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ABSTRACT In this paper, we review radio resource optimization methods for energy-efficient wireless
communication in links and networks using the Orthogonal Frequency Division Multiplexing (OFDM)
and Orthogonal Frequency Division Multiple Access (OFDMA) techniques. We first consider the
energy-efficiency metrics and optimization goals. We discuss the increasingly complex systems, starting
from (i) a single OFDM link, (ii) an OFDMA single-hop network to (iii) multi-hop relay OFDMA
interference networks. In each case, we elaborate on the transmission rate estimation, power consumption
modelling, existing optimization constraints and the optimization solutions. Specifically, in the power-
consumption modelling, we include the signal-processing (and related computing) power. We discuss the
practicality of the considered solutions. We also touch upon the problem of nonlinear power amplifier
characteristics (causing distortions typical for OFDM signals) to be taken into account for energy-efficient
resource allocation. We discuss trade-offs and provide recommendations for future energy-efficient OFDM
networks design. We also discuss the future works and challenges in the context of energy efficiency
resource allocation for OFDM/OFDMA and their derivative techniques. We conclude that the presented
design practices should include computational awareness in the networks to trade-off between information
communication, information processing and the required network management energy-efficiency.
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INDEX TERMS Energy-efficiency, green communication, optimization, orthogonal frequency division
multiple access (OFDMA), power consumption estimation, relay networks, resource allocation, transmission
rate estimation.

I. INTRODUCTION19

In the era of ubiquitous Internet access, exponential growth20

of telecommunication traffic can be observed every year.21

According to Cisco predictions there will be 4.8 billion of22

global Internet users in 2022 and 28.5 billion networked23

devices and connections [1].Moreover, themobile data traffic24

will increase to 930 eksabytes in 2022. According to the25

Ericsson Mobility Report [2], communication of 26,9 bil-26

lions of machines and devices that are expected by 2026 to27

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

comprise the Internet of Things (IoT) poses challenges, never 28

encountered before. One of these challenges is an increase of 29

energy consumption associated with the data-traffic growth 30

worldwide. That is why reduced-energywireless communica- 31

tion has been in the focus of research and industry interest for 32

the recent years, aiming at achieving 10 times the energy effi- 33

ciency (EE) in the Fifth Generation (5G) radio systems com- 34

pared with the Fourth Generation (4G) of these systems [3]. 35

Moreover, so-called zero-energy radios are envisioned for 36

future Sixth Generation (6G) systems as their technology 37

enablers [4]. According to this vision, drivers from soci- 38

ety, including the United Nations sustainability goals, will 39
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shape 6G communication systems. Moreover, high energy40

efficiency to reduce the overall network energy consumption41

will be a critical requirement for these future systems.42

On the completion of 3GPP Release 15 [5] and Release43

16 [6] (as of today, Release 17 being under way), the set of44

5G standards has been defined. As in 4G Long-Term Evo-45

lution (LTE) standard, the Orthogonal Frequency Division46

Multiplexing (OFDM) has been proposed for 5G systems.47

Moreover, OFDM has been also successfully applied in other48

radio communication systems, such as Wireless Local Area49

Networks (WLANs), including IEEE 802.11a/g/n, Wireless50

Metropolitan Area Networks (WMANs), including World-51

wide Interoperability for Microwave Access (WiMAX) stan-52

dard, Wireless Personal Area Networks (WPANs), including53

MultiBand-OFDM in the 3.1–10.6 GHz band, as well as54

in the terrestrial Digital Audio- (DAB) or Video Broadcast-55

ing (DVB-T) systems. Popularity of the OFDM technique56

results from its known advantages: high spectral efficiency57

compared to other double sideband modulation schemes,58

flexibility and adaptation potential to channel conditions,59

robustness against intersymbol interference (ISI), efficient60

implementation using Fast Fourier Transform (FFT), low61

sensitivity to time synchronization errors and facilitation of62

the Single Frequency Networks (SFNs) [7]. Finally, Orthog-63

onal Frequency Division Multiple Access (OFDMA) is the64

popular OFDM-based method for Medium Access Control65

(MAC) layer to facilitate multiple users network access.66

Therefore, this paper focuses on the energy-efficient resource67

allocation in OFDM/OFDMA systems instead of NOMA68

(Non-OrthogonalMultiple Access), Slotted ALOHA, TDMA69

(Time Division Multiple Access). The use of NOMA tech-70

niques allows for higher spectral efficiency and lower latency71

but each of the users needs to decode the information of all the72

other users even if one has the worst channel gains. This leads73

to complexity in the receiver. Moreover, energy consumption74

is higher. In the case of the TDMA technique, the battery75

consumption is low but the guard interval between time slots76

and synchronisation is required. The synchronisation is also77

required in slotted ALOHA technique which is simple and78

decentralized protocol but due to frequent collisions, the79

maximum throughput of the slotted Aloha is only 0.368.80

Motivated by the increased mobile communication traffic,81

required high data-rates and associated energy-consumption82

on one hand, and the applicability of the OFDM/OFDMA83

techniques in contemporary and prospective radio com-84

munication systems on the other, here below, we review85

approaches and promising methods to optimize wireless86

OFDM/OFDMA links and networks. Contrarily to the87

traditional approach to minimize the transmission power88

for the assumed target bit-rate, we look at advanced89

power-consumption models and optimization of the defined90

energy-efficiency metric. This is because depending on91

the link quality, power consumption of different causes,92

e.g. RF signal radiation, or signal processing, may dom-93

inate over each other, and may be worth minimization94

for overall energy-efficiency. Moreover, non-linear Power95

Amplifier (PA) characteristic and high Peak-to-Average 96

Power Ratio (PAPR) are well known issues of OFDM-based 97

systems and they should also be taken into account (jointly 98

with other sources of power-consumption model) when opti- 99

mizing the energy-efficiency of those systems. Finally, the 100

optimization algorithm itself also consumes energy, that 101

needs to be taken into account. 102

Therefore, here below, we survey existing works that relate 103

to energy-efficiency in OFDM/OFDMA networks, and we 104

put a special emphasis on computational awareness of the 105

presented solutions, i.e., on energy-consumption models that 106

include energy consumed by digital and analog signal pro- 107

cessing, not just by radio signal emission. 108

The paper is organized as follows. First, in Section II, 109

we overview other surveys and tutorials that might be related 110

to ours to show in what aspects our work is original and 111

more focused. Then, in Section III, we provide definition of 112

energy-efficency, and consider the main optimization goals 113

related to energy-efficient wireless OFDM/OFDMA commu- 114

nication.We also review realistic power-consumption models 115

of an OFDM link. In Sections IV, V and VI, we overview 116

computationally-aware energy-efficiency optimization solu- 117

tions for OFDM links, OFDMA single-hop and relay net- 118

works respectively. Section VII presents example results of 119

energy-efficiency optimization for representative, carefully 120

selected use-cases. Then, in Section VIII, we discuss energy- 121

efficiency optimization that takes non-linear PA characteristic 122

into account. In Section IX, we discuss practicality of the 123

considered solutions, taking their computational complexity, 124

and other related costs into account. We also provide rec- 125

ommendations for future energy-efficient OFDM networks 126

design. The discussion about future works and challenges 127

in the context of energy efficiency resource allocation for 128

other techniques based on OFDM/OFDMA is provided in 129

Section X. Finally, in Section XI, we summarize key findings 130

of our survey and considerations. 131

II. RELATED SURVEYS AND TUTORIALS 132

There are a few survey papers that relate to our topic. 133

Let us now overview these published surveys, and compare 134

them with the content of our work within the follow- 135

ing aspects that we undertake: (a) the considered radio 136

communication techniques and scenarios (b) complete- 137

ness of the power-consumption models, (c) considered 138

methods for energy-efficiency optimization and (d) for- 139

mal energy-efficiency radio resource management algo- 140

rithms and optimized solutions for radio communication 141

network. 142

In [8], Feng et al. discuss key enablers for energy-efficient 143

wireless communication: resource management exploiting 144

low traffic loads and service differentiation, network deploy- 145

ment strategies, utilizing diversities of heterogeneous net- 146

works and cooperative communications, as well as MIMO, 147

OFDMA and cross-layer design options. The paper is 148

not focused on OFDM/OFDMA radio resource optimiza- 149

tion for energy-efficiency, and does not provide complete 150
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transmitter-to-receiver power-consumption models. Simi-151

larly, as in [8], the authors of [9] briefly review some inter-152

national projects and indicate key challenges related to green153

communications. Thus, [8] and [9] are different (more general154

and less focused) from our work in all aspects (a)-(d). Note155

that [8] indicates that energy-efficient resource allocation in156

OFDMA systems with appropriate relay strategies is still an157

open issue. It is in fact addressed in our paper below.158

In [10] and [11], energy-efficiency of 5G networks is159

addressed. The first paper presents very general view on160

future networks before 5G era, focusing on renewable energy161

resources for 5G base stations (BSs). The second presents162

challenges of resource allocation, network planning, energy163

harvesting and hardware design for 5G. It does not focus164

on OFDM-specific problems. Thus, papers [10] and [11]165

differ significantly from ours in the considered scenarios, i.e.166

in aspect (a). Moreover, they do not address optimization167

methods (our aspect (c)), neither present formal or practi-168

cal design solutions of energy-efficient radio networks (our169

aspect (d)).170

In magazine paper [12] by Li et al., the authors discuss171

general issues of energy-efficiency in wireless communica-172

tion, in particular in OFDMA, multi-antenna and multi-hop173

networks indicating trade-offs between energy- and spectral-174

efficiency, as well as signalling overhead required for175

energy-aware networks. The paper does not touch upon176

computational awareness of networks, narrowing power con-177

sumption to transmit (radio emission) power. Moreover,178

it does not consider energy-efficiency optimization meth-179

ods and their complexity. Likewise, in [13], Zhang et al.180

discuss fundamental trade-offs that must be taken into181

account in green wireless networks design: energy effi-182

ciency versus spectrum efficiency, deployment efficiency,183

latency and bandwidth. In this paper, the authors address184

energy-efficiency of OFDM. However, the considered power185

consumption model is limited to radio-emission power,186

no optimization methods are considered and solutions are187

not presented. Thus, similarly as [12], survey paper [13] is188

different from ours in aspect (b) and does not address aspects189

(c) and (d).190

In [14], the EARTH project results are discussed,191

in particular, beam forming and MIMO techniques for192

energy-efficiency of LTE cellular systems. There, BS power193

consumption breakdown among major transceiver blocks,194

power supply and a cooling system is presented. Although an195

LTE system usesOFDMA in a downlink, noOFDM/OFDMA196

radio resource optimization is discussed. Consequently, this197

paper is not addressing our aspects (c) and (d).198

In [15], resource allocation strategies (rate-adaptive and199

margin-adaptive algorithms) in the downlink OFDMA sys-200

tems are considered. The focus of this paper is on201

resource allocation efficiency vs. fairness. Likewise, the202

authors of [16] overview resource allocation optimization203

in the uplink direction of OFDMA systems. However,204

the goals of the optimization methods considered in both205

papers are not the energy-efficiency. Moreover, the power206

consumption model is simplified (narrowed to the radio- 207

emission power). Thus, these survey papers differ from our 208

work in aspects (b)-(d). 209

In [17], scenarios of multiple base stations co-existing 210

in the same area and sharing the available radio resources 211

are considered. The focus of the paper is on optimization 212

and game-theory-based (equilibrium) solutions for interfer- 213

ence coordination between base stations in homogeneous, 214

heterogeneous and cooperative cellular networks. There, the 215

power related to base-band signal processing is not taken into 216

account, rather the power allocated to coexisting base sta- 217

tions. Thus, this paper is different in the considered scenarios 218

(our aspect (a)) and energy-consumption model (aspect (b)) 219

from our survey. 220

In [18], Zappone et al. review optimization methods for 221

energy efficiency maximization in wireless networks and 222

provide example numerical results. They consider maxi- 223

mization of network energy-efficiency metrics defined in 224

different ways (as global energy-efficiency, weighted min- 225

imum energy efficiency, weighted sum energy efficiency 226

and weighted product energy efficiency). The paper is not 227

considering resource allocation for OFDM/OFDMA net- 228

works, and assumes a different power model than our work 229

does. It presents optimization strategies (either monotonic 230

or sequential optimization merged with fractional program- 231

ming) for power control in a network with multiple links, 232

each characterized by a specific circuit power independent 233

of a bit rate. Considering a different technique and a different 234

power model, this paper is different from our work in aspects 235

(a) and (b). 236

Finally, it is worth mentioning that high PAPR in 237

OFDM/OFDMA transmitters translates to inefficient power 238

utilization. In [19] and [20], PAPR minimization techniques 239

in OFDM systems are surveyed, however, these papers do 240

not touch upon the problem of link- or network energy- 241

efficiency optimization, nor the global power-consumption 242

model. Thus, these surveys are narrowed with respect to our 243

aspect (a) and not addressing aspects (b)-(d). 244

To summarize, our survey presented below concerns 245

optimization methods of resource (subcarriers, resource- 246

blocks, transmission power levels, modulation and coding 247

schemes, relays) allocation for energy-efficiency maxi- 248

mization in OFDM/OFDMA links and networks. The 249

power-consumption model considered here encompasses 250

transmission (electromagnetic emission) power as well as 251

the circuit- and base-band signal processing (computa- 252

tional) power dependent on the transmission bit-rate. This is 253

why we call such methods computationally aware. To the 254

best of our knowledge, no prior papers tackle systematic 255

overview of the problems of OFDM/OFDMA networks 256

global energy-efficiency optimization and dynamic resource 257

allocation with computational awareness. The major contri- 258

butions of this paper are as follows: 259

• In this paper, the state of the art with the original 260

classification of the key aspects of energy-efficient 261

resource allocation in the context of OFDM is presented. 262
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FIGURE 1. Relation between the energy efficiency and transmit power for
different values of the Signal to Noise Ratio (SNR).

The definition of the EE metric with the ways its max-263

imization are presented. Moreover, the analysis of each264

aspect and the relation between them have been dis-265

cussed.266

• The investigated aspects, energy-efficient resource allo-267

cation methods and solutions are presented for a single268

OFDM link, multiuser OFDMA and multiuser OFDMA269

relay networks.270

• The practicality of the energy-efficient resource allo-271

cation is discussed. We touch upon the problem of272

nonlinear PA characteristics (causing distortions typi-273

cal for OFDM signals) to be taken into account for274

energy-efficient resource allocation.275

• In this paper, we discuss the design trade-offs, and276

formulated recommendations for the energy-efficiency277

maximization accounting for the optimization com-278

plexity, required information availability, signalling279

overhead and the available degrees of freedom in280

OFDM/OFDMA resource allocation.281

Thus, in the contrast to the existing papers, our paper provides282

comprehensive knowledge about energy-efficient resource283

allocation in the OFDM/OFDMA systems. In this paper the284

approaches of the key aspects of energy-efficient resource285

allocation with pros, cons and trade-offs are provided. The286

methods and techniques used in the design of energy-efficient287

resource allocation are presented and finally the practical288

aspects of energy-efficient resource allocation, recommen-289

dations for energy efficiency as well as future works and290

challenges are provided.291

III. DEFINITION AND ASPECTS OF ENERGY EFFICIENT292

RESOURCE ALLOCATION IN WIRELESS293

COMMUNICATIONS294

Energy-saving or energy-efficient operation of communica-295

tion and computing networks is typically evaluated using296

metrics related to either a total energy-consumption figure or 297

the expected performance per energy unit. The later is called 298

energy-efficiency, and can be expressed in the number of 299

successfully transmitted bits per Joule or the number of com- 300

putational operations (clock cycles) per Joule or the number 301

of transported and processed computational tasks per Joule. 302

In this paper, we concentrate on wireless networks exploiting 303

OFDM/OFDMA flexiblity for energy-efficient communica- 304

tion. For such networks, the energy-efficiency metric η is 305

commonly defined as a benefit-cost ratio, where the achieved 306

data rate is divided over the associated power consumption: 307

η

[
bit

Joule

]
=

data rate [bit/s]
power consumption [W]

. (1) 308

Thus, this EE metric determines the number of success- 309

fully transmitted, received and processed bits per energy unit 310

and should be maximized. Here, processing of bits refers 311

to signal processing at the transmitter and at the receiver, 312

which is required for successful transmission and reception 313

of information. In Figure 1, the relation between the energy 314

efficiency and transmit power for different values of the 315

Signal to Noise Ratio (SNR) is presented. Let us observe 316

that there exist the optimal point for the transmit power that 317

maximizes EE. It means that there exists a trade-off between 318

the data rate and power consumptionwhich allows for energy- 319

efficient transmission. Moreover, for the higher SNR values, 320

the optimal point is reached for lower transmission power. 321

Thus, in order to maximize the energy efficiency of wireless 322

communications systems, one of three ways can be chosen: 323

(i) The maximization of the data rate, whilst minimizing 324

the total power consumption. This approach is practi- 325

cally infeasible because the achievable data rate strictly 326

depends on the transmit power (and the overall power 327

consumption) and vice versa. 328

(ii) The maximization of the data rate with a minimum 329

possible increase in power consumption (e.g., minimum 330

increase of the transmit power can cause a significant 331

gain in the date rate, particularly for low SNR values). 332

(iii) The minimization of the power consumption with a min- 333

imum reduction of the data rate (e.g. by applying less 334

advanced coding decoding energy can be reduced, par- 335

ticularly at short communication distances). 336

In the context of the energy-efficient resource allocation 337

exploiting OFDM/OFDMA techniques, the second and third 338

approaches are usually chosen because in OFDM/OFDMA 339

based networks, the total available bandwidth and power are 340

partitioned into a number of subcarriers (SC) or resource 341

blocks (RB). For each of them, the transmission parameters 342

can be determined and adopted, depending on the channel 343

conditions. Moreover, the short time-scale approach can be 344

applied to maximize the energy-efficiency metric. It means 345

that the resource allocation is realized in the frequency 346

domain for a given time slot. 347

Here, by resources we mean energy-related commu- 348

nication means (such as transmit power, basic resource 349

blocks, modulation and coding schemes (MCS) and other 350
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FIGURE 2. Interaction between the tasks of energy efficient resource
allocation in wireless communication systems.

transmission parameters) and network means (such as rely-351

ing nodes) that can be adjusted, depending on channels and352

network conditions. Optimization of resource allocation for353

energy efficiency involves estimation of the transmission354

rate and power consumption as well as taking all transmis-355

sion limitations and network requirements into account what356

has been elaborated in the following subsections, in detail.357

Regarding the first two tasks, namely transmission rate-358

and power consumption estimation, they are required for the359

energy-efficiency metric definition. Based on the literature360

review, we distinguish different approaches to estimate the361

data rate and power consumption, and analyze them. Regard-362

ing the system limitations/requirements identification task,363

we concentrate on the system and network constraints and364

requirements which have to be fulfilled, and we demonstrate365

their impact on the energy efficiency. Finally, in the opti-366

mization task, the challenges and problems related to the367

design of the resource allocation algorithm for optimal energy368

efficiency have to be solved.369

Figure 2 shows how the considered tasks interact with each370

other. specifically, the power consumption is determined by371

the transmission rate estimation (e.g. if coded transmission is372

considered, the power consumed by the encoder and decoder373

should be taken into account). The system limitations and374

requirements have an impact on transmission rate estimation375

(for example, when the fairness constraint or/and subcarriers376

grouping into resource blocks are considered). The transmis-377

sion and power consumption estimations determine how the378

system limitations/requirements are met, while all aspects379

have an impact on the solution of the optimization problem380

which allows for energy-efficient resource allocation.381

A. TRANSMISSION RATE ESTIMATION382

The crucial aspect of the energy-efficient resource allocation383

is estimation of data rate and power consumption - the numer-384

ator and denominator of (1) respectively. In this subsection,385

the main approaches to the transmission rate estimation are386

described. Having inmind the diversity of wireless communi- 387

cation systems, the transmission rate estimation is not a trivial 388

task. In the literature (not just that related to energy-efficient 389

resource allocation), three main approaches of transmission 390

rate estimation can be distinguished: 391

(i) based on the Shannon formula, 392

(ii) estimated by the Shannon formula with scaling factors, 393

(iii) based on the error-rate function and the spectral effi- 394

ciency of the applied MCS. 395

The Shannon formula for transmission rate estimation is 396

the most commonly used approach. In general, the data rate 397

described by Shannon formula is given by: 398

R
[
bit
s

]
= W · log2

(
1+

PR
σ 2
N + σ

2
I

)
, (2) 399

where W is the channel (and the signal) bandwidth, PR is 400

the average received signal power over that bandwidth, while 401

σ 2
N and σ 2

I are the average powers of the noise and interfer- 402

ence respectively over bandwidth W . The Shannon formula 403

can be easily adapted to OFDM/OFDMA subcarrier-channels 404

as well as to different network scenarios e.g. multi-cell, 405

heterogeneous or cooperative network. Moreover, according 406

to (2), R for σ 2
I = 0 is the concave function of the signal 407

power PR, while when σ 2
I 6= 0, there exist techniques which 408

allow to transform it into the concave one. (Note that con- 409

cavity of this function results in relative low computational 410

complexity of its optimization, as well as optimization of 411

the energy-efficiency, which is in the focus of this paper.) 412

The Shannon formula formulates the upper bound of the data 413

rate which is not achieved by any practical wireless system. 414

Therefore, using (2) for data rate estimation can be treated 415

as idealistic approach which does not take the limitations of 416

practical communication systems (e.g., such as a limited set 417

of the modulation and coding schemes) into account. 418

In order to account for practical limitations of a wireless 419

communication system, the data rate can be estimated by: 420

R
[
bit
s

]
= ξ ·W · log2

(
1+

ν · PR
σ 2
N + σ

2
I

)
, (3) 421

where ξ and ν are the scaling factors fitting the Shannon 422

formula to a practical system. The scaling factors can fit 423

Shannon formula to the single MCS and spectral efficiency 424

or to the whole set of them. Such an approach for rate estima- 425

tion has been first considered in [21] where scaling factor ν 426

depending on the bit error probability has been introduced. 427

Based on [21] and the assumed code rate, the coding gain 428

and bit error probability for various MCSs, the data rate has 429

been estimated in [22]. Similar approximations for a whole 430

range of the modulation and coding schemes can be found in 431

[23], [24], and [25]. In the last case (in [25]), the Shannon 432

formula is scaled just by factor ξ (assuming ν = 1). The 433

Shannon formula with scaling factors (formula (3)) reflects 434

achievable rate in a practical communication system, and can 435

still be the concave function of the signal power if the factors 436

are appropriately chosen. Thus, using it for rate estimation is 437
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FIGURE 3. The spectral efficiency as a function of SNR for three
approaches of the data rate estimation.

more accurate than using (2) and results in acceptable com-438

putational complexity of the considered optimization tasks.439

The third approach to data rate estimation which is consid-440

ered as accurately characterizing practical wireless communi-441

cation systems is based on the spectral efficiency and the error442

rate function of the applied MCS e.g. the block-error rate443

(BLER), the packet error rate (PER) or bit error rate (BER).444

This approach depends on the parameters of the modulation445

and coding scheme, e.g., on the applied (de)modulation and446

(de)coding algorithms, the packet size, the number of decoder447

iterations, etc. In general, the data rate in this approach can be448

expressed by [26], [27], [28], [29]:449

R
[
bit
s

]
= W · ζSE · [1− err (x)] , (4)450

where ζSE is the spectral efficiency in bit/s/Hz, err (·) is the451

function of error rate, while x is the vector of the parameters452

on which this function depends e.g. SNR, modulation and453

coding scheme. The data rate estimation by BLER function454

can be found in [27] where BLER curves have been approxi-455

mated by the complementary error function erfc (·) with two456

scaling factors in a function of effective signal to interference457

and noise ratio (SINR). Moreover, in [29], the scaling factors458

for the MCS set of Long-Term Evolution (LTE) network459

are provided. The approximation of PER based on the non-460

central chi-square distribution has been introduced in [30],461

and then applied in [31] in the context of the energy-efficiency462

maximization for hybrid automatic repeat request (HARQ)463

in a Rician fading channel. Other approximations of PER in464

systems applying HARQ be found in [32] and [33].465

In Figure 3, the spectral efficiency as a function of SNR466

for transmission rate estimation based on the Shannon for-467

mula, estimated by the Shannon formula with scaling fac-468

tors and based on the block-error rate are plotted. It can469

be observed that the Shannon formula deviates significantly470

from the real communication system. On the other hand, the471

data rate resulting from the block error-rate is non-convex472

function of the signal power (and SNR) making the prospec-473

tive energy-efficiency optimization problem very difficult474

to solve. In Figure 4, the trade-off between the accuracy475

of data rate estimation and the complexity of the optimal,476

FIGURE 4. Trade-off observed in the data rate estimation.

TABLE 1. Pros and cons of the data rate estimation.

energy-efficient resource allocation algorithm is illustrated. 477

Note that for the low accuracy of data rate estimation 478

(according to the Shannon formula), usually, the energy- 479

efficient resource allocation algorithm with low complexity 480

can be designed. On the other hand, the estimation with high 481

accuracy causes high complexity of the energy-efficiency 482

optimization problem. Therefore, the Shannon formula with 483

scaling factor seems to be a good trade-off between mapping 484

practical system data rates and the complexity of solving the 485

considered optimization problem. 486

Finally, the pros and cons of data rate estimation for the 487

three described approaches are summarized in Table 1. 488
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FIGURE 5. The general block diagram of the transmitter and receiver with the power consumption description related to each
element.

B. ESTIMATION OF THE POWER CONSUMPTION489

Estimation of the power consumption (the denominator490

in (1)) in a network is the crucial aspect in designing the491

energy efficient wireless communication systems. In gen-492

eral, the power consumption models consist of the power493

required to transmit the signal PT and the power consumed494

by the circuits PC which can be divided into power consumed495

by the baseband signal processing PBB and by the radio-496

frequency (including intermediate-frequency) signal process-497

ing PRF (see Figure 5):498

P [W] = PT + PBB−TX + PBB−RX︸ ︷︷ ︸
PBB

+PRF−TX + PRF−RX︸ ︷︷ ︸
PRF︸ ︷︷ ︸

PC

.499

(5)500

In case of the OFDM/OFDMA technique, the transmission501

power is equal to the sum of powers allocated to subcarriers502

which are determined by the designed resource allocation503

algorithm that responds to instantaneous channel conditions.504

The issue is more difficult in the case of the estimation505

of power consumed by the transmitter and receiver cir-506

cuits. The main difficulty results from different types of507

transmission and reception techniques, applied technologies,508

standards, algorithms implementations, etc. In the literature,509

three approaches of power consumption modeling can be510

distinguished:511

(i) high-level power consumption model,512

(ii) estimating power consumption based on the measure-513

ments,514

(iii) the estimation of the power consumed by each transmit-515

ter and receiver components.516

Their pros and cons are presented in Table 2.517

The high-level models can determine the power consump-518

tion of different techniques in a universal way but at the519

expense of the low accuracy of estimation. The simplest total520

power consumption model can be found in the early papers521

focusing on the energy-efficient resource allocation [34],522

[35]. In these papers, the total power consumption model523

consists of the constant circuit power and the transmit power524

allocated at each OFDM subchannel. The constant circuit525

power includes the power consumed by the baseband- and526

radio-frequency signal processing at the transmitter and at527

the receiver, while the transmit power dynamically changes528

according to instantaneous channel conditions.529

TABLE 2. Pros and cons of the power consumption estimation.

In [22], [36], and [37], the power dissipation in a chip is 530

modelled as the sum of a static term and a dynamic term. 531

The latter depends on, among other parameters, the supply 532

voltage, the clock frequency and the circuit capacitance. It is 533

assumed that the dynamic term depending on the clock fre- 534

quency is scaled with the data rate. Thus, the circuit power is 535

modelled as the linear function of the achieved data rate: 536

PC [W] = α + β · R, (6) 537

where α is the static term, and β is the implementation- 538

dependent factor determined in W/ (bit/s). These high-level 539

power consumption models are commonly used in the energy 540

efficient resource allocation optimization. 541

The second approach to estimate the power consumption of 542

wireless devices is based onmeasurements. Such an approach 543

guarantees high accuracy of power estimation but it highly 544
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FIGURE 6. The block diagram of OFDM transmitter and receiver with the power consumption description related to each element.

depends on the equipment/link/network configuration, imple-545

mentation, vendors, etc. In this approach, the total consumed546

power (including transmission power) is measured. It means547

that the transmission power allocation algorithm can not be548

applied with such models because the transmit power and549

the circuit power are not separable, thus the relation between550

them can not be determined a posteriori (after measurement).551

In [38], [39], [40], [41], and [42], the authors describe mea-552

surements of the power consumption of a set of commercially553

available devices, in the number of configurations. In [39], the554

stochastic power consumption models have been proposed555

based on measurements of a range of transceivers offered556

by various vendors. The authors of [39], [40], [41], and [42]557

have focused on the WiFi standards while in [38] the set of558

measured devices includes cellular network USBmodem e.g.559

LTE as well as WiFi USB modem. Moreover, these papers560

provide the analytical models of the power consumed by561

devices. Although the power consumption modelling based562

on measurements highly depends on the devices hardware563

and software implementation, application techniques, ven-564

dors, etc., they can be useful to design the high-level mod-565

els by the means of interpolation of measurement points or566

statistical approach.567

The most accurate but also the most complex approach568

is to estimate the power consumption of each transmitter-569

and receiver-component separately. Having in mind the fact570

that the transceiver is integrated into one chip, the measure-571

ment of each its component is very difficult and practically572

impossible. Therefore, in the literature, the estimation of573

each transceiver component power consumption is usually574

based on its architecture. (The block diagram of the coded575

OFDM transmitter and receiver is presented in Fig. 6.) In this576

approach the power consumption model by circuits is given577

by:578

PC [W]579

= PENC + PMOD + PIFFT + PDAC︸ ︷︷ ︸
PBB−TX

580

+ PLPF + PADC + PFFT + PDEMOD + PDEC︸ ︷︷ ︸
PBB−RX

581

+ PPA + PMIX + PLO︸ ︷︷ ︸
PRF−TX

+PRFF + PLNA + PMIX + PLO︸ ︷︷ ︸
PRF−RX

, 582

(7) 583

where PPA, PLNA, PLO, PRFF and PMIX describe the 584

power consumption of the power amplifier (PA), low noise 585

amplifier (LNA), local oscillators (LO), radio frequency (RF) 586

filter and mixer, respectively. The power consumed by base- 587

band (BB) processing includes power consumption of the 588

analog-to-digital converter PADC, the digital-to-analog con- 589

verter PDAC, modulation PMOD and demodulation PDEMOD, 590

encoding PENC and decoding PDEC, low-pass filter PLPF, 591

inverse fast Fourier transform PIFFT and fast Fourier trans- 592

form PFFT. It can be observed that depending on the struc- 593

ture of a transceiver, the power consumption model can be 594

different. Nevertheless, some elements are common for the 595

most digital transmission systems. The power consumption 596

models of these components consuming most considerable 597

amount of power can be found in [43], [44], [45], and [46]. 598

There, the total power spent in the communication link is 599

the sum of power consumed by the power amplifier, the 600

low noise amplifier, the analog-to-digital converter and the 601

error-correcting decoder. More system-level energy models 602

for the radio frequency front-end components of a wireless 603

transceiver with the exemplary power consumption values 604

from most commonly refereed publications can be found 605

in [47]. The components include ADC, DAC, the recon- 606

struction and anti-aliasing filters, the mixers, the frequency 607

synthesizer, PA, LNA, and the baseband amplifier. In [48], 608

more exemplary power consumption values are listed in 609

the context of Long Term Evolution (LTE) technology. The 610

power consumption models from the papers cited above have 611

been adapted to multi-user massive MIMO (multiple-input 612

and multiple-output) scenario in [49] and [50]. In addition to 613

adapting existing models of energy consumption, the model 614

has been extended by elements specific to the presented sce- 615

nario, such as energy consumption by the channel estimation 616

process, by the load-dependent backhaul or linear processing 617

at the base station. 618

In most of the papers cited above, the authors focus on 619

the power consumption of the RF front-end and channel 620
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FIGURE 7. Measured and modelled power consumption of the USB
transceivers as a function of the rate.

coding, neglecting the power consumed by other baseband621

signal processing algorithmswhich have a significant share in622

power consumption, in case of short links. In [51], [52], [53],623

[54], and [55], more attention is put to this aspect. In [51]624

and [52], the number of operations needed to encode or625

decode the information bit for the channel coding algorithms626

was determined. Then, knowing the energy consumption per627

operation, the total power consumed by channel coding can628

be determined. In [53], a dynamic power estimation method-629

ology for Field Programmable Gate Arrays (FPGA) based630

system has been presented. The methodology has been evalu-631

ated on the LTE downlink physical layer and provides fast and632

accurate power estimation. Similarly as in the general power633

consumption model presented in [36], the power consumed634

by FPGA is also divided into static and dynamic power.635

In the proposed methodology, the total dynamic power is636

determined by the power estimations of each sub-element637

in the system e.g. in the wireless communication scenario,638

the power is estimated for channel coding, modulation, Fast639

Fourier Transform (FFT) etc. That work has been continued640

in [54] and [55] where the more advanced scenarios are641

considered, and the power consumption values of each sys-642

tem element are presented. Moreover, the extension to other643

FPGAs by introducing a scaling factor has been introduced.644

As overviewed above, diverse power consumption models645

can be considered for distinct transmitter and receiver com-646

ponents. In Table 3, key parameters of the power consump-647

tion models for distinct transmitter and receiver components648

known from the literature are summarized.649

Furthermore, in Figure 7 our measurement results for650

different USB transceivers and based on them the power651

FIGURE 8. The consumed power for high-level power consumption model
and based on the estimation of the power consumed by each transmitter
and receiver components [25].

consumption model are presented [56]. The consumed power 652

was measured on the transmitting and receiving sides for dif- 653

ferent values of pathloss. Moreover, all measured transceivers 654

work in IEEE 802.11g standard and were selected so that 655

the WiFi chipset was different. It can be observed that the 656

power consumption increases with the rate and the values of 657

the consumed power and curve slope highly depend on the 658

vendor. There is also a noticeable impact of pathloss on the 659

power consumed, particularly on the receiving side, which 660

is related to the increasing power of transmission. Moreover, 661

in Figure 8 the consumed power for high-level power con- 662

sumption model and based on the estimation of the power 663

consumed by each transmitter and receiver components [25] 664

is presented. Note that in both approaches, the power con- 665

sumed grows exponentially with the throughput, in contrast to 666

the measurement-based approach where the power increased 667

linearly. In addition, for a given system configuration, the 668

power consumed by the transmitter and receiver components 669

is in most cases constant. For the power consumption model 670

presented in [25], only the power consumed by channel 671

coding, the power amplifier and the transmit power change 672

dynamically depending on the channel conditions. Therefore, 673

both curves follow a similar course. 674

Finally, Figure 9 illustrates the trade-off between the accu- 675

racy of the power consumption models and the difficulty 676

in defining them. It can be observed that if the power con- 677

sumption model is easy to define, the representation of the 678

real system is low. On the other hand, if the accuracy of 679

the power consumption model is high, the model is really 680

difficult to determine, for example, due to the fact that all 681

transmitter/receiver components are integrated in a single 682

chip. Therefore, the power consumption based on the mea- 683

surements and augmented with the interpolation or stochastic 684

modelling seems to be a good trade-off. 685

C. CONSTRAINTS 686

The maximization of energy efficiency metric as defined 687

by (1) without constraints is not practical for multiple rea- 688

sons.1 In the optimization, physical limitations of the network 689

1One might achieve the maximum energy efficiency, if no transmission
takes place.
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FIGURE 9. Trade-off observed in the power consumption estimation.

TABLE 3. The review of the power consumption models of the
transmitter/receiver components.

such as the maximum transmit power, minimum guaranteed690

throughput or particular standard requirements (e.g. the emis-691

sion spectrum mask) have to be taken into account. There-692

fore, the energy efficiency optimization problem is usually693

defined as the objective function with constraints. Moreover, 694

some limitations of wireless communication systems can be 695

included in the objective function, e.g., grouping the sub- 696

carriers into resource blocks. The most common constraints 697

known from the literature are listed below: 698

• the maximum transmission power constraint ensures 699

that the sum of the transmission power allocated to 700

the subcarriers is lower than or equal to the maximum 701

assumed value. In the case of downlink transmission, 702

this constraint typically limits the transmission power of 703

the base station while, for the uplink, the transmit power 704

of each end-user is limited. This constraint results from 705

practical aspect of designing wireless communication 706

systems where the total transmission power is limited 707

by standards. 708

• the requirement on the minimum data rate aims at pro- 709

viding the end-user quality of service. In this case, the 710

achieved data rate has to be higher than or equal to 711

assumed threshold. In the literature, this constraint is 712

typically considered in the short-term context. It means 713

that in a given time slot, the resource allocation algo- 714

rithm has to provide the required data rate. From the 715

energy efficiency point of view, the data rate for a user 716

with poor channel conditions can be extremely low, even 717

zero, if this constraint was not applied. Thus, such con- 718

straint is necessary in the practical radio communication 719

networks. 720

• the subcarrier/resource block allocation constraint 721

which guarantees that the same subcarriers can be 722

assigned to a certain, limited number of users. This 723

constraint is relevant in the case of a multi-user scenario 724

in order to avoid interference between users. In the 725

case of homogeneous network, it means that a subcar- 726

rier can be assigned to at most one end-user. However, 727

there exist scenarios, e.g. heterogeneous or relay net- 728

works, where the same subcarriers can be utilized by 729

more than one user, resulting in interference between 730

users. Note that a properly designed resource allocation 731

algorithm, in an interference network, can increase the 732

energy efficiency compared to the networkwithout users 733

interference. From the optimization point of view, this 734

constraint requires the introduction of binary decision 735

variables (representing each subcarrier assignment or 736

no-assignment to a particular user) making the opti- 737

mization problem a Mixed-Integer Nonlinear Fractional 738

programming problem which is very difficult to solve in 739

its original form. 740

• the fairness constraint is introduced to maintain the 741

transmission rate among users with a predetermined pro- 742

portion. Thus, it is considered in the multi-user system 743

model. 744

D. OPTIMIZATION 745

The design of the energy-efficient resource allocation algo- 746

rithm usually comes down to solving the optimization prob- 747

lem defined as the maximization of the energy efficiency 748
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TABLE 4. The comparison of the methods to solve the fractional optimization problem.

FIGURE 10. Generalized Dinkelbach method.

metric. Because of the fractional form of the energy efficiency749

metric, the optimization problem belongs to a broad class of750

fractional problems:751

x? = argmax
x

R (x)
P (x)

, (8)752

subject to: fi (x) ≤ bi, i = 1, . . . ,m. (9)753

Here, the vector x? =
(
x?1, . . . , x

?
n
)
contains the optimal754

values of the optimization variables x = (x1, . . . , xn), the755

ratio of functions R : Rn
→ R and P : Rn

→ R+ is the756

objective function, the functions fi : Rn
→ R, i = 1, . . . ,m757

are the (inequality) constraint functions, and the constants758

b1, . . . , bm are the limits, or bounds, for the constraints.759

Since the objective function in (8) is in general non- 760

concave, standard convex optimization algorithms are not 761

guaranteed to converge to global optimum and specific algo- 762

rithms are required. In the literature, four approach to solve 763

the fractional programming problem can be found: 764

(i) the Dinkelbach’s method [57], 765

(ii) the Charnes-Cooper transform method [58], 766

(iii) solution of the quasi-concave optimization problem, 767

(iv) suboptimal solution of the optimization problem. 768

The Dinkelbach method and the Charnes-Cooper method can 769

be used if the numerator of the objective function is concave 770

while the denominator is convex or if the numerator is affine, 771

the denominator does not have to be restricted in sign. Oth- 772

erwise, if the optimization problem can not be transformed 773

into concave one, the designing of the special algorithm or 774

heuristic to solve the optimization problem is required. In the 775

case of the Dinkelbach method the objective function is trans- 776

formed into a new parameterized concave function which 777

can be solved by the iterative Dinkelbach algorithm with the 778

superlinear convergence. The generalized form of Dinkel- 779

bach algorithm is presented in Figure 10. In the Charnes- 780

Cooper method, the fractional problem is transformed into an 781

equivalent convex problem with one additional variable and 782

two constrains (if the numerator is affine only one constraint 783

is added). Finally, in Table 4, the comparison of the methods 784

to solve the fractional optimization problem is presented. 785

IV. SINGLE OFDM LINK FLEXIBILITY FOR 786

ENERGY-EFFICIENCY 787

In this section, we focus on the energy-efficient resource 788

allocation in the context of a single OFDM link. Visualiza- 789

tion of the example single link transmission with the related 790

power consumption is presented in Figure 11. It can be 791

observed that the user achieves some transmission rate as a 792

result of per-subcarrier power allocation in response to the 793

instantaneous channel conditions (visualized in Fig. 11 as 794

the magnitude of the instantaneous channel characteristic). 795

In the presented example, the resource allocation algorithms 796

come down to determine the values of transmission powers 797
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FIGURE 11. The single link scenario, where p(n)T determines the power allocated on SC n ∈ N ,
the channel coefficient in the link is defined by h(u,n) while R(u) is the data rate achieved by
user u. The variables related to the system constraints are denoted as PMAX and R(u)MIN which
define the maximum transmit power and the minimum data rate achieved by user, respectively.

allocated to subcarriers. However, more degrees of freedom798

can be identified in the single link scenario. Depending on the799

considered system scenario, the transmit power can be allo-800

cated per subcarrier, per resource block consisting of many801

SCs or per user. Moreover, in practical wireless communi-802

cation systems, modulation and coding schemes and other803

transmission parameters can be adaptively selected in order804

to maximize the energy efficiency. Here below, the aspects of805

energy efficiency optimization are reviewed in the context of806

a single link scenario.807

A. ESTIMATION OF THE OFDM SINGLE LINK808

TRANSMISSION RATE809

In the context of the single, uth user OFDM link transmission810

rate R(u) is determined by the sum of the rates r (u,n) achieved811

using the allocated resource units:812

R(u) =
∑
n∈N

r (u,n), (10)813

whereN is the set of allocated resources In the literature, the814

first two approaches to the data rate estimation mentioned in815

Section III-A are usually considered for a single link scenario.816

While in [36], [37], [58], and [59] the data rate achieved per817

subcarrier is determined by the Shannon formula, the trans-818

mission rate in [22], [34], and [35] is estimated using Shannon819

formulawith a scaling factor related to an adoptedmodulation820

and coding scheme and a target bit-error probability.821

Most importantly, the data rate estimation methods can822

have various complexity as a result of the number of degrees823

of freedom available in a given system. In [22], the scal-824

ing factors for the Shannon formula-based rate estimation825

depending on the code rate, the coding gain and the target826

bit-error probability are determined per subcarriers which827

means that the modulation and coding schemes can vary828

among subcarriers. Such an approach allows theoretically829

for relatively the highest bitrate and EE. However, this830

assumes that at each subcarrier different MCS can be used.831

This requires potentially many parallel coding and decoding832

blocks to be run in a single user equipment (UE), a solution 833

infeasible inmany hardware implementations. Two other lim- 834

iting factors are: the wireless channel characteristic and the 835

available amount of control information. The wireless chan- 836

nel is assumed typically to be invariant within time-frequency 837

block limited by the coherence time and the coherence band- 838

width. This block (often called Basic Resource Block - BRB) 839

usually contains several subcarriers and OFDM symbols that 840

should be assigned the same MCS. The MCS allocation has 841

to be preceded by the channel impulse response estimation, 842

typically using pilots, and feedback reporting quantized chan- 843

nel quality reported by a UE to the BS. These two processes 844

need some time-frequency resources to accommodate pilots 845

or control messages, reducing available resources for user 846

data. The problem of finding the balance between the accu- 847

rate channel estimation and the reduction in data rate has 848

been discussed in [60]. Thus, in many real-world OFDM- 849

based systems, the available degrees of freedom in resource 850

allocation are limited and the data rate can be estimated per 851

block of several subcarriers. The authors of [34], [35] have 852

considered grouping subcarriers into subchannels described 853

by the effective power-gain of a channel. The data rate has 854

been estimated by Shannon formula with the scaling factors 855

which have been obtained for the M-QAM transmission with 856

Gray mapping coherently detected in an AWGN channel 857

depends on a data interval, a signalling interval, the number 858

of transmitted symbols, the number of subcarriers in the sub- 859

channel and SNR gap dependent on modulation and coding 860

scheme. 861

B. POWER CONSUMPTION ESTIMATION FOR A SINGLE 862

LINK 863

As shown in Figure 11 in the case of a single OFDM link 864

the total power consumption consists of the power consumed 865

by BB and RF signal processing on the transmitter and 866

receiver side as well as the transmit power being the sum 867

of powers allocated on subcarriers. Observe that, while the 868

wireless channel frequency response has an influence on the 869

VOLUME 10, 2022 94111



B. Bossy et al.: Energy-Efficient OFDM Radio Resource Allocation Optimization With Computational Awareness

FIGURE 12. The energy efficiency, the data rate and the transmit power
as a function of the circuit power for different value of the parameter β.

optimal allocated powers, its sum is typically fixed. It influ-870

ences indirectly the consumed power. Moreover, as shown in871

Section III-B the power consumed by the circuits depends872

on many system parameters, e.g., the modulation and coding873

schemes, implementation, technology etc. However, these874

phenomena are in many cases not considered to simplify875

the model. The high-level power consumption model is usu-876

ally used in the context of the single link scenario. One of877

these power consumption models considered in the literature878

assumes that the power consumption of BB and RF signal879

processing is expressed by one constant value. For exam-880

ple in [34] and [35] the authors assumed that this value is881

constant, equal to 0.1 W, though the adaptive QAM scheme882

has been used wherein the power consumption can vary for883

different modulation orders. Nevertheless, the adaptive QAM884

scheme has an impact on the transmit power because of885

different scaling factors in the data rate estimation among the886

modulation orders.887

In [58] the circuit power (understood as the sum of power888

consumed by BB and RF signal processing) is assumed to be889

constant, but the transmission power is scaled by the parame-890

ter that expresses power amplifier inefficiency. A fixed value891

of PA efficiency is another simplification. It heavily depends892

on the utilized power amplifier, if it works with fixed or893

adjustable supply voltage or the transmitted signal itself. This894

problem will be discussed in Sec. VIII. Nevertheless, the val-895

ues of the circuit power and the power amplifier inefficiency896

as well as the numerical results have been not provided in this897

paper (only analytical analysis has been considered).898

Another high-level power consumption model considers899

variations in the circuit power [36], [37]. In this approach900

the circuit power is modelled as the sum of a static term901

and a dynamic term where the second of them depends on902

the sum rate. Moreover, the transmission power is scaled by903

the parameter related to the efficiency of the power amplifier 904

which is given by the Peak-to-Average Power Ratio (PAPR) 905

divided by the drain efficiency of the power amplifier. There 906

the maximum, rarely observed PAPR, equal to the number of 907

subcarriers for an OFDM system, is assumed. Although, the 908

authors have not provided the value of the power consump- 909

tion model parameters, they have shown the impact of these 910

parameters on the energy efficiency metric. 911

In [22] the modulation and coding scheme-dependent cir- 912

cuit power in the fast adaptive OFDM system has been con- 913

sidered. It means that the power consumption model does 914

not depend only on the data rate and β parameter (as shows 915

equation (6)) but also on the coding rate of applied modu- 916

lation and coding scheme. Moreover, the data rate achieved 917

per subcarrier has been estimated using Shannon formula 918

with scaling factor which depend on the modulation and 919

coding scheme as well. Therefore, the optimal transmit power 920

can vary among the modulation and coding schemes for the 921

same channel impulse response. The parameter describing 922

the constant circuit power is equal 0.1 W while parameter 923

β = 5 · 10−5W/ (Mbit/s). 924

Another high-level power consumption model consisting 925

of the fixed circuit power and the variable power increasing 926

with the number of utilized subcarriers has been presented 927

in [59]. 928

It can be observed that the above models present increasing 929

complexity in order to reflect rising number of relations 930

influencing an OFDM link power consumption. Though, the 931

models are rather high-level and general, independent of 932

specific transceivers architectures. This can be treated as an 933

advantage of these models, making the derived resource allo- 934

cation algorithm independent from the hardware platform. 935

A set of transceiver-dependent parameters, e.g., β, can be 936

adjusted individually without a need for reformulation of the 937

optimization problem or its’ solving algorithm. 938

The above-cited papers use the high-level power consump- 939

tion models to optimize the energy efficiency. Sample results 940

for maximization of EE have been generated in the single link 941

scenario with the linearly rate-dependent circuit power con- 942

sumption model (described by equation (6)) are presented in 943

Figure 12. The energy efficiency, data rate and transmit power 944

in a function of the static part of circuit power consumption 945

model are plotted. Let us observe that the data rate and trans- 946

mit power are the same for different value of the parameter 947

related to the dynamic part of the circuit power consumption 948

(β). It means that the dynamic part does not affect transmit 949

powers allocated on subcarriers but only energy efficiency 950

value. Moreover, the transmit power increases with the static 951

part of the circuit power (α) in order to eliminate the domi- 952

nation of static power over the transmission power. 953

However, there are somemore detailed power consumption 954

models considered in the literature as well. A single link 955

transmission where the BB power consumption is modelled 956

as the power consumed by each component is presented 957

in [54]. The authors do not consider EE optimization. In [53] 958

and [54] the authors propose the dynamic power estimation 959
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FIGURE 13. The energy efficiency as a function of available transmission
power for the EE and throughput maximization (left subfigure), or as a
function of the minimal throughput for the EE maximization and
transmission power minimization (right subfigure).

methodology for FPGA-based OFDM transceiver. Moreover,960

in [54] the authors proposed measurement-based power con-961

sumption models for the considered FPGA implementation.962

C. CONSTRAINTS FOR A SINGLE LINK963

In Figure 11 it can be observed that the system can be lim-964

ited by the maximum transmission power and the minimum965

required data rate. The important thing here is that if both966

constraints are considered the maximal transmission power967

has to be enough to provide the required data rate. Otherwise,968

the resource allocation is non-feasible.969

The maximum transmission power constraint which970

ensures that the sum of the transmission power allocated on971

the subcarriers is less than or equal to the maximum assumed972

value has been considered, e.g., in [22], [34], and [35].973

Figure 13 illustrates the optimized energy efficiency for the974

constrained OFDM link. On the left side the energy efficiency975

as a function of available transmission power for the EE and976

throughput maximization are presented. In the case of EE977

maximization, the energy efficiency increases with the avail-978

able transmission power and remains constant after reach-979

ing the maximum. For higher available transmission power980

value, it is not fully exploited. In contrast, the throughput981

maximization causes the energy efficiency to drop as a result982

of increasing data rate and fully utilized maximal transmit983

power.984

The minimum data rate constraint provides the end-user’s985

data rate higher or equal to the assumed threshold and has986

been considered, e.g., in [34] and [35]. On the right side of987

Fig. 13 the energy efficiency versus the minimum required988

throughput for EE maximization and transmission power989

minimization are plotted. It can be observed that with increas-990

ing the data rate requirement the energy efficiency decreases991

in both schemes above some point. However, for relatively 992

low throughput requirements and the EE maximization, the 993

energy efficiency takes constant value because the through- 994

put resulting from optimization is higher than the data rate 995

requirement. 996

D. OPTIMIZATION OF EE IN AN OFDM SINGLE LINK 997

The complexity of the energy-efficient resource alloca- 998

tion algorithm depends on the degrees of freedom of the 999

considered system and on the utilized model of the data 1000

rate and power consumption as well as the system limita- 1001

tions/requirements. In the literature, two sets of the optimiza- 1002

tion variables are considered in the context of a single-link 1003

scenario: (i) the transmit powers allocated on the resource 1004

unit or related to them data rates achieved on the resource 1005

unit, (ii) the transmit powers/data rates on the resource unit 1006

and applied modulation and coding scheme. It means that in 1007

the first approach the data rate is estimated by the Shannon 1008

formula, thus only transmission power can be determined 1009

and the modulation and coding schemes are not selected. 1010

In contrast, in the second approach the data rate is esteemed 1011

by different methods where the transmit power and the mod- 1012

ulation and coding scheme have be to determined. The first 1013

set of the optimization variables has been considered in [36], 1014

[37], and [58]. In [58] the authors have optimized the energy 1015

efficiency by selecting optimal transmission power using 1016

Dinkelbach method with superlinear convergence. Due to the 1017

rate-dependent circuit power consumption model, in [36] and 1018

[37] the energy efficiency has been maximized by obtaining 1019

the optimal value of the data rate achieved on each subcar- 1020

rier. Moreover, in [58] the Charnes-Cooper and Dinkelbach 1021

methods have been used to solve the energy-efficient resource 1022

allocation optimization problem. The authors have shown that 1023

both methods give the same optimal result. In [34] and [35] 1024

the energy efficiency is optimized for an uncoded M-QAM 1025

modulated OFDM link. The modulation order is expressed 1026

as the function of the data rate, thus, in fact, the data rate 1027

achieved per subcarrier is optimized. The authors has proven 1028

that the defined optimization problem is quasiconcave, thus 1029

if a local maximum exists, it is also globally optimal. In order 1030

to find the optimal data rate for the single subchannel trans- 1031

mission Gradient Assisted Binary Search (GABS) method 1032

has been proposed which then is used in the Binary Search 1033

Assisted Ascent (BSAA) algorithm to find the optimal solu- 1034

tion in the multi-subchannel scenario. 1035

The second set of optimization variables is considered 1036

in [22]. The transmit power and modulation and coding 1037

scheme are determined per each subcarrier in order to max- 1038

imize the energy efficiency. In the first step of proposed 1039

algorithm the Dinkelbach method has been used to transform 1040

the objective function. Next, the transmit power for eachMCS 1041

has been obtained. Finally, based on the cost-benefit function 1042

the modulation and coding scheme is selected per subcarrier. 1043

In Table 5 the summary of the energy-efficient resource 1044

allocation methods in a single-link scenario is presented. 1045
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TABLE 5. Summary of the energy-efficient resource allocation methods in a single-link scenario.

FIGURE 14. The multi-cell OFDMA downlink network, where p(n)T determines the power
allocated on SC n, 9(u,n) the binary variable determining if the subcarrier n is assigned to user
u or not while the channel coefficients in the link between BS and users u and u′ are defined
by h(u,n) and h

(
u′,n

)
, respectively. The data rate achived by user u and u′ are denoted as R(u)

and R
(
u′

)
respectively. The variables related to the system constraints are denoted as PMAX,

R(u)MIN and R
(
u′

)
MIN which define the maximum transmit power and the minimum data rate

achieved by user u and u′ , respectively.

V. MULTI-USER OFDMA NETWORK1046

Let us consider the multi-user OFDMA network where one1047

base station serves some number of users which share the1048

bandwidth divided into subcarriers. In this case the energy1049

efficiency metric can be associated with the whole network1050

or individual users, thus can be defined in different ways.1051

In the literature, three main approaches to maximizing the1052

energy efficiency metric can be distinguished [61]:1053

(i) maximizing the energy efficiency of the whole network,1054

(ii) maximizing the sum of the users energy efficiency,1055

(iii) maximizing the minimum user’s energy efficiency.1056

In the first approach, the energy efficiency is defined as the1057

ratio of total throughput (the sum of users data rate) to the1058

total consumed power in the network. It means that the chan-1059

nel coefficients of all users have to be available in one unit.1060

Therefore such an approach is mostly applied in the downlink1061

scenario wherein the base station allocates the resources. The1062

energy efficiency for the second and third approach is defined1063

by the sum of the ratio of data rate achieved by each user 1064

to the power consumed by it. Thus the energy efficiency 1065

is maximized individually for each user and the channel 1066

coefficient of other users are not required. Therefore these 1067

definitions are usually considered in the uplink transmission. 1068

Moreover, it is obvious that depending on the definition the 1069

resource allocation and resulting from it the value of energy 1070

efficiency can be different. 1071

In Figure 14 and 15 the example of the downlink and 1072

uplink transmissions in the multi-user OFDMA network is 1073

presented, respectively. It can be observed that (in the con- 1074

trast to the single link scenario) the available bandwidth is 1075

shared among many users in the network. It means that not 1076

only transmit power but the subcarrier assignment has to be 1077

determined as well. Moreover, for some systems, the modu- 1078

lation and coding schemes have to be determined for each 1079

user. Thus, more degrees of freedom can be distinguished 1080

compared to the single link scenario. 1081
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FIGURE 15. The multi-cell OFDMA uplink network, where p(n)T determines the power allocated
on SC n ∈ N , 9(u,n) the binary variable determining if the subcarrier n is assigned to user u or
not while the channel coefficients in the link between BS and users u and u′ are defined by
h(u,n) and h

(
u′,n

)
, respectively. The data rate achived by user u and u′ are denoted as R(u) and

R
(
u′

)
respectively. The variables related to the system constraints are denoted as P(u)MAX, P

(
u′

)
MAX,

R(u)MIN and R
(
u′

)
MIN which define the maximum transmit power and the minimum data rate for u

and u′ , respectively.

A. TRANSMISSION RATE ESTIMATION IN A MULTI-USER1082

OFDMA NETWORK1083

In the case of the multi-user OFDMA network, the total1084

throughput is the sum of the throughput for each user.1085

The user’s data rate is determined by the sum of data rate1086

achieved on each subcarrier assigned to it. In the literature,1087

all three approaches of the data rate estimation presented in1088

Section III-A can be found:1089

(i) based on the Shannon formula considered among others1090

in [62], [63], [64], [65], [66], [67], [68], and [69]. In [61],1091

[62], [63], [64], [65], [66], [67], and [70] the subcarri-1092

ers are considered independently (are not grouped into1093

RBs), thus the resource allocation is determined per1094

subcarrier. Whereas in [68] and [69] the subcarriers1095

are grouped into resource blocks as in some practical1096

wireless communication systems, e.g., LTE.1097

(ii) estimated by the Shannon formula with scaling factors1098

considered in [71] and [72]. In [71] the Shannon formula1099

is scaled by the factor dependent on a target bit error1100

rate for an uncoded M-QAM modulation. In [72] the1101

scaling factor is used to model the imperfect channel1102

state information.1103

(iii) based on the error-rate function and the spectral effi-1104

ciency of the applied MCS considered in [29] where1105

the subcarriers are grouped into resource blocks and all1106

RBs assigned to the same user must use the same mod-1107

ulation and coding scheme. In this case, the throughput1108

results from the spectral efficiency of the applied MCS,1109

effective SINR and the block-error rate which has been1110

estimated by the complementary error function with1111

two fitting parameters for each MCS. The values of the1112

fitting parameters for the MCS used in the LTE standard1113

have been provided in [29].1114

When grouping subcarriers into resource blocks, each RB1115

includes multiple subcarriers subject to different channel1116

gains, thus, an effective SNR mapping method should be 1117

applied to collect, and represent the channel state informa- 1118

tion. In [26] and [27] one can findmethods of channel-quality 1119

representation for the user’s RBs. In [69] and [73] the effec- 1120

tive SINR over one RB has been obtained using the mean 1121

instantaneous capacity method which is based on the Shan- 1122

non formula. 1123

B. ESTIMATION OF THE POWER CONSUMPTION IN A 1124

MULTI-USER OFDMA NETWORK 1125

In the multi-user OFDMA network the total power consump- 1126

tion power (similar to the single link scenario) consists of the 1127

transmit power and the power consumption of BB and RF 1128

processing at the transmitter and receiver. The total transmit 1129

power is equal to the sum of the users’ transmission power. 1130

The users’ transmission power is usually determined as the 1131

sum of the transmit power allocated on the resources assigned 1132

to them. This definition works both for uplink and downlink 1133

scenario. As shown in the Figures 14 and 15 the transmit 1134

power can be potentially allocated per subcarrier. While this 1135

is an additional degree of freedom, able to increase achivable 1136

data rate, it comes at a cost. The receiver has to know the 1137

power allocated on each subcarrier to enable channel esti- 1138

mation and decoding, thus the signalling overhead is much 1139

bigger than in a more practical scenario, e.g., in LTE where 1140

the transmit power is the same among all resource blocks 1141

assigned to the user [29]. In the case of the BB and RF 1142

processing the power consumption model can be determined 1143

for each user differently that can result, e.g., from different 1144

end-user devices. Thus, the receiver circuit power is the 1145

sum of power consumed by the BB and RF processing at 1146

the end-users in the downlink scenario. For example in [64], 1147

the power of the circuit is divided into the power consumed 1148

at the base station and the user equipment which is scaled 1149

with the number of subcarriers assigned in the base station to 1150
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TABLE 6. The values of the power consumption parameters.

users. In the rest of the cited papers the power consumed by1151

circuits remains constant or is modeled as the linear function1152

of achieved data rate. Therefore, in Table 6 the values of the1153

total fixed circuit power, power amplifier efficiency parame-1154

ter and/or β parameter from a set of well established papers1155

are provided.1156

It can be observed that the power amplifier efficiency1157

parameter in most cited paper hovers around 38% while the1158

circuit power and β parameter oscillate much more. More-1159

over, in all cited paper all parameters: the circuit power, the1160

power amplifier inefficiency and parameter β is the same for1161

all users in the network.1162

C. CONSTRAINTS IN A MULTI-USER OFDMA NETWORK1163

It is obvious that each constraint of the system can cause1164

a reduction in maximal energy efficiency. Nevertheless, let1165

us remember that the maximization of the energy efficiency1166

does not ensure the network fulfils users QoS requirements.1167

For example, Figure 16 shows the data rates and transmit1168

powers of three users in the network. Two of them are located1169

close to the base station while the third is located at the edge1170

of the cell. The resources (transmit power and subcarriers)1171

have been allocated to maximize the energy efficiency of the1172

whole network. It can be observed that none resources are1173

allocated to the user at the edge of the cell. Thus, despite max-1174

imum energy efficiency is achieved, not all users are served.1175

Therefore, in this case the minimum data rate constraints1176

are required. In the literature, the following constraints for1177

the energy efficiency optimization of the multi-user OFDMA1178

network have been considered:1179

• the maximum transmission power constraint which has1180

been considered in [61], [62], [63], [64], [65], [66], [67],1181

[70], [71], [72], [74], [75], and [76]. In the case of the1182

downlink transmission this constraint ensures that the1183

sum of transmission powers allocated in the base station1184

is less than or equal to the maximum allowed value.1185

Whereas, for the uplink transmission [62], [67] the max-1186

imum transmission power constraint concerns each user1187

in the network. It means that the sum of transmit powers 1188

allocated on subcarriers for a given user has to be less 1189

than or equal to the maximum transmit power of its 1190

device. It is obvious that the maximum transmit power 1191

can vary among users as shown in Figures 14 and 15. 1192

Moreover, in [61] the authors constrain the maximal 1193

transmit power per subcarrier in order to avoid inter-cell 1194

interference. 1195

• the minimum data rate constraint considered in [61], 1196

[62], [63], [64], [65], [67], [72], [74], [75], and [76]. 1197

In both (downlink and uplink) scenario it means that 1198

the data rate of a given user has to be not smaller than 1199

assumed value. In [61], the authors constrain the trans- 1200

mit rate achieved on each subcarrier. It needs to be above 1201

a minimum rate threshold. Moreover, this value can be 1202

different for each user as shown in Figures 14 and 15. 1203

• the subcarrier/resource block allocation constraint 1204

examined in [61], [62], [63], [64], [65], [66], [67], 1205

[69], [70], [72], [73], [74], and [76]. This constraint 1206

guarantees that a given subcarrier/resource block can be 1207

assigned to maximally one user, in order to avoid the 1208

inter-user interference. It is usually realized by intro- 1209

ducing the auxiliary variables which take binary val- 1210

ues making the optimization problem a Mixed-Integer 1211

Nonlinear Fractional Programming (MINFP) problem 1212

for which the techniques described in Section III-D are 1213

not sufficient. Therefore, in Section V-D the methods 1214

dealing with MINLP in the context of energy efficiency 1215

optimization are reviewed. 1216

• the instantaneous proportional rate fairness constraint 1217

contemplated in [62], [66], and [71] which ensures that 1218

each user would obtain a predetermined proportion of 1219

the system throughput in each resource-allocation deter- 1220

mination [77]. 1221

• constraints resulting from system model considered 1222

in [29], [69], and [73]. Such constraints usually are 1223

not described by the equation in the optimization 1224

problem because results from the considered system 1225

model, directly. For example in [29], [69], and [73] the 1226
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FIGURE 16. The data rates and transmit powers of three users in the
network where two of them are located close to the base station while
the third is located at the edge of the cell. Case with EE maximization
without additional constraints.

subcarriers are grouped into resource blocks and for1227

each user, the sameMCS over all its allocated RBs has to1228

be used.Moreover, in [29] the transmit power is constant1229

per RB for all RBs assigned to a given user.1230

D. EE OPTIMIZATION IN A MULTI-USER OFDMA SYSTEM1231

Let us note that in the context of the multi-user OFDMA1232

network not only the transmit power but also the subcar-1233

rier/resource blocks assignment has to be determined. The1234

subcarrier/resource blocks assignment is usually realized by1235

the binary variables so that the optimization problems can1236

be classified as Mixed binary Integer NonLinear Fractional1237

Programming (MINLFP) problemswhich are very difficult to1238

solve by standard optimization techniques. Therefore, in this1239

section the optimization techniques used to solve a MINLFP1240

problem in the context of the energy efficient multi-user1241

OFDMA network are presented.1242

In most of the cited papers, the optimization procedure1243

consists of at least two stages out of all presented below:1244

(i) transmission power allocation,1245

(ii) subcarriers/resource blocks assignment and/or1246

(iii) modulation and coding scheme selection.1247

The values of the optimization variables of the particular1248

stage are usually determined while setting the values of1249

the optimization variables for other stages as fixed. Such1250

approach can be realized by the primal decomposition tech-1251

nique which reformulates the problem into many maximiza-1252

tion problems. For example, in the first stage the values1253

of the transmission power allocated at the subcarrier which1254

maximize the energy efficiency are determined. In the second1255

stage, based on these powers, the optimization is carried by1256

changing subcarriers assignment and modulation and cod-1257

ing schemes. For continuous transmit power values, stan-1258

dard optimization techniques can be used as long as the1259

problem is concave/convex. The more complex task is to1260

determine the binary decision variables. Various methods1261

can be used to solve MINLP problems [78], e.g., branch-1262

and-bound [69], [73], outer approximation or generalized1263

Bender’s decomposition method. The drawbacks of these1264

methods are their poor scalability, i.e., these are efficient 1265

only for small size problems. For example, in branch-and- 1266

bound method the complexity increases exponentially as the 1267

problem size increases. Therefore, the suboptimal solutions 1268

which give the near-optimal results have been proposed in 1269

the literature. In this paper, we focus on the most common 1270

method which can be applied to different system models. 1271

In this method, applied in [29], [64], [65], and [74], the 1272

binary decision variables have been relaxed to be real num- 1273

bers within interval [0, 1] and then the Dinkelbach [57], dual 1274

decomposition method and KKT conditions [79] have been 1275

applied to determine the power and subcarrier allocation. 1276

Due to the Dinkelbach method, the primal decomposition 1277

technique and taking the derivatives with respect to trans- 1278

mission power and then with respect to binary variables 1279

the cost-benefit metric can be determined. It means that 1280

for each subcarrier/resource blocks the cost-benefit metric 1281

equal to the achieved throughput minus the transmit power 1282

multiplied by the parameter resulting from the Dinkelbach 1283

method can be obtained. Thus, if this value is positive a given 1284

subcarrier should be allocated to the user but if it is negative 1285

the assignment of this subcarrier to the user is unprofitable 1286

from the EE point of view. It is obvious that if for a given 1287

subcarrier/resource blocks more than one user has a positive 1288

value of the cost-benefit metric this subcarrier should be 1289

allocated to the user with the highest one. Then, the authors 1290

have rounded the relaxed variables to 0 or 1 to get an integer- 1291

valued solution. The presented suboptimal solution gives the 1292

near-optimal results with superlinear convergence. 1293

While in minority, there are also other solution methods 1294

used in the literature. For example, in [69], [73] the branch- 1295

and-bound method has been applied to find optimal RB allo- 1296

cation. In [69] and [73] the brute force search has been applied 1297

to find optimal subcarrier assignment, but due to extremely 1298

high complexity near-optimal and suboptimal solution have 1299

been proposed as well. The suboptimal methods which are 1300

based on the energy efficiency transmit power estimation 1301

and subcarrier assignment resulting from spectral-efficient 1302

maximization have been designed in [66] and [67]. Another 1303

suboptimal methods have been proposed in [61], [63], [64], 1304

and [72]. A suboptimal method based on deep learning is 1305

proposed in [70]. Nevertheless, the review of all proposed 1306

methods is not the goal of this paper because these depend 1307

on the system model and do not have universal nature. 1308

VI. MULTI-USER OFDMA RELAY NETWORK 1309

The use of relay nodes in the network is a promising technique 1310

for increasing the energy efficiency of the system. In the 1311

literature, different scenarios of transmission with help of 1312

relay nodes can be distinguished. Figure 17 illustrates four 1313

transmission modes in the multi-user OFDMA relay network 1314

which can be found in the literature: 1315

(i) direct transmission [80], [81], [82], [83], 1316

(ii) relayed transmission [80], [81], [82], [83], [84], [85], 1317

(iii) relayed transmission with direct link [86], [87], [88], 1318

(iv) relay beamforming [89]. 1319
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FIGURE 17. The transmission modes in the multi-user OFDMA relay
network.

FIGURE 18. The scenario where three user pairs communicate in parallel
via the relay node.

Depending on the system model, the transmission mode is1320

selected related to network conditions from the considered1321

set of modes. The set of transmission modes can contain all1322

transmission modes, several or one of them, e.g., direct trans-1323

mission and relayed transmission. Another scenario com-1324

monly considered in the literature, is when the user pairs1325

communicate with each other via the relay node as shown in1326

Figure 18.1327

Nevertheless, irrespective of the scenario, in the case of1328

the multi-user OFDMA relay network, the transmission is1329

typically analyzed in two time slots. One use case is relayed1330

transmission with direct link. In the first time slot, a transmit-1331

ter sends data to be received by the relay and by the end-users.1332

In the second time slot, the relay forwards the received data1333

to their destination. The relayed transmission is considered as1334

the promising technique for increasing the energy efficiency1335

because the distance to end-user is divided into two or more1336

shorter parts with lower channel attenuation. It allows reduc-1337

ing the transmit power while providing the same throughput1338

or increasing the throughput for the same power allocation.1339

Moreover, the smaller distances (better channel conditions)1340

can result in less signal processing to be required, e.g., less1341

TABLE 7. The factors increasing or decreasing the energy efficiency of
relayed and direct transmission.

complex data encoding and decoding. On the other hand, the 1342

cooperative transmission required two time slots to deliver 1343

data to end-user whereas the direct transmission only one. 1344

Moreover, similar to the base stations and end-user devices 1345

the relay nodes consume the power related to receiving, 1346

processing and transmitting data, as well. Thus, there are 1347

a few aspects which can increase as well as decrease the 1348

energy efficiency in the case of relay networks. These are 1349

summarized in Table 7 in contrast to the direct transmission. 1350

Therefore, adaptive resource allocation methods are required 1351

to maximize the energy efficiency metric. 1352

As one may have guessed, in the context of the multi-user 1353

OFDMA relay network more degrees of freedom than for 1354

multi-user OFDMA network can be distinguished. In the 1355

literature the following degrees of freedom can be found: 1356

• the transmission mode selection - if more than one of 1357

modes presented in Figure 17 are considered in the 1358

system, the transmission mode can be selected. Usu- 1359

ally, in the system models from the literature, the direct 1360

transmission and the transmission with the help of the 1361

relay node are selectable. Moreover, two options of 1362

adaptability are possible. In the first the users are divided 1363

into groups, each with a pre-determined transmission 1364

mode [80], [81], [82]. In the second option the transmis- 1365

sion modes are adaptively selected for every user related 1366

to the current channel conditions [83], [86], [89]. 1367

• the relay nodes selection - in the literature, two 1368

approaches are considered in the context of relay nodes 1369

selection. In the first approach the users are assigned to 1370

the relay nodes permanently [80], [81]. In the second 1371
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FIGURE 19. The energy efficiency against the number of the relay nodes.

approach the relay nodes are selected adaptively [82],1372

[83], [86], [87]. The complexity of the first approach is1373

lower than of the second one but the achieved energy1374

efficiency can be lower. It results from the fact that in the1375

adaptive relay selection more ways to transmit signal is1376

possible. Finally, in the case of relay beamforming the1377

relay nodes selection is extended to the set of relay nodes1378

selection [89]. It means that more than one relay node1379

can transmit data to one user.1380

• the subcarrier/resource block pairing - relies on match-1381

ing subcarriers in the first and second time slots, which1382

maximize the energy efficiency. The subcarrier pairing1383

is realized in two way: the same [80], [81], [87], [90]1384

or different [82], [83], [84], [85], [86], [89], [91], [92],1385

[93] subcarriers are used in the first and second time1386

slots. The first approach can be less efficient in terms of1387

energy efficiency but less computationally complex than1388

the second approach which reallocates resources in the1389

second time slot. Nevertheless, the resource reallocat-1390

ing requires downconversion of the signal to baseband1391

which may consume additional power.1392

• the localization and the number of relay nodes - these1393

aspects are not usually determined during the optimiza-1394

tion procedure but have a significant impact on the1395

achieved energy efficiency. Let us remember that each1396

relay node consumes power when it is turned on. Thus,1397

if the number of relay nodes is too high the power con-1398

sumption can dominate over the potential profit resulting1399

from applying the cooperative transmission. In Figure 191400

the energy efficiency against the number of relay nodes1401

for a sample scenarios is plotted [83], [86]. It can be1402

observed that in both scenarios exist some number of the1403

relay nodes in the network which maximize the energy1404

efficiency. Below this value, the potential of the relayed1405

transmission is not fully used while above this value1406

the circuit powers dominate over the achieved profit.1407

Moreover, if the relays are misplaced in the network,1408

the benefit of using them may be negligible. An extreme1409

FIGURE 20. The energy efficiency against the distance form the base
station to the relay node.

FIGURE 21. The trade-offs observed in the multi-user OFDMA relay
network.

case is when the relay node is located very close to 1410

the base station or the end-user. In such cases, the 1411

distance to the end-user is divided into a very short 1412

and long path with a length comparable to that of the 1413

direct link. Figure 20 illustrates the energy efficiency 1414

versus distance to the relay node from the base station 1415

for the Amplify and Forward (AF) and the Decode and 1416

Forward (DF) relaying protocols which are elaborated 1417

in the next subsection. The relay is placed in between 1418

source and destination nodes of fixed positions. It can 1419

be observed that for both relaying protocols the highest 1420

energy efficiency is achieved when the relay divides the 1421

distance between the base station and end-user in half. 1422

• the transmit power and subcarrier/resource block alloca- 1423

tion - in this case, the transmission powers allocated on 1424

subcarriers and subcarriers assignment to the users are 1425

determined (similar to the multi-user OFDMA network 1426

or the single link). 1427

Finally, in Figure 21 the trade-offs observed in the 1428

multi-user OFDMA relay network are presented. Let us 1429

observe that if the number of degrees of freedom increases 1430

the computational complexity of the resource allocation algo- 1431

rithms increases. On the other hand fewer number of degrees 1432

of freedom reduces the computational complexity of the algo- 1433

rithms at the cost of potentially decreased energy efficiency. 1434

A. DATA RATE ESTIMATION IN A RELAY NETWORK 1435

All the papers considered in this article, investigating a 1436

multi-user OFDMA relay network use the Shannon formula 1437
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FIGURE 22. The transmission with the help of the relay node and the
power consumption related to the amplify and forward and decode and
forward relaying protocols, where γ (x,y) determines the SNR value at the
receiver x observed on subcarrier y .

for the data rate estimation. This is in the contrast to the1438

OFDM single link and multi-user OFDMA network, where1439

other solutionswere used as well. However, the specific usage1440

of Shannon formula depends on the considered relaying pro-1441

tocol. Figure 22 illustrates the transmission with help of the1442

relay node and the power consumption related to the amplify1443

and forward and decode and forward relaying protocols. Let1444

us note that if the direct link is not considered (e.g., it is in1445

a deep fade), the SNR at the end-user device on subcarrier n1446

aims to zero: γ (u,n) → 0. Such an assumption is commonly1447

applied mainly due to the increase in the complexity of the1448

optimization problem. Nevertheless, if the direct link is taken1449

into account, it can cause the increase in the energy efficiency1450

without any additional cost because the signal received by the1451

end-user from the relay node, in the second time slot, is com-1452

bined with the signal received from the base station in the first1453

time slot, using e.g. the maximum-ratio combining (MRC)1454

method, thus the SNR in the receiver increases, as well. In the1455

context of the energy efficient resource allocation the link1456

data rate is described differently for each relaying protocol:1457

• the amplify and forward protocol wherein the signal1458

received in the first time slot by a relay node is amplified1459

and transmitted to the end-user in the second time slot.1460

Thus, it can be observed that no time-consuming and1461

energy-intensive signal processing is carried out. On the1462

other hand, let us remember that the relay amplifies not1463

only desired signal but all other received signals as well.1464

The data rate of user uwhile using subcarrier pair (n, k),1465

i.e., subcarrier n for transmission fromBS and subcarrier1466

k for transmission from the relay, and MRC reception1467

can be estimated by [94], [95]:1468

r (u,n,k)=
W
2

log2

(
1+

γ (RN,n)γ (u,k)

1+γ (RN,n) + γ (u,k)
+ γ (u,n)

)
,1469

(11)1470

where γ (x,y) determines the SNR value at the receiver1471

x, where u denoted UE and RN denotes the relay node,1472

observed on subcarrier y as shown in Figure 22. Because1473

of two-slot transmission the factor 1
2 scales Shannon1474

formula. Moreover, in some papers, e.g., [80], [81], [82],1475

TABLE 8. Pros and cons of the relaying protocols.

the authors have applied the approximation for high 1476

receiver’s SNR values. Moreover, in [84], [90], and [96] 1477

the data rate estimation of theAF relaying protocol in the 1478

interference networks can be found. 1479

• the decode and forward protocol wherein the received 1480

by relay node data (in the first time slot) are decoded 1481

and then coded again and forwarded to end-user (in 1482

the second time slot). This approach can increase the 1483

total power consumption but the potential errors can 1484

be eliminated in the relay node and thus they are not 1485

propagated to the end-user. For DF relaying protocol the 1486

data rate of user u using subcarrier pair (n, k) may be 1487

expressed as [83], [85], [88], [94], [97], [98]: 1488

r (u,n,k)=
W
2

min
{
log2

(
1+ γ (RN,n) + γ (u,n)

)
log2

(
1+ γ (u,k)

) }
. (12) 1489

The factor of 1
2 in (12), similarly as in (11), accounts 1490

for the fact that two time slots are required. Moreover, 1491

in [91], [92], and [93] the data rate estimation of the 1492

DF relaying protocol in the interference networks can 1493

be found. 1494

Sometimes, the authors have consider AF relaying pro- 1495

tocol instead of DF protocol because they think that 1496

DF relaying protocol requires more than two time slots 1497

due to the time-consuming signal processing. Finally, 1498

in Table 8 the pros and cons of the described relaying 1499

protocols are summarized. 1500

It can be observed that the equations (11) and (12) describe 1501

the data rate achieved by user u using a given subcarrier 1502

pair. Thus, in general, the total throughput in the multi-user 1503

OFDMA relay network within two time slots is equal to 1504

the sum of the data rate for all users links using subcarriers 1505
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assigned to them, in one of the selected transmissionmodes or1506

relaying protocols if they can be adaptively selected accord-1507

ing to channel conditions. It means that the total throughput1508

can contain the throughput of relayed transmission as well1509

as the throughput of direct transmission. In order to avoid1510

inter-user interference, typically it is assumed that the subcar-1511

riers pair can be assigned to the maximum one user among1512

all transmission modes. Nevertheless, there are some paper1513

where the same subcarrier can be used by more users [83],1514

[86], [97], [99]. It may result in interference among signals1515

transmitted to different users but if the channel attenuation1516

values in the interfering links are relatively high, the interfer-1517

ence may be small enough that the transmission will result in1518

higher EE.1519

B. TOTAL CONSUMED POWER ESTIMATION IN A RELAY1520

NETWORK1521

Similar to the data rate estimation, the total consumed power1522

depends on the relaying protocol:1523

• in the case of the AF relying protocol the signal received1524

by relay node does not have to be downconverted to1525

baseband, thus the total power consumption equals:1526

P = PT−TX + PT−RN︸ ︷︷ ︸
PT

+PBB−TX + PBB−RX︸ ︷︷ ︸
PBB

1527

+ PRF−TX + PRF−RN + PRF−RX︸ ︷︷ ︸
PRF

, (13)1528

as shown in Figure 22. It can be observed that the trans-1529

mit power is the sum of transmission power allocated1530

in the transmitter and relay node keeping in mind that1531

these transmissions happen typically in two consecutive1532

time slots. Moreover, the power consumption by the1533

RF signal processing in the relay node PRF−RN can be1534

divided into receiving and transmitting part but in the1535

literature, it is usually assumed to be one value.1536

• in the DF relaying protocol, the received signal is1537

downconverted, decoded, coded andmodulated, causing1538

increased power consumption. Thus, the power con-1539

sumption model contains in addition the power con-1540

sumed by the BB processing in the relay node PBB−RN1541

resulting in the total power consumption:1542

P=PT−TX+PT−RN︸ ︷︷ ︸
PT

+PBB−TX+PBB−RN+PBB−RX︸ ︷︷ ︸
PBB

1543

+ PRF−TX + PRF−RN + PRF−RX︸ ︷︷ ︸
PRF

. (14)1544

Similarly to the power consumption by the RF signal1545

processing in the relay node, the power consumed by the1546

BB processing PBB−RN can be divided into transmitting1547

and receiving part but it is usually assumed to be one1548

value. Moreover, PBB−RN may depend on the complex-1549

ity of the signal processing.1550

Depending on the considered past work, some elements of1551

the models presented above are taken into account and some1552

are omitted. Therefore, similarly as in the previous section 1553

in the case of multi-user OFDMA network, the values of the 1554

power consumption parameters used by various authors are 1555

collected in Table 9. It is obvious that due to the diversity of 1556

the relay nodes and end-user devices in the network the circuit 1557

power consumption can be different. Nevertheless, in all cited 1558

papers it is assumed that the circuit power consumption is the 1559

same among the end-user devices and relay nodes. Moreover, 1560

in some papers [87], [89] the circuit power has not been 1561

divided into power consumed by BS, relay node and end-user 1562

but has been summed in one value. Furthermore, it can be 1563

observed that in Table 9 the direction of transmission (down- 1564

link or uplink) is not specified for some papers. These authors 1565

consider transmission between pairs of users with help of the 1566

relay node as shown in Figure 18. If some value in Table 9 1567

is not specified, it means that such an parameter has not been 1568

considered. If there is more than one value provided, it means 1569

that the authors have analyzed different scenarios. 1570

C. CONSTRAINTS IN A MULTI-USER OFDMA RELAY 1571

NETWORK 1572

There is high number of potential degrees of freedom in the 1573

multi-user OFDMA relay network. Below we summarize the 1574

constraints considered in the related papers: 1575

• the maximum transmit power constraint considered in 1576

[80], [81], [82], [84], [85], [86], [87], [88], [89], [90], 1577

[91], [92], [93], [96], and [98]. In the context of practical 1578

wireless communication systems, the transmit power 1579

should be limited in each transmitter. Nevertheless, the 1580

common approach in the literature is to ensure that the 1581

sum of the power allocated in all transmitters does not 1582

exceed the maximum power budget of the whole system. 1583

In the contrast to the common approach in [100] the 1584

power allocated on a given SC is limited. 1585

• the minimum data rate constraint which has been taken 1586

into account in [82], [84], [86], [88], [90], and [98]. 1587

Due to two time slots that are required to deliver the 1588

data to the end-user in the relayed transmission mode, 1589

two approaches are considered in the context of the data 1590

rate constraints. In the first approach, the data rate is 1591

considered over two time slots. It means that in the 1592

direct transmission the data rate achieved by the user 1593

is summed over two time slots [86], [98] or scaled by 1594

factor 1
2 [82]. If the sum of the data rate achieved in 1595

the direct transmission mode is not scaled the factor 1
2 is 1596

neglected for relayed transmission. Whereas, in the sec- 1597

ond approach the minimum data rate constraint ensures 1598

that the data rate achieved in the one time slot has 1599

to gather or equal to the assumed threshold, thus for 1600

the relayed transmission the data rate is scaled by the 1601

factor 1
2 [84], [90], [96]. 1602

• the subcarrier assignment constraints which restrict each 1603

subcarrier to be used at most once in each time slot 1604

in order to avoid interference. In the contrast to the 1605

multi-user OFDMA network this constraint has two 1606

meanings in the context of relay network. On the one 1607
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TABLE 9. The values of the power consumption parameters in the multi-user OFDMA relay networks.

hand, it ensures that a single transmission mode, usually1608

direct or relayed, is chosen for each user-subcarrier pair1609

while on the other hand guarantees that each subcar-1610

rier is only allocated to at most one end-user. In this1611

form, the subcarrier assignment constraints have been1612

considered in [80], [81], [82], [88], [89], [98], and1613

[100]. Nevertheless, in the literature exist papers [83],1614

[86], [90] where the subcarrier can be utilized in the1615

direct and relayed transmission mode simultaneously,1616

but within one transmission mode, it can be utilized1617

by one user. Such an approach can cause interference,1618

however, the properly designed resource allocation algo-1619

rithm can increase the energy efficiency compared to1620

the network without inter-user interference. Moreover,1621

in the scenario wherein the user pairs communicate with1622

each other via relay node [84], [85], [87], [91], [92],1623

[93] (Figure 18) or only the relayed transmission mode1624

is considered [87], the subcarrier assignment constraints1625

comes to guaranteeing that subcarrier or subcarrier pair1626

is utilized by only one user.1627

• the proportional rate fairness constraint considered in1628

[87], [89], and [101]. It is defined in the same way1629

as in the multi-user OFDMA network. Thus, each user1630

would obtain a predetermined proportion of the system1631

throughput in each resource-allocation determination.1632

• the maximum outage probability constraint considered1633

in [95], [100], and [102] ensures that the outage proba-1634

bility of the link is lower than the given threshold value.1635

D. EE OPTIMIZATION IN A MULTI-USER OFDMA RELAY1636

NETWORK1637

In this section the most popular techniques used in the con-1638

text of the energy efficient optimization in the multi-user1639

OFDMA relay network are reviewed. As we presented in1640

Figure 21 the complexity of the resource allocation algorithm1641

FIGURE 23. The illustration of the Successive Concave/convex
Approximation (SCA) method.

increases with the number of the degree of freedom. More- 1642

over, usually the originally defined optimization problem can 1643

not be solve by the standard optimization techniques and 1644

some transformations may be required. Thus, let us review 1645

the techniques/methods applied to solve the energy effi- 1646

ciency optimization problem in the multi-user OFDMA relay 1647

network: 1648

• the Dinkelbach method known from the previous 1649

sections allows to transform the objective fractional 1650

function into a new parameterized concave function. Let 1651

us remember that the Dinkelbach method can be applied 1652

if the numerator of the objective function is concave 1653

while the denominator is convex or if the numerator is 1654

affine, the denominator does not have to be restricted in 1655

sign. The transformation of the objective function into 1656

the parameterized concave function has been applied in 1657

[80], [81], [82], [83], [84], [85], [86], [89], [90], [91], 1658

[92], [93], [96], [97], [98], and [101], thus in 15 out of 1659
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16 cited in this section papers, even when the numerator1660

is non-concave. In this case other methods (described1661

below) can be applied to transform the non-concave1662

objective function into the series of concave functions.1663

• the epigraph method which is usually applied in the1664

context of the decode and forward relaying protocol and1665

the linearly rate-dependent circuit power consumption1666

model. It can be observed that in equation (12) the1667

min {·} function is used to calculate the data rate for1668

DF relaying protocol. From the optimization point of1669

view it causes that the optimization problem belongs to1670

the class of the max-min programming problem [83],1671

[85], [91], [92], [93], [94], [97]. Therefore, by applying1672

the epigraph method the auxiliary variable is introduced1673

replacing the min {·} function. It requires two additional1674

constraints to be created because the auxiliary variable1675

has to be lower than or equal to the arguments of min {·}1676

function but on the other hand the standard optimiza-1677

tion techniques can be applied after this transformation.1678

In the case of the linearly, rate-dependent circuit power1679

consumption the auxiliary variable is introducedmaking1680

the denominator convex or affine [86].1681

• the Successive Convex/concave Approximation (SCA)1682

method transforms the non-convex/non-concave func-1683

tion into the series of convex/concave ones. The main1684

idea of SCAmethod in the context of non-concave func-1685

tion is presented in Figure 23. The non-concave function1686

f (x) is locally approximated in i-th iteration by a con-1687

cave function f̃
(
x|x(i)

)
that is equal to the approximated1688

function for x = x(i) and not smaller in the rest of its1689

range. The approximation is used to find new solution1690

x(i+1). This procedure is repeated until the stop criteria1691

are met. Because the approximation of the originally1692

optimization problem is solved in each iteration, it is1693

not guaranteed to obtain the global optimum. Never-1694

theless, due to convexity/concavity the convergence of1695

the method is guaranteed. The SCA method is usually1696

applied in the context of the system with inter-user1697

interference wherein the function describing the users1698

data rate is the source of the non-concavity [83], [84],1699

[86], [90], [91], [92], [93], [96], [97], [101]. In the lit-1700

erature two approaches to determine the approximation1701

function can be found. In the first approach, the concrete1702

approximation function together with replacing the opti-1703

mization variables by equivalent ones is used. It means1704

that the non-concave/non-convex function has to have1705

a specific form that allows for approximation. This is1706

commonly applied in the relayed transmission with the1707

assumption that the direct link is not used [84], [90],1708

[91], [92], [93], [96].1709

The more universal method, based on the Difference1710

of Concave/Convex (DC) programming, is considered1711

in the second approach. This requires the approximated1712

non-concave/non-convex function to be a difference1713

of concave/convex functions. Then, the subtrahend is1714

approximated using the first order Taylor series at a 1715

given point achieving the difference of a concave/convex 1716

function and a linear function. This solution is typically 1717

used when the first one is not possible. 1718

• the Hungarian algorithm that solves the assignment 1719

problem in polynomial time and is usually used in the 1720

context of the subcarrier pairing. It means that the Hun- 1721

garian algorithm determines which subcarriers will be 1722

utilized as a pair in the first and second time slot, respec- 1723

tively. The input of the Hungarian algorithm is the |N |× 1724

|N |matrix with each element containing the cost of uti- 1725

lizing a given subcarrier pair in the first and second time 1726

slot. From the energy efficiency optimization point of 1727

view, it means that for each subcarrier pair, the user and 1728

relay nodewhichmaximize the energy efficiency have to 1729

be determined. Thus, actually, all possible combinations 1730

of the user-relay node pair for a given subcarriers pair 1731

should be checked. Hence the complexity of the resource 1732

allocation algorithm in the approach where the users are 1733

assigned to the pre-defined relay nodes is lower than 1734

in the approach with the adaptive assignment because 1735

fewer combinations have to be checked. The cost of 1736

utilizing a given subcarrier pair used by the user-relay 1737

node pair can be obtained by the cost-benefit metric in 1738

an analogical way as in themulti-user OFDMAnetwork. 1739

In the context of computational complexity, the time 1740

complexity of the original algorithm is O
(
|N |4

)
[103] 1741

but it can be modified to achieve an O
(
|N |3

)
[104] 1742

running time. Thus, it can be observed that the subcarrier 1743

pairing together with adaptive relay selection causes the 1744

high computational complexity of the energy efficiency 1745

resource allocation algorithm. 1746

Finally, Table 10 presents the optimization methods used 1747

depending on the scenario. It can be seen that with the 1748

increasing complexity of system model and the increase 1749

in the number of degrees of freedom, the number of opti- 1750

mization methods that have to be used grows. At the same 1751

time the computational complexity of the resource allocation 1752

algorithm rises. 1753

VII. REPRESENTATIVE USE-CASES FOR 1754

ENERGY-EFFICIENT OFDM NETWORKS 1755

A. ENERGY-EFFICIENT OFDM LINK WITH 1756

COMPUTATIONAL AWARENESS 1757

As an example of a single OFDM link, a setup shown in [22] 1758

can be considered. The solution proposed in that paper max- 1759

imizes EE being the ratio of the data rate calculated using 1760

Shannon formula scaled appropriately for each of consid- 1761

ered MCSs (21 pairs of modulation and coding schemes 1762

with various coding rates, see [22]), and power consumed 1763

by an OFDM link. This power is composed of fixed ana- 1764

log circuits power and variable transmit- and BB processing 1765

power. The system operates with constraint transmit power 1766

over all 256 considered subcarriers under multipath fading 1767

and additive white Gaussian noise. The achievable EE as 1768
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TABLE 10. The optimization methods used depending on the system model.

a function of transmission power and distance between the1769

transmitter and the receiver is shown in Fig. 24. The reference1770

method is a rate-maximizing algorithm that first distributes1771

the power among subcarriers using water-filling approach.1772

This is followed by MCS selection that maximizes rate for1773

each subcarrier. It is visible that for both distances the pro-1774

posed EE-maximizing algorithm outperforms the reference1775

method. There is an optimal transmission power, maximizing1776

EE, that increases with distance.1777

B. ENERGY-EFFICIENT MULTI-USER OFDMA NETWORK1778

WITH COMPUTATIONAL AWARENESS1779

Representative results of the EE maximization for a1780

multi-user scenario are shown in [29]. The downlink trans-1781

mission system is LTE-like allocating orthogonal resource1782

blocks to multiple users. For each user each of the assigned1783

RBs uses equal power and a single MCS. There are 15 dif-1784

ferent MCS considered in [29] with rate estimation based1785

on effective SNR calculation and SNR to BLER mapping.1786

The power consumption model consists of fixed component,1787

modeling analog components and baseband processing (as1788

assumed, fixed for given MCS, the same for whole RB), and1789

variable component of transmit power. The achievable EE as1790

a function of number of users for 100 RBs and as a function1791

of the number of resources blocks for 10 or 15 users is shown1792

in Fig. 25 and Fig. 26, respectively.1793

The proposed solution, maximizing the EE of the system1794

is compared against two reference algorithms. First, Max-1795

throughput algorithm uses the same transmit power as the1796

proposed solution. Each RB is allocated to the user with1797

the highest channel gain. Next, water-filling is performed to1798

FIGURE 24. The energy efficiency versus the transmission power for a
single link OFDM transmission.

distribute known transmit power among subcarriers. Finally, 1799

a single MCS is selected for each allocated UE in order to 1800

maximize rate. The second reference algorithm, called Shan- 1801

non EE, maximizes EE but considering Shannon formula as 1802

an estimator of data rate. 1803

It is visible that for both considered cell radiuses (0.75 km 1804

and 3 km) the proposed solution outperforms the reference 1805

solutions in terms of EE. The difference is the higher the 1806

higher number of users, as visible in Fig. 25, and the higher 1807

the number of available resource blocks, as visible in Fig. 26. 1808

The most important outcome is significantly improved EE of 1809

the proposed method against Shannon EE method, showing 1810

that simplified, Shannon-based rate estimation is not accurate 1811
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FIGURE 25. The energy efficiency versus the number of users for different
cell radius. Multi-user scenario.

FIGURE 26. The energy efficiency versus the number of available RBs for
different cell radius. Multi-user scenario.

enough to model the LTE-like system. However, both for the1812

proposed solution and the reference solutions, the achievable1813

EE rises with the number of RBs or users, showing positive1814

influence of the enlarged solution space.1815

C. ENERGY-EFFICIENT MULTI-USER OFDM RELAY1816

NETWORK WITH COMPUTATIONAL AWARENESS1817

A representative example of multi-user optimization sup-1818

ported by relays in a cell is shown in [86]. The considered1819

downlink transmission is structured both in frequency, using1820

subcarriers, and in time, using time slots. As the transmission1821

from the relay to the end user can be performed using the1822

same time-frequency resources as the transmission from the1823

BS to another user, interference can be expected. Here,1824

the data rate is calculated using Shannon formula. The power1825

consumption is composed of fixed power, transmission power1826

and BB processing power proportionally depending on the1827

data rate. In total, four transmission modes are considered:1828

1) with relay, with parallel transmission (i.e., with the subcar-1829

riers reuse in the second time slot corresponding to relying,1830

what creates interference with direct links), 2) with relay,1831

FIGURE 27. The energy efficiency and throughput versus the number of
users for the multi-relay network.

without parallel transmission, 3) without relay, with parallel 1832

transmission, 4) without relay, without parallel transmission. 1833

While the proposed solution is able to leverage all these pos- 1834

sibilities, the Reference method considers only options with- 1835

out parallel transmission, i.e., without intra-cell interference. 1836

Fig. 27 shows that for an OFDM system of 16 subcarriers 1837

with 8 relays located in a cell both considered algorithms have 1838

increasing EE and data rate with number of users. The gap 1839

between both solutions is the greater the more users are in the 1840

cell. For higher number of users the proposed algorithm can 1841

easier find a pair of them with such a channel gain relations 1842

that allows the parallel transmission to be scheduled as more 1843

efficient. 1844

VIII. IMPACT OF PRACTICAL RF FRONT-END ON OFDM 1845

ENERGY-EFFICIENCY 1846

An important topic that is typically overlooked while opti- 1847

mizing resources allocation for OFDM-based networks is 1848

the nonlinearity of OFDM transceivers. All above mentioned 1849

works consider OFDM transceivers as linear systems result- 1850

ing in, e.g., linear increase of the consumed power with the 1851

allocated power and no influence of power allocation on 1852

interference power for this link. However, while this model 1853

can be used for high-throughput systems it cannot be used 1854

when the transceiver is optimized for low energy consump- 1855

tion. This is mainly caused by nonlinear characteristic of 1856

any practical power amplifier [105]. The operating point of a 1857

power amplifier, called ‘‘back-off’’ is the difference between 1858

the PA clipping power and the mean transmit power (in 1859

logarithmic scale). When high back-off is used the nonlinear 1860

distortion can be negligible at the cost of low power amplifier 1861

efficiency. When trying to maximize the PA efficiency, thus, 1862

emitting the maximal part of the PA input power as a useful 1863

waveform, low back-off has to be used and high nonlinear 1864

distortion is expected. Note that the power amplifier effi- 1865

ciency is not a fixed value [47]. It depends not only on the 1866

power back-off but also on the amplifier architecture (defined 1867
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by its class) [106] or even on the methods of powering it.1868

One of the heavily investigated scheme that can allow for the1869

amplifier increased energy efficiency is envelope tracking,1870

whose aim is to adjust PA supply voltage according to the1871

envelope of the transmitted signal [107]. Even if the PA1872

energy consumption is reliably modeled, the nonlinearity of1873

the supply voltage should be considered while powering a1874

transceiver from batteries. The battery capacity decreases1875

nonlinearly with the energy consumption of PA [108].1876

The nonlinear PA input-output (AM/AM and AM/PM)1877

characteristic has even stronger influence on the transmitted1878

OFDM signal and its distortion. As a result of nonlinear1879

processing, all utilized OFDM subcarriers, undergo inter-1880

modulation. New power components appear in the PA output1881

signal spectrum at frequencies being linear combination of1882

the input signal subcarrier frequencies. This is also visible1883

as a Gaussian noise-like distortion at the occupied subcar-1884

riers [109]. The effect depends not only on the chosen PA1885

back-off but also on the PA characterstics or on the properties1886

of the OFDM signal being amplified. There are tens of differ-1887

ent models of nonlinear PA ranging from some complicated1888

Volterra-series, through polynomial representation with or1889

without memory, to a simple clipper having linear AM/AM1890

characteristic in a given range of input power and saturation1891

above this range [110]. It has been shown in [111] that a PA1892

of clipper-like characteristic guarantees the highest Signal to1893

Noise and Distortion power Ratio (SNDR). Even if the PA1894

characteristic is not like this, it is common to utilize Digital1895

Pre-Distortion (DPD) (being a nonlinear signal processing1896

unit applied before OFDM signal enters PA) [112], so that the1897

effective joint characteristic of DPD and PA is clipper-like.1898

While DPD minimizes the nonlinear distortion power,1899

there is also an input OFDM waveform feature that plays an1900

important role. Note that minimum distortion power at the PA1901

output is obtained for a signal of constant envelope, e.g., Min-1902

imum Shift Keying signal. In the case of an OFDM signal,1903

a sample for each time instance is a sum o many subcarriers1904

modulated by typically uncorrelated complex data symbols.1905

As there may be tens or hundreds of subcarriers, central limit1906

theorem applies, resulting in OFDM signal samples being1907

approximated by the complex Gaussian distribution [113].1908

This causes the instantaneous signal envelope to fluctuate sig-1909

nificantly. This is typically measured for an OFDM symbol1910

using Peak to Average Power Ratio (PAPR) metric that is the1911

ratio of peak sample power to mean sample power. Observe1912

that while both PAPR and PA back-off are defined in relation1913

to the mean signal power, PAPR higher than the back-off1914

for clipper PA means that some OFDM signal samples are1915

clipped. As typical PAPR for OFDM symbol is greater than1916

6 dB, it means that PA can output signal of mean power up1917

to 25% of its maximal rated power not to observe distortions.1918

Such a schemewould be highly ineffective in terms of EE. For1919

this reason, a number of signal processing algorithms have1920

been elaborated that reduce PAPR of an OFDM signal [20]1921

or even directly the induced distortion being aware of the1922

PA characteristics [114], [115]. On the other hand, recent1923

investigations have shown that the nonlinear ‘‘distortion’’ can 1924

be used to improve reception quality [116]. Last but not least, 1925

the above described Gaussian signal approximation is valid 1926

for the appropriately high number of subcarriers of possibly 1927

equal power. It has been shown that the PAPR distribution 1928

changes if the utilized subcarriers do not constitute a single 1929

block in frequency [117], or have varying power [118]. The 1930

ultimate example is anOFDM transmittermodulating a single 1931

subcarrier resulting in PAPR of 0 dB. 1932

All these models and signal processing blocks should be 1933

considered at the stage of resources allocation for OFDM 1934

links or networks. However, even for simplified OFDM 1935

transceiver nonlinearity modeling, there is a limited number 1936

of papers that consider it in resources allocation algorithms. 1937

In [119], power allocation in an OFDM-based cognitive radio 1938

is considered, in order to maximize secondary user rate. 1939

The in-band and out-of-band distortion is calculated for the 1940

3rd order polynomial nonlinearity. However, the model does 1941

not consider variation in allocated power among subcarri- 1942

ers, neither frequency-specific character of nonlinear distor- 1943

tion. Similar model and optimization is used in [120] for 1944

Generalized Frequency Division Multiplexing. As such, the 1945

same limitation of the results validity is observed. A clipper 1946

nonlinerity model is considered for optimization of power 1947

allocation in an OFDM-based link with relay. However, again 1948

there is no frequency-selectivity of the utilized distortion 1949

model, neither the number of utilized subcarriers influences 1950

the results. The optimization variable is the total allocated 1951

power, and equal power is allocated to each subcarrier. 1952

The above discussion shows that there are still unsolved 1953

problems in resources allocation for energy efficient OFDM- 1954

based transmission. One of these is the front-end nonlinearity 1955

aware optimization. 1956

IX. PRACTICAL OFDM SYSTEM DESIGN TRADE-OFFS 1957

AND RECOMMENDATIONS FOR ENERGY EFFICIENCY 1958

As discussed in the previous sections, the role of computa- 1959

tional awareness in OFDM/OFDMA resource allocation opti- 1960

mization for the expected energy-efficiency of future radio 1961

communication systems cannot be overestimated, and has 1962

been emphasized in a number of recent papers. However, 1963

there are some limitations of the wireless systems or costs 1964

related to EE maximization, that can prevent the optimal 1965

solution to be achieved or makes it not profitable. 1966

Let us now summarize these design trade-offs which 1967

are graphically presented in Figure 28 and provide 1968

recommendations. 1969

A. EE MAXIMIZATION VS. OPTIMIZATION COMPLEXITY 1970

Power consumption associated with the implementation of 1971

the optimization algorithms to achieve maximal energy effi- 1972

ciency can be significant. The definition of optimization 1973

problem and its constraints are becoming more and more 1974

complex in order to reflect complex relation between differ- 1975

ent factors, e.g., influence of coding/decoding schemes on the 1976

transceiver power consumption. At the same time, the more 1977
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FIGURE 28. Trade-offs in achieving EE.

complex problem results typically in more advanced opti-1978

mization methods that need to be applied to find the global1979

optimum. The resource allocation optimization methods,1980

e.g., a combination of Dinkelbach method, SCA, Hungarian1981

method, etc., can be significantly computationally complex,1982

requiring many iterations to be employed. Moreover, these1983

problems do not scale well with increasing problem size, e.g.,1984

number of considered users or subcarriers. As such, obtaining1985

of a global EE maximum might be impossible in full-size1986

networks in real time. Even if possible, this can bring so1987

much energy consumption for computation of a solution, that1988

it becomes impractical. Algorithms complexity and required1989

computational resources (the cost) must be balanced with1990

the performance improvement (the profit) that comes with1991

exploiting the optimization algorithms. A suboptimal solu-1992

tion may achieve the EE performance close to the optimal at1993

significantly lower computational time or energy. It can be1994

achieved by utilizing a natural property of the SCA, Dinkel-1995

bach etc. algorithms, being iterativeness. The algorithms can1996

be terminated after fewer iterations, reducing computational1997

complexity proportionally to the savings in number of itera-1998

tions. Another option, related to the numerical optimization1999

methods, is proper definition of a starting point. By setting2000

it close to the final solution, e.g., by using some simplified2001

models or historical knowledge, fast convergence can be2002

achieved. Nevertheless, it is well known that wireless com-2003

munication systems operate in real-time and thus low2004

complexity solutions are required for resource allocation.2005

Therefore, based on the results resulting from the high com-2006

plexity optimization methods near-optimal solutions can be2007

proposed with lower computation complexity. For example,2008

in the case of relay network [86], instead of checking all pos-2009

sible user-relay node pair combinations, based on the results2010

users can be assigned to the ready node a prior. Another2011

approach is to applied look-up-table (LUT). Based on the2012

simulation results, it is possible to determine the relationship2013

between system parameters, e.g. transmit power values may2014

be assigned for a given channel gains, or relay nodes may be2015

selected for given locations. Then, by placing this information2016

in the LUT, resource allocation may be accomplished by2017

reading the corresponding row of the table. Moreover, the 2018

process of reading from the table can be improved by apply- 2019

ing the hashing or a different data structure e.g. a binary tree. 2020

B. EE MAXIMIZATION VS. INFORMATION AVAILABILITY 2021

AND SIGNALING OVERHEAD 2022

Even if the EE optimization algorithm results in globally 2023

optimal solution, it is optimal only for the considered system 2024

model, being inherently imperfect. The most common source 2025

will be delayed or quantized channel- and network-state 2026

information required by the optimization algorithm. Find- 2027

ing the proper balance between EE maximization and pro- 2028

visioning of accurate input knowledge is one of the main 2029

trade-offs for the deployment of EE OFDM networks. First, 2030

this information can be inaccurate or outdated at source since 2031

it is based on (inevitably imperfect) estimation of the channel 2032

coefficients in the presence of noise using, typically, pilot 2033

signals from past symbol periods. Moreover, this informa- 2034

tion is typically quantized in order to reduce the required 2035

throughput of the control channel, e.g., to send it periodically 2036

from a UE performing channel estimation to a BS allocat- 2037

ing resources. Last but not least, it may not be available in 2038

full at all network nodes, i.e., transmission of all channel 2039

coefficients of a given link to all other network nodes or to 2040

a central resource management unit, in order to coordinate 2041

inter-BS interference, would be associated with impractically 2042

high signalling overhead and potentially significant delay. 2043

Even if the optimal solution is calculated on time in the central 2044

resource management unit, the decision should be distributed 2045

among all controlled BSs within very tight latency budget. 2046

Therefore, an optimization using reduced (but represen- 2047

tative) information of links qualities should be considered, 2048

accepting reduced EE. The second option is to use hierar- 2049

chical or distributed optimization, that performs delay and 2050

control link-demanding optimization locally at a single base 2051

station. This allows for prompt reaction to mobile radio 2052

channel changes, limiting control messages between BSs. 2053

The hierarchical optimization means that local decisions are 2054

supported by global, but slowly-varying coordination among 2055

BSs. 2056

C. EE MAXIMIZATION VS. AVAILABLE DEGREES OF 2057

FREEDOM 2058

A limitation in achieving high energy-efficiency may be a 2059

particular radio communication standard or a radio architec- 2060

ture with a limited number of degrees of freedom. For exam- 2061

ple, only one MCS might be available (allowed by system 2062

recommendations) for a given OFDM symbol or resource 2063

block (as in LTE or 5G system standard) or a fixed power 2064

per RB will be emitted. Moreover, the power-consumption 2065

of the wireless transceiver may be invariant of the resources 2066

allocation, e.g., the power consumed by a class A power 2067

amplifier may be independent of the transmitted signal or 2068

base-band power consumption may not scale linearly with 2069

the transmission rate. In such cases the potential EE gain by 2070

optimization can be limited, making the total signaling and 2071
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computing overhead not justified. In the practical design of2072

energy-efficient OFDM-based communication networks one2073

has to assess (by simulations or measurements) whether the2074

energy-efficiency improvement achieved by the EE optimiza-2075

tion algorithms is high enough and worth the computational2076

and signaling costs.2077

This problem cannot be solved differently than by enabling2078

additional degrees of freedom by redesigning transceivers or2079

adding amendments to standards.2080

X. FUTURE WORKS AND CHALLENGES2081

The focus of this paper is the energy efficient resource allo-2082

cation in the systems based on OFDM/OFDMA techniques.2083

The reason for this is that the OFDM/OFDMA techniques2084

are used in most of the current wireless communication sys-2085

tems and are intended to be used in the future. However,2086

the presented discussion can extended to another modern2087

OFDM/OFDMA-based technologies.2088

One example can be Mobile Edge Computing (MEC). The2089

main goal of the MEC is to offload intensive mobile com-2090

putations to computing nodes located at the edges of cellular2091

networks [121]. Therefore, the energy efficient computations2092

offloading requires both energy efficient wireless transmis-2093

sion which, e.g., in 5G systems is realized with the use of2094

OFDM/OFDMA techniques and energy efficient tasks com-2095

putation. One of main challenges in this context is reliable2096

estimation of the power consumption in the processing nodes.2097

For example, in [122], [123], and [124] this power depends2098

on the CPU clock frequency, the total CPU cycles required2099

for computing tasks and the effective switched capacitance2100

depending on the chip architecture. Although it is a widely2101

used and high-level energy consumption model, it is still2102

highly architecture dependent. Thus, it can be observed that2103

also in MEC systems the power consumption models can2104

be of different complexity and accuracy. The second crucial2105

issue in designing energy-efficient MEC systems is the adap-2106

tive selection of the processing node because tasks can be2107

computed locally or in one of many cloud nodes. In the case2108

of local computing, the energy consuming transmission to a2109

cloud node is not required but task computation itself may2110

consume more energy. On the other hand, the task offloading2111

requires the transmission to the cloud node which consumes2112

the power and radio resources but the processing unit can be2113

more efficient. The selection of the processing node causes2114

the optimization problem to be classified as the MINLP2115

problem which, in the context of EE maximization, is also2116

a fractional programming problem. Thus, it can be observed2117

that the optimization techniques described in this paper can2118

be applied to the discussed MEC system.2119

Another technique to consider is Non-Orthogonal Multi-2120

ple Access (NOMA) [125], [126], [127], [128] which can2121

achieve higher spectral efficiency than OMA (Orthogonal2122

Multiple Access). However, it should be remembered that2123

higher spectral efficiency does not always result in higher2124

energy efficiency. In the case of Non-Orthogonal Multiple2125

Access more than one user uses the same frequency resource2126

causing interference to each other. Therefore, NOMA 2127

requires an advanced interference cancellation algorithm. 2128

From the energy efficiency point of view, the additional 2129

power consumed by the interference cancellation algorithm 2130

has to be estimated and may be dominant over the gain result- 2131

ing from increased spectral efficiency. Moreover, interfer- 2132

ence between users causes the energy efficiency optimization 2133

problem to be non-concave and can not be solved by standard 2134

optimization techniques as we have shown in Section VI-D. 2135

Nevertheless, the optimization techniques described in this 2136

paper can be applied in such case. Finally, it can be observed 2137

that Non-Orthogonal Multiple Access can be a promising 2138

technique for increasing the spectral as well as energy effi- 2139

ciency but all its aspects have to be taken into account 2140

in designing energy efficient resource allocation algorithm. 2141

Nonetheless, our analysis can be the baseline to investigate 2142

the energy efficient resource allocation in NOMA systems. 2143

Another interesting problem is the concept of Age of 2144

Information (AoI) which was introduced in 2011 by [129] to 2145

quantify the freshness of the knowledge we have about the 2146

status of a remote system. More specifically, AoI is the time 2147

elapsed since the generation of the last successfully received 2148

message containing update information about its source sys- 2149

tem. In practice, it describes how often the data are updated, 2150

so it is completely different from the delay or latency. The 2151

frequent updating of information ensures its high timeless 2152

and accuracy but also consumes a lot of energy which is 2153

undesirable in the case of battery powered IoT devices. In the 2154

literature, the AoI concept has been investigated for many 2155

different aspects. In [130], [131], and [132] the age of infor- 2156

mation has been considered in the packet management point 2157

of view e.g. in [132] the authors presented the age improve- 2158

ments by having smaller buffer sizes and introducing packet 2159

deadlines, in which a packet deletes itself after the expiration 2160

of its deadline. In the context of wireless communication 2161

the AoI has been considered in [133], [134], [135], [136], 2162

[137], and [138]. In [133] the authors has dealt with the 2163

age of information for a sensor network with wireless power 2164

transfer capabilities. The considered sensor node harvests 2165

energy from radio frequency signals, generates an update 2166

when its capacitor/battery becomes fully charged and trans- 2167

mits by using all the available energy without further energy 2168

management. The averageAoI performance of the considered 2169

greedy policy is derived in closed form and is a function of 2170

the size of the capacitor. The optimal value of the capacitor 2171

that maximizes the freshness of the information, corresponds 2172

to a simple optimization problem requiring a 1-D search. 2173

The AoI minimization problem for a network with gen- 2174

eral interference constraints, and time varying channels have 2175

been considered in [135]. The authors have proposed two 2176

methods which demonstrates significant improvement in age 2177

due to the availability of channel state information. Simi- 2178

lar optimization problem has been investigated in [137] but 2179

with minimum throughput constraints. They have developed 2180

four low-complexity transmission scheduling policies that 2181

minimize AoI and evaluate their performance against the 2182
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optimal policy. The simulation results show that two proposed2183

methods outperform the other policies, both in terms of AoI2184

and throughput, in every network configuration simulated,2185

and achieve near-optimal performance. The wireless sensors2186

networks (WSN) in the context of the information freshness2187

has been considered in [133] and [139], but only in the2188

second paper the energy efficiency aspect has been taken2189

into account. In [140] the upload scheduling scheme which2190

minimize the update energy consumption subject to informa-2191

tion freshness constraints has been proposed. Nevertheless,2192

in both paper and others viewed by authors of this project2193

papers the edge computing concept has not been considered.2194

Thus, it can be observed that the information freshness in2195

the context of the cellular IoT edge computing network is2196

relatively poorly studied while it could be a crucial factor in2197

designing the cellular IoT network. In particular in the system2198

where the data timeless is a priority e.g. emergency systems,2199

dynamic spectrum access systems, vehicle/airplane networks2200

or the stock exchange systems.2201

XI. CONCLUSION2202

In this paper, we review the energy-efficient resource allo-2203

cation methods in the single OFDM link, the multi-user2204

OFDMA network, and the multi-user OFDMA relay network2205

with computational awareness. The definitions and general2206

aspects of the energy-efficiency resource allocation in wire-2207

less communications are provided, e.g., the transmission rate2208

estimation, the estimation of the power consumption, the2209

system limitations and requirements as well as optimization2210

methods. Many solutions proposed by various authors are2211

discussed and compared. As the optimization problems for2212

EE maximization with constraints are relatively complex,2213

the mathematical apparatus required is quite advanced as2214

well. Though, the gain in EE can be quite significant mak-2215

ing the whole effort profitable. The two main issues to be2216

addressed in the future are presented in Section VIII and2217

Section IX. First, the nonlinear transceivers’ characteristics2218

should be considered in the optimization. By making the2219

system model more realistic other degrees of freedom can2220

be revealed at the cost of optimization complexity. Secondly,2221

the achievable EE depends on many factors, mostly avail-2222

able computational resources, control channels, and available2223

degrees of freedom. While the multicarrier schemes are plau-2224

sible to be used in the communication systems beyond 5G, the2225

designers of these systems will have to face these problems2226

finding a trade-off between all these factors. In Section X2227

the future works and challenges in the context of energy2228

efficiency resource allocation for other techniques based on2229

OFDM/OFDMA are provided. It can be observed that other2230

techniques used in the modern wireless communication sys-2231

tem are based on or use OFDM/OFDMA techniques. Thus,2232

the energy efficient OFDM/OFDMA resource allocation is2233

the part of them. Moreover, we have shown that many aspects2234

of designing energy efficient OFDM/OFDMA resource allo-2235

cation can be found in other techniques. Therefore, our paper2236

can be treated as the baseline for future works.2237
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