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ABSTRACT Crowdsourcing is a rapidly growing paradigm that commercial platforms such as Amazon
MTurk and UpWork are adopting for allocating tasks to workers. Such frameworks typically employ a
centralized infrastructure to implement required mechanisms such as task allocation, submission evaluation,
and payment computation. However, centralized deployment comes with unresolved challenges in terms
of trust, reliability, and transparency. Blockchain technology has been embraced for the deployment of
crowdsourcing frameworks to enable trusted and autonomous execution. Each of the existing Blockchain-
based crowdsourcing/ crowdsensing framework targets a specific application context due to the constraint
capabilities of Blockchain. In this paper, we propose a context-aware Blockchain-based crowdsourcing
framework where the context is defined by task requirements and workers’ availability. The proposed
framework is developed upon the review of existing works integrating Blockchain and crowdsourcing where
the challenges and future directions are identified. The proposed framework has two classes of components:
1) core components implementing the basic framework functionalities, and 2) advanced components which
are context and data managers that help improve the framework performance. The Advanced Context
Manager is designed to monitor the current context and select the mechanisms to run for the core components
accordingly. The core components are implemented as smart contracts on Blockchain for autonomous and
trusted execution, while the advanced components are implemented spanning Blockchain and the cloud
for flexibility and scalability. A case study demonstrating the performance of context-aware task allocation
algorithms is presented. It shows how capturing the current system context can help achieve better overall
performance based on the objective of the sensing application under consideration.

INDEX TERMS Crowdsourcing, blockchain, smart contracts, task allocation, context.

I. INTRODUCTION

The increasing connectivity of users has paved the way
for the wide deployment of crowdsourcing frameworks.
Crowdsourcing [1] is a contemporary practice to answer
tasks from end-users (requesters), being service or data
requests, by crowd members (workers). It has been used in
multiple domains such as environment monitoring [2], [3],
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healthcare [4], [5], transportation [6], [7], and social net-
works [8], [9]. Commercial crowdsourcing applications have
recorded high user engagement as for Uber (3.9 million
drivers!), Amazon Mechanical Turk MTurk (100 thousand
Turkers), and GigWalk (1.5 million Gigers).

A critical component in crowdsourcing applications is
the intermediary platform deployed by an organization or
cooperation to manage the interactions between requesters

1 https://www.uber.com/newsroom/company-info/
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and workers. This platform is responsible for collecting tasks
from requesters, allocating high-performance workers, and
collecting their submissions. Furthermore, it evaluates and
aggregates workers’ submissions before returning them to the
requesters for payments.

Fig. 1 illustrates a centralized crowdsourcing framework
with some of its core components [ 10]. Each component hosts
computational mechanisms required for its operation. For
example, User Manager holds functions for user registration
while Task Manager hosts functions for task creation and
allocation. The functions within the managers differ based on
the application the framework targets.

Different challenges arise when trying to propose an effi-
cient crowdsourcing platform due to the diverse require-
ments of requesters and the different capabilities of workers.
Requesters create location-based tasks with time constraints
and some quality requirements. On the other hand, workers
differ in their task eligibility, availability, and reliability.
Selecting the appropriate workers is crucial to the frame-
work’s success.

In addition, while centralized crowdsourcing frameworks
can optimize performance, they are susceptible to security
threats in terms of the availability and quality of the pro-
vided service. In fact, in April 2015, Uber China users were
faced with a service break that prevented them from end-
ing their ride once reaching their destinations [11]. Biased
execution arises from the concealed mechanism execution at
the framework. An example is MTurk, which does not vali-
date requesters’ decisions for fairness, allowing requesters to
potentially misbehave.

The existing research works in the crowdsourcing domain
primarily focus on - 1) proposing appropriate mechanisms
that answer crowdsourcing needs [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], and
2) improving the framework’s deployment infrastructure, for
instance by integrating Blockchain [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37].

In the literature [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], diverse task
allocation algorithms are proposed based on greedy, opti-
mization, auction, and stable matching theory. Each of these
algorithms guarantees different properties for allocated tasks
and workers. However, the main limitation of these existing
works is that they are designed for a specific application area
such as environment monitoring, delivery, ride-sharing, etc.
In addition, their performance varies based on the context
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defined by the number of tasks (demand), the number of
workers (supply), and task requirements.

Meanwhile, Blockchain has been applied to different appli-
cations such as Crowdsensing [34], [37], VANET [38], Sup-
ply chain logistics [39], and News Tracing [40]. In specific,
Blockchain-based crowdsourcing frameworks [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37] have been
proposed to overcome the limitations of centralized deploy-
ment. Blockchain [41] was proposed for trusted exchange of
Bitcoin between users and was extended to Ethereum [42] for
execution of programs on-chain- smart contracts [43]. Smart
contracts are executed in a decentralized, transparent, and
autonomous manner without a trusted third party. Commer-
cial blockchain-based crowdsourcing applications are emerg-
ing using this paradigm such as Drive ride-sharing applica-
tion> developed as a replacement for Uber, and Taskopus
competing with MTurk [44].

Commercial and research frameworks are migrating some
functionalities of the framework such as task allocation, sub-
mission evaluation, and worker payment to the Blockchain,
making them benefit from its properties, mainly the execu-
tion transparency. However, Blockchain-based frameworks
require computationally efficient functions to maintain the
cost efficiency of the framework. In addition, each framework
is designed for a specific application requirement and cannot
adapt to the change in context between different applications.

In summary, the research problem this work tries to address
is: How to design a crowdsourcing framework that can pro-
vide trusted execution while answering different crowdsourc-
ing application contexts including the application domain of
the sensing task, its urgency, the current worker’s availability
in the area of interest?

To the best of our knowledge, this paper presents the first
context-aware Blockchain-based crowdsourcing framework.
First, the challenges and opportunities in general crowd-
sourcing and Blockchain-based crowdsourcing frameworks
are identified and discussed. Second, a Blockchain-based
crowdsourcing framework is proposed, which is capable of
answering the requirements of different contexts. The pro-
posed framework consists of core and advanced components
that manage the crowdsourcing process. The core compo-
nents manage the task allocation, the contribution evaluation,
the payment, and the user feedback. These components are
hosted as smart contracts on Blockchain for autonomous
and transparent execution. The advanced components are
context and data managers, which are implemented using the
resources of Blockchain and/or the cloud for scalability.

The proposed context manager is responsible for monitor-
ing the current application requirements and demand on the
framework to intelligently switch the used mechanisms by the
framework’s core components. Meanwhile, the data manager
is responsible for the data relevant to the framework users
and created tasks. It is implemented as part of the Blockchain
and the cloud to provide alternatives for data storage.

2https://www.drife.io/
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FIGURE 2. Challenges in crowdsourcing framework process.

Data storage on the Blockchain provides transparency and
traceability though it comes with a high monetary cost. On the
other hand, cloud storage is cost-efficient yet is not tamper-
proof. The manager organizes the framework’s data between
the Blockchain and the cloud. In addition, it analyzes the
available data to improve the framework.

A case study focusing on the task allocation component is
presented using a real-life dataset to understand the change in
the performance of possible task allocation algorithms under
different contexts.

Overall, our contributions are summarized as follows:

« A review for general and blockchain-based crowdsourc-
ing frameworks to identify remaining challenges.

« An evaluation for different task allocation mechanisms
for blockchain-based crowdsourcing frameworks.

o« A context-aware blockchain-based crowdsourcing
framework capable of answering different application
contexts.

The rest of the paper is organized as follows. Section II
highlights the current efforts and open challenges in the
areas of crowdsourcing and Blockchain. Section III presents
the proposed Blockchain-based crowdsourcing framework.
Section IV details the conducted case study. Section V con-
cludes the paper.

Il. CURRENT EFFORTS AND OPEN CHALLENGES IN
INTEGRATING CROWDSOURCING AND BLOCKCHAIN

In this section, the current efforts in crowdsourcing are sum-
marized. In addition, the efforts targeting Blockchain-based
crowdsourcing are summarized to identify open research

gaps.

A. CROWDSOURCING

There are four main stages a published crowdsourcing task
goes through: 1) workers’ selection, 2) task outcome eval-
uation, 3) payment computation, and 4) workers’ feedback
and reputation. This section presents a summary for each
stage as well as open challenges in centralized crowdsourcing
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deployment. Fig. 2 summarizes the used mechanisms and
challenges at each of these stages.

1) WORKERS' SELECTION

The first stage a task goes through is its allocation to available
worker/s. The allocation of the right task to the right worker is
the processor for successful task completion. The allocation
process starts with understanding the requirements and con-
straints of a task as it affects the eligibility of workers. A task’s
requirements and constraints mainly include the required data
type, location, time, quality, and the number of required
responses. It is important to consider these requirements in
the selection of the task allocation mechanism. Tasks can be
allocated either by an allocation mechanism or by volunteer
workers. Nevertheless, task allocation is used to maintain the
scalability of the framework and reduce the complexity of
workers trying to identify suitable tasks when many tasks are
concurrently available [45].

The existing works adopt different allocation algorithms
based on the requirements of available tasks. The algorithms
use greedy algorithms, optimization techniques [12], [13],
genetic algorithm [14], [15], [16], auction mechanisms [17],
[18], [19], [20], [21], [22], and stable matching theory [23],
[24], [25], [26]. Each of the algorithms offers different prop-
erties and is selected based on the objective of the frame-
work. For instance, greedy algorithms do not offer an optimal
solution but tend to be computationally efficient, while opti-
mization techniques provide an optimal solution but are
computationally expensive. Auction mechanisms motivate
sharing truthful information and are applicable when workers
and/or requesters are required to share their information.
Matching theory provides a methodology to pair workers and
requesters from two different sets which can lead to stable
matches being formed. Therefore, it is beneficial when they
are of different preferences.

2) TASK OUTCOME EVALUATION
The evaluation of worker contribution provides constructive
feedback about the submitted data or completed task by a
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worker in terms of its quality. This assessment is important
for the requester and the framework to determine the worker’s
payment. The worker contribution evaluation differs based on
the task type. Multiple approaches have been used such as
the completion percentage of the task, group truth, majority
voting, or requester feedback. The completion percentage
is useful for tasks concerned solely with the completion of
the tasks such as surveys and rides. Evaluation against a
ground truth is useful for sensing tasks when the outcome is a
fixed known value. However, as this is not always available,
majority voting becomes helpful as it relies on collecting
submissions from multiple workers about the expected result
of a task and taking the most occurring result as the correct
one. Voting is feasible with a finite number of possible results
but is too complicated when the result is from an infinite
number of possibilities. On the other hand, direct requester
feedback is used for design tasks where the evaluation is
subjective to the requester’s opinion.

While some of the existing works such as [12], [20],
and [23] evaluate workers’ contribution, other works rely
on the expected performance of allocated workers as an
indication for the actual performance of workers.

3) PAYMENT COMPUTATION

Monetary incentive motivates workers to engage in crowd-
sourcing activity. The payment amount needs to be computed
based on the entitlement of the workers and the dedicated
budget of the task. Depending on the used approach and
the nature of the task, payment per worker could be fixed
or computed using an optimization technique based on the
contribution quality, or the declared cost. For instance, pay-
ments based on the contribution quality are widely adopted in
crowdsensing where the quality of the submitted data is eval-
uated to determine the worker’s entitled payment. Alterna-
tively, a combination of a fixed payment and the declared cost
is used in ride-sharing tasks to accommodate the worker’s
interest and the requester’s budget.

Auction mechanisms have been used to compute workers’
payments based on their declared bids in the works [13], [17],
[19], [20], [21], [22]. There are multiple types of auctions,
such as first-price auction, second-price auction, and double
auctions. Double auctions are used to consider the payment
a requester is capable of paying and the payment a worker
is interested in acquiring. This auction is truthful, which
implies that workers and requesters will maximize their gain
by bidding their true valuations for the available tasks. For
example, if a worker/ requester bid a value higher or lower
than their true valuation for a task, they might either be
unallocated or overpay for the task being completed.

4) WORKERS' FEEDBACK AND REPUTATION

The last stage for a task is collecting and compiling feedback
about workers and requesters to have an indication about their
trust and commitment. One metric that reflects the trust of
the users is their reputation, computed based on the historical
interactions of the users [48]. The feedback and reputation is
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important for better task allocation in consequent tasks. It can
be compiled for workers and requesters in the framework, yet
the existing centralized works mostly compile the reputation
of workers. The worker reputation is accounted for during
task allocation, yet it is assumed to be available without
proposing a model to compute it. On the other hand, few
existing works such as [12], [15], [16], and [23] present a
worker reputation computation model within their proposed
frameworks.

B. CROWDSOURCING CHALLENGES

There are different challenges and open issues that impact
crowdsourcing frameworks at different stages. The chal-
lenges can be divided into 1) optimization challenges and
2) User strategy challenges. Each type is elaborated on in the
following sections.

1) OPTIMIZATION CHALLENGES

The crowdsourcing process entails optimization at the differ-
ent stages to be able to allocate tasks to workers and evaluate
the worker’s outcome. There are multiple aspects that need
to be accounted for during the optimization, which makes the
optimization problem challenging. Below are a few aspects.

a: TASK-SPECIFIC REQUIREMENTS

The different application areas that crowdsourcing is applied
to such as sensing, delivery, and health emergency vary
in the requirements for their tasks. The type of the task,
location-dependency, and time-dependency are a few of the
requirements that affect the allocation scheme applicable in
the framework. For example, environment sensing tasks are
usually location-dependent and delay-tolerant, unless in the
scenario of a natural disaster. They also require the availabil-
ity of sensors when performing the allocation and demand
high-quality data. Ride-sharing tasks are time-sensitive and
require the availability of the vehicle for the ride. Emergency
health tasks are time-sensitive and location-dependent while
being medical image labeling tasks are delay-tolerant and
location-independent [46]. Hence, different algorithms are
required to answer the diverse requirements of the tasks.

b: DIFFERENT WORKERS’ CAPABILITIES

Workers vary in their abilities (computation, sensing, knowl-
edge level) and reputation metrics. It is crucial to account for
such information in the allocation as competent workers are
more capable of fulfilling tasks with high quality. Workers’
capabilities may vary in time depending on the dynami-
cally changing conditions, which consequently affects the
allocation.

¢: REPUTATION BOOTSTRAPPING

When a worker joins the framework, an initial reputation
needs to be assigned to them. While justifiable, the adop-
tion of a low initial reputation might contribute in reducing
the worker’s eligibility for available tasks, which excludes
workers for possible tasks that could increase their reputation.

VOLUME 10, 2022
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Alternatively, a high reputation might be too optimistic and
grant the worker priority over more competent workers for
the task. Different mechanisms have been used to bootstrap
reputation values such as initializing a similar reputation
to similar agents [49], based on their social network [50],
or based on collected endorsements [51].

2) USER STRATEGY CHALLENGES

a: MECHANISM DESIGN CHALLENGES

The crowdsourcing framework includes multiple mecha-
nisms as part of the process. Designing such mechanisms
is challenging as it requires considering different aspects as
mentioned below.

i) CONFLICTING USER PREFERENCES

Requesters and workers in the framework are of conflicting
preferences that need to be considered during task allocation.
Requesters are usually interested in the fulfillment of their
tasks, with the least possible payment; whereas, workers are
interested in the profit acquired from fulfilled tasks. These
conflicting preferences may lead to either category of users
misbehaving to maximize their gain. Therefore, it is impor-
tant to account for the different metrics related to the tasks
and workers during task allocation.

i) DISCREPANCY BETWEEN EXPECTED PERFORMANCE

AND RECEIVED PERFORMANCE

While task allocation is based on the expected performance
of workers for a task, the contribution is important to reflect
the received performance of a worker in an allocated task.
In some cases, workers with high expected performance do
observe a drop in their actual performance. Alternatively,
workers with low expected performance might complete
tasks with high quality. Therefore, it is important to use
mechanisms that evaluate the contribution of workers to pay
them their entitled payment and update their reputations and
profit accordingly.

iif) WORKER PAYMENT FAIRNESS

With workers of different capabilities performing tasks in
the framework, it becomes increasingly important to fairly
compute the entitled payment for each of them. In fact, some
workers might complete tasks with a quality below what is
agreed upon for their payments whether intentionally or due
to their limited capabilities. Therefore, the framework needs
to determine the entitlement of a worker for their computed
payment during and task allocation. Another aspect that hin-
ders the payment fairness is workers colluding to submit a
given outcome for the task, thus reducing the payment of
honest workers.

iv) MUTUAL REPUTATION VIEW
While requesters can favor workers based on their reputa-
tions, workers do not usually have sufficient information
to differentiate tasks based on their requester’s reputation.
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In fact, most of the existing works do not indicate the
requester’s commitment to their created tasks. Consequently,
a requester can cancel the task upon the acceptance of the
worker or refuse to pay the worker without prior indication
for the worker. This introduces unfairness in the allocation
process and the framework. Therefore, it is important to
design an allocation mechanism that takes this into account.

b: SECURITY ATTACK CHALLENGES

There are multiple security challenges that hinder a crowd-
sourcing framework which we describe below.

i) TRUSTED EXECUTION

While a centralized platform is assumed to be trusted, this
assumption is not always valid or verifiable. In fact, a major
problem in task allocation is the concealed execution of the
allocation mechanism since it is hosted on private servers.
Hence, the framework can bias the allocation of tasks to
increase its profit by colluding with requesters or workers,
which hinders the execution trust.

i) FALSE REPORTING REQUESTERS
Such requesters attempt to report untruthful feedback about
a worker’s submission to reduce the entitled payment. This is
a major challenge to resolve in tasks that cannot be evaluated
by the framework itself as, in the long run, it may reduce the
interest of workers in engaging with the framework.

iii) PAYMENT BIASING

This can be seen as a result of malicious workers exploit-
ing the framework. Workers can launch a Sybil attack [47]
on the framework to bias their payments by impersonating
other workers. These malicious workers use the impersonated
workers’ accounts to submit biased cost values or data to
alter the outcome of the payment computation mechanism.
Consequently, they can acquire higher payment for their
completed tasks. This is an important problem to tackle as it
gives workers undeserved payments and consumes the budget
from task requesters.

iv) REPUTATION INTEGRITY AND VALIDATION

The reputation of a worker is a dynamically changing met-
ric based on their behavior and is usually updated by the
framework. The framework’s update for the reputation is
assumed to be trusted. However, the concealed execution at
the framework makes it possible for the framework to bias
the reputation in an untraceable manner. Therefore, there is
a need for a methodology to guarantee the integrity of the
reputation and to validate its update.

C. THE INTEGRATION OF BLOCKCHAIN AND
CROWDSOURCING

The idea of incorporating Blockchain into crowdsourcing
frameworks was first introduced in the proposed PaySense
framework [52], thus opening the way for Blockchain-based
crowdsourcing frameworks to emerge [27], [28], [29], [30],

93663



IEEE Access

M. Kadadha et al.: Context-Aware Blockchain-Based Crowdsourcing Framework

TABLE 1. Summary of surveyed crowdsourcing frameworks.

Paper Architecture | Task Allocation Contribution Evaluation | Monetary Payment Reputation Application

[12] N Yes - Worker

[13] Optimization (PSO) — Vickrey auction -

[14] - - -

[15] Genetic algorithm - - Worker Sensing

[16] - - Worker

[17] Two-stage auction - Yes (bids) -

[18] Quality-driven auction - - -

[19] Centralized Reverse auction - Reverse auction - Ride-sharing

[20] Yes (Reliability) Double auction -

[21] Double auction - Double auction -

[22] Double auction - Sensing

[23] Yes (Ground Truth) - Worker

5‘5‘} Matching Theory - - - General

[26] - - - Ride sharing

[27] - Yes (OFF) Yes - Image labeling

[28] - Yes Yes - Sensing

[29] - Yes (OFF) Yes Worker Image labeling

[30] - Yes (Miners) Yes -

[31] Yes (OFF) - Yes -

[32] Blockchain Greedy (ON) Yes (Similarity) Yes ‘Worker/ Requester Sensing

[33] Auction Yes (Ground Truth) Auction -

[34] - Auction -

[35] Yes (Requester) - Worker

[36] Matching Theory - - - General

[37] - - - Ride-sharing
Proposed Blockchain Multiple mechanisms/ Yes Yes Worker/ Requester General

Context-based

[31], [32], [33], [34], [35], [36], [37]. The main objective
of such frameworks is to overcome some of the challenges
in centralized crowdsourcing frameworks more specifically
security attack challenges. Alternatively, mechanism design
challenges are independent from the use of blockchain.
In this section, we describe the contribution of the exist-
ing Blockchain-based efforts, to the different aspects of
the crowdsourcing process, such as: 1) task allocation,
2) worker’s contribution evaluation, 3) payment computation,
and 4) feedback and reputation.

c: TASK ALLOCATION

The Blockchain-based crowdsourcing frameworks follow
one of two different approaches, i.e. either voluntary selection
by workers or through allocation mechanisms. The existing
works such as [27], [28], [29], and [30] assume that workers
will identify possible tasks and perform them voluntarily in
order to maintain the cost-efficiency of the framework and
the privacy of workers’ information. On the other hand, the
works in [31], [32], [35], [36], and [37] utilize task allocation
mechanisms to ensure a minimum level of performance qual-
ity for allocated tasks. The execution of the allocation mech-
anism varies where some works perform it using resources
off Blockchain (off-chain) as in [31], while other perform
it on Blockchain (on-chain). With on-chain execution, the
framework guarantees the transparent and autonomous exe-
cution of the mechanism, yet the computational complexity
of the mechanism becomes important due to the monetary
cost implications. Different mechanisms have been explored
for on-chain execution such as greedy [32], auction [33], [34],
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and stable matching theory [35], [36], [37]. Such mechanisms
aim to improve the performance of the framework by improv-
ing the allocated pairs while maintaining the cost efficiency
of the framework.

d: WORKER CONTRIBUTION EVALUATION

The Blockchain-based frameworks perform the contribution
evaluation, either off-chain as in [27], [28], [30], and [31]
or on-chain as in [29], [32], [33], and [35]. In [29],
a requester-defined evaluation function is used to evaluate
the contribution of workers transparently. While transparency
is preserved, requesters may bias the submitted evaluation
function to reduce the quality of workers’ submissions, and
consequently their payments or reputations. On the other
hand, the work in [32] proposes using an evaluation function
embedded as part of the smart contract to compute the con-
tribution of a worker’s submission. The evaluation function
determines the similarity of the submission to other submitted
values.

e: MONETARY PAYMENT

The works in [27], [28], [29], [30], [31], and [32] employ
Blockchain to exchange monetary payments in a trusted
end-to-end manner between workers and requesters in a
crowdsourcing framework. These frameworks share mon-
etary incentives with workers once they complete their
assigned tasks, mostly according to the expected worker
contribution quality. However, this may lead to overpaying
workers who submit low-quality data despite their expected
high quality. Other works such as [33] and [34] go beyond
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payment exchange and apply auction mechanisms to deter-
mine the payment of a worker before exchanging it.

f: Feedback AND REPUTATION

User reputation is considered by a few of the Blockchain-
based frameworks to help in determining the eligibility of
workers such as [29], [32], and [35]. The works compute
the reputation based on a worker’s previous interactions and
assume the availability of the reputation on Blockchain. The
work in [32] goes further and proposes computing the reputa-
tion of requesters to provide workers with feedback about task
requesters. The work proposes the computation of workers’
and requesters’ reputations in a smart contract to ensure its
integrity.

The existing Blockchain-based crowdsourcing framework
elevates the crowdsourcing paradigm by introducing dif-
ferent properties. However, the use of Blockchain entails
multiple challenges concerning scalability, security, privacy,
integration, regulations, and professional preparations [53].
We further elaborate on two main challenges that need to be
considered when designing a crowdsourcing framework on
Blockchain being: scalability and computational efficiency,
and security.

i) SCALABILITY AND COMPUTATIONAL COMPLEXITY
When deploying a Blockchain-based framework, the scalabil-
ity of the framework and its ability to properly handle a large
number of users and requests is a crucial aspect, especially for
near real-time applications. For instance, a centralized crowd-
sourcing framework such as Uber handles around 18.7 mil-
lion trips per day,® thanks to the computational capability
of the centralized resource. Meanwhile, the scalability of a
Blockchain is limited by the need to maintain the full list
of transactions at least at two nodes in the network. The
maximum block size and the deployed consensus protocol of
the Blockchain affect the processing speed of transactions.
In Bitcoin, 7-8 transactions can be processed per second,
while for Ethereum it is 20 transactions per second [54]. This
limits the applicability of Blockchain-based crowdsourcing
frameworks.

Looking at commercial crowdsourcing platforms, these
numbers fall below the real demand where Uber managed
to handle around 18.7 million trips per day in 2020.* With
a limited number of transactions per second, the processing
time of transactions varies based on the gas price, compu-
tational resources, and consensus mechanism used. Hence,
it is important to select the right category of Blockchain being
public, private, or consortium to answer the requirements of
the intended crowdsourcing framework.

In addition, the monetary cost of executing a mechanism
on Blockchain, especially public Blockchain, is directly pro-
portional to its computational complexity. Therefore, the use
of optimization techniques for the different components of

3 https://www.businessofapps.com/data/uber-statistics/
4https://Www.businessofapps.corn/data/uber-statistics/
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the framework becomes challenging and there is a need to
select computationally efficient mechanisms that balance the
computational complexity and the framework performance.
A designed framework needs to account for the distribution of
the its components between on-chain and off-chain resources
as it impacts the computational efficiency of the framework.

i) SECURITY

The security of the crowdsourcing framework infrastructure
directly relates to the security of Blockchain. Unfortunately,
Blockchain is vulnerable to multiple security attacks such
as the >50% attack [55]. It is possible when the major-
ity of the miners are managed by a single entity or when
they maliciously collide to validate transactions for their
benefit. In this attack, illegitimate transactions are validated
to double-spend coins and reject legitimate transactions to
threaten Blockchain’s trust. The success of this attack in
2018 led to the loss of more than $20M worth of cryptocur-
rency [56]. This attack hinders the trust of a crowdsourcing
framework as it would not only lead to the loss of monetary
assets but also the injection of incorrect transactions to the
record of the framework.

D. DISCUSSION

Table 1 presents a summary of the surveyed crowdsourcing
efforts in centralized and Blockchain infrastructures. It can
be seen that the proposed works focus on different stages
of crowdsourcing. In addition, each of them focuses on a
specific application domain where the adopted mechanisms
for allocation, evaluation, and feedback answer the require-
ments of that application domain. It can be seen that none
of the existing works propose a trusted generic framework
that overcomes the limitations of centralized frameworks and
adapts to different application domains and contexts. There-
fore, our main contribution is a crowdsourcing framework
that is capable of processing crowdsourced tasks for different
applications and varying contexts with high performance,
while leveraging Blockchain to provide transparency and
verifiable execution to the overall process.

IlIl. PROPOSED BLOCKCHAIN-BASED CROWDSOURCING
FRAMEWORK

Fig. 3 shows the novel envisioned Blockchain-based crowd-
sourcing framework that 1) provides requesters and workers
with high performance and trust, and 2) answers different
contexts by intelligently switching the used computational
mechanisms based on the current context. The main differ-
ence between the envisioned framework and existing ones is
the consideration of the current context of the environment
and the workers, enabling the switch between the alloca-
tion different mechanisms, allowing for better task require-
ments’ satisfaction. The context is defined by the supply,
demand, and task requirements. The proposed framework is
formed from two classes of components: core and advanced.

SOFF= Off-chain, ON= On-chain,- = Not Available.
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FIGURE 3. Proposed blockchain-based framework showing the users and the framework with the division of its components.

The core components are responsible for the basic function-
alities of the framework such as task allocation, contribution
evaluation, payment computation, and user feedback. They
are designed as smart contracts on Blockchain to offer trace-
able and autonomous execution. The advanced components
are responsible for context and data management. As these
components require computationally expensive mechanisms,
they are implemented spanning Blockchain and the cloud to
reduce the computations performed on Blockchain by the
framework.

A. FRAMEWORK USERS

The users in the framework are the requesters and workers
interacting with it. Both categories of users have a reputation
value associated with them. For requesters, their reputation
is associated with their task cancellation rate as proposed
in [32]. This allows workers to differentiate requesters based
on their reputations before accepting to perform their tasks.
For workers, reputation is associated with their task comple-
tion rate proposed in [32].

An additional metric that characterizes workers is the
Quality-of-Information (Qol). Qol is a standard metric for
crowdsourcing applications used to evaluate the contribution
of workers to a task by integrating multiple independent
metrics such as distance from the task, completion time, and
worker reputation. The Qol considered in this work is the one
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proposed in [32].
Rep,,
oly = ——————— 1
Qol,, Do x CTon ey
where Rep,, is the reputation of worker w, D,,; is the euclidean
distance between worker w and task ¢, and CT,, is the

completion time of worker w for task 7.

B. BLOCKCHAIN SELECTION

Three categories of Blockchain can be used to construct the
Blockchain part of the framework: public, private, or consor-
tium. The different categories vary in their properties where
the respective Blockchain can be selected for the framework
accordingly.

A public Blockchain is permissionless and open for any
user interested to join as an anonymous client or a miner.
Therefore, the consensus algorithms used for it require com-
putational effort, time, or stake to verify the blocks due to the
lack of trust among the members. Hence, the transaction fee
is required to compensate miners’ efforts where a higher pay-
ment results in a fast confirmation time. A public Blockchain
is designed to be immutable where a transaction is irreversible
with non-repudiation guaranteed. This category is suitable for
crowdsourcing tasks that are not concerned with the privacy
of data such as item-selling platforms.

A private Blockchain is permissioned, and users are
known members of a single organization. Unlike a public
Blockchain, transactions are verified by selected miners from
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TABLE 2. Blockchain categories based on privacy, org. implies an
organization.

Metric Public Private Consortium
Permissions Permissionless Permissioned
Users Any user One org.  Multiple org.
Miners Anyone Approved miners
Transaction fees Yes No No
Confirmation speed Low High High
Immutability Yes Partial

within the same organization. Consensus protocols such as
Practical Byzantine Fault Tolerance (PBFT) and Tendermint
are designed for it with the transaction speed being consid-
erably high while the transaction fee is negligible. Unfortu-
nately, a private Blockchain is not immutable as it is managed
by a centralized organization. Thus, the organization can roll
back its chain to an earlier block removing transactions from
the chain. This category is appropriate for internal use by
the framework and tasks concerned with data privacy such
as collected data.

A consortium Blockchain is an intermediary between the
previously mentioned types of Blockchain. It is a permis-
sioned Blockchain with the properties of private Blockchain
in terms of miners and consensus protocols. However, the
difference is that members who are granted permission to
access it or allocated as miners can be from different orga-
nizations. Immutability, in this case, is partially preserved
as a single organization in the consortium cannot roll back
the chain. However, if the majority of the organizations
agree, the current chain can be tampered with or rolled back.
A consortium Blockchain fits crowdsourced supply chain
frameworks as multiple entities are part of the crowdsourcing
process. Table 2 presents a summary of the characteristics of
each Blockchain type. In the proposed framework, the public
Blockchain is considered.

C. CORE COMPONENTS- SMART CONTRACTS

The core components with their respective computational
mechanisms implemented as smart contracts and hosted
on Blockchain are shown in Fig. 3. This ensures that the
mechanisms are highly available, transparently executed,
cost-efficient, and open to users to utilize the framework
capabilities. Different computational mechanisms are imple-
mented for each stage to equip the framework with sufficient
ones for different possible contexts.

Table 3 shows the User Manager Contract (UMC)
responsible for maintaining the information of workers and
requesters and compiling their feedback and reputations.

The User data structure is designed to hold a user’s infor-
mation with its different fields. UMC stores users’ informa-
tion in the User List mapping, which maps a user’s address
to their User object. City Workers maps the city code to the
addresses of available workers within the city. City codes are
used for the mapping, as opposed to latitude and longitude
coordinates since they change less frequently, making them
a more cost-efficient choice when Blockchain is used. The
addUser() function allows a user to register by providing the
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TABLE 3. User manager contract (UMC).

\ Data Structure |

[ User |
Completion Time Reputation (uint) Role (bytes1)
(uint)
Total Tasks Counter Latitude (uint) Longitude (uint)
(uint)
Worker Availability Accepted/ Cancelled Cities (bytes1[])
(boolean) Tasks Counter (uint)
\ Variables |
User List (address= User)
City Workers (bytes1=> address[])
\ Function } Parameters [ Return |
addUser() User Information -
updateWorkerStatus() Status -
updateCity() City, Action -
updateLocation() Location -
updateReputation() Task Status -
getWorkers() City User[]

TABLE 4. Task directory contract (TDC).

| Data Structure |
[ Task |
Requester (Address)

Reputation (uint) Duration (uint)
Latitude (uint) Longitude (uint) Status (uint)
Deposit (uint) Min. Reputation (uint)

| Variables |
City Tasks (bytes1=-Task[])
Active Cities (bytes1[])

| Function [ Parameters [ Return |
addTask() Task attributes and budget -
updateTaskStatus() Status -

necessary information for a User object to be created and
mapped in User List and City Workers. The update WorkerSta-
tus(), updateCities(), and updateLocation() functions allow
workers to update their information. The updateReputation()
is an internal function called to update the reputation of a
requester/ worker according to the adopted mechanism such
as the one proposed in [32]. Meanwhile, the getWorkers()
function is used to acquire the list of workers in a
specific city.

Table 4 presents the Task Directory Contract (TDC),
which is responsible for storing available tasks.

The Task data structure holds the information of a single
task. TDC maintains the information of tasks in the City
Tasks mapping, which maps a city code to an array of tasks
within the city. Active Cities holds the list of cities with avail-
able tasks. TDC includes the addTask() and updateTaskSta-
tus() functions. The addTask() function allows requesters to
publish their task to the framework by specifying the task
attributes and transferring the intended budget. The func-
tion creates a Task object, initializing the default values and
appending them to the corresponding city in the mapping. The
updateTaskStatus() function is used for updating the current
status of a task, whether pending or completed.

Table 5 presents the Task Allocation Contract (TAC),
which is responsible for allocating tasks to workers according
to the set mechanism.
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TABLE 5. Task allocation contract (TAC).

TABLE 7. Payment computation contract (PCC).

| Variables |
Task-Worker Allocation (address=-address[])
Greedy (boolean) ] Auction (boolean) [ Matching (boolean)
\ Function | Parameters \ Return |
GreedyMechanism() City Code/ Task -
address
AuctionMechanism() City Code/ Task -
address
MatchingMechanism() City Code/ Task -
address
UpdateUsedMechanism() Selected -
Mechanism
AllocateTasks() City Code/ Task -
address

TABLE 6. Contribution evaluation contract (CEC).

| Variables |
Worker Submission (address=>int)
Worker Evaluation (address=-int)
Completion (boolean) [ Quality (boolean) [ Requester (boolean)
\ Function | Parameters | Return |
EvaluateCompletion() Task address -
EvaluateQuality() Task address -
AddRequesterEvaluation() Worker address, -
evaluation
UpdateUsedMechanism() Selected -
Mechanism
ContributionEvaluation() Task address -

The Task-Worker Allocation mapping maps the address of
a task to an array of allocated workers for it. In addition,
TAC includes multiple boolean variables that indicate the
currently used mechanism among the ones hosted within
the smart contract. Each of the algorithms is presented by
its respective function being GreedyMechanism(), Auction-
Mechanism(), and MatchingMechanism(). The functions use
the list of workers and tasks for the allocation based on the
currently used mechanism. Consequently, it sets the task-
worker allocation mapping. The UpdateUsedMechanism()
function is triggered to set the used function by setting its
corresponding variable. The AllocateTasks() function per-
forms the allocation by checking the variables and running
the corresponding used mechanism.

Table 6 presents the Contribution Evaluation Contract
(CEC), which is responsible for evaluating the contribution
of each worker by the end of an allocated task.

The contract holds two mappings: Worker Submission and
Worker Evaluation. The Worker Submission maps a worker’s
address to their submitted value for the task, while Worker
Evaluation maps the worker’s address to their calculated
evaluation result. CEC holds multiple boolean variables that
reflect which evaluation mechanism is used. The Evalu-
ateCompletion() function evaluates whether a worker has
completed their allocated tasks or not. The EvaluateQual-
ity() function computes the quality of a worker’s submis-
sion for tasks based on similarity, majority voting, etc. The
AddRequesterEvaluation() function allows a requester to sub-
mit an evaluation for a given task. The UpdateUsedMecha-
nism() function is used to set the used evaluation mechanism.
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\ Variables
Worker Cost (address=>int)
Requester Budget (address=-int)
Completion (boolean) Quality (boolean) Requester (boolean)
Function Parameters Return

AddWorkerCost() Cost -
AddRequesterCost() Cost -
QualityPayment() Evaluation -
AuctionPayment() Evaluation -
UpdateUsedMechanism() | Selected Mechanism -
PaymentComputation() Task address -

ContributionEvaluation() function executes the set contribu-
tion evaluation function.

Table 7 presents the Payment Computation Contract
(PCC), which calculates and distributes the payments on
workers.

The contract stores workers’ submitted costs and
requesters’ submitted budgets in the respective mappings,
Worker Cost and Requester Budget. The AddWorkerCost()
function allows a worker to submit their required pay-
ment to perform an allocated task. On the other hand, the
AddRequesterCost() function allows a requester to declare
the maximum possible payment for a task. The QualityPay-
ment() function computes the payments for workers based on
their contribution and the budget of the task, a mechanism
similar to the one presented in [32]. The AuctionPayment()
function calculates the payment based on an adopted auction
mechanism accounting for the declared costs by the worker
and requesters similar to the work in [34]. The PaymentCom-
putation() function calculates workers’ payments according
to the selected computation mechanism and forwards the
payments to the entitled workers from the deposited budget.
The UpdateUsedMechanism() function sets the used payment
mechanism by setting the corresponding boolean variable.

D. ADVANCED COMPONENTS

The proposed framework has advanced components that
are part of its architecture. Two managers are proposed:
1) Context Manager and 2) Data Manager. While the
basic components are deployed fully on-chain, the advanced
components span resources on Blockchain and the cloud
to benefit from both of these architectures’ capabilities.
Blockchain provides the managers with transparency and
trust. However, it is computationally expensive to per-
form all the context inference and store the data on the
Blockchain, as it all translates to monetary cost. Therefore,
cloud resources are employed to migrate mechanisms for cost
efficiency.

The Context Manager is responsible for monitoring and
evaluating the current context to infer the suitable mecha-
nisms for the core components.

In this work, the context is defined by the current supply
(workers) and demand (tasks) as well as the requirements of
the tasks shown in Table 8. The concept of context manager
is already implemented in centralized crowdsourcing. Its role
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TABLE 8. Possible contexts and the respective mechanisms at the process stages.

Application Domain Environment Delivery Ride Sharing Emergency and Health Crisis
Monitoring
e -
/ F 33 I
— i .
[ Context Information
Worker-Task Requirements Many-One One-One, One-Many One-One One-One
Time-critical Yes/No Yes/No Yes Yes
Location Dependent Yes Yes Yes Yes
Demand-to-Supply Ratio (DSR) Yes Yes Yes NA
Fulfillment vs Quality Both Both Fulfillment Fulfillment
[ Suggested Mechanisms
Task Allocation Greedy (Delay tolerant), | Auction (Declared cost) GSM (High DSR), Greedy (For timeliness)
GSM (High DSR) Greedy (Low DSR)

Contribution Evaluation Submission Quality Task Completion

Requester Evaluation

Task Completion

Payment Computation Quality-based Declared Cost

Declared Cost

Fixed Budget

Evaluation

Worker/ Requester Feedback Task Completion

Requester Evaluation

Task Completion

is to monitor the current context of the framework being the
number of tasks and workers as well as other metrics and
adjust the used algorithms in the framework components for
task allocation, payment, etc to maximize its performance
and users’ satisfaction. Uber® is an example of a crowdsourc-
ing framework that applies the surge factor to balance the
load-based on the supply and demand on the platform.

This manager serves two main functions: 1) context moni-
toring and 2) mechanism selection. The context monitoring
component aims to record relevant metrics for the current
context being the number of tasks (demand), the number
of workers (supply), and task requirements. These metrics
can be collected periodically from Blockchain since it holds
users’ interactions and the published information about the
current tasks as transparent transactions. These collected met-
rics can be further used in mechanism selection.

The mechanism selection component aims to determine
the mechanisms to employ based on the current context. The
selection can be done through statistical methods. Emerging
technologies such as Artificial Intelligence (AI) and Machine
Learning (ML) can be also employed. ML allows utiliz-
ing the collected context information to train ML models
that predict the most suitable mechanisms to deploy given
the current context. The computational cost of determining
the context of a task depends on the ML model used and
where is it applied (cloud or blockchain). If the ML model
is to be hosted on blockchain, then its computational cost
needs to be minimized. However, if the ML model is to
be hosted on the Cloud, then more complex models can be
used. Upon the prediction of the models, the smart contracts’
updateUsedMechanisms() functions can be invoked to set the
corresponding mechanisms. The ML models can be trained
and hosted on the cloud or Blockchain, yet the cloud poses a
cost-efficient option.

Table 8 presents the context for a few application domains
that the framework can consider. In addition, it presents
suggested mechanisms for each category of tasks. It can be

6https://WWW.uber.com/us/en/ drive/driver-app/how-surge-works/
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seen that tasks in distinct applications vary in their time
and location dependencies. In addition, they differ in their
requirements for the number of workers and their sensitivity
to change in Demand-to-Supply Ratio (DSR) as well as qual-
ity requirements. Some tasks require being fulfilled without
constraints on the quality while other tasks required fulfill-
ment with high-quality constraints. In addition to the above
domains, the proposed framework can be used to answer tasks
for Al and ML models applicable for different application
domains. Workers can be selected by the framework to collect
data required by the ML models.

The Data Manager deals with the generated data by the
crowdsourcing system such as users’ profiles, and the crowd
collected data. It is responsible for processing and aggre-
gating the collected data before being pushed back to the
requesters of the tasks. In requires determining cost-efficient
storage and a mechanism to out-date data that cannot be
reused. Crowdsourced data can be stored either on the
Blockchain or the cloud. It is worth noting that storage on
the Blockchain is of higher cost and slower access time than
storage on the cloud. Therefore, the cloud is used to store
huge amounts of data in a private and cost-efficient manner.
Consequently, a small quantity of data can be stored on the
Blockchain, which in turn overcomes the storage scalability
constraint of the public Blockchain.

IV. A CASE STUDY ON TASK ALLOCATION MECHANISMS
FOR BLOCKCHAIN-BASED FRAMEWORKS

The proposed framework is a holistic Blockchain-based
crowdsourcing framework that accommodates tasks from
various contexts. It is envisioned that the framework will
intelligently switch between the different mechanisms based
on the monitored context. In this evaluation, three state-
of-the-art task allocation algorithms for Blockchain-based
crowdsourcing frameworks are compared to understand their
performance under different contexts. The selected mecha-
nisms perform on-chain task allocation and are hosted on
Blockchain, which aligns with the objective of the pro-
posed framework. Other surveyed state-of-the-art Blockchain
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works were excluded from the evaluation as they either do not
perform allocation on Blockchain such as [33] or their allo-
cation mechanisms are tailored to answer the requirements of
a more specific objective such as privacy such as the works
in [31], [35], and [36]. The considered mechanisms are-

1) SenseChain [32] which performs a greedy allocation
of tasks to workers based on a proposed Qol metric,
maximizing its value for allocated pairs. Workers sub-
mit their task of interest, one task at a time for each
allocation round.

2) Repeated task allocation mechanism proposed in [34]
and [57] which utilize an auction mechanism to allocate
tasks based on workers’ bids. A worker can submit a bid
for one task or more every repetition of the allocation.
Repeated-Single-Minded Bidder (R-SMB) is referred
to in this section.

3) Gale-Shapley Matching (GSM) [37], which employs
a matching mechanism to account for the preferences
of the workers and requesters during task alloca-
tion. Workers determine their task preferences based
on a proposed Quality-of-Task (QoT) metric, while
requesters determine their worker preferences based on
a Qol metric.

The details for the allocation mechanisms can be found in
their respective references.

A. SIMULATION SETUP AND PARAMETERS

The allocation mechanisms were implemented on Matlab
2020b to compare their performance. A real dataset collected
from the Xively platform’ with around 500 workers at ran-
dom locations was used. The dataset includes the IDs of the
workers and their locations. Out of them, a set of randomly
selected workers was identified. These workers’ reputations
were generated as uniformly distributed random values and
appended to the dataset. In addition, a random set of tasks
was generated within the area of the workers. The sets of
workers and tasks were used as an input to the allocation
mechanisms. The obtained results were compared to evaluate
the performance of each in several contexts.

Table 9 outlines the evaluation setup as well as the param-
eters for the dataset used in the evaluation and the generated
tasks. In addition, it presents the parameters for the task
allocation mechanisms considered in the evaluation.

B. PERFORMANCE EVALUATION AND COMPARISON
The evaluation aims to understand the performance of the
different mechanisms in terms of the percentage of allocated
tasks, their allocation time, allocated workers’ Qol, and the
traveled distance by allocated workers. The change in context
in the evaluation is implied by the different DSRs presented
in this section.

Fig. 4 illustrates the percentage of allocated tasks which
reflects the fulfillment of the tasks. Each allocation algorithm
is repeated multiple times to account for unallocated tasks and

7https://eprints.soton.ac.uk/35486l/3/XivelyData.csv
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TABLE 9. Simulation parameters.

\ Experimental Setup
Tool Matlab 2020b
DSR [0.1,0.1,10]
Number of Iteration 5
\ Worker Dataset Attributes |
Number of workers 100
Location (Latitude, Longitude) ([35, ....,44],[136.,...,142])
Data Type Radiation Level (uSV')
Workers reputation (Rep) [40, ..., 70]
Worker’s radius of interest (r) 2

\ Task Generation Parameters |

Number of Tasks (N) [10, 20, ...,1000]
Location (Latitude, Longitude) ([35.,...,44],[136,...,142])

Number of workers per tasks (n) 1
\ Greedy Mechanism Parameters |
Preference list length 1
Worker Selection Criteria Qol in [32]
Task Selection Criteria Qol in [32]

\ Auction Mechanism Parameters

Preference list length 1
Worker Selection Criteria Distance
Task Selection Criteria Worker Rank

\ Matching Mechanism Parameters

Preference list length up to 10
Worker Selection Criteria QoT in [37]
Task Selection Criteria Qol in [32]
Matching Mechanism (GSM) ——— Matching Mechanism (GSM) 1120

- = = = Greedy Mechanism (SenseChain) = = = = Greedy Mechanism (SenseChain)
B0 [ Auction Mechanism (R-SMB)  wwmes Auction Mechanism (R-SMB)

Number of Rounds
Percentage of Allocated Tasks

1 2 3 4 5 6 7 8 9 10
Demand Supply Ratio (DSR)

FIGURE 4. Percentage of allocated tasks (red) and number of
rounds (blue).

the algorithm is terminated when either all tasks are allocated
or no task is feasible for available workers. The number of
repetitions reflects the time required for the allocation and is
referred to as the number of rounds. The number of rounds
required by each mechanism is also presented in Fig. 4.

GSM and R-SMB maximize the percentage of allocated
tasks independent from the DSR value where the results over-
lap in the figure shown. Meanwhile, SenseChain performs
similar to the other mechanisms at DSR values below 2 in the
task allocation percentage while the allocation percentage is
much lower at higher DSR values.

GSM converges to the maximum task allocation percent-
age within a lower number of rounds than R-SMB. The
gap between GSM and R-SMB, in the number of rounds,
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Demand Supply Ratio (DSR)

FIGURE 5. Average workers Qol.

increases with the reduction in the competition between
workers for available tasks (high DSR values). GSM requires
fewer rounds as workers submit multiple preferences at each
round, compared to the other approaches where one pref-
erence is submitted. For both mechanisms, the number of
rounds increases with the increase in DSR as the workers’
preferences are more spread due to the drop in the com-
petition between workers. On the other hand, SenseChain
terminates the allocation at a smaller number of rounds than
R-SMB at DSR values greater than 2. However, the termi-
nation is linked to a lower task allocation percentage, which
would affect the performance of the framework.

Fig. 5 shows the average Qol of allocated workers by
the end of the allocation rounds. At high competition con-
text (DSR less than 1), GSM outperforms the other two
mechanisms with a big difference compared to R-SMB as
Qol is not part of the selection criteria in the latter mecha-
nism. The performance of SenseChain consistently improves
with the drop in the competition between workers while the
other mechanisms do not increase with the same proportion.
SenseChain provides the best Qol compared to the alternative
mechanisms as Qol is used at the worker and the task for the
allocation. GSM follows as Qol is only considered in the task
allocation while the worker selection uses the QoT metric.

Fig. 6 shows the average traveled distance by allocated
workers, which is proportional to the time needed to perform
the task. The results show that SenseChain performs well
in the high competition context (DSR less than 0.2) and
minimizes the traveled distance, hence the time to perform
an allocated task. However, the average traveled distance
increases logarithmically with the reduction of the compe-
tition between workers due to the admission of workers
at further locations to perform tasks. The performance of
GSM and R-SMB improves as the distance reduces with the
reduction in the competition, and they converge to a similar
value for the traveled distance. GSM and R-SMB are of small
distance as they both incorporate it in the allocation. It was
expected that R-SMB results in the smallest traveled distance,
but the small additional difference compared to GSM is due
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FIGURE 7. Allocation mechanism flow.

to the additional rounds that admit further workers to the
allocation. SenseChain focuses on Qol, which incorporates
other metrics, leading to longer distances. It is inferred from
the figure that GSM can converge to a smaller distance value
at the different DSR values.

C. EVALUATION SUMMARY

Fig. 7 presents a logical map that reflects the usability context
for the different mechanisms based on the observed results.
The greedy mechanism is best when the quality of allocated
workers is important and the competition in the framework
is low as in the case of environmental monitoring applica-
tions. However, such allocation does not maximize either
the fulfillment or the allocation time. On the other hand,
the auction mechanism is best when the fulfillment needs
to be maximized while sacrificing the allocation time and
the completion time under high competition contexts as in
the case of delivery applications. In alternative contexts, the
results demonstrated that the stable matching mechanism
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performs best for the measured metrics such as ride-sharing
and environment monitoring under high DSR.

V. CONCLUSION

In this paper, the current crowdsourcing frameworks are
discussed and the challenges and opportunities in general
and blockchain-based crowdsourcing framework are identi-
fied. Additionally, a novel context-aware Blockchain-based
crowdsourcing framework is proposed. It consists of core
components hosted on Blockchain and advanced components
hosted spanning Blockchain and the cloud for flexibility
and scalability. The framework holds a manager responsible
for updating the used mechanisms according to the context.
Finally, a use case study for the possible task allocation algo-
rithms is presented using a real dataset. The evaluation aimed
to assess the performance of the algorithms under different
contexts. The results demonstrate the applicability of each
algorithm in different demand to supply ratios. In future work,
different machine learning models for context switching can
be studied to understand their impact on the performance of
the proposed framework.
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