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ABSTRACT Visual simultaneous localization and mapping (vSLAM or visual SLAM) is an important
technique for mobile robot localization in the global navigation satellite system denied (GNSS-denied)
environments. However, the positioning accuracy could become unbearable due to the lack of image feature
points when the robot navigates in a spacious indoor space. The drifting errors accumulated over time
are generally inevitable and need to be mitigated by more sophisticated loop-closure algorithms. In this
paper, we propose a drift-free visual SLAM technique for mobile robot localization by integrating the ultra-
wideband (UWB) positioning technology. The basic concept is to utilize the global constraint of the UWB
positioning to reduce the locally accumulated errors of visual SLAM localization based on the extended
Kalman filtering (EKF) framework. In our experimental results, various SLAM approaches are performed
in the indoor scenes, and the evaluation and comparison have demonstrated the feasibility of the proposed
localization technique. By the integration of UWB positioning, the overall drift error of the robot navigation
is reduced for more than 50%.

INDEX TERMS Simultaneous localization and mapping, robot vision, ultra-wideband, indoor positioning.

I. INTRODUCTION

Nowadays, the manufacturers have gradually considered
smart factories and smart robots as some important aspects
of the development trend. When the Industry 4.0 is ready for
the world, robotics plays a key role for industrial automation.
In the dangerous working environments or performing the
tasks with high repetition, it is expect to replace the human
operations with the robots capable of perception and proper
reaction. This is commonly achieved by industrial robots
with the visual servoing capability. Thus, sensing techniques
and data processing algorithms are the core technologies for
automated factories in the future. Among the various sub-
systems used for mobile robots, the self-localization module
is with specific importance in robot mobility. When produc-
tion lines are transformed to automated industrial systems to
increase the throughput with high reliability, it is necessary to
provide precise positioning and sufficient accuracy for robot
localization.
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Over the past few decades, technologies for simultane-
ous localization and mapping (SLAM) have been widely
investigated [1], [2]. The objective is to obtain the location
information of the mobile robot and construct the map of
the environment during the robot navigation at the same
time. Some commonly used sensors include infrared, sonar,
2D and 3D light detection and ranging (LiDAR), monocular
camera, stereo camera system, depth camera, and inertial
measurement unit (IMU). In addition to the development of
SLAM techniques with single sensors, the fusion of different
SLAM approaches has been shown to provide better local-
ization accuracy [3], [4]. Nevertheless, there still exist many
unsolved problems even the sensor fusion methods are incor-
porated. Some typical examples include the slipperiness of
wheel contacts and the influence of unknown external forces.
These might introduce some errors which are difficult to
mitigate by the SLAM systems using on-board sensors alone,
and therefore more sophisticated loop closure detection needs
to be adopted [5].

The most important problem for a SLAM system is to deal
with the measurement errors in the position and orientation.
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The uncertainties could be induced by the restricted mea-
surement accuracy and the influence of the environment.
In general, each measurement or feature extraction contain
some levels of errors. Therefore, a total uncertainty of a
SLAM technique will expand during a long range naviga-
tion. Consequently, the cumulative error due to the drifting
in motion cannot be ignored. The inaccurate localization or
positioning results might cause the incorrect operations for
industrial robot applications.

As the recent progress of image sensing technologies, low-
cost cameras with high image quality have been widely used
for robot navigation. Along with the maturity of computer
vision algorithms, visual SLAM has become one of the most
promising approaches for mobile robot localization. Since the
vision-based methods heavily rely on feature point extrac-
tion, the correspondence matching could be failed due to
the occlusion or illumination condition changes. Thus, visual
SLAM techniques usually suffer from the limited accuracy
caused by accumulation errors, especially in an open large
space. Meanwhile, the GNSS is able to provide a certain
degree of positioning accuracy independent of the location
and navigation path. Nevertheless, the GNSS signals from
satellites are not able to enter the buildings, which makes
the approach not applicable to indoor localization. Alterna-
tively, several technologies with local signal broadcast, such
as Wi-Fi [6], radio-frequency identification (RFID) [7], ultra-
wideband (UWB) [8] and Bluetooth [9], have been developed
for indoor positioning.

The UWB positioning technology has many advantages
over traditional methods such as GNSS, Wi-Fi and RFID.
It is able to achieve high-precision range sensing owing to
the high sampling rate and possible obstacle penetration of
the signals [10]. One essential issue of an indoor UWB
positioning system is to estimate the distance. The most
common approach is based on the time of arrival (TOA).
Several implementation challenges, including non-line-of-
sight (NLOS), multi-path and electronic jamming, are the
emerging problems to be addressed in the development [11].

In this paper, we propose a mobile robot localization
technique by integrating various measurement and sensing
techniques. The drifting errors introduced by the computation
from proprioceptive sensors is mitigated through the inte-
gration with UWB positioning. This approach is designed
to cope with the problem of current visual SLAM sys-
tems in terms of accuracy when operating in the featureless
scenes. It aims for the mobile robot localization in a rela-
tively spacious environment where the derivation of accurate
visual SLAM results is more difficult. At the same time,
the multi-path problem of UWB signals will have less influ-
ence on the positioning accuracy. Built upon the RTAB-Map
(Real-Time Appearance-Based Mapping) SLAM framework
with 3D data acquisition, UWB positioning is integrated
to provide a global constraint. When the SLAM system
starts, an independent 3D localization thread is also carried
out by UWB simultaneously. The extended Kalman filter
(EKF) is then adopted to fuse the localization results based
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on the confidence weighting [12]. In our proposed method,
the localization failure and drifting errors can be monitored
continuously, and the UWB positioning is adopted for the
optimization of the SLAM output whenever the uncertainty is
larger than a threshold. Several experiments are performed in
the real-world environments, and the performance evaluation
has demonstrated the feasibility of our approach for precise
indoor localization.

Il. RELATED WORK

In the robotics research community, many SLAM approaches
have been proposed over the last decades [13]. Most classic
approaches in the existing literature utilize laser rangefind-
ers (lidars) or cameras for environmental data acquisi-
tion. Among various SLAM techniques, the lidar based
approaches have been extensively investigated [14]. These
techniques are frequently regarded as the main localization
methods, and perform relatively well in robot navigation
tasks. Generally speaking, 2D lidars are adopted for domestic
applications such as cleaning robots or region exploration,
while 3D lidars are utilized in the applications of self-driving
vehicles or aerial robots. Those obstacles in the detectable
region are perceived as 3D point clouds with the depth infor-
mation. In the lidar-based techniques, the 3D data obtained
from different locations are registered to a common coordi-
nate frame for comparison, and then used to calculate their
relative orientation and position [15]. The frame-by-frame
transformation is then used for mobile robot localization and
environment map construction.

Due to the advances of sensing technologies and machine
learning algorithms, vision-based SLAM approaches have
received considerable attentions in recent years. The existing
methods uses the rich image information from the scenes for
place recognition and location computation [16], [17]. Simi-
lar to the lidar-based approach, the visual SLAM techniques
developed with depth cameras directly use the acquired
point cloud data for 3D map construction and robot local-
ization. Some recent popular SLAM systems using depth
cameras for data acquisition include ORB-SLAM?2 [18] and
S-PTAM [19]. To reduce the drifting error under long distance
navigation, the loop closure based on the feature description
mapping is performed rather than using the bag-of-words.
There also exist vision-based SLAM techniques incorpo-
rating the IMU measurements to improve the local tra-
jectory accuracy. The implementation of maplab [20] and
VINS-Mono [21] uses only an RGB camera and IMU to pro-
vide the visualization of environment maps. In this research,
we adopt RTAB-Map [22] as our framework for the devel-
opment of drift-free visual SLAM techniques. Different from
the previous approaches which also take RGB-D images as
input, it utilizes ‘working’, ‘long-term’ and ‘short-term’ for
memory management. RTAB-Map can take care of online
operations under large-scale and long-term conditions while
successfully performing the closed-loop detection. Thus, it is
commonly adopted as a building block for the development
of advanced SLAM techniques.
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Except for the visual SLAM systems, there are also a
number of well-studied signal-based methods for indoor
localization. Some widely used technologies include
Bluetooth, RFID, Wi-Fi and UWB [23]. In general, the
Bluetooth technology consumes much less power compared
to others, but it is not satisfactory in the localization accuracy
(about 1 meter), even with a number of beacons installed
in the environment [24]. RFID is based on the radio fre-
quency identification technology. The electromagnetic (EM)
transmission characteristics of radio frequency (RF) signals
are used to realize the data communication between the
RF tags and readers. There are many advantages of RFID,
including fast data transmission, high-level security, less
non-RF communication interference [25]. However, a large
number of RFID devices are generally requires for the indoor
positioning task, which is not suitable for many application
scenarios.

In the early development of indoor positioning technolo-
gies, the nearest neighbor and cross positioning methods were
adopted by Wi-Fi for implementation. The nearby Wi-Fi base
stations (or hot spots) in a reachable distance are detected
by the closest neighbor approach. If there exist multiple
sources of signals identified in a small region, the localization
accuracy can be further improved based on the estimation of
the current location via the triangulation cross positioning.
Since most indoor environments have the Wi-Fi infrastructure
readily available, it is generally not necessary for additional
hardware setup for positioning. Thus, Wi-Fi positioning tech-
niques have been integrated into the SLAM framework in
recent studies. As demonstrated in [26] and [27], the Wi-Fi
positioning can be used to optimize the localization outputs
from Lidar SLAM and RGB-D SLAM. The major drawback
of the Wi-Fi implementation is its power usage requirement
and the deployment of hotspots. Furthermore, the positioning
results might be affected by the channel interference issue.

For the existing indoor localization techniques, the
ultra-wideband requires more power consumption and is
more expensive compared to other methods such as RFID,
Wi-Fi and Bluetooth Low Energy (BLE). However, it is able
to achieve the accuracy of 10 cm when optimized with some
positioning algorithms. In the recent study, [28] integrated
the sensing outputs from the RGB-D camera and UWB, and
utilized the relation between the UWB positioning and the 3D
point clouds to construct an environment map. By fusing the
RGB-D and UWB information, it provides a stable system for
map building and localization. Similarly, [29] integrated the
UWB positioning with a 2D LiDAR. Their proposed method
used the 2D LiDAR data to increase the accuracy of UWB
positioning by using complete surrounding perception data of
the environment. Alternatively, the depth measurement from
UWB can also reduce the error accumulation in lidar-based
SLAM techniques to provide complementary effects [30].
In [31], Magnago et al. have demonstrated the accuracy in
large-scale indoor scenes for the localization technique based
on odometry-assisted UWB ranging.
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FIGURE 1. The system flowchart of the proposed drift-free visual SLAM
technique.

For the EKF algorithm used in this work, it is based on the
implementation in [3] and [32]. From the modern control the-
ory and statistical data processing, the noise corrupted state
vectors of a system can be estimated by the iteration of data
measurements. Thus, the objective is to derive the optimal
value of the current system state by the one estimated at
the previous time stamp and the present measurement. When
adopted for the mobile robot localization, this is to compute
the 3-D state vector representing the position. By defining the
noise with Gaussian distribution, the current state vector and
the prediction error covariance matrix are obtained according
to the kinematic model derived from Newtonian mechanics.

Ill. PROPOSED APPROACH

The system flowchart of the proposed drift-free visual SLAM
technique is illustrated in Figure 1. In this work, we adopt
RTAB-Map (Real-Time Appearance-Based Mapping) as the
basic SLAM framework for the development [33], and
incorporate the pre-established UWB positioning system for
global localization. As shown in the figure, the SLAM sys-
tem on-board the robot for self-localization operates simul-
taneously with the UWB global positioning. By fusing the
multimodal sources for robot localization, the high accurate
results with drifting corrections can be obtained based on
the weightings of confidence levels. In addition, the data
fusion of SLAM and UWRB is carried out via EKF (extended
Kalman filter). If the measurement difference between two
systems is greater than a threshold, a relocalization procedure
is performed based on the UWB global information.

The RTAB-Map module adopted in this work is based on a
general RGB-D SLAM framework. It is also capable of using
memory management to perform the closed-loop detection.
The essential task is to make it possible to accomplish a
long range navigation with the online loop closure detection.
In the general SLAM framework, the computations of visual
odometry for frame-to-frame and frame-to-map are usually
carried out separately. The input images are acquired from
stereo or RGB-D cameras, and the frame-to-map feature
extraction is performed without directly matching for the
nearest neighbors. Under the situation of feature loss, the ratio
of the first and second nearest neighbors is compared and

VOLUME 10, 2022



H.-Y. Lin, M.-C. Yeh: Drift-Free Visual SLAM for Mobile Robot Localization by Integrating UWB Technology

IEEE Access

used to perform the matching. When applying the frame-to-
frame approach, the optical flow is adopted for feature match-
ing computation. Due to the discontinuous and non-uniform
properties of optical flow fields, it is possible to detect
the dynamic object or camera movement. In this method,
the requirement for the extraction of feature descriptors is
removed to better calculate the camera motion trajectory.

During the motion prediction process, the key frame posi-
tion and the associated feature map in the current frame
are derived using the action in the previous frame. In this
process, the search window adopted for feature matching
can be restricted to a suitable range. Consequently, better
matches can be obtained even in the environments with
repetitive patterns or dynamic objects. During the motion
estimation process, PnP (perspective-n-point) and RANSAC
(random sample consensus) algorithms are utilized to com-
pute the transformations of image features, the current and
key frames [34], [35]. It is then followed by a local bundle
adjustment for the key frames and using the geometric con-
sistency for camera pose updates.

To provide a global constraint for localization, we incor-
porate the UWB positioning technique in this work. When
performing the two-dimensional computation, at least three
base stations are required. But it is necessary to have at least
four base stations for the calculation of three-dimensional
position. For the current development, the methods based
on time-of-flight (TOF), time-of-arrival (TOA) and time-
difference-of-arrival (TDOA) are commonly adopted. In the
two-way time-of-flight (TW-TOF) implementation, indepen-
dent time stamps are generated from the initialization of all
UWB modules. It is assumed that a request pulse signal
at T, is transmitted by the transmitter of module A at its
time stamp. Similarly, a pulse signal at Tj; is received by
the receiver of module B at its time stamp. By processing
the signals, a responsive signal transmitted by module B at the
time stamp T} is received by module A at its time stamp 7 5.
The time of flight associated with the pulse signals between
these modules is used to compute the distance by

C
S = 3[(Ta2 —Ta) — (Tp2 — Tp1)] ()

where C is the speed of light [36]. If the positioning is carried
out with multiple modules, it is required to calculate the dis-
tances from the label to those modules. In this configuration,
the 3D coordinates will be derived using a trilateral method.

Figure 2 depicts an illustration of TDOA. It is based on
TOA, but improved by the less requirements on synchroniza-
tion in time. The tag position is determined by computing
the time difference between the signals arriving the mod-
ules. Once the tag is under the coverage of a base station,
the signals will be transmitted actively from the positioned
tag to the positioned base station. The two positions of the
positioning tag are then computed by the positioning system
based on the difference of arrival times of the signals received
by the base stations. According to this calculation, the coor-
dinates of the tag are obtained by the intersections of multiple
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FIGURE 2. A schematic diagram of the UWB positioning using the TDOA
(time-difference-of-arrival) approach. This method is an improvement of
TOA, and has the advantage of lower time synchronization requirements.

FIGURE 3. The localization trajectory in the global scale is split to a
frame-by-frame basis to estimate the relative position of the robot
movement.

uws
Path

Odom
Path

t+3

FIGURE 4. The difference of positioning results between the odometry
and UWB techniques is used for localization adjustment. If it is larger than
a preset value, the measurement is restricted according to the time frame.

hyperbolas. To have this method operate successfully, one
crucial prerequisite is the synchronization in time among the
different modules. In general, TDOA is more complicated for
deployment and setup because of the time synchronization
requirement between different modules. However, it only
requires to transmit the signals instead of waiting for the
responses from the tags. Consequently, more spare time for
the localization of other tags can be achieved by using this
approach.

Since the UWB positioning system measures the distance
and performs the localization using TDOA, this approach can
be considered as GNSS positioning in the indoor environ-
ment. Thus, the drifting error due to the long range mobile
robot navigation can be avoided. The measurement error will
be fixed within a certain range with no accumulation, and
the localization estimates will approximate the ground-truth
globally. As illustrated in Figure 3, the relative poses among
multiple frames are generally estimated by SLAM based
localization techniques. To apply UWB measurements to the
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FIGURE 5. The schematic diagram for the UWB error correction. If the
difference between the newly observed point and the previous position
estimated by UWB is larger than a preset value, new coordinates will be
used for the localization update.
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FIGURE 6. The flowchart of the proposed UWB-based SLAM drifting error
correction approach.

localization estimates computed by SLAM techniques with-
out losing short-term accuracy, the relative poses estimated
from the consecutive SLAM frames are extracted and split
to multiple ones. Let the localization position at time ¢ be
P;, and the transformation between the time instants ¢ and
t + 1 be RP;. Then the relative position can be computed
as (Ax, Ay) frame-by-frame. The computation processes of
UWB and SLAM at the same time are aligned in time, and
the localization results are cross-referenced. If the difference
between the estimates is large than a pre-defined value, then
the positioning result will be limited according to the time
frame as illustrated in Figure 4.

Due to the inherent limitation of the UWB positioning
technique, large errors are always present in the vertical
direction. Thus, we consider the difference between the points
in the x and y directions for location restriction and update.
Given two points (x1, y;) and (x2, y2), we update the new
positioning result by

A = 1 =122 + (1 — 122 @)
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The idea of the overall error correction based on the mea-
surements of SLAM and UWB is illustrated in Figure 5.
If the newly created position from SLAM and the current
position estimate obtained by UWB have a difference larger
than a value 7, then we use the new position coordinates
for an update. The new localization position (x3, y3) has the
same direction as (x2, y2), but provided an offset given by the
threshold as follows

_ X+ Ax, ifAy<rt

3= {xl + tcosh, if Ay > 1 3
_ n+Ay, ifAy<t

3= {yl +Tsing, if Ay > 71 “)

where Ax and Ay are the displacements in the x and y
directions respectively, and Ay, is the 2-D displacement in
the Euclidean distance. While the error correction is carried
out in the x and y directions, the drift error in the z axis is
filtered out by EKF with the 2D mode setting.

The localization sensor fusion of SLAM and UWB posi-
tioning is further carried out using the extended Kalman filter
(EKF). We assume that the probabilities of localization follow
the Gaussian distribution initially for iterative updates, the
truncation operations in Egs. (3) and (4) are then used to
derive the final result. The Kalman filter was initially used to
cope with a linear-quadratic equation by finding the solutions
recursively [37]. It is a problem for estimating the current
state (or the state of process) of a linear dynamic system under
the perturbation of white noise. To properly estimate or pre-
dict the current state, the Kalman filter proceeds recursively
by utilizing the current measurements and the previous states.
Since the Kalman filter performs in a recursive way till the
optimal estimation state is achieved, it is commonly regarded
as a powerful technique to minimize the error of state esti-
mates. The EKF is an extended version of the Kalman filter
to deal with non-linear models. In EKF, it includes an extra
linearization model in the prediction step and the calculation
of partial derivatives of the state variables.

Given an n x 1 process state vector xx, an m X 1 mea-
surement vector zi, and the control input u;, where k& denotes
the time stamp, then a general non-linear system and the
measurement model can be described by

X1 = Ok, ug) + wi
2k = h(xg) + vk )

where the random variables wy and vy represent the Gaussian
white noise and the measurement noise, respectively. Let
Py, Or and Ry be the covariance matrices for x;, wy and
vk, respectively, the EKF algorithm is carried out with
two steps: prediction (time update) and correction (mea-
surement update). In the prediction update step, the state
projections and error covariance estimates are computed
from

X = SO, ug)
P, = FPiFL + GuOkGrL (6)
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where
/A
of A of
F = ox = e (7

I I
ax dy B

and

o
duq up

af ah  of
G, = Pl i (®)

o
duy duy

In the measurement update step, the measurement z
becomes available and EKF calculates the Kalman gain
matrix. It is then incorporated with the measurement inno-
vation to derive the estimated state xi, followed by the state
error covariance matrix update. The general scheme for the
measurement update is given by

Ki = P HI (He P HE +Ro)™!
X =X + Ki(ze — h(x))
Py = (I — KHp)P, ©)

where H is the Jacobean matrix of the measurement and com-
puted by H = 9h/9X, and X, is an estimate of the state vector
xr. The discrepancy between the predicted and observed
measurements is commonly referred to as the measurement
innovation or the residual, and denoted by ry = zx — h(x,).
A major disadvantaged of EKF is that if the estimated process
and measurement noise are not precisely modeled, the filter
would diverge and lead to a system inconsistence. Practically,
well-defined error covariance models are seldom achieved so
the values are set manually. It may take a lot of time with trial
and error before getting an expected model.

In the conventional localization framework, it is usually
assumed that the environment map is available. The extended
Kalman filter estimates the robot position by integrating the
information acquired from odometers, map and exteroceptive
sensors. In this work, our implementation consists of the
following steps: pose prediction, observation, measurement
prediction, matching and estimation.

e Pose Prediction: The robot pose at time k41 is predicted
based on the previous position and orientation (at time k)
and its movement with the control input 4, and is given
by

X = f O, uk)

Pi, i = FrPcF + GuOiGy (10)

where Fy = 0f /0X and G,, = df /ou.

o Actual Observation: In the second step the robot obtains
the sensor measurements zx1 at time kK + 1.

o Observation Prediction: From the predicted robot pose
X, 1 and the currently available map, a predicted mea-
surement Z; is generated by

A_<J@—nﬁ+@—wﬂ>
%k = 5 A

—1 Y=y
tan™" =—— 1)

Y
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FIGURE 7. (a) A Pioneer P3-DX mobile robot with an aluminum extrusion
rack is used in the experiment. (b) The evaluation is carried out in a large
indoor environment.

@ (b)

FIGURE 8. (a) The UWB setting adopted in our experiment with anchors
placed at the same height. (b) The AprilTags are placed in a rectangular
grid for localization comparison.

The state error between the actual and predicted mea-
surements is vy = zx — 2k, where v; is the innova-
tion sequence (or residual) with the covariance Sy =
HyP; HI + Ry, and H, = 9h/0X

o Matching: In the matching procedure, an assignment is
processed from measurements to the landmarks and then
store in the map.

o Estimation: The estimation of the state is given by

3 =& + Ki(z — h(GED))
Ki = P HI (He P HE +Ro)™!
Py = (I — KpHp)P, (12)

where K is the Kalman gain and Py is the new state
covariance matrix.

The flowchart of the proposed UWB-based SLAM drifting
error correction approach is illustrated in Figure 6. When both
the SLAM and UWB systems start the positioning process,
the localization status is continuously monitored. If a local-
ization failure of the visual SLAM is detected, the coefficients
of the covariance matrix are changed to a large value to rep-
resent its low confidence. Otherwise, the difference between
the SLAM and UWB positioning results is calculated, and
a threshold is used to determine whether the drifting error
correction will be performed. The noise covariance matrix of
the EKF is then updated in the diagonal elements. Since the
estimates from SLAM and UWB are our main concerns, the
weights for the position and orientation (6 DoFs) are set as
larger values compared to the velocities and angular velocities
in 3 directions.

IV. EXPERIMENTS
The proposed drift-free visual SLAM with UWB technique is

implemented on a mobile robot system, and tested in the real
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world environment. Figure 7 shows the mobile robot and the
indoor space for our experiments. We construct an aluminum
extrusion rack and install it on a Pioneer P3-DX robot to
place the sensing and computing devices (See Figure 7(a)).
An Intel Realsense D455 depth camera and a laptop computer
are placed on top for sensor data acquisition and SLAM
computation. For the UWB positioning, a tag is mounted
below the camera system. We create a new local coordinate
system, and define the relationship among the camera and
UWB coordinate frames. It is used to ensure that there is
no conflict between the localization results obtained from
visual SLAM and UWB positioning. The initial test on visual
SLAM is carried out in the scenes with sufficient feature
points, and good localization results can be derived with
high stability. When the visual SLAM is performed in a spa-
cious environment, however, the localization failure problem
occurs. Thus, our experiments focus on the evaluation of
UWB-assisted localization techniques in an open space with
several navigation paths. In the current setting, the update
rates for UWB and SLAM are 50 Hz and 30 Hz, respectively.

The principle of UWB for indoor positioning is the same as
GNSS for outdoor positioning using multiple satellites. In the
indoor environment, several UWB base stations are placed at
some given locations with coordinate information, and the
UWB tags are mounted on the mobile robot. Figure 8(a)
depicts a general configuration of the UWB setting. Signal
pulses are emitted from the tag at a fixed frequency, and
the continuous communication is established between the
base stations and the tag. Simultaneously, the tag location
is computed by the localization algorithm using the ranging
data from the base stations. For the environment for our
experiments, the visual SLAM system is performed in an
open and large indoor area as shown in Figure 7(b), and
achieving high accuracy localization is a very challenging
task. Thus, we also deploy several AprilTags as landmarks
in the open space for localization assistance [38]. Figure 8(b)
depicts the current AprilTag setting, where 16 landmarks are
attached on the ground and arranged as a rectangular grid.

When a robot navigates around a spacious indoor envi-
ronment, it is inevitably to result in localization drifting
errors even some landmarks such as AprilTags are adopted.
In the experiments, large drifting errors can still occur when
a mobile platform moves near the walls where image features
are easily detected. Figure 9 shows the trajectories obtained
using the SLAM and UWB positioning systems (presented
in red and blue curves), respectively. Figure 10 illustrates the
localization results derived by the proposed technique with
the fusion of SLAM and UWB. The trajectories obtained
with the threshold settings using 2 m and 0.5 m are shown in
Figures 10(a) and 10(b), respectively. The processing frame
rates for RTAB-Map and UWB are 20 Hz and 50 Hz, respec-
tively. Under the EKF fusion, the localization computation is
at about 15 Hz.

Because the UWB positioning technique is relatively sta-
ble in the global scale but with less accuracy in a local
region, we set the covariance matrix parameter to 0.5 in the
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FIGURE 9. The trajectories obtained from RTAB-Map SLAM and the UWB
positioning (marked in red and blue). Each block in the figure is 1 square
meter, and horizontal and vertical axes are the x- and y- axis, respectively.

(2)

(b)

FIGURE 10. The localization results derived using the our approach by the
integration of UWB positioning and visual SLAM technique under
different parameter settings. (a) The output using the threshold of

2 meters. (b) The output using the threshold of 0.5 meters.

experiment. It is followed by setting the SLAM covariance
matrix parameter to 1 to perform the EKF for localization
fusion. In Figure 12(a), the blue, red and green curves repre-
sent the localization trajectories obtained using UWB, SLAM
and the EKF fusion. The figure illustrates that, when the
visual SLAM system does not localize successfully, the EKF
will still utilize to the positioning result from the previous
covariance matrix computation. As a result, large errors will
present in the final fusion trajectory. In the implementation,
we change the covariance matrix parameter to 999 (or a huge
number) if the SLAM has a tracking failure detected. As the
fusion trajectories indicated in Figure 12(b), the SLAM fail-
ure does not affect the result of EKF fusion when the proposed
adjustment is used.

For the evaluation of SLAM algorithms with ground-truth
data, most RGB-D datasets publicly available are collected
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FIGURE 11. Some of the images captured and used for the visual SLAM
computation.

(b

FIGURE 12. The blue, red and green curves represent the localization
trajectories obtained using UWB, SLAM and the EKF fusion. (a) The
trajectories are derived using the covariance set as 1. (b) The trajectories
are derived using the covariance setting of 999.

with high-precision motion capture systems. In the experi-
ments, the localization results obtained from AprilTags are
used for accuracy comparison. We calculate the camera poses
based on the coordinate origins of individual AprilTag set-
tings. To evaluate the accuracy by absolute trajectory errors,
a series of discrete samples are taken and used as reference
ground-truth locations. The relative errors in the results of
UWB, SLAM and EKF fusion are derived with N sample
points using

B G (D) — xg (D)

Xerror =
N
SN Oest () — yer ()2
yerror - N
SN Gest (i) — 21 ()2
Zerror = N (13)
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FIGURE 13. The experiment for a mobile robot navigating in a rectangular
trajectory. Each block in the figure is 1 square meter, and horizontal and
vertical axes are the x- and y- axis, respectively.

TABLE 1. The translation errors of the experiment when the robot moves
in a rectangular path as shown in Figure 13.

SLAM SLAM’ UWB EKF
T ave. error 0.647m  0.182m  0.175m  0.146m
Y ave. error 1.399m  0.387m  0.188m  0.245m
Z ave. error 0.709m  0.528m  0.391m  0.081m
# of samples 1372 1372 1372 1372

where Xerrors Yerror and Zerror are the mean ATE (absolute
trajectory error) along the three axes of the translation matrix
T. The translation estimate and the ground-truth position
at the sample point i are denoted by (xes (i), Yest (£), Zest (£))
and (xg; (?), ygr (1), zgr (7)), respectively. We conduct the experi-
ments with several navigation trajectories in an indoor scene,
and evaluate with UWB, SLAM and EKF fusion localization.

The experimental result of a mobile robot navigating in a
rectangular path is shown in Figure 13, with the localization
trajectories derived from UWB, SLAM and the EKF fusion
marked in blue, red and green, respectively. Table 1 tabulates
the translation errors from different localization methods,
where SLAM’ indicates the SLAM result with drifting cor-
rection. The table shows that the mean errors along the x and
y axes are reduced from 0.647 meters to 0.182 meters and
from 1.399 meters to 0.387 meters after the drift correction,
respectively. The results illustrate that our proposed technique
is able to provide great improvements on drifting errors.
In the experiment, the EKF fusion can generally suppress
the translation error. Table 1 also indicates that the UWB
positioning has slight better performance in the y direction,
despite the noisy trajectory as illustrated in Figure 13. The
main reason is the evaluation carried out only on discrete
sample locations, which results in the UWB localization
approximate the ground-truth even if the complete path is
rather noisy. Figure 14 shows the CDF (cumulative distribu-
tion function) of the positioning error per meter. The mean
and standard deviation of the EKF fusion results are 0.616 and
0.045, respectively. Since the proposed technique is able to
perform in real-time, we consider the comparison in terms of
computation time is not significant.

The second experiment is performed on a more compli-
cated navigation path to evaluate the stability of the proposed
technique in a spacious indoor space. The mobile robot moves
in straight lines, curves and irregular paths rather than travels
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FIGURE 14. The cumulative distribution function (CDF) of the positioning
error per meter.

FIGURE 15. Some of the images captured and used for the visual SLAM
computation.

FIGURE 16. The experiment carried out on a more complicated navigation
path to evaluate the stability of the proposed technique in a spacious
indoor space. The resulting trajectory contains many harsh positioning
conditions with few feature points, but our method can still provide good
localization accuracy with less drifting errors.

TABLE 2. The translation errors of the experiment when the robot moves
in an arbitrary path as shown in Figure 16.

SLAM SLAM’ UWB EKF
zave.error  0.661m  0.183m  0.203m  0.183m
yave.error  0.547m  0.346m  0.247m  0.258m
zave.error  1.246m  0.746m  0.433m  0.103m
# of samples 1503 1503 1503 1503

against the wall. We have performed several empirical tests
and found the threshold of 0.5 m is most suitable for the
restriction on drifting errors while preserving the short-term
result of visual SLAM. As illustrated in Figure 16, the result-
ing trajectory contains many harsh positioning conditions
with few feature points, but our method can still provide good
localization accuracy with less drifting errors. The evaluation
on the translation errors is tabulated in Table 2. As indi-
cated in the table, although the drifting is more severe in the
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z-axis due to the lack of detected features for localization,
we are able to suppress the errors in all directions as shown
in SLAM’. In addition, the EKF fusion result not only
successfully reduces the error, but also avoids the UWB
positioning noise. This has demonstrated the feasibility of
our approach for many challenging situations in occurred
practical applications.

V. CONCLUSION

One major issue of current SLAM systems is the accumu-
lation of drift errors for the long range navigation. In this
work, we present an approach for indoor localization by inte-
grating different positioning approaches. The basic idea is to
mitigate the localization errors introduced by proprioceptive
sensors through the integration with UWB technology. The
localization trajectory in the global scale is split to a frame-
by-frame basis to estimate the relative position of the robot
movement. Since the error from UWB does not accumulate
over time, the localization failure can be monitored continu-
ously and the drifting errors of the local trajectory are reduced
by the UWB positioning. In the experiments, various SLAM
approaches are conducted in the real-world scenes for perfor-
mance comparison. The evaluation has illustrated the robust-
ness of the proposed drift-free visual SLAM by integrating
the UWB technology for indoor localization. In the devel-
opment, we consider the application for automated factory
in a scope of about 20 squared meters. The limitation of the
current system is mainly the assumption that the environment
is relatively spacious without dynamic objects. In the future
work, we will evaluate more complex scenes, and consider the
applications on high precision manufacturing using mobile
robots.
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