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ABSTRACT Multivariate time series classification is a machine learning problem that can be applied
to automate a wide range of real-world data analysis tasks. RandOm Convolutional KErnel Transform
(ROCKET) proved to be an outstanding algorithm capable to classify time series accurately and quickly.
The textbook variant of the multivariate time series classification problem assumes that time series to be
classified are all of the same length, while in real-world applications this assumption not necessarily holds.
The literature of this domain does not pay enough attention to data processing pipelines for variable-length
time series. Thus, in this paper, we present a thorough analysis of three preprocessing pipelines that handle
variable-length time series that need to be classified with a method that requires the data to be of equal length.
These three methods are truncation, padding, and forecasting of missing value. Experiments conducted on
benchmark datasets, showed that the recommended procedure involves padding. Forecasting ensures similar
classification accuracy, but comes at a much higher computational cost. Truncation is not a viable option.
Furthermore, in the paper, we present a novel domain of application of multivariate time series classifica-
tion algorithms, that is incident detection in cash transactions. This area poses substantive challenges for
automated model training procedures since the data is not only variable-length, but also heavily imbalanced.
In the study, we list various incident types and present trained classifiers capable to aid human auditors in
their daily work.
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INDEX TERMS Classification, incident detection, multivariate time series, ROCKET, varying-length time
series.

I. INTRODUCTION19

Time series classification has become a vital domain of20

machine learning. The multitude of exciting real-life applica-21

tions drives the development of the field and inspires fruitful22

research that aim at delivering new approaches, improving23

The associate editor coordinating the review of this manuscript and

approving it for publication was Sajid Ali .

the existing ones, and adapting them to new types of data. 24

This paper focuses on the task of classifyingmultivariate time 25

series of unequal lengths. That is, each multivariate series can 26

have a different length. 27

The study presented in this paper is related to our project 28

that deals with incident detection in cash transaction data. 29

The business context of the project is loss prevention in quick- 30

service restaurant operations. In our context, an incident is 31
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when a cashier (server, employee) is under-ringing items,32

voiding items, or performing other intentional operations that33

cause money losses for the restaurant.34

Thanks to many years of successful cooperation with35

our clients in the quick-service restaurant industry, we have36

accumulated an adequate database of transactions, and we37

rely on human experts to conduct incident audits. The38

human-auditor-based loss prevention scheme employed at the39

moment is the cornerstone of the daily operations of our40

company. However, there is a pressing need to automate audit41

tasks.42

We want to build an automated classifier that detects oper-43

ations in which a cashier intentionally mishandles the trans-44

action process. Our goal is to deliver a custom classification45

model that will assign one of two possible labels: fraudulent46

operation or legitimate operation to each transaction com-47

mitted in the system. We envision the incident recognition48

module as an offline audit tool that will analyze data on past49

restaurant operations. It becomes apparent that the problem at50

hand is a binary classification task, which may appear trivial51

to the reader at first glance. However, the nuances of the52

domain make this task far from easy.53

In this paper, we present fundamental challenges and54

solutions that we have encountered and worked on while55

constructing one particular variant of our incident detector.56

Wemust emphasize that this study is unique and novel. As we57

will detail in the literature review on fraud detection in cash58

transactions, practitioners are well aware of the magnitude of59

the problems. One can find studies that list a wide range of60

frauds that can take place. Unfortunately, the literature does61

not offer a satisfactory range of solutions to automate the62

detection of fraud in cash transactions.63

The construction of an automated machine learning model64

for cash transactions fraud detection requires a noticeable65

technological advancement in the computer system that han-66

dles daily operations on the client side. Without surprise,67

there are not that many solutions of this kind available on the68

market. Such tools are typically built as an additional feature69

of a broader system that handles daily operations. Nonethe-70

less, some commercial applications offer such functionalities.71

Naturally, our company, DTIQ, offers such a service. Next,72

we may mention NCR Solutions,1 whose store management73

application includes alerts about detected suspicious transac-74

tions (for example, suspicious refunds).75

In order to build such a system, one must have access to76

data concerning payments. On that note, based on our expe-77

rience, the following data-related challenges take place:78

• The first essential obstacle is a heavy imbalance.79

In a representative chunk of transactions data only80

around 5–10% are deemed to be fraudulent.81

• There are many ‘‘creative’’ ways of how to manipulate82

a cash-based transaction in a restaurant, or generally83

speaking, in retail. There is no one repetitive scenario84

taken by a dishonest cashier, tactics change in time.85

1https://www.ncr-hospitality.com/en/solutions/theft-detection-20/

• Data is available in a non-typical structure and it is very 86

varied. We envision that for a given cashier, for a given 87

date we have a shift transactions history and (any) one 88

or more transactions this time span may be fraudulent. 89

The length of the history of transactions may be sub- 90

stantially different, ranging from less than 10 up to even 91

500 transactions per shift. Transactions history can con- 92

cern operations of various types such as cash payments, 93

card payments, discounts, technical procedures, etc. 94

• We envision that the data can be represented as multi- 95

variate time series made of a sequence of transactions 96

where the variables describe ‘‘parameters’’ of transac- 97

tions such as purchased items quantity and the variety of 98

products (foods, drinks, condiments, etc.), gross value, 99

discount, cash paid and change required. There are many 100

variables, and time series may be very short. Length can 101

be shorter than the number of variables. 102

Summarizing the concerns raised above, let us state that 103

we deal with multivariate time series classification task 104

but with highly challenging data. These data characteristics 105

are highly dissimilar to the characteristics of time series 106

from benchmark dataset repositories. In the case of time 107

series classification task, the very often used resource is 108

https://timeseriesclassification.com/. However, on this page, 109

there are no time series datasets with properties similar to 110

ours. 111

Let us emphasize that the output of the multivariate time 112

series classification area is rich with compelling ideas and 113

algorithms. We can briefly distinguish the following groups 114

of methods: 115

• classifying ensembles, where weak learners are built for 116

univariate series and multiple variables are handled at 117

a sampling stage when weak learners are built; 118

• classification pipelines composed of two steps: fea- 119

ture extraction and standard classification, where feature 120

extraction is performed for all variables in time series to 121

handle the issue of multiple variables; 122

• neural networks, which integrate feature extraction and 123

classification step in a single algorithm and are suitable 124

for processing multivariate sets. 125

Recently, Ruiz et al. [32] published a comprehensive 126

review of multivariate time series classification methods. 127

Ruiz et al. present a systematic and very thorough com- 128

parison of the existing methods. The study covered exper- 129

iments with aforementioned benchmark datasets on the 130

https://timeseriesclassification.com/ website. Their results 131

clearly show that the algorithm called RandOm Convolu- 132

tional KErnel Transform, ROCKET, authored by Demp- 133

ster et al. [9], is the best-performing one for multivariate 134

time series classification. ROCKET uses random convolu- 135

tional kernels to extract features and then logistic regres- 136

sion to execute the classification step. The authors conclude 137

their summary saying that ‘‘ROCKET is the best ranked 138

and by far the fastest classifier and would be our recom- 139

mendation as the default choice for MTSC problems.’’ [32]. 140
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Importantly, Ruiz et al. compared ROCKET with very com-141

petitive algorithms, including several neural network-based142

approaches (such as ResNet and InceptionTime). We must143

mention that the superiority of ROCKET was also reported144

in independent works for other (not necessarily multivariate)145

time series classification tasks, including the studies deliv-146

ered by Dempster et al. [9], [10], [11], Salehinejad et al. [33],147

Pantiskas et al. [30], and more. Among papers emphasizing148

the superiority of ROCKET is the work of Dhariyal et al. [8]149

who focused on the comparisons of ROCKET with neural150

approaches. The authors conclude their findings saying that151

‘‘recent deep learning MTSC methods do not perform as well152

as expected.’’.153

The mentioned-above findings motivated us to investigate154

the feasibility of applying the ROCKET algorithm for inci-155

dent detection. In this paper, we report on the outcomes of156

these efforts. It must be stressed, that the work we performed157

aimed at providing a novel adaptation of the ROCKET proce-158

dure. ROCKET is an algorithm suitable for same-length time159

series. The default strategy of how to use it with time series of160

varying lengths is to do padding. In our experiments, we have161

tested several strategies that allow to apply the feature extrac-162

tion step the same as in ROCKET but for multivariate time163

series with varying lengths. In particular, we have tested the164

following techniques:165

• padding – the baseline strategy which relies on placing166

a constant value to make time series lengths even,167

• trimming – cutting time series,168

• forecasting future values using an ARIMA model.169

A. THE NOVELTY OF THE CONTRIBUTION170

Let us briefly summarize the novel contributions addressed171

in this paper:172

• We present a comparative study on how various173

approaches to varying-length time series length equal-174

ization contribute to the classification accuracy of175

ROCKET.176

• We introduce and analyze the feasibility of ARIMA-177

based forecasting used for time series length manipula-178

tion in varying-length time series forecasting problem.179

• We present the application of multivariate time series180

classification to a new domain, cash transaction fraud181

detection.182

B. THE PRACTICAL SIGNIFICANCE OF THE UNDERTAKEN183

TOPIC184

Fraud detection in retail and services can be positioned under185

the umbrella of loss prevention mechanisms crucial for the186

daily operations of businesses. There are manifold aspects of187

this problem spanning from physical monitoring of locations,188

video analytics, to transaction data monitoring. In this paper,189

we narrow down the attention to the analysis of information190

stored in a conventional relational database concerning trans-191

actions. We demonstrate how one can leverage this resource192

for fraud detection.193

The remainder of this manuscript is structured as fol- 194

lows. Section II presents a literature review on the topic of 195

multivariate time series classification. Section III mentions 196

existing studies on a wide context of the incident detection 197

task. Section IV introduces the issue of variable-length time 198

series. Section V presents empirical experiments we have 199

performed to evaluate time series preprocessing pipelines 200

that deal with variable-length data. Section VI addresses a 201

case study, in which we apply a selected processing pipeline 202

(padding) to the incident detection task. Section VII con- 203

cludes the paper. 204

II. LITERATURE REVIEW ON MULTIVARIATE TIME SERIES 205

CLASSIFICATION 206

Classification, in general, is the process of predicting a class 207

label of an object. We describe the object using measurable 208

attributes, also called features. We extract the same set of 209

attributes for each object, and a decision algorithm, called a 210

classifier, is used to distinguish between objects from differ- 211

ent classes. In the case of time series classification, attributes 212

are consecutive observations ordered in time. In the case of 213

multivariate time series, we have more than one sequence 214

making a time series. Multivariate time series contain simul- 215

taneously collected signals concerning one entity. 216

The baseline approach to univariate time series classifi- 217

cation would treat each time series data point as a single 218

attribute. We may apply any standard classifier, for exam- 219

ple, random forest, to a data frame in which one row cor- 220

responds to one time series and one column corresponds to 221

one moment in time. We would have to ensure that each time 222

series is of the same length and starts at a comparable moment 223

in time. Surveys show that this baseline approach achieves 224

surprisingly satisfying results for univariate time series 225

datasets [5]. However, when we deal with multivariate time 226

series, the problem’s dimensionality grows quickly and the 227

plain-classifier-based approach may become infeasible. 228

There are three types of approaches suitable for multivari- 229

ate time series. We address them separately in the following 230

subsections. 231

A. MULTIPLE VARIABLES HANDLING WITH THE USE OF 232

WEAK LEARNERS IN ENSEMBLE CLASSIFIERS 233

A straightforward solution to the problem of multivariate 234

time series classification is to make an ensemble in which 235

weak learners are trained on different variables in the data. 236

The algorithms do not take the benefit of possible relations 237

between the variables present in the data. Regardless, such 238

a technique is relatively easy to implement, and one can use 239

a wide choice of classifiers to instantiate a weak learner. 240

A prominent algorithm that allows for such a pro- 241

cessing scheme is the Hierarchical Vote Collective of 242

Transformation-based Ensembles (HIVE-COTE) [4], [28]. 243

It is an ensemble of a wide variety of base univari- 244

ate time series classifiers. Its latest version uses as weak 245

learners classifiers such as Shapelet Transform Classifier 246

(STC) [3], Time Series Forest (TSF) [1], Contractable Bag 247
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of Symbolic-Fourier Approximation Symbols (CBOSS) [29],248

and Random Interval Spectral Ensemble (RISE) [25]. The249

notorious flaw of HIVE-COTE is its extremely high time250

complexity. As the authors of this algorithm earnestly251

report [28] (let us give just one example), for a dataset named252

HandOutlines, HIVE-COTE takes 18.53 hours to train.253

In contrast, an Inception neural network takes 7.11 hours, and254

ROCKET takes 0.23 hours on a high-end computer.255

In the group of ensemble algorithms suitable to deal with256

multivariate data, we can also find the generalized Ran-257

dom Shapelet Forest (gRSF) [20]. It generates a set of258

shapelet-based decision trees. A shapelet is deemed to be259

a distinctive part of a time series. Karlsson et al. [20] generate260

shapelets randomly. Nonetheless, there are algorithms dedi-261

cated just to this task. Several such methods were delivered262

by Ji et al. [19]. The gRSF algorithm randomizes variables263

for which the shapelets are extracted to handle multivariate264

time series. As a result, a single tree (weak learner) in the265

gRSF algorithm is built for one of the variables available266

in the data. Several approaches utilizing this scheme benefit267

from a preprocessing step based on Dynamic Time Warping268

(DTW) that flexibly aligns time series.269

B. MULTIPLE VARIABLES HANDLING USING FEATURE270

EXTRACTION PROCEDURE OPERATING ON ALL VARIABLES271

The second approach to the multivariate time series clas-272

sification task is independently extracting features from all273

variables. Then, one can use these features to build a single274

classifier. There is a wide variety in how different algorithms275

extract the features and build these classifiers. Admittedly,276

one can still use an ensemble classifier in the end, but han-277

dling multiple variables happens at the feature extraction278

level.279

We find the Canonical Interval Forest (CIF) [27] classifier280

in this family of methods. It combines the TSF classifier [1]281

with an approach for feature extraction named Catch22 [26].282

The feature extraction step ensures handling multiple vari-283

ables when Catch22 samples intervals from different vari-284

ables that are a base for features computation. Similarly,285

Baldan and Benitez’s [6] Complexity Measures and Features286

for Multivariate Time Series (CMFMTS) extracts features for287

all variables, which are then processed using a traditional288

classifier.289

Subsequently, let us mention the so-called dictionary-290

based methods adapted for multivariate data. In this family,291

we find the Word Extraction for Time Series Classifica-292

tion (WEASEL) [34] technique that uses a feature extrac-293

tion method named Multivariate Unsupervised Symbols and294

Derivatives (MUSE). The entire processing pipeline is termed295

WEASEL + MUSE [35]. It builds a feature vector using a296

sliding window strategy applied to each time series variable.297

Then, it extracts discrete features per variable and window.298

Irrelevant features are removed using a technique based on a299

Chi-squared test, and then, finally, a logistic regression clas-300

sifier is trained to perform class label assignment. A similar301

idea is present in an algorithm named Multiple Representa- 302

tion Sequence Learner (MrSEQL) [23]. 303

Finally, let us mention an algorithm termed RandOm Con- 304

volutional KErnel Transform (ROCKET) [9]. It is a fast and 305

accurate time series classification method for dealing with 306

multivariate datasets. Its superiority is attributed to a unique 307

manner of time series feature extraction. It uses a concept 308

analogous to the one present in the feature extraction step 309

in Convolutional Neural Networks (CNNs), namely convo- 310

lutional kernels. 311

The CNN model is frequently used in image classifica- 312

tion. CNNs fuse in a single processing stream feature extrac- 313

tion and classification steps. The input image is represented 314

as a numeric matrix. Two types of layers are included in 315

the feature extraction part of a CNN: convolutional and 316

pooling [31]. 317

A convolutional layer extracts features from the input 318

image. It is performed using kernels that can be interpreted 319

as filters. A kernel is represented with a numeric matrix 320

of a specific size. Typically, this size is relatively small. 321

A kernel moves on the image matrix with a certain stride. 322

In each position, it performs a multiplication of the values 323

in the kernel by the values in the underlying part of the 324

image. The results of these multiplications are then added, 325

and they become an element in the convolution layer output 326

matrix [13]. Convolutional kernels, when applied to images, 327

capture high-level features such as edges and texture. By anal- 328

ogy, convolutional kernels can capture patterns in time 329

series. 330

Apart from size, weights (kernel matrix elements), padding 331

(specifying behavior on edges), and stride, we shall mention 332

two more kernel parameters: bias and dilation. Dilation is 333

used to spread the kernel over the input data, so with dilation 334

equal to d , every d-th element of the input data ‘‘covered’’ by 335

the kernel will be convolved with the kernel weights. Dilation 336

allows kernels to capture the same pattern at different scales. 337

Bias term is added to the convolution result between the input 338

numbers and kernel weights [24]. 339

ROCKET extracts features from time series data using 340

convolutional kernels just like a CNN. The main idea of 341

applying convolutional kernels for time series is that we can 342

successfully equate a time series with an image. In the case 343

of univariate time series, we can interpret a time series as an 344

image made of 1 × time_series_length pixels. In the case of 345

multivariate time series, we can interpret it as an image made 346

of number_of _variables×time_series_length pixels. In both 347

scenarios, we can apply kernels to extract features. Several 348

traits distinguish ROCKET from convolutional layers used in 349

typical CNNs: 350

• ROCKET uses only a single convolutional layer and 351

a massive number of kernels. On top of that, kernel 352

weights are not learned but randomly selected. 353

• ROCKET uses dilation randomly sampled for each ker- 354

nel instead of increasing it exponentially with depth. 355

In consequence, it allows for capturing patterns at dif- 356

ferent frequencies and scales. 357
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• Apart from randomweights and dilation, ROCKET uses358

kernels with random length, padding, and bias. This dif-359

fers from classical CNNs, where it is common for groups360

of kernels to share the same size, dilation, and padding.361

• Besides the global max pooling, ROCKET incorporates362

a novel pooling feature – the proportion of positive val-363

ues (PPV). It enables ROCKET to control the prevalence364

of a specific pattern in a time series.365

ROCKET is relatively robust to different choices for many366

parameters [9].367

C. MULTIPLE VARIABLES HANDLING USING NEURAL368

NETWORKS369

Neural networks appear as a natural choice when it comes370

to multivariate time series classification. There is an obvious371

correspondence between the multiple time series variables372

and multiple neurons that can be used to instantiate an input373

layer of neural architecture. Thus, a substantial research effort374

was devoted to developing various neural models for this375

domain.376

AlexNet neural network architecture was among the first377

CNN-based architectures tested for time series data [14].378

However, the literature studied it only in the context of379

univariate time series, and more advanced models quickly380

dethroned it.381

Significant progress was achieved when a CNN architec-382

ture called ResNet utilizing the so-called residual connections383

(also known as skip connections) was applied to time series384

data by Wang et al. [39]. One of the dilemmas of training385

neural networks is that we usually want deeper neural net-386

works for better accuracy and performance. However, the387

deeper the network, the harder it is for training to converge.388

ResNet allows deep neural architecture training by allow-389

ing shortcut connections in each residual block. In practice,390

it means that there is an alternative path for data to reach391

the latter parts of the neural network that skips some layers.392

ResNet turned out to be a huge success when applied to393

multivariate time series data. It is also deemed the best for394

univariate time series [32].395

InceptionTime is a neural network built specifically for396

multivariate time series classification. It achieves high accu-397

racy by combining the ResNet architecture with the so-called398

inception modules. An inception module is a specifically399

constructed layer that takes on the input multivariate time400

series and uses multidimensional kernels to perform the con-401

volution step. Max pooling is applied to reduce the problem402

dimensionality. Mentioned steps (convolution and pooling)403

are preceded and followed by a bottleneck layer that thins the404

data even more [14].405

Finally, let us mention the Time Series Attentional Pro-406

totype Network (TapNet) [44]. The two key operations of407

this network are named Random Dimension Permutation and408

Multivariate Time Series Encoding. Random Dimension Per-409

mutation is used to produce groups of randomly selected410

time series variables. Multivariate Time Series Encoding is411

performed for each group based on one-dimensional convo- 412

lutional layers followed by batch normalization, Leaky Recti- 413

fied Linear Units, and a global pooling layer. In addition to the 414

listed encoding process, the raw data is passed through a par- 415

allel path through an LSTM and a global pooling layer. This 416

makes the TapNet a fusion of a convolutional and a recurrent 417

network. Then, signals from the CNN and LSTM are merged 418

into a fully connected layer, followed by yet another fully 419

connected layer. 420

III. LEVERAGING TRANSACTIONS DATA FOR INCIDENT 421

DETECTION – PROBLEM DESCRIPTION AND LITERATURE 422

REVIEW 423

Let us reiterate that the problem at hand is transaction incident 424

detection in retail and services such as restaurants. The inci- 425

dents we are interested in occur around employee-client inter- 426

action when an employee handles order payments, returns, 427

etc. As Hines and Youssef underline [17], occupational fraud 428

costs the average organization 5% of yearly revenues. Restau- 429

rants are especially susceptible to these negative phenomena. 430

The authors give an estimate of 3–6% range to evaluate the 431

restaurant loss scale. 432

Even though occupational frauds occur typically at points 433

of sale [17], very few companies report using dedicated fraud 434

detection systems. To illustrate the overall complexity of the 435

issue, let us distinguish the main categories of internal inci- 436

dents, which in our practice (this paper describes an ongoing 437

applied project) take place: 438

• under-ringing product/service value; 439

• bogus refunds; 440

• intentional deletion/voiding of items from an order and 441

pocketing the money for deleted items; 442

• registering different items than ordered by a customer; 443

• sweethearting (handing additional products to a 444

customer); 445

• violations of coupon policies that result in either pocket- 446

ing the discount value or the customer paying less than 447

he is supposed to. 448

Of course, the list mentioned above is not exhaustive; it cov- 449

ers critical incidents that take place around points of sales 450

in different businesses. What is more, some frauds occur as 451

a single instance event, and some are performed via a chain of 452

operations keyed into the system as a sequence of operations. 453

The details depend on the specifics of the services or products 454

a given business offers. 455

This paper addresses a method that operates on data con- 456

cerning point of sale transactions logged to a relational 457

database. Such a scenario has the advantage of universality. 458

A relational database with numerical information about trans- 459

actions is a common resource of various businesses. Alterna- 460

tive data sources are video monitoring which is not always 461

present at each point of sale and is always custom-tailored 462

for a particular company. 463

The downside of using numerical transaction data is that 464

the data is ‘‘blind’’. By this, we mean that in a commercial 465
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setting an audit is typically conducted by a human auditor466

who is simultaneously looking at the transaction data and the467

video monitoring and seeks for discrepancies between what468

took place and what was logged to the system.469

The underlying challenge required before considering the470

construction of an incident detection system is collecting an471

appropriate dataset [2]. These would differ depending on the472

company and its operational procedures. There are no open473

datasets of this kind. The collection of such a dataset is done474

with the help of human loss prevention specialists who man-475

ually annotate data. Then, as the literature suggests, experts476

define numerical features using transaction data which are477

the base for classifier construction [43], [45]. Some attempts478

utilize only transaction frequency data [22].We shall mention479

that the literature offers some insights into fraud detection in480

credit card transactions or online payments. A recent survey481

by Lim et al. [37] points out that a variety of machine learn-482

ing algorithms, including outlier detection techniques, neural483

networks, rule-based systems, classifiers such as SVM, and484

others have been applied to solve this task [36]. Some papers485

take an even broader perspective and discuss financial fraud486

in general [40]. Notably, the problem tackled in this paper487

is more challenging than credit card fraud analysis. In retail488

and services, it is much easier for a dishonest employee to489

manipulate a cash transaction than a credit card transaction.490

Money paid in via a credit/debit card is transferred directly491

to the service provider (business), and a typical employee492

is not able to install a system circumventing the legitimate493

payment process. There is also one psychological effect of494

‘‘encouraging’’ frauds for cash transactions: the only trace a495

client has is a receipt that a client often does not read or even496

take from a counter.497

To the best of our knowledge, only a few research papers498

address fraud detection in the context of loss prevention499

in restaurants, which is our application domain. There are500

two papers by Hines and Youssef. One article is focused on501

describing what they call a ‘‘rotating check’’ fraud [16]. It is502

a type of fraud similar to deleting items from an open receipt503

after a customer paid and pocketing the deleted value. The504

second paper is focused on discussing outlier detection tech-505

niques and how they can be applied to identify frauds [17].506

In the latter case, the authors address two types of fraud.507

These are, again, rotating check fraud and another type they508

call ‘‘bartender no sale’’, which means that a person is regis-509

tering a transaction as a no-sale transaction and pocketing the510

money.511

An engaging survey was presented by Collins [7]. His512

paper, first and foremost, lists a range of fraudulent behaviors513

that can take place in a restaurant. Beyond the list presented514

at the beginning of this section with the essential fraud types,515

Collins mentions [7]:516

• Servers reprinting the same receipt throughout a shift517

and handing it repeatedly to different customers.518

An employee can obfuscate and hide better if he con-519

vinces the persons to order similar food items. This520

can also be done in collaboration with other servers521

(one reprints receipts for, say, coke and pie, another, for 522

fish and chips). 523

• Violations regarding transferring a list of transactions 524

between different servers, in which one server gains 525

another server’s tip without the latter’s consent. 526

In our operational model (in many quick-service restau- 527

rants), both situations do not happen because our point-of- 528

sale devices do not allow for reprinting of a receipt, and 529

tips are not registered in the system and are always handled 530

instantly. Unfortunately, Collin’s paper does not propose how 531

to automate the detection of the described frauds. Described 532

countermeasures require substantial human effort (manual 533

verification). 534

Kelly [21] more recently mentioned the issues of voiding 535

items and discount policy abuses, but the cited paper neither 536

described new fraud methods nor addressed some concrete 537

solution to the problem. 538

To sum up, while the literature acknowledges the issue of 539

fraud detection in cash transactions, the particular data-driven 540

solutions that aim to detect these issues are almost absent in 541

the literature. The ones that were described are limited to one 542

specific fraud technique. 543

IV. THE PROBLEM OF VARIABLE-LENGTH TIME SERIES 544

There are a few fundamental reasons why time series gen- 545

erated by variants of a single prototypical process may end 546

up having different lengths. As Tan et al. [38] underline, 547

one of these mechanisms corresponds to variation in the 548

relative frequency at which the process is observed. For 549

instance, the generating processes might unfold at differing 550

speeds, or the sensors might operate at different frequen- 551

cies. This case is especially valid for remote sensing and 552

human activity recognition applications. In the former case, 553

weather conditions may influence how samples are gener- 554

ated. In the latter case, sensors are typically programmed in 555

an energy-saving manner. When the same type of activity 556

is recorded over some time (for instance, when a subject 557

is sitting), the sampling frequency drops to preserve battery 558

life. 559

Another reason for unequal-length time series generation 560

is a variation concerning the points during the process at 561

which the recorded observations begin and end. This issue 562

affects especially datasets that originate from audio signals. 563

As Tan et al. [38] underline, just a handful of strategies have 564

been devised to address the classification of time series with 565

differing lengths. The existing studies propose the following 566

solutions for unequal-length data: 567

• uniform scaling, which stretches shorter time series to 568

the length of the longest time series in a uniformmanner; 569

• padding, which adds either a fixed value or a low ampli- 570

tude noise to the suffix or the prefix of shorter time series 571

to obtain sequences as long as the longest one; 572

• direct processing of varying-length time series. 573

The first two approaches lack in some aspects. Uni- 574

form scaling is applicable to series that differ in length due 575
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to varying frequencies but not to those that differ due to576

variations in the start and the end point. This solution can-577

not be used if we wish to obtain a data-agnostic processing578

stream. Tan et al. report that padding is unsuccessful when579

the length of time series differs by a lot [38].580

Direct processing of varying-length time series means that581

an algorithm has an intrinsic capability to produce features582

from such data. Unfortunately, not many algorithms can583

do so. What is more, the algorithms capable of processing584

varying-length time series directly are not in the group of585

the top-performing ones. ROCKET, which is deemed the586

optimal choice due to its speed and accuracy, cannot handle587

unequal-length data and employs padding by default. Exam-588

ples of algorithms that handle unequal-length time series589

are some DTW-based methods, BOSS, and Proximity For-590

est. However, these algorithms achieve inferior performance591

compared to the top performers: ROCKET, HIVE-COTE,592

CIF [32].593

To the best of our knowledge, the topic of unequal-length594

time series classification is directly studied in only one paper595

available in the literature, and it is in the context of univariate596

data. Some papers indirectly mention this issue. However, the597

problem at hand is too significant to be handled in such a shal-598

low manner. This area of research needs more contributions599

since modern data analysis schemes require handling of such600

datasets.601

In this paper, we present an empirical evaluation of the effi-602

ciency of several strategies for dealing with variable-length603

time series data:604

• truncation,605

• padding (with a constant value),606

• forecasting values with an ARIMA model.607

The first two strategies are straightforward; therefore, we do608

not address them in greater detail.609

AutoRegressive Integrated Moving Average (ARIMA)610

model consists of three elements:611

• autoregressive model (AR),612

• moving average model (MA),613

• model integration (I).614

The first part, autoregressive model, is a process in which615

each value is assumed to be a linear combination of previ-616

ous values. In other words, it uses memory to describe the617

current value. Autoregressive model order determines how618

many previous values are taken to compute the current value.619

Let us denote an autoregressive model of order p as AR(p).620

Its general form is given as621

z′t = c+ b1zt−1 + b2zt−2 + . . .+ bpzt−p, (1)622

where z′t is a prediction of the current value zt , c is an inter-623

cept, describing a drift. We can easily notice that the autore-624

gressive model is analogous to the multiple regression model.625

Parameters b1, b2, . . . , bp describe how strong is a relation-626

ship between history and a current value. The description of627

the current value is an approximation of the real value zt with628

the error εt 629

zt = c+ b1zt−1 + b2zt−2 + . . .+ bpzt−p + εt , (2) 630

where εt is white noise. 631

A moving average model, another component of ARIMA, 632

uses past forecast errors in a regression-style model: 633

at−1εt−1 + at−2εt−2 + . . .+ at−qεt−q (3) 634

q denotes the order of the moving average model; we denote 635

it as MA(q). a1, a2, . . . , aq are discovered coefficients. While 636

the autoregressive model uses historical values, the moving 637

average uses historical distortions to model a time series. 638

The third component of the ARIMA model is integration 639

(I). Integration, in this context, is the action opposite to differ- 640

entiating. If we join the three components together, we obtain 641

ARIMA(p, d , q) model, where d is the degree of first differ- 642

entiating applied. The model can be written as: 643

ARIMA(p, d, q) = c+ b1z′t−1 + b2z
′

t−2 + . . .+ bpz
′
t−p 644

+ at−1εt−1 + at−2εt−2 + . . . 645

+ at−qεt−q + εt (4) 646

To automatically detect the structure of the model, that is p, d 647

and q, one may use the Hyndman-Khandakar algorithm [18]. 648

It combines unit root tests, minimization of the Akaike infor- 649

mation criterion (AIC), andMaximumLikelihood Estimation 650

to obtain an ARIMA model. In our case, a modified version 651

of the AIC was applied the details of which are given in 652

Section V. 653

In this study, we have narrowed the scope of interest to 654

forecasting with ARIMA. We wished to validate whether the 655

forecasting path is worthy of following in this case. ARIMA 656

is a well-known, rather classic method. Naturally, there are 657

other time series precision methods available to use instead 658

of ARIMA. 659

V. EMPIRICAL EVALUATION USING BENCHMARK DATA 660

To provide as high replicability of the conducted study as pos- 661

sible, we completed the empirical evaluation of the proposed 662

approach at first for benchmark datasets that are publicly 663

available. Secondly, we applied ROCKET to process our data, 664

which is a private asset of our company and, thus, we cannot 665

share it. In this section, we present the application to publicly 666

available benchmark datasets. 667

A. BENCHMARK DATASETS AND DATA STAGING 668

The first part of the experiment concerned publicly available 669

datasets. Their summary is given in Table 1. 670

Selected datasets are of substantially distinct properties. 671

We have datasets with many classes, such as Phoneme with 672

39 classes, but also three sets with binary labels. The starting 673

time series length is also very different. Take EigenWorms 674

set, in which time series are made of 17,984 observations. 675

In contrast, ERing dataset is made of series 64 elements long. 676

We also made sure that the cardinality of samples differs. 677

In this regard, let us point to the set named StandWalkJump 678
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TABLE 1. Summary of benchmark dataset properties. dims. – the number
of variables, cl.num. – the number of classes, tr.s. – train size, te.s. – test
size.

with just 12 samples in the train set (it is a 3-class bal-679

anced set, so we have only four samples in a class). In con-680

trast, we have MotorImagery set with 139 samples in each681

class. The selected 20 datasets intentionally have distinct682

properties.683

The variables present in the tested datasets are also of684

various properties. For example, in the RacketSports dataset,685

observations were collected at a rate of 10 Hz. The sam-686

pling frequency of the Epilepsy dataset was 16 Hz. In con-687

trast, in the FingerMovements dataset, we have information688

concerning 28 EEG channels which translates to 28 vari-689

ables, each sampled with the 100 Hz frequency. Finally, the690

MotorImagery dataset contains recordings performed with691

a sampling rate of 1000 Hz. The source of observations692

also differs. We have data collected using smart watches693

(RacketSports), spectrometers (EthanolConcentration, Heart-694

beat), ECG (AtrialFibrillation), accelerometers and gyro-695

scopes (BasicMotions), and more. There is also a dataset696

with recordings converted from curves obtained from videos697

(Libras). We are not placing a detailed description of all vari-698

ables because there are 258 variables (the sum of the values699

presented in the second column in Table 1).700

The source website already provides the data split into train701

and test sets. We did not interfere with this split.702

The data from https://timeseriesclassification.com is of703

equal length. Thus, to perform wider tests, we had to trim704

it. This was performed according to the following rules:705

1) The trimming was executed in the same way separately706

for each class and for the train and test set. As a result,707

the trimming was stratified; we did not want to treat708

classes differently and insert by accident some class 709

label-related bias. 710

2) We assume that for each class 1/3 of the instances will 711

have a length in the range [10%,40%] of the original 712

length, 1/3 of the instances will have a length in the 713

range (40%,70%], and the remaining 1/3 (70%,100%). 714

3) Assuming that for a given instance, we ought to do the 715

trimming to the [10%,40%] range, we randomly draw 716

a value from this range multiply it by time series length 717

and round to an integer value. 718

Because of the nondeterminism related to the above-presented 719

data staging procedure, we repeated all experiments ten times 720

and averaged the results. 721

B. PROPOSED ADAPTATIONS IN PRACTICE 722

The course of experiments concerned testing the identi- 723

fied methods for dataset length equalization for selected 724

20 datasets. The quality of amethod ismeasuredwith classifi- 725

cation accuracy that we compute for test sets (train sets are not 726

used for quality evaluation, only for model building). Each 727

experiment was repeated 10 times, in each run, we have been 728

effectively working with a different set because the trimming 729

procedure is random. Therefore, we give average accuracy, 730

maximum accuracy, and standard deviation. Table 2 con- 731

tains the obtained results. Benchmark datasets are balanced. 732

Thus, the accuracy measure (given in Eq. (8)) was enough to 733

evaluate quality at this stage. 734

We have tuned the values of two relevant parameters for 735

each dataset: the number of kernels and regularization param- 736

eter λ for the Ridge regression classifier. The tuning proce- 737

dure relied on 10 repetitions of the classification procedure 738

on full-length data for selected combinations of parameters. 739

We checked for 50, 100, 500, 1000, 5000, and 10000 kernels 740

and ten values of λ generated using an exponential sequence 741

ranging from 10−3 to 103. The number of kernels trans- 742

lates to the number of features that are then used in Ridge 743

regression. Therefore, it should be tuned individually for each 744

dataset due to the varying properties that may call for more or 745

less features. In contrast, λ determines the shrinkage penalty. 746

λ = 0 implies that the penalty term has no effect. 747

In consequence, the regularization effect will not be visible. 748

Increasing the λ increases the impact of the shrinkage penalty. 749

In consequence, regression coefficients will get closer to zero. 750

After establishing suitable parameters for full-length data, 751

we used the same settings for all other experiments. 752

The ARIMAmodel fitting stage was executed with the use 753

of the forecast R package. For each time series, we have fitted 754

an optimal ARIMA model according to the Akaike infor- 755

mation criterion (AIC) measure adjusted for a small sample 756

size (AICc): 757

AICc = AIC+
2k2 + 2k
n− k − 1

, (5) 758

where n is the sample size and k is the number of parameters. 759

One can observe that, AICc adds to the bare AIC an additional 760

penalty term for the number of parameters. The AIC is given 761
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TABLE 2. Results concerning selected 20 datasets. Average (avg), maximum (max), and standard deviation (sd) of classification on test sets for selected
datasets. The values are based on ten repetitions of the experiment. Different columns mark different time series equalization methods. 100 kernels were
used. Values are given in %. Bold font is used to mark the best outcome for reduced-length sets.

as762

AIC = 2k − 2 ln(L̂), (6)763

where k is the number of parameters in the model and L̂ is the764

maximum value of the likelihood function.We are computing765

the AICc for a set of models, and the one deemed the best has766

the lowest AIC value. Since the step of fitting the optimal767

ARIMA model is performed multiple times (the number of768

all time series times in each dataset multiplied by the number769

of experiment repetitions, which is 10), we are not giving the770

final estimates in the paper.771

Table 2 shows that truncation is the worst possible choice772

regarding data preprocessing. In two cases, truncation was773

better than padding and ARIMA-based time series extension.774

We have decided to include results on full-length time series775

even though the target processing stream was working on776

variable-length data. On the one hand, comparing the accu-777

racy of trimmed and full-length data allows inferring the pos-778

sible redundancy in full-length time series.779

In some domains, it is not an obvious choice how to cut780

time series for classification if they are being extracted from781

a data stream. This applies to sensor data. One can easily782

produce a dataset of equal length time series in these domains.783

However, not all data that needs to be subjected to classifi-784

cation comes from sensors. In multiple other domains, time785

series length is not collected as a stream.786

In this context, we would like to point out that for a dataset787

called EigenWorms, the accuracy obtained on trimmed time788

series is 20% higher than when the data is considered in 789

the original length. When we look at the dataset repository, 790

we can easily explain this, as this dataset contains sensors 791

recording the motion of worms [41]. The same goes for the 792

AtrialFibrillation dataset, which is cut from ECG recordings, 793

StandWalkJump, which is collected with sensors recording 794

human activities, and so on. There are a few more cases 795

when working with shorter data resulted in slightly higher 796

accuracy. In each case, we can interpret this phenomenon in 797

the same manner – the data was recorded by sensors, then 798

cut from a wider stream, and we envision that a distinct pat- 799

tern is not present in the entire time series length that was 800

cut. 801

Our focus is on three techniques for variable-length data 802

preprocessing: padding, truncation, and forecasting further 803

values using an ARIMAmodel. The first conclusion from the 804

values in Table 2 is that truncation is the worst possible strat- 805

egy. It results in models that classify data with a substantially 806

worse accuracy than the other two methods. The strategy that 807

turned out to be most favorable is padding.We are most likely 808

to achieve a top-performing classifier with this preprocess- 809

ing strategy. The average accuracy of the best classifier for 810

the considered 20 datasets for truncation is 47.26%, while 811

it is 62.49% for padding. In the middle, we have ARIMA- 812

forecasts-based preprocessing, which produced models with 813

61.20% accuracy on average. Thus, ARIMA is slightly 814

worse than padding but much better than truncation. If we 815

inspect standard deviations, the average standard deviation 816
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in 10 repetitions of the experiment was the highest for trun-817

cation and equal to 6.03, which means that truncation not818

only provided the worst accuracy but was also the least819

stable. The slightest deviations, on average, are attributed820

to padding (2.03). ARIMA-based preprocessing gave mod-821

els that varied on average by 3.71% for the 20 considered822

datasets.823

Achieved results clearly show that padding is the most reli-824

able preprocessing tactic when dealing with variable-length825

time series data that need to be made equal-length for further826

classification.827

To illustrate this discussion, we present Fig. 1, which shows828

the distribution of best accuracies achieved for the 20 con-829

sidered datasets for the four cases: full-length datasets and830

preprocessed using the three studied methods.831

FIGURE 1. Accuracy distribution for the experiments covering 20 datasets
using four variant of the preprocessing procedure (raw data and three
methods for dealing with variable-length data).

Fig. 1 confirms that truncation should not be considered832

a viable preprocessing choice for the described data classi-833

fication stream. ARIMA-forecasts-based and padding-based834

preprocessing variants ensure satisfying accuracy. However,835

the use of ARIMA entails a substantial increase in the com-836

putational complexity of the model. Thus, padding is the837

recommended preprocessing strategy.838

Analogous observations can be made when we plot a crit-839

ical difference (CD) diagram with Wilcoxon-Holm post-hoc840

analysis, which illustrates the significance of the differences841

between various approaches. The CD diagram is visible in842

Fig. 2. It was computed for four data processing streams:843

full-length time series and shortened using (i) truncation,844

(ii) padding, (iii) ARIMA forecasts applied to 20 datasets.845

The tests were run for α = 0.05.846

Note that in the CD plot, we can see the ranking of meth-847

ods using the horizontal scale. It goes from two to four, and848

FIGURE 2. Critical difference diagram with Wilcoxon-Holm post-hoc
analysis for comparing different strategies to variable-length time series
classification using ROCKET. α = 0.05.

smaller values are better. In other words, classification accu- 849

racy for variable-length time series extended using padding 850

turned out to be the best. Surprisingly, these classification 851

rates are even higher than for full-length time series. The con- 852

ducted statistical tests indicate that this difference is statisti- 853

cally insignificant. A horizontal bar links the results obtained 854

with padding and full-length time series. 855

The processing stream that utilizes ARIMA forecasts 856

turned out to be very close in ranking with the full-length 857

series. Interestingly, the differences between ARIMA-based 858

method and truncation are statistically insignificant. How- 859

ever, there is a clear difference between the overall efficiency 860

of these two methods visible in the values in the ranking. 861

VI. CASE STUDY OF INCIDENT DETECTION 862

After we had established that padding is the recommended 863

preprocessing strategy when dealing with variable-length 864

time series, we proceeded with experiments using our data 865

concerning cash transaction incidents using padding. 866

A. DATASET DESCRIPTION 867

Our project aims to develop an incident detection mecha- 868

nism that will recognize fraudulent cash transactions. The 869

challenge is that we want to use data logged to a relational 870

database, the backbone of a system that handles payments in 871

a restaurant. This implies that we do not have many available 872

descriptors concerning a transaction. 873

Transactions audit in our company is primarily a domain 874

of human experts who prepared a dataset with labeled sam- 875

ples for us. The problem of incident detection is imbal- 876

anced. Fraudulent transactions make up about 5% of the 877

overall transaction volume. Table 3 presents the number of 878

items in two considered classes: legitimate and fraudulent 879

transactions and the number of different fraud types in the 880

dataset. 881

Let us note that the values given in Table 3 concern cases 882

manually labeled by our human annotators. It is only a tiny 883

fraction of our database’s total quantity of transactions. How- 884

ever, for the sake of model creation, we had to establish 885
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TABLE 3. The number of fraudulent and legitimate instances in our
dataset.

a learning set of instances that we will use to construct886

a model and evaluate its quality.887

Table 3 presents different fraud types covered by our audi-888

tors. These are889

• Items different than registered – server (employee)890

hands items different than registered. The situation typ-891

ically concerns a case when registered items are of892

a higher value than handed items, and the money dif-893

ference ends up with a server.894

• Sweethearting – server hands additional items to a895

customer.896

• Items deletes fraud – server incorrectly deletes items897

from a receipt. Typically customer pays for the deleted898

items beforehand and the money for deleted items is899

taken by the employee.900

• Refund/Void fraud – server calls a refund or voids901

a whole or a part of a committed order when they902

should not (a customer did not ask for refund/void).903

Money resulting from this operation is pocketed by the904

employee.905

• Unauthorized coupon discount – employee applies906

a coupon discount without grounds. There are two pos-907

sible scenarios. One, where a customer pays less when908

they should pay more. Two, where a customer pays909

the right price, and the employee takes the difference910

between the right and discounted order value.911

• Unauthorized employee discount – employee applies an912

employee discount for a meal that is not handed out to913

an employee.914

• Other discount violations – various discount policy915

violations that differ for particular clients, for instance,916

issuing a discount higher than the maximal allowed dis-917

count or applying two coupons when only one can be918

applied.919

We want to emphasize that in this study, we present the920

results for automated detection of the above-listed frauds.921

To the best of our knowledge, this is the first type of a study922

that does not focus on an automated detection of a single fraud923

type.924

Detection of the listed fraud types was performed based 925

on variables extracted from a relational database that handles 926

the daily operations of our various business partners. Table 4 927

presents considered features. Extending this list is our future 928

work direction. 929

We are working with multivariate time series. Thus, we can 930

represent a single instance with Eq. (7). 931
x11 x21 x31 . . . xL11
x12 x22 x32 . . . xL12
x13 x23 x33 . . . xL13

 (7) 932

In Eq. (7), x ji ∈ R, i = 1, . . . ,M denotes variable index,M is 933

the total number of variables, j = 1, . . . ,L denotes the index 934

of the element in the time series. In particular, x ji describes 935

a transaction immediately before x j+1i . L is the length of the 936

longest time series we have in a dataset. 937

Since the data is of variable length, several first xes may 938

be unavailable (we denote them technically as NA). Values 939

denoted with NA are replaced with actual values at the stage 940

of padding. 941

Let us recall that a single instance describes the history 942

of transactions handled by a given employee. We created 943

the learning dataset to take all data annotated manually by 944

our human experts. We had to develop a data model under 945

real-world constraints. The essential restriction is that human 946

experts attach labels to a single transaction for a given audit. 947

That is, we have a history of transactions for a given employee 948

for a particular day, and a human auditor attaches a label 949

(one of the labels present in Table 3) to one transaction the 950

auditor looked at. The remaining transactions in the day are 951

not checked. Auditor work is manual expert labor. It is not 952

feasible to ask an auditor to label the entire history of trans- 953

actions for a more significant number of days because a sin- 954

gle manual transaction audit takes about 40 minutes and an 955

employee handles hundreds of transactions during one shift. 956

Thus, the data we have ends with a transaction that an audi- 957

tor manually verified. In our dataset, each instance, as formal- 958

ized in Eq. (7) is paired with a label indicating fraud type or a 959

lack thereof. Subsequently, we split the data into train and test 960

parts. The train set is used for model construction, and the test 961

set is used for model evaluation. These two sets are disjoint, 962

which means quality evaluation concerns samples previously 963

unseen by the classifier. 964

We envision the incident detectionmodel as a tool that shall 965

help a human auditor. An incident detector suggests check- 966

ing several transactions, which a human auditor manually 967

verifies. Let us assume that a full manual audit of a single 968

transaction takes 40 minutes. Let us assume that 40 minutes 969

is split into 30 minutes of searching for the possible incident 970

and 10 minutes of report writing and other technical details. 971

B. EMPIRICAL EVALUATION 972

The initial experiment relied on building a binary classifier 973

that recognized between fraudulent and legitimate instances. 974
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TABLE 4. Used feature names, descriptions, and types.

Because the dataset is not balanced, we tested the following975

train/test set sampling procedure:976

• Randomly select 50% of fraudulent transactions.977

• The number of legitimate transactions = K ·the number978

of fraudulent transactions, K is a positive integer, and979

sampling is random.980

• All remaining samples are placed in the test set.981

K is a parameter of our procedure.982

Furthermore, since the dataset is not balanced, in addition983

to accuracy (given in Eq. (8), we had to use precision and984

recall to evaluate classifier performance. Precision and recall985

are defined in Eq. (9) and Eq. (10), respectively.986

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(8)987

Precision =
TP

TP+ FP
(9)988

Recall =
TP

TP+ FN
(10)989

where:990

• true positive (TP) – the number of fraudulent transac-991

tions correctly identified as frauds992

• true negative (TN) – the number of legitimate transac-993

tions correctly identified as legitimate994

• false positive (FP) – the number of legitimate transac- 995

tions incorrectly identified as frauds 996

• false negative (FN) – the number of fraudulent transac- 997

tions incorrectly identified as legitimate 998

We envision that the proposed incident detector will work 999

in a way that it will suggest a human auditor which trans- 1000

actions to look at first. There is a higher cost associated 1001

with a false positive than a false negative. In other words, 1002

a false positive means an auditor spent (precious) time ver- 1003

ifying a legitimate transaction. False negative is a case when 1004

we miss a fraud. Thus, precision is of primary importance 1005

to us. 1006

In the experiments, we have tested models with 1000 and 1007

10000 kernels and parameter K = 1, 2, 3, 5, 10, 12, 20. The 1008

results achieved for various parameter combinations are given 1009

in Table 5. 1010

ROCKET has proved to be a good algorithm for the mul- 1011

tivariate time series classification task. Including mode sam- 1012

ples from the legitimate transactions class, which increased 1013

the imbalancedness of a train set, turned out to be the essen- 1014

tial step in determining the outcome of incident detection. 1015

In Table 5, we see that the precision grows with the increase 1016

of parameter K determining the imbalancedness degree of 1017

a train set. Simultaneously, recall drops. These two rates 1018

are accompanied by very high accuracy, which is not an 1019
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TABLE 5. Quality of incident detection for various parameter
combinations. K is the imbalancedness degree of a train set. Precision,
recall, and accuracy are given in %.

informative measure in this case because of the vast imbal-1020

ancedness of the test set.1021

If we look at the TP value in Table 5, we see that when1022

precision increases, TP drops. It translates to the situation1023

when our model is more valuable to human auditors since it1024

suggests more precisely fraudulent transactions. The down-1025

side is that the number ofTPs drops. In other words, themodel1026

indicates more precisely which transactions are fraudulent,1027

but the overall number of suggestions drops. For the model1028

with the precision of 59.57%, we get 28 transactions correctly1029

identified as fraudulent, and only 19 legitimate transactions1030

were incorrectly identified as fraudulent. This is a good out-1031

come; such a tool can be useful for a human auditor. It must1032

be noted that this model correctly tagged 13105 transactions1033

as TN , which means that a lot of data was filtered out.1034

Let us recall that we assume that a single audit takes1035

40 minutes, out of which 30 minutes is spent on search-1036

ing. Assume the model correctly identified 28 transactions1037

as fraudulent. This results in 28*30 minutes of human time1038

saved. The required precision level should be evaluated with1039

respect to the time gained when using the model.1040

Subsequently, we proceed with experiments to detect par-1041

ticular fraud classes mentioned in our study. We have con-1042

structed six binary classifiers. We have relabeled the data so1043

that class ‘‘positive’’ was made of samples from a single inci-1044

dent class. All remaining samples were made as ‘‘negative’’.1045

Table 6 presents models that achieved the highest and the1046

second-highest precision in the experiments for analogous1047

combinations of parameters as presented in Table 5.1048

In this case, the number of available ‘‘positive’’ instances1049

drops significantly. Without surprise, ROCKET struggles to1050

produce better models. Though we can achieve a precision1051

of about 60%, recall drops. Please note that the number of1052

TP associated with the highest precision is typically tiny.1053

We envision that these seven models will be used jointly.1054

Thus, in the last row in Table 6, we present the sum of1055

TPs. This sum, equal to 26, is comparable to 28 obtained1056

TABLE 6. Selected models that achieved the highest and the
second-highest precision when trained in a manner one class versus all.
We give precision (in %) and the number of true positives associated with
the best model.

when applying a single model. Models that produced the 1057

second-highest precision returned together 135 True Posi- 1058

tives, which is substantially more than 26. The average preci- 1059

sion of these models was 37.32%, which is higher than the 1060

precision of a model presented in Table 5 that produced a 1061

similar number of TPs. 1062

All in all, we believe that the proposed strategy for incident 1063

detection is worthy of further investigation. The delivered 1064

tools can automate this task and reduce manual labor. 1065

VII. CONCLUSION 1066

In the paper, we have applied benchmark datasets to test three 1067

preprocessing strategies for dealing with variable-length time 1068

series that we wish to classify with an algorithm that requires 1069

equal-length data: padding, truncation, and forecasting fur- 1070

ther time series values. The experiments have shown that 1071

padding is the recommended preprocessing strategy, achiev- 1072

ing high classification accuracy. Truncation is not recom- 1073

mended. Classification accuracy substantially dropped when 1074

it was employed. Forecasting further time series values leads 1075

to a satisfying accuracy as well. However, the computational 1076

cost of this extra step is too high to consider it worthy of 1077

attention. 1078

At this stage of our studies, we were working with bench- 1079

mark datasets that we cut to make them variable-length. Two 1080

arguments motivated the choice of such a procedure. One that 1081

we wanted to demonstrate our methods using publicly avail- 1082

able data, commonly adopted by researchers in this domain. 1083

Two that we assumed that if we classify this full-length data 1084

using ROCKET, we will get an ‘‘ideal’’ classification quality 1085

that we can refer to later. The experiments have shown that 1086

our second assumption was missed. We achieved a higher 1087

classification accuracy in a few cases using the shortened 1088

dataset. It was not because of some random factor since we 1089

reached these results with ten repetitions of the whole pro- 1090

cedure involving random time series cuts. A closer inspec- 1091

tion of these datasets showed that they typically originated 1092

from sensors, and the time series to be classified were cut 1093

arbitrarily. This outcome postulates the need to develop new 1094
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early time series classification methods, which do not attract1095

enough attention now.1096

The above conclusion refers to the methodological layer of1097

our study. From the perspective of the applied project that we1098

work on, early time series classifiers do not seem indispens-1099

able, as the data we work on is not cut from a stream. Instead,1100

the length is always determined by the number of transactions1101

in a server’s shift.1102

From the perspective of our applied task, our future work1103

will concentrate on the technical aspect of data classifica-1104

tion. We will keep improving the procedure by, for exam-1105

ple, introducing a variable evaluation step, which will result1106

in removing unpromising variables before ROCKET is run.1107

This will decrease the run-time memory required by the1108

program.1109
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