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ABSTRACT Visual simultaneous localization and mapping (vSLAM or visual SLAM) is an important
technique for mobile robot localization in the global navigation satellite system denied (GNSS-denied)
environments. However, the positioning accuracy could become unbearable due to the lack of image feature
points when the robot navigates in a spacious indoor space. The drifting errors accumulated over time
are generally inevitable and need to be mitigated by more sophisticated loop-closure algorithms. In this
paper, we propose a drift-free visual SLAM technique for mobile robot localization by integrating the ultra-
wideband (UWB) positioning technology. The basic concept is to utilize the global constraint of the UWB
positioning to reduce the locally accumulated errors of visual SLAM localization based on the extended
Kalman filtering (EKF) framework. In our experimental results, various SLAM approaches are performed
in the indoor scenes, and the evaluation and comparison have demonstrated the feasibility of the proposed
localization technique. By the integration of UWB positioning, the overall drift error of the robot navigation
is reduced for more than 50%.

13 INDEX TERMS Simultaneous localization and mapping, robot vision, ultra-wideband, indoor positioning.

I. INTRODUCTION14

Nowadays, the manufacturers have gradually considered15

smart factories and smart robots as some important aspects16

of the development trend. When the Industry 4.0 is ready for17

the world, robotics plays a key role for industrial automation.18

In the dangerous working environments or performing the19

tasks with high repetition, it is expect to replace the human20

operations with the robots capable of perception and proper21

reaction. This is commonly achieved by industrial robots22

with the visual servoing capability. Thus, sensing techniques23

and data processing algorithms are the core technologies for24

automated factories in the future. Among the various sub-25

systems used for mobile robots, the self-localization module26

is with specific importance in robot mobility. When produc-27

tion lines are transformed to automated industrial systems to28

increase the throughput with high reliability, it is necessary to29

provide precise positioning and sufficient accuracy for robot30

localization.31

The associate editor coordinating the review of this manuscript and

approving it for publication was Guilin Yang .

Over the past few decades, technologies for simultane- 32

ous localization and mapping (SLAM) have been widely 33

investigated [1], [2]. The objective is to obtain the location 34

information of the mobile robot and construct the map of 35

the environment during the robot navigation at the same 36

time. Some commonly used sensors include infrared, sonar, 37

2D and 3D light detection and ranging (LiDAR), monocular 38

camera, stereo camera system, depth camera, and inertial 39

measurement unit (IMU). In addition to the development of 40

SLAM techniques with single sensors, the fusion of different 41

SLAM approaches has been shown to provide better local- 42

ization accuracy [3], [4]. Nevertheless, there still exist many 43

unsolved problems even the sensor fusion methods are incor- 44

porated. Some typical examples include the slipperiness of 45

wheel contacts and the influence of unknown external forces. 46

These might introduce some errors which are difficult to 47

mitigate by the SLAM systems using on-board sensors alone, 48

and therefore more sophisticated loop closure detection needs 49

to be adopted [5]. 50

The most important problem for a SLAM system is to deal 51

with the measurement errors in the position and orientation. 52
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The uncertainties could be induced by the restricted mea-53

surement accuracy and the influence of the environment.54

In general, each measurement or feature extraction contain55

some levels of errors. Therefore, a total uncertainty of a56

SLAM technique will expand during a long range naviga-57

tion. Consequently, the cumulative error due to the drifting58

in motion cannot be ignored. The inaccurate localization or59

positioning results might cause the incorrect operations for60

industrial robot applications.61

As the recent progress of image sensing technologies, low-62

cost cameras with high image quality have been widely used63

for robot navigation. Along with the maturity of computer64

vision algorithms, visual SLAM has become one of the most65

promising approaches for mobile robot localization. Since the66

vision-based methods heavily rely on feature point extrac-67

tion, the correspondence matching could be failed due to68

the occlusion or illumination condition changes. Thus, visual69

SLAM techniques usually suffer from the limited accuracy70

caused by accumulation errors, especially in an open large71

space. Meanwhile, the GNSS is able to provide a certain72

degree of positioning accuracy independent of the location73

and navigation path. Nevertheless, the GNSS signals from74

satellites are not able to enter the buildings, which makes75

the approach not applicable to indoor localization. Alterna-76

tively, several technologies with local signal broadcast, such77

asWi-Fi [6], radio-frequency identification (RFID) [7], ultra-78

wideband (UWB) [8] and Bluetooth [9], have been developed79

for indoor positioning.80

The UWB positioning technology has many advantages81

over traditional methods such as GNSS, Wi-Fi and RFID.82

It is able to achieve high-precision range sensing owing to83

the high sampling rate and possible obstacle penetration of84

the signals [10]. One essential issue of an indoor UWB85

positioning system is to estimate the distance. The most86

common approach is based on the time of arrival (TOA).87

Several implementation challenges, including non-line-of-88

sight (NLOS), multi-path and electronic jamming, are the89

emerging problems to be addressed in the development [11].90

In this paper, we propose a mobile robot localization91

technique by integrating various measurement and sensing92

techniques. The drifting errors introduced by the computation93

from proprioceptive sensors is mitigated through the inte-94

gration with UWB positioning. This approach is designed95

to cope with the problem of current visual SLAM sys-96

tems in terms of accuracy when operating in the featureless97

scenes. It aims for the mobile robot localization in a rela-98

tively spacious environment where the derivation of accurate99

visual SLAM results is more difficult. At the same time,100

the multi-path problem of UWB signals will have less influ-101

ence on the positioning accuracy. Built upon the RTAB-Map102

(Real-Time Appearance-Based Mapping) SLAM framework103

with 3D data acquisition, UWB positioning is integrated104

to provide a global constraint. When the SLAM system105

starts, an independent 3D localization thread is also carried106

out by UWB simultaneously. The extended Kalman filter107

(EKF) is then adopted to fuse the localization results based108

on the confidence weighting [12]. In our proposed method, 109

the localization failure and drifting errors can be monitored 110

continuously, and the UWB positioning is adopted for the 111

optimization of the SLAM output whenever the uncertainty is 112

larger than a threshold. Several experiments are performed in 113

the real-world environments, and the performance evaluation 114

has demonstrated the feasibility of our approach for precise 115

indoor localization. 116

II. RELATED WORK 117

In the robotics research community, many SLAM approaches 118

have been proposed over the last decades [13]. Most classic 119

approaches in the existing literature utilize laser rangefind- 120

ers (lidars) or cameras for environmental data acquisi- 121

tion. Among various SLAM techniques, the lidar based 122

approaches have been extensively investigated [14]. These 123

techniques are frequently regarded as the main localization 124

methods, and perform relatively well in robot navigation 125

tasks. Generally speaking, 2D lidars are adopted for domestic 126

applications such as cleaning robots or region exploration, 127

while 3D lidars are utilized in the applications of self-driving 128

vehicles or aerial robots. Those obstacles in the detectable 129

region are perceived as 3D point clouds with the depth infor- 130

mation. In the lidar-based techniques, the 3D data obtained 131

from different locations are registered to a common coordi- 132

nate frame for comparison, and then used to calculate their 133

relative orientation and position [15]. The frame-by-frame 134

transformation is then used for mobile robot localization and 135

environment map construction. 136

Due to the advances of sensing technologies and machine 137

learning algorithms, vision-based SLAM approaches have 138

received considerable attentions in recent years. The existing 139

methods uses the rich image information from the scenes for 140

place recognition and location computation [16], [17]. Simi- 141

lar to the lidar-based approach, the visual SLAM techniques 142

developed with depth cameras directly use the acquired 143

point cloud data for 3D map construction and robot local- 144

ization. Some recent popular SLAM systems using depth 145

cameras for data acquisition include ORB-SLAM2 [18] and 146

S-PTAM [19]. To reduce the drifting error under long distance 147

navigation, the loop closure based on the feature description 148

mapping is performed rather than using the bag-of-words. 149

There also exist vision-based SLAM techniques incorpo- 150

rating the IMU measurements to improve the local tra- 151

jectory accuracy. The implementation of maplab [20] and 152

VINS-Mono [21] uses only an RGB camera and IMU to pro- 153

vide the visualization of environment maps. In this research, 154

we adopt RTAB-Map [22] as our framework for the devel- 155

opment of drift-free visual SLAM techniques. Different from 156

the previous approaches which also take RGB-D images as 157

input, it utilizes ‘working’, ‘long-term’ and ‘short-term’ for 158

memory management. RTAB-Map can take care of online 159

operations under large-scale and long-term conditions while 160

successfully performing the closed-loop detection. Thus, it is 161

commonly adopted as a building block for the development 162

of advanced SLAM techniques. 163
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Except for the visual SLAM systems, there are also a164

number of well-studied signal-based methods for indoor165

localization. Some widely used technologies include166

Bluetooth, RFID, Wi-Fi and UWB [23]. In general, the167

Bluetooth technology consumes much less power compared168

to others, but it is not satisfactory in the localization accuracy169

(about 1 meter), even with a number of beacons installed170

in the environment [24]. RFID is based on the radio fre-171

quency identification technology. The electromagnetic (EM)172

transmission characteristics of radio frequency (RF) signals173

are used to realize the data communication between the174

RF tags and readers. There are many advantages of RFID,175

including fast data transmission, high-level security, less176

non-RF communication interference [25]. However, a large177

number of RFID devices are generally requires for the indoor178

positioning task, which is not suitable for many application179

scenarios.180

In the early development of indoor positioning technolo-181

gies, the nearest neighbor and cross positioningmethods were182

adopted byWi-Fi for implementation. The nearbyWi-Fi base183

stations (or hot spots) in a reachable distance are detected184

by the closest neighbor approach. If there exist multiple185

sources of signals identified in a small region, the localization186

accuracy can be further improved based on the estimation of187

the current location via the triangulation cross positioning.188

Sincemost indoor environments have theWi-Fi infrastructure189

readily available, it is generally not necessary for additional190

hardware setup for positioning. Thus, Wi-Fi positioning tech-191

niques have been integrated into the SLAM framework in192

recent studies. As demonstrated in [26] and [27], the Wi-Fi193

positioning can be used to optimize the localization outputs194

from Lidar SLAM and RGB-D SLAM. The major drawback195

of the Wi-Fi implementation is its power usage requirement196

and the deployment of hotspots. Furthermore, the positioning197

results might be affected by the channel interference issue.198

For the existing indoor localization techniques, the199

ultra-wideband requires more power consumption and is200

more expensive compared to other methods such as RFID,201

Wi-Fi and Bluetooth Low Energy (BLE). However, it is able202

to achieve the accuracy of 10 cm when optimized with some203

positioning algorithms. In the recent study, [28] integrated204

the sensing outputs from the RGB-D camera and UWB, and205

utilized the relation between the UWB positioning and the 3D206

point clouds to construct an environment map. By fusing the207

RGB-D andUWB information, it provides a stable system for208

map building and localization. Similarly, [29] integrated the209

UWB positioning with a 2D LiDAR. Their proposed method210

used the 2D LiDAR data to increase the accuracy of UWB211

positioning by using complete surrounding perception data of212

the environment. Alternatively, the depth measurement from213

UWB can also reduce the error accumulation in lidar-based214

SLAM techniques to provide complementary effects [30].215

In [31], Magnago et al. have demonstrated the accuracy in216

large-scale indoor scenes for the localization technique based217

on odometry-assisted UWB ranging.218

FIGURE 1. The system flowchart of the proposed drift-free visual SLAM
technique.

For the EKF algorithm used in this work, it is based on the 219

implementation in [3] and [32]. From the modern control the- 220

ory and statistical data processing, the noise corrupted state 221

vectors of a system can be estimated by the iteration of data 222

measurements. Thus, the objective is to derive the optimal 223

value of the current system state by the one estimated at 224

the previous time stamp and the present measurement. When 225

adopted for the mobile robot localization, this is to compute 226

the 3-D state vector representing the position. By defining the 227

noise with Gaussian distribution, the current state vector and 228

the prediction error covariance matrix are obtained according 229

to the kinematic model derived from Newtonian mechanics. 230

III. PROPOSED APPROACH 231

The system flowchart of the proposed drift-free visual SLAM 232

technique is illustrated in Figure 1. In this work, we adopt 233

RTAB-Map (Real-Time Appearance-Based Mapping) as the 234

basic SLAM framework for the development [33], and 235

incorporate the pre-established UWB positioning system for 236

global localization. As shown in the figure, the SLAM sys- 237

tem on-board the robot for self-localization operates simul- 238

taneously with the UWB global positioning. By fusing the 239

multimodal sources for robot localization, the high accurate 240

results with drifting corrections can be obtained based on 241

the weightings of confidence levels. In addition, the data 242

fusion of SLAM and UWB is carried out via EKF (extended 243

Kalman filter). If the measurement difference between two 244

systems is greater than a threshold, a relocalization procedure 245

is performed based on the UWB global information. 246

The RTAB-Map module adopted in this work is based on a 247

general RGB-D SLAM framework. It is also capable of using 248

memory management to perform the closed-loop detection. 249

The essential task is to make it possible to accomplish a 250

long range navigation with the online loop closure detection. 251

In the general SLAM framework, the computations of visual 252

odometry for frame-to-frame and frame-to-map are usually 253

carried out separately. The input images are acquired from 254

stereo or RGB-D cameras, and the frame-to-map feature 255

extraction is performed without directly matching for the 256

nearest neighbors. Under the situation of feature loss, the ratio 257

of the first and second nearest neighbors is compared and 258
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used to perform the matching. When applying the frame-to-259

frame approach, the optical flow is adopted for feature match-260

ing computation. Due to the discontinuous and non-uniform261

properties of optical flow fields, it is possible to detect262

the dynamic object or camera movement. In this method,263

the requirement for the extraction of feature descriptors is264

removed to better calculate the camera motion trajectory.265

During the motion prediction process, the key frame posi-266

tion and the associated feature map in the current frame267

are derived using the action in the previous frame. In this268

process, the search window adopted for feature matching269

can be restricted to a suitable range. Consequently, better270

matches can be obtained even in the environments with271

repetitive patterns or dynamic objects. During the motion272

estimation process, PnP (perspective-n-point) and RANSAC273

(random sample consensus) algorithms are utilized to com-274

pute the transformations of image features, the current and275

key frames [34], [35]. It is then followed by a local bundle276

adjustment for the key frames and using the geometric con-277

sistency for camera pose updates.278

To provide a global constraint for localization, we incor-279

porate the UWB positioning technique in this work. When280

performing the two-dimensional computation, at least three281

base stations are required. But it is necessary to have at least282

four base stations for the calculation of three-dimensional283

position. For the current development, the methods based284

on time-of-flight (TOF), time-of-arrival (TOA) and time-285

difference-of-arrival (TDOA) are commonly adopted. In the286

two-way time-of-flight (TW-TOF) implementation, indepen-287

dent time stamps are generated from the initialization of all288

UWB modules. It is assumed that a request pulse signal289

at Ta1 is transmitted by the transmitter of module A at its290

time stamp. Similarly, a pulse signal at Tb1 is received by291

the receiver of module B at its time stamp. By processing292

the signals, a responsive signal transmitted bymodule B at the293

time stamp Tb2 is received by module A at its time stamp Ta2.294

The time of flight associated with the pulse signals between295

these modules is used to compute the distance by296

S =
C
2
[(Ta2 − Ta1)− (Tb2 − Tb1)] (1)297

where C is the speed of light [36]. If the positioning is carried298

out with multiple modules, it is required to calculate the dis-299

tances from the label to those modules. In this configuration,300

the 3D coordinates will be derived using a trilateral method.301

Figure 2 depicts an illustration of TDOA. It is based on302

TOA, but improved by the less requirements on synchroniza-303

tion in time. The tag position is determined by computing304

the time difference between the signals arriving the mod-305

ules. Once the tag is under the coverage of a base station,306

the signals will be transmitted actively from the positioned307

tag to the positioned base station. The two positions of the308

positioning tag are then computed by the positioning system309

based on the difference of arrival times of the signals received310

by the base stations. According to this calculation, the coor-311

dinates of the tag are obtained by the intersections of multiple312

FIGURE 2. A schematic diagram of the UWB positioning using the TDOA
(time-difference-of-arrival) approach. This method is an improvement of
TOA, and has the advantage of lower time synchronization requirements.

FIGURE 3. The localization trajectory in the global scale is split to a
frame-by-frame basis to estimate the relative position of the robot
movement.

FIGURE 4. The difference of positioning results between the odometry
and UWB techniques is used for localization adjustment. If it is larger than
a preset value, the measurement is restricted according to the time frame.

hyperbolas. To have this method operate successfully, one 313

crucial prerequisite is the synchronization in time among the 314

different modules. In general, TDOA is more complicated for 315

deployment and setup because of the time synchronization 316

requirement between different modules. However, it only 317

requires to transmit the signals instead of waiting for the 318

responses from the tags. Consequently, more spare time for 319

the localization of other tags can be achieved by using this 320

approach. 321

Since the UWB positioning system measures the distance 322

and performs the localization using TDOA, this approach can 323

be considered as GNSS positioning in the indoor environ- 324

ment. Thus, the drifting error due to the long range mobile 325

robot navigation can be avoided. The measurement error will 326

be fixed within a certain range with no accumulation, and 327

the localization estimates will approximate the ground-truth 328

globally. As illustrated in Figure 3, the relative poses among 329

multiple frames are generally estimated by SLAM based 330

localization techniques. To apply UWB measurements to the 331
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FIGURE 5. The schematic diagram for the UWB error correction. If the
difference between the newly observed point and the previous position
estimated by UWB is larger than a preset value, new coordinates will be
used for the localization update.

FIGURE 6. The flowchart of the proposed UWB-based SLAM drifting error
correction approach.

localization estimates computed by SLAM techniques with-332

out losing short-term accuracy, the relative poses estimated333

from the consecutive SLAM frames are extracted and split334

to multiple ones. Let the localization position at time t be335

Pt , and the transformation between the time instants t and336

t + 1 be RPt . Then the relative position can be computed337

as (1x,1y) frame-by-frame. The computation processes of338

UWB and SLAM at the same time are aligned in time, and339

the localization results are cross-referenced. If the difference340

between the estimates is large than a pre-defined value, then341

the positioning result will be limited according to the time342

frame as illustrated in Figure 4.343

Due to the inherent limitation of the UWB positioning344

technique, large errors are always present in the vertical345

direction. Thus, we consider the difference between the points346

in the x and y directions for location restriction and update.347

Given two points (x1, y1) and (x2, y2), we update the new348

positioning result by349

1xy =

√
(x1 − x2)2 + (y1 − y2)2 (2)350

The idea of the overall error correction based on the mea- 351

surements of SLAM and UWB is illustrated in Figure 5. 352

If the newly created position from SLAM and the current 353

position estimate obtained by UWB have a difference larger 354

than a value τ , then we use the new position coordinates 355

for an update. The new localization position (x3, y3) has the 356

same direction as (x2, y2), but provided an offset given by the 357

threshold as follows 358

x3 =
{
x2 +1x, if 1xy < τ

x1 + τcosθ, if 1xy ≥ τ
(3) 359

y3 =
{
y2 +1y, if 1xy < τ

y1 + τ sinθ, if 1xy ≥ τ
(4) 360

where 1x and 1y are the displacements in the x and y 361

directions respectively, and 1xy is the 2-D displacement in 362

the Euclidean distance. While the error correction is carried 363

out in the x and y directions, the drift error in the z axis is 364

filtered out by EKF with the 2D mode setting. 365

The localization sensor fusion of SLAM and UWB posi- 366

tioning is further carried out using the extended Kalman filter 367

(EKF).We assume that the probabilities of localization follow 368

the Gaussian distribution initially for iterative updates, the 369

truncation operations in Eqs. (3) and (4) are then used to 370

derive the final result. The Kalman filter was initially used to 371

cope with a linear-quadratic equation by finding the solutions 372

recursively [37]. It is a problem for estimating the current 373

state (or the state of process) of a linear dynamic system under 374

the perturbation of white noise. To properly estimate or pre- 375

dict the current state, the Kalman filter proceeds recursively 376

by utilizing the current measurements and the previous states. 377

Since the Kalman filter performs in a recursive way till the 378

optimal estimation state is achieved, it is commonly regarded 379

as a powerful technique to minimize the error of state esti- 380

mates. The EKF is an extended version of the Kalman filter 381

to deal with non-linear models. In EKF, it includes an extra 382

linearization model in the prediction step and the calculation 383

of partial derivatives of the state variables. 384

Given an n × 1 process state vector xk , an m × 1 mea- 385

surement vector zk , and the control input uk , where k denotes 386

the time stamp, then a general non-linear system and the 387

measurement model can be described by 388

xk+1 = f (xk , uk )+ wk 389

zk = h(xk )+ vk (5) 390

where the random variables wk and vk represent the Gaussian 391

white noise and the measurement noise, respectively. Let 392

Pk , Qk and Rk be the covariance matrices for xk , wk and 393

vk , respectively, the EKF algorithm is carried out with 394

two steps: prediction (time update) and correction (mea- 395

surement update). In the prediction update step, the state 396

projections and error covariance estimates are computed 397

from 398

x̂−k+1 = f (xk , uk ) 399

P−k+1 = FkPkFTk + GuQkG
T
u (6) 400
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where401

Fk =
∂f
∂X
=


∂f1
∂x

∂f1
∂y

∂f1
∂φ

∂f2
∂x

∂f2
∂y

∂f2
∂φ

∂f3
∂x

∂f3
∂y

∂f3
∂φ

 (7)402

and403

Gu =
∂f
∂u
=


∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

∂f3
∂u1

∂f3
∂u2

 (8)404

In the measurement update step, the measurement zk405

becomes available and EKF calculates the Kalman gain406

matrix. It is then incorporated with the measurement inno-407

vation to derive the estimated state xk , followed by the state408

error covariance matrix update. The general scheme for the409

measurement update is given by410

Kk = P−k H
T
k (HkP

−

k H
T
k + Rk )

−1
411

x̂k = x̂−k + Kk (zk − h(x̂
−

k ))412

Pk = (I − KkHk )P
−

k (9)413

whereH is the Jacobeanmatrix of the measurement and com-414

puted byH = ∂h/∂X , and x̂k is an estimate of the state vector415

xk . The discrepancy between the predicted and observed416

measurements is commonly referred to as the measurement417

innovation or the residual, and denoted by rk = zk − h(x̂
−

k ).418

Amajor disadvantaged of EKF is that if the estimated process419

and measurement noise are not precisely modeled, the filter420

would diverge and lead to a system inconsistence. Practically,421

well-defined error covariance models are seldom achieved so422

the values are set manually. It may take a lot of time with trial423

and error before getting an expected model.424

In the conventional localization framework, it is usually425

assumed that the environment map is available. The extended426

Kalman filter estimates the robot position by integrating the427

information acquired from odometers, map and exteroceptive428

sensors. In this work, our implementation consists of the429

following steps: pose prediction, observation, measurement430

prediction, matching and estimation.431

• Pose Prediction:The robot pose at time k+1 is predicted432

based on the previous position and orientation (at time k)433

and its movement with the control input uk , and is given434

by435

x̂−k = f (xk , uk )436

P−k+1 = FkPkFTk + GuQkG
T
u (10)437

where Fk = ∂f /∂X and Gu = ∂f /∂u.438

• Actual Observation: In the second step the robot obtains439

the sensor measurements zk+1 at time k + 1.440

• Observation Prediction: From the predicted robot pose441

x̂−k+1 and the currently available map, a predicted mea-442

surement ẑk is generated by443

ẑk =

(√
(x̂ − xi)2 + (ŷ− yi)2

tan−1 ŷ−yi
x̂−xi
− φ̂

)
(11)444

FIGURE 7. (a) A Pioneer P3-DX mobile robot with an aluminum extrusion
rack is used in the experiment. (b) The evaluation is carried out in a large
indoor environment.

FIGURE 8. (a) The UWB setting adopted in our experiment with anchors
placed at the same height. (b) The AprilTags are placed in a rectangular
grid for localization comparison.

The state error between the actual and predicted mea- 445

surements is vk = zk − ẑk , where vk is the innova- 446

tion sequence (or residual) with the covariance Sk = 447

HkP
−

k H
T
k + Rk , and Hk = ∂h/∂X 448

• Matching: In the matching procedure, an assignment is 449

processed frommeasurements to the landmarks and then 450

store in the map. 451

• Estimation: The estimation of the state is given by 452

x̂ = x̂−k + Kk (zk − h(x̂
−

k )) 453

Kk = P−k H
T
k (HkP

−

k H
T
k + Rk )

−1
454

Pk = (I − KkHk )P
−

k (12) 455

where Kk is the Kalman gain and Pk is the new state 456

covariance matrix. 457

The flowchart of the proposed UWB-based SLAM drifting 458

error correction approach is illustrated in Figure 6.When both 459

the SLAM and UWB systems start the positioning process, 460

the localization status is continuously monitored. If a local- 461

ization failure of the visual SLAM is detected, the coefficients 462

of the covariance matrix are changed to a large value to rep- 463

resent its low confidence. Otherwise, the difference between 464

the SLAM and UWB positioning results is calculated, and 465

a threshold is used to determine whether the drifting error 466

correction will be performed. The noise covariance matrix of 467

the EKF is then updated in the diagonal elements. Since the 468

estimates from SLAM and UWB are our main concerns, the 469

weights for the position and orientation (6 DoFs) are set as 470

larger values compared to the velocities and angular velocities 471

in 3 directions. 472

IV. EXPERIMENTS 473

The proposed drift-free visual SLAMwith UWB technique is 474

implemented on a mobile robot system, and tested in the real 475
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world environment. Figure 7 shows the mobile robot and the476

indoor space for our experiments. We construct an aluminum477

extrusion rack and install it on a Pioneer P3-DX robot to478

place the sensing and computing devices (See Figure 7(a)).479

An Intel Realsense D455 depth camera and a laptop computer480

are placed on top for sensor data acquisition and SLAM481

computation. For the UWB positioning, a tag is mounted482

below the camera system. We create a new local coordinate483

system, and define the relationship among the camera and484

UWB coordinate frames. It is used to ensure that there is485

no conflict between the localization results obtained from486

visual SLAM and UWB positioning. The initial test on visual487

SLAM is carried out in the scenes with sufficient feature488

points, and good localization results can be derived with489

high stability. When the visual SLAM is performed in a spa-490

cious environment, however, the localization failure problem491

occurs. Thus, our experiments focus on the evaluation of492

UWB-assisted localization techniques in an open space with493

several navigation paths. In the current setting, the update494

rates for UWB and SLAM are 50 Hz and 30 Hz, respectively.495

The principle of UWB for indoor positioning is the same as496

GNSS for outdoor positioning using multiple satellites. In the497

indoor environment, several UWB base stations are placed at498

some given locations with coordinate information, and the499

UWB tags are mounted on the mobile robot. Figure 8(a)500

depicts a general configuration of the UWB setting. Signal501

pulses are emitted from the tag at a fixed frequency, and502

the continuous communication is established between the503

base stations and the tag. Simultaneously, the tag location504

is computed by the localization algorithm using the ranging505

data from the base stations. For the environment for our506

experiments, the visual SLAM system is performed in an507

open and large indoor area as shown in Figure 7(b), and508

achieving high accuracy localization is a very challenging509

task. Thus, we also deploy several AprilTags as landmarks510

in the open space for localization assistance [38]. Figure 8(b)511

depicts the current AprilTag setting, where 16 landmarks are512

attached on the ground and arranged as a rectangular grid.513

When a robot navigates around a spacious indoor envi-514

ronment, it is inevitably to result in localization drifting515

errors even some landmarks such as AprilTags are adopted.516

In the experiments, large drifting errors can still occur when517

a mobile platform moves near the walls where image features518

are easily detected. Figure 9 shows the trajectories obtained519

using the SLAM and UWB positioning systems (presented520

in red and blue curves), respectively. Figure 10 illustrates the521

localization results derived by the proposed technique with522

the fusion of SLAM and UWB. The trajectories obtained523

with the threshold settings using 2 m and 0.5 m are shown in524

Figures 10(a) and 10(b), respectively. The processing frame525

rates for RTAB-Map and UWB are 20 Hz and 50 Hz, respec-526

tively. Under the EKF fusion, the localization computation is527

at about 15 Hz.528

Because the UWB positioning technique is relatively sta-529

ble in the global scale but with less accuracy in a local530

region, we set the covariance matrix parameter to 0.5 in the531

FIGURE 9. The trajectories obtained from RTAB-Map SLAM and the UWB
positioning (marked in red and blue). Each block in the figure is 1 square
meter, and horizontal and vertical axes are the x- and y- axis, respectively.

FIGURE 10. The localization results derived using the our approach by the
integration of UWB positioning and visual SLAM technique under
different parameter settings. (a) The output using the threshold of
2 meters. (b) The output using the threshold of 0.5 meters.

experiment. It is followed by setting the SLAM covariance 532

matrix parameter to 1 to perform the EKF for localization 533

fusion. In Figure 12(a), the blue, red and green curves repre- 534

sent the localization trajectories obtained using UWB, SLAM 535

and the EKF fusion. The figure illustrates that, when the 536

visual SLAM system does not localize successfully, the EKF 537

will still utilize to the positioning result from the previous 538

covariance matrix computation. As a result, large errors will 539

present in the final fusion trajectory. In the implementation, 540

we change the covariance matrix parameter to 999 (or a huge 541

number) if the SLAM has a tracking failure detected. As the 542

fusion trajectories indicated in Figure 12(b), the SLAM fail- 543

ure does not affect the result of EKF fusionwhen the proposed 544

adjustment is used. 545

For the evaluation of SLAM algorithms with ground-truth 546

data, most RGB-D datasets publicly available are collected 547
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FIGURE 11. Some of the images captured and used for the visual SLAM
computation.

FIGURE 12. The blue, red and green curves represent the localization
trajectories obtained using UWB, SLAM and the EKF fusion. (a) The
trajectories are derived using the covariance set as 1. (b) The trajectories
are derived using the covariance setting of 999.

with high-precision motion capture systems. In the experi-548

ments, the localization results obtained from AprilTags are549

used for accuracy comparison. We calculate the camera poses550

based on the coordinate origins of individual AprilTag set-551

tings. To evaluate the accuracy by absolute trajectory errors,552

a series of discrete samples are taken and used as reference553

ground-truth locations. The relative errors in the results of554

UWB, SLAM and EKF fusion are derived with N sample555

points using556

xerror =

∑N
i=1

√
(xest (i)− xgt (i))2

N
557

yerror =

∑N
i=1

√
(yest (i)− ygt (i))2

N
558

zerror =

∑N
i=1

√
(zest (i)− zgt (i))2

N
(13)559

FIGURE 13. The experiment for a mobile robot navigating in a rectangular
trajectory. Each block in the figure is 1 square meter, and horizontal and
vertical axes are the x- and y- axis, respectively.

TABLE 1. The translation errors of the experiment when the robot moves
in a rectangular path as shown in Figure 13.

where xerror , yerror and zerror are the mean ATE (absolute 560

trajectory error) along the three axes of the translation matrix 561

T . The translation estimate and the ground-truth position 562

at the sample point i are denoted by (xest (i), yest (i), zest (i)) 563

and (xgt (i), ygt (i), zgt (i)), respectively.We conduct the experi- 564

ments with several navigation trajectories in an indoor scene, 565

and evaluate with UWB, SLAM and EKF fusion localization. 566

The experimental result of a mobile robot navigating in a 567

rectangular path is shown in Figure 13, with the localization 568

trajectories derived from UWB, SLAM and the EKF fusion 569

marked in blue, red and green, respectively. Table 1 tabulates 570

the translation errors from different localization methods, 571

where SLAM’ indicates the SLAM result with drifting cor- 572

rection. The table shows that the mean errors along the x and 573

y axes are reduced from 0.647 meters to 0.182 meters and 574

from 1.399 meters to 0.387 meters after the drift correction, 575

respectively. The results illustrate that our proposed technique 576

is able to provide great improvements on drifting errors. 577

In the experiment, the EKF fusion can generally suppress 578

the translation error. Table 1 also indicates that the UWB 579

positioning has slight better performance in the y direction, 580

despite the noisy trajectory as illustrated in Figure 13. The 581

main reason is the evaluation carried out only on discrete 582

sample locations, which results in the UWB localization 583

approximate the ground-truth even if the complete path is 584

rather noisy. Figure 14 shows the CDF (cumulative distribu- 585

tion function) of the positioning error per meter. The mean 586

and standard deviation of the EKF fusion results are 0.616 and 587

0.045, respectively. Since the proposed technique is able to 588

perform in real-time, we consider the comparison in terms of 589

computation time is not significant. 590

The second experiment is performed on a more compli- 591

cated navigation path to evaluate the stability of the proposed 592

technique in a spacious indoor space. Themobile robotmoves 593

in straight lines, curves and irregular paths rather than travels 594
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FIGURE 14. The cumulative distribution function (CDF) of the positioning
error per meter.

FIGURE 15. Some of the images captured and used for the visual SLAM
computation.

FIGURE 16. The experiment carried out on a more complicated navigation
path to evaluate the stability of the proposed technique in a spacious
indoor space. The resulting trajectory contains many harsh positioning
conditions with few feature points, but our method can still provide good
localization accuracy with less drifting errors.

TABLE 2. The translation errors of the experiment when the robot moves
in an arbitrary path as shown in Figure 16.

against the wall. We have performed several empirical tests595

and found the threshold of 0.5 m is most suitable for the596

restriction on drifting errors while preserving the short-term597

result of visual SLAM. As illustrated in Figure 16, the result-598

ing trajectory contains many harsh positioning conditions599

with few feature points, but our method can still provide good600

localization accuracy with less drifting errors. The evaluation601

on the translation errors is tabulated in Table 2. As indi-602

cated in the table, although the drifting is more severe in the603

z-axis due to the lack of detected features for localization, 604

we are able to suppress the errors in all directions as shown 605

in SLAM’. In addition, the EKF fusion result not only 606

successfully reduces the error, but also avoids the UWB 607

positioning noise. This has demonstrated the feasibility of 608

our approach for many challenging situations in occurred 609

practical applications. 610

V. CONCLUSION 611

One major issue of current SLAM systems is the accumu- 612

lation of drift errors for the long range navigation. In this 613

work, we present an approach for indoor localization by inte- 614

grating different positioning approaches. The basic idea is to 615

mitigate the localization errors introduced by proprioceptive 616

sensors through the integration with UWB technology. The 617

localization trajectory in the global scale is split to a frame- 618

by-frame basis to estimate the relative position of the robot 619

movement. Since the error from UWB does not accumulate 620

over time, the localization failure can be monitored continu- 621

ously and the drifting errors of the local trajectory are reduced 622

by the UWB positioning. In the experiments, various SLAM 623

approaches are conducted in the real-world scenes for perfor- 624

mance comparison. The evaluation has illustrated the robust- 625

ness of the proposed drift-free visual SLAM by integrating 626

the UWB technology for indoor localization. In the devel- 627

opment, we consider the application for automated factory 628

in a scope of about 20 squared meters. The limitation of the 629

current system is mainly the assumption that the environment 630

is relatively spacious without dynamic objects. In the future 631

work, wewill evaluatemore complex scenes, and consider the 632

applications on high precision manufacturing using mobile 633

robots. 634
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