-based approach where the power increased
linearly. In addition, for a given system configuration, the
power consumed by the transmitter and receiver components
is in most cases constant. For the power consumption model
presented in [25], only the power consumed by channel
coding, the power amplifier and the transmit power change
dynamically depending on the channel conditions. Therefore,
both curves follow a similar course.

Finally, Figure 9 illustrates the trade-off between the accu-
racy of the power consumption models and the difficulty
in defining them. It can be observed that if the power con-
sumption model is easy to define, the representation of the
real system is low. On the other hand, if the accuracy of
the power consumption model is high, the model is really
difficult to determine, for example, due to the fact that all
transmitter/receiver components are integrated in a single
chip. Therefore, the power consumption based on the mea-
surements and augmented with the interpolation or stochastic
modelling seems to be a good trade-off.

C. CONSTRAINTS

The maximization of energy efficiency metric as defined
by (1) without constraints is not practical for multiple rea-
sons.! In the optimization, physical limitations of the network

10ne might achieve the maximum energy efficiency, if no transmission
takes place.
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TABLE 3. The review of the power consumption models of the
transmitter/receiver components.

Each component
power estimation

consumption model of each component
High accuracy of power consumption model
into account Approach with the real systems aspects
consideration

Power Model parameters Reference

class A power amplifier; parameters: the peak-
to-average power ratio (PAPR) and the drain [43]-[46]
efficiency of the power amplifier

class A power amplifier; parameters: PAPR,
the proportionality constant and the output
power proportional to the detected signal
power at the receiver

Ppa [47]

class A, AB and B power amplifier; parame-
ters: PAPR, the drain efficiency of the power [48]
amplifier and the transmit power factor

the power gain, the noise figure, the operating
bandwidth, the thermal noise and the figure- [43]-[46]

Pina | Of-merit

the gain, the noise figure and some propor-

. . 47
tionality constant parameter 471

the gain, the noise figure and some propor- [47]

P Lo
MIX | tionality constant

the proportionality constant depending on the
filter topology and the active elements used, [47]
the quality factor, the corner frequency and
SNR

PLpp

the parasitic capacitance loading of the RF
circuits, the reference frequency, is the supply [47]
voltage, the LO frequency, the proportionality
constants

PLo

the resolution, the bandwidth, the thermal
noise and some proportionality constant de- [43]-[46]
pending on the ADC architecture

the minimum channel length for the given
Papc | cMoS technology, the power supply, the sig-
nal and sampling frequency and the resolution [47]
which depends on PAPR and the signal-to-
quantization-noise ratio (SQNR)

the parasitic capacitance of each switch, the
oversampling rate, the signal bandwidth, the
Ppac | power supply, the unit current source per [47]
least significant bit and the resolution which
depends on PAPR and SQNR

the number of operations needed to encode

P or decode the information bit [52]
ENC " Mthe clock frequency, CBS (not explained in 54

the paper) [54]
LDPC codes; parameters: the number of ones
in each column, the number of iterations, the [44], [45]
data rate, the bandwidth and the constant ’

Pprc
parameter
the number of operations needed to encode (51, [52]
or decode the information bit ’
QAM modulator; parameters: the clock fre-

Pyviop | quency and the number of the quantization [54]
bits

Piepr the clock frequency, the number of the quan- [54]

tization bits and IFFT size

such as the maximum transmit power, minimum guaranteed
throughput or particular standard requirements (e.g. the emis-
sion spectrum mask) have to be taken into account. There-
fore, the energy efficiency optimization problem is usually
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defined as the objective function with constraints. Moreover,
some limitations of wireless communication systems can be
included in the objective function, e.g., grouping the sub-
carriers into resource blocks. The most common constraints
known from the literature are listed below:

o the maximum transmission power constraint ensures
that the sum of the transmission power allocated to
the subcarriers is lower than or equal to the maximum
assumed value. In the case of downlink transmission,
this constraint typically limits the transmission power of
the base station while, for the uplink, the transmit power
of each end-user is limited. This constraint results from
practical aspect of designing wireless communication
systems where the total transmission power is limited
by standards.

o the requirement on the minimum data rate aims at pro-
viding the end-user quality of service. In this case, the
achieved data rate has to be higher than or equal to
assumed threshold. In the literature, this constraint is
typically considered in the short-term context. It means
that in a given time slot, the resource allocation algo-
rithm has to provide the required data rate. From the
energy efficiency point of view, the data rate for a user
with poor channel conditions can be extremely low, even
zero, if this constraint was not applied. Thus, such con-
straint is necessary in the practical radio communication
networks.

o the subcarrier/resource block allocation constraint
which guarantees that the same subcarriers can be
assigned to a certain, limited number of users. This
constraint is relevant in the case of a multi-user scenario
in order to avoid interference between users. In the
case of homogeneous network, it means that a subcar-
rier can be assigned to at most one end-user. However,
there exist scenarios, e.g. heterogeneous or relay net-
works, where the same subcarriers can be utilized by
more than one user, resulting in interference between
users. Note that a properly designed resource allocation
algorithm, in an interference network, can increase the
energy efficiency compared to the network without users
interference. From the optimization point of view, this
constraint requires the introduction of binary decision
variables (representing each subcarrier assignment or
no-assignment to a particular user) making the opti-
mization problem a Mixed-Integer Nonlinear Fractional
programming problem which is very difficult to solve in
its original form.

o the fairness constraint is introduced to maintain the
transmission rate among users with a predetermined pro-
portion. Thus, it is considered in the multi-user system
model.

D. OPTIMIZATION

The design of the energy-efficient resource allocation algo-
rithm usually comes down to solving the optimization prob-
lem defined as the maximization of the energy efficiency
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TABLE 4. The comparison of the methods to solve the fractional optimization problem.

Dinkelbach method

Charnes-Cooper method

Quasiconcave optimization

Suboptimal solution

transform the objective function
into a new parametrized concave
function

an iterative algorithm which solve
the parameterized problem in
each iteration is required
superlinear convergence of the
Dinkelbach algorithm

standard optimization techniques
can be used to solve the subprob-
lem in each iteration

the fractional problem transforms
into an equivalent convex prob-
lem with one additional variable
and two constrains

if the numerator is affine, the frac-
tional problem transforms into an
equivalent convex problem with
one additional variable and one
constrains

a single convex problem must be
solved

standard optimization techniques

e the proof of quasiconcavity is
required

o the proof that the local maximum
is also the global optimum is
required in order to provide the
global optimum

o the special algorithm or heuristic
has to be designed to solve the
optimization problem

o the global optimum is not guaran-
tee

o the special algorithm or heuristic
has to be designed to solve the
optimization problem

o low complexity solution can be
provided

can be used to solve the optimiza-
tion problem

Generalized Dinkelbach algorithm
START

transform the objective function into
a new parametrized concave function

solve the transformed optimization

FIGURE 10. Generalized Dinkelbach method.

metric. Because of the fractional form of the energy efficiency
metric, the optimization problem belongs to a broad class of
fractional problems:
R
X* = arg max ﬁ ®)
x P(x)

subjectto: f; (x) < b;, i=1,...,m. ©)]

Here, the vector x* = (xf, ... ,x;) contains the optimal
values of the optimization variables x = (x1, ..., x,), the

ratio of functions R : R” — R and P : R® — R7 is the

objective function, the functions f; : R" - R, i=1,...,m
are the (inequality) constraint functions, and the constants
b1, ..., by, are the limits, or bounds, for the constraints.
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Since the objective function in (8) is in general non-
concave, standard convex optimization algorithms are not
guaranteed to converge to global optimum and specific algo-
rithms are required. In the literature, four approach to solve
the fractional programming problem can be found:

(i) the Dinkelbach’s method [57],

(ii) the Charnes-Cooper transform method [58],
(iii) solution of the quasi-concave optimization problem,
(iv) suboptimal solution of the optimization problem.

The Dinkelbach method and the Charnes-Cooper method can
be used if the numerator of the objective function is concave
while the denominator is convex or if the numerator is affine,
the denominator does not have to be restricted in sign. Oth-
erwise, if the optimization problem can not be transformed
into concave one, the designing of the special algorithm or
heuristic to solve the optimization problem is required. In the
case of the Dinkelbach method the objective function is trans-
formed into a new parameterized concave function which
can be solved by the iterative Dinkelbach algorithm with the
superlinear convergence. The generalized form of Dinkel-
bach algorithm is presented in Figure 10. In the Charnes-
Cooper method, the fractional problem is transformed into an
equivalent convex problem with one additional variable and
two constrains (if the numerator is affine only one constraint
is added). Finally, in Table 4, the comparison of the methods
to solve the fractional optimization problem is presented.

IV. SINGLE OFDM LINK FLEXIBILITY FOR
ENERGY-EFFICIENCY

In this section, we focus on the energy-efficient resource
allocation in the context of a single OFDM link. Visualiza-
tion of the example single link transmission with the related
power consumption is presented in Figure 11. It can be
observed that the user achieves some transmission rate as a
result of per-subcarrier power allocation in response to the
instantaneous channel conditions (visualized in Fig. 11 as
the magnitude of the instantaneous channel characteristic).
In the presented example, the resource allocation algorithms
come down to determine the values of transmission powers
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allocated to subcarriers. However, more degrees of freedom
can be identified in the single link scenario. Depending on the
considered system scenario, the transmit power can be allo-
cated per subcarrier, per resource block consisting of many
SCs or per user. Moreover, in practical wireless communi-
cation systems, modulation and coding schemes and other
transmission parameters can be adaptively selected in order
to maximize the energy efficiency. Here below, the aspects of
energy efficiency optimization are reviewed in the context of
a single link scenario.

A. ESTIMATION OF THE OFDM SINGLE LINK
TRANSMISSION RATE

In the context of the single, uth user OFDM link transmission
rate R™ is determined by the sum of the rates r“ achieved
using the allocated resource units:

RW =" plem, (10)
neN

where N is the set of allocated resources In the literature, the
first two approaches to the data rate estimation mentioned in
Section III-A are usually considered for a single link scenario.
While in [36], [37], [58], and [59] the data rate achieved per
subcarrier is determined by the Shannon formula, the trans-
mission rate in [22], [34], and [35] is estimated using Shannon
formula with a scaling factor related to an adopted modulation
and coding scheme and a target bit-error probability.

Most importantly, the data rate estimation methods can
have various complexity as a result of the number of degrees
of freedom available in a given system. In [22], the scal-
ing factors for the Shannon formula-based rate estimation
depending on the code rate, the coding gain and the target
bit-error probability are determined per subcarriers which
means that the modulation and coding schemes can vary
among subcarriers. Such an approach allows theoretically
for relatively the highest bitrate and EE. However, this
assumes that at each subcarrier different MCS can be used.
This requires potentially many parallel coding and decoding
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blocks to be run in a single user equipment (UE), a solution
infeasible in many hardware implementations. Two other lim-
iting factors are: the wireless channel characteristic and the
available amount of control information. The wireless chan-
nel is assumed typically to be invariant within time-frequency
block limited by the coherence time and the coherence band-
width. This block (often called Basic Resource Block - BRB)
usually contains several subcarriers and OFDM symbols that
should be assigned the same MCS. The MCS allocation has
to be preceded by the channel impulse response estimation,
typically using pilots, and feedback reporting quantized chan-
nel quality reported by a UE to the BS. These two processes
need some time-frequency resources to accommodate pilots
or control messages, reducing available resources for user
data. The problem of finding the balance between the accu-
rate channel estimation and the reduction in data rate has
been discussed in [60]. Thus, in many real-world OFDM-
based systems, the available degrees of freedom in resource
allocation are limited and the data rate can be estimated per
block of several subcarriers. The authors of [34], [35] have
considered grouping subcarriers into subchannels described
by the effective power-gain of a channel. The data rate has
been estimated by Shannon formula with the scaling factors
which have been obtained for the M-QAM transmission with
Gray mapping coherently detected in an AWGN channel
depends on a data interval, a signalling interval, the number
of transmitted symbols, the number of subcarriers in the sub-
channel and SNR gap dependent on modulation and coding
scheme.

B. POWER CONSUMPTION ESTIMATION FOR A SINGLE
LINK

As shown in Figure 11 in the case of a single OFDM link
the total power consumption consists of the power consumed
by BB and RF signal processing on the transmitter and
receiver side as well as the transmit power being the sum
of powers allocated on subcarriers. Observe that, while the
wireless channel frequency response has an influence on the
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FIGURE 12. The energy efficiency, the data rate and the transmit power
as a function of the circuit power for different value of the parameter g.

optimal allocated powers, its sum is typically fixed. It influ-
ences indirectly the consumed power. Moreover, as shown in
Section III-B the power consumed by the circuits depends
on many system parameters, e.g., the modulation and coding
schemes, implementation, technology etc. However, these
phenomena are in many cases not considered to simplify
the model. The high-level power consumption model is usu-
ally used in the context of the single link scenario. One of
these power consumption models considered in the literature
assumes that the power consumption of BB and RF signal
processing is expressed by one constant value. For exam-
ple in [34] and [35] the authors assumed that this value is
constant, equal to 0.1 W, though the adaptive QAM scheme
has been used wherein the power consumption can vary for
different modulation orders. Nevertheless, the adaptive QAM
scheme has an impact on the transmit power because of
different scaling factors in the data rate estimation among the
modulation orders.

In [58] the circuit power (understood as the sum of power
consumed by BB and RF signal processing) is assumed to be
constant, but the transmission power is scaled by the parame-
ter that expresses power amplifier inefficiency. A fixed value
of PA efficiency is another simplification. It heavily depends
on the utilized power amplifier, if it works with fixed or
adjustable supply voltage or the transmitted signal itself. This
problem will be discussed in Sec. VIII. Nevertheless, the val-
ues of the circuit power and the power amplifier inefficiency
as well as the numerical results have been not provided in this
paper (only analytical analysis has been considered).

Another high-level power consumption model considers
variations in the circuit power [36], [37]. In this approach
the circuit power is modelled as the sum of a static term
and a dynamic term where the second of them depends on
the sum rate. Moreover, the transmission power is scaled by
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the parameter related to the efficiency of the power amplifier
which is given by the Peak-to-Average Power Ratio (PAPR)
divided by the drain efficiency of the power amplifier. There
the maximum, rarely observed PAPR, equal to the number of
subcarriers for an OFDM system, is assumed. Although, the
authors have not provided the value of the power consump-
tion model parameters, they have shown the impact of these
parameters on the energy efficiency metric.

In [22] the modulation and coding scheme-dependent cir-
cuit power in the fast adaptive OFDM system has been con-
sidered. It means that the power consumption model does
not depend only on the data rate and 8 parameter (as shows
equation (6)) but also on the coding rate of applied modu-
lation and coding scheme. Moreover, the data rate achieved
per subcarrier has been estimated using Shannon formula
with scaling factor which depend on the modulation and
coding scheme as well. Therefore, the optimal transmit power
can vary among the modulation and coding schemes for the
same channel impulse response. The parameter describing
the constant circuit power is equal 0.1 W while parameter
B = 5-1079W/ (Mbit/s).

Another high-level power consumption model consisting
of the fixed circuit power and the variable power increasing
with the number of utilized subcarriers has been presented
in [59].

It can be observed that the above models present increasing
complexity in order to reflect rising number of relations
influencing an OFDM link power consumption. Though, the
models are rather high-level and general, independent of
specific transceivers architectures. This can be treated as an
advantage of these models, making the derived resource allo-
cation algorithm independent from the hardware platform.
A set of transceiver-dependent parameters, e.g., 8, can be
adjusted individually without a need for reformulation of the
optimization problem or its’ solving algorithm.

The above-cited papers use the high-level power consump-
tion models to optimize the energy efficiency. Sample results
for maximization of EE have been generated in the single link
scenario with the linearly rate-dependent circuit power con-
sumption model (described by equation (6)) are presented in
Figure 12. The energy efficiency, data rate and transmit power
in a function of the static part of circuit power consumption
model are plotted. Let us observe that the data rate and trans-
mit power are the same for different value of the parameter
related to the dynamic part of the circuit power consumption
(B). It means that the dynamic part does not affect transmit
powers allocated on subcarriers but only energy efficiency
value. Moreover, the transmit power increases with the static
part of the circuit power («) in order to eliminate the domi-
nation of static power over the transmission power.

However, there are some more detailed power consumption
models considered in the literature as well. A single link
transmission where the BB power consumption is modelled
as the power consumed by each component is presented
in [54]. The authors do not consider EE optimization. In [53]
and [54] the authors propose the dynamic power estimation
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FIGURE 13. The energy efficiency as a function of available transmission
power for the EE and throughput maximization (left subfigure), or as a
function of the minimal throughput for the EE maximization and
transmission power minimization (right subfigure).

methodology for FPGA-based OFDM transceiver. Moreover,
in [54] the authors proposed measurement-based power con-
sumption models for the considered FPGA implementation.

C. CONSTRAINTS FOR A SINGLE LINK

In Figure 11 it can be observed that the system can be lim-
ited by the maximum transmission power and the minimum
required data rate. The important thing here is that if both
constraints are considered the maximal transmission power
has to be enough to provide the required data rate. Otherwise,
the resource allocation is non-feasible.

The maximum transmission power constraint which
ensures that the sum of the transmission power allocated on
the subcarriers is less than or equal to the maximum assumed
value has been considered, e.g., in [22], [34], and [35].
Figure 13 illustrates the optimized energy efficiency for the
constrained OFDM link. On the left side the energy efficiency
as a function of available transmission power for the EE and
throughput maximization are presented. In the case of EE
maximization, the energy efficiency increases with the avail-
able transmission power and remains constant after reach-
ing the maximum. For higher available transmission power
value, it is not fully exploited. In contrast, the throughput
maximization causes the energy efficiency to drop as a result
of increasing data rate and fully utilized maximal transmit
power.

The minimum data rate constraint provides the end-user’s
data rate higher or equal to the assumed threshold and has
been considered, e.g., in [34] and [35]. On the right side of
Fig. 13 the energy efficiency versus the minimum required
throughput for EE maximization and transmission power
minimization are plotted. It can be observed that with increas-
ing the data rate requirement the energy efficiency decreases
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in both schemes above some point. However, for relatively
low throughput requirements and the EE maximization, the
energy efficiency takes constant value because the through-
put resulting from optimization is higher than the data rate
requirement.

D. OPTIMIZATION OF EE IN AN OFDM SINGLE LINK

The complexity of the energy-efficient resource alloca-
tion algorithm depends on the degrees of freedom of the
considered system and on the utilized model of the data
rate and power consumption as well as the system limita-
tions/requirements. In the literature, two sets of the optimiza-
tion variables are considered in the context of a single-link
scenario: (i) the transmit powers allocated on the resource
unit or related to them data rates achieved on the resource
unit, (ii) the transmit powers/data rates on the resource unit
and applied modulation and coding scheme. It means that in
the first approach the data rate is estimated by the Shannon
formula, thus only transmission power can be determined
and the modulation and coding schemes are not selected.
In contrast, in the second approach the data rate is esteemed
by different methods where the transmit power and the mod-
ulation and coding scheme have be to determined. The first
set of the optimization variables has been considered in [36],
[37], and [58]. In [58] the authors have optimized the energy
efficiency by selecting optimal transmission power using
Dinkelbach method with superlinear convergence. Due to the
rate-dependent circuit power consumption model, in [36] and
[37] the energy efficiency has been maximized by obtaining
the optimal value of the data rate achieved on each subcar-
rier. Moreover, in [58] the Charnes-Cooper and Dinkelbach
methods have been used to solve the energy-efficient resource
allocation optimization problem. The authors have shown that
both methods give the same optimal result. In [34] and [35]
the energy efficiency is optimized for an uncoded M-QAM
modulated OFDM link. The modulation order is expressed
as the function of the data rate, thus, in fact, the data rate
achieved per subcarrier is optimized. The authors has proven
that the defined optimization problem is quasiconcave, thus
if a local maximum exists, it is also globally optimal. In order
to find the optimal data rate for the single subchannel trans-
mission Gradient Assisted Binary Search (GABS) method
has been proposed which then is used in the Binary Search
Assisted Ascent (BSAA) algorithm to find the optimal solu-
tion in the multi-subchannel scenario.

The second set of optimization variables is considered
in [22]. The transmit power and modulation and coding
scheme are determined per each subcarrier in order to max-
imize the energy efficiency. In the first step of proposed
algorithm the Dinkelbach method has been used to transform
the objective function. Next, the transmit power for each MCS
has been obtained. Finally, based on the cost-benefit function
the modulation and coding scheme is selected per subcarrier.

In Table 5 the summary of the energy-efficient resource
allocation methods in a single-link scenario is presented.
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TABLE 5. Summary of the energy-efficient resource allocation methods in a single-link scenario.

Scenario Optimization variables Methods Convergence References
the data rate estimated by the Shannon transmit power allocated
formula, the linearly rate-dependent cir- . P Charnes-Cooper method constant [36]
. . on subcarriers
cuit power consumption model
the data rate estimated by the Shannon transmit power allocated
formula, the linearly rate-dependent cir- ) P Dinkelbach method superlinear [37]
. . on subcarriers
cuit power consumption model
h i he Sh . . s harnes-
the data rate estimated by the S annon | it power allocated Dinkelbach method and constant (Charnes ‘C00per
formula, the constant value of the circuit . method), superlinear [58]
. on subcarriers Charnes-Cooper method -
power consumption (Dinkelbach method)
the data rate estimated by the Shannon | transmit power allocated
formula with the scalmg faptors, the lin- | on subcz_irrlers, modulation Dinkelbach method superlinear [22]
early rate-dependent circuit power con- | and coding scheme per SC
sumption model, adaptive OFDM system | selection
the data rate estimated by the Shannon . e .
formula with the scaling factors, the | transmit power allocated solve the quasiconcave
. .o, ? ) problem by GABS and linear [34], [35]
constant value of the circuit power con- | on subchannel BSAA aleorithms
sumption, uncoded M-QAM g
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FIGURE 14. The multi-cell OFDMA downlink network, where p.}.") determines the power

allocated on SC n, ¥“-" the binary variable determining if the subcarrier n is assigned to user
u or not while the channel coefficients in the link between BS and users u and v’ are defined
by h@-M and h\"-"), respectively. The data rate achived by user v and v’ are denoted as R(Y)

and RW) respectively. The variables related to the system constraints are denoted as Pyax,

S/
R(")N and R(" ) which define the maximum transmit power and the minimum data rate

achieved by user u and ¢/, respectively.

V. MULTI-USER OFDMA NETWORK
Let us consider the multi-user OFDMA network where one

base station serves some number of users which share the
bandwidth divided into subcarriers. In this case the energy
efficiency metric can be associated with the whole network
or individual users, thus can be defined in different ways.
In the literature, three main approaches to maximizing the
energy efficiency metric can be distinguished [61]:

(1) maximizing the energy efficiency of the whole network,
(i) maximizing the sum of the users energy efficiency,
(iii) maximizing the minimum user’s energy efficiency.
In the first approach, the energy efficiency is defined as the
ratio of total throughput (the sum of users data rate) to the
total consumed power in the network. It means that the chan-
nel coefficients of all users have to be available in one unit.
Therefore such an approach is mostly applied in the downlink
scenario wherein the base station allocates the resources. The
energy efficiency for the second and third approach is defined
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by the sum of the ratio of data rate achieved by each user
to the power consumed by it. Thus the energy efficiency
is maximized individually for each user and the channel
coefficient of other users are not required. Therefore these
definitions are usually considered in the uplink transmission.
Moreover, it is obvious that depending on the definition the
resource allocation and resulting from it the value of energy
efficiency can be different.

In Figure 14 and 15 the example of the downlink and
uplink transmissions in the multi-user OFDMA network is
presented, respectively. It can be observed that (in the con-
trast to the single link scenario) the available bandwidth is
shared among many users in the network. It means that not
only transmit power but the subcarrier assignment has to be
determined as well. Moreover, for some systems, the modu-
lation and coding schemes have to be determined for each
user. Thus, more degrees of freedom can be distinguished
compared to the single link scenario.
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A. TRANSMISSION RATE ESTIMATION IN A MULTI-USER
OFDMA NETWORK

In the case of the multi-user OFDMA network, the total
throughput is the sum of the throughput for each user.
The user’s data rate is determined by the sum of data rate
achieved on each subcarrier assigned to it. In the literature,
all three approaches of the data rate estimation presented in
Section III-A can be found:

(i) based on the Shannon formula considered among others
in [62], [63], [64], [65], [66], [67], [68], and [69]. In [61],
[62], [63], [64], [65], [66], [67], and [70] the subcarri-
ers are considered independently (are not grouped into
RBs), thus the resource allocation is determined per
subcarrier. Whereas in [68] and [69] the subcarriers
are grouped into resource blocks as in some practical
wireless communication systems, e.g., LTE.

(ii) estimated by the Shannon formula with scaling factors
considered in [71] and [72]. In [71] the Shannon formula
is scaled by the factor dependent on a target bit error
rate for an uncoded M-QAM modulation. In [72] the
scaling factor is used to model the imperfect channel
state information.

(iii) based on the error-rate function and the spectral effi-
ciency of the applied MCS considered in [29] where
the subcarriers are grouped into resource blocks and all
RBs assigned to the same user must use the same mod-
ulation and coding scheme. In this case, the throughput
results from the spectral efficiency of the applied MCS,
effective SINR and the block-error rate which has been
estimated by the complementary error function with
two fitting parameters for each MCS. The values of the
fitting parameters for the MCS used in the LTE standard
have been provided in [29].

When grouping subcarriers into resource blocks, each RB
includes multiple subcarriers subject to different channel
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gains, thus, an effective SNR mapping method should be
applied to collect, and represent the channel state informa-
tion. In [26] and [27] one can find methods of channel-quality
representation for the user’s RBs. In [69] and [73] the effec-
tive SINR over one RB has been obtained using the mean
instantaneous capacity method which is based on the Shan-
non formula.

B. ESTIMATION OF THE POWER CONSUMPTION IN A
MULTI-USER OFDMA NETWORK

In the multi-user OFDMA network the total power consump-
tion power (similar to the single link scenario) consists of the
transmit power and the power consumption of BB and RF
processing at the transmitter and receiver. The total transmit
power is equal to the sum of the users’ transmission power.
The users’ transmission power is usually determined as the
sum of the transmit power allocated on the resources assigned
to them. This definition works both for uplink and downlink
scenario. As shown in the Figures 14 and 15 the transmit
power can be potentially allocated per subcarrier. While this
is an additional degree of freedom, able to increase achivable
data rate, it comes at a cost. The receiver has to know the
power allocated on each subcarrier to enable channel esti-
mation and decoding, thus the signalling overhead is much
bigger than in a more practical scenario, e.g., in LTE where
the transmit power is the same among all resource blocks
assigned to the user [29]. In the case of the BB and RF
processing the power consumption model can be determined
for each user differently that can result, e.g., from different
end-user devices. Thus, the receiver circuit power is the
sum of power consumed by the BB and RF processing at
the end-users in the downlink scenario. For example in [64],
the power of the circuit is divided into the power consumed
at the base station and the user equipment which is scaled
with the number of subcarriers assigned in the base station to
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TABLE 6. The values of the power consumption parameters.

Papers Scenario Circuit power [W] Po:feﬁr;;x;;;l;ﬁer B [71\“2?2 /S]
Xing et al. [70] downlink 0 100% -
Wang et al. [72] downlink 0.01 38% -
Xiong et al. [62] uplink, downlink {0.05,10} 38% -
Ye et al. [67] uplink 0.1 38% -
Bossy et al. [29] downlink 0.1 100% -
Ren et al. [66] downlink 0.2 38% -
Tham et al. [71] downlink 1.0 38% 0.1
Sboui et al. [61] downlink 1 100% -
Wang et al. [65] downlink 10 40% 0.1
D.W.K Ng et al. [74] downlink 10 100% 0.1
Yang er al. [68] downlink {10, 30} 38% {1,2}
Xiong et al. [63] downlink {15, 30} 38% 0.2
D.W.K Ng et al. [75] multicell downlink 10 20% -
Qi et al. [76] downlink 10 33% 2

users. In the rest of the cited papers the power consumed by
circuits remains constant or is modeled as the linear function
of achieved data rate. Therefore, in Table 6 the values of the
total fixed circuit power, power amplifier efficiency parame-
ter and/or B parameter from a set of well established papers
are provided.

It can be observed that the power amplifier efficiency
parameter in most cited paper hovers around 38% while the
circuit power and B parameter oscillate much more. More-
over, in all cited paper all parameters: the circuit power, the
power amplifier inefficiency and parameter $ is the same for
all users in the network.

C. CONSTRAINTS IN A MULTI-USER OFDMA NETWORK

It is obvious that each constraint of the system can cause
a reduction in maximal energy efficiency. Nevertheless, let
us remember that the maximization of the energy efficiency
does not ensure the network fulfils users QoS requirements.
For example, Figure 16 shows the data rates and transmit
powers of three users in the network. Two of them are located
close to the base station while the third is located at the edge
of the cell. The resources (transmit power and subcarriers)
have been allocated to maximize the energy efficiency of the
whole network. It can be observed that none resources are
allocated to the user at the edge of the cell. Thus, despite max-
imum energy efficiency is achieved, not all users are served.
Therefore, in this case the minimum data rate constraints
are required. In the literature, the following constraints for
the energy efficiency optimization of the multi-user OFDMA
network have been considered:

« the maximum transmission power constraint which has
been considered in [61], [62], [63], [64], [65], [66], [67],
[70], [71], [72], [74], [75], and [76]. In the case of the
downlink transmission this constraint ensures that the
sum of transmission powers allocated in the base station
is less than or equal to the maximum allowed value.
Whereas, for the uplink transmission [62], [67] the max-
imum transmission power constraint concerns each user
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in the network. It means that the sum of transmit powers
allocated on subcarriers for a given user has to be less
than or equal to the maximum transmit power of its
device. It is obvious that the maximum transmit power
can vary among users as shown in Figures 14 and 15.
Moreover, in [61] the authors constrain the maximal
transmit power per subcarrier in order to avoid inter-cell
interference.

the minimum data rate constraint considered in [61],
[62], [63], [64], [65], [67], [72], [74], [75], and [76].
In both (downlink and uplink) scenario it means that
the data rate of a given user has to be not smaller than
assumed value. In [61], the authors constrain the trans-
mit rate achieved on each subcarrier. It needs to be above
a minimum rate threshold. Moreover, this value can be
different for each user as shown in Figures 14 and 15.
the subcarrier/resource block allocation constraint
examined in [61], [62], [63], [64], [65], [66], [67],
[69], [70], [72], [73], [74], and [76]. This constraint
guarantees that a given subcarrier/resource block can be
assigned to maximally one user, in order to avoid the
inter-user interference. It is usually realized by intro-
ducing the auxiliary variables which take binary val-
ues making the optimization problem a Mixed-Integer
Nonlinear Fractional Programming (MINFP) problem
for which the techniques described in Section III-D are
not sufficient. Therefore, in Section V-D the methods
dealing with MINLP in the context of energy efficiency
optimization are reviewed.

the instantaneous proportional rate fairness constraint
contemplated in [62], [66], and [71] which ensures that
each user would obtain a predetermined proportion of
the system throughput in each resource-allocation deter-
mination [77].

constraints resulting from system model considered
in [29], [69], and [73]. Such constraints usually are
not described by the equation in the optimization
problem because results from the considered system
model, directly. For example in [29], [69], and [73] the
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FIGURE 16. The data rates and transmit powers of three users in the
network where two of them are located close to the base station while
the third is located at the edge of the cell. Case with EE maximization
without additional constraints.

subcarriers are grouped into resource blocks and for
each user, the same MCS over all its allocated RBs has to
be used. Moreover, in [29] the transmit power is constant
per RB for all RBs assigned to a given user.

D. EE OPTIMIZATION IN A MULTI-USER OFDMA SYSTEM
Let us note that in the context of the multi-user OFDMA
network not only the transmit power but also the subcar-
rier/resource blocks assignment has to be determined. The
subcarrier/resource blocks assignment is usually realized by
the binary variables so that the optimization problems can
be classified as Mixed binary Integer NonLinear Fractional
Programming (MINLFP) problems which are very difficult to
solve by standard optimization techniques. Therefore, in this
section the optimization techniques used to solve a MINLFP
problem in the context of the energy efficient multi-user
OFDMA network are presented.

In most of the cited papers, the optimization procedure
consists of at least two stages out of all presented below:

(i) transmission power allocation,
(ii) subcarriers/resource blocks assignment and/or
(iii) modulation and coding scheme selection.
The values of the optimization variables of the particular
stage are usually determined while setting the values of
the optimization variables for other stages as fixed. Such
approach can be realized by the primal decomposition tech-
nique which reformulates the problem into many maximiza-
tion problems. For example, in the first stage the values
of the transmission power allocated at the subcarrier which
maximize the energy efficiency are determined. In the second
stage, based on these powers, the optimization is carried by
changing subcarriers assignment and modulation and cod-
ing schemes. For continuous transmit power values, stan-
dard optimization techniques can be used as long as the
problem is concave/convex. The more complex task is to
determine the binary decision variables. Various methods
can be used to solve MINLP problems [78], e.g., branch-
and-bound [69], [73], outer approximation or generalized
Bender’s decomposition method. The drawbacks of these
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methods are their poor scalability, i.e., these are efficient
only for small size problems. For example, in branch-and-
bound method the complexity increases exponentially as the
problem size increases. Therefore, the suboptimal solutions
which give the near-optimal results have been proposed in
the literature. In this paper, we focus on the most common
method which can be applied to different system models.
In this method, applied in [29], [64], [65], and [74], the
binary decision variables have been relaxed to be real num-
bers within interval [0, 1] and then the Dinkelbach [57], dual
decomposition method and KKT conditions [79] have been
applied to determine the power and subcarrier allocation.
Due to the Dinkelbach method, the primal decomposition
technique and taking the derivatives with respect to trans-
mission power and then with respect to binary variables
the cost-benefit metric can be determined. It means that
for each subcarrier/resource blocks the cost-benefit metric
equal to the achieved throughput minus the transmit power
multiplied by the parameter resulting from the Dinkelbach
method can be obtained. Thus, if this value is positive a given
subcarrier should be allocated to the user but if it is negative
the assignment of this subcarrier to the user is unprofitable
from the EE point of view. It is obvious that if for a given
subcarrier/resource blocks more than one user has a positive
value of the cost-benefit metric this subcarrier should be
allocated to the user with the highest one. Then, the authors
have rounded the relaxed variables to O or 1 to get an integer-
valued solution. The presented suboptimal solution gives the
near-optimal results with superlinear convergence.

While in minority, there are also other solution methods
used in the literature. For example, in [69], [73] the branch-
and-bound method has been applied to find optimal RB allo-
cation. In [69] and [ 73] the brute force search has been applied
to find optimal subcarrier assignment, but due to extremely
high complexity near-optimal and suboptimal solution have
been proposed as well. The suboptimal methods which are
based on the energy efficiency transmit power estimation
and subcarrier assignment resulting from spectral-efficient
maximization have been designed in [66] and [67]. Another
suboptimal methods have been proposed in [61], [63], [64],
and [72]. A suboptimal method based on deep learning is
proposed in [70]. Nevertheless, the review of all proposed
methods is not the goal of this paper because these depend
on the system model and do not have universal nature.

VI. MULTI-USER OFDMA RELAY NETWORK
The use of relay nodes in the network is a promising technique
for increasing the energy efficiency of the system. In the
literature, different scenarios of transmission with help of
relay nodes can be distinguished. Figure 17 illustrates four
transmission modes in the multi-user OFDMA relay network
which can be found in the literature:

(i) direct transmission [80], [81], [82], [83],

(ii) relayed transmission [80], [81], [82], [83], [84], [85],
(iii) relayed transmission with direct link [86], [87], [88],
(iv) relay beamforming [89].
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FIGURE 17. The transmission modes in the multi-user OFDMA relay
network.
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FIGURE 18. The scenario where three user pairs communicate in parallel
via the relay node.

Depending on the system model, the transmission mode is
selected related to network conditions from the considered
set of modes. The set of transmission modes can contain all
transmission modes, several or one of them, e.g., direct trans-
mission and relayed transmission. Another scenario com-
monly considered in the literature, is when the user pairs
communicate with each other via the relay node as shown in
Figure 18.

Nevertheless, irrespective of the scenario, in the case of
the multi-user OFDMA relay network, the transmission is
typically analyzed in two time slots. One use case is relayed
transmission with direct link. In the first time slot, a transmit-
ter sends data to be received by the relay and by the end-users.
In the second time slot, the relay forwards the received data
to their destination. The relayed transmission is considered as
the promising technique for increasing the energy efficiency
because the distance to end-user is divided into two or more
shorter parts with lower channel attenuation. It allows reduc-
ing the transmit power while providing the same throughput
or increasing the throughput for the same power allocation.
Moreover, the smaller distances (better channel conditions)
can result in less signal processing to be required, e.g., less
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TABLE 7. The factors increasing or decreasing the energy efficiency of
relayed and direct transmission.

Increasing EE Decreasing EE
o the distance to end-user is
divided into two or more
shorter parts with lower | e two time slots are required
channel attenuation to deliver data to end-user
g e reducing the transmit | e the relay nodes consume
2 power while providing the power related to receiv-
‘E the same throughput or ing, processing and trans-
é increasing the throughput mitting data
= for the same power | e more (than in the direct
E allocation transmission) optimization
% e less complex signal pro- variables which can cause
= cessing may be used more complex resource al-
o possibility of regenerating location algorithm
the signal in the relay
nodes
o one time slot is required to
deliver data to end-user
= o less circuit power consump-
2 tion than in the multi-user | e high transmit power for the
é OFDMA relay transmis- long links
Z sion o complex signal processing
g e less (than in the relayed may be required for the
3 transmission) optimization long links
= variables can reduce the
complexity of resource al-
location algorithm

complex data encoding and decoding. On the other hand, the
cooperative transmission required two time slots to deliver
data to end-user whereas the direct transmission only one.
Moreover, similar to the base stations and end-user devices
the relay nodes consume the power related to receiving,
processing and transmitting data, as well. Thus, there are
a few aspects which can increase as well as decrease the
energy efficiency in the case of relay networks. These are
summarized in Table 7 in contrast to the direct transmission.
Therefore, adaptive resource allocation methods are required
to maximize the energy efficiency metric.

As one may have guessed, in the context of the multi-user
OFDMA relay network more degrees of freedom than for
multi-user OFDMA network can be distinguished. In the
literature the following degrees of freedom can be found:

« the transmission mode selection - if more than one of
modes presented in Figure 17 are considered in the
system, the transmission mode can be selected. Usu-
ally, in the system models from the literature, the direct
transmission and the transmission with the help of the
relay node are selectable. Moreover, two options of
adaptability are possible. In the first the users are divided
into groups, each with a pre-determined transmission
mode [80], [81], [82]. In the second option the transmis-
sion modes are adaptively selected for every user related
to the current channel conditions [83], [86], [89].

o the relay nodes selection - in the literature, two
approaches are considered in the context of relay nodes
selection. In the first approach the users are assigned to
the relay nodes permanently [80], [81]. In the second
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FIGURE 19. The energy efficiency against the number of the relay nodes.

approach the relay nodes are selected adaptively [82],
[83], [86], [87]. The complexity of the first approach is
lower than of the second one but the achieved energy
efficiency can be lower. It results from the fact that in the
adaptive relay selection more ways to transmit signal is
possible. Finally, in the case of relay beamforming the
relay nodes selection is extended to the set of relay nodes
selection [89]. It means that more than one relay node
can transmit data to one user.

« the subcarrier/resource block pairing - relies on match-
ing subcarriers in the first and second time slots, which
maximize the energy efficiency. The subcarrier pairing
is realized in two way: the same [80], [81], [87], [90]
or different [82], [83], [84], [85], [86], [89], [91], [92],
[93] subcarriers are used in the first and second time
slots. The first approach can be less efficient in terms of
energy efficiency but less computationally complex than
the second approach which reallocates resources in the
second time slot. Nevertheless, the resource reallocat-
ing requires downconversion of the signal to baseband
which may consume additional power.

« the localization and the number of relay nodes - these
aspects are not usually determined during the optimiza-
tion procedure but have a significant impact on the
achieved energy efficiency. Let us remember that each
relay node consumes power when it is turned on. Thus,
if the number of relay nodes is too high the power con-
sumption can dominate over the potential profit resulting
from applying the cooperative transmission. In Figure 19
the energy efficiency against the number of relay nodes
for a sample scenarios is plotted [83], [86]. It can be
observed that in both scenarios exist some number of the
relay nodes in the network which maximize the energy
efficiency. Below this value, the potential of the relayed
transmission is not fully used while above this value
the circuit powers dominate over the achieved profit.
Moreover, if the relays are misplaced in the network,
the benefit of using them may be negligible. An extreme
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FIGURE 20. The energy efficiency against the distance form the base
station to the relay node.

Reduced degrees
of freedom

Computational complexity
of the algorithm

Reducing the energy efficiency and the Increasing the energy efficiency and the

complexity of the resource allocation complexity of the resource allocation algorithms

algorithms for fewer degrees of freedom in the case of many degrees of freedom

FIGURE 21. The trade-offs observed in the multi-user OFDMA relay
network.

case is when the relay node is located very close to
the base station or the end-user. In such cases, the
distance to the end-user is divided into a very short
and long path with a length comparable to that of the
direct link. Figure 20 illustrates the energy efficiency
versus distance to the relay node from the base station
for the Amplify and Forward (AF) and the Decode and
Forward (DF) relaying protocols which are elaborated
in the next subsection. The relay is placed in between
source and destination nodes of fixed positions. It can
be observed that for both relaying protocols the highest
energy efficiency is achieved when the relay divides the
distance between the base station and end-user in half.

« the transmit power and subcarrier/resource block alloca-

tion - in this case, the transmission powers allocated on
subcarriers and subcarriers assignment to the users are
determined (similar to the multi-user OFDMA network
or the single link).

Finally, in Figure 21 the trade-offs observed in the
multi-user OFDMA relay network are presented. Let us
observe that if the number of degrees of freedom increases
the computational complexity of the resource allocation algo-
rithms increases. On the other hand fewer number of degrees
of freedom reduces the computational complexity of the algo-
rithms at the cost of potentially decreased energy efficiency.

A. DATA RATE ESTIMATION IN A RELAY NETWORK
All the papers considered in this article, investigating a
multi-user OFDMA relay network use the Shannon formula
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FIGURE 22. The transmission with the help of the relay node and the
power consumption related to the amplify and forward and decode and
forward relaying protocols, where y (*-Y) determines the SNR value at the
receiver x observed on subcarrier y.

for the data rate estimation. This is in the contrast to the
OFDM single link and multi-user OFDMA network, where
other solutions were used as well. However, the specific usage
of Shannon formula depends on the considered relaying pro-
tocol. Figure 22 illustrates the transmission with help of the
relay node and the power consumption related to the amplify
and forward and decode and forward relaying protocols. Let
us note that if the direct link is not considered (e.g., it is in
a deep fade), the SNR at the end-user device on subcarrier n
aims to zero: y “” — 0. Such an assumption is commonly
applied mainly due to the increase in the complexity of the
optimization problem. Nevertheless, if the direct link is taken
into account, it can cause the increase in the energy efficiency
without any additional cost because the signal received by the
end-user from the relay node, in the second time slot, is com-
bined with the signal received from the base station in the first
time slot, using e.g. the maximum-ratio combining (MRC)
method, thus the SNR in the receiver increases, as well. In the
context of the energy efficient resource allocation the link
data rate is described differently for each relaying protocol:
« the amplify and forward protocol wherein the signal
received in the first time slot by a relay node is amplified
and transmitted to the end-user in the second time slot.
Thus, it can be observed that no time-consuming and
energy-intensive signal processing is carried out. On the
other hand, let us remember that the relay amplifies not
only desired signal but all other received signals as well.
The data rate of user # while using subcarrier pair (n, k),
i.e., subcarrier n for transmission from BS and subcarrier
k for transmission from the relay, and MRC reception
can be estimated by [94], [95]:

Y RN (1) 4
14y RN 4 (k) Y ’

remk) = log (1 +
(1D

where y %) determines the SNR value at the receiver
x, where u denoted UE and RN denotes the relay node,
observed on subcarrier y as shown in Figure 22. Because
of two-slot transmission the factor % scales Shannon
formula. Moreover, in some papers, e.g., [80], [81], [82],
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TABLE 8. Pros and cons of the relaying protocols.

Pros

Cons

Amplify and Forward (AF)

no time-consuming and
energy-intensive BB signal
processing is carried out
two time slots are enough
to deliver the data

the simple structure of the
relay node

e the increase in the total

power consumption result-
ing from RF signal process-
ing in the relay node

the relay node amplifies
not only desired signal but
also other received signals
(the potential errors can be
propagated to the end-user)
the resource reallocation is
limited and may require ad-
ditional signal processing
that increases the power
consumption

the potential errors can
be eliminated in the relay
node (are not propagated to
the end-user)

the possibility to resource
reallocation during the BB

the increase in the total
power consumption result-
ing from the BB and RF
signal processing in the re-
lay node

the time-consuming sig-
nal processing may require
more than two time slots to

deliver the data to end-user
e the complex structure of
the relay node

signal processing

Decode and Forward (DF)

the authors have applied the approximation for high
receiver’s SNR values. Moreover, in [84], [90], and [96]
the data rate estimation of the AF relaying protocol in the
interference networks can be found.

« the decode and forward protocol wherein the received
by relay node data (in the first time slot) are decoded
and then coded again and forwarded to end-user (in
the second time slot). This approach can increase the
total power consumption but the potential errors can
be eliminated in the relay node and thus they are not
propagated to the end-user. For DF relaying protocol the
data rate of user u using subcarrier pair (n, k) may be
expressed as [83], [85], [88], [94], [97], [98]:

{ 10g2 (1 + y(RN,n) + y(u,n))

r(u,n,k) — K
log, (1 + 79

5 } . (12)

The factor of % in (12), similarly as in (11), accounts
for the fact that two time slots are required. Moreover,
in [91], [92], and [93] the data rate estimation of the
DF relaying protocol in the interference networks can
be found.

Sometimes, the authors have consider AF relaying pro-
tocol instead of DF protocol because they think that
DF relaying protocol requires more than two time slots
due to the time-consuming signal processing. Finally,
in Table 8 the pros and cons of the described relaying
protocols are summarized.

It can be observed that the equations (11) and (12) describe
the data rate achieved by user u using a given subcarrier
pair. Thus, in general, the total throughput in the multi-user
OFDMA relay network within two time slots is equal to
the sum of the data rate for all users links using subcarriers
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assigned to them, in one of the selected transmission modes or
relaying protocols if they can be adaptively selected accord-
ing to channel conditions. It means that the total throughput
can contain the throughput of relayed transmission as well
as the throughput of direct transmission. In order to avoid
inter-user interference, typically it is assumed that the subcar-
riers pair can be assigned to the maximum one user among
all transmission modes. Nevertheless, there are some paper
where the same subcarrier can be used by more users [83],
[86], [97], [99]. It may result in interference among signals
transmitted to different users but if the channel attenuation
values in the interfering links are relatively high, the interfer-
ence may be small enough that the transmission will result in
higher EE.

B. TOTAL CONSUMED POWER ESTIMATION IN A RELAY
NETWORK
Similar to the data rate estimation, the total consumed power
depends on the relaying protocol:
« in the case of the AF relying protocol the signal received
by relay node does not have to be downconverted to
baseband, thus the total power consumption equals:

P = Pr_tx + Pr—rN + PBB_TX + PBB—RX

Pr Ppp
+ PRr-1X + PRF-RN + PrF-rXx, (13)

PRrr

as shown in Figure 22. It can be observed that the trans-
mit power is the sum of transmission power allocated
in the transmitter and relay node keeping in mind that
these transmissions happen typically in two consecutive
time slots. Moreover, the power consumption by the
RF signal processing in the relay node Prp_rN can be
divided into receiving and transmitting part but in the
literature, it is usually assumed to be one value.

« in the DF relaying protocol, the received signal is
downconverted, decoded, coded and modulated, causing
increased power consumption. Thus, the power con-
sumption model contains in addition the power con-
sumed by the BB processing in the relay node Pgg_rN
resulting in the total power consumption:

P=Pr_1x+Pr_RrN+ PBB-TX+PBB-RN+PBB_RX

Pr Ppp
+ PRr—1X + PRF—RN + PrE—rx . (14)

PRrp

Similarly to the power consumption by the RF signal
processing in the relay node, the power consumed by the
BB processing Pgg_rN can be divided into transmitting
and receiving part but it is usually assumed to be one
value. Moreover, Pgg_rn may depend on the complex-
ity of the signal processing.

Depending on the considered past work, some elements of
the models presented above are taken into account and some
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are omitted. Therefore, similarly as in the previous section
in the case of multi-user OFDMA network, the values of the
power consumption parameters used by various authors are
collected in Table 9. It is obvious that due to the diversity of
the relay nodes and end-user devices in the network the circuit
power consumption can be different. Nevertheless, in all cited
papers it is assumed that the circuit power consumption is the
same among the end-user devices and relay nodes. Moreover,
in some papers [87], [89] the circuit power has not been
divided into power consumed by BS, relay node and end-user
but has been summed in one value. Furthermore, it can be
observed that in Table 9 the direction of transmission (down-
link or uplink) is not specified for some papers. These authors
consider transmission between pairs of users with help of the
relay node as shown in Figure 18. If some value in Table 9
is not specified, it means that such an parameter has not been
considered. If there is more than one value provided, it means
that the authors have analyzed different scenarios.

C. CONSTRAINTS IN A MULTI-USER OFDMA RELAY
NETWORK

There is high number of potential degrees of freedom in the
multi-user OFDMA relay network. Below we summarize the
constraints considered in the related papers:

« the maximum transmit power constraint considered in
(801, [811, [82], [84], [85], [86], [87], [88], [89], [90],
[91], [92], [93], [96], and [98]. In the context of practical
wireless communication systems, the transmit power
should be limited in each transmitter. Nevertheless, the
common approach in the literature is to ensure that the
sum of the power allocated in all transmitters does not
exceed the maximum power budget of the whole system.
In the contrast to the common approach in [100] the
power allocated on a given SC is limited.

« the minimum data rate constraint which has been taken
into account in [82], [84], [86], [88], [90], and [98].
Due to two time slots that are required to deliver the
data to the end-user in the relayed transmission mode,
two approaches are considered in the context of the data
rate constraints. In the first approach, the data rate is
considered over two time slots. It means that in the
direct transmission the data rate achieved by the user
is summed over two time slots [86], [98] or scaled by
factor % [82]. If the sum of the data rate achieved in
the direct transmission mode is not scaled the factor % is
neglected for relayed transmission. Whereas, in the sec-
ond approach the minimum data rate constraint ensures
that the data rate achieved in the one time slot has
to gather or equal to the assumed threshold, thus for
the relayed transmission the data rate is scaled by the
factor § [84], [90], [96].

« the subcarrier assignment constraints which restrict each
subcarrier to be used at most once in each time slot
in order to avoid interference. In the contrast to the
multi-user OFDMA network this constraint has two
meanings in the context of relay network. On the one
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TABLE 9. The values of the power consumption parameters in the multi-user OFDMA relay networks.
Papers Scenario TX circuit RN circuit | RX circuit TX PA RN PA 3 [ _w ]
power [W] power [W] | power [W] efficiency efficiency Mbit/s

Cheung et al. [80], [81] | AF downlink 60 20 - 38% 20% -
Loodaricheh et al. [82] AF downlink 100 0.1 0.1 38% 100% -
Lu et al. [87) Prwit DL | £0.05,0.1,0.2} - - 50% 50% 038
Xiong et al. [89] Di)gﬁﬂn?} 0.2 - - 38% 38% 0.01
Bossy et al. [83] DF downlink 40 4 0.1 100% 100% -
Basturk e al. [98] DF downlink 3.16 0 0.1 40% 100% -
Xu et al. [100] DF uplink - - - 100% 100% -
Najjar et al. [95] AP multcell 0.1 0 0 100% 100% -
Bossy et al. [86] DF downlink 40 4 0.1 100% 100% 0.01
Zappone et al. [97] DF - - 0.01 100% 100% -
Xiong et al. [101] AF 0.025 - 0.025 40% 40% -
Singh et al. [84], [90] AF 0.2 0.1 0.2 100% 100% -
Singh et al. [91] DF - 0.025 0.025 100% 100% -
Singh et al. [96] AF 0.025 0.025 0.025 100% 100% -
Singh et al. [92] DF 0.01 - 0.01 100% 100% -
Singh et al. [93] DF 0.025 0.05 0.025 100% 100% -
Zheng et al. [88] DF 1.66 1.66 1.66 50% 50%

hand, it ensures that a single transmission mode, usually rf(x)

direct or relayed, is chosen for each user-subcarrier pair

while on the other hand guarantees that each subcar-

rier is only allocated to at most one end-user. In this

form, the subcarrier assignment constraints have been

considered in [80], [81], [82], [88], [89], [98], and )

[100]. Nevertheless, in the literature exist papers [83], ‘ i\ .

[86], [90] where the subcarrier can be utilized in the FEOV)<f (Xm)i \i

direct and relayed transmission mode simultaneously, | |

but within one transmission mode, it can be utilized | | :

by one user. Such an approach can cause interference, | | :

however, the properly designed resource allocation algo- i | |

rithm can increase the energy efficiency compared to i : i _

the network without inter-user interference. Moreover, x() x(+D)x(+2) x

in the scenario wherein the user pairs communicate with
each other via relay node [84], [85], [87], [91], [92],
[93] (Figure 18) or only the relayed transmission mode
is considered [87], the subcarrier assignment constraints
comes to guaranteeing that subcarrier or subcarrier pair
is utilized by only one user.

« the proportional rate fairness constraint considered in
[871, [89], and [101]. It is defined in the same way
as in the multi-user OFDMA network. Thus, each user
would obtain a predetermined proportion of the system
throughput in each resource-allocation determination.

« the maximum outage probability constraint considered
in [95], [100], and [102] ensures that the outage proba-
bility of the link is lower than the given threshold value.

D. EE OPTIMIZATION IN A MULTI-USER OFDMA RELAY
NETWORK

In this section the most popular techniques used in the con-
text of the energy efficient optimization in the multi-user
OFDMA relay network are reviewed. As we presented in
Figure 21 the complexity of the resource allocation algorithm

94122

FIGURE 23. The illustration of the Successive Concave/convex
Approximation (SCA) method.

increases with the number of the degree of freedom. More-
over, usually the originally defined optimization problem can
not be solve by the standard optimization techniques and
some transformations may be required. Thus, let us review
the techniques/methods applied to solve the energy effi-
ciency optimization problem in the multi-user OFDMA relay
network:

o the Dinkelbach method known from the previous
sections allows to transform the objective fractional
function into a new parameterized concave function. Let
us remember that the Dinkelbach method can be applied
if the numerator of the objective function is concave
while the denominator is convex or if the numerator is
affine, the denominator does not have to be restricted in
sign. The transformation of the objective function into
the parameterized concave function has been applied in
(801, [81], [82], [83], [84], [85], [86], [89], [90], [91],
[92], [93], [96], [97], [98], and [101], thus in 15 out of
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16 cited in this section papers, even when the numerator
is non-concave. In this case other methods (described
below) can be applied to transform the non-concave
objective function into the series of concave functions.
the epigraph method which is usually applied in the
context of the decode and forward relaying protocol and
the linearly rate-dependent circuit power consumption
model. It can be observed that in equation (12) the
min {-} function is used to calculate the data rate for
DF relaying protocol. From the optimization point of
view it causes that the optimization problem belongs to
the class of the max-min programming problem [83],
[85], [91], [92], [93], [94], [97]. Therefore, by applying
the epigraph method the auxiliary variable is introduced
replacing the min {-} function. It requires two additional
constraints to be created because the auxiliary variable
has to be lower than or equal to the arguments of min {-}
function but on the other hand the standard optimiza-
tion techniques can be applied after this transformation.
In the case of the linearly, rate-dependent circuit power
consumption the auxiliary variable is introduced making
the denominator convex or affine [86].

the Successive Convex/concave Approximation (SCA)
method transforms the non-convex/non-concave func-
tion into the series of convex/concave ones. The main
idea of SCA method in the context of non-concave func-
tion is presented in Figure 23. The non-concave function
f(x) is locally approximated in i-th iteration by a con-
cave function f (x|x(i)) that is equal to the approximated
function for x = x® and not smaller in the rest of its
range. The approximation is used to find new solution
x@*+D_ This procedure is repeated until the stop criteria
are met. Because the approximation of the originally
optimization problem is solved in each iteration, it is
not guaranteed to obtain the global optimum. Never-
theless, due to convexity/concavity the convergence of
the method is guaranteed. The SCA method is usually
applied in the context of the system with inter-user
interference wherein the function describing the users
data rate is the source of the non-concavity [83], [84],
[86], [90], [91], [92], [93], [96], [97], [101]. In the lit-
erature two approaches to determine the approximation
function can be found. In the first approach, the concrete
approximation function together with replacing the opti-
mization variables by equivalent ones is used. It means
that the non-concave/non-convex function has to have
a specific form that allows for approximation. This is
commonly applied in the relayed transmission with the
assumption that the direct link is not used [84], [90],
[91], [92], [93], [96].

The more universal method, based on the Difference
of Concave/Convex (DC) programming, is considered
in the second approach. This requires the approximated
non-concave/non-convex function to be a difference
of concave/convex functions. Then, the subtrahend is

VOLUME 10, 2022

approximated using the first order Taylor series at a
given point achieving the difference of a concave/convex
function and a linear function. This solution is typically
used when the first one is not possible.

o the Hungarian algorithm that solves the assignment
problem in polynomial time and is usually used in the
context of the subcarrier pairing. It means that the Hun-
garian algorithm determines which subcarriers will be
utilized as a pair in the first and second time slot, respec-
tively. The input of the Hungarian algorithm is the || x
|| matrix with each element containing the cost of uti-
lizing a given subcarrier pair in the first and second time
slot. From the energy efficiency optimization point of
view, it means that for each subcarrier pair, the user and
relay node which maximize the energy efficiency have to
be determined. Thus, actually, all possible combinations
of the user-relay node pair for a given subcarriers pair
should be checked. Hence the complexity of the resource
allocation algorithm in the approach where the users are
assigned to the pre-defined relay nodes is lower than
in the approach with the adaptive assignment because
fewer combinations have to be checked. The cost of
utilizing a given subcarrier pair used by the user-relay
node pair can be obtained by the cost-benefit metric in
an analogical way as in the multi-user OFDMA network.
In the context of computational complexity, the time
complexity of the original algorithm is O (IN |4) [103]
but it can be modified to achieve an O (IJ\/ B ) [104]
running time. Thus, it can be observed that the subcarrier
pairing together with adaptive relay selection causes the
high computational complexity of the energy efficiency
resource allocation algorithm.

Finally, Table 10 presents the optimization methods used
depending on the scenario. It can be seen that with the
increasing complexity of system model and the increase
in the number of degrees of freedom, the number of opti-
mization methods that have to be used grows. At the same
time the computational complexity of the resource allocation
algorithm rises.

VII. REPRESENTATIVE USE-CASES FOR
ENERGY-EFFICIENT OFDM NETWORKS

A. ENERGY-EFFICIENT OFDM LINK WITH
COMPUTATIONAL AWARENESS

As an example of a single OFDM link, a setup shown in [22]
can be considered. The solution proposed in that paper max-
imizes EE being the ratio of the data rate calculated using
Shannon formula scaled appropriately for each of consid-
ered MCSs (21 pairs of modulation and coding schemes
with various coding rates, see [22]), and power consumed
by an OFDM link. This power is composed of fixed ana-
log circuits power and variable transmit- and BB processing
power. The system operates with constraint transmit power
over all 256 considered subcarriers under multipath fading
and additive white Gaussian noise. The achievable EE as
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TABLE 10. The optimization methods used depending on the system model.

System model Optimization methods
~ —~ = —
=
< | a £ 8 z g 8 £
~ = s -3 |5} 9 o
Tz | 2|8 |8 2E 51 2|2 | 4| £ ¢
=1 17 L Bl =] = = B=l =
: | E | & |2 | 5| 5S¢ E8|3| 2|5 ¢E
S22 |5 |5 | 38| 2|52 282|528
2 le | E |8 |E| &2 |5|28|% E| £ |3
=} = = Q = < < =] o
s < 3 4 3 > 8 Z C 5 &) s <
> ) = = 2 = O 7 = 8 N o 2
= 3 g & 2 S 5 8 £ & E S
= S S 3 ’ 22 = A o) °
£ 5 s ] = B B
< g =¥
Cheung et. all [80], [81] X X
Loodaricheh et. all [82] X X X X X
Xiong et. all [89] X X X X
Bossy et. all [83] X X X X X X X X X
Bossy et. all [86] X X X X X X X X X X
Lu et. all [87] X X X X
Singh et. all [90] X X X X X
Singh et. all [85] X X X X X X X
Singh et. all [84], [96] X X X X X X X X X
Singh et. all [91]-[93] X X X X X X X X
Xiong et. all [101] X X X X
Zheng et al. [88] X X X
Basturk et al. [98] X X X X X X
Xu et al. [100] X X X X X X
a function of transmission power and distance between the 100 ‘ ‘
transmitter and the receiver is shown in Fig. 24. The reference o0 L |78 Proposed soution dux-x = 0.5kan
i . K § K R 90 - |- ©- Proposed solution drx_grx = 1.0km q
method is a rate-maximizing algorithm that first distributes Reference method drx_gx = 0.5km
the power among subcarriers using water-filling approach. 80 |- %= Reference method drxgx = 1.0k \ 1
This is followed by MCS selection that maximizes rate for — 70| \b i
each subcarrier. It is visible that for both distances the pro- =l “ \,
posed EE-maximizing algorithm outperforms the reference 5o | \ |
method. There is an optimal transmission power, maximizing g 50 8
EE, that increases with distance. :5 w0l \ |
& %\
g R
g 30 =
B. ENERGY-EFFICIENT MULTI-USER OFDMA NETWORK R,
WITH COMPUTATIONAL AWARENESS 20¢ 4l
Representative results of the EE maximization for a 0} .
multi-user scenario are shown in [29]. The downlink trans- Obsasasntst

mission system is LTE-like allocating orthogonal resource
blocks to multiple users. For each user each of the assigned
RBs uses equal power and a single MCS. There are 15 dif-
ferent MCS considered in [29] with rate estimation based
on effective SNR calculation and SNR to BLER mapping.
The power consumption model consists of fixed component,
modeling analog components and baseband processing (as
assumed, fixed for given MCS, the same for whole RB), and
variable component of transmit power. The achievable EE as
a function of number of users for 100 RBs and as a function
of the number of resources blocks for 10 or 15 users is shown
in Fig. 25 and Fig. 26, respectively.

The proposed solution, maximizing the EE of the system
is compared against two reference algorithms. First, Max-
throughput algorithm uses the same transmit power as the
proposed solution. Each RB is allocated to the user with
the highest channel gain. Next, water-filling is performed to
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FIGURE 24. The energy efficiency versus the transmission power for a
single link OFDM transmission.

distribute known transmit power among subcarriers. Finally,
a single MCS is selected for each allocated UE in order to
maximize rate. The second reference algorithm, called Shan-
non EE, maximizes EE but considering Shannon formula as
an estimator of data rate.

It is visible that for both considered cell radiuses (0.75 km
and 3 km) the proposed solution outperforms the reference
solutions in terms of EE. The difference is the higher the
higher number of users, as visible in Fig. 25, and the higher
the number of available resource blocks, as visible in Fig. 26.
The most important outcome is significantly improved EE of
the proposed method against Shannon EE method, showing
that simplified, Shannon-based rate estimation is not accurate
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FIGURE 25. The energy efficiency versus the number of users for different
cell radius. Multi-user scenario.
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FIGURE 26. The energy efficiency versus the number of available RBs for
different cell radius. Multi-user scenario.

enough to model the LTE-like system. However, both for the
proposed solution and the reference solutions, the achievable
EE rises with the number of RBs or users, showing positive
influence of the enlarged solution space.

C. ENERGY-EFFICIENT MULTI-USER OFDM RELAY
NETWORK WITH COMPUTATIONAL AWARENESS

A representative example of multi-user optimization sup-
ported by relays in a cell is shown in [86]. The considered
downlink transmission is structured both in frequency, using
subcarriers, and in time, using time slots. As the transmission
from the relay to the end user can be performed using the
same time-frequency resources as the transmission from the
BS to another user, interference can be expected. Here,
the data rate is calculated using Shannon formula. The power
consumption is composed of fixed power, transmission power
and BB processing power proportionally depending on the
data rate. In total, four transmission modes are considered:
1) with relay, with parallel transmission (i.e., with the subcar-
riers reuse in the second time slot corresponding to relying,
what creates interference with direct links), 2) with relay,
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FIGURE 27. The energy efficiency and throughput versus the number of
users for the multi-relay network.

without parallel transmission, 3) without relay, with parallel
transmission, 4) without relay, without parallel transmission.
While the proposed solution is able to leverage all these pos-
sibilities, the Reference method considers only options with-
out parallel transmission, i.e., without intra-cell interference.
Fig. 27 shows that for an OFDM system of 16 subcarriers
with 8 relays located in a cell both considered algorithms have
increasing EE and data rate with number of users. The gap
between both solutions is the greater the more users are in the
cell. For higher number of users the proposed algorithm can
easier find a pair of them with such a channel gain relations
that allows the parallel transmission to be scheduled as more
efficient.

VIIl. IMPACT OF PRACTICAL RF FRONT-END ON OFDM
ENERGY-EFFICIENCY

An important topic that is typically overlooked while opti-
mizing resources allocation for OFDM-based networks is
the nonlinearity of OFDM transceivers. All above mentioned
works consider OFDM transceivers as linear systems result-
ing in, e.g., linear increase of the consumed power with the
allocated power and no influence of power allocation on
interference power for this link. However, while this model
can be used for high-throughput systems it cannot be used
when the transceiver is optimized for low energy consump-
tion. This is mainly caused by nonlinear characteristic of
any practical power amplifier [105]. The operating point of a
power amplifier, called ‘“back-off” is the difference between
the PA clipping power and the mean transmit power (in
logarithmic scale). When high back-off is used the nonlinear
distortion can be negligible at the cost of low power amplifier
efficiency. When trying to maximize the PA efficiency, thus,
emitting the maximal part of the PA input power as a useful
waveform, low back-off has to be used and high nonlinear
distortion is expected. Note that the power amplifier effi-
ciency is not a fixed value [47]. It depends not only on the
power back-off but also on the amplifier architecture (defined
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by its class) [106] or even on the methods of powering it.
One of the heavily investigated scheme that can allow for the
amplifier increased energy efficiency is envelope tracking,
whose aim is to adjust PA supply voltage according to the
envelope of the transmitted signal [107]. Even if the PA
energy consumption is reliably modeled, the nonlinearity of
the supply voltage should be considered while powering a
transceiver from batteries. The battery capacity decreases
nonlinearly with the energy consumption of PA [108].

The nonlinear PA input-output (AM/AM and AM/PM)
characteristic has even stronger influence on the transmitted
OFDM signal and its distortion. As a result of nonlinear
processing, all utilized OFDM subcarriers, undergo inter-
modulation. New power components appear in the PA output
signal spectrum at frequencies being linear combination of
the input signal subcarrier frequencies. This is also visible
as a Gaussian noise-like distortion at the occupied subcar-
riers [109]. The effect depends not only on the chosen PA
back-off but also on the PA characterstics or on the properties
of the OFDM signal being amplified. There are tens of differ-
ent models of nonlinear PA ranging from some complicated
Volterra-series, through polynomial representation with or
without memory, to a simple clipper having linear AM/AM
characteristic in a given range of input power and saturation
above this range [110]. It has been shown in [111] that a PA
of clipper-like characteristic guarantees the highest Signal to
Noise and Distortion power Ratio (SNDR). Even if the PA
characteristic is not like this, it is common to utilize Digital
Pre-Distortion (DPD) (being a nonlinear signal processing
unit applied before OFDM signal enters PA) [112], so that the
effective joint characteristic of DPD and PA is clipper-like.

While DPD minimizes the nonlinear distortion power,
there is also an input OFDM waveform feature that plays an
important role. Note that minimum distortion power at the PA
output is obtained for a signal of constant envelope, e.g., Min-
imum Shift Keying signal. In the case of an OFDM signal,
a sample for each time instance is a sum o many subcarriers
modulated by typically uncorrelated complex data symbols.
As there may be tens or hundreds of subcarriers, central limit
theorem applies, resulting in OFDM signal samples being
approximated by the complex Gaussian distribution [113].
This causes the instantaneous signal envelope to fluctuate sig-
nificantly. This is typically measured for an OFDM symbol
using Peak to Average Power Ratio (PAPR) metric that is the
ratio of peak sample power to mean sample power. Observe
that while both PAPR and PA back-off are defined in relation
to the mean signal power, PAPR higher than the back-off
for clipper PA means that some OFDM signal samples are
clipped. As typical PAPR for OFDM symbol is greater than
6 dB, it means that PA can output signal of mean power up
to 25% of its maximal rated power not to observe distortions.
Such a scheme would be highly ineffective in terms of EE. For
this reason, a number of signal processing algorithms have
been elaborated that reduce PAPR of an OFDM signal [20]
or even directly the induced distortion being aware of the
PA characteristics [114], [115]. On the other hand, recent
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investigations have shown that the nonlinear “distortion” can
be used to improve reception quality [116]. Last but not least,
the above described Gaussian signal approximation is valid
for the appropriately high number of subcarriers of possibly
equal power. It has been shown that the PAPR distribution
changes if the utilized subcarriers do not constitute a single
block in frequency [117], or have varying power [118]. The
ultimate example is an OFDM transmitter modulating a single
subcarrier resulting in PAPR of 0 dB.

All these models and signal processing blocks should be
considered at the stage of resources allocation for OFDM
links or networks. However, even for simplified OFDM
transceiver nonlinearity modeling, there is a limited number
of papers that consider it in resources allocation algorithms.
In [119], power allocation in an OFDM-based cognitive radio
is considered, in order to maximize secondary user rate.
The in-band and out-of-band distortion is calculated for the
3rd order polynomial nonlinearity. However, the model does
not consider variation in allocated power among subcarri-
ers, neither frequency-specific character of nonlinear distor-
tion. Similar model and optimization is used in [120] for
Generalized Frequency Division Multiplexing. As such, the
same limitation of the results validity is observed. A clipper
nonlinerity model is considered for optimization of power
allocation in an OFDM-based link with relay. However, again
there is no frequency-selectivity of the utilized distortion
model, neither the number of utilized subcarriers influences
the results. The optimization variable is the total allocated
power, and equal power is allocated to each subcarrier.

The above discussion shows that there are still unsolved
problems in resources allocation for energy efficient OFDM-
based transmission. One of these is the front-end nonlinearity
aware optimization.

IX. PRACTICAL OFDM SYSTEM DESIGN TRADE-OFFS
AND RECOMMENDATIONS FOR ENERGY EFFICIENCY
As discussed in the previous sections, the role of computa-
tional awareness in OFDM/OFDMA resource allocation opti-
mization for the expected energy-efficiency of future radio
communication systems cannot be overestimated, and has
been emphasized in a number of recent papers. However,
there are some limitations of the wireless systems or costs
related to EE maximization, that can prevent the optimal
solution to be achieved or makes it not profitable.

Let us now summarize these design trade-offs which
are graphically presented in Figure 28 and provide
recommendations.

A. EE MAXIMIZATION VS. OPTIMIZATION COMPLEXITY

Power consumption associated with the implementation of
the optimization algorithms to achieve maximal energy effi-
ciency can be significant. The definition of optimization
problem and its constraints are becoming more and more
complex in order to reflect complex relation between differ-
ent factors, e.g., influence of coding/decoding schemes on the
transceiver power consumption. At the same time, the more
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FIGURE 28. Trade-offs in achieving EE.

complex problem results typically in more advanced opti-
mization methods that need to be applied to find the global
optimum. The resource allocation optimization methods,
e.g., a combination of Dinkelbach method, SCA, Hungarian
method, etc., can be significantly computationally complex,
requiring many iterations to be employed. Moreover, these
problems do not scale well with increasing problem size, e.g.,
number of considered users or subcarriers. As such, obtaining
of a global EE maximum might be impossible in full-size
networks in real time. Even if possible, this can bring so
much energy consumption for computation of a solution, that
it becomes impractical. Algorithms complexity and required
computational resources (the cost) must be balanced with
the performance improvement (the profit) that comes with
exploiting the optimization algorithms. A suboptimal solu-
tion may achieve the EE performance close to the optimal at
significantly lower computational time or energy. It can be
achieved by utilizing a natural property of the SCA, Dinkel-
bach etc. algorithms, being iterativeness. The algorithms can
be terminated after fewer iterations, reducing computational
complexity proportionally to the savings in number of itera-
tions. Another option, related to the numerical optimization
methods, is proper definition of a starting point. By setting
it close to the final solution, e.g., by using some simplified
models or historical knowledge, fast convergence can be
achieved. Nevertheless, it is well known that wireless com-
munication systems operate in real-time and thus low
complexity solutions are required for resource allocation.
Therefore, based on the results resulting from the high com-
plexity optimization methods near-optimal solutions can be
proposed with lower computation complexity. For example,
in the case of relay network [86], instead of checking all pos-
sible user-relay node pair combinations, based on the results
users can be assigned to the ready node a prior. Another
approach is to applied look-up-table (LUT). Based on the
simulation results, it is possible to determine the relationship
between system parameters, e.g. transmit power values may
be assigned for a given channel gains, or relay nodes may be
selected for given locations. Then, by placing this information
in the LUT, resource allocation may be accomplished by
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reading the corresponding row of the table. Moreover, the
process of reading from the table can be improved by apply-
ing the hashing or a different data structure e.g. a binary tree.

B. EE MAXIMIZATION VS. INFORMATION AVAILABILITY
AND SIGNALING OVERHEAD
Even if the EE optimization algorithm results in globally
optimal solution, it is optimal only for the considered system
model, being inherently imperfect. The most common source
will be delayed or quantized channel- and network-state
information required by the optimization algorithm. Find-
ing the proper balance between EE maximization and pro-
visioning of accurate input knowledge is one of the main
trade-offs for the deployment of EE OFDM networks. First,
this information can be inaccurate or outdated at source since
it is based on (inevitably imperfect) estimation of the channel
coefficients in the presence of noise using, typically, pilot
signals from past symbol periods. Moreover, this informa-
tion is typically quantized in order to reduce the required
throughput of the control channel, e.g., to send it periodically
from a UE performing channel estimation to a BS allocat-
ing resources. Last but not least, it may not be available in
full at all network nodes, i.e., transmission of all channel
coefficients of a given link to all other network nodes or to
a central resource management unit, in order to coordinate
inter-BS interference, would be associated with impractically
high signalling overhead and potentially significant delay.
Even if the optimal solution is calculated on time in the central
resource management unit, the decision should be distributed
among all controlled BSs within very tight latency budget.
Therefore, an optimization using reduced (but represen-
tative) information of links qualities should be considered,
accepting reduced EE. The second option is to use hierar-
chical or distributed optimization, that performs delay and
control link-demanding optimization locally at a single base
station. This allows for prompt reaction to mobile radio
channel changes, limiting control messages between BSs.
The hierarchical optimization means that local decisions are
supported by global, but slowly-varying coordination among
BSs.

C. EE MAXIMIZATION VS. AVAILABLE DEGREES OF
FREEDOM

A limitation in achieving high energy-efficiency may be a
particular radio communication standard or a radio architec-
ture with a limited number of degrees of freedom. For exam-
ple, only one MCS might be available (allowed by system
recommendations) for a given OFDM symbol or resource
block (as in LTE or 5G system standard) or a fixed power
per RB will be emitted. Moreover, the power-consumption
of the wireless transceiver may be invariant of the resources
allocation, e.g., the power consumed by a class A power
amplifier may be independent of the transmitted signal or
base-band power consumption may not scale linearly with
the transmission rate. In such cases the potential EE gain by
optimization can be limited, making the total signaling and
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computing overhead not justified. In the practical design of
energy-efficient OFDM-based communication networks one
has to assess (by simulations or measurements) whether the
energy-efficiency improvement achieved by the EE optimiza-
tion algorithms is high enough and worth the computational
and signaling costs.

This problem cannot be solved differently than by enabling
additional degrees of freedom by redesigning transceivers or
adding amendments to standards.

X. FUTURE WORKS AND CHALLENGES

The focus of this paper is the energy efficient resource allo-
cation in the systems based on OFDM/OFDMA techniques.
The reason for this is that the OFDM/OFDMA techniques
are used in most of the current wireless communication sys-
tems and are intended to be used in the future. However,
the presented discussion can extended to another modern
OFDM/OFDMA-based technologies.

One example can be Mobile Edge Computing (MEC). The
main goal of the MEC is to offload intensive mobile com-
putations to computing nodes located at the edges of cellular
networks [121]. Therefore, the energy efficient computations
offloading requires both energy efficient wireless transmis-
sion which, e.g., in 5G systems is realized with the use of
OFDM/OFDMA techniques and energy efficient tasks com-
putation. One of main challenges in this context is reliable
estimation of the power consumption in the processing nodes.
For example, in [122], [123], and [124] this power depends
on the CPU clock frequency, the total CPU cycles required
for computing tasks and the effective switched capacitance
depending on the chip architecture. Although it is a widely
used and high-level energy consumption model, it is still
highly architecture dependent. Thus, it can be observed that
also in MEC systems the power consumption models can
be of different complexity and accuracy. The second crucial
issue in designing energy-efficient MEC systems is the adap-
tive selection of the processing node because tasks can be
computed locally or in one of many cloud nodes. In the case
of local computing, the energy consuming transmission to a
cloud node is not required but task computation itself may
consume more energy. On the other hand, the task offloading
requires the transmission to the cloud node which consumes
the power and radio resources but the processing unit can be
more efficient. The selection of the processing node causes
the optimization problem to be classified as the MINLP
problem which, in the context of EE maximization, is also
a fractional programming problem. Thus, it can be observed
that the optimization techniques described in this paper can
be applied to the discussed MEC system.

Another technique to consider is Non-Orthogonal Multi-
ple Access (NOMA) [125], [126], [127], [128] which can
achieve higher spectral efficiency than OMA (Orthogonal
Multiple Access). However, it should be remembered that
higher spectral efficiency does not always result in higher
energy efficiency. In the case of Non-Orthogonal Multiple
Access more than one user uses the same frequency resource

94128

causing interference to each other. Therefore, NOMA
requires an advanced interference cancellation algorithm.
From the energy efficiency point of view, the additional
power consumed by the interference cancellation algorithm
has to be estimated and may be dominant over the gain result-
ing from increased spectral efficiency. Moreover, interfer-
ence between users causes the energy efficiency optimization
problem to be non-concave and can not be solved by standard
optimization techniques as we have shown in Section VI-D.
Nevertheless, the optimization techniques described in this
paper can be applied in such case. Finally, it can be observed
that Non-Orthogonal Multiple Access can be a promising
technique for increasing the spectral as well as energy effi-
ciency but all its aspects have to be taken into account
in designing energy efficient resource allocation algorithm.
Nonetheless, our analysis can be the baseline to investigate
the energy efficient resource allocation in NOMA systems.
Another interesting problem is the concept of Age of
Information (Aol) which was introduced in 2011 by [129] to
quantify the freshness of the knowledge we have about the
status of a remote system. More specifically, Aol is the time
elapsed since the generation of the last successfully received
message containing update information about its source sys-
tem. In practice, it describes how often the data are updated,
so it is completely different from the delay or latency. The
frequent updating of information ensures its high timeless
and accuracy but also consumes a lot of energy which is
undesirable in the case of battery powered IoT devices. In the
literature, the Aol concept has been investigated for many
different aspects. In [130], [131], and [132] the age of infor-
mation has been considered in the packet management point
of view e.g. in [132] the authors presented the age improve-
ments by having smaller buffer sizes and introducing packet
deadlines, in which a packet deletes itself after the expiration
of its deadline. In the context of wireless communication
the Aol has been considered in [133], [134], [135], [136],
[137], and [138]. In [133] the authors has dealt with the
age of information for a sensor network with wireless power
transfer capabilities. The considered sensor node harvests
energy from radio frequency signals, generates an update
when its capacitor/battery becomes fully charged and trans-
mits by using all the available energy without further energy
management. The average Aol performance of the considered
greedy policy is derived in closed form and is a function of
the size of the capacitor. The optimal value of the capacitor
that maximizes the freshness of the information, corresponds
to a simple optimization problem requiring a 1-D search.
The Aol minimization problem for a network with gen-
eral interference constraints, and time varying channels have
been considered in [135]. The authors have proposed two
methods which demonstrates significant improvement in age
due to the availability of channel state information. Simi-
lar optimization problem has been investigated in [137] but
with minimum throughput constraints. They have developed
four low-complexity transmission scheduling policies that
minimize Aol and evaluate their performance against the
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optimal policy. The simulation results show that two proposed
methods outperform the other policies, both in terms of Aol
and throughput, in every network configuration simulated,
and achieve near-optimal performance. The wireless sensors
networks (WSN) in the context of the information freshness
has been considered in [133] and [139], but only in the
second paper the energy efficiency aspect has been taken
into account. In [140] the upload scheduling scheme which
minimize the update energy consumption subject to informa-
tion freshness constraints has been proposed. Nevertheless,
in both paper and others viewed by authors of this project
papers the edge computing concept has not been considered.

Thus, it can be observed that the information freshness in
the context of the cellular IoT edge computing network is
relatively poorly studied while it could be a crucial factor in
designing the cellular IoT network. In particular in the system
where the data timeless is a priority e.g. emergency systems,
dynamic spectrum access systems, vehicle/airplane networks
or the stock exchange systems.

XI. CONCLUSION

In this paper, we review the energy-efficient resource allo-
cation methods in the single OFDM link, the multi-user
OFDMA network, and the multi-user OFDMA relay network
with computational awareness. The definitions and general
aspects of the energy-efficiency resource allocation in wire-
less communications are provided, e.g., the transmission rate
estimation, the estimation of the power consumption, the
system limitations and requirements as well as optimization
methods. Many solutions proposed by various authors are
discussed and compared. As the optimization problems for
EE maximization with constraints are relatively complex,
the mathematical apparatus required is quite advanced as
well. Though, the gain in EE can be quite significant mak-
ing the whole effort profitable. The two main issues to be
addressed in the future are presented in Section VIII and
Section IX. First, the nonlinear transceivers’ characteristics
should be considered in the optimization. By making the
system model more realistic other degrees of freedom can
be revealed at the cost of optimization complexity. Secondly,
the achievable EE depends on many factors, mostly avail-
able computational resources, control channels, and available
degrees of freedom. While the multicarrier schemes are plau-
sible to be used in the communication systems beyond 5G, the
designers of these systems will have to face these problems
finding a trade-off between all these factors. In Section X
the future works and challenges in the context of energy
efficiency resource allocation for other techniques based on
OFDM/OFDMA are provided. It can be observed that other
techniques used in the modern wireless communication sys-
tem are based on or use OFDM/OFDMA techniques. Thus,
the energy efficient OFDM/OFDMA resource allocation is
the part of them. Moreover, we have shown that many aspects
of designing energy efficient OFDM/OFDMA resource allo-
cation can be found in other techniques. Therefore, our paper
can be treated as the baseline for future works.
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