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ABSTRACT Potentially lethal heart abnormalities can be detected/spotted with recent evolution in contin-
uous, long-term cardiac health monitoring using wearable sensors. However, the huge data accumulated
presents a challenge in terms of storage, knowledge extraction and computing time. Moreover, manual
examination of long-term ECG recordings presents various problems like huge time and work demand, inter-
observer variations and difficulty classifying complex non-linear single-lead ECG signal. To address these
problems, we propose an automatic heartbeat classification system that uses the optimized minimum number
of features using ECG time-series amplitude directly as input, without feature extraction and provides a
primary classification and diagnosis for 1 normal and 14 types of arrhythmic heartbeats. Multi-objective
particle swarm optimization (MOPSO) is used to achieve the best feature fitness. A novel fitness function
is designed to be the sum of macro F1 loss and normalized dimension, with the optimization objective
calculated as the minimum of the fitness function. Multi-layer perceptron (MLP), k-nearest neighbor,
support vector machine, random forest and extra decision tree classifiers are trained using the selected
features. For the targeted 15-class classification problem,MOPSO-optimized features withMLP consistently
performed best with significantly reduced number of features. The proposed method proves to be an efficient
and effective arrhythmia identification system for continuous, long-term cardiac health monitoring using
single-lead ECG signal.
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INDEX TERMS Arrhythmia, decision support system, electrocardiogram, feature optimization, multi-
objective, particle swarm.

I. INTRODUCTION19

Cardiovascular diseases (CVDs) consistently remain the20

leading cause of death worldwide despite the latest21

computer-aided diagnosis methods and an evolutionary shift22

in the increased use of wearable medical devices. World23

Health Organization (WHO) estimates that 17.9 million24

people died from CVDs in 2019 worldwide, constituting25

32% of the global death count. Of these, an estimated26

7.3 million death were due to Coronary Heart Disease (CHD)27

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

and 6.2 million were due to stroke. WHO projects that by 28

2030, almost 23.6 million people will die from CVDs, mainly 29

from heart disease and stroke [1]. A 2021 statistics report by 30

American Heart Association states CHD as the leading cause 31

(42.1%) of deaths attributable to CVDs in the US, followed 32

by stroke (17.0%), high blood pressure (11.0%), heart failure 33

(9.6%), diseases of the arteries (2.9%), and other CVDs 34

(17.4%) [2]. Due to the sudden and highly unpredictable 35

nature of an arrhythmia event, critical i.e., leading to death 36

called sudden cardiac death or non-critical i.e., leading to 37

survival called sudden cardiac arrest, the only prevention 38

and treatment option is to detect and diagnose the particular 39
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CVD condition as early as possible so that management with40

medicines and behavioural change counselling (smoking,41

nutrition, exercise, sedentary lifestyle) can begin can begin.42

Traditional in-clinic ECG machines is a instantaneous43

cardiac condition from the standard clinical 10-second test.44

However, with novel wearable ECG devices, long-term and45

continuous monitoring is possible. This is an advantage as46

10-second tests may fail to identify critical or non-critical47

events that occur outside the recording window unlike wear-48

able sensors with higher recording frequency [3], [4], [5].49

ECG signals acquired with wearable sensors are often lased50

with distortions which eventually imply a significant comput-51

ing overhead that necessitate the use of high-end hardware.52

Huge amount of data make using automated analysis a53

challenge; noise from skin contact, muscle activity; individ-54

ual human factors play a critical role with different subjects55

having different medical histories and underlying physiolog-56

ical and behavioral conditions. Even for one testing human,57

ECG signal morphology is not stationary as is also evident58

by the biometric identification applications of ECG [6], [7],59

[8]. Then physical activities also contribute to the challenge60

with processing the signals. Nonlinearity of ECG signals with61

noise and artefact effect can lead to overlooked or hidden62

of measured symptoms of diseases and all these in the end63

culminate in an inaccurate diagnosis. These factors make the64

risk of getting an incorrect diagnosis of arrhythmia greater.65

To meet a medical standard and clinically accepted moni-66

toring system, early detection of abnormal conditions, accu-67

rate decision support and high quality and real-time patient68

data acquisition need to be considered. Computer-aided tech-69

niques in this domain work as a decision support tool that70

provide an accurate and timely diagnosis of heart abnormali-71

ties and play a pivotal role in referring the patient to conduct72

a specialized and detailed assessment of the underlying cause73

and hence follow a proper prescribed treatment and preven-74

tive care. Optimized feature selection could aid devices that75

are able to make long-term and continuous monitoring [9],76

[10], [11]. Optimum feature selection - removal of noisy and77

redundant data plus the use of only relevant and least possible78

amount of data for processing - are realized through the use79

of advanced processing.80

Currently proposed arrhythmia classification systems [12],81

[13], [14] usually follow pre-processing, QRS detection, car-82

diac cycle identification, feature definition and extraction83

and heartbeat classification into normal and multiple types84

of arrhythmia classes [15], [16], [17], [18], [19]. Recently,85

researchers have presented different feature reduction meth-86

ods to reduce input dimensions of ECG signals for neural87

classifiers. To name a few, Zhang et al. [20] extracted sta-88

tistical features applying the combined method of frequency89

analysis and Shannon entropy and used information gain90

criterion to select 10 highly effective features to obtain a good91

classification on five types of heartbeats. Yildrim et al. [21]92

implemented a convolutional auto-encoder based nonlinear93

compression structure to reduce the feature size of arrhyth-94

mic beats. Tuncer et al. [22] applied the neighborhood com-95

ponent analysis feature reduction technique to obtain 64, 96

128 and 256 features from a 3072 feature vector size. 97

Wang et al. [23] proposed effective ECG arrhythmia classifi- 98

cation scheme consisting of a feature reduction method com- 99

bining principal component analysis with linear discriminant 100

analysis. Alonso-Atienza et al. [24] used a filter-type feature 101

selection procedure was proposed to analyze the relevance of 102

the computed parameters. Chen andYu [25] applied nonlinear 103

correlation-based filters, calculated feature–feature correla- 104

tion to remove redundant features prior to the feature selec- 105

tion process based on feature–class correlation. Asl et al. [26] 106

proposed feature reduction scheme based on generalized dis- 107

criminant analysis. Haseena et al. [5], [27] used a fuzzy C- 108

mean (FCM) clustered probabilistic neural network (PNN) 109

for the discrimination of eight types of ECG beats. The 110

performance has been compared with FCM clustered multi 111

layered feed forward network trained with back propagation 112

algorithm. Important parameters parameters are extracted 113

from each ECG beat and feature reduction has been car- 114

ried out using FCM clustering. Polato et al. [28] used prin- 115

cipal component analysis. Genetic algorithms have also been 116

applied recently for the optimization of ECG heartbeat fea- 117

tures [29], [30], [31], [32] and proved to be advantageous 118

in improving the time-cost value in heartbeat classification 119

methods. Yildirim et al. [33] used a DNN model to classify 120

7 rhythm categories reduced due insufficient recording for 121

4 cases, from an original 11 classes. The architecture com- 122

prised two parts of representation learning with 1D convolu- 123

tional and sub-sampling layers, and a sequence learning part 124

using long short-term memory (LSTM). In [34] a combina- 125

tion of a radial basis function process neural network (RBF- 126

PNN) and learning vector quantization network (LVQN) was 127

proposed. The first is used to embed prior feature knowledge 128

whereas the later is a competitive learning and structural 129

self-organizing mechanism that expanded the model depth. 130

LVQN measures feature similarities between input signals 131

and pattern category is determined by a set of wining neurons 132

connected to the output. RBFPNN performs spatial-temporal 133

feature aggregation and learning was done by dynamic time 134

warping and C-means clustering. Wang et al. [35] proposed 135

an end-to-end deep multi-scale fusion convolutional neural 136

network (DMSFNEt) classification architecture using mul- 137

tiple convolution kernels for feature extraction. The archi- 138

tecture starts with a multi-scale (low to higher scale) feature 139

learning and fusion, then the model is trained by jointly opti- 140

mizing the losses of multiple branches for effective learning 141

and discriminative classification features. To restore balance 142

to imbalanced dataset [36] used a generative adversarial net- 143

work (GAN), and a 2-stage deep-CNN performed feature 144

extraction and reduction as well as classification. However, 145

the GAN has a problem of focusing on dominant classes 146

and generation of problematic samples which require extra 147

processing. In [37] the proposed architecture combined para- 148

metric features of ECG (amplitude, interval and duration) 149

with visual morphology features. The feature vectors were 150

used to train a NN, SVM andKNN for classification. In [38] a 151
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Gaussian assisted signal smoothing was proposed to increase152

the peak signal-to-noise ratio followed by a two-stage multi-153

class CNN. A quadratic SVM was further used to classify154

signals to respective sub-classes. The classification had 7 sub-155

classes and 4 main classes. A deep learning framework CNN156

with point-wise convolution and depth-wise separable con-157

volution was proposed in [39]. Segmented beats were stored158

as 2D images after annotations. Discrete wavelet transform159

was used for noise removal. To handle data imbalance [40]160

proposed a depth-wise separable CNN with focal loss. The161

focal loss improved especially the small sample cases – the162

minority classes, and the convolution layers reduce num-163

ber of parameter selection. Focal loss added weights to the164

majority and minority samples with a modulating factor.165

Li et al. [41] proposed an image-based setup using deep166

convolutional neural networks and transfer learning. It used167

the Inception-V3 model architecture after comparison with168

resnet, densenet, xception, inception and NASnet models.169

Jha et al. [42] proposed a data compression method based on170

tunable-Q wavelet transform with Q-factor chosen according171

to the oscillatory behaviour of the signal. Maximum energy172

of the signal was compacted to fewer transform coefficients,173

then followed a dead-zone quantization, integer conversion of174

coefficients and run length encoding. Features were extracted175

from the compressed ECG signal. An image analysis was176

proposed in [43], combining a vector quantized variational177

autoencoder (VQ-VAE) and a 2D-CNN. VQ-VAE a flexi-178

ble generating tool for data imbalance. ECG image slices179

were used to train the PixelCNN classifier. It lacks in inter-180

pretability of the rare cases. Luo et al. [44] proposed a hybrid181

convolutional recurrent neural net that processes time-series182

ECG signal and aimed to solve large imbalance in samples183

by a synthetic minority oversampling technique. It calculates184

nearest neighbors by Euclidean distance between data. The185

RNN comprised layers of a CNN, LSTM and gated recurrent186

unit (GRU). Du et al. [45] proposed a variational autoencoder187

(VAE) and auxiliary classifier generative adversarial network188

(ACGAN) to learn data distribution and synthesize images189

from minority class. CNN classifiers were employed to rec-190

ognize arrhythmias using 2D ECG images.VAE and ACGAN191

required to be trained separately highlighting higher com-192

putational cost. In [46] an improvement on NN-based clas-193

sifiers was proposed with a CNN incorporating fine-tuning194

of attention maps to resemble the ground-truth labels using195

an L2-distance objective function. Park et al. [47] used a196

squeeze-and-excitation (SE) residual network with 152 layers197

to categorize 14 classes. The SE block explained model198

interaction between local parts on entire ECG. An adaptive199

method was proposed by Bognar and Fridli [48] based on200

modeling ECG signals with variable rational orthogonal pro-201

jections employing Malmquist-Takenaka systems of rational202

functions. The system is a task-specific optimization that203

builds a feature vector based on dynamic and morphologi-204

cal descriptors (patient-depending and individual-heartbeat-205

depending features). SVM was used for classification into206

5 and 16 classes, and the pole optimization process was207

time-consuming. An artificial intelligence based diagnosis 208

system was proposed in [49] using texture feature of 2D 209

images of ECG. The images were constructed by projecting 210

the signal vector as a row of the image. A 12-bit signal is 211

transformed into a 8-bit resolution grayscale sub-image on 212

the claim that texture features in images contain determina- 213

tive indicators of various diseases. Ge et al. [50] proposed 214

a feature fusion method guided by multi-label correlation 215

and classification with CNN. The labels were calculated 216

based on frequency and Bayesian conditional probability 217

and a multi-label feature vector generated. Shi et al. [51] 218

proposed a classification system based on deep CNN and 219

LSTM network with multiple input layers. Automatic and 220

hand-craft features were both extracted. To manage better the 221

retraining of models, [52] proposed a deep learning-without- 222

forgetting CNN architecture comprising feature extraction 223

module, classification layers, memory module to store proto- 224

types, and a distance matching network task selector module. 225

Taking a ECG converted to image, a pretrained denseNet169 226

extracted discriminative features. 227

Most of the cardiac beat classification algorithms proposed 228

in literature (see Section-IV) use computationally intense 229

feature extraction step after the beat segmentation (the beat 230

segmentation criteria may be different than the one used by 231

us i.e., some authors use 5, 6 or 10-second signal classifying 232

rhythm rather than exact beat labels as provided by MIT- 233

BIH data) such as frequency transforms [22], [29], [50], [70], 234

[74], [77], [78], [79], higher-order statistics [70], [78], [79], 235

[80], CNN [36], [38], [39], [40], [43], [44], [51], and others. 236

Feature extraction has to be implemented on every section 237

of the incoming time-series ECG signal being continuously 238

acquired by wearable device (Holter in this case). Hence 239

in the case of ECG signal being acquired in the long-term 240

and continuous monitoring 24-hour acquisition scenarios, the 241

least computationally intensive procedure providing a quick 242

scanning method is to directly identify incoming beats for 243

normal and pathological conditions. None of the abovemen- 244

tioned works use direct beat samples, remove the redun- 245

dant and noisy features to maximize the performance of 246

discrimination of 15 heartbeat classes additionally consid- 247

ering the imbalanced nature of normal to pathological heart 248

condition occurrence. So according to our best understanding 249

the proposed algorithm takes the route of least computation 250

performing best heartbeat pathology detection for a quick 251

and early reference in case of long-term and continuously 252

acquired ECG for cardiac health monitoring of patients. 253

In the foregoing propositions, a common denominator is 254

the challenge of complexity, scale, computational demand, 255

time cost, interpretability, etc. while maintaining a high over- 256

all accuracy of the classification system. Hence, motivated 257

by designing an automated arrhythmia recognition system 258

competitive with the parallel research, in this work, an effi- 259

cient decision support system was developed to perform a 260

quick scan on the single-lead minimally pre-processed ECG 261

time-series signal acquired by Holter device to detect and 262

recognize a broad range (i.e. 15 classes) of heart abnormality 263
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conditions. The key objective was to improve the accuracy264

of cardiac arrhythmia classification and analyze the perfor-265

mance of the time-series and their equivalent reduced-sized266

optimum features of ECG heartbeats. The proposed MOPSO267

(Multi-objective particle swarm optimization) algorithm is268

tuned to find an optimum reduced combination of features269

that performs better as compared to all features. We mainly270

used PSO because this algorithm has a strong capability to271

explore a large search space to find global optima rarely272

falling into local optima thus a good choice for feature273

selection in the current problem this work distinguishes a274

wide range of arrhythmia classes. Also, MOPSO uses less275

computational resource because of fast convergence ability276

with fewer control parameters. Less computationally effi-277

cient algorithms are used at the classification end to test278

the goodness of reported optimized features. Classification279

using multi-layer perceptron (MLP) [53], K-nearest neigh-280

bor (KNN) [54], support vector machine (SVM) [55], [56],281

random forest (RF) [57], and decision extra tree (DET) [58]282

is performed with optimum and all features to show the283

difference. Using the proposed method for classifying abnor-284

mal heartbeats using reduced direct signal amplitude features285

skips the computation of secondary features, produces higher286

classification performance due to removal of unnecessary287

features and is faster in unseen test data due to optimized288

minimum features.289

Summarily, the aim of this research is the realization of the290

following:291

• A novel and effective decision support system for292

automatic recognition of a broad range of arrhythmia293

pathologies based on single-lead ECG signals.294

• An algorithm using minimum computational complex-295

ity in both pre-processing and recognition stages to296

be applicable for long-term and continuously acquired297

ECG signals.298

• A detailed analysis of the trade-offs of using a min-299

imum number of feature points and classification300

performance.301

II. MATERIALS AND METHODS302

The proposed methodology as graphically shown in Fig. 1303

follows four steps; 1) preprocessing, 2) beat identification304

and normalization, 3) MOPSO feature optimization, and 4)305

disease-based classification. Fig. 2 shows the sample beats306

for fifteen ECG beat classes. The ECG database and each step307

of the proposed methodology is discussed in the following.308

A. ECG DATABASES309

Two datasets MIT−BIH arrhythmia database (MITDB) [63],310

[64] and MIT−BIH Supraventricular arrhythmia database311

(MITSVDB) [64], [65] publicly available on PhysioNet.org312

were used in concatenation for the purposes of testing313

the effectiveness of the proposed method. The first dataset314

MITDB consists of 48 two-channel ambulatory ECG records,315

each of approximately 30 minutes duration digitized at a316

sampling rate of 360 Hz and gain of 200 analog-to-digital317

converter units per millivolt (adu/mV), acquired from 47 sub- 318

jects out of which 25 subjects were men aged 32 to 89 years, 319

and 22 were women aged 23 to 89 years (record number 320

47 and 48 came from the same subject). Each record has 321

simultaneous recordings from 2 leads, MLII and V5. Hence 322

for this research, 12060 heartbeats are used having corre- 323

sponding labels for 14 classes i.e. normal (N), left bundle 324

branch block (L), right bundle branch block (R), premature 325

ventricular contraction (V), atrial premature contraction (A), 326

paced (P), ventricular escape (E), fusion of ventricular and 327

normal (F), junctional premature (J), junctional escape (j), 328

aberrated atrial premature (a), non-conducted P-wave (x), 329

ventricular flutter wave (Vf), and fusion of paced and nor- 330

mal (f). The second dataset MITSVDB includes 78 half- 331

hour ECG recordings chosen to increase the examples of 332

supraventricular arrhythmic instances in the MITDB. Each 333

record in MITSVDB is approximately 30 minutes long and 334

contains 2 leads, each sampled at 128 Hz, with a fixed 335

gain of 200 adu/mV. For this research, 9900 heartbeats are 336

used having corresponding labels for 5 classes i.e. normal 337

(N), supraventricular premature (S) and premature ventric- 338

ular contraction (V). The 78 records made publicly avail- 339

able for standardized testing include pathological conditions 340

such as supraventricular and ventricular arrhythmia. Each 341

record in MITSVDB is resampled to 360 Hz to match the 342

sampling frequency of recorded signals in MITDB. The 343

selected 16 classes include less frequent but clinically sig- 344

nificant arrhythmic beats too to prove the validity of the 345

proposed algorithm. Each record in MITDB and SVDB is 346

supported by an annotation file providing the R-peak posi- 347

tions and corresponding beat labels (Lb). These class anno- 348

tations for heartbeats were exploited as reference annotations 349

for evaluation purpose of the proposed model. For the pur- 350

pose of testing a wearable ECG sensing scenario which 351

mostly uses single-lead for acquisition [66], [67], this work 352

uses ECG signal from only the MLII lead for MITDB 353

and ‘ECG1’ signal from SVDB. The general characteris- 354

tics of MITDB and SVDB are summarized in Table.2. The 355

standard Physionet annotations according to ANSI/AAMI 356

EC57:1998 standard [59] and the number of beats ran- 357

domly picked from corresponding records are detailed 358

in Table.3. 359

B. PREPROCESSING 360

The raw ECG signal is acquired through Holter device and 361

the effective ECG frequency lies between 0.5 and 40 Hz 362

frequency band [62]. There is a baseline drift from patient 363

breathing. Hence, in the preprocessing stage, power and 364

low-frequency components are removed from the raw 365

ECG signal by using a 6th-order bidirectional Butterworth 366

band-pass filter with lower and upper cut-off frequencies 367

of 0.5 and 40 Hz, respectively. Next, the baseline is com- 368

puted as a cubic spline interpolation of fiducial points placed 369

90 milliseconds before R-peak positions as an approxi- 370

mation for baseline PR-segment and subtracted from the 371

bandpass-filtered signal as shown in Fig. 3. 372
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FIGURE 1. Architecture of proposed methodology.

C. BEAT IDENTIFICATION AND NORMALIZATION373

Using the R-peak positions provided with each record,374

a heartbeat sample is identified as having onset 250 ms375

before each R-peak position to 450 milliseconds after each376

R-peak position. This definition allows that the important377

characteristic points of ECG like P, Q, R, S and T waves are378

included [60]. We utilize the Z-score normalization method379

to compensate for intersubject differences by first subtract-380

ing mean value from each ECG sample, and then dividing381

by its standard deviation [23]. This procedure results in a382

normalized ECG sample with zero mean and unity standard383

deviation. Fig. 3 shows the beat identification from raw384

ECG signal and preprocessed ECG signal to cardiac cycle385

identification.386

D. MOPSO FEATURE OPTIMIZATION387

Features optimization is an integral step in the pipeline shown388

in Fig. 1. The distribution of normal and abnormal heartbeats389

is highly unbalanced in the data. The identification of key390

features for precise detection and categorization of abnormal391

heartbeats is aided by feature minimization and optimization.392

Consequently, MOPSO is implemented for optimal feature393

selection to classify abnormal heartbeats. TheMOPSO archi-394

tecture for feature optimization is depicted in Fig. 4. The395

computation steps are explained as follows:396

1) POPULATION INITIATION397

An initial particles matrix P is generated as in (1) and (2) to398

represent the possible solution/optimization space consisting399

of np number of binary row vectors p called swarm particles400

each of length d (number of features in heartbeat samples in401

this case 253 as mentioned in Section-II-C). 402

Pn,d =



p1
p2
.

.

pi
.

.

pn−1
pn


(1) 403

Pi,j =



p1,1 p1,2 . . p1,d
p2,1 p2,2 . . p2,d
. . . .

. . . .

pi,1 pi,2 . pi,j pi,d
. . . .

. . . .

pn−1,1 pn−1,2 . . pn−1,d
pn,1 pn,2 . . pn,d


(2) 404

where, pi,j represents bit value at jth feature position in ith 405

swarm particle. Here j = 1 to d and i = 1 to n. (2) is 406

a version of (1) for the case where j = 1 to d number of 407

features and i = 1 to n. 1’s and 0’s in each swarm particle 408

represent the selected and non-selected features respectively. 409

The number of individuals n is chosen as 50 so that it is 410

large enough to avoid stagnancy and small enough to avoid 411

excessive computing time [61]. 412

2) FITNESS EVALUATION FUNCTION 413

The particles in the swarm are evaluated using the fitness 414

function. We have used a novel approach and employed the 415

MLP classifier as the fitness function. MLP is a feedforward 416
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FIGURE 2. Sample beats for fifteen ECG beat classes: (a) normal, (b) left bundle branch block, (c) right bundle branch block, (d) premature
ventricular contraction, (e) atrial premature contraction, (f) supraventricular premature, (g) paced, (h) ventricular escape, (i) fusion of ventricular
and normal, (j) nodal (junctional) premature, (k) nodal (junctional) escape, (l) aberrated atrial premature, (m) non-conducted P-wave (blocked
APB), (n) ventricular flutter, (o) fusion of paced and normal.

neural network consisting of seven layers, i.e., input layer,417

four hidden layers, and output layer. The input layer has the418

same size as of feature vector i.e., 253; the hidden layers are419

of sizes of [220, 180, 120, 60] and the output layer is a size420

of 15 neurons as depicted in Fig. 5. ReLU activation function421

is used, and Adam solver is used as an optimizer. The set of422

selected features from MOPSO iteration is split in training423

and validation subsets and as in Fig. 6. The MLP classifier is424

trained and validated on these subsets respectively.425

The classification prediction obtained from the validation426

set is used to calculate fit given by (3). fit considers one427

versus rest strategy taking all 1 class as positive and the rest428

of 14 classes as negative for each individual class. All feature429

subsets represented by p in P are selected from the dataset430

and individually trained using MLP, and fit is calculated on431

the validation set.432

fit = min

(
(1−

1
N

N∑
c=1

F1c)+
d ′

d

)
(3)433

Macro− F1 =
1
N

N∑
c=1

F1c, 434

F1 =
2 · TP

2 · TP+ FP+ FN
(4) 435

where, d ′ is the reduced number of features selected or 436

number of 1’s in the population individual being tested. d 437

is the maximum number of features or the exact length of 438

population individual i.e., 253 in this case. The 1st objective 439

1 − 1
N

∑N
c=1 F1c is the macro-averaged F1-loss where all 440

classes treated equally. Macro F1-score gives the same 441

importance to each class, hence appropriate for the current 442

multi-class imbalanced classification task. d ′
d is the nor- 443

malized dimension, a minimum of which is desired as a 444

2nd objective to find the least optimum number of features. 445

A minimum of the sum of these two objectives is desired 446

as fit . TP = number of samples for which positive class was 447

correctly identified, TN = number of samples for which neg- 448

ative class was correctly identified, FP = number of samples 449
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FIGURE 3. Beat identification: (a) Raw ECG signal acquired from Holter
with provided beat annotations/labels, (b) Preprocessed ECG signal, and
(c) Cardiac cycle identified and consecutively extracted using R-peak
positions with corresponding label.

for which positive class was wrongly identified, and FN =450

number of samples for which negative class was wrongly451

identified. Hence, FP and FN represent misclassifications or452

errors made by the classification algorithm. N denotes the453

total number of classes and N = 15 for the current problem.454

3) POSITION AND VELOCITY UPDATE455

The swarm particles are randomly initialized and then cruised456

in the search space to search for the optimal features by457

updating their position and velocity. The particle’s posi-458

tion and velocity in search space are denoted as Xi,j =459

xi,1, xi,2, xi,3, . . . , xi,j and Vi,j = vi,1, vi,2, vi,3, . . . ., vi,j,460

where j defines the dimension of search space, and i repre-461

sents the index of the particle. Updates for velocity, position,462

weight, best performing particle and fitness value are done463

using (5), (6), (7), (8) and (9) given as follows:464

Vi,j(t) = w ∗ Vi,j(t − 1)+ Ci,j + Si,j,465

Ci,j = c1r1,j ∗ (pi,j(t − 1)− xi,j(t − 1)),466

Si,j = c2r2,j ∗ (gi,j(t − 1)− xi,j(t − 1)) (5)467

xi,j(t) = xi,j(t − 1)+ Vi,j(t) (6)468

w = wMax − t th ∗ ((wMax − wMin)/n) (7)469

pi(t) =

{
pi(t − 1) if f (xi(t) >= f (pi(t − 1)))
xi(t) otherwise

(8)470

g(t) = argmin(f (p1(t)), f (p2(t), . . . .f (ps(t))) (9)471

where, t is the iteration in progress, r1,j and r2,j are randomly472

chosen from the range of [0, 1]. c1 and c2 are acceleration473

coefficients that control the exploration vs the exploitation474

and inertia is denoted by w. MOPSO maintains particles475

memory for the local pi,j and global gi,j best position. The476

local best position defines the highest performance achieved477

in that position, and the global best position is defined for478

the overall swarm. The inertia is updated after each itera- 479

tion using (7). wMax and wMin represent upper and lower 480

boundary limit respectively. The inertia weight influences 481

the impact of prior velocity on finding the optimal features. 482

Hence, exploration is favored for large inertia weights, and 483

exploitation is favored for smaller values. Algorithm 1 repre- 484

sents a MOPSO based feature reduction. 485

Algorithm 1: MOPSO Pseudo-Code for Feature
Selection
input : A randomly initialize population by creating

binary mask for feature indexes ∈ [0, 252]
output: Selection of features by applying global mask

and choosing features with binary mask of 1.

Initialize the particles randomly with swarm size of
nc = 50;
while t ≤ T or gBestScore does not change for
20 iteration do

for i to nc do
Evaluate the swarm particle using the fitness
function to obtain fit as in (3)
if pBestScorei ≥ fit(pi) then

pBestScorei← fit(pi)
pBesti← pi

else
pBestScorei← pBestScorei;

if gBestScorei ≥ fit(pi) then
gBestScorei← fit(pi)
gBesti← pBesti

else
gBestScorei← gBestScorei;

update the velocity in each particle using (5) and
update the mask by applying the new velocity to
(6)
update inertia weight w using (7)

return gBestScore, gBest

4) SELECTION 486

Fitness function fit for each particle in the swarm is calculated 487

using (3). Applying the current-to-best strategy, if pi shows a 488

higher fit value than the corresponding pi, then pi in the P is 489

replaced with vi. Otherwise, the pi retains its position. This 490

comparison and replacement process is repeated for every 491

(pi, vi) pair an evolved version of P is obtained at the end 492

of the iterations. This process evolves and accumulates better 493

particles until the maximum number of iteration i.e. 100 is 494

reached. After looping through all iterations every particle in 495

the P is replaced with the best possible candidate i.e having 496

highest fit value. gBest with best fit in the end p is selected as 497

the optimum feature subset with 1’s representing the selected 498

features d ′ out of d , where d ′ ≤ d . 499

5) TERMINATION 500

The process terminates if the maximum number of given iter- 501

ation 100 is reached or fit becomes stagnant for a consecutive 502

20 iteration. For every new iteration, the values of gBestScore 503

and pBestScore are updated. 504
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FIGURE 4. MOPSO architecture for feature optimization.

FIGURE 5. MLP architecture to calculate fitness function.

E. CLASSIFICATION505

The classification is crucial for the proposed system archi-506

tecture. It classifies the ECG signal based on the optimized507

features set obtained from the MOPSO algorithm. We tested508

five machine learning classifiers for classification with the509

least hyperparameters and the least possible computational510

complexity. These classifiers include MLP, KNN, SVM, RF,511

and DET. MLP architecture is the same as used to calculate512

fit in Section-II-D2.513

KNN algorithm is one of the most conventional methods514

in pattern recognition because of its practical nonparametric515

nature. The nearest neighbor decision is based on the clos-516

est distance a sample has to other K samples. Therefore,517

euclidean distance is used as a distance measure to classify518

training samples in the feature space. For experimentation,519

we have considered a neighborhood size of four sample 520

points. 521

SVM is a conventional machine learning method in 522

classification. First, the input data are transformed into a 523

high-dimensional feature space. In this space, the data points 524

are linearly separated by a hyper-plane. Because the data 525

points are not linearly separable in most cases, the data 526

points are mapped into a high-dimensional space using an 527

appropriate kernel, and then the optimization step is fulfilled. 528

Various kernel transformations are used to map the data into 529

high-dimensional space, including linear, sigmoid, polyno- 530

mial, and radial basis functions.We experimented with linear, 531

polynomial, and Radial basis kernels, and the C was set as 532

100, theGammawas set as 4, and the polynomial was selected 533

as the kernel-type parameter. This study used parameter opti- 534

mization to find the optimum SVM parameters. 535

DET is a predictive model that can characterize both clas- 536

sifiers and regression models. DET refers to a hierarchical 537

model of decisions and their results and is used to classify 538

a sample into a predefined set of classes based on their 539

feature values. DET consists of nodes that form a rooted tree 540

meaning. It is a directed tree with a node called a root with 541

no entering edges. All other nodes have only one entering 542

edge. A node with outgoing edges is referred to as a test node. 543

All other nodes are known as leaves or decision nodes. Each 544

leaf is allocated to one class, demonstrating the most accurate 545

target value. In addition, the leaf holds a probability vector 546

specifying the probability of the target feature with a definite 547

value. 548
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FIGURE 6. Data distribution for training, validation and testing the
proposed algorithm for the 15-class disease-specific arrhythmia
classification.

Random forests or random decision forests are an ensem-549

ble learning method for classification, regression, and other550

tasks that operate by constructing many decision trees at551

training time. It uses bagging and feature randomness when552

building each tree to create an uncorrelated forest of trees553

whose prediction by committee is more accurate than that of554

any individual tree. K-Fold grid optimization was used with555

the number of folds = 5, and the optimum hyperparameters556

hyperparameters hyperparameters obtained after training for557

each model are summarized in Table.1.558

F. EVALUATION METRICS559

Classification metrics; Macro F1-score, accuracy, sensitiv-560

ity/recall, specificity and precision are reported according561

to (4), (10), (11), (12), (13) and (14) respectively. All the562

definitions mentioned below follow a one-versus-rest strat-563

egy [68]. Each classification measure is calculated for each of564

the 15 classes (taking one class as positive and all the rest as565

negative) and then averaged to represent mean classification566

measure.567

Acc =
TP+ TN

TP+ TN + FP+ FN
· 100 (10)568

Sen =
TP

TP+ FN
· 100 (11)569

Senavg =
1
N

N∑
c=1

Sen(c) (12)570

Spe =
TN

TN + FP
· 100 (13)571

Speavg =
1
N

N∑
c=1

Spe(c) (14)572

Here, TP, TN, FP and FN follow the same definition573

as mentioned in Section-II-D2. Fig. 6 shows the data split574

strategies used for the disease-specific classification case.575

III. RESULTS576

To test the generalization of finding the optimum features577

and their applicability we performed a test using all of the578

3 above-mentioned datasets. The purpose of this experiment579

was to test and analyze if the system can optimize and train on580

the available data and perform well on the unseen incoming581

ECG signal i.e. test data acquired in a setting different than582

training. The training data is taken from both MITDB and583

TABLE 1. Control parameters.

SVDB. All beats are resampled at 360 Hz and each record 584

in all 2 datasets has been divided by their respective gain to 585

process the signal further inmillivolts. The division of records 586

and beats into training and testing sets for an interpatient 587

classification analysis is detailed in Table.3. 588

Detailed comparisons were performed for both checking 589

the robustness of the reduced features and their efficiency and 590

speed of proposed algorithm to find an optimum solution. 591

The classification was performed for All features set (as 592

exact solution) and Optimized features subset obtained after 593

MOPSO optimization. Hence, all measures are reported for 594

both All features and Optimized features cases to present a 595

comparison between classification improvement and feature 596

reduction achieved using the proposed method. To perform 597

a comparison for classification accuracy using optimized 598

features on test data, 5 classifiers are used: MLP, KNN, DET, 599

SVM and RF. An introduction to the working principles of all 600

these classifiers has been presented before in Section-II-E. 601

A. PARAMETER SETTINGS 602

The optimum hyperparameter values of implemented classi- 603

fier architectures for MLP, KNN, RF, SVM and DET imple- 604

mented on the test data for both all and optimized number 605

of features were selected that performed best for all features 606

(exact solution) and the same model was tested with the test 607

data for reduced and all features. The optimized parame- 608

ters for all classifiers are mentioned in Table.1. We ran the 609

MOPSO optimization for 10 simulation runs for each exper- 610

iment in Python on a machine with 6 cores (AMD Ryzen 5 611
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TABLE 2. Summary of test databases.

TABLE 3. Description of beat annotations/labels and detailed beat distribution for train and test data.

3600 CPU @ 3.60 GHz), 32 GB memory and Windows 10.612

In all experiments, the average performance was reported.613

IV. DISCUSSION614

The proposed algorithm reduces the number of features from615

253 to 40 indicating 84.189% reduction in features with616

0.62% reduction in themean F1-score and 0.85% reduction in617

accuracy and for the 15-class disease-specific classification.618

The indices of selected 40 feature subset are given in Table.4.619

The Table.5 shows a comparison of the Optimized features620

achieved using the proposed algorithm with the All features621

standard used as an exact solution. Table.6 shows a detailed622

class-wise result achieved with the Optimized features in623

comparison to the All features standard. Table.7 and 8 show624

the confusion matrices of prediction results for both Opti-625

mized features and All features cases. The average number of626

generations by which the optimization is achieved was 40±4627

(10 trials). Beyond this number of generations there was not628

any further significant improvement of the fitness function.629

TABLE 4. Indices of selected 40 feature subset.

Based on Table.5, we can state that although KNN, DET, 630

SVM and RF provided competitive heartbeat recognition 631

results,MLP provided the best evaluationmeasures among all 632

the classifiers tested in case of both optimized and all features 633

case with 84.189% reduced feature points. SVM provides 634

highest sensitivity for optimized features only 0.218% better 635

thanMLP. Table.6 shows the detailed class-wise result for the 636

best performing MLP classifier. Fig. 7 shows timing analysis 637

done for classification of a single test sample. Mean and 638

standard deviation are reported over 10 trials. MLP shows 639

the highest amount of time required to classify a single test 640

sample but has the lowest error rate keeping in view the nat- 641

ural imbalance of data samples for arrhythmia classification 642
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TABLE 5. Overall classification results.

TABLE 6. Detailed classification results for the best performing MLP classifier.

TABLE 7. Confusion matrix - Optimized features.

TABLE 8. Confusion matrix - All features.

task. Furthermore, for the optimized feature subset the time643

is even reduced. Compared to KNN, DET, SVM and RF644

though MLP takes more time even for optimized feature645

subset. All classifiers show a significant decrease in comput- 646

ing time when comparing optimized feature and all feature 647

case respectively. Fig. 8 (a and c) shows overall ROC curves 648

99060 VOLUME 10, 2022



A. Nasim et al.: Evolutionary-Neural Mechanism for Arrhythmia Classification

TABLE 9. Summary of the latest related literature.

for both optimized and all feature scenarios. AUC for the649

optimized features is 0.996 with a 0.001 or 0.1% reduction650

in overall AUC as compared to the all-features scenario.651

Fig. 8 (b and d) shows individual class recognition AUC for652

both optimized and all feature cases. Recognition AUC for653

classes normal, right bundle branch block, premature ven-654

tricular, premature atrial, ventricular escape, junctional, aber-655

rated atrial premature, fusion of ventricular and normal and656

ventricular flutter with optimized features decreased by 0.1%,657

0.2%, 0.1%, 0.1%, 0.2%, 1.8%, 0.9%, 0.8% and 0.7% and, for658

classes supraventricular, fusion of paced and normal, nodal659

junctional and non-conducted P wave increased by 0.2%,660

0.3%, 1.6%, 0.3% as compared to the all-features scenario.661

AUC for classes left bundle branch block and paced remained662

100% and unchanged for both cases. These small [0.1-1.8]%663

positive and negative trade-offs in individual recognition of664

different cardiac pathologies come at 84.189% reduction in665

features. This overall arrhythmia detection and recognition666

for a primary scan check as depicted in Fig. 9 in continuous667

and long-term cardiac health monitoring applications using668

single-lead ECG signal successfully proves to be a quick669

and early referral system to send the patient to a general670

physician/cardiac specialist or to emergency in case of stroke.671

As summarized in Table.9, most of the previous studies672

perform classification for 3, 4, and 5 arrhythmia classes673

mostly belonging to AAMI/ANSI heartbeat types i.e., N,674

FIGURE 7. Comparison of computing time required to classify 1 test
sample using MLP, KNN, SVM, RF and DET.

S, V, F, and Q or a subset of these. The works focused on 675

achieving maximum accuracy. The problem in this particular 676

case using the accuracy as prediction metric is that normal 677

class has much greater number of samples than arrhythmic 678

samples. Then different types of arrhythmias ventricular, 679

supraventricular, atrial pathologies and their subtypes have 680

different frequency of occurrence some of them rare than 681

others. Accuracy in this case does not put higher importance 682

to the prediction quality of minority classes, which in our case 683

or in the case of disease analysis in general opposes the design 684

objective. Hence, in this work, we worked to achieve macro 685

F1 score which put equal weight to prediction of majority (i.e. 686

normal) and all minority (i.e. arrhythmia) classes. 687
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FIGURE 8. ROC curves for: (a) Optimized features - overall, (b) Optimized features - classwise, (c) All features -
overall, and (d) All features - classwise.

FIGURE 9. Achieved optimized feature scan to discriminate between 15 (1 normal and 14 arrhythmic) types of
heartbeats.

Although an exact comparison is not possible as the688

works that actually performed classification for 15-17 classes689

worked with 10 second ECG fragments rather than individu-690

ally segmented beats, also using solely amplitude points as691

features. For example, Plawiak [29] achieved an accuracy692

of 98.85% with 90.20% sensitivity classifying 17 classes693

(1 normal, 15 arrhythmia and 1 unclassifiable beat) using694

an extensive and complex feature extraction step i.e., power695

spectral density using Welch’s method and discrete Fourier696

transform. Tuncer et al. [22] extracted 3072 (5-levels dis-697

crete wavelet transform and 1-dimensional hexadecimal local698

pattern) dimensional feature set subjected to neighborhood699

component analysis feature reduction technique to obtain700

64, 128 and 256 features. Using KNN classifier with K=1701

for classification of 17 arrhythmia classes using MIT-BIH702

Arrhythmia ECG dataset they obtain an accuracy of 94.6,703

94.7, and 95.0% for 64, 128 and 256 features respectively. 704

Yıldırım et al. [69] used rescaled raw 10 second signals 705

as features and 16-layer 1D-CNN for classification. They 706

reported accuracy of 95.20, 92.51, and 91.33% for 13, 15 and 707

17 classes respectively. Hence, to the best of our knowledge, 708

the currently presented results show a competitive best recog- 709

nition sensitivity for the 15 classes based on MOPSO-MLP 710

scheme to be 88.089%, with 95.21% accuracy meaning 711

5 errors per 100 classifications. 712

As summarized in Table.9, most of the works that report 713

an overall F1 score higher than ours [21], [44], [78], [79] 714

performed classification for a limited 2 to 12 heart patholo- 715

gies, highest F1 being 92.63% achieved by [38] for 11 classes. 716

The current study achieves best F1 score considering 15 class 717

heartbeat recognition. The studies that report high level of 718

accuracy for recognition of 13-17 classes [22], [36], [40], 719
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TABLE 10. Appendix 1: The list of used abbreviations.

[51], mostly use 4 to 7-layer deep CNNs for feature extraction720

which is a highly computationally complex feature extraction721

method and difficult to perform every time for every sin-722

gle beat especially dealing with 24-hour signal acquisitions.723

Hence, considering the accuracy, F1, precision of diagnosis,724

reduction in computational complexity needed for practical725

applicability of arrhythmia diagnosis systems for arrhyth-726

mia, the current work presents a competitive best among727

the latest studies. The only computationally intensive part728

is the optimization and in the current procedure it has to729

happen only once to produce the optimized feature vector.730

However, there is a limitation that for the currently tested data731

the sampling frequency of the ECG data acquisition device732

had a sampling frequency of 360 Hz. For a second database733

MITSVDB with data acquired from the Holter device but at734

a sampling frequency of 128 Hz to be concatenated with our735

test data we had to resample it to 360 Hz. Hence, for devices736

acquiring ECG data at different sampling frequencies, the737

signal would need to be resampled for the proposed feature738

point vector to be usable. The confusion matrices show a739

high percentage of arrhythmic beats being wrongly classified740

as normal. This could be due to distortion in the heartbeat741

amplitudes due to noise or other motion artifacts. In future,742

we intend to improve the classification performance by first743

discriminating between normal and abnormal heartbeats and744

afterwards performing subclass classification for arrhythmia.745

Also, to make the proposed system to reproduce the ECG746

signal to be used in a clinic/hospital setting, we intend to747

work with 10 second segments and multi-label pathological748

indication provision. Overall the achieved ECG arrhythmia749

classification result indicates that detection of arrhythmia750

using 15.81% features of a complete ECG heartbeat can be an751

effective approach to help general physicians and cardiology752

specialists to diagnose critical cardiovascular diseases in a753

continuous and long-term, online or offline monitoring sce-754

narios particularly well-suited for a wearable sensing setting.755

V. CONCLUSION 756

This work focused on reducing the dimension of features 757

to perform a quick scan on heartbeats segmented from 758

single-lead ECG signal for the purpose of abnormal cardiac 759

pathology recognition to be used as an early referral system. 760

The results obtained in all experiments confirmed that the 761

proposed MOPSO-MLP method efficiently delivers compet- 762

itive recognition performance and precision with 84.189% 763

less time-series amplitude points. Furthermore, the developed 764

method provides early diagnosis for a wide range of heart 765

abnormalities making it an applicable arrhythmia decision 766

support system for wearable ECG devices. 767
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