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ABSTRACT Multivariate time series classification is a machine learning problem that can be applied
to automate a wide range of real-world data analysis tasks. RandOm Convolutional KErnel Transform
(ROCKET) proved to be an outstanding algorithm capable to classify time series accurately and quickly.
The textbook variant of the multivariate time series classification problem assumes that time series to be
classified are all of the same length, while in real-world applications this assumption not necessarily holds.
The literature of this domain does not pay enough attention to data processing pipelines for variable-length
time series. Thus, in this paper, we present a thorough analysis of three preprocessing pipelines that handle
variable-length time series that need to be classified with a method that requires the data to be of equal length.
These three methods are truncation, padding, and forecasting of missing value. Experiments conducted on
benchmark datasets, showed that the recommended procedure involves padding. Forecasting ensures similar
classification accuracy, but comes at a much higher computational cost. Truncation is not a viable option.
Furthermore, in the paper, we present a novel domain of application of multivariate time series classifica-
tion algorithms, that is incident detection in cash transactions. This area poses substantive challenges for
automated model training procedures since the data is not only variable-length, but also heavily imbalanced.
In the study, we list various incident types and present trained classifiers capable to aid human auditors in
their daily work.

INDEX TERMS Classification, incident detection, multivariate time series, ROCKET, varying-length time
series.

I. INTRODUCTION

Time series classification has become a vital domain of
machine learning. The multitude of exciting real-life applica-
tions drives the development of the field and inspires fruitful
research that aim at delivering new approaches, improving
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the existing ones, and adapting them to new types of data.
This paper focuses on the task of classifying multivariate time
series of unequal lengths. That is, each multivariate series can
have a different length.

The study presented in this paper is related to our project
that deals with incident detection in cash transaction data.
The business context of the project is loss prevention in quick-
service restaurant operations. In our context, an incident is
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when a cashier (server, employee) is under-ringing items,
voiding items, or performing other intentional operations that
cause money losses for the restaurant.

Thanks to many years of successful cooperation with
our clients in the quick-service restaurant industry, we have
accumulated an adequate database of transactions, and we
rely on human experts to conduct incident audits. The
human-auditor-based loss prevention scheme employed at the
moment is the cornerstone of the daily operations of our
company. However, there is a pressing need to automate audit
tasks.

We want to build an automated classifier that detects oper-
ations in which a cashier intentionally mishandles the trans-
action process. Our goal is to deliver a custom classification
model that will assign one of two possible labels: fraudulent
operation or legitimate operation to each transaction com-
mitted in the system. We envision the incident recognition
module as an offline audit tool that will analyze data on past
restaurant operations. It becomes apparent that the problem at
hand is a binary classification task, which may appear trivial
to the reader at first glance. However, the nuances of the
domain make this task far from easy.

In this paper, we present fundamental challenges and
solutions that we have encountered and worked on while
constructing one particular variant of our incident detector.
We must emphasize that this study is unique and novel. As we
will detail in the literature review on fraud detection in cash
transactions, practitioners are well aware of the magnitude of
the problems. One can find studies that list a wide range of
frauds that can take place. Unfortunately, the literature does
not offer a satisfactory range of solutions to automate the
detection of fraud in cash transactions.

The construction of an automated machine learning model
for cash transactions fraud detection requires a noticeable
technological advancement in the computer system that han-
dles daily operations on the client side. Without surprise,
there are not that many solutions of this kind available on the
market. Such tools are typically built as an additional feature
of a broader system that handles daily operations. Nonethe-
less, some commercial applications offer such functionalities.
Naturally, our company, DTIQ, offers such a service. Next,
we may mention NCR Solutions,! whose store management
application includes alerts about detected suspicious transac-
tions (for example, suspicious refunds).

In order to build such a system, one must have access to
data concerning payments. On that note, based on our expe-
rience, the following data-related challenges take place:

o The first essential obstacle is a heavy imbalance.
In a representative chunk of transactions data only
around 5-10% are deemed to be fraudulent.

o There are many ‘“‘creative” ways of how to manipulate
a cash-based transaction in a restaurant, or generally
speaking, in retail. There is no one repetitive scenario
taken by a dishonest cashier, tactics change in time.

1 https://www.ncr-hospitality.com/en/solutions/theft-detection-20/
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« Data is available in a non-typical structure and it is very
varied. We envision that for a given cashier, for a given
date we have a shift transactions history and (any) one
or more transactions this time span may be fraudulent.
The length of the history of transactions may be sub-
stantially different, ranging from less than 10 up to even
500 transactions per shift. Transactions history can con-
cern operations of various types such as cash payments,
card payments, discounts, technical procedures, etc.

« We envision that the data can be represented as multi-
variate time series made of a sequence of transactions
where the variables describe ‘‘parameters” of transac-
tions such as purchased items quantity and the variety of
products (foods, drinks, condiments, etc.), gross value,
discount, cash paid and change required. There are many
variables, and time series may be very short. Length can
be shorter than the number of variables.

Summarizing the concerns raised above, let us state that
we deal with multivariate time series classification task
but with highly challenging data. These data characteristics
are highly dissimilar to the characteristics of time series
from benchmark dataset repositories. In the case of time
series classification task, the very often used resource is
https://timeseriesclassification.com/. However, on this page,
there are no time series datasets with properties similar to
ours.

Let us emphasize that the output of the multivariate time
series classification area is rich with compelling ideas and
algorithms. We can briefly distinguish the following groups
of methods:

« classifying ensembles, where weak learners are built for
univariate series and multiple variables are handled at
a sampling stage when weak learners are built;

« classification pipelines composed of two steps: fea-
ture extraction and standard classification, where feature
extraction is performed for all variables in time series to
handle the issue of multiple variables;

« neural networks, which integrate feature extraction and
classification step in a single algorithm and are suitable
for processing multivariate sets.

Recently, Ruiz et al. [32] published a comprehensive
review of multivariate time series classification methods.
Ruiz et al. present a systematic and very thorough com-
parison of the existing methods. The study covered exper-
iments with aforementioned benchmark datasets on the
https://timeseriesclassification.com/ website. Their results
clearly show that the algorithm called RandOm Convolu-
tional KErnel Transform, ROCKET, authored by Demp-
ster et al. [9], is the best-performing one for multivariate
time series classification. ROCKET uses random convolu-
tional kernels to extract features and then logistic regres-
sion to execute the classification step. The authors conclude
their summary saying that “ROCKET is the best ranked
and by far the fastest classifier and would be our recom-
mendation as the default choice for MTSC problems.” [32].

VOLUME 10, 2022



A. Bier et al.: Variable-Length Multivariate Time Series Classification Using ROCKET

IEEE Access

Importantly, Ruiz et al. compared ROCKET with very com-
petitive algorithms, including several neural network-based
approaches (such as ResNet and InceptionTime). We must
mention that the superiority of ROCKET was also reported
in independent works for other (not necessarily multivariate)
time series classification tasks, including the studies deliv-
ered by Dempster et al. [9], [10], [11], Salehinejad et al. [33],
Pantiskas et al. [30], and more. Among papers emphasizing
the superiority of ROCKET is the work of Dhariyal ef al. [8]
who focused on the comparisons of ROCKET with neural
approaches. The authors conclude their findings saying that
“recent deep learning MTSC methods do not perform as well
as expected.” .

The mentioned-above findings motivated us to investigate
the feasibility of applying the ROCKET algorithm for inci-
dent detection. In this paper, we report on the outcomes of
these efforts. It must be stressed, that the work we performed
aimed at providing a novel adaptation of the ROCKET proce-
dure. ROCKET is an algorithm suitable for same-length time
series. The default strategy of how to use it with time series of
varying lengths is to do padding. In our experiments, we have
tested several strategies that allow to apply the feature extrac-
tion step the same as in ROCKET but for multivariate time
series with varying lengths. In particular, we have tested the
following techniques:

« padding — the baseline strategy which relies on placing
a constant value to make time series lengths even,

 trimming — cutting time series,

« forecasting future values using an ARIMA model.

A. THE NOVELTY OF THE CONTRIBUTION
Let us briefly summarize the novel contributions addressed
in this paper:

« We present a comparative study on how various
approaches to varying-length time series length equal-
ization contribute to the classification accuracy of
ROCKET.

o We introduce and analyze the feasibility of ARIMA-
based forecasting used for time series length manipula-
tion in varying-length time series forecasting problem.

o We present the application of multivariate time series
classification to a new domain, cash transaction fraud
detection.

B. THE PRACTICAL SIGNIFICANCE OF THE UNDERTAKEN
TOPIC

Fraud detection in retail and services can be positioned under
the umbrella of loss prevention mechanisms crucial for the
daily operations of businesses. There are manifold aspects of
this problem spanning from physical monitoring of locations,
video analytics, to transaction data monitoring. In this paper,
we narrow down the attention to the analysis of information
stored in a conventional relational database concerning trans-
actions. We demonstrate how one can leverage this resource
for fraud detection.
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The remainder of this manuscript is structured as fol-
lows. Section II presents a literature review on the topic of
multivariate time series classification. Section III mentions
existing studies on a wide context of the incident detection
task. Section IV introduces the issue of variable-length time
series. Section V presents empirical experiments we have
performed to evaluate time series preprocessing pipelines
that deal with variable-length data. Section VI addresses a
case study, in which we apply a selected processing pipeline
(padding) to the incident detection task. Section VII con-
cludes the paper.

II. LITERATURE REVIEW ON MULTIVARIATE TIME SERIES
CLASSIFICATION

Classification, in general, is the process of predicting a class
label of an object. We describe the object using measurable
attributes, also called features. We extract the same set of
attributes for each object, and a decision algorithm, called a
classifier, is used to distinguish between objects from differ-
ent classes. In the case of time series classification, attributes
are consecutive observations ordered in time. In the case of
multivariate time series, we have more than one sequence
making a time series. Multivariate time series contain simul-
taneously collected signals concerning one entity.

The baseline approach to univariate time series classifi-
cation would treat each time series data point as a single
attribute. We may apply any standard classifier, for exam-
ple, random forest, to a data frame in which one row cor-
responds to one time series and one column corresponds to
one moment in time. We would have to ensure that each time
series is of the same length and starts at a comparable moment
in time. Surveys show that this baseline approach achieves
surprisingly satisfying results for univariate time series
datasets [5]. However, when we deal with multivariate time
series, the problem’s dimensionality grows quickly and the
plain-classifier-based approach may become infeasible.

There are three types of approaches suitable for multivari-
ate time series. We address them separately in the following
subsections.

A. MULTIPLE VARIABLES HANDLING WITH THE USE OF
WEAK LEARNERS IN ENSEMBLE CLASSIFIERS

A straightforward solution to the problem of multivariate
time series classification is to make an ensemble in which
weak learners are trained on different variables in the data.
The algorithms do not take the benefit of possible relations
between the variables present in the data. Regardless, such
a technique is relatively easy to implement, and one can use
a wide choice of classifiers to instantiate a weak learner.

A prominent algorithm that allows for such a pro-
cessing scheme is the Hierarchical Vote Collective of
Transformation-based Ensembles (HIVE-COTE) [4], [28].
It is an ensemble of a wide variety of base univari-
ate time series classifiers. Its latest version uses as weak
learners classifiers such as Shapelet Transform Classifier
(STC) [3], Time Series Forest (TSF) [1], Contractable Bag
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of Symbolic-Fourier Approximation Symbols (CBOSS) [29],
and Random Interval Spectral Ensemble (RISE) [25]. The
notorious flaw of HIVE-COTE is its extremely high time
complexity. As the authors of this algorithm earnestly
report [28] (let us give just one example), for a dataset named
HandOutlines, HIVE-COTE takes 18.53 hours to train.
In contrast, an Inception neural network takes 7.11 hours, and
ROCKET takes 0.23 hours on a high-end computer.

In the group of ensemble algorithms suitable to deal with
multivariate data, we can also find the generalized Ran-
dom Shapelet Forest (gRSF) [20]. It generates a set of
shapelet-based decision trees. A shapelet is deemed to be
adistinctive part of a time series. Karlsson et al. [20] generate
shapelets randomly. Nonetheless, there are algorithms dedi-
cated just to this task. Several such methods were delivered
by Ji et al. [19]. The gRSF algorithm randomizes variables
for which the shapelets are extracted to handle multivariate
time series. As a result, a single tree (weak learner) in the
gRSF algorithm is built for one of the variables available
in the data. Several approaches utilizing this scheme benefit
from a preprocessing step based on Dynamic Time Warping
(DTW) that flexibly aligns time series.

B. MULTIPLE VARIABLES HANDLING USING FEATURE
EXTRACTION PROCEDURE OPERATING ON ALL VARIABLES
The second approach to the multivariate time series clas-
sification task is independently extracting features from all
variables. Then, one can use these features to build a single
classifier. There is a wide variety in how different algorithms
extract the features and build these classifiers. Admittedly,
one can still use an ensemble classifier in the end, but han-
dling multiple variables happens at the feature extraction
level.

We find the Canonical Interval Forest (CIF) [27] classifier
in this family of methods. It combines the TSF classifier [1]
with an approach for feature extraction named Catch22 [26].
The feature extraction step ensures handling multiple vari-
ables when Catch22 samples intervals from different vari-
ables that are a base for features computation. Similarly,
Baldan and Benitez’s [6] Complexity Measures and Features
for Multivariate Time Series (CMFMTYS) extracts features for
all variables, which are then processed using a traditional
classifier.

Subsequently, let us mention the so-called dictionary-
based methods adapted for multivariate data. In this family,
we find the Word Extraction for Time Series Classifica-
tion (WEASEL) [34] technique that uses a feature extrac-
tion method named Multivariate Unsupervised Symbols and
Derivatives (MUSE). The entire processing pipeline is termed
WEASEL + MUSE [35]. It builds a feature vector using a
sliding window strategy applied to each time series variable.
Then, it extracts discrete features per variable and window.
Irrelevant features are removed using a technique based on a
Chi-squared test, and then, finally, a logistic regression clas-
sifier is trained to perform class label assignment. A similar
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idea is present in an algorithm named Multiple Representa-
tion Sequence Learner (MrSEQL) [23].

Finally, let us mention an algorithm termed RandOm Con-
volutional KErnel Transform (ROCKET) [9]. It is a fast and
accurate time series classification method for dealing with
multivariate datasets. Its superiority is attributed to a unique
manner of time series feature extraction. It uses a concept
analogous to the one present in the feature extraction step
in Convolutional Neural Networks (CNNs), namely convo-
lutional kernels.

The CNN model is frequently used in image classifica-
tion. CNNs fuse in a single processing stream feature extrac-
tion and classification steps. The input image is represented
as a numeric matrix. Two types of layers are included in
the feature extraction part of a CNN: convolutional and
pooling [31].

A convolutional layer extracts features from the input
image. It is performed using kernels that can be interpreted
as filters. A kernel is represented with a numeric matrix
of a specific size. Typically, this size is relatively small.
A kernel moves on the image matrix with a certain stride.
In each position, it performs a multiplication of the values
in the kernel by the values in the underlying part of the
image. The results of these multiplications are then added,
and they become an element in the convolution layer output
matrix [13]. Convolutional kernels, when applied to images,
capture high-level features such as edges and texture. By anal-
ogy, convolutional kernels can capture patterns in time
series.

Apart from size, weights (kernel matrix elements), padding
(specifying behavior on edges), and stride, we shall mention
two more kernel parameters: bias and dilation. Dilation is
used to spread the kernel over the input data, so with dilation
equal to d, every d-th element of the input data ““covered” by
the kernel will be convolved with the kernel weights. Dilation
allows kernels to capture the same pattern at different scales.
Bias term is added to the convolution result between the input
numbers and kernel weights [24].

ROCKET extracts features from time series data using
convolutional kernels just like a CNN. The main idea of
applying convolutional kernels for time series is that we can
successfully equate a time series with an image. In the case
of univariate time series, we can interpret a time series as an
image made of 1 x time_series_length pixels. In the case of
multivariate time series, we can interpret it as an image made
of number _of _variables X time_series_length pixels. In both
scenarios, we can apply kernels to extract features. Several
traits distinguish ROCKET from convolutional layers used in
typical CNNs:

« ROCKET uses only a single convolutional layer and

a massive number of kernels. On top of that, kernel
weights are not learned but randomly selected.

« ROCKET uses dilation randomly sampled for each ker-

nel instead of increasing it exponentially with depth.
In consequence, it allows for capturing patterns at dif-
ferent frequencies and scales.
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o Apart from random weights and dilation, ROCKET uses
kernels with random length, padding, and bias. This dif-
fers from classical CNNs, where it is common for groups
of kernels to share the same size, dilation, and padding.

« Besides the global max pooling, ROCKET incorporates
a novel pooling feature — the proportion of positive val-
ues (PPV). It enables ROCKET to control the prevalence
of a specific pattern in a time series.

ROCKET is relatively robust to different choices for many
parameters [9].

C. MULTIPLE VARIABLES HANDLING USING NEURAL
NETWORKS

Neural networks appear as a natural choice when it comes
to multivariate time series classification. There is an obvious
correspondence between the multiple time series variables
and multiple neurons that can be used to instantiate an input
layer of neural architecture. Thus, a substantial research effort
was devoted to developing various neural models for this
domain.

AlexNet neural network architecture was among the first
CNN-based architectures tested for time series data [14].
However, the literature studied it only in the context of
univariate time series, and more advanced models quickly
dethroned it.

Significant progress was achieved when a CNN architec-
ture called ResNet utilizing the so-called residual connections
(also known as skip connections) was applied to time series
data by Wang et al. [39]. One of the dilemmas of training
neural networks is that we usually want deeper neural net-
works for better accuracy and performance. However, the
deeper the network, the harder it is for training to converge.
ResNet allows deep neural architecture training by allow-
ing shortcut connections in each residual block. In practice,
it means that there is an alternative path for data to reach
the latter parts of the neural network that skips some layers.
ResNet turned out to be a huge success when applied to
multivariate time series data. It is also deemed the best for
univariate time series [32].

InceptionTime is a neural network built specifically for
multivariate time series classification. It achieves high accu-
racy by combining the ResNet architecture with the so-called
inception modules. An inception module is a specifically
constructed layer that takes on the input multivariate time
series and uses multidimensional kernels to perform the con-
volution step. Max pooling is applied to reduce the problem
dimensionality. Mentioned steps (convolution and pooling)
are preceded and followed by a bottleneck layer that thins the
data even more [14].

Finally, let us mention the Time Series Attentional Pro-
totype Network (TapNet) [44]. The two key operations of
this network are named Random Dimension Permutation and
Multivariate Time Series Encoding. Random Dimension Per-
mutation is used to produce groups of randomly selected
time series variables. Multivariate Time Series Encoding is
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performed for each group based on one-dimensional convo-
lutional layers followed by batch normalization, Leaky Recti-
fied Linear Units, and a global pooling layer. In addition to the
listed encoding process, the raw data is passed through a par-
allel path through an LSTM and a global pooling layer. This
makes the TapNet a fusion of a convolutional and a recurrent
network. Then, signals from the CNN and LSTM are merged
into a fully connected layer, followed by yet another fully
connected layer.

IIl. LEVERAGING TRANSACTIONS DATA FOR INCIDENT
DETECTION - PROBLEM DESCRIPTION AND LITERATURE
REVIEW

Let us reiterate that the problem at hand is transaction incident
detection in retail and services such as restaurants. The inci-
dents we are interested in occur around employee-client inter-
action when an employee handles order payments, returns,
etc. As Hines and Youssef underline [17], occupational fraud
costs the average organization 5% of yearly revenues. Restau-
rants are especially susceptible to these negative phenomena.
The authors give an estimate of 3—6% range to evaluate the
restaurant loss scale.

Even though occupational frauds occur typically at points
of sale [17], very few companies report using dedicated fraud
detection systems. To illustrate the overall complexity of the
issue, let us distinguish the main categories of internal inci-
dents, which in our practice (this paper describes an ongoing
applied project) take place:

« under-ringing product/service value;

o bogus refunds;

« intentional deletion/voiding of items from an order and
pocketing the money for deleted items;

« registering different items than ordered by a customer;

o sweethearting (handing additional products to a
customer);

« violations of coupon policies that result in either pocket-
ing the discount value or the customer paying less than
he is supposed to.

Of course, the list mentioned above is not exhaustive; it cov-
ers critical incidents that take place around points of sales
in different businesses. What is more, some frauds occur as
a single instance event, and some are performed via a chain of
operations keyed into the system as a sequence of operations.
The details depend on the specifics of the services or products
a given business offers.

This paper addresses a method that operates on data con-
cerning point of sale transactions logged to a relational
database. Such a scenario has the advantage of universality.
A relational database with numerical information about trans-
actions is a common resource of various businesses. Alterna-
tive data sources are video monitoring which is not always
present at each point of sale and is always custom-tailored
for a particular company.

The downside of using numerical transaction data is that
the data is “blind”. By this, we mean that in a commercial
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setting an audit is typically conducted by a human auditor
who is simultaneously looking at the transaction data and the
video monitoring and seeks for discrepancies between what
took place and what was logged to the system.

The underlying challenge required before considering the
construction of an incident detection system is collecting an
appropriate dataset [2]. These would differ depending on the
company and its operational procedures. There are no open
datasets of this kind. The collection of such a dataset is done
with the help of human loss prevention specialists who man-
ually annotate data. Then, as the literature suggests, experts
define numerical features using transaction data which are
the base for classifier construction [43], [45]. Some attempts
utilize only transaction frequency data [22]. We shall mention
that the literature offers some insights into fraud detection in
credit card transactions or online payments. A recent survey
by Lim et al. [37] points out that a variety of machine learn-
ing algorithms, including outlier detection techniques, neural
networks, rule-based systems, classifiers such as SVM, and
others have been applied to solve this task [36]. Some papers
take an even broader perspective and discuss financial fraud
in general [40]. Notably, the problem tackled in this paper
is more challenging than credit card fraud analysis. In retail
and services, it is much easier for a dishonest employee to
manipulate a cash transaction than a credit card transaction.
Money paid in via a credit/debit card is transferred directly
to the service provider (business), and a typical employee
is not able to install a system circumventing the legitimate
payment process. There is also one psychological effect of
“encouraging” frauds for cash transactions: the only trace a
client has is a receipt that a client often does not read or even
take from a counter.

To the best of our knowledge, only a few research papers
address fraud detection in the context of loss prevention
in restaurants, which is our application domain. There are
two papers by Hines and Youssef. One article is focused on
describing what they call a “rotating check™ fraud [16]. It is
a type of fraud similar to deleting items from an open receipt
after a customer paid and pocketing the deleted value. The
second paper is focused on discussing outlier detection tech-
niques and how they can be applied to identify frauds [17].
In the latter case, the authors address two types of fraud.
These are, again, rotating check fraud and another type they
call “bartender no sale”’, which means that a person is regis-
tering a transaction as a no-sale transaction and pocketing the
money.

An engaging survey was presented by Collins [7]. His
paper, first and foremost, lists a range of fraudulent behaviors
that can take place in a restaurant. Beyond the list presented
at the beginning of this section with the essential fraud types,
Collins mentions [7]:

« Servers reprinting the same receipt throughout a shift

and handing it repeatedly to different customers.
An employee can obfuscate and hide better if he con-
vinces the persons to order similar food items. This
can also be done in collaboration with other servers
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(one reprints receipts for, say, coke and pie, another, for
fish and chips).

« Violations regarding transferring a list of transactions
between different servers, in which one server gains
another server’s tip without the latter’s consent.

In our operational model (in many quick-service restau-
rants), both situations do not happen because our point-of-
sale devices do not allow for reprinting of a receipt, and
tips are not registered in the system and are always handled
instantly. Unfortunately, Collin’s paper does not propose how
to automate the detection of the described frauds. Described
countermeasures require substantial human effort (manual
verification).

Kelly [21] more recently mentioned the issues of voiding
items and discount policy abuses, but the cited paper neither
described new fraud methods nor addressed some concrete
solution to the problem.

To sum up, while the literature acknowledges the issue of
fraud detection in cash transactions, the particular data-driven
solutions that aim to detect these issues are almost absent in
the literature. The ones that were described are limited to one
specific fraud technique.

IV. THE PROBLEM OF VARIABLE-LENGTH TIME SERIES
There are a few fundamental reasons why time series gen-
erated by variants of a single prototypical process may end
up having different lengths. As Tan et al. [38] underline,
one of these mechanisms corresponds to variation in the
relative frequency at which the process is observed. For
instance, the generating processes might unfold at differing
speeds, or the sensors might operate at different frequen-
cies. This case is especially valid for remote sensing and
human activity recognition applications. In the former case,
weather conditions may influence how samples are gener-
ated. In the latter case, sensors are typically programmed in
an energy-saving manner. When the same type of activity
is recorded over some time (for instance, when a subject
is sitting), the sampling frequency drops to preserve battery
life.

Another reason for unequal-length time series generation
is a variation concerning the points during the process at
which the recorded observations begin and end. This issue
affects especially datasets that originate from audio signals.
As Tan et al. [38] underline, just a handful of strategies have
been devised to address the classification of time series with
differing lengths. The existing studies propose the following
solutions for unequal-length data:

« uniform scaling, which stretches shorter time series to
the length of the longest time series in a uniform manner;

o padding, which adds either a fixed value or a low ampli-
tude noise to the suffix or the prefix of shorter time series
to obtain sequences as long as the longest one;

« direct processing of varying-length time series.

The first two approaches lack in some aspects. Uni-
form scaling is applicable to series that differ in length due
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to varying frequencies but not to those that differ due to
variations in the start and the end point. This solution can-
not be used if we wish to obtain a data-agnostic processing
stream. Tan et al. report that padding is unsuccessful when
the length of time series differs by a lot [38].

Direct processing of varying-length time series means that
an algorithm has an intrinsic capability to produce features
from such data. Unfortunately, not many algorithms can
do so. What is more, the algorithms capable of processing
varying-length time series directly are not in the group of
the top-performing ones. ROCKET, which is deemed the
optimal choice due to its speed and accuracy, cannot handle
unequal-length data and employs padding by default. Exam-
ples of algorithms that handle unequal-length time series
are some DTW-based methods, BOSS, and Proximity For-
est. However, these algorithms achieve inferior performance
compared to the top performers: ROCKET, HIVE-COTE,
CIF [32].

To the best of our knowledge, the topic of unequal-length
time series classification is directly studied in only one paper
available in the literature, and it is in the context of univariate
data. Some papers indirectly mention this issue. However, the
problem at hand is too significant to be handled in such a shal-
low manner. This area of research needs more contributions
since modern data analysis schemes require handling of such
datasets.

In this paper, we present an empirical evaluation of the effi-
ciency of several strategies for dealing with variable-length
time series data:

e truncation,
« padding (with a constant value),
« forecasting values with an ARIMA model.

The first two strategies are straightforward; therefore, we do
not address them in greater detail.

AutoRegressive Integrated Moving Average (ARIMA)
model consists of three elements:

« autoregressive model (AR),
« moving average model (MA),
« model integration (I).

The first part, autoregressive model, is a process in which
each value is assumed to be a linear combination of previ-
ous values. In other words, it uses memory to describe the
current value. Autoregressive model order determines how
many previous values are taken to compute the current value.
Let us denote an autoregressive model of order p as AR(p).
Its general form is given as

G=c+biz—1+bzia+...+bpzp, 1)

where 7, is a prediction of the current value z;, ¢ is an inter-
cept, describing a drift. We can easily notice that the autore-
gressive model is analogous to the multiple regression model.
Parameters by, by, . .., b, describe how strong is a relation-
ship between history and a current value. The description of
the current value is an approximation of the real value z; with
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the error &;
y=c+bizz1+byy o+ ...+ byt &, ()

where ¢; is white noise.
A moving average model, another component of ARIMA,
uses past forecast errors in a regression-style model:

ar—1&1—1 + 282+ ... +ar—4&1—¢ 3)

q denotes the order of the moving average model; we denote
itas MA(g). a1, az, . . ., aq are discovered coefficients. While
the autoregressive model uses historical values, the moving
average uses historical distortions to model a time series.

The third component of the ARIMA model is integration
(D). Integration, in this context, is the action opposite to differ-
entiating. If we join the three components together, we obtain
ARIMA(p, d, g) model, where d is the degree of first differ-
entiating applied. The model can be written as:

ARIMA(p,d, q) = c+ b1z, +bazy_y+...+bpz,_,
+ar—1&—1+ar—2&-2+ ...
+ar—q€i—q + & 4

To automatically detect the structure of the model, that is p, d
and g, one may use the Hyndman-Khandakar algorithm [18].
It combines unit root tests, minimization of the Akaike infor-
mation criterion (AIC), and Maximum Likelihood Estimation
to obtain an ARIMA model. In our case, a modified version
of the AIC was applied the details of which are given in
Section V.

In this study, we have narrowed the scope of interest to
forecasting with ARIMA. We wished to validate whether the
forecasting path is worthy of following in this case. ARIMA
is a well-known, rather classic method. Naturally, there are

other time series precision methods available to use instead
of ARIMA.

V. EMPIRICAL EVALUATION USING BENCHMARK DATA
To provide as high replicability of the conducted study as pos-
sible, we completed the empirical evaluation of the proposed
approach at first for benchmark datasets that are publicly
available. Secondly, we applied ROCKET to process our data,
which is a private asset of our company and, thus, we cannot
share it. In this section, we present the application to publicly
available benchmark datasets.

A. BENCHMARK DATASETS AND DATA STAGING
The first part of the experiment concerned publicly available
datasets. Their summary is given in Table 1.

Selected datasets are of substantially distinct properties.
We have datasets with many classes, such as Phoneme with
39 classes, but also three sets with binary labels. The starting
time series length is also very different. Take EigenWorms
set, in which time series are made of 17,984 observations.
In contrast, ERing dataset is made of series 64 elements long.
We also made sure that the cardinality of samples differs.
In this regard, let us point to the set named StandWalkJump
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TABLE 1. Summary of benchmark dataset properties. dims. - the number
of variables, cl.num. - the number of classes, tr.s. - train size, te.s. - test
size.

dataset name dims. cl.num. length tr.s. te.s.
ArticularyWordRecognition 9 25 144 275 300
AtrialFibrillation 2 3 640 15 15
BasicMotions 6 100 40 40
Cricket 6 12 1197 108 72
EigenWorms 6 5 17984 128 131
Epilepsy 3 4 206 137 138
ERing 4 6 65 30 270
EthanolConcentration 3 4 1751 261 263
FingerMovements 28 2 50 316 100
Handwriting 3 26 152 150 850
Heartbeat 61 2 405 204 205
Libras 2 15 45 180 180
MotorImagery 64 2 3000 278 100
NATOPS 24 6 51 180 180
Phoneme 11 39 217 3315 3353
RacketSports 6 4 30 151 152
SelfRegulationSCP1 6 2 896 268 293
SelfRegulationSCP2 7 2 1152 200 180
StandWalkJump 4 3 2500 12 15
UWaveGestureLibrary 3 8 315 120 320

with just 12 samples in the train set (it is a 3-class bal-
anced set, so we have only four samples in a class). In con-
trast, we have MotorImagery set with 139 samples in each
class. The selected 20 datasets intentionally have distinct
properties.

The variables present in the tested datasets are also of
various properties. For example, in the RacketSports dataset,
observations were collected at a rate of 10 Hz. The sam-
pling frequency of the Epilepsy dataset was 16 Hz. In con-
trast, in the FingerMovements dataset, we have information
concerning 28 EEG channels which translates to 28 vari-
ables, each sampled with the 100 Hz frequency. Finally, the
MotorImagery dataset contains recordings performed with
a sampling rate of 1000 Hz. The source of observations
also differs. We have data collected using smart watches
(RacketSports), spectrometers (EthanolConcentration, Heart-
beat), ECG (AtrialFibrillation), accelerometers and gyro-
scopes (BasicMotions), and more. There is also a dataset
with recordings converted from curves obtained from videos
(Libras). We are not placing a detailed description of all vari-
ables because there are 258 variables (the sum of the values
presented in the second column in Table 1).

The source website already provides the data split into train
and test sets. We did not interfere with this split.

The data from https://timeseriesclassification.com is of
equal length. Thus, to perform wider tests, we had to trim
it. This was performed according to the following rules:

1) The trimming was executed in the same way separately
for each class and for the train and test set. As a result,
the trimming was stratified; we did not want to treat
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classes differently and insert by accident some class
label-related bias.

2) We assume that for each class 1/3 of the instances will
have a length in the range [10%,40%] of the original
length, 1/3 of the instances will have a length in the
range (40%,70%], and the remaining 1/3 (70%,100%).

3) Assuming that for a given instance, we ought to do the
trimming to the [10%,40%] range, we randomly draw
a value from this range multiply it by time series length
and round to an integer value.

Because of the nondeterminism related to the above-presented
data staging procedure, we repeated all experiments ten times
and averaged the results.

B. PROPOSED ADAPTATIONS IN PRACTICE

The course of experiments concerned testing the identi-
fied methods for dataset length equalization for selected
20 datasets. The quality of a method is measured with classifi-
cation accuracy that we compute for test sets (train sets are not
used for quality evaluation, only for model building). Each
experiment was repeated 10 times, in each run, we have been
effectively working with a different set because the trimming
procedure is random. Therefore, we give average accuracy,
maximum accuracy, and standard deviation. Table 2 con-
tains the obtained results. Benchmark datasets are balanced.
Thus, the accuracy measure (given in Eq. (8)) was enough to
evaluate quality at this stage.

We have tuned the values of two relevant parameters for
each dataset: the number of kernels and regularization param-
eter A for the Ridge regression classifier. The tuning proce-
dure relied on 10 repetitions of the classification procedure
on full-length data for selected combinations of parameters.
‘We checked for 50, 100, 500, 1000, 5000, and 10000 kernels
and ten values of A generated using an exponential sequence
ranging from 1073 to 103. The number of kernels trans-
lates to the number of features that are then used in Ridge
regression. Therefore, it should be tuned individually for each
dataset due to the varying properties that may call for more or
less features. In contrast, A determines the shrinkage penalty.
A = 0 implies that the penalty term has no effect.
In consequence, the regularization effect will not be visible.
Increasing the A increases the impact of the shrinkage penalty.
In consequence, regression coefficients will get closer to zero.
After establishing suitable parameters for full-length data,
we used the same settings for all other experiments.

The ARIMA model fitting stage was executed with the use
of the forecast R package. For each time series, we have fitted
an optimal ARIMA model according to the Akaike infor-
mation criterion (AIC) measure adjusted for a small sample
size (AICc):
2k? + 2k
n—k—1
where n is the sample size and k is the number of parameters.

One can observe that, AICc adds to the bare AIC an additional
penalty term for the number of parameters. The AIC is given

AlICc = AIC + (5)
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TABLE 2. Results concerning selected 20 datasets. Average (avg), maximum (max), and standard deviation (sd) of classification on test sets for selected
datasets. The values are based on ten repetitions of the experiment. Different columns mark different time series equalization methods. 100 kernels were
used. Values are given in %. Bold font is used to mark the best outcome for reduced-length sets.

whole set padding truncation ARIMA

dataset name

avg max sd avg max sd avg max sd avg max sd
ArticularyWordRecognition 98.83 100  0.63 80.13  84.67 2.60 | 30.20 34.67 240 | 82.03 85.00 2.71
AtrialFibrillation 16.00 20.00 3.44 1533  26.67 7.06 | 14.00 20.00 2.11 | 20.00 33.33 9.43
BasicMotions 100 100 0 89.25 9750 6.02 | 76.75  85.00 7.55 | 90.25  95.00 4.16
Cricket 7444 7778 2779 88.89 9444 3.07 | 83.47 84.72 0.44 | 90.00 95.83 291
EigenWorms 56.26  58.78  2.25 7237 78.63 4.56 | 69.92  78.63 420 | 72.44 76.34 2.70
Epilepsy 97.61 9855 0.69 || 75.65 81.16 503 | 59.71 63.77 235 | 7623  85.51 4.54
ERing 7763 78.89 0.86 || 94.78 96.67 1.34 | 78.89  83.70 5.63 | 2393 7593 18.27
EthanolConcentration 4555 4943 216 || 2593 2738 0.82 | 3491 38.40 1.70 | 25.70  28.52 1.50
FingerMovements 46.30 48.00 1.25 5040 61.00 4.65 | 4890 50.00 0.74 | 51.10  58.00 4.46
Handwriting 2396 2459 0.99 14.87 21.88 3.89 6.29 7.06 053 | 1598 19.77 3.14
Heartbeat 7220 72.20 0 || 71.56 72.68 1.28 | 7220 72.20 0| 71.12  72.68 1.45
Libras 49.00 54.44 231 39.78 4444 3.84 | 2333 26.11 1.80 | 40.72  46.67 5.21
MotorImagery 5320 59.00 3.80 || 51.10 54.00 2.73 | 50.90 59.00 443 | 52.70  56.00 3.06
NATOPS 65.72 67.78 144 || 51.00 56.67 3.44 | 2528 29.44 2.69 | 4944 56.11 3.69
PhonemeSpectra 17.79  19.57  0.90 1246 13.75 0.65 7.49 8.05 034 | 13.02 13.75 0.44
RacketSports 70.59 75.66 274 || 69.34 7434 3.66 | 67.96 73.03 2.83 | 6691 74.34 4.15
SelfRegulationSCP1 69.90 76.11  3.05 83.04 87.03 2.11 | 7679 79.18 1.76 | 81.37 86.01 2.66
SelfRegulationSCP2 5272 55.56 217 51.56 58.89 3.78 | 48.67 50.56 1.21 | 50.61 56.11 3.22
StandWalkJump 28.00 3333 422 || 2467 46.67 892 | 36.67 46.67 28.67 | 28.67 40.00 6.33
UWaveGestureLibrary 66.25 67.81 136 || 6293 6625 2.66 | 23.38 2594 1.61 | 6472  69.06 2.40

as series is 20% higher than when the data is considered in
AIC = 2k — 21n(L). ) the original length. When we look at the dataset repository,

where k is the number of parameters in the model and L is the
maximum value of the likelihood function. We are computing
the AICc for a set of models, and the one deemed the best has
the lowest AIC value. Since the step of fitting the optimal
ARIMA model is performed multiple times (the number of
all time series times in each dataset multiplied by the number
of experiment repetitions, which is 10), we are not giving the
final estimates in the paper.

Table 2 shows that truncation is the worst possible choice
regarding data preprocessing. In two cases, truncation was
better than padding and ARIMA-based time series extension.
We have decided to include results on full-length time series
even though the target processing stream was working on
variable-length data. On the one hand, comparing the accu-
racy of trimmed and full-length data allows inferring the pos-
sible redundancy in full-length time series.

In some domains, it is not an obvious choice how to cut
time series for classification if they are being extracted from
a data stream. This applies to sensor data. One can easily
produce a dataset of equal length time series in these domains.
However, not all data that needs to be subjected to classifi-
cation comes from sensors. In multiple other domains, time
series length is not collected as a stream.

In this context, we would like to point out that for a dataset
called EigenWorms, the accuracy obtained on trimmed time
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we can easily explain this, as this dataset contains sensors
recording the motion of worms [41]. The same goes for the
AtrialFibrillation dataset, which is cut from ECG recordings,
StandWalkJump, which is collected with sensors recording
human activities, and so on. There are a few more cases
when working with shorter data resulted in slightly higher
accuracy. In each case, we can interpret this phenomenon in
the same manner — the data was recorded by sensors, then
cut from a wider stream, and we envision that a distinct pat-
tern is not present in the entire time series length that was
cut.

Our focus is on three techniques for variable-length data
preprocessing: padding, truncation, and forecasting further
values using an ARIMA model. The first conclusion from the
values in Table 2 is that truncation is the worst possible strat-
egy. It results in models that classify data with a substantially
worse accuracy than the other two methods. The strategy that
turned out to be most favorable is padding. We are most likely
to achieve a top-performing classifier with this preprocess-
ing strategy. The average accuracy of the best classifier for
the considered 20 datasets for truncation is 47.26%, while
it is 62.49% for padding. In the middle, we have ARIMA-
forecasts-based preprocessing, which produced models with
61.20% accuracy on average. Thus, ARIMA is slightly
worse than padding but much better than truncation. If we
inspect standard deviations, the average standard deviation
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in 10 repetitions of the experiment was the highest for trun-
cation and equal to 6.03, which means that truncation not
only provided the worst accuracy but was also the least
stable. The slightest deviations, on average, are attributed
to padding (2.03). ARIMA-based preprocessing gave mod-
els that varied on average by 3.71% for the 20 considered
datasets.

Achieved results clearly show that padding is the most reli-
able preprocessing tactic when dealing with variable-length
time series data that need to be made equal-length for further
classification.

To illustrate this discussion, we present Fig. 1, which shows
the distribution of best accuracies achieved for the 20 con-
sidered datasets for the four cases: full-length datasets and
preprocessed using the three studied methods.

0.015-

0.010-

Density

0.005 -

0.000 -

0 50 100

Value
ARIMA padding
full length truncation

FIGURE 1. Accuracy distribution for the experiments covering 20 datasets
using four variant of the preprocessing procedure (raw data and three
methods for dealing with variable-length data).

Fig. 1 confirms that truncation should not be considered
a viable preprocessing choice for the described data classi-
fication stream. ARIMA-forecasts-based and padding-based
preprocessing variants ensure satisfying accuracy. However,
the use of ARIMA entails a substantial increase in the com-
putational complexity of the model. Thus, padding is the
recommended preprocessing strategy.

Analogous observations can be made when we plot a crit-
ical difference (CD) diagram with Wilcoxon-Holm post-hoc
analysis, which illustrates the significance of the differences
between various approaches. The CD diagram is visible in
Fig. 2. It was computed for four data processing streams:
full-length time series and shortened using (i) truncation,
(ii) padding, (iii) ARIMA forecasts applied to 20 datasets.
The tests were run for @ = 0.05.

Note that in the CD plot, we can see the ranking of meth-
ods using the horizontal scale. It goes from two to four, and
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FIGURE 2. Critical difference diagram with Wilcoxon-Holm post-hoc
analysis for comparing different strategies to variable-length time series
classification using ROCKET. « = 0.05.

smaller values are better. In other words, classification accu-
racy for variable-length time series extended using padding
turned out to be the best. Surprisingly, these classification
rates are even higher than for full-length time series. The con-
ducted statistical tests indicate that this difference is statisti-
cally insignificant. A horizontal bar links the results obtained
with padding and full-length time series.

The processing stream that utilizes ARIMA forecasts
turned out to be very close in ranking with the full-length
series. Interestingly, the differences between ARIMA-based
method and truncation are statistically insignificant. How-
ever, there is a clear difference between the overall efficiency
of these two methods visible in the values in the ranking.

V1. CASE STUDY OF INCIDENT DETECTION

After we had established that padding is the recommended
preprocessing strategy when dealing with variable-length
time series, we proceeded with experiments using our data
concerning cash transaction incidents using padding.

A. DATASET DESCRIPTION

Our project aims to develop an incident detection mecha-
nism that will recognize fraudulent cash transactions. The
challenge is that we want to use data logged to a relational
database, the backbone of a system that handles payments in
a restaurant. This implies that we do not have many available
descriptors concerning a transaction.

Transactions audit in our company is primarily a domain
of human experts who prepared a dataset with labeled sam-
ples for us. The problem of incident detection is imbal-
anced. Fraudulent transactions make up about 5% of the
overall transaction volume. Table 3 presents the number of
items in two considered classes: legitimate and fraudulent
transactions and the number of different fraud types in the
dataset.

Let us note that the values given in Table 3 concern cases
manually labeled by our human annotators. It is only a tiny
fraction of our database’s total quantity of transactions. How-
ever, for the sake of model creation, we had to establish
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TABLE 3. The number of fraudulent and legitimate instances in our
dataset.

class cardinality
legitimate transactions 24149
fraudulent transactions:
— Items different than registered 97
—  Sweethearting 131
— Items deletes fraud 145
— Refund/Void fraud 288
— Unauthorized coupon discount 381
—  Unauthorized employee discount 238
—  Other discount violations 191
total # of fraudulent transactions | | 1471

a learning set of instances that we will use to construct
a model and evaluate its quality.

Table 3 presents different fraud types covered by our audi-
tors. These are

o Items different than registered — server (employee)
hands items different than registered. The situation typ-
ically concerns a case when registered items are of
a higher value than handed items, and the money dif-
ference ends up with a server.

o Sweethearting — server hands additional items to a
customer.

o Items deletes fraud — server incorrectly deletes items
from a receipt. Typically customer pays for the deleted
items beforehand and the money for deleted items is
taken by the employee.

o Refund/Void fraud — server calls a refund or voids
a whole or a part of a committed order when they
should not (a customer did not ask for refund/void).
Money resulting from this operation is pocketed by the
employee.

o Unauthorized coupon discount — employee applies
a coupon discount without grounds. There are two pos-
sible scenarios. One, where a customer pays less when
they should pay more. Two, where a customer pays
the right price, and the employee takes the difference
between the right and discounted order value.

« Unauthorized employee discount — employee applies an
employee discount for a meal that is not handed out to
an employee.

o Other discount violations — various discount policy
violations that differ for particular clients, for instance,
issuing a discount higher than the maximal allowed dis-
count or applying two coupons when only one can be
applied.

We want to emphasize that in this study, we present the
results for automated detection of the above-listed frauds.
To the best of our knowledge, this is the first type of a study
that does not focus on an automated detection of a single fraud
type.

VOLUME 10, 2022

Detection of the listed fraud types was performed based
on variables extracted from a relational database that handles
the daily operations of our various business partners. Table 4
presents considered features. Extending this list is our future
work direction.

We are working with multivariate time series. Thus, we can
represent a single instance with Eq. (7).

1 2 3 L1

xXpoxpoxy X
1 2 3 L1

Xy Xy Xy ... X5 7)
1 2 3 L1

X3 X3 X3 ... X3

In Eq. (7), x{ e R,i=1,..., M denotes variable index, M is
the total number of variables, j = 1, ..., L denotes the index
of the element in the time series. In particular, x{ describes

a transaction immediately before x{“. L is the length of the
longest time series we have in a dataset.

Since the data is of variable length, several first xes may
be unavailable (we denote them technically as NA). Values
denoted with NA are replaced with actual values at the stage
of padding.

Let us recall that a single instance describes the history
of transactions handled by a given employee. We created
the learning dataset to take all data annotated manually by
our human experts. We had to develop a data model under
real-world constraints. The essential restriction is that human
experts attach labels to a single transaction for a given audit.
That is, we have a history of transactions for a given employee
for a particular day, and a human auditor attaches a label
(one of the labels present in Table 3) to one transaction the
auditor looked at. The remaining transactions in the day are
not checked. Auditor work is manual expert labor. It is not
feasible to ask an auditor to label the entire history of trans-
actions for a more significant number of days because a sin-
gle manual transaction audit takes about 40 minutes and an
employee handles hundreds of transactions during one shift.

Thus, the data we have ends with a transaction that an audi-
tor manually verified. In our dataset, each instance, as formal-
ized in Eq. (7) is paired with a label indicating fraud type or a
lack thereof. Subsequently, we split the data into train and test
parts. The train set is used for model construction, and the test
set is used for model evaluation. These two sets are disjoint,
which means quality evaluation concerns samples previously
unseen by the classifier.

We envision the incident detection model as a tool that shall
help a human auditor. An incident detector suggests check-
ing several transactions, which a human auditor manually
verifies. Let us assume that a full manual audit of a single
transaction takes 40 minutes. Let us assume that 40 minutes
is split into 30 minutes of searching for the possible incident
and 10 minutes of report writing and other technical details.

B. EMPIRICAL EVALUATION
The initial experiment relied on building a binary classifier
that recognized between fraudulent and legitimate instances.
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TABLE 4. Used feature names, descriptions, and types.

Feature name Description Type
Gross Sales gross value currency
Net Sales net value currency
Tax Tax currency
TypelD transactionvtypes such as ‘Sale’, ‘Ca.mcel’, ‘.Cash drop’, ‘Paid Out’, ‘No Sale’ categorical
‘Usage Adjustment’, ‘Refund’, “Void’, ‘Voided Refund’, ‘Suspend’, and so on

Discount Discount value currency
Tip Tip amount currency
Change Change amount currency
TimeLapse Time that has passed since the last transaction time (min.)
CorrectedProductsValue Sum of products with flag IsCorrected set to True in transaction currency
EmployeeMealCount Count of employee discounts applied in the transaction int
EmployeeMeal Value Value of a meal purchased using employee discount currency
CanceledItemsQuantity Quantity of products that within a given transaction were canceled int
CanceledItemsAmount Money value of products that within a given transaction were canceled currency
VoidedItemsQuantity Quantity of products that within a given transaction were voided int
VoidedItemsAmount Money value of products that within a given transaction were voided currency
CorrectedDiscountsQuantity | Quantity of discounts that within a given transaction were corrected int
CorrectedDiscountsAmount | Money value of discounts that within a given transaction were corrected currency
DiffProductCount Number of different products in transaction int
DiscountQuantity Number of discounts assigned to transaction int
DrinkCount Number of products categorized as drinks assigned to the given transaction int
FoodCount Number of products categorized as food assigned to a given transaction int
MealSetCount Number of products categorized as meal sets assigned to a given transaction int
ModifierCount Number of items categorized as meal modifiers in a given transaction int
ProductCount Number of products in transaction int
UnitCount Number of food units in a transaction; unit is a main, basic product of a given brand | int

Because the dataset is not balanced, we tested the following
train/test set sampling procedure:

« Randomly select 50% of fraudulent transactions.

o The number of legitimate transactions = K -the number
of fraudulent transactions, K is a positive integer, and
sampling is random.

« All remaining samples are placed in the test set.

K is a parameter of our procedure.

Furthermore, since the dataset is not balanced, in addition
to accuracy (given in Eq. (8), we had to use precision and
recall to evaluate classifier performance. Precision and recall
are defined in Eq. (9) and Eq. (10), respectively.

TP + TN
Accuracy = 3
TP+ TN + FP + FN
.. P
Precision = —— ©
TP + FP
TP
Recall = ——— (10)
TP + FN

where:

« true positive (TP) — the number of fraudulent transac-
tions correctly identified as frauds

o true negative (TN) — the number of legitimate transac-
tions correctly identified as legitimate
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« false positive (FP) — the number of legitimate transac-

tions incorrectly identified as frauds

« false negative (FN) — the number of fraudulent transac-

tions incorrectly identified as legitimate

We envision that the proposed incident detector will work
in a way that it will suggest a human auditor which trans-
actions to look at first. There is a higher cost associated
with a false positive than a false negative. In other words,
a false positive means an auditor spent (precious) time ver-
ifying a legitimate transaction. False negative is a case when
we miss a fraud. Thus, precision is of primary importance
to us.

In the experiments, we have tested models with 1000 and
10000 kernels and parameter K = 1,2, 3,5, 10, 12, 20. The
results achieved for various parameter combinations are given
in Table 5.

ROCKET has proved to be a good algorithm for the mul-
tivariate time series classification task. Including mode sam-
ples from the legitimate transactions class, which increased
the imbalancedness of a train set, turned out to be the essen-
tial step in determining the outcome of incident detection.
In Table 5, we see that the precision grows with the increase
of parameter K determining the imbalancedness degree of
a train set. Simultaneously, recall drops. These two rates
are accompanied by very high accuracy, which is not an
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TABLE 5. Quality of incident detection for various parameter
combinations. K is the imbalancedness degree of a train set. Precision,
recall, and accuracy are given in %.

Kernels K Precision Recall ~ Accuracy TP FP TN FN
1000 1 858 | 5775 79.95 | 425 | 4531 | 18883 311
2 15.74 | 41.30 91.20 | 304 | 1628 | 21051 432
3 2043 | 31.25 93.82 | 230 896 | 21048 506
5 21.19 19.29 94.71 | 142 528 | 19946 594
10 3522 7.61 95.54 56 103 | 16696 680
12 38.60 5.98 95.26 44 70 | 15259 692
20 60.00 0.82 92.79 6 4 9445 730
10000 1 21.73 | 28.40 94.36 | 209 753 | 21191 527
2 1570 | 35.73 91.95 | 263 | 1412 | 21267 473
3 18.80 | 31.79 93.33 | 234 | 1011 | 20933 502
5 25.06 15.35 95.47 | 113 338 | 20136 623
10 37.41 7.47 95.59 55 92 | 16707 681
20 59.57 3.80 94.75 28 19 | 13105 708

informative measure in this case because of the vast imbal-
ancedness of the test set.

If we look at the TP value in Table 5, we see that when
precision increases, TP drops. It translates to the situation
when our model is more valuable to human auditors since it
suggests more precisely fraudulent transactions. The down-
side is that the number of TPs drops. In other words, the model
indicates more precisely which transactions are fraudulent,
but the overall number of suggestions drops. For the model
with the precision of 59.57%, we get 28 transactions correctly
identified as fraudulent, and only 19 legitimate transactions
were incorrectly identified as fraudulent. This is a good out-
come; such a tool can be useful for a human auditor. It must
be noted that this model correctly tagged 13105 transactions
as TN, which means that a lot of data was filtered out.

Let us recall that we assume that a single audit takes
40 minutes, out of which 30 minutes is spent on search-
ing. Assume the model correctly identified 28 transactions
as fraudulent. This results in 28*%30 minutes of human time
saved. The required precision level should be evaluated with
respect to the time gained when using the model.

Subsequently, we proceed with experiments to detect par-
ticular fraud classes mentioned in our study. We have con-
structed six binary classifiers. We have relabeled the data so
that class “positive’”” was made of samples from a single inci-
dent class. All remaining samples were made as ‘“‘negative”.

Table 6 presents models that achieved the highest and the
second-highest precision in the experiments for analogous
combinations of parameters as presented in Table 5.

In this case, the number of available “positive” instances
drops significantly. Without surprise, ROCKET struggles to
produce better models. Though we can achieve a precision
of about 60%, recall drops. Please note that the number of
TP associated with the highest precision is typically tiny.
We envision that these seven models will be used jointly.
Thus, in the last row in Table 6, we present the sum of
TPs. This sum, equal to 26, is comparable to 28 obtained
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TABLE 6. Selected models that achieved the highest and the
second-highest precision when trained in a manner one class versus all.
We give precision (in %) and the number of true positives associated with
the best model.

highest second-highest
class prec. | TP | prec. TP
Items different than registered 50.00 1| 31.13 33
Sweethearting 50.00 1| 27.68 31
Items deletes fraud 71.43 5| 31.94 23
Refund/Void fraud 100 2 | 42.86 3
Unauthorized coupon discount 50.00 3 | 50.00 3
Unauthorized employee discount | 41.38 12 | 40.74 11
Other discount violations 66.67 2 | 3691 31
sum - =1

when applying a single model. Models that produced the
second-highest precision returned together 135 True Posi-
tives, which is substantially more than 26. The average preci-
sion of these models was 37.32%, which is higher than the
precision of a model presented in Table 5 that produced a
similar number of 7Ps.

All in all, we believe that the proposed strategy for incident
detection is worthy of further investigation. The delivered
tools can automate this task and reduce manual labor.

VII. CONCLUSION

In the paper, we have applied benchmark datasets to test three
preprocessing strategies for dealing with variable-length time
series that we wish to classify with an algorithm that requires
equal-length data: padding, truncation, and forecasting fur-
ther time series values. The experiments have shown that
padding is the recommended preprocessing strategy, achiev-
ing high classification accuracy. Truncation is not recom-
mended. Classification accuracy substantially dropped when
it was employed. Forecasting further time series values leads
to a satisfying accuracy as well. However, the computational
cost of this extra step is too high to consider it worthy of
attention.

At this stage of our studies, we were working with bench-
mark datasets that we cut to make them variable-length. Two
arguments motivated the choice of such a procedure. One that
we wanted to demonstrate our methods using publicly avail-
able data, commonly adopted by researchers in this domain.
Two that we assumed that if we classify this full-length data
using ROCKET, we will get an ‘““ideal” classification quality
that we can refer to later. The experiments have shown that
our second assumption was missed. We achieved a higher
classification accuracy in a few cases using the shortened
dataset. It was not because of some random factor since we
reached these results with ten repetitions of the whole pro-
cedure involving random time series cuts. A closer inspec-
tion of these datasets showed that they typically originated
from sensors, and the time series to be classified were cut
arbitrarily. This outcome postulates the need to develop new
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early time series classification methods, which do not attract
enough attention now.

The above conclusion refers to the methodological layer of
our study. From the perspective of the applied project that we
work on, early time series classifiers do not seem indispens-
able, as the data we work on is not cut from a stream. Instead,
the length is always determined by the number of transactions
in a server’s shift.

From the perspective of our applied task, our future work
will concentrate on the technical aspect of data classifica-
tion. We will keep improving the procedure by, for exam-

ple,

introducing a variable evaluation step, which will result

in removing unpromising variables before ROCKET is run.
This will decrease the run-time memory required by the
program.
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