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ABSTRACT Potentially lethal heart abnormalities can be detected/spotted with recent evolution in contin-
uous, long-term cardiac health monitoring using wearable sensors. However, the huge data accumulated
presents a challenge in terms of storage, knowledge extraction and computing time. Moreover, manual
examination of long-term ECG recordings presents various problems like huge time and work demand, inter-
observer variations and difficulty classifying complex non-linear single-lead ECG signal. To address these
problems, we propose an automatic heartbeat classification system that uses the optimized minimum number
of features using ECG time-series amplitude directly as input, without feature extraction and provides a
primary classification and diagnosis for 1 normal and 14 types of arrhythmic heartbeats. Multi-objective
particle swarm optimization (MOPSO) is used to achieve the best feature fitness. A novel fitness function
is designed to be the sum of macro F1 loss and normalized dimension, with the optimization objective
calculated as the minimum of the fitness function. Multi-layer perceptron (MLP), k-nearest neighbor,
support vector machine, random forest and extra decision tree classifiers are trained using the selected
features. For the targeted 15-class classification problem, MOPSO-optimized features with MLP consistently
performed best with significantly reduced number of features. The proposed method proves to be an efficient
and effective arrhythmia identification system for continuous, long-term cardiac health monitoring using
single-lead ECG signal.

INDEX TERMS Arrhythmia, decision support system, electrocardiogram, feature optimization, multi-
objective, particle swarm.

I. INTRODUCTION

Cardiovascular diseases (CVDs) consistently remain the
leading cause of death worldwide despite the latest
computer-aided diagnosis methods and an evolutionary shift
in the increased use of wearable medical devices. World
Health Organization (WHO) estimates that 17.9 million
people died from CVDs in 2019 worldwide, constituting
32% of the global death count. Of these, an estimated
7.3 million death were due to Coronary Heart Disease (CHD)
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and 6.2 million were due to stroke. WHO projects that by
2030, almost 23.6 million people will die from CVDs, mainly
from heart disease and stroke [1]. A 2021 statistics report by
American Heart Association states CHD as the leading cause
(42.1%) of deaths attributable to CVDs in the US, followed
by stroke (17.0%), high blood pressure (11.0%), heart failure
(9.6%), diseases of the arteries (2.9%), and other CVDs
(17.4%) [2]. Due to the sudden and highly unpredictable
nature of an arrhythmia event, critical i.e., leading to death
called sudden cardiac death or non-critical i.e., leading to
survival called sudden cardiac arrest, the only prevention
and treatment option is to detect and diagnose the particular
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CVD condition as early as possible so that management with
medicines and behavioural change counselling (smoking,
nutrition, exercise, sedentary lifestyle) can begin can begin.

Traditional in-clinic ECG machines is a instantaneous
cardiac condition from the standard clinical 10-second test.
However, with novel wearable ECG devices, long-term and
continuous monitoring is possible. This is an advantage as
10-second tests may fail to identify critical or non-critical
events that occur outside the recording window unlike wear-
able sensors with higher recording frequency [3], [4], [5].
ECG signals acquired with wearable sensors are often lased
with distortions which eventually imply a significant comput-
ing overhead that necessitate the use of high-end hardware.

Huge amount of data make using automated analysis a
challenge; noise from skin contact, muscle activity; individ-
ual human factors play a critical role with different subjects
having different medical histories and underlying physiolog-
ical and behavioral conditions. Even for one testing human,
ECG signal morphology is not stationary as is also evident
by the biometric identification applications of ECG [6], [7],
[8]. Then physical activities also contribute to the challenge
with processing the signals. Nonlinearity of ECG signals with
noise and artefact effect can lead to overlooked or hidden
of measured symptoms of diseases and all these in the end
culminate in an inaccurate diagnosis. These factors make the
risk of getting an incorrect diagnosis of arrhythmia greater.

To meet a medical standard and clinically accepted moni-
toring system, early detection of abnormal conditions, accu-
rate decision support and high quality and real-time patient
data acquisition need to be considered. Computer-aided tech-
niques in this domain work as a decision support tool that
provide an accurate and timely diagnosis of heart abnormali-
ties and play a pivotal role in referring the patient to conduct
a specialized and detailed assessment of the underlying cause
and hence follow a proper prescribed treatment and preven-
tive care. Optimized feature selection could aid devices that
are able to make long-term and continuous monitoring [9],
[10], [11]. Optimum feature selection - removal of noisy and
redundant data plus the use of only relevant and least possible
amount of data for processing - are realized through the use
of advanced processing.

Currently proposed arrhythmia classification systems [12],
[13], [14] usually follow pre-processing, QRS detection, car-
diac cycle identification, feature definition and extraction
and heartbeat classification into normal and multiple types
of arrhythmia classes [15], [16], [17], [18], [19]. Recently,
researchers have presented different feature reduction meth-
ods to reduce input dimensions of ECG signals for neural
classifiers. To name a few, Zhang et al. [20] extracted sta-
tistical features applying the combined method of frequency
analysis and Shannon entropy and used information gain
criterion to select 10 highly effective features to obtain a good
classification on five types of heartbeats. Yildrim ez al. [21]
implemented a convolutional auto-encoder based nonlinear
compression structure to reduce the feature size of arrhyth-
mic beats. Tuncer et al. [22] applied the neighborhood com-
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ponent analysis feature reduction technique to obtain 64,
128 and 256 features from a 3072 feature vector size.
Wang et al. [23] proposed effective ECG arrhythmia classifi-
cation scheme consisting of a feature reduction method com-
bining principal component analysis with linear discriminant
analysis. Alonso-Atienza et al. [24] used a filter-type feature
selection procedure was proposed to analyze the relevance of
the computed parameters. Chen and Yu [25] applied nonlinear
correlation-based filters, calculated feature—feature correla-
tion to remove redundant features prior to the feature selec-
tion process based on feature—class correlation. Asl et al. [26]
proposed feature reduction scheme based on generalized dis-
criminant analysis. Haseena et al. [5], [27] used a fuzzy C-
mean (FCM) clustered probabilistic neural network (PNN)
for the discrimination of eight types of ECG beats. The
performance has been compared with FCM clustered multi
layered feed forward network trained with back propagation
algorithm. Important parameters parameters are extracted
from each ECG beat and feature reduction has been car-
ried out using FCM clustering. Polato ef al. [28] used prin-
cipal component analysis. Genetic algorithms have also been
applied recently for the optimization of ECG heartbeat fea-
tures [29], [30], [31], [32] and proved to be advantageous
in improving the time-cost value in heartbeat classification
methods. Yildirim et al. [33] used a DNN model to classify
7 rhythm categories reduced due insufficient recording for
4 cases, from an original 11 classes. The architecture com-
prised two parts of representation learning with 1D convolu-
tional and sub-sampling layers, and a sequence learning part
using long short-term memory (LSTM). In [34] a combina-
tion of a radial basis function process neural network (RBF-
PNN) and learning vector quantization network (LVQN) was
proposed. The first is used to embed prior feature knowledge
whereas the later is a competitive learning and structural
self-organizing mechanism that expanded the model depth.
LVQN measures feature similarities between input signals
and pattern category is determined by a set of wining neurons
connected to the output. RBFPNN performs spatial-temporal
feature aggregation and learning was done by dynamic time
warping and C-means clustering. Wang et al. [35] proposed
an end-to-end deep multi-scale fusion convolutional neural
network (DMSFNE?Y) classification architecture using mul-
tiple convolution kernels for feature extraction. The archi-
tecture starts with a multi-scale (low to higher scale) feature
learning and fusion, then the model is trained by jointly opti-
mizing the losses of multiple branches for effective learning
and discriminative classification features. To restore balance
to imbalanced dataset [36] used a generative adversarial net-
work (GAN), and a 2-stage deep-CNN performed feature
extraction and reduction as well as classification. However,
the GAN has a problem of focusing on dominant classes
and generation of problematic samples which require extra
processing. In [37] the proposed architecture combined para-
metric features of ECG (amplitude, interval and duration)
with visual morphology features. The feature vectors were
used to train a NN, SVM and KNN for classification. In [38] a
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Gaussian assisted signal smoothing was proposed to increase
the peak signal-to-noise ratio followed by a two-stage multi-
class CNN. A quadratic SVM was further used to classify
signals to respective sub-classes. The classification had 7 sub-
classes and 4 main classes. A deep learning framework CNN
with point-wise convolution and depth-wise separable con-
volution was proposed in [39]. Segmented beats were stored
as 2D images after annotations. Discrete wavelet transform
was used for noise removal. To handle data imbalance [40]
proposed a depth-wise separable CNN with focal loss. The
focal loss improved especially the small sample cases — the
minority classes, and the convolution layers reduce num-
ber of parameter selection. Focal loss added weights to the
majority and minority samples with a modulating factor.
Li et al. [41] proposed an image-based setup using deep
convolutional neural networks and transfer learning. It used
the Inception-V3 model architecture after comparison with
resnet, densenet, xception, inception and NASnet models.
Jha et al. [42] proposed a data compression method based on
tunable-Q wavelet transform with Q-factor chosen according
to the oscillatory behaviour of the signal. Maximum energy
of the signal was compacted to fewer transform coefficients,
then followed a dead-zone quantization, integer conversion of
coefficients and run length encoding. Features were extracted
from the compressed ECG signal. An image analysis was
proposed in [43], combining a vector quantized variational
autoencoder (VQ-VAE) and a 2D-CNN. VQ-VAE a flexi-
ble generating tool for data imbalance. ECG image slices
were used to train the PixelCNN classifier. It lacks in inter-
pretability of the rare cases. Luo et al. [44] proposed a hybrid
convolutional recurrent neural net that processes time-series
ECG signal and aimed to solve large imbalance in samples
by a synthetic minority oversampling technique. It calculates
nearest neighbors by Euclidean distance between data. The
RNN comprised layers of a CNN, LSTM and gated recurrent
unit (GRU). Du et al. [45] proposed a variational autoencoder
(VAE) and auxiliary classifier generative adversarial network
(ACGAN) to learn data distribution and synthesize images
from minority class. CNN classifiers were employed to rec-
ognize arrhythmias using 2D ECG images.VAE and ACGAN
required to be trained separately highlighting higher com-
putational cost. In [46] an improvement on NN-based clas-
sifiers was proposed with a CNN incorporating fine-tuning
of attention maps to resemble the ground-truth labels using
an L2-distance objective function. Park et al. [47] used a
squeeze-and-excitation (SE) residual network with 152 layers
to categorize 14 classes. The SE block explained model
interaction between local parts on entire ECG. An adaptive
method was proposed by Bognar and Fridli [48] based on
modeling ECG signals with variable rational orthogonal pro-
jections employing Malmquist-Takenaka systems of rational
functions. The system is a task-specific optimization that
builds a feature vector based on dynamic and morphologi-
cal descriptors (patient-depending and individual-heartbeat-
depending features). SVM was used for classification into
5 and 16 classes, and the pole optimization process was
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time-consuming. An artificial intelligence based diagnosis
system was proposed in [49] using texture feature of 2D
images of ECG. The images were constructed by projecting
the signal vector as a row of the image. A 12-bit signal is
transformed into a 8-bit resolution grayscale sub-image on
the claim that texture features in images contain determina-
tive indicators of various diseases. Ge et al. [50] proposed
a feature fusion method guided by multi-label correlation
and classification with CNN. The labels were calculated
based on frequency and Bayesian conditional probability
and a multi-label feature vector generated. Shi ef al. [51]
proposed a classification system based on deep CNN and
LSTM network with multiple input layers. Automatic and
hand-craft features were both extracted. To manage better the
retraining of models, [52] proposed a deep learning-without-
forgetting CNN architecture comprising feature extraction
module, classification layers, memory module to store proto-
types, and a distance matching network task selector module.
Taking a ECG converted to image, a pretrained denseNet169
extracted discriminative features.

Most of the cardiac beat classification algorithms proposed
in literature (see Section-IV) use computationally intense
feature extraction step after the beat segmentation (the beat
segmentation criteria may be different than the one used by
us i.e., some authors use 5, 6 or 10-second signal classifying
rhythm rather than exact beat labels as provided by MIT-
BIH data) such as frequency transforms [22], [29], [50], [70],
[74], [77], [78], [79], higher-order statistics [70], [78], [79],
[80], CNN [36], [38], [39], [40], [43], [44], [51], and others.
Feature extraction has to be implemented on every section
of the incoming time-series ECG signal being continuously
acquired by wearable device (Holter in this case). Hence
in the case of ECG signal being acquired in the long-term
and continuous monitoring 24-hour acquisition scenarios, the
least computationally intensive procedure providing a quick
scanning method is to directly identify incoming beats for
normal and pathological conditions. None of the abovemen-
tioned works use direct beat samples, remove the redun-
dant and noisy features to maximize the performance of
discrimination of 15 heartbeat classes additionally consid-
ering the imbalanced nature of normal to pathological heart
condition occurrence. So according to our best understanding
the proposed algorithm takes the route of least computation
performing best heartbeat pathology detection for a quick
and early reference in case of long-term and continuously
acquired ECG for cardiac health monitoring of patients.
In the foregoing propositions, a common denominator is
the challenge of complexity, scale, computational demand,
time cost, interpretability, etc. while maintaining a high over-
all accuracy of the classification system. Hence, motivated
by designing an automated arrhythmia recognition system
competitive with the parallel research, in this work, an effi-
cient decision support system was developed to perform a
quick scan on the single-lead minimally pre-processed ECG
time-series signal acquired by Holter device to detect and
recognize a broad range (i.e. 15 classes) of heart abnormality
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conditions. The key objective was to improve the accuracy
of cardiac arrhythmia classification and analyze the perfor-
mance of the time-series and their equivalent reduced-sized
optimum features of ECG heartbeats. The proposed MOPSO
(Multi-objective particle swarm optimization) algorithm is
tuned to find an optimum reduced combination of features
that performs better as compared to all features. We mainly
used PSO because this algorithm has a strong capability to
explore a large search space to find global optima rarely
falling into local optima thus a good choice for feature
selection in the current problem this work distinguishes a
wide range of arrhythmia classes. Also, MOPSO uses less
computational resource because of fast convergence ability
with fewer control parameters. Less computationally effi-
cient algorithms are used at the classification end to test
the goodness of reported optimized features. Classification
using multi-layer perceptron (MLP) [53], K-nearest neigh-
bor (KNN) [54], support vector machine (SVM) [55], [56],
random forest (RF) [57], and decision extra tree (DET) [58]
is performed with optimum and all features to show the
difference. Using the proposed method for classifying abnor-
mal heartbeats using reduced direct signal amplitude features
skips the computation of secondary features, produces higher
classification performance due to removal of unnecessary
features and is faster in unseen test data due to optimized
minimum features.

Summarily, the aim of this research is the realization of the

following:

o A novel and effective decision support system for
automatic recognition of a broad range of arrhythmia
pathologies based on single-lead ECG signals.

o An algorithm using minimum computational complex-
ity in both pre-processing and recognition stages to
be applicable for long-term and continuously acquired
ECG signals.

o A detailed analysis of the trade-offs of using a min-
imum number of feature points and classification
performance.

Il. MATERIALS AND METHODS

The proposed methodology as graphically shown in Fig. 1
follows four steps; 1) preprocessing, 2) beat identification
and normalization, 3) MOPSO feature optimization, and 4)
disease-based classification. Fig. 2 shows the sample beats
for fifteen ECG beat classes. The ECG database and each step
of the proposed methodology is discussed in the following.

A. ECG DATABASES

Two datasets MIT—BIH arrhythmia database (MITDB) [63],
[64] and MIT—BIH Supraventricular arrhythmia database
(MITSVDB) [64], [65] publicly available on PhysioNet.org
were used in concatenation for the purposes of testing
the effectiveness of the proposed method. The first dataset
MITDB consists of 48 two-channel ambulatory ECG records,
each of approximately 30 minutes duration digitized at a
sampling rate of 360 Hz and gain of 200 analog-to-digital

VOLUME 10, 2022

converter units per millivolt (adu/mV), acquired from 47 sub-
jects out of which 25 subjects were men aged 32 to 89 years,
and 22 were women aged 23 to 89 years (record number
47 and 48 came from the same subject). Each record has
simultaneous recordings from 2 leads, MLII and V5. Hence
for this research, 12060 heartbeats are used having corre-
sponding labels for 14 classes i.e. normal (N), left bundle
branch block (L), right bundle branch block (R), premature
ventricular contraction (V), atrial premature contraction (A),
paced (P), ventricular escape (E), fusion of ventricular and
normal (F), junctional premature (J), junctional escape (j),
aberrated atrial premature (a), non-conducted P-wave (x),
ventricular flutter wave (Vf), and fusion of paced and nor-
mal (f). The second dataset MITSVDB includes 78 half-
hour ECG recordings chosen to increase the examples of
supraventricular arrhythmic instances in the MITDB. Each
record in MITSVDB is approximately 30 minutes long and
contains 2 leads, each sampled at 128 Hz, with a fixed
gain of 200 adu/mV. For this research, 9900 heartbeats are
used having corresponding labels for 5 classes i.e. normal
(N), supraventricular premature (S) and premature ventric-
ular contraction (V). The 78 records made publicly avail-
able for standardized testing include pathological conditions
such as supraventricular and ventricular arrhythmia. Each
record in MITSVDB is resampled to 360 Hz to match the
sampling frequency of recorded signals in MITDB. The
selected 16 classes include less frequent but clinically sig-
nificant arrhythmic beats too to prove the validity of the
proposed algorithm. Each record in MITDB and SVDB is
supported by an annotation file providing the R-peak posi-
tions and corresponding beat labels (Lb). These class anno-
tations for heartbeats were exploited as reference annotations
for evaluation purpose of the proposed model. For the pur-
pose of testing a wearable ECG sensing scenario which
mostly uses single-lead for acquisition [66], [67], this work
uses ECG signal from only the MLII lead for MITDB
and ‘ECGI’ signal from SVDB. The general characteris-
tics of MITDB and SVDB are summarized in Table.2. The
standard Physionet annotations according to ANSI/AAMI
EC57:1998 standard [59] and the number of beats ran-
domly picked from corresponding records are detailed
in Table.3.

B. PREPROCESSING

The raw ECG signal is acquired through Holter device and
the effective ECG frequency lies between 0.5 and 40 Hz
frequency band [62]. There is a baseline drift from patient
breathing. Hence, in the preprocessing stage, power and
low-frequency components are removed from the raw
ECG signal by using a 6”-order bidirectional Butterworth
band-pass filter with lower and upper cut-off frequencies
of 0.5 and 40 Hz, respectively. Next, the baseline is com-
puted as a cubic spline interpolation of fiducial points placed
90 milliseconds before R-peak positions as an approxi-
mation for baseline PR-segment and subtracted from the
bandpass-filtered signal as shown in Fig. 3.
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FIGURE 1. Architecture of proposed methodology.

C. BEAT IDENTIFICATION AND NORMALIZATION

Using the R-peak positions provided with each record,
a heartbeat sample is identified as having onset 250 ms
before each R-peak position to 450 milliseconds after each
R-peak position. This definition allows that the important
characteristic points of ECG like P, Q, R, S and T waves are
included [60]. We utilize the Z-score normalization method
to compensate for intersubject differences by first subtract-
ing mean value from each ECG sample, and then dividing
by its standard deviation [23]. This procedure results in a
normalized ECG sample with zero mean and unity standard
deviation. Fig. 3 shows the beat identification from raw
ECG signal and preprocessed ECG signal to cardiac cycle
identification.

D. MOPSO FEATURE OPTIMIZATION

Features optimization is an integral step in the pipeline shown
in Fig. 1. The distribution of normal and abnormal heartbeats
is highly unbalanced in the data. The identification of key
features for precise detection and categorization of abnormal
heartbeats is aided by feature minimization and optimization.
Consequently, MOPSO is implemented for optimal feature
selection to classify abnormal heartbeats. The MOPSO archi-
tecture for feature optimization is depicted in Fig. 4. The
computation steps are explained as follows:

1) POPULATION INITIATION

An initial particles matrix P is generated as in (1) and (2) to
represent the possible solution/optimization space consisting
of n, number of binary row vectors p called swarm particles
each of length d (number of features in heartbeat samples in
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this case 253 as mentioned in Section-II-C).

P
P2
Pua=| pi (D
Pn—1
| Pn |
pi,1 P12 - - Pld
P21 P22 - - D2d
Pij=| pi1 Ppi2 -Pij Pid (2)
Pn—1,1 Pn—1,2 - Pn—1.d
| Pnl Pn2 - - DPnd |

where, p; ; represents bit value at j™ feature position in i

swarm particle. Here j = 1tod andi = 1 to n. (2) is
a version of (1) for the case where j = 1 to d number of
features and i = 1 to n. 1’s and 0’s in each swarm particle
represent the selected and non-selected features respectively.
The number of individuals n is chosen as 50 so that it is
large enough to avoid stagnancy and small enough to avoid
excessive computing time [61].

2) FITNESS EVALUATION FUNCTION

The particles in the swarm are evaluated using the fitness
function. We have used a novel approach and employed the
MLP classifier as the fitness function. MLP is a feedforward
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FIGURE 2. Sample beats for fifteen ECG beat classes: (a) normal, (b) left bundle branch block, (c) right bundle branch block, (d) premature
ventricular contraction, (e) atrial premature contraction, (f) supraventricular premature, (g) paced, (h) ventricular escape, (i) fusion of ventricular
and normal, (j) nodal (junctional) premature, (k) nodal (junctional) escape, (I) aberrated atrial premature, (m) non-conducted P-wave (blocked

APB), (n) ventricular flutter, (o) fusion of paced and normal.

neural network consisting of seven layers, i.e., input layer,
four hidden layers, and output layer. The input layer has the
same size as of feature vector i.e., 253; the hidden layers are
of sizes of [220, 180, 120, 60] and the output layer is a size
of 15 neurons as depicted in Fig. 5. ReLU activation function
is used, and Adam solver is used as an optimizer. The set of
selected features from MOPSO iteration is split in training
and validation subsets and as in Fig. 6. The MLP classifier is
trained and validated on these subsets respectively.

The classification prediction obtained from the validation
set is used to calculate fit given by (3). fit considers one
versus rest strategy taking all 1 class as positive and the rest
of 14 classes as negative for each individual class. All feature
subsets represented by p in P are selected from the dataset
and individually trained using MLP, and fiz is calculated on
the validation set.

1 d'
it = mi 1—— F1 — 3
fit = min | ( N; C)-I—d 3)
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1
Macro — F1 = NZFIC’

2.TpP

1= “)
2-TP+ FP+FN

where, d’ is the reduced number of features selected or
number of 1’s in the population individual being tested. d
is the maximum number of features or the exact length of
population individual i.e., 253 in this case. The 1* objective
1 - le Zlcvzl F1. is the macro-averaged F1-loss where all
classes treated equally. Macro Fl-score gives the same
importance to each class, hence appropriate for the current
multi-class imbalanced classification task. %/ is the nor-
malized dimension, a minimum of which is desired as a
2" objective to find the least optimum number of features.
A minimum of the sum of these two objectives is desired
as fit. TP = number of samples for which positive class was
correctly identified, TN = number of samples for which neg-
ative class was correctly identified, FP = number of samples
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FIGURE 3. Beat identification: (a) Raw ECG signal acquired from Holter
with provided beat annotations/labels, (b) Preprocessed ECG signal, and
(c) Cardiac cycle identified and consecutively extracted using R-peak
positions with corresponding label.

for which positive class was wrongly identified, and FN =
number of samples for which negative class was wrongly
identified. Hence, FP and FN represent misclassifications or
errors made by the classification algorithm. N denotes the
total number of classes and N = 15 for the current problem.

3) POSITION AND VELOCITY UPDATE

The swarm particles are randomly initialized and then cruised
in the search space to search for the optimal features by
updating their position and velocity. The particle’s posi-
tion and velocity in search space are denoted as X;; =
Xi1,Xi2, X3, ..., %, and Vi; = vi1,Vi2,Vi3,..
where j defines the dimension of search space, and i repre-
sents the index of the particle. Updates for velocity, position,
weight, best performing particle and fitness value are done
using (5), (6), (7), (8) and (9) given as follows:

RS Vi,ja

Vij@) =wx Vit = D)+ Cij+ Sij,
Cij = cirj* (pijt — 1) — x;(t = 1)),

Sij = caraj* (gij(t — 1) — x;j(t — 1)) ©)
xij(t) = x;j(t — 1)+ Vi j(t) (6)
w = wMax — t" x (WMax — wMin)/n) 7
et =1 it fi(0) >=f(pi(t — 1))
pilt) = x;(1) otherwise ®
g(t) = argmin(f (p1(1)), f (p2(2), . . . f (ps(1))) )

where, 7 is the iteration in progress, r1 j and r; ; are randomly
chosen from the range of [0, 1]. ¢ and ¢, are acceleration
coefficients that control the exploration vs the exploitation
and inertia is denoted by w. MOPSO maintains particles
memory for the local p;; and global g; ; best position. The
local best position defines the highest performance achieved
in that position, and the global best position is defined for
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the overall swarm. The inertia is updated after each itera-
tion using (7). wMax and wMin represent upper and lower
boundary limit respectively. The inertia weight influences
the impact of prior velocity on finding the optimal features.
Hence, exploration is favored for large inertia weights, and
exploitation is favored for smaller values. Algorithm 1 repre-
sents a MOPSO based feature reduction.

Algorithm 1:
Selection
input : A randomly initialize population by creating
binary mask for feature indexes € [0, 252]
output: Selection of features by applying global mask
and choosing features with binary mask of 1.

MOPSO Pseudo-Code for Feature

Initialize the particles randomly with swarm size of
ne = 50;
while t < T or gBestScore does not change for
20 iteration do
for i to n. do
Evaluate the swarm particle using the fitness
function to obtain fit as in (3)
if pBestScore; > fit(p;) then
pBestScore; < fit(p;)
‘ pBest; < p;
else
L pBestScore; < pBestScore;;
if gBestScore; > fit(p;) then
gBestScore; < fit(p;)
‘ gBest; < pBest;
else
| gBestScore; < gBestScore;;

update the velocity in each particle using (5) and
update the mask by applying the new velocity to
(6)

| update inertia weight w using (7)

| return gBestScore, gBest

4) SELECTION

Fitness function fit for each particle in the swarm is calculated
using (3). Applying the current-to-best strategy, if p; shows a
higher fit value than the corresponding p;, then p; in the P is
replaced with v;. Otherwise, the p; retains its position. This
comparison and replacement process is repeated for every
(pi, vi) pair an evolved version of P is obtained at the end
of the iterations. This process evolves and accumulates better
particles until the maximum number of iteration i.e. 100 is
reached. After looping through all iterations every particle in
the P is replaced with the best possible candidate i.e having
highest fit value. gBest with best fif in the end p is selected as
the optimum feature subset with 1’s representing the selected
features d’ out of d, where d’ < d.

5) TERMINATION
The process terminates if the maximum number of given iter-
ation 100 is reached or fit becomes stagnant for a consecutive

20 iteration. For every new iteration, the values of gBestScore
and pBestScore are updated.
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Update particle position x
and velocity V

t=t+1

—

FIGURE 4. MOPSO architecture for feature optimization.
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Input

Binary feature selection vector

- o

d’

FIGURE 5. MLP architecture to calculate fitness function.

E. CLASSIFICATION

The classification is crucial for the proposed system archi-
tecture. It classifies the ECG signal based on the optimized
features set obtained from the MOPSO algorithm. We tested
five machine learning classifiers for classification with the
least hyperparameters and the least possible computational
complexity. These classifiers include MLP, KNN, SVM, RF,
and DET. MLP architecture is the same as used to calculate
fit in Section-II-D2.

KNN algorithm is one of the most conventional methods
in pattern recognition because of its practical nonparametric
nature. The nearest neighbor decision is based on the clos-
est distance a sample has to other K samples. Therefore,
euclidean distance is used as a distance measure to classify
training samples in the feature space. For experimentation,
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fit =min((1 — %Z Flc) +

‘/71](1‘) =W * ‘/z,](f —

Features, d=253, d'<d

Jumber of particles, n

[l

pBestScore,
pBestScore,

(XX ]

:E —p pBestScore, =

pBestScore;
P

pBestScore,,
pBestScore,,

N (1’ )
d

c=1

l) + Cz},j & Sz‘,j~

z;,5(t) = @4 5(t — 1) + Vi ;(¢)

Data with optimized feature subset

we have considered a neighborhood size of four sample
points.

SVM is a conventional machine learning method in
classification. First, the input data are transformed into a
high-dimensional feature space. In this space, the data points
are linearly separated by a hyper-plane. Because the data
points are not linearly separable in most cases, the data
points are mapped into a high-dimensional space using an
appropriate kernel, and then the optimization step is fulfilled.
Various kernel transformations are used to map the data into
high-dimensional space, including linear, sigmoid, polyno-
mial, and radial basis functions. We experimented with linear,
polynomial, and Radial basis kernels, and the C was set as
100, the Gamma was set as 4, and the polynomial was selected
as the kernel-type parameter. This study used parameter opti-
mization to find the optimum SVM parameters.

DET is a predictive model that can characterize both clas-
sifiers and regression models. DET refers to a hierarchical
model of decisions and their results and is used to classify
a sample into a predefined set of classes based on their
feature values. DET consists of nodes that form a rooted tree
meaning. It is a directed tree with a node called a root with
no entering edges. All other nodes have only one entering
edge. A node with outgoing edges is referred to as a test node.
All other nodes are known as leaves or decision nodes. Each
leaf is allocated to one class, demonstrating the most accurate
target value. In addition, the leaf holds a probability vector
specifying the probability of the target feature with a definite
value.
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FIGURE 6. Data distribution for training, validation and testing the
proposed algorithm for the 15-class disease-specific arrhythmia
classification.
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Random forests or random decision forests are an ensem-
ble learning method for classification, regression, and other
tasks that operate by constructing many decision trees at
training time. It uses bagging and feature randomness when
building each tree to create an uncorrelated forest of trees
whose prediction by committee is more accurate than that of
any individual tree. K-Fold grid optimization was used with
the number of folds = 5, and the optimum hyperparameters
hyperparameters hyperparameters obtained after training for
each model are summarized in Table.1.

F. EVALUATION METRICS

Classification metrics; Macro Fl-score, accuracy, sensitiv-
ity/recall, specificity and precision are reported according
to (4), (10), (11), (12), (13) and (14) respectively. All the
definitions mentioned below follow a one-versus-rest strat-
egy [68]. Each classification measure is calculated for each of
the 15 classes (taking one class as positive and all the rest as
negative) and then averaged to represent mean classification
measure.

TP + TN
Acc = 100 (10)
TP + TN + FP + FN
TP
Sen = ——— . 100 (11)
TP + FN
1 N
Senavg = X;Sen(c) (12)
c=
TN
Spe = —— . 100 13
P = IN T FP (13)
1 N
Speavg = v ;Spe@ (14)

Here, TP, TN, FP and FN follow the same definition
as mentioned in Section-II-D2. Fig. 6 shows the data split
strategies used for the disease-specific classification case.

IIl. RESULTS

To test the generalization of finding the optimum features
and their applicability we performed a test using all of the
3 above-mentioned datasets. The purpose of this experiment
was to test and analyze if the system can optimize and train on
the available data and perform well on the unseen incoming
ECG signal i.e. test data acquired in a setting different than
training. The training data is taken from both MITDB and
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TABLE 1. Control parameters.

Parameter Value
MOPSO

Swarm size (n) 50

Maximum number of iteration 100

Particle type
Selection scheme

Binary bits
Current-to-best

Particle individual length 253

Acceleration coefficients (c1, c2) 12,12

Inertia weight (w) 0.24

clmin, Cmin, Clmaz, C2maz 0.5,0.5,2.0,2.0

Wmins, Wmaz 0.2,09
MLP

Optimizer ADAM

Activation ReLU

Learning rate le %

Input size, output size 253,15

Hidden layer sizes 220, 180, 120, 60
KNN

Number of neighbours 4

Weights distance
DET

Number of trees 25

Optimum split criterion entropy
SVM

kernel poly

gamma scale

RF
Number of trees 25
Optimum split criterion entropy

SVDB. All beats are resampled at 360 Hz and each record
in all 2 datasets has been divided by their respective gain to
process the signal further in millivolts. The division of records
and beats into training and testing sets for an interpatient
classification analysis is detailed in Table.3.

Detailed comparisons were performed for both checking
the robustness of the reduced features and their efficiency and
speed of proposed algorithm to find an optimum solution.
The classification was performed for All features set (as
exact solution) and Optimized features subset obtained after
MOPSO optimization. Hence, all measures are reported for
both All features and Optimized features cases to present a
comparison between classification improvement and feature
reduction achieved using the proposed method. To perform
a comparison for classification accuracy using optimized
features on test data, 5 classifiers are used: MLP, KNN, DET,
SVM and RF. An introduction to the working principles of all
these classifiers has been presented before in Section-II-E.

A. PARAMETER SETTINGS

The optimum hyperparameter values of implemented classi-
fier architectures for MLP, KNN, RF, SVM and DET imple-
mented on the test data for both all and optimized number
of features were selected that performed best for all features
(exact solution) and the same model was tested with the test
data for reduced and all features. The optimized parame-
ters for all classifiers are mentioned in Table.l. We ran the
MOPSO optimization for 10 simulation runs for each exper-
iment in Python on a machine with 6 cores (AMD Ryzen 5
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TABLE 2. Summary of test databases.

Database Number of | Duration per | Sampling Leads Leads Number of
records record frequency available | used classes
(minutes) (Hz)
MIT-BIH Arrhythmia 48 30 360 2 ML-II 14
MIT-BIH Supraventricular Arrthythmia | 78 30 128 2 ECG1 5

TABLE 3. Description of beat annotations/labels and detailed beat distribution for train and test data.

No | Symbol | Pathological condition Record ID, [Number of beats] Number of records
Total Train Vald. Test
1 N Normal sinus rhythm MITDB: 100, 101, 103, 105, 106, 108, 112, 10000 5500 1500 3000
113, 114, 115, 116, 117, 119, 121, 122, 123,
200, 201, 202, 203, 205, 208, 209, 210, 212,
213, 215, 219, 220, 221, 222, 223, 228, 230,
233, 234 [100 each], MITSVB: 800, 802, 803,
804, 805, 806, 807, 808, 809, 810, 811, 812,
820, 821, 823, 824, 825, 826, 827, 828, 829,
840, 841, 842, 843, 844, 845, 846, 847, 848,
849, 850, 851, 852, 853, 854, 855, 856, 857,
858, 859, 860, 861, 862, 863, 864, 865, 866,
867, 868, 869, 870, 871, 872, 873, 874, 875,
876, 877, 878, 879, 881, 882, 883 [100 each]
2 L Left bundle branch block MITDB: 109, 111, 207, 214 [400 each] 1600 880 240 480
3 R Right bundle branch block MITDB: 118, 124, 212, 221, 231 [400 each] 2000 1100 300 600
4 \% Premature ventricular contraction MITDB: 106, 119, 200, 203, 208, 228, 233, 2200 1210 330 660
MITSVB: 803, 804, 805, 841, 851, 854, 855,
859, 860, 863, 864, 865, 866, 868, 870 [100
each]
5 A Atrial premature contraction beat MITDB: 207 [100], 209, 222, 232 [200 each] 700 385 105 210
6 S Supraventricular premature beat MITSVB: 809, 820, 824, 825, 828, 841, 842, 2000 1100 300 600
866, 867, 868, 869, 870, 821, 823, 852, 854,
855, 861, 863, 865 [100 each]
7 / (P¥) Paced beat MITDB: 102, 104, 107, 217 [400 each] 1600 880 240 480
8 E Ventricular escape beat MITDB: 207 [100] 100 55 15 30
9 F Fusion of ventricular and normal beat MITDB: 208, 213 [200 each] 400 220 60 120
10 J Nodal (junctional) premature beat MITDB: 134 [20], 234 [40] 60 33 9 18
111 j Nodal (junctional) escape beat MITDB: 222 [200] 200 110 30 60
12 a Aberrated atrial premature beat MITDB: 201 [80], 202 [10], 210 [10] 100 55 15 30
13 X Non-conducted P-wave MITDB: 201 [20], 219 [130] 150 83 22 45
14 ! Ventricular flutter wave MITDB: 207 [400] 400 220 60 120
(V)
15 f Fusion of paced and normal beat MITDB: 102 [50], 104, 217 [200 each] 450 248 67 135
Total 21960 12079 3293 6588

ANSI/AAMI EC57:1998 standard [

] (https://archive.physionet.org/physiobank/annotations.shtml).

* Standard Physionet annotations for paced and ventricular flutter are / and ! respectively but for ease of understanding we use P and Vf in this

paper. Vald. = Validation

3600 CPU @ 3.60 GHz), 32 GB memory and Windows 10.
In all experiments, the average performance was reported.

IV. DISCUSSION

The proposed algorithm reduces the number of features from
253 to 40 indicating 84.189% reduction in features with
0.62% reduction in the mean F1-score and 0.85% reduction in
accuracy and for the 15-class disease-specific classification.
The indices of selected 40 feature subset are given in Table.4.
The Table.5 shows a comparison of the Optimized features
achieved using the proposed algorithm with the All features
standard used as an exact solution. Table.6 shows a detailed
class-wise result achieved with the Optimized features in
comparison to the All features standard. Table.7 and 8 show
the confusion matrices of prediction results for both Opti-
mized features and All features cases. The average number of
generations by which the optimization is achieved was 40+4
(10 trials). Beyond this number of generations there was not
any further significant improvement of the fitness function.
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TABLE 4. Indices of selected 40 feature subset.

4,8,20,24,26,27,37,53,55,58,68,71,77,80,84,85,
86,90,91,94,104,109,118,125,142,143,155,158,
166,168,174,176,183,187,190,201,215,224,236,247

Based on Table.5, we can state that although KNN, DET,
SVM and RF provided competitive heartbeat recognition
results, MLP provided the best evaluation measures among all
the classifiers tested in case of both optimized and all features
case with 84.189% reduced feature points. SVM provides
highest sensitivity for optimized features only 0.218% better
than MLP. Table.6 shows the detailed class-wise result for the
best performing MLP classifier. Fig. 7 shows timing analysis
done for classification of a single test sample. Mean and
standard deviation are reported over 10 trials. MLP shows
the highest amount of time required to classify a single test
sample but has the lowest error rate keeping in view the nat-
ural imbalance of data samples for arrhythmia classification
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TABLE 5. Overall classification results.

Classifier Optimized Features All Features % Change
a Y%Macro- %Accu-]  %Sensiti- | %Spe- | %Macro- %Accu-| %Sensiti- | %Spe- | Features F1 score
F1 score racy vity/Recall | cificity | F1 racy vity/Recall | cificity

MLP 88.8 95.2 88.1 99.6 90.5 95.6 90.6 99.6 -0.41
KNN 86.8 94.5 82.9 99.5 87.1 94.7 84.0 99.5 -0.11
DET 85.6 93.6 80.1 99.4 85.8 94.0 80.7 99.4 -84.2 -0.41
SVM 74.2 85.1 88.3 98.9 79.0 89.4 90.4 99.2 -4.25
RF 84.6 93.4 79.8 99.4 83.4 93.1 77.8 99.3 +0.08

TABLE 6. Detailed classification results for the best performing MLP classifier.

Class Optimized Features All Features %Samples
T%F1 %Sensiti- | %Speci- | %Pre- %F1 %Sensiti- | %Speci- | %Pre- (Sample num-
score vity/Recall| ficity cision score vity/Recall| ficity cision ber)

N 97.0 96.8 97.6 97.2 97.0 96.6 97.9 974 45.5 (3000)

L 98.3 98.5 99.9 98.1 98.5 98.1 99.9 98.9 7.3 (480)

R 92.7 94.8 99.0 90.8 93.6 94.5 99.3 92.8 9.1 (600)

\Y 93.2 94.9 99.0 91.7 94.7 95.5 99.3 93.9 10.0 (660)

A 89.1 87.6 99.7 90.6 85.2 89.0 99.3 81.7 3.2 (210)

S 96.7 96.3 99.7 97.1 97.3 97.3 99.7 97.1 9.1 (600)

P 99.3 99.6 99.9 99.0 99.2 99.4 99.9 99.0 7.3 (480)

E 93.1 90.0 100.0 96.4 94.7 90.0 100.0 100.0 0.5 (30)

F 84.6 85.0 99.7 84.3 86.1 85.0 99.8 87.2 1.8 (120)

J 78.9 83.3 99.9 75.0 83.3 83.3 100.0 83.3 0.3 (18)

j 77.6 75.0 99.8 80.4 82.4 81.7 99.8 83.1 0.91 (60)

a 65.5 60.0 99.9 72.0 73.0 76.7 99.8 69.7 0.5 (30)

X 90.3 93.3 99.9 87.5 89.1 91.1 99.9 87.2 0.7 (45)

Vf 85.6 81.7 99.8 89.9 90.1 87.5 99.9 92.9 1.8 (120)

f 89.8 84.4 99.9 95.8 94.0 92.6 99.9 95.4 2.0 (135)

TABLE 7. Confusion matrix - Optimized features.

N L R \ A S P E F J j a X Vi f

N 2904 1 30 11 12 10 0b 1 13 2 8 1 2 2 3

L 0 473 1 5 0 0 0 0 0 0 0 0 0 1 0

R 20 0 569 6 0 2 0 0 0 0 0 1 2 2 0

v 11 3 4 626 0 3 0 0 6 0 0 3 1 3 0

A 19 1 4 1 184 0 0 0 0 1 0 0 0 0 0

S 9 0 4 2 1 578 1 0 0 0 0 2 1 1 1

P 0 0 0 0 0 0 478 0 0 0 0 0 0 1 1

E 0 0 0 3 0 0 0 27 0 0 0 0 0 0 0

F 7 1 0 9 0 0 0 0 102 1 0 0 0 0 0

J 2 0 1 0 0 0 0 0 0 15 0 0 0 0 0

j 9 0 1 1 4 0 0 0 0 0 45 0 0 0 0

a 5 0 0 3 1 2 0 0 0 0 0 18 0 1 0

X 0 0 1 0 1 1 0 0 0 0 0 0 492 4 0

A% 1 1 12 7 0 1 0 0 0 0 0 0 0 98 0

f 2 2 0 9 0 0 4 0 0 1 3 0 0 0 114
TABLE 8. Confusion matrix - All features.

N L R v A S P E F J j a X Vf f

N 2897 0 30 11 28 6 1 0 9 2 7 4 2 2 1

L 0 471 0 6 0 0 0 0 0 0 0 0 0 2 1

R 230 567 3 1 1 0 0 0 0 0 10 3 1 1

v 7 4 1 630 3 5 0 0 6 0 0 1 0 3 0

A 13 0 3 2 187 1 0 0 0 1 2 0 0 0 1

S 7 0 4 1 1 584 1 0 0 0 0 1 1 0 0

P 0 0 0 1 0 0 477 0 0 0 0 1 0 0 1

E 0 0 0 3 0 0 0 27 0 0 0 0 0 0 0

F 10 0 0 8 0 0 0 0 102 0 0 0 0 0 0

J 1 0 1 0 0 0 0 0 0 15 1 0 0 0 0

j 6 0 0 1 4 0 0 0 0 0 49 0 0 0 0

a 5 0 0 0 2 0 0 0 0 0 0 23 0 0 0

X 1 0 1 0 1 0 0 0 0 0 0 1 41 0 0

\%3 2 0 4 3 0 3 0 0 0 0 0 2 0 105 1

f 1 1 0 2 2 1 3 0 0 0 0 0 0 0 125
task. Furthermore, for the optimized feature subset the time subset. All classifiers show a significant decrease in comput-
is even reduced. Compared to KNN, DET, SVM and RF ing time when comparing optimized feature and all feature
though MLP takes more time even for optimized feature case respectively. Fig. 8 (a and c) shows overall ROC curves
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TABLE 9. Summary of the latest related literature.

Reference | Feature type #Classes | Feature reduc- | Classification Accuracy (%) | Fl-score (%)
tion
[73] Temporal VCG 3 PSO SVM 92.40 -
[71] k-medoids VQ 4 none Parallel regression NN 95.00
[79] LBP, HOS, CWT, hand-crafted | 4 - MPA-CNN 99.76 94.44
[77] 2D-CWT scalogram 4 - 3-layer 2-D CNN 98.74 68.76
[21] Morphology 5 CAE LSTM 99.00 99.00
[70] HOS+Wavelet 5 ICA+PCA SVM+NN 98.91 -
[72] Morphology 5 none 9-layer Deep CNN 94.03 -
[78] LBP, HOS, wavelet and magni- | 5 MRFO SVM 98.26 97.82
tude
[33] Raw 7 Representation CNN, LSTM 92.24 -
learning
[34] Spatial-temporal morphology, | 7 DTW, C-means | RBFPNN 85.63 86.26
LVQN
[41] Image 7 none Transfer learning deep CNN 98.46 -
[42] Compressed signal 8 Energy Tunable-Q wavelet transform 98.37 -
compacting
[44] Time samples 9 SMOTE CNN,LSTM,GRU 99.01 99.51
[45] Attention maps 9 L2-distance CNN 84.50 81.20
[49] Image texture 9 none Randomized NN 99.00 -
[50] Frequency, Bayesian | 9 Multi-label CNN - 82.70
conditional probability correlation
[35] Raw 10 Multi-scale fu- | CNN - 82.80
sion
[38] Smoothed signal 11 none 2-stage CNN, Quadratic SVM 97.63 92.63
[26] Raw 15 none GAN, 2-stage CNN 98.00 -
[51] Time-series CNN 15 none LSTM 99.26 -
[74] DCT + weighted inter-beat 5,15 none SVM 98.46 -
[37] Visual morphology + ampli- | 15 none NN, SVM, KNN 97.70 -
tude, interval, duration
[48] Orthogonal projections 16 Malmquist- SVM 99.5 -
Takenaka
systems
[40] Raw 17 Focal loss Depthwise separable CNN 98.55 79.00
[29] PSD+DFT 17 GA SVM, kNN, PNN, and RBFNN | 98.85 -
[22] Multilevel wavelet 17 NCA 1-NN 95.00 -

for both optimized and all feature scenarios. AUC for the
optimized features is 0.996 with a 0.001 or 0.1% reduction
in overall AUC as compared to the all-features scenario.
Fig. 8 (b and d) shows individual class recognition AUC for
both optimized and all feature cases. Recognition AUC for
classes normal, right bundle branch block, premature ven-
tricular, premature atrial, ventricular escape, junctional, aber-
rated atrial premature, fusion of ventricular and normal and
ventricular flutter with optimized features decreased by 0.1%,
0.2%,0.1%,0.1%,0.2%, 1.8%, 0.9%, 0.8% and 0.7% and, for
classes supraventricular, fusion of paced and normal, nodal
junctional and non-conducted P wave increased by 0.2%,
0.3%, 1.6%, 0.3% as compared to the all-features scenario.
AUC for classes left bundle branch block and paced remained
100% and unchanged for both cases. These small [0.1-1.8]%
positive and negative trade-offs in individual recognition of
different cardiac pathologies come at 84.189% reduction in
features. This overall arrhythmia detection and recognition
for a primary scan check as depicted in Fig. 9 in continuous
and long-term cardiac health monitoring applications using
single-lead ECG signal successfully proves to be a quick
and early referral system to send the patient to a general
physician/cardiac specialist or to emergency in case of stroke.

As summarized in Table.9, most of the previous studies
perform classification for 3, 4, and 5 arrhythmia classes
mostly belonging to AAMI/ANSI heartbeat types i.e., N,
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FIGURE 7. Comparison of computing time required to classify 1 test
sample using MLP, KNN, SVM, RF and DET.

S, V, F, and Q or a subset of these. The works focused on
achieving maximum accuracy. The problem in this particular
case using the accuracy as prediction metric is that normal
class has much greater number of samples than arrhythmic
samples. Then different types of arrhythmias ventricular,
supraventricular, atrial pathologies and their subtypes have
different frequency of occurrence some of them rare than
others. Accuracy in this case does not put higher importance
to the prediction quality of minority classes, which in our case
or in the case of disease analysis in general opposes the design
objective. Hence, in this work, we worked to achieve macro
F1 score which put equal weight to prediction of majority (i.e.
normal) and all minority (i.e. arthythmia) classes.
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FIGURE 8. ROC curves for: (a) Optimized features - overall, (b) Optimized features - classwise, (c) All features -

overall, and (d) All features - classwise.
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FIGURE 9. Achieved optimized feature scan to discriminate between 15 (1 normal and 14 arrhythmic) types of

heartbeats.

Although an exact comparison is not possible as the
works that actually performed classification for 15-17 classes
worked with 10 second ECG fragments rather than individu-
ally segmented beats, also using solely amplitude points as
features. For example, Plawiak [29] achieved an accuracy
of 98.85% with 90.20% sensitivity classifying 17 classes
(1 normal, 15 arrhythmia and 1 unclassifiable beat) using
an extensive and complex feature extraction step i.e., power
spectral density using Welch’s method and discrete Fourier
transform. Tuncer et al. [22] extracted 3072 (5-levels dis-
crete wavelet transform and 1-dimensional hexadecimal local
pattern) dimensional feature set subjected to neighborhood
component analysis feature reduction technique to obtain
64, 128 and 256 features. Using KNN classifier with K=1
for classification of 17 arrhythmia classes using MIT-BIH
Arrhythmia ECG dataset they obtain an accuracy of 94.6,
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94.7, and 95.0% for 64, 128 and 256 features respectively.
Yildirim et al. [69] used rescaled raw 10 second signals
as features and 16-layer 1D-CNN for classification. They
reported accuracy of 95.20, 92.51, and 91.33% for 13, 15 and
17 classes respectively. Hence, to the best of our knowledge,
the currently presented results show a competitive best recog-
nition sensitivity for the 15 classes based on MOPSO-MLP
scheme to be 88.089%, with 95.21% accuracy meaning
5 errors per 100 classifications.

As summarized in Table.9, most of the works that report
an overall F1 score higher than ours [21], [44], [78], [79]
performed classification for a limited 2 to 12 heart patholo-
gies, highest F1 being 92.63% achieved by [38] for 11 classes.
The current study achieves best F1 score considering 15 class
heartbeat recognition. The studies that report high level of
accuracy for recognition of 13-17 classes [22], [36], [40],
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TABLE 10. Appendix 1: The list of used abbreviations.

Acronym Meaning

LBP Local Binary Pattern

HOS Higher-Order Statistical

PSD Power Spectral Density

DFT Discrete Fourier Transform

DCT Discrete Cosine Transform

MRFO Manta Ray Foraging Optimization

VCG Vectorcardiogram

CWT Continuous Wavelet Transform

PSO Particle Swarm Optimization

CNN Convolutinal Neural Network

LSTM Long Short-Term Memory

AE Autoencoder

SVM Support Vector Machine

RF Random Forest

NN Neural Network

KNN K-Nearest Neighbour

DET Extra Decision Tree

RBFNN Radial Basis Function Neural Net-
work

LS-SVM Least Squares SVM

MPA Marine Predators Algorithm

vQ Vector Quantization

[51], mostly use 4 to 7-layer deep CNNs for feature extraction
which is a highly computationally complex feature extraction
method and difficult to perform every time for every sin-
gle beat especially dealing with 24-hour signal acquisitions.
Hence, considering the accuracy, F1, precision of diagnosis,
reduction in computational complexity needed for practical
applicability of arrhythmia diagnosis systems for arrhyth-
mia, the current work presents a competitive best among
the latest studies. The only computationally intensive part
is the optimization and in the current procedure it has to
happen only once to produce the optimized feature vector.
However, there is a limitation that for the currently tested data
the sampling frequency of the ECG data acquisition device
had a sampling frequency of 360 Hz. For a second database
MITSVDB with data acquired from the Holter device but at
a sampling frequency of 128 Hz to be concatenated with our
test data we had to resample it to 360 Hz. Hence, for devices
acquiring ECG data at different sampling frequencies, the
signal would need to be resampled for the proposed feature
point vector to be usable. The confusion matrices show a
high percentage of arrhythmic beats being wrongly classified
as normal. This could be due to distortion in the heartbeat
amplitudes due to noise or other motion artifacts. In future,
we intend to improve the classification performance by first
discriminating between normal and abnormal heartbeats and
afterwards performing subclass classification for arrhythmia.
Also, to make the proposed system to reproduce the ECG
signal to be used in a clinic/hospital setting, we intend to
work with 10 second segments and multi-label pathological
indication provision. Overall the achieved ECG arrhythmia
classification result indicates that detection of arrhythmia
using 15.81% features of a complete ECG heartbeat can be an
effective approach to help general physicians and cardiology
specialists to diagnose critical cardiovascular diseases in a
continuous and long-term, online or offline monitoring sce-
narios particularly well-suited for a wearable sensing setting.
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V. CONCLUSION

This work focused on reducing the dimension of features
to perform a quick scan on heartbeats segmented from
single-lead ECG signal for the purpose of abnormal cardiac
pathology recognition to be used as an early referral system.
The results obtained in all experiments confirmed that the
proposed MOPSO-MLP method efficiently delivers compet-
itive recognition performance and precision with 84.189%
less time-series amplitude points. Furthermore, the developed
method provides early diagnosis for a wide range of heart
abnormalities making it an applicable arrhythmia decision
support system for wearable ECG devices.

ACKNOWLEDGMENT

The authors would like to thank the guidance and support of
Prof. Laura Burattini (Department of Information Engineer-
ing, Polytechnic University of Marche, Italy) in conducting
this research.

CONFLICT OF INTEREST
The authors declare no conflicting interests in the publishing
of this paper.

REFERENCES

[1] World Health Organization (WHO). (2011). Global Atlas on
Cardiovascular Disease Prevention and Control. Accessed: Dec. 20, 2021.
[Online].  Available: https://apps.who.int/iris/bitstream/handle/10665/
329516/9789241564373-eng.pdf

[2] S. S. Virani, A. Alonso, H. Aparicio, E. Benjamin, M. Bittencourt,
C. Callaway, A. Carson, A. Charmberlain, S. Cheng, and F. Delling, ‘‘Heart
disease and stroke statistics—2021 update: A report from the American
heart association,” Circulation, vol. 143, no. 8, pp. e254—743, Feb. 2021.

[3] M. M. Baig, H. Gholamhosseini, and M. J. Connolly, “A comprehensive
survey of wearable and wireless ECG monitoring systems for older adults,”
Med. Biol. Eng. Comput., vol. 51, no. 5, pp. 485495, Jan. 2013.

[4] C. Davenport, E. Cheng, Y. Kwok, A. Lai, T. Wakabayashi, C. Hyde,
and M. Connock, “Assessing the diagnostic test accuracy of natriuretic
peptides and ECG in the diagnosis of left ventricular systolic dysfunction:
A systematic review and meta-analysis,” Brit. J. Gen. Pract., vol. 56,
no. 522, pp. 48-56, Jan. 2006.

[5] R.Ceylan and O. Yiiksel, “Comparison of FCM, PCA and WT techniques
for classification ECG arrhythmias using artificial neural network,” Expert
Syst. Appl., vol. 33, no. 2, pp. 286-295, Aug. 2007.

[6] A.N. Uwaechia and D. A. Ramli, ‘A comprehensive survey on ECG sig-
nals as new biometric modality for human authentication: Recent advances
and future challenges,” IEEE Access, vol. 9, pp. 97760-97802, 2021.

[7] R. Srivastva, A. Singh, and Y. N. Singh, “PlexNet: A fast and robust
ECG biometric system for human recognition,” Infom. Sci., vol. 558,
pp. 208-228, May 2021.

[8] S. Dalal and V. P. Vishwakarma, ““Classification of ECG signals using
multi-cumulants based evolutionary hybrid classifier,” Sci. Rep., vol. 11,
no. 1, pp. 1-25, Jul. 2021.

[9] A. Gacek, “An introduction to ECG signal processing and analysis,” in
ECG Signal Processing, Classification and Interpretation: A Compre-
hensive Framework of Computational Intelligence, 1st ed. London, U.K.:
Springer, Aug. 2011, pp. 21-46, ch. 2, sec. 2.1.

[10] A.Wosiak, “Principal component analysis based on data characteristics for
dimensionality reduction of ECG recordings in arrhythmia classification,”
Open Phys., vol. 17, no. 1, pp. 489—496, Sep. 2019.

[11] B. Remeseiro and V. Bolon-Canedo, ‘A review of feature selection meth-
ods in medical applications,” Comput. Biol. Med., vol. 112, Sep. 2019,
Art. no. 103375.

[12] V. Sree, J. Mapes, S. Dua, O. S. Lih, J. E. W. Koh, E. J. Ciaccio, and
U. R. Acharya, “A novel machine learning framework for automated
detection of arrhythmias in ECG segments,” J. Ambient Intell. Hum.
Comput., vol. 20, pp. 1-18, Jan. 2021.

[13] S.Sahoo, M. Dash, S. Behera, and S. Sabut, ‘““Machine learning approach to
detect cardiac arrhythmias in ECG signals: A survey,” Innov. Res. Biomed.
Eng., vol. 41, pp. 185-194, Aug. 2020.

99063



IEEE Access

A. Nasim et al.: Evolutionary-Neural Mechanism for Arrhythmia Classification

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

H. Fujita and D. Cimr, “Decision support system for arrhythmia predic-
tion using convolutional neural network structure without preprocessing,”
Appl. Intell., vol. 49, no. 9, pp. 3383-3391, Apr. 2019.

S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, ““Classification of ECG
signals using machine learning techniques: A survey,” in Proc. IEEE Conf.
Adv. Comput. Eng. Appl., Jul. 2015, pp. 714-721.

S. K. Berkaya, A. K. Uysal, E. S. Gunal, S. Ergin, S. Gunal, and
M. B. Gulmezoglu, “A survey on ECG analysis,” Biomed. Signal Process.
Control, vol. 43, pp. 216-235, May 2018.

E. J. D. S. Luz, W. R. Schwartz, G. Cdmara-Chavez, and D. Menotti,
“ECG-based heartbeat classification for arrhythmia detection: A survey,”
Comput. Methods Programs Biomed., vol. 127, pp. 144-164, Apr. 2016.
S. Karpagachelvi, M. Arthanari, and M. Sivakumar, “ECG feature extrac-
tion techniques—A survey approach,” 2010, arXiv:1005.0957.

M. A. Serhani, H. T. El Kassabi, H. Ismail, and A. N. Navaz, “ECG
monitoring systems: Review, architecture, processes, and key challenges,”
Sensors, vol. 20, p. 1796, Feb. 2020.

Y. Zhang, Y. Zhang, B. Lo, and W. Xu, “Wearable ECG signal processing
for automated cardiac arrhythmia classification using CFASE-based fea-
ture selection,” Expert Syst., vol. 37, no. 1, p. e12432, Jun. 2019.

O. Yildirim, U. B. Baloglu, R.-S. Tan, E. J. Ciaccio, and U. R. Acharya,
“A new approach for arrhythmia classification using deep coded features
and LSTM networks,” Comput. Methods Programs Biomed., vol. 176,
pp. 121-133, Jul. 2019.

T. Tuncer, S. Dogan, P. Plawiak, and U. R. Acharya, “Automated arrhyth-
mia detection using novel hexadecimal local pattern and multilevel wavelet
transform with ECG signals,” Knowl.-Based Syst., vol. 186, Dec. 2019,
Art. no. 104923.

J. S. Wang, W. Chiang, Y. Hsu, and Y. C. Yang, “ECG arrhythmia
classification using a probabilistic neural network with a feature reduction
method,” Neurocomputing, vol. 116, pp. 38-45, Sep. 2013.

F. Alonso-Atienza, E. Morgado, L. Fernandez-Martinez,
A. Garcia-Alberola, and J. L. Rojo-Alvarez, “Detection of life-threatening
arrhythmias using feature selection and support vector machines,” IEEE
Trans. Biomed. Eng., vol. 61, no. 3, pp. 832-840, Nov. 2013.

Y. Chen and S. Yu, “Selection of effective features for ECG beat recog-
nition based on nonlinear correlations,” Artif. Intell. Med., vol. 54, no. 1,
pp. 43-52, Jan. 2012.

B. Asl, S. Setarehdan, and M. Mohebbi, “Support Vector machine-based
arrhythmia classification using reduced features of heart rate variability
signal,” Artif. Intell. Med., vol. 44, no. 1, pp. 51-64, Sep. 2008.

H. H. Haseena, A. T. Mathew, and J. K. Paul, “‘Fuzzy clustered probabilistic
and multi layered feed forward neural networks for electrocardiogram
arrhythmia classification,” J. Med. Syst., vol. 35, no. 2, pp. 179-188,
Aug. 2011.

K. Polat and S. Giines, “Detection of ECG arrhythmia using a differential
expert system approach based on principal component analysis and least
square support vector machine,” Appl. Math. Comput., vol. 186, no. 1,
pp. 898-906, Mar. 2007.

P. Ptawiak, ‘““Novel genetic ensembles of classifiers applied to myocardium
dysfunction recognition based on ECG signals,” Swarm Evol. Comput.,
vol. 39, pp. 192-208, Apr. 2018.

E. H. Houssein, A. A. Ewees, and M. A. ElAziz, “Improving twin
support vector machine based on hybrid swarm optimizer for heartbeat
classification,” Pattern Recognit. Image Anal., vol. 28, no. 2, pp. 243-253,
Jun. 2018.

H.Li, D. Yuan, X. Ma, D. Cui, and L. Cao, “Genetic algorithm for the opti-
mization of features and neural networks in ECG signals classification,”
Sci. Rep., vol. 7, p. 41011, Jan. 2017.

O. Yildirim and U. B. Baloglu, “Heartbeat type classification with opti-
mized feature vectors,” Int. J. Opt. Control, Theories Appl., vol. 8, no. 2,
pp. 170-175, Apr. 2018.

0. Yildirim, M. Talo, E. J. Ciaccio, R. S. Tan, and U. R. Acharya, “Accurate
deep neural network model to detect cardiac arrhythmia on more than
10,000 individual subject ECG records,” Comput. Methods Programs
Biomed., vol. 197, no. 2, Dec. 2020, Art. no. 105740.

L. Wu, Y. Wang, S. Xu, K. Liu, and X. Li, “An RBF-LVQPNN model and
its application to time-varying signal classification,” Appl. Intell., vol. 8,
no. 51, pp. 4548-4560, Jan. 2021.

R. Wang, J. Fan, and Y. Li, “Deep multi-scale fusion neural network
for multi-class arrhythmia detection,” IEEE J. Biomed. Health Informat.,
vol. 24, no. 9, pp. 2461-2472, Sep. 2020.

99064

(36]

(371

(38]

(39]

(40]

[41]

[42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(57]

A. M. Shaker, M. Tantawi, H. A. Shedeed, and M. F. Tolba, “Gener-
alization of convolutional neural networks for ECG classification using
generative adversarial networks,” IEEE Access, vol. 8, pp. 35592-35605,
2020.

H. Yang and Z. Wei, “Arrhythmia recognition and classification using
combined parametric and visual pattern features of ECG morphology,”
IEEE Access, vol. 8, pp. 47103-47117, 2020.

A. Chandrasekar, D. D. Shekar, A. C. Hiremath, and K. Chemmangat,
“Detection of arrhythmia from electrocardiogram signals using a novel
Gaussian assisted signal smoothing and pattern recognition,” Biomed.
Signal Proces., vol. 73, p. 103469, Mar. 2022.

Y. P. Sai and L. V. R. Kumari, “Cognitive assistant DeepNet model
for detection of cardiac arrhythmia,” Biomed. Signal Proces., vol. 71,
Jan. 2022, Art. no. 103221.

Y.Lu, M. Jiang, L. Wei, J. Zhang, Z. Wang, B. Wei, and L. Xia, ““‘Automated
arrhythmia classification using depthwise separable convolutional neural
network with focal loss,” Biomed. Signal Proces., vol. 69, Aug. 2021,
Art. no. 102843.

C.Li, H. Zhao, W. Lu, X. Leng, L. Wang, X. Lin, Y. Pan, W. Jiang, J. Jiang,
Y. Sun, J. Wang, and J. Xiang, “‘DeepECG: Image-based electrocardiogram
interpretation with deep convolutional neural networks,” Biomed. Signal
Proces., vol. 69, Aug. 2021, Art. no. 102824.

C. K. Jha and M. H. Kolekar, “Tunable Q-wavelet based ECG data
compression with validation using cardiac arrhythmia patterns,” Biomed.
Signal Proces., vol. 66, Apr. 2021, Art. no. 102464.

H. Liu, Z. Zhao, X. Chen, R. Yu, and Q. She, “Using the VQ-VAE to
improve the recognition of abnormalities in short-duration 12-lead elec-
trocardiogram records,” Comput. Methods Programs Biomed., vol. 196,
Nov. 2020, Art. no. 105639.

X.Luo, L. Yang, H. Cai, R. Tang, Y. Chen, and W. Li, “Multi-classification
of arrhythmias using a HCRNet on imbalanced ECG datasets,” Comput.
Methods Programs Biomed., vol. 208, Sep. 2021, Art. no. 106258.

C. Du, P. X. Liu, and M. Zheng, “Classification of imbalanced electro-
cardiosignal data using convolutional neural network,” Comput. Methods
Programs Biomed., vol. 214, Feb. 2022, Art. no. 106483.

J. Yoo, T.J. Jun, and Y. Kim, “XECGNet: Fine-tuning attention map within
convolutional neural network to improve detection and explainability of
concurrent cardiac arrhythmias,” Comput. Methods Programs Biomed.,
vol. 208, Sep. 2021, Art. no. 106281.

J. Park, J. An, J. Kim, S. Jung, Y. Gil, Y. Jang, K. Lee, and I. Oh, “Study on
the use of standard 12-lead ECG data for rhythm-type ECG classification
problems,” Comput. Methods Programs Biomed., vol. 214, Feb. 2022,
Art. no. 106521.

G. Bognédr and S. Fridli, “ECG heartbeat classification by means of
variable rational projection,” Biomed. Signal Process., vol. 61, Aug. 2020,
Art. no. 102034.

O. F. Ertugrul, E. Acar, E. Aldemir, and A. Oztekin, “Automatic diagnosis
of cardiovascular disorders by sub images of the ECG signal using multi-
feature extraction methods and randomized neural network,” Biomed.
Signal Process., vol. 64, Feb. 2021, Art. no. 102260.

Z. Ge, X. Jiang, Z. Tong, P. Feng, B. Zhou, M. Xu, Z. Wang, and Y. Pang,
“Multi-label correlation guided feature fusion network for abnormal ECG
diagnosis,” Knowl.-Based Syst., vol. 233, Dec. 2021, Art. no. 107508.

H. Shi, C. Qin, D. Xiao, L. Zhao, and C. Liu, “Automated heartbeat
classification based on deep neural network with multiple input layers,”
Knowl.-Based Syst., vol. 188, Jan. 2020, Art. no. 105036.

N. Ammour, H. Alhichri, Y. Bazi, and N. Alajlan, “LwF-ECG: Learning-
without-forgetting approach for electrocardiogram heartbeat classification
based on memory with task selector,” Comput. Biol. Med., vol. 137,
Oct. 2021, Art. no. 104807.

M. Riedmiller and A. Lernen, “Multi layer perceptron,” Mach.
Learn. Lab, Univ. Freiburg, Special Lect., 2014, pp. 7-24. Accessed:
Dec. 23, 2021. [Online]. Available: https://ml.informatik.uni-freiburg.de/
former/_media/documents/teaching/ss12/ml/05_mlps.printer.pdf

G. Guo, W, Hui, B. D. Bell, Y. Bi, and K. Greer, “KNN model-based
approach in classification,” in Proc. OTM Confederated Int. Conf. Berlin,
Germany, 2003, pp. 986-996.

V. Cherkassky and Y. Ma, “Practical selection of SVM parameters and
noise estimation for SVM regression,” Neural Netw., vol. 17, no. 1,
pp. 113-126, Jan. 2004.

M., Farzeen, S. Gull, and A. Asif, “MILAMP: Multiple instance prediction
of amyloid proteins,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 18,
no. 3, pp. 1142-1150, Aug. 2019.

M. Pal, “Random forest classifier for remote sensing classification,” Int.
J. Remote Sens., vol. 26, no. 1, pp. 217-222, 2007.

VOLUME 10, 2022



A. Nasim et al.: Evolutionary-Neural Mechanism for Arrhythmia Classification

IEEE Access

[58] O. Maier, M. Wilms, J. von der Gablentz, U. M. Krimer, and T. F. Miinte,
“Extra tree forests for sub-acute ischemic stroke lesion segmentation in
MR sequences,” J. Neurosci. Methods, vol. 240, pp. 89-100, Jan. 2015.

[59] Testing and Reporting Performance Results of Cardiac Rhythm and ST
Segment Measurement Algorithms, Standard ANSI/AAMI EC57, ARPN,
1998.

[60] D.Marinucci, A. Sbrollini, I. Marcantoni, M. Morettini, C. A. Swenne, and
L. Burattini, “Artificial neural network for atrial fibrillation identification
in portable devices,” Sensors, vol. 20, no. 12, p. 3570, Jun. 2020.

[61] A.R.Jordehiand]J. Jasni, “Parameter selection in particle swarm optimisa-
tion: A survey,” J. Experim. Theor: Artif. Intell., vol. 25, no. 4, pp. 527-542,
Jun. 2013.

[62] M. H. Sedaaghi and M. Khosravi, ““Morphological ECG signal preprocess-
ing with more efficient baseline drift removal,” in Proc. 7th. IASTED Int.
Conf. (ASC), 2003, pp. 205-209.

[63] G. B. Moody and G. M. Roger, “The impact of the MIT-BIH arrhythmia
database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45-50, Jun. 2001.

[64] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and
H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. €215-€220, Jun. 2000.

[65] S. D. Greenwald, R. S. Patil, and R. G. Mark, “Improved detection and
classification of arrhythmias in noise-corrupted electrocardiograms using
contextual information,” in Proc. Comput. Cardiol., Chicago, IL, USA,
Sep. 1990, pp. 461-464.

[66] S. M. Mathews, C. Kambhamettu, and K. E. Barner, ““A novel application
of deep learning for single-lead ECG classification,” Comput. Biol. Med.,
vol. 99, pp. 53-62, Aug. 2018.

[67] F. M. Dias, H. L. M. Monteiro, T. W. Cabral, R. Naji, M. Kuehni, and
E. J. Luz, “Arrhythmia classification from single-lead ECG signals using
the inter-patient paradigm,” Circulation, vol. 202, no. 23, Apr. 2021,
Art. no. 105948.

[68] J. Xu, “An extended one-versus-rest support vector machine for multi-
label classification,” Neurocomputing, vol. 74, no. 17, pp. 3114-3124,
Oct. 2011.

[69] O. Yildirim, P. Plawiak, R.-S. Tan, and U. R. Acharya, “Arrhythmia
detection using deep convolutional neural network with long duration ECG
signals,” Comput. Biol. Med., vol. 102, no. 1, pp. 411-420, Nov. 2018.

[70] E. A. Elhaj, N. Salim, A. R. Harris, T. T. Swee, and T. Ahmed, “Arrhyth-
mia recognition and classification using combined linear and nonlinear
features of ECG signals,” Comput. Methods Programs Biomed., vol. 127,
pp. 52-63, Apr. 2016.

[71] T. Liu, Y. Si, D. Wen, M. Zang, and L. Lang, “Dictionary learning for VQ
feature extraction in ECG beats classification,” Expert Syst. Appl., vol. 53,
pp. 129-137, Jul. 2016.

[72] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam,
A. Gertych, and. S. Tan, “A deep convolutional neural network model to
classify heartbeats,” Comput. Biol. Med., vol. 89, pp. 389-396, Oct. 2017.

[73] G. Garcia, G. Moreira, D. Menotti, and E. Luz, “Inter-patient ECG
heartbeat classification with temporal VCG optimized by PSO,” Sci. Rep.,
vol. 7, no. 1, p. 10543, Sep. 2017.

[74] S. Chen, W. Hua, Z. Li, J. Li, and X. Gao, “Heartbeat classification using
projected and dynamic features of ECG signal,” Biomed. Signal Process.
Control, vol. 31, pp. 165-173, Jan. 2017.

[75] Z.Zhang, J. Dong, X. Luo, K.-S. Choi, and X. Wu, “Heartbeat classifica-
tion using disease-specific feature selection,” Comput. Biol. Med., vol. 46,
pp. 79-89, Mar. 2014.

[76] S. A. Deevi, C. P. Kaniraja, V. D. Mani, D. Mishra, S. Ummar, and
C. Satheesh, “HeartNetEC: A deep representation learning approach for
ECG beat classification,” Biomed. Eng. Lett., vol. 11, no. 1, pp. 69-84,
Feb. 2021.

[77] T. Wang, C. Lu, Y. Sun, M. Yang, C. Liu, and C. Ou, “Automatic ECG
classification using continuous wavelet transform and convolutional neural
network,” Entropy, vol. 23, no. 1, p. 119, Jan. 2021.

[78]1 E. H. Houssein, I. E. Ibrahim, N. Neggaz, M. Hassaballah, and
Y. M. Wazery, “An efficient ECG arrhythmia classification method
based on Manta ray foraging optimization,” Expert Syst. Appl., vol. 181,
Nov. 2021, Art. no. 115131.

[79]1 E. H. Houssein, D. S. AbdElminaam, I. E. Ibrahim, M. Hassaballah,
and Y. M. Wazery, “A hybrid heartbeats classification approach based
on marine predators algorithm and convolution neural networks,” IEEE
Access, vol. 9, pp. 86194-86206, 2021.

VOLUME 10, 2022

[80] A. Nasim, A. Sbrollini, M. Morettini, and L. Burattini, “‘Extended seg-
mented beat modulation method for cardiac beat classification and elec-
trocardiogram denoising,” Electronics, vol. 9, no. 7, p. 1178, Jul. 2020.

AMNAH NASIM (Member, IEEE) received the
bachelor’s degree in computational science and
engineering and the master’s degree in electron-
ics engineering from the National University of
Sciences and Technology, Islamabad, Pakistan,
and the Ph.D. degree in information engineering
from Universita Politecnica delle Marche, Ancona,
Italy, in 2021. She is currently a Postdoctoral
Researcher at KOREATECH, Cheonan-si, Repub-
lic of Korea. Her research interests include affec-
tive computing, physiological data monitoring and assessment, and auto-
matic processing of digital cardiovascular signals (electrocardiograms)
acquired using wearable sensors. She is a member of GNB.

DAVID C. NCHEKWUBE (Graduate Student
Member, IEEE) received the bachelor’s degree
in electronic engineering from the University of
Nigeria, Nsukka, Nigeria, the master’s degree in
mechatronic engineering from the Politecnico di
Torino, Turin, Italy, and the master’s degree in
biomedical engineering from Universita’ Politec-
nica delle Marche (UNIVPM), Ancona, Italy. He is
currently a Research Fellow of the Department of
Information Engineering, UNIVPM. His research
interests include assistive robotics, human—computer interaction, signal pro-
cessing, and predictive maintenance.

FARZEEN MUNIR (Graduate Student Mem-
ber, IEEE) received the bachelor’s and master’s
degrees in electrical engineering from the Pak-
istan Institute of Engineering and Applied Sci-
ences, Islamabad, Pakistan. She is currently pur-
suing the Ph.D. degree with the School of Electri-
cal Engineering and Computer Science, Gwangju
Institute of Science and Technology, Gwangju,
Republic of Korea. Her current research interests
include machine learning, deep neural networks,
autonomous driving, and computer vision.

YOON SANG KIM (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering from Sungkyunkwan University, Seoul,
South Korea, in 1993, 1995, and 1999, respec-
tively. He was a member of the Postdoctoral
Research Staff of the Korea Institute of Science
and Technology (KIST), Seoul. He was a Fac-
ulty Research Associate with the Department of
Electrical Engineering, University of Washington,
dh Seattle, USA. He was a member of the Senior
Research Staff, Samsung Advanced Institute of Technology (SAIT), Suwon,
South Korea. Since March 2005, he has been a Professor at the School
of Computer and Science Engineering, Korea University of Technology
Education (KOREATECH), Cheonan-si, South Korea. Also, he has been an
Affiliated Assistant Professor with the Department of Electrical Engineer-
ing, University of Washington, since September 2014. He has directed the
Biocomputing Laboratory and the Institute for Bioengineering Application
Technology (IBAT). His current research interests include virtual simulation,
power-it technology, robotics, and bio-informatics. He is a member of
IEICE, ICASE, KIPS, and KIEE. He was awarded the Korea Science and
Engineering Foundation (KOSEF) Overseas Postdoctoral Fellow, in 2000.

99065



