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ABSTRACT An improved artificial bee colony algorithm (IABC) was proposed to solve the problems of the
k-means clustering (KMC) algorithm, such as poor global search ability, sensitive selection of initial cluster
center, randomness of initialization, precocity and slow convergence of the original artificial bee colony
(ABC) algorithm. To improve the efficiency of iterative optimization process, a fitness function adapted to
KMC algorithm and a position updating formula based on global guidance were constructed. By comparing
the improved artificial bee colony algorithm with the original artificial bee colony algorithm and particle
swarm optimization algorithm, it is confirmed that IABC algorithm converges speed block and overcomes
the shortcoming of the original algorithm which is easy to fall into local optimal solution. IABC algorithm
is combined with KMC to get better clustering effect, and the algorithm is used to select typical wind power
output scenarios, which plays an important role in actual production.
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INDEX TERMS Artificial bee colony (ABC) algorithm, k-means clustering (KMC) algorithm, fitness
function, position update, wind power forecast, typical scenario.

I. INTRODUCTION13

The safety and reliability of energy supply are the precondi-14

tion and demand for the smooth operation and development of15

national economy. As the supply of traditional fossil energy16

grows increasingly prominent and the natural environment17

continues to deteriorate, countries all over the world are18

vigorous developing clean and renewable energy [1]. It has19

become a significant decision for many countries to increase20

the proportion of clean energy in the national energy structure21

and get rid of the dependence on fossil energy. With the22

improvement if power generation economy, wind power in23

China will grow rapidly. Newly install wind power capacity24

of about 70-140 GW/year. China will usher in the large-scale25

construction peak of wind power in the next decade [2], [3].26

Wind energy is the largest clean energy developed and27

utilized at present. Since it’s low space-time energy den-28

sity, non-enrichment, non-transportability and incapacity of29
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transportation and storage, it must be converted into electric 30

energy [4]. However, due to the intermittence, volatility and 31

randomness of wind power output, there is a large amount of 32

wind abandoning phenomenon at present. The wind energy 33

is seriously wasted, which has a negative impact on the long- 34

term development of wind power. Because the accurate wind 35

power output scenario is crucial to the security and economy 36

of grid, to describe the randomness of wind power putout, it is 37

of vital to select wind power output in typical scenarios [5]. 38

Cluster analysis is an important data analysis technology, 39

which tries to divide physical or abstract sets into similar 40

object classes, so that objects in the same group have a high 41

degree of similarity, and there are large differences between 42

objects in different groups [6]. 43

Swarm intelligence algorithm is an artificial intelligence 44

algorithm that simulates the behavior of biological groups. 45

Common algorithms include ant colony algorithm, particle 46

swarm algorithm and genetic algorithm. Karaboga proposed 47

artificial bee colony algorithm in 2005 [7], [8], which has sim- 48

ple concept, easy implementation and few control parameters. 49
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Swarm intelligence algorithm is widely used in the field50

of clustering because of its powerful global search ability.51

Reference [9] proposes a new information learning artificial52

bee colony algorithm (ILABC) for opportunity informat-53

ics, which can dynamically adjust the size of subgroups to54

improve efficiency. Reference [10] proposed an improved55

KD-ABC algorithm, which changed the way of nectar source56

generation. Reference [11] combined ABC and K-means to57

improve the effectiveness of wind farm clustering. In ref-58

erence [12], artificial bee colony (MOABC) algorithm was59

used for multi-objective optimization to achieve the highest60

efficiency and lowest cost of the system. Reference [13]61

combines HABC with bee life cycle due to dynamic and62

static problems. In reference [14], in order to realize wind63

power Patterns clustering, wind power patterns are set as the64

objective function of clustering and K-means is improved.65

In reference [15], the co-evolution framework was introduced66

into the ABC algorithm, and a global optimal and leading67

artificial bee colony algorithm was designed. The improved68

strategy was adopted to accelerate the convergence speed of69

the algorithm and overcome the dimension dependence prob-70

lem respectively. The algorithm proposed in reference [15]71

combines the filter to realize the function of noise reduction72

and avoid the influence of bad data on the whole.73

TABLE 1. Comparison of different algorithms.

In view of the respective characteristics of KMC and74

ABC algorithms, this paper first proposes an Improved ABC75

(IABC) algorithm, which uses the proposed maximum and76

minimumdistance product method to initialize the bee colony77

to ensure that the selection of initial points can represent78

the distribution characteristics of the data set as much as79

possible. In the iterative process, the new fitness function and80

position update formula are used to optimize the evolution. 81

Then IABC algorithm is applied to KMC and IABC-K-means 82

algorithm is proposed to improve the clustering performance. 83

It is applied to wind power generation to provide a theoretical 84

basis for practical production. 85

II. PROBLEM FORMULATION AND PRELIMINARIES 86

A. K-MEANS CLUSTERING ALGORITHM 87

The k-means clustering algorithm divides the data into a 88

predetermined class number k on the basis of minimizing the 89

error [21], adopts distance as similarity assessment, and uses 90

the center Ej of cluster Ej(j = 1, 2, . . . , k) to represent the 91

cluster. D
(
xi, xj

)
is used to represent the Euclidean distance 92

between two data objects xi and xj, and its calculation formula 93

is as follows: 94

D
(
xi, xj

)
=

√
(xi1 − xi2)2 + · · · (xiL − xiL) (1) 95

where L is the number of data object attributes. 96

Error square and SSE are used as objective functions to 97

measure the clustering quality and represent the tightness of 98

the samples around the center of the cluster. The smaller SSE 99

is, the higher the sample similarity is. The calculation formula 100

of SSE is as follows: 101

SSE =
k∑
j=1

∑
x∈Ej

D
(
x, ej

)
(2) 102

ej =
1
nj

∑
x∈Ej

x (3) 103

where, nj is the number of sample data in the jth cluster Ej. 104

B. PARTICLE SWARM OPTIMIZATION ALGORITHM 105

Particle swarm optimization (PSO) algorithm is a typical 106

swarm intelligence optimization algorithm. Just like the 107

majority of intelligence optimization algorithm, PSO usually 108

generate a set of particles as an initial solution [22]. Then, the 109

particles are updated iteratively, to get the better fitness for 110

entire population. Finally, the optimal solution is expected to 111

be found within a limited time of iterative steps. 112

A search space dimension N problem is solved 113

by using the PSO algorithm containing M particles. 114

Then, in the nth iteration of PSO, the current posi- 115

tion and current velocity of the ith (1 ≤ i ≤ M) particle 116

can be expressed as Xi,n
(
Xi,n = X1

i,n,X
2
i,n, . . . ,X

N
i,n

)
and 117

Vi,n
(
Vi,n = V 1

i,n,V
2
i,n, . . . ,V

N
i,n

)
respectively. PSO updates 118

the velocity and position of each particle on each dimensional 119

component with the following formula at each iteration: 120

V j
i,n+1 = V j

i,n + c1r
j
i,n

(
Pji,n − X

j
i,n

)
+ c2R

j
i,n

(
Gji,n − X

j
i,n

)
121

(4) 122

X ji,n+1 = X ji,n + V
j
i,n+1 (5) 123

The above two equations are the updated iterative formula 124

of PSO algorithm. Where i = 1, 2, . . . ,M , j = 1, 2, . . . ,N . 125
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c1, c2 is the acceleration factor, which is used to adjust the126

convergence speed of the algorithm, usually with the value of127

2. Where Pi,n is the location of the best fitness found by the128

particle from initialization to the first iteration, also known129

as the individual optimal location, Pi,n = P1i,n,P
2
i,n, . . . ,P

N
i,n.130

After each iteration, the pbest position of each particle should131

be updated according to the following rules:132

Pi,n+1 =
{

Pi,n f
(
Pi,n

)
< f

(
Xi,n+1

)
Xi,n+1 f

(
Pi,n

)
≥ f

(
Xi,n+1

) (6)133

where f (•) is the objective function for finding the corre-134

sponding position adaptation. Vector Gn is the position with135

the best fitness among all the pbest positions in the first iter-136

ation, in other words, the best position found by all particles137

up to the nth iteration, also known as the global optimal138

position. r ji,n and Rji,n are usually random numbers evenly139

distributed between 0 and 1, that is, r ji,n,R
j
i,n ∈ U (0, 1). For140

most problems, the jth dimension of particle velocity should141

be limited within a certain interval
[
−V j

max,V
j
max

]
according142

to the actual situation when solving with PSO. However,143

because original PSO’s search behavior tends to be global144

to solve some problems, it leads to slow convergence of the145

algorithm. To solve this problem, the PSO algorithm with146

inertia weight is proposed, that is, the inertia weight w is147

added into the above equation:148

V j
i,n+1 = wV j

i,n + c1r
j
i,n

(
Pji,n − X

j
i,n

)
+ c2R

j
i,n

(
Gji,n − X

j
i,n

)
149

(7)150

A commonly used value is to decrease linearly with the151

increase of the number of iterations from 0.9 to 0.4. This152

version of PSO algorithm has been verified to have better153

performance than other versions in many experiments and154

applications, so it is called the standard PSO algorithm.155

In the process of studying the motion trajectory of the stan-156

dard PSO algorithm, the condition that the whole population157

can converge stably is that every particle in the population158

tends to point pi,n, where pi,n can be expressed by the follow-159

ing formula:160

pji,n =
c1r

j
i,nP

j
i,n + c2R

j
i,nG

j
n

c1r
j
i,n + c2R

j
i,n

(8)161

The above equation can also be written as:162

pji,n = η
j
i,nP

j
i,n +

(
1− ηji,n

)
Gjn (9)163

where ηji,n is a random number that satisfies (0,1) uniform164

distribution.165

C. ARTIFICIAL BEE COLONY ALGORITHM166

Artificial bee colony algorithm is a swarm intelligence algo-167

rithm that imitates the foraging behavior of bees. The swarm168

in the algorithm can be divided into three parts: leader,169

follower and scouter. Leader correspond to a specific food170

source and carry specific information about the food source;171

The follower bees waited for the leader bees to share infor- 172

mation about the food source in the dance area of the hive, 173

and then selected a food source to further explore around it. 174

Scouters are responsible for randomly searching for new food 175

sources. 176

The basic artificial bee colony algorithm can be divided 177

into the following four stages. 178

1) INITIALIZATION PHASE 179

N food sources are randomly generated in the feasible solu- 180

tion space, and each food source represents a feasible solu- 181

tion. The specific formula is as follows: 182

xi,j = xmin
j + random (0, 1)×

(
xmax
j − xmin

j

)
(10) 183

where i = 1, 2, . . . ,N ; j = 1, 2, . . . ,D, D is the dimension 184

of the feasible solution. xmaxj and xmaxi represent the upper 185

and lower limits of the jth parameter. Also, set a counter for 186

each food source and set its value to 0. 187

2) LEADER SEARCH PHASE 188

The leader conducted neighborhood search near the corre- 189

sponding food source to find a new food source vi, and the 190

search formula was as follows: 191

vi,j = xi,j + (−1+ 2× random)×
(
xi,j − xk,j

)
(11) 192

where k represents randomly selected food resource different 193

from i, k 6= i. For the new and old food sources xi and vi, the 194

‘‘greedy selection’’ algorithm is adopted, that is, the quality 195

of the new food source and the old food source is compared. 196

If the quality of the new food source is better, the new food 197

source is retained and its counter is set to 0. Otherwise, keep 198

the old food source and add one to its counter. 199

3) FOLLOWER SEARCH PHASE 200

Follower bees play a roulette wheel to select a food source 201

from the current food source. The probability of each food 202

source being selected is as follows: 203

Pi =
fiti∑N
j=1 fitj

(12) 204

where fiti represents quality of the food source and is calcu- 205

lated by the following formula: 206

fiti =

{
1

1+fi
fi ≥ 0

1+ |fi| otherwise
(13) 207

where fi represents the value of objective function. 208

After the follower selected the food source, they searched 209

the field according to phase 2, and then carried out greedy 210

selection related operations 211

4) SCOUTER SEARCH PHASE 212

To avoid the loss of population diversity in the process of 213

evolution, a special scout bee search mode was added to the 214

bee colony algorithm. When the value in the counter corre- 215

sponding to a food source is greater than a pre-set threshold 216
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limit, the current food source can be considered as exhausted,217

the food source is abandoned, the corresponding lead bee218

becomes the scout bee, and a new food source is randomly219

generated in the feasible solution space using phase 1method.220

D. SELECTION OF TYPICAL WIND POWER OUTPUT221

SCENARIOS222

Because there is great randomness in renewable energy223

scheduling, whether from the power generation side or the224

user side, it is necessary to predict the wind power output,225

conduct day-ahead scheduling, and then conduct real-time226

scheduling according to the fluctuation of the day.227

The number of original wind power scenarios is too large to228

be representative. To obtain typical wind power scenarios, n229

original scenarios in the merger cycle need to be reduced. The230

improved K-means clustering algorithm was used to process231

the data of different scenarios, and the original n scenarios232

were reduced and merged into a few k typical wind power233

scenarios, which could be represented by k × t matrix. In the234

process of scene reduction andmerging, the number of scenes235

is reduced, and the data of t moments in the scene keeps236

the original time sequence. The typical scenario generation237

process of wind power.238

The traditional k-means clustering method has the prob-239

lems of poor global search ability and low clustering accu-240

racy. If the initial clustering center is randomly selected,241

it may fall into the local optimal solution or even no solution.242

Thus, it is difficult to obtain the optimal typical wind power243

output scenario.244

III. IMPROVED ARTIFICIAL BEE COLONY ALGORITHM245

The basic artificial bee colony algorithm has the following246

two shortcomings: 1) the randomness of initialization results247

in low efficiency; 2) one-dimensional domain search leads to248

slow speed of convergence. In this paper, the maximum and249

minimum distance product method is used to initialize the250

sealed group to overcome its randomness. The new fitness251

function and the position change formula of the global guide252

factor are used for iterative optimization.253

A. INITIALIZATION BASED ON MAXIMUM AND MINIMUM254

DISTANCE PRODUCT255

Population initialization is very important in evolutionary256

algorithms because it affects the global convergence rate and257

the quality of solution.258

The maximum and minimum distance method is adopted259

to search for the optimal initial cluster center [24], which260

reduces the sensitivity to the initial cluster center and greatly261

improves the convergence speed and accuracy. However, due262

to its adherence to the idea of minimum distance, the selec-263

tion of initial cluster centers may be too dense and cluster264

conflicts may occur. The maximum distance product method265

was proposed to search for the initial cluster centers, which266

made the selection of initial points more consistent with the267

characteristics of data distribution and effectively reduced268

the number of iterations. However, the maximum distance269

product method also has defects. For example, two distance 270

products are equal while the point densities in their regions 271

differ greatly. Some parameters need to be input by users 272

themselves, and the selected initial points tend to be inclined 273

to the periphery of the point set, which cannot accurately 274

reflect the actual data distribution. Based on the literature 275

mentioned above, the maximum andminimum distance prod- 276

uct method is proposed and used to initialize the population. 277

This method not only overcomes the randomness of colony 278

initialization, but also reduces the sensitivity of k-means 279

algorithm to the initial point. 280

Aiming at the shortcomings of existing maximum and 281

minimum distance method and maximum distance product 282

method, a maximum and minimum distance product method 283

is proposed. Where, D is the set containing all data; N is the 284

number of initial colonies; k is the initial number of points to 285

be selected; Z is the set of k initial points to be added, which is 286

empty before the algorithm starts. Temp is an array that stores 287

the product of the elements from Z to D. The algorithm flow 288

is shown in the figure below. 289

FIGURE 1. Max-min distance product algorithm flow chart.

It can be seen from the idea and steps of this method that 290

the algorithm requires fewer parameters, and the product of 291

(Tempmax × Tempmin) can select points with higher point 292

density, and the distribution of initial points is sparse. By this 293
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process, not only can we avoid the situation where two294

distance products are equal while the density of points in their295

regions varies greatly, but we can also use the products to296

amplify the differences between points, making the selection297

process more discriminative.298

B. FITNESS FUNCTION299

Fitness function will guide the direction of population evo-300

lution and directly determine the evolutionary behavior of301

the population, the number of iterations and the quality of302

the solution. Different fitness function will get different solu-303

tions. Therefore, a new fitness function is proposed based304

on the iterative search process of artificial bee colony and305

the idea of k-means algorithm, as shown in the following306

formula:307

fitnessi =
CMi
Disti

i = 1, 2, . . . ,N (14)308

whereCMi is the number if points belonging to class i;Disti is309

the sum of distances between all objects in class i and center310

Ci, Disti =
∑
xj∈Ci

d
(
xj,Ck

)
,Dist =

k∑
j=1

∑
xi∈Cj

d
(
xi,Cj

)
.311

If the fitness function is only used as points or in-class312

distance, there will be shortcomings as follows:313

1) SAME DISTi , DIFFERENT CMi314

If only the inner distance of class is used as fitness func-315

tion, the accuracy will be lost in the process of selec-316

tion. According to the above formula, there is obviously317

fitnessa > fitnessb, so iteration will evolve towards the trend318

of figure (a), reducing the number of iterations while improv-319

ing the accuracy.320

FIGURE 2. Same CM, different Dist.

2) SAME CMi , DIFFERENT DISTi321

When only points are used as fitness function, the adapt-322

ability will decrease under the following circumstances.323

fitnessa > fitnessb can be obtained from the above formula324

to make the iterative process more accurate.325

C. POSITION UPDATING FORMULA326

Position updating formula determines whether bees can find327

new nectar sources quickly and accurately. The original328

position updating formula has strong search ability, but its329

FIGURE 3. Same Dist, different CM.

exploration ability is insufficient. It is easy to fall into local 330

optimal solution and its update speed is slow in the process 331

of domain search. To solve this problem, this paper proposes 332

a position updating formula which introduces global factors: 333

Vij = xij + rij
(
xmj − xkj

)
+ µ

(
xbest,j − xij

)
(15) 334

where vij is a new position generated near xij; k , m, 335

and j are random numbers generated by random formulas, 336

k,m ∈ {1, 2, . . . ,N }, k and m are mutually exclusive and 337

neither is equal to i; rij ∈ [−1, 1]; µ ∈ [0, 1] is a random 338

number; xbest,j is the most abundant source of honey. 339

The original method only iterated toward the vector direc- 340

tion of random (0, 1) ×
(
xmaxi − xmini

)
in the field search, 341

without considering the comparison of position advantages 342

and disadvantages before and after the iteration. During the 343

whole search process, each leader could only obtain the infor- 344

mation of historical optimum and current position, lacking the 345

consideration of global optimum for the whole colony. From 346

the evolutionary perspective of swarm intelligence, individual 347

in a group can benefit from the experiences of all other indi- 348

viduals in the group. Therefore, on the basis of the original 349

formula, the global guiding factor (xbest,i - xij) is added to 350

make the bee search have a strong direction and purpose, and 351

the influence factor µ is added in front of the global factor to 352

constrain the amplitude of the search. As can be seen from the 353

factor composition, if the gap between the current position 354

and the optimal position is large, the updated step size will 355

increase dynamically. Otherwise, it slowly approaches. 356

IV. KMC ALGORITHM BASED ON IMPROVED ARTIFICIAL 357

BEE COLONY ALGORITHM 358

Based on the previous chapter, IABC-Kmeans algorithm is 359

proposed. The basic idea of this algorithm is: The IABC 360

algorithm was used for an iteration, and the new location 361

obtained by the iteration was used as the initial point of 362

KMC for clustering, and then the cluster center was used to 363

update the colony. In this way, the IABC algorithm and KMC 364

algorithm were alternately executed until the conditions were 365

met to end the iteration. 366

The basic steps are as follows: 367

Step1. Set the number of leaders, followers and scouters 368

(usually number of leaders = number of followers); 369

Maximum iteration CMmax and control parameter Tlimit ; 370

Current iteration Ccurrent , initial value is 1; Number of 371
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clustering categories k; The bees were initialized with the372

product of maximum and minimum distance to generate373

{Z1,Z2, . . . ,ZN } initial colonies.374

Step2. The initial colony was clustered and divided. The375

fitness of each bee was calculated and ranked, with the former376

as the latter and the last half as the follower.377

Step3. Lead bees to search for a new position. According378

to the greedy selection principle, if the fitness of the new379

position is larger than the original position, the position will380

be updated to the new. Otherwise, it stays the same. When all381

the leaders have completed the search, the probability Pi is382

calculated.383

Step4. Followers select the leaders based on the roulette384

principle according to the probability Pi obtained. In prin-385

ciple, the higher the Pi value is, the larger the fitness of the386

leader bee i is, and the higher the probability of being selected387

by the follower. After followers completing the selection of388

the leaders, the field search was conducted, and the position389

with large fitness was also selected according to the greedy390

principle.391

Step5. After all the followers completed the search, the392

obtained position was used as the cluster center, and the393

data set was clustered by k-means iteration. According to394

the cluster division, the colonies were updated with the new395

cluster center of each class.396

Step6. If the result of a leader does not change after397

iteration Tlimit , the leader will be transformed into a scouter398

and a new position will be randomly generated to update the399

original position.400

Step7. If the current iteration number is greater than401

the maximum iteration number CMmax , the iteration402

ends and the algorithm ends; otherwise, go to Step 2,403

Ccurrent = Ccurrent+ 1404

V. CASE STUDY405

This chapter verifies the performance of the proposed algo-406

rithm, which mainly includes two parts: 1) the performance407

of IABC algorithm to find the optimal solution; 2) clustering408

performance of k-means algorithm based on IABC algorithm.409

A. OPTIMIZATION PERFORMANCE ANALYSIS OF IABC410

ALGORITHM411

The IABC algorithm proposed in this paper is compared with412

the basic ABC algorithm and PSO algorithm, and a series413

of benchmark functions are used to test the performance414

of the algorithm. The standard test data are shown in the415

formula below, which are Rastrigin, Rosenbrock, Griewank416

and Ackley, respectively.417

f1 (x) =
D∑
i=1

[
x2i − 10 cos (2πxi)+ 10

]
(16)418

f2 (x) =
D−1∑
i=1

[
100

(
x2i − xi+1

)2
− (xi − 1)2

]
(17)419

f3 (x) =
D∑
i=1

x2i
4000

−

N∏
i=1

cos
(
xi
√
i

)
+ 1 (18) 420

f4 = −c1 · exp

−0.2
√√√√1
n

n∑
j=1

x2j 421

− exp

1
n

n∑
j=1

cos
(
2πxj

)+ c1 + e (19) 422

When optimizing the function, the colony size was set to 423

20, that is, the number of leaders and followers was set to 10. 424

The CMmax value was 50, i.e., the individuals with more than 425

50 iterations in the same food source changed from leaders 426

to scouters. The maximum number of iterations is 1000. The 427

following figure shows the fitness variation trend of the three 428

algorithms under different test functions 429

FIGURE 4. The variation trend of fitness value of different algorithms in
Rastrigin function.

FIGURE 5. The variation trend of fitness value of different algorithms in
Rosenbrock function.

FIGURE 6. The variation trend of fitness value of different algorithms in
Griewank function.

It can be seen from the figure above that the original ABC 430

algorithm has different degrees of slow convergence speed 431

and easy to fall into the local optimal solution on the multi- 432

peak function. Compared with the original algorithm, PSO 433

algorithm has higher convergence speed and fewer iterations, 434

but it is weak in global optimization ability. The IABC algo- 435

rithm in this paper adopts a new fitness function and position 436
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FIGURE 7. The variation trend of fitness value of different algorithms in
Ackley function.

update formula to avoid the randomness of the neighborhood437

of food source location update. The algorithm enables bees438

to quickly move to the region where the optimal food source439

is located through the global guiding factor. Therefore, IABC440

algorithm has a great improvement in both iteration speed and441

global optimization ability.442

B. CLUSTERING PERFORMANCE ANALYSIS OF IABC443

ALGORITHM444

To test the effectiveness of the proposed algorithm, manual445

and real data sets are used to verify the algorithm to find the446

effect of the optimal cluster number.447

FIGURE 8. Artificial datasets subject to Gaussian distribution S1.

FIGURE 9. Clustering result of dataset S1.

TABLE 2. Test dataset feature description.

To test the clustering accuracy of the proposed algorithm, 448

the correct clustering number of each data set is given in 449

advance. When testing the performance of the proposed algo- 450

rithm to obtain the optimal cluster number, the algorithm 451

was repeatedly run for 10 times, and The Times of the cor- 452

rect optimal cluster number obtained by the algorithm were 453

recorded. 454

TABLE 3. Algorithm running results.

In this paper, IABC algorithm is combined with KMC, 455

and the initialization process, fitness formula and global 456

guide factor are added to enhance the global search ability 457

of the algorithm, which can jump out of the local opti- 458

mal solution, with fewer iterations and better convergence 459

accuracy. 460

C. TYPICAL WIND POWER SCENARIOS SELECTION 461

In this paper, four typical wind power scenarios are used to 462

generate 90 artificial wind power output datasets that obey 463

Gaussian distribution respectively, and cluster analysis is 464

carried out on the datasets. The clustering results are shown in 465

the figure below. The ordinate in the figure is the unit value, 466

and its base value is 20MW. 467

FIGURE 10. Typical wind power output scenario 1.
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FIGURE 11. Typical wind power output scenario 2.

FIGURE 12. Typical wind power output scenario 3.

FIGURE 13. Typical wind power output scenario 4.

As can be seen from the figure above, the green dotted468

line is four typical wind power output scenarios, which are a469

288-dimensional column vector. The 360 wind power output470

scenarios generated from typical output scenarios can achieve471

high accuracy through clustering.472

According to the wind power output curve of a place473

365 days, several typical wind power scenarios are aggre-474

gated. According to the typical output scenario, effective475

wind power planning can be carried out locally to achieve476

the highest economic benefits.477

After clustering 365 days’ wind power output scenarios,478

the output of local thermal power units can be adjusted as479

day-ahead dispatching data, which effectively improves the480

consumption of new energy and reduces pollution.481

FIGURE 14. Typical wind power output scenario 1.

FIGURE 15. Typical wind power output scenario 2.

FIGURE 16. Typical wind power output scenario 3.

FIGURE 17. Typical wind power output scenario 4.

VI. CONCLUSION 482

In this paper, an improved artificial bee colony algorithm is 483

proposed, which is improved from three aspects of colony 484
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initialization, fitness function and position update formula485

respectively. Also, it overcomes the randomness of initial486

algorithm and easy to fall into local optimal solution. The487

improved artificial bee colony algorithm is combined with488

KMC algorithm to solve the problem of poor global search489

ability of KMC algorithm. Experimental results show the490

effectiveness of the proposed algorithm, and the optimization491

efficiency and performance are greatly improved. And the492

method proposed in this paper is used to select typical wind493

power output scenarios, which can provide certain use value494

in the process of new energy consumption and power system495

operation.496
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