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ABSTRACT Owing to their dependency of weather conditions, distributed generation systems are integrated
with utility grid through power converters. This paper proposes an isolated three-phase based flyback-
inverter (TBFBI) that can be used as a central-type inverter for grid-tied PV applications. To alleviate
DC-current ripples at the input side, the proposed inverter utilizes only a single LC-filter with small passive
elements size, which reduces the system footprint and cost. Mathematical modeling of the TBFBI in
addition to its control technique is presented in detail. Compared with other differential based converters,
the proposed control technique is designed considering the least number of control loops and required
sensors by using terminal voltage estimation strategy. Continuous-modulation-scheme (CMS) combined
with static-linearization strategy (SLS) is utilized to diminish the low-order odd harmonics. In addition,
harmonic compensation technique is utilized to eliminate negative-sequence harmonic component (NSHC)
from the grid-injected currents. Also, identical three single-phase high-frequency transformers (HFTs) are
designed based-on ferrite and nanocrystalline cores to compare the inverter operating efficiency. The TBFBI
is experimentally validated via laboratory prototype-based 200 V, 1.6 kW, and switching frequency of
50 kHz. Experimental results of 1.6 kW power flow show that THD of the grid current is 3.95%, peak-to-
peak current ripple at the input DC-side is 2.1% of the average DC input current that matches the IEEE-1547
standards for grid-tied PV applications.

INDEX TERMS DC-AC grid-tied converter, flyback-inverter, high frequency transformer (HFT), harmonic
compensation.

I. INTRODUCTION

Renewable energy sources, such as photovoltaics, wind and
fuel-cell energy generation systems, are wide-spreading over
many countries, which encourage the power electronic con-
verters evolution. Central-type inverter configurations offer
a low cost solution for medium/high power grid-integrated
solar PV systems [1], [2]. Despite the low MPPT efficiency
of central-type PV architectures, central-type inverter config-
urations exhibit a lower-cost per kW in compared with the
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module, string, and multi-string inverter configurations due
to their low manufacturing cost through the mass produc-
tion [2], [3]. It worth to mention that central-type PV invert-
ers may include non-isolated DC-DC converter for MPPT
function [1], [4], [5]. However, the MPPT function can be
implemented in the central-type isolated inverter without the
need for non-isolated DC-DC converter in order to reduce
system footprint and cost [6], [7], [8]. In this case, the
MPPT controller decides the grid current reference signal that
can be used to control the TBFBI. Many single-stage and
multi-stages inverter structures have been presented in litera-
ture [9], [10], [11]. Non-isolated single/three-phase inverter
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architectures have been widely recommended [12], [13],
which need an additional input boost converter stage to attain
the required boosting of the input voltage [14]. Thus, it has
two operation stages that complicates the converter controller
and increases its cost. As well, most of these converter struc-
tures suffer from leakage current in different applications in
addition to the requirement for isolating and voltage boosting
transformers for high voltage applications, which increases
the system losses, footprint, and cost [15], [16]. Conse-
quently, transformer-based converter structures are presented
by utilizing the line-frequency isolation transformer, which
enlarges the system size and diminishes its efficiency. For
efficiency enhancements and galvanic isolation requirements,
high-frequency transformer (HFT) based inverter structures
have been utilized instead of the line-frequency ones to
reduce inverter footprint and enhance its efficiency [17].
Also, many modified inverter architectures have been pre-
sented for decoupling inductor/capacitor elimination [17],
[18]. However, they mostly suffer from increased number of
power components and passive elements, which rises imple-
mentation cost and reduces power density [19]. Motivated by
multi-stage inverters drawbacks, single-stage inverter struc-
tures have been recommended in many applications for con-
tinuous DC input-current [6], [20], [21], [22], [23], [24], [25].

Differential-based inverter structures have been presented
for different applications requirements. In [26], a switched
capacitor differential boost-inverter and its control strategy
was presented. The presented structure improves the static
gain of the inverter without increasing the voltage stress over
the power components, however, it incurs increased num-
ber of storage elements that implies higher controller order.
In [27] and [28], a closed loop control technique with an
optimized PI controller gain for non-ideal differential inverter
was proposed in order to improve the controller behavior
disturbance conditions. However, it has a high voltage stress
over the converter elements that may affect the inverter effi-
ciency profile. In [29], the theoretical values of the common
and differential modes current ripples have been derived for
modular multilevel dual-buck inverter, considering adjustable
discontinuous modulation. However, it incurs many passive
elements that increases system footprint and affect the power
density. In [30], six-switch single-phase differential-based
Cuk inverter was presented. However, it utilized increased
switching devices that increases the system footprint and
cost. In [31], the authors presented three-phase differentially
flyback inverter considering three separated LC input fil-
ters at the input side for input current ripples minimization.
In addition, a conventional Pl-based grid-currents control
loop is used for grid currents regulation [32]. In [33], the
authors proposed three-phase SEPIC differential inverter for
PV applications. However, the presented structure requires
increased number of passive elements that enlarges converter
size and footprint and increases its cost. In addition, owing
to its large current ripples at the DC side terminals (about
90%), the presented structure requires large electrolytic
capacitors at the DC input side in case of PV applications,
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which diminishes the system reliability and life-time. Elec-
trolytic capacitors will also increase system footprint and
cost. In addition, SEPIC based differential inverters should
include identical three inductors and three HFT's, which is dif-
ficult to realize in practice, resulting in mismatch in module
parameters. Therefore, the three-phase grid injected current
waveforms with SEPIC based differential inverter includes
high percentage of DC component resulting in unbalanced
three-phase current waveform at the grid side. Therefore, the
large DC electrolytic capacitor at the DC side in addition to
the DC-components at the three-phase grid injected current
diminish feasibility of the differential based SEPIC inverters
for PV grid-tied applications.

Among the different buck-boost based inverter struc-
tures, flyback converters gained much of the researchers
attention due to its simplicity and lower cost [1], [34].
In [1], an interleaved-flyback inverter is proposed for
single-phase PV applications. However, it uses the transform-
ers turn ratios for input-voltage boosting. Moreover, it uses
parallel-components to enhance the inverter efficiency that
rises the system cost and footprint. In [35], an iterative-
learning down-sampled based controller is proposed for
single-phase applications. The proposed controller realizes
an acceptable overshoot and good steady-state response,
however, it requires an unfolding H-bridge circuit. In [36],
two-stage micro-inverter is presented for single-phase PV
system for transformer utilization enhancement. However,
it misses the galvanic isolation as well as the requirement
for unfolding-circuit for DC-AC power conversion. In [34],
a new hybrid BCM/DCM based control scheme is proposed
for single-phase interleaved-flyback inverter to enhance
its operating efficiency. However, it considers two-stage
operation.

FIGURE 1. Three-Phase based flyback-inverter circuit structure.

This paper presents an isolated single-stage grid-tied
TBFBI that can be used as a central-type PV inverter. The
proposed TBFBI, shown in Fig. 1, comprises three flyback
modules sharing the same DC input voltage and input LC
filter. The proposed TBFBI introduces many features such
as; low cost, high power-density, and simple control scheme.
Also, it comprises reduced number of power switches and
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FIGURE 2. Proposed TBFBI PWM control strategy.

passive components with galvanic isolation property due
to the HFT existence. Moreover, the turns ratio of HFT
offers voltage boosting/bucking capability. Also, the pro-
posed inverter offers a voltage step-up/step-down capability,
which make it more attractive for isolated and non-isolated
applications. In addition, TBFBI draws a ripple-free DC-
input current that alleviates the capacitance over the PV-panel
and improve the system reliability [23]. However, the tem-
porarily operation of the proposed TBFBI results in a dc-bias
through HFT primary winding, which may increase core
loss and decrease the inverter efficiency [37]. Therefore,
HFT-based nanocrystalline Core is designed in this paper to
minimize the core loss and improve the system efficiency.
In addition, a new mathematical model for the proposed
TBFBI is presented in order to confirm the presence of the
negative sequence low order harmonic components at the
grid injected current waveforms, which need special control
loop to be eliminated to meet the grid standard requirements.
Also, the proposed TBFBI employs only a single LC filter at
the input DC side providing the least passive elements count
compared with other three-phase differential-based inverter
structures that need individual LC filter at input DC side

VOLUME 10, 2022

of each module. In addition, an improved control scheme
for grid-injected current and terminal voltage regulation has
been proposed for the single-stage TBFBI. Compared with
the recently published control strategies of three-phase grid-
tied counterpart topologies, the proposed control method uses
the least number of control loops and required sensors, which
simplifies the controller computational and execution time.
Owing to the accurate estimation of TBFBI terminal voltage
based on the mathematical model, the proposed control tech-
nique utilized only five sensors (i.e.; two voltage sensors and
three current sensors) to detect grid voltages and currents.
Also, the CMS combined with SLS is applied to control
the TBFBI main and synchronous-switches for low-order
harmonics mitigation. Moreover, due to the importance of the
HFT in each module of the TBFBI from the efficiency point
of view, a comparison between the ferrite and nanocrystalline
cores for the TBFBI is presented. In addition, variations of
all passive elements have been studied over wide-range of
duty cycle for the passive elements selection of the proposed
TBFBI based on the value, size, and stability issues, which
affects system efficiency and power density. The proposed
TBFBI is experimentally validated over system prototype
based 200 V, 1.6 kW, 60 Hz, and switching-frequency of
50 kHz. The 50 kHz switching frequency is selected for
ripples minimization and passive elements size reduction.

Il. PROPOSED GRID-TIED TBFBI
A. CONFIGURATION AND OPERATION PRINCIPALS
The proposed TBFBI circuit configuration is depicted in
Fig. 1, which consists of three flyback converter modules
linked in parallel from the input DC-side and star-connected
at the output-side. By considering a single compact LC-input
filter, the TBFBI draw a ripple-free input DC current, which
is essential for renewable energy applications such as; PV and
fuel-cell [38]. For module (x) of the proposed TBFBI, Fig. 2
shows the module duty-cycle (dy ), voltage/current waveforms
(Vpri,x» Tprixs Vsee,x» Isec,x) Of HFT input and output terminals,
output-capacitor current (icx ), and grid balanced voltage and
current waveforms (exn, isx). Obviously, the proposed TBFBI
operates over a wide duty-cycle variation range, which offers
wide output AC voltage for different applications. In addition,
the duty cycle of the proposed converter is derived consid-
ering a DC output voltage on the terminal of each module
with a sinusoidal envelope. Therefore, duty cycle of each
module shown in Fig. 2 is not a pure sinusoidal waveform
to mitigate voltage stress on inverter components [6], [8],
[23], [39]. Therefore, the modulation waveform consists of
low-order harmonic and DC offset components enveloped
with sinusoidal waveform to realize three-phase output volt-
age at the inverter output terminals. Derivation of duty cycle
of each flyback module will be explained in details in the next
section.

The operational modes of module-U of the proposed
TBFBI are portrayed in Fig. 3, whereas its switching control
signals are depicted in Fig. 4. It worth to mention that the
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FIGURE 3. Temporarily power transfer in single-module of the TBFBI.

(a) Bidirectional power flow of a single flyback module. (b) Stored Energy
in the magnetizing inductance. (c) Released Energy from the magnetizing
inductance.
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FIGURE 4. Gating signals generation of module-U of the TBFBI.
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two switches of each flyback module are operating com-
plementary considering CMS control strategy, as cleared
in Fig. 3 and Fig. 4. The power streams from DC-side to
grid during forward operational period, whereas it reverses
during reversal operational period as depicted in Fig. 3(a).
During forward operation, the main-switch and body-diode
of synchronous-switch are sequentially ON and the power
is injected to grid, where the switching waveforms are illus-
trated in time interval form zero to T/2 of Fig. 2. During rever-
sal period, power flows into TBFBI module, which results
in circulating power between the modules, as portrayed in
time interval from T/2 to T of Fig. 2. The generation of
PWM control signals of module-U is illustrated in Fig. 4.
It worth to mention that the TBFBI is operating temporarily
and power transfer occurs over storage element as shown in
Fig. 3(b) and Fig. 3(c). Therefore, the HFT is utilized for
two functions; 1) storage inductance, 2) galvanic isolation.
Accordingly, during the ON-period of the main-switch, the
input power is stored in the HFT magnetizing inductance Lyix
and grid current is supplied by the output capacitor of each
module, see Fig. 3(b) and region (R;) of Fig. 4. During the
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OFF-period of the main-switch, the stored energy in Ly is
released through secondary side to supply grid current and
charging the output capacitor as shown in Fig. 3(c). Simi-
larly, during the ON-period of the synchronous-switch, the
reverse power is stored in the HFT magnetizing inductance
as cleared in region (R;) of Fig. 4. During the OFF-period
of the synchronous-switch, the stored energy is release in the
reverse direction to the input DC supply. However, the duty
cycle (i.e.; modulation waveform) of each flyback module
is synthesized considering minimized voltage stress and low
order harmonic mitigation.

B. MODULATION SCHEME AND MATHEMATICAL
MODELING OF THE PROPOSED TBFBI

Although sharing the same DC source, each module of the
TBFBI is controlled by wide-range of variable duty-cycle
shifted by 120°. The voltage conversion ratio of each flyback
module of the proposed inverter, considering CMS technique,
can be expressed as follows [39], [40];

Vox dy

M:—_
T v 1—dy

ey

where; vox is flyback module output-voltage, vgc i input
DC-voltage, and dy is Module-x duty-cycle.

Also, the resistances of inductor, diode, and switch of
each module limit the inverter voltage-gain. Table 1 lists the
voltage/current stress over each component of the proposed
TBFBI. Generally, the TBFBI operation is based on mod-
ulating each module by 120° phase shifted duty cycles (d,,
dy, and d,,) to synthesize a time-varying output voltage (voy,
Vovs and vey ). Therefore, the three output voltages comprise
two voltage components; the line frequency sinusoidal volt-
ages shifted by 120° superimposed with a DC offset voltage.
However, elimination of the DC components at the output
terminals of each flyback module can be optimally realized if
the grid side voltages are balanced.

The grid three-phase balanced voltages can be expressed
as follows;

euN 3 sin(wt + o)
ey | = \/;E sin(wt + o« — 27 /3) )
ewN sin(wt + o + 27/3)

where; E is the RMS line voltage, w is the grid angular
frequency, « is an arbitrary angle. The three-phase balanced
grid currents can be expressed as follows;

isu sin(wt + o)
iy | = I+ | sin(wt +a —2m/3) 3)
i sin(wt + o + 27/3)

where; I is the peak value of grid injected current.

The output voltage and current waveforms of three-phase
grid-tied inverters utilizing dc-dc converter modules gen-
erate low-order odd and even harmonic components. The
odd harmonics are generated by input-output nonlinearity,
whereas even harmonics are generated by mismatch between
inverter modules [22]. Therefore, SLS is applied at the
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TABLE 1. Voltage and current stresses.

Input Current, 4 x %
HFT magnetizing current, i ps %
Main-switch voltage, Vsum Vin + %
Main-switch current, Igv %
Synchronous-switch voltage, Vsg Vox

Synchronous-switch current, Isg (17;’%

fundamental-frequency to mitigate low-order odd harmon-
ics [22]. On the other hand, low order even harmonics can
be compensated by using an external compensation strategy.
Continuous-modulation-scheme (CMS) combined with SLS
is used to generate the switches duty cycles. Hence, each
module generates a time-varying output voltage as sinu-
soidal waveform superimposed with a common-mode DC
offset. The common-mode DC offset is decoupled due to the
star-connection at the grid-side. Therefore, output voltage of
each module can be formulated as follows;

Vox(t) = My - vqc 4

where; x=u, v, or w, M, is the converter conversion ratio, and
vdc 1s the input DC-voltage.
Also, all modules output voltages can be formulated as;

Vou(?) M,
vov@®) | = | My | - vde (5)
Vow(t) M,,

Based-on the sinusoidal envelope of the output-voltage, the
conversion ratio can be formulated as follows;
sin(wt + «)
sin(wt + o — 21 /3) 6)
sin(wt + o + 21 /3)

Mx = Mx,dc + Mx,ac :

Based-on (1) and (6), the duty cycle can be formulated as
follows;

Mx,dc + Mx,ach

d, = 7
g 1+ Mx,dc + Mx,ach ( )
where;
sin(wt + o)
K, = | sin(wt + o — 27/3)

sin(wt + o + 21/3)

By applying SLS for low-order harmonic mitigation, the
DC output component (My 4c) is equal to the peak value of
sinusoidal component (My ac). Consequently, the duty cycle
can be modified as follows;

M+ M - K,
T 1+M+M-K,
where; x = a, borcand M = My gc = Mx ac.

Therefore, all modules output voltages can be formulated,
by substituting (6) and (8) into (5), as follows;

dy ®)

Vou(?) sin(wt + )
Vov(t) | =M -vge - | 1+ |sin(wr +a—Z) | | 9
vow(t) sin(r + o + %)
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C. TBFBI HARMONIC MODELING AND ANALYSIS
Based-on large signal model of flyback module, the input
primary current (ip,y) can be expressed as follows;

Lsu

ipri,u =—— =iy (1+ M+ MK;) (10)
1—d,
Therefore, from (10);
i = 7 sin(wt + o)
ﬁ =14+M+M - |sin(wt +a —27/3)| (11)
1+d- sin(wt + o + 21/3)

To analyze its superimposed harmonics orders, the bal-
anced grid-injected current can be expressed as;

isu sin(wt + o)
isy | = Iy | sin(lwt + o —21/3)
gy sin(wt + o — 4m/3)
sin n(wt + o)
+ Iy | sinn(wt + a — 27/3) (12)

sinn(wt + o — 47/3)

where; (Iy) is the current harmonic component of order (n).
Based-on (11 and 12), the transformer primary current can
be formulated as follows;

ipri,u(t)
ipri,v(t)
ipri,w(t)
sin(wt + o)
= (1 4+ M), | sin(wt + o — 21 /3)
sin(wt + o — 41 /3)
sin n(wt + o) ]
+ (1 + M)y | sinn(wt + o —21/3)
sinn(wt + o — 4;1/3)_
1 —cosQuwt + )
ML, | _,
+ - |z~ cosQwt + o —2m/3)
_71 — cosQwt + o — 47 /3) |
cos((l—nwt+a)—cos((+n)wt+a)
Mly

+ ——= | cos((l—nwt+a—2m/3))—cos((I+nwt+a—21/3))
cos((l—nwt+a—4r/3))—cos((l4+nwt+a—4/3)

(13)

Assuming lossless TBFBI and o = 0, the power at input and
output terminals are equal, as follows;

Py = Vdcipri = Vin(ipri,u + ipri,v + ipri,w)
= vacIg (1 + M){sin n(wt) + sin n(wt — 27 /3)

+ sinn(wt — 47/3)) + vd°12H M os(1 — nywn)
~+ cos((1 — n)wt — 21 /3) + cos((1 — n)wt — 41 /3)}
VvaclyM
— T{cos((l + n)wt) + cos((1 + n)wt — 27/3)
+ cos((1 + n)wt — 47/3)} (14)
93399
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The output power can be formulated as follows;

Py = — ﬁflm {cos(Qwt) + cosQwt — 2 /3)
1 cosQwr — 4m/3)} + ﬁZEIH {cos((1 — nwt)
+ cos((1 — m)wt — 21 /3) + cos((1 — n)wt — 47 /3)}
— ﬁle {cos((1 + n)wt) 4 cos((1 + n)wt — 27 /3)

+ cos((1 + nwt — 47 /3)} (15)

Therefore, the three-phase currents, given in (13), can be
modified as follows;

Ipri,u(t) sin(wt)
ipriy(®) | = A+ M), | sin(wt — 2m/3)
ipri,w(?) sin(wt — 47/3)
i sin(2wt)
+(1 + M)y | sinQwt — 4 /3)
_sin(Za)t —2m/3)
o
Ml, | _4
2 14
|72
Mi i cos(2wt)
— Tm cosRwt — 21 /3)
cosQwt — 4 /3)
Mi [ cos(—wt)
TH cos(—wt — 21/3)
cos(—wt — 4w /3)
[ cos(3wt)
My
- cos(Bwt — 2m/3) (16)

cos(3wt — 4m/3)

lIl. PROPOSED TBFBI CONTROL STRATEGY

As mentioned previously, the TBFBI operates with a variable
duty-cycle, which affects the system stability. Therefore, it is
very important to check the system stability with all duty
cycle range. Consequently, developing an adequate dynamic
modeling of the TBFBI is important for stability issue. The
TBFBI control-to-output dynamic model, with a single LC
input filter, is expressed as follows [37], [41];

vox(S) . bo+b1S 4 baS? + b3S?
d(S) Oa0+a1S+a2S2+a3S3
where; Go is the DC-gain, (bg-b3) are constants decides

the zeros locations, and (aj-a3z) are the constants of poles
locations.

Gvax(S) = 7)

A. TBFBI DYNAMICS AND PARAMETERS SELECTION

Considering 1.6 kW power flow, the system parameters can
be designed according to [40] as 133 pH for the HFT magne-
tizing inductance, 12.8 uF for the output capacitor, 500 uH

93400

TABLE 2. Inverter parameters.

Input DC-voltage, vgc 100 V
Input filter, Lgc, Cyc 150 pH, 10 uF
Grid voltage (L.L), exn 200V, 60 Hz

Grid filter, L 4 mH

HFT Mag. inductance, Lk 115 pH
HFT Leak. inductance, Licakage | 2.25 uH
Switching frequency, Fsw 50 kHz

and 10 uF for the input filter inductance and capacitance,
respectively. Also, stability of TBFBI depends mainly on
the parameters of the input filter, magnetizing inductance of
HFT, and output capacitor at the grid-side. Therefore, system
stability is investigated considering wide-range variation of
designed values based-on the size of passive elements, volt-
age and current ripples, phase margin, bandwidth, and stabil-
ity over the wide-range of duty-cycle variations. Fig. 5 shows
the variation effect of duty cycle (d=0.1~0.8), input filter
inductance (L;,=150~1000 pH), transformer magnetizing
inductance (Ly;=100~500 pH), and output capacitor (Cox =
5 ~15 wF). Increasing output capacitance, Cox, moves the
complex poles towards the origin point, which enhances the
system resonance. However, it may increase system size and
cost. In contrast; decreasing the output capacitance increases
imaginary parts of complex poles, which increases output
voltage oscillations. On the other hand, increasing the magne-
tizing inductance moves complex poles towards the real axis
that enhances the system resonance, however, it moves the
RHP zero towards the origin point that decreases the inverter
bandwidth. Owing to the inverter compactness, cost, and
stability issues, optimal parameters of the proposed TBFBI
are listed in Table 2.

B. CLOSED-LOOP COMPENSATOR DESIGN

Rigid compensator design of TBFBI is a critical issue to
improve system stability and bandwidth (BW). The TBFBI
closed loop transfer function, according to the inverter gen-
eral control loop transfer function presented in [40], is formu-
lated as follows;

T(S)=Gva(S)G1g(S)Ge(S)Gpwm(S)H(S)GsL(S) (18)

where; T(s) is open-loop transfer function, Gyq4(s) is control-
to-output transfer function, Gig(s) is grid filter transfer
function, G.(s) is proposed compensator transfer function,
Gpwwm(s) is modulator transfer function, H(s) is sensor trans-
fer function, Gspg(s) is Static Linearization Block transfer
function,

Based-on the inverter transfer function in (17) and (18),
Type-II compensator is required to stabilize the system with
an improved phase-margin and response [42], [43]. There-
fore, the compensator transfer function can be formulated as
follows [42];

A+

GC(S)ZGC,O S S
(1+m)(1+m)

(19)
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FIGURE 5. Effect of converter parameters variation on the location of
dynamic poles and zero including the input filter.

where; G is open-loop compensator gain, w, 1,wp,1 and
wp, are zeros and poles frequencies, respectively. In addition,
the input LC filter has been designed at resonating frequency
of f,, which can be expressed as [40];

1
B 27 /LinCiy

where the inverter resonating frequency must follow the
expression;

F, (20)

107, <f < f% 1)

Hence, f, is selected as 4 kHz. Hence, the input filter induc-
tance and capacitance are designed as 150 uH and 10 uF,
respectively. In addition, the grid inductance is selected as
4 mH [40].

The control scheme of the proposed inverter is portrayed
in Fig. 6, which comprises of two control-loops:

o The main control-loop (Loopl), which regulates the
grid-injected currents and output voltages of each con-
verter module.

o The secondary control-loop (Loop2); which compen-
sates negative sequence harmonics that distorts the grid
current due to the inverter nonlinearities.

Based-on the harmonic modeling and analysis discussed
in Section II-C, a Negative Sequence Harmonic Components
(NSHC) are included in the grid currents. NSHC rotates in
reverse direction with double frequency (2w) of the fun-
damental components, which is noticeable in the primary
current envelope of each module. Therefore, a simple single-
pole integrator is applied as a Selective Harmonic Elimina-
tion (SHE) strategy for NSHC compensation. In addition,
the integrator in the second control-loop enrich the control
system with an extra origin-pole. Therefore, the required
compensator order is reduced from Type-II to conventional
PI compensator, which simplifies the controller design and
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FIGURE 7. Closed-loop control-scheme bode plot of the proposed TBFBI
using Type-Il compensator.

reduces the computational time. The integrator extracts the
second-order harmonics, which is compensated for sinusoidal
grid-injected currents.

Also, Fig. 7 shows the bode plot of the TBFBI based-on the
dynamic model and the compensator in (19). The compen-
sator origin-pole increases closed-loop DC-gain of TBFBI
inverter, which diminishes the mismatches among flyback
converter modules to minimize circulating power between
the modules. Also, it improves accuracy of the controller
over wide-range variations of converter duty-cycle. Accord-
ing to Fig. 7, the DC-gain of the proposed inverter control
system is 140 dB and the PM is 30.5°, which ensures sys-
tem stability. Moreover, the inverter bandwidth is 510 Hz,
which improves the inverter dynamics over a wide-range
of duty cycle and frequency variations. In addition, the
bode plot of the closed-loop controller including the second
control-loop is shown in Fig. 8. Obviously, the integrator
improved the PM to 39° and maintains high DC-gain due
to its enriched origin pole. In addition, the system BW is
increased to 700 Hz, which confirms the inverter stability
over wide-range of frequency variations. Therefore, the pro-
posed control system poses a major challenge by considering
only two control loops without the need to incur complex
control systems that needs long computational time and high
controller specifications.
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TABLE 3. Simulation and experimental parameters.

Rated inverter power, P 1.6 kW

Input DC-voltage, Vg 100 V

Input filter, Lqc, Cyc 151.14 pH, 10 uF
Input filter resistance, 74y, 1.56 Q

Grid voltage (L.L), E, w 200V, 2x 7 x 60 rad/s
HFT Mag. inductance, Lyx 115.85 uH

HFT primary resistance, 7, | 50.34 mQ2

Output capacitor, C, 10 uF

HFT inductance, Licakage 2.26 uH

HFT turns ratio, n 1:1

Grid filter, Lg 4.06 mH

Grid inductor resistance, 74 5.24 mQ2

Switching frequency, Fsw 50 kHz

PI controller gains, Kp, K7y 0.097 A/V, 280 rad. sec™!

IV. SYSTEM RESULTS

A. SIMULATION RESULTS

The simulation findings of the proposed single-stage TBFBI
are confirmed at rated converter power of 1.6 kW and under
two operating conditions; without and with harmonic com-
pensation technique. Fig. 9(a) and Fig. 9(b) show the system
simulation results without and with NSHC compensation,
respectively. In both cases, the three-phase grid voltages, grid
currents, inverter output-voltages, DC input voltage, and DC
input current are portrayed, respectively. Without compensa-
tion, the three-phase grid-currents are distorted with a high
second-order harmonic component and the input DC current
contains third-order harmonic. On the other side; the NSHC
compensation strategy eliminates the low-order harmonic
component and supply the grid with almost pure sinusoidal
current waveforms. In addition, it minimizes the input DC
current ripples to 2.1% that matches the IEEE-1547 harmonic
standard for DER.

B. EXPERIMENTAL SYSTEM CONFIGURATION

A laboratory prototype-based 200 V, 1.6 kW, 60 Hz grid
frequency, and 50 kHz switching-frequency of the TBFBI
is carried out to investigate the validity of the three-phase
single-stage isolated TBFBI for grid-tied operation. It worth
to mention that the dc side can be supplied by either PV
modules or batteries due to the continuously smooth current
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FIGURE 9. DBFI simulation results.

at the dc side with small ripples. In this paper, a conventional
dc source is considered at the dc side in order to confirm
the system performance with the proposed control technique.
However, future publication will consider PV module and
its MPPT technique at the dc side by controlling only the
two switches of each flyback module without any additional
stages. Fig. 10 shows the system configuration and its con-
trol scheme. Also, experimental setup photograph is por-
trayed in Fig. 11, whereas all system parameters are listed
in Table 3. The three-phase grid-currents and line-voltages
are detected using LAS55-P and LV25-P transducers, respec-
tively. The phase-angle of the grid voltages is calculated
from the grid line-voltages using phased-looked loop (PLL).
Hence, the actual three-phase grid voltages and currents are
converted to the dg-axis using abc/dq park transformation.
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The error signal, obtained by comparing the reference and
actual dqg-axis grid currents, is fed to the PI controller for
grid-current regulation, as illustrated in main control-loop
of Fig. 6, and Fig. 10. Then, the output signals of the main
control loop are summed with the output signals of the sec-
ond loop, (i.e.; NSHC elimination loop) to obtain reference
signals that can regulate the grid injected power at unity
power factor and to realize three-phase sinusoidal grid cur-
rent waveforms. The converter duty cycle can be calculated
according to (8), which is compared with the high-frequency
carrier signal to generate switching signals of the main and
synchronous switches of each flyback module, as depicted
in Fig. 4. The PCB dimension of each flyback module is
18*10 cm?. The TBFBI is investigated for grid-tied operation
at two modes; without NSHC-compensation (Mode-1), and
with NSHC- compensation (Mode-2) and the grid current
distortion is compared with standard permissible limits. The
proportional and integral gains of the PI controller have been
designed according to detailed analysis and explanation given
in [21] and [22]. Based on the detailed mathematical model
in section II, output voltage estimation of each module is
used to reduce the required sensors, as shown in Fig. 6 and
Fig. 10. Therefore, the proposed TBFBI uses only two voltage
sensors and three current sensors at the grid-side, which is less
than that used in other counterpart topologies. In addition, the
system experimental waveforms are captured by 16-channel
DL-850 Yokogawa digital oscilloscope. Moreover, system
efficiency and THD have been measured and analyzed by
WT1800 Yokogawa power analyzer. The digital controller
PE-Expert 3, employing DSP TMS320C6713 board linked
with MWPE3 Xilinx FPGA board (XC3S500E), is used to
control the proposed system. The control algorithm is real-
ized in the DSP board to calculate all switches duty cycles,
transferred to the FPGA board to be compared with 50 kHz
saw-tooth carrier signals to obtain gate signals of all switches.

C. SINGLE-PHASE HFT DESIGN

Practically, commercial flyback-converters are available at
low power ratings; (i.e; about 200 W). However, the proposed
three-phase TBFBI is designed so that each flyback module
transfers about 550 W to the grid-side. Performance of the
proposed TBFBI depends mainly on the proper design of
HFT in addition to passive elements. The design strategy can
be summarized as follows [25];

o Considering low HFT leakage inductance for efficient
operation.

o Using less turns number of high frequency windings.
HFT windings are designed with 175(7 x 25)/0.20 Litz
wire manufactured by USTC and its strand-diameter is
less than 1/3 of strand skin-depth.

« Sandwiching of primary and secondary windings on one
leg of the C-Core for better flux linkage as well as low
fringing flux possibility.

According to the former study, the magnetizing inductance
Ly is designed to be 115 pH. HFT core is designed with
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FIGURE 10. Experimental configuration of the proposed TBFBI with its
control technique.

FIGURE 11. Proposed TBFBI photograph.

small-sized nanocrystalline C-Core considering 12 turns for
primary and secondary windings (N), as shown in Fig. 12.
Therefore, the air gap length is set to 1.45 mm based on the
following formula;
N 1A
I, = M0Acore (22)
Ly
where; 1, is permeability of the free space and [, is the air
gap length.

FIGURE 12. Nano-crystalline core-based HFT.
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D. EXPERIMENTAL RESULTS

The experimental system has been carried out consider-
ing reference grid injected power of 0.8 kW and 1.6 kW

considering Mode-1 and Mode-2. Fig. 13(a) and Fig. 13(b)
shows the experimental results of the grid-tied TBFBI
under Mode-1 and Mode-2, respectively at power flow
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FIGURE 16. TBFBI Control system signals under Mode-1 and Mode-2 at 1.6 kW.

of 0.8 kW. Both figures show the three-phase grid volt-
age and current waveforms, output voltages across capac-
itors, battery input voltage and its current, voltage across
main-switch, main-switch and HFT currents, and volt-
age across synchronous-switch. At rated power flow of
1.6 kW, Fig. 14(a) and Fig. 14(b) depicts the exper-
imental results of the TBFBI at Mode-1 and Mode-2,
respectively. Additionally, all oscilloscope images shown
in Fig. 13 and Fig. 14 have two zoomed regions;
(i.e.; A and B), for high-frequency switched waveforms at low
and high duty-cycles, respectively. It worth to mention that
in each power flow, the synchronous-switch voltage stress at
Mode-1 and Mode-2 is similar due to the RC snubber-circuit

VOLUME 10, 2022

design rigidity and the HFT leakage inductance [40]. It,
also, reflects the reasonable design of the flyback HFTs for
high power operation; (i.e; 550 W). Obviously, experimen-
tal results at 0.8 kW and 1.6 kW power flow show that
the proposed control technique successfully controlled the
TBFBI to inject the reference power to the grid at unity power
factor.

At rated power flow of 1.6 kW considering Mode-1,
the three-phase grid currents include high NSHC of 43%,
as depicted in the grid current FFT harmonic spectrum in
Fig. 15(a). This distortion causes high third-order harmonic
in DC input current; (i.e.; peak-to-peak DC ripple current of
5.2 A). Moreover, the NSHC increases the circulating power
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TABLE 4. Comparative study of the proposed three-phase single-stage TBFBI.

Ref V-gain Np, Ngsw HFI Operation Rating (kW) PWM Advantage
) N¢ Np | CMV | modularity | Efficiency (%) technique Drawback
3 6 No 1.4 - Red}lced num_bf:r of components with voltage
[44] Buck-Boost 3 0 NA Yes N A SPWM boosting capability.
- High voltage stress and low power quality.
3 6 No 0.4 CMS-PWM | - Boosting inverter with reduced elements count
[45] Boost 3 0 NA Yes N A DMS-PWM | and voltage boosting capability.
) SV-PWM - High voltage stress.
6 6 No . 2.5 - Voltage boosting capability and reduced stress.
[6] CUK 6 0 NA Yes NA PR-PWM - lncrefsed passive elgment and inverter footprint.
6 6 Yes 25 —‘Voltage boosting capability, reduced input
[37] CUK 6 0 Yes Yes N A PR-PWM ripple, and stress.
- Increased passive element and inverter footprint.
0 27 No NA - ANPC-MLI with voltage boosting and
[38] Buck-Boost 2 0 NA No NA SPWM enhanced power quality.
- Increased number of switches.
- Voltage boosting capability and reduced
6 6 Yes 0.5 circulating power and voltage stress.
139] CUK 6 0 Yes Yes 91 DMS-PWM | _ Increase%irp))assive elementfginput ripples, and
inverter footprint.
- Improved two-loop controller for grid current
regulation with NSHC.
3 6 Yes 1.6 - Requires large input electrolytic capacitor for
[33] SEPIC 7 0 Yes Yes 3 6 5 SPWM input ripple minimization. Also, the inverter size
' is large considering the large size and number of
passive elements that diminish inverter efficiency
at rated power.
- Improved control scheme with NSHC
1 6 Yes 1.6 Single compensation strategy, single-stage, and
Proposed Flyback 4 0 Yes Yes 89.93 carrier enhanced footprint.
’ SPWM - Requires more analysis for power loss
distribution for efficiency enhancement.
between the inverter modules, which increases reactive power Nl o O Scane s Lne Flerm  Tme o, YOKOGAMA &
R )72 13/ [14) 15 16 AVG = FreqFilters PLL2:[B1] 59.998 Hz
component and diminishes the system power factor (0.918). & 8 oo o E Lo
On the other hand after considering NSHC compensation, the umst | 199.94 v Ums2 | 202.02 V ! i
.. . . . . Irms1 4.6724 A Irms2 46179 A ol
injected three-phase grid current is almost pure sinusoidal b 50998 1 - 14585 W ? Syme Sl
waveforms with low second-order harmonic component of | — gj Uz so0vam
0.87%, which reduces the input DC peak-to-peak current ‘ljdci 120123 X g 399?5471 % o) el
ripple to 0.35 A, as shown in Fig. 15(b). The peak-to-peak Pic 16218 lthat | 39.290 % % slljj 330%
current-ripple at the input DC-side is 0.35 A, whichis2.1% | — = Elenent ¢
of the DC input current that matches the IEEE-1547 stan- T e : = S sl
dards for DER applications. The control parameters of the " - FUE'E'";’{,'(‘,(?VH
proposed TBFBI at Mode-1 and Mode-2 are depicted in 3 g 7 | smesemm)
Fig. 16. For Mode-1, the grid-injected currents include high " , \I;E'E'"TE?X
second-order harmonic, which causes third-order harmonic R R e Syne el
in the d-q axis currents as well as modulation index signals

as shown in Fig. 16(a). For Mode-2, the d-q axis currents
and modulation index signals follows the reference values
with low ripples as depicted in Fig. 16(b). Fig. 17 shows
WT1800 power analyzer measurements of the TBFBI sys-
tem at Mode-1 considering nanocrystalline HF core, how-
ever, Fig. 18(a) and Fig. 18(b) shows the system results at
Mode-2 considering nanocrystalline and soft ferrite cores,
respectively. It is clear that in Mode-2, THD of the grid
injected current reduced from 39.29% to 3.95% due to
the elimination of the second-order harmonic-components,
which matches IEEE and ICE harmonic standard limit. The
analyzer images show the system overall efficiency which is
89.9% for Mode-1 and 88.09% for Mode-2. The reduction in
system efficiency is due to the modification of the modulation
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FIGURE 17. Power analyzer measurements of the proposed TBFBI at
1.6 kW at Mode-1 considering nanocrystalline core.

index that required more dc power to compensate the second
order harmonic. Moreover, elimination of the second order
harmonic increases the power factor at grid-side from 0.918 to
0.998 due to the reduction in reactive power. Also according
to Fig. 18(a) and Fig. 18(b), THD of the grid injected current
is 3.95% in case of using nanocrystalline core for the HFT of
the TBFBI system which is less than the permissible limits
of the IEEE standard. On the other hand, THD of the grid
injected current in case of using ferrite core is 5.9%, which
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FIGURE 18. Power analyzer measurements of the proposed TBFBI at 1.6 kW.

exceeds the permissible limits of the IEEE standard. It worth
to mention that at 1 kW power flow the TBFBI efficiency
is 90.88% and 90% before and after NSHC compensation,
respectively.

In addition, efficiency profile of the proposed TBFBI is
shown in Fig. 19 considering two magnetic cores (i.e.; nano-
crystalline and EER soft-ferrite cores) for the HFT. For fair
efficiency profile comparison between nano-crystalline and
soft-ferrite cores. Obviously, the power loss of the TBFBI
with nano-crystalline cores is less than that with soft ferrite
materials. At 1.6 kW power flow, the system efficiency is
88.09% in case of nanocrystalline cores and 79.2% with soft
ferrite cores. In addition, the power loss distributions over all
components of the proposed TBFBI have been experimen-
tally measured using Yokogawa WT1800 power analyser as
depicted in Fig. 20.

In order to investigate the effectiveness of the control
algorithm and its rigidity, the system performance has been
tested considering a step change of the reference power flow.
Fig. 21(a) and Fig. 21(b) show the TBFBI experimental
results at mode-1 and Mode-2 during step changed from
0.4 kW to 1.6 kW in the reference power flow. In both cases,
the actual and reference power agree well. The DC-input
current and the injected grid current waveforms step from
their related values at 0.4 kW to 1.6 kW without any over-
shoot considering very small settling time; (i.e.; 5 ms). It is
clear that the input DC current includes a high third-order
harmonic at Mode-1, whereas the controller eliminates this
component from the DC current after considering the NSHC
compensation at Mode-2.

In addition, the proposed three-phase TBFBI is compared
with the recent topologies of single-stage inverters to illus-
trate its merits for industrial applications, as illustrated in
Table 4. Clearly, the TBFBI utilized a reduced number of
power switches, driver circuits, inductors, and capacitors
compared with the other topologies for same rating and
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FIGURE 19. Experimental efficiency profile of the TBFBI considering
nano-crystalline and soft ferrite cores.
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FIGURE 20. Power loss distribution of the proposed TBFBI.

application. In order to eliminate the common-mode leakage
currents between the PV panel neutral-point and the ground
of the AC network that causes many hazards and affect
the system lifetime, small-size HFT based flyback converter
modules are utilized [46], [47]. HFT provides galvanic isola-
tion between the AC and DC sides that prevents leakage cur-
rent injection and enhances system reliability in PV grid-tied
applications. Moreover, it offers modularity operation feature
with high-frequency isolation, which make it more flexi-
ble in PV applications. Also, differential based three-phase
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FIGURE 21. Experimental results of the TBFBI during step-changed grid injected power from 0.4 kW to 1.6 kWw.
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harmonic orders. (b) Current harmonics vs IEC standards and regulation limits.

inverters usually offer a low operating efficiency compared
with Dual-Active-Bridge based systems due to the existence
of low-order harmonics and the voltage stress, which results
from the voltage boosting property in a single-stage oper-
ation. According to previous literatures, average efficiency
of differential-based three-phase inverters based on (Cuk,
SEPIC,....) is between (86-91%) [6], [33], [37]. On the other
hand, grid-connected three-phase DC-AC inverters based on
matrix or dual-active-bridge converters usually exhibit effi-
ciency in the range of (94% to 97%) depending on the utilized
switch type (i.e.; MOSFET, Sic or Gan) [48]. However,
Matrix-based or DAB-based systems do not include voltage
boosting property. Also, the necessary bulk electrolytic dc
link capacitor in the DAB-based structures affects system
reliability. In addition, both structures employs large num-
ber of power devices that increase system cost and foot-
print. It worth to mention that the proposed configuration is
controlled via a two-loop control strategy considering only
three current sensors and two voltage sensors to detect the
grid current and voltage waveforms, which is less than the
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required sensors for similar inverter topologies presented
in [37]. Also, comparison of the proposed inverter control
technique with the recently published topologies based-on the
number of control loops and required number of sensors are
listed in Table 5.

Also, the grid-current harmonic orders of the TBFBI are
compared with the [EC61000-3-2 (Class-A) and IEEE-1547
harmonic standards at rated power as depicted in Fig. 22.
Fig. 22(a) shows comparison between low order harmonic
components of the proposed system and permissible har-
monic limits provided by IEC61000-3-2 (Class-A) and IEEE-
1547 standards. On the other hand, Fig. 22(b) shows the
harmonic regulation factor of the low order harmonic com-
ponents, (i.e.; the percentage of TBFBI harmonic component
over percentage of permissible limits provided by both stan-
dards). Obviously, the grid current DC component is 0.2%,
which is less than the IEEE-1547 permissible limit (0.5%)
as cleared in Fig. 22(a). In addition, all low order harmonic
components (up to 2.4 kHz) of the TBFBI system is lower
than the permissible limits provided by both standards as
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TABLE 5. Comparative study of the proposed single-stage TBFBI.

Control/Ref. [23] [37] [34] [33] Proposed

Modulation scheme DMS CMS DMS DMS & BCM CMS CMS

No. of stages Single-stage Single-stage Two-stage Two-stage Single-stage Single-stage
No. of loops 5 3 1 2 2 (Current control only) 2 (Current & voltage control)
Controller PR PR NA NA PI PI
F_{SW} (kHz) 100 25 20 20 50 50
THD (%) 4 12 Higher than 3.56 41 3.95
No. of sensors 7 7 4 4 5 (Current control only ) | 5 (Current & voltage control)
Power rating, W 500 2500 100 100 1600 1600
. . (GS66508P) | (IRG7PH50K10D) (C2M0040120D) (C2M0040120D)
Switches rating | 650y 30A | 1200V, 90 A NA NA 1200 V, 60 A 1200 V, 60 A
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