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ABSTRACT Modern real-time embedded systems are equipped with multi-core processors to execute
computationally intensive tasks. In multi-core architecture, last-level cache memory is shared by cores.
The shared cache becomes a non-deterministic resource, which affects the independent execution of real-
time tasks. We propose a solution to remedy a variation in execution time when interference happens in a
shared cache. Current solutions have relied onmemory scheduling approaches that avoid concurrent memory
access to guarantee deterministic execution time. However, these methods required complex analysis to
accurately estimate the worst-case execution time and to schedule tasks in an overly conservative manner.
Unlike existing works, the proposed method prevents simultaneous memory access using the side effect of
memory barriers rather than the complicated analysis. A memory barrier is inserted based on a simple code
analysis that is performed in units of basic blocks using the LLVM compiler. The proposed method not only
does not require the modification of the operating system or task execution flow but also relatively shows
fast analysis time. To verify the proposed method, we compared the standard deviation of the execution time
of each core in a situation where shared cache interference occurs in multi-core. Experimental results show
that the proposed basic block-based memory barrier insertion method can reduce the variation in execution
time by up to 80% when interference occurs.
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INDEX TERMS Code analysis, embedded systems, multi-core architecture, real-time systems, shared cache
interference, software-level memory regulation.

I. INTRODUCTION18

Multi-core architectures to real-time embedded systems have19

attracted a lot of attention and has been illustrated to bring20

tangible computational benefits in many applications over the21

past few years [1], [2], [3]. However, typical commercial off-22

the-shelf multi-core platforms have a structure in which cores23

share a memory hierarchy such as cache, interconnect, and24

external memory, and as such, memory interference between25

cores may occur [4]. Memory interference poses a challenge26

for timing analysis, an essential part of real-time systems.27

In other words, in a real-time multi-core system, it is crucial28

to ensure the execution of a task, but it is also important29

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Nitin .

to consider the time constraint of the task [5]. For the time 30

constraint of the system, the execution time should be tightly 31

bounded by minimizing the task execution time variation. 32

A cache is one of the essential hardware parts because it 33

could improve system performance. The cache can reduce 34

computation time but can also cause interference between 35

tasks in multi-core architectures (e.g., cache miss because of 36

shared cache cleaning for the private cache replacement of 37

other cores) [6]. When a cache miss occurs, data is relocated 38

from the main memory based on the memory hierarchy. 39

At this time, because the bus between the processor and main 40

memory is shared by several platform hardware, performance 41

degradation may occur because of bus contention [7]. This 42

performance degradation depends on the cache replacement 43

policy and cache modeling [8]. An ARM processor for a 44
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widely used embedded system takes theoretically one to45

two and eight cycles to access on-chip L1 and L2 cache,46

respectively. In main memory case (CoreLink Level 2 Cache47

Controller L2C-310), an ARM processor takes 30-100 cycles48

to access main memory [9]. However, as mentioned earlier,49

if the memory relocation operation is pending because of50

bus contention, the required cycles to access the main mem-51

ory become non-deterministic. Therefore, if a cache miss52

happens, a deadline miss of the task may occur; thus, the53

interference by the shared cache should be reduced.54

The predictable execution model (PREM) has been pro-55

posed to remedy interference at the task level by reducing56

the inter-core memory access in a shared cache [10], [11],57

[12], [13]. Specifically, PREM isolates each core (or task)’s58

memory access and reduces cache misses by accessing mem-59

ory below the private cache size. However, for PREM, it may60

be necessary to modify the source code or logic of the task61

and operating system (OS) as well as add a PREM memory62

access control module. In addition, it takes a long time to63

analyze because integer linear programming (ILP) analysis64

is performed for accurate memory access isolation.65

We propose a PREM-like method that does not require66

hardware, task source code, and OS modification in ARM67

multi-core architecture. By employing amemory barrier [14],68

the variation in execution time because of shared cache inter-69

ference is reduced through the prevention of simultaneous70

memory access of each core in the multi-core. Although71

memory barriers are typically used to manipulate the order72

of memory accesses, we utilize the side effect of ARM archi-73

tecture nature that makes other barriers pending status when74

a barrier is issued. By doing that, load and store instructions75

after a barrier could be blocked. In particular, we propose a76

method that analyzes the task source code in units of basic77

blocks with LLVM for counting the amount of memory usage78

and then inserts a memory barrier based on three thresholds79

of memory usage: 32, 64, and 128 bytes. Unlike the existing80

PREM, we are aware of that the proposed method does81

not fully prevent interference in the shared cache because82

memory accesses are not thoroughly isolated in each region.83

Nevertheless, experimental results show that the memory84

barrier-based PREM-like method can reduce the variation85

in task execution time by an average of 50% in the shared86

cache architecture. The contributions to this study are as87

follows:88

• To reduce inter-core interference because of shared89

cache in multi-core architectures, this study presents an90

approach to reducing interference through the opera-91

tional side effect of memory barriers for memory access92

ordering. This study analyzes the variation in task exe-93

cution time because of interference, showing that the94

variation in execution time could be reduced by applying95

the proposed method.96

• The proposed method has the advantage of not requiring97

anymodifications to the execution flow of the task or OS98

module. In addition, the proposed method can analyze99

the source code within seconds on the target system.100

FIGURE 1. Memory hierarchy in ARM Cortex-A53 processor.

• This study presents a basic block-based fine-grained 101

analysis method and passes implementation using 102

LLVM to insert amemory barrier in the task code. In par- 103

ticular, it proposes inserting a memory barrier based on 104

the memory footprint of the basic block. 105

The structure of this paper is as follows. Section II 106

describes the memory structure and memory barriers of 107

the ARM architecture. Section III deals with the procedure 108

and implementation of the basic block-based memory bar- 109

rier insertion proposed in this study. Section IV describes 110

the experimental environment and analyzes the interference 111

reduction effect through the proposed method. Section V 112

describes related works, and Section VI describes the lim- 113

itations of the proposed method and future works. Finally, 114

Section VII provides the conclusion. 115

II. BACKGROUNDS 116

This study presents a PREM-like method for reducing shared 117

cache interference using a barrier insertion technique that 118

controls task scheduling. The task is analyzed in units of basic 119

blocks and interference is reduced as a result of the inser- 120

tion of memory barriers based on the memory footprint of 121

the basic block. In particular, this paper prevents concurrent 122

access to memory by exploiting the operational side effect of 123

memory barriers for memory access ordering. In this section, 124

the memory hierarchy of the ARM Cortex-A architecture, 125

which is the experimental environment in this study, is briefly 126

described, and the operation of the memory barrier, based on 127

this, is explained. 128

A. MEMORY HIERARCHY OF ARM ARCHITECTURE 129

Figure 1 shows the memory hierarchy of the ARM Cortex- 130

A53 processor used in this study. We focus on the data cache 131

because it only considers memory access. 132

Cortex-A53 is equipped with a quad-core processor 133

wherein each core has a data and instruction cache (level 1 134

(L1) cache). The L1 data cache consists of a physically 135

indexed and tagged cache and operates with a write-back 136

(WB) policy. WB marks a cache line as dirty after a cache 137

write, and updates external memory only when the cache line 138

is evicted or explicitly cleaned. 139
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The level 2 (L2) cache is organized in the L2 memory140

system as the data cache, and instruction cache is unified.141

Data in the L2 cache is not filled when it is first fetched142

from the system, and data allocation occurs onlywhen evicted143

from the L1 cache. The L2 memory system is composed of144

the integrated snoop control unit (SCU), advanced microcon-145

troller bus architecture (AMBA) 4 AXI coherency extensions146

(ACE), AMBA 5 coherent hub interface (CHI) master bus147

interface, accelerator coherency port (ACP), and an L2 cache.148

The SCU maintains the coherency of the L1 data cache of149

each core and connects the four cores to the cluster. The150

SCU also manages interconnection actions such as arbitra-151

tion, communication, cache to cache, and system memory152

transfers [15]. Coherence between caches is performed based153

on the MOESI state [16]. Data cache uses a pseudo-random154

cache replacement policy. This policy randomly replaces the155

next cache line in the set to be replaced, and the victim156

counter is also selected in a pseudo-randommanner. TheACE157

protocol provides a framework for system-level coherence,158

maintains correctness in data sharing between caches, and159

enables interaction between components with different char-160

acteristics, maximizing the reusability of cached data. ACP161

is an AMBA 4 AXI-compatible slave interface that provides162

core and interconnects points to support read and write trans-163

actions without additional coherence requirements. The L2164

cache and external memory system are connected by the ACE165

or CHI bus.166

In a symmetric multi-processing (SMP) system (or multi-167

core processor), in addition to hardware that maintains data168

consistency between caches, cache maintenance activities169

performed by code running on a core must be broadcast to170

other parts of the system [15].171

B. MEMORY BARRIER IN ARM ARCHITECTURE172

A barrier is a function (instruction) that prevents the173

re-ordering of memory access instructions, such as out-of-174

order execution for optimizing system performance. Depend-175

ing on the processor architecture, the barrier is also called176

a fence. Data barriers are generally used for data exchange177

between threads, similar to semaphores, to ensure the order178

of reading and writing data and for memory-based communi-179

cation. The ARM architecture supports the following barriers180

to ordering memory access [17]:181

• Datamemory barrier (DMB):DMBprevents re-ordering182

data access instructions through barrier instructions.183

It ensures that data access operations such as load and184

store before the barrier instruction are visible to the185

masters of the corresponding shareable domain, and that186

the instructions and execution order of all cores after the187

DMB are guaranteed. It does not affect the order of other188

instructions executed in core or fetch instructions.189

• Data synchronization barrier (DSB): DSB is similar to190

DMB but has the effect of blocking data access and191

execution of other instructions until synchronization is192

complete. However, this does not affect the prefetching193

of instructions194

FIGURE 2. Shareable domain in ARM architecture.

In the use of a barrier, the access field parameter can be 195

used as follows [18]: 196

• Load-load/store:While all loads have to complete before 197

the barrier, stores do not. Loads and stores that appear 198

after the barrier in the program sequence must wait until 199

the barrier is completed. 200

• Store-store: The barrier only affects the store, and loads 201

can be freely re-ordered. 202

• Any-any: Both the load and store must be completed 203

before the barrier, and loads and stores after the barrier in 204

program order must wait until the barrier is completed. 205

Since a wait occurs in processing the memory barrier, the 206

execution time overhead according to the insertion of the 207

barrier must be considered. In addition, since the overhead of 208

the barrier depends on the processor and memory structure, 209

the characteristics of the architecture should also be analyzed. 210

A study analyzing overhead because of memory barriers in 211

ARM architecture showed that throughput could be reduced 212

by up to five times in DSB [19]. 213

In the ARM architecture, the system’s memory map is 214

divided into several areas with various access rights, memory 215

types, and cache policies. Therefore, the range of the memory 216

area can be specified when calling the barrier [17]. The 217

memory area is depicted in Figure 2: 218

• Non-shareable (NSH) domain: An NSH is a memory 219

area only a single process can access. Therefore, an NSH 220

cannot be accessed from other processes. It generally 221

corresponds to the private cache of each processor. 222

• Inner-shareable (ISH) domain: The ISH is a memory 223

area shared between multiple processors. However, it is 224

not shared with other system domains (e.g., a graphical 225

processing unit (GPU)). Therefore, each processor’s pri- 226

vate and shared caches are included. 227

• Outer-shareable (OSH) domain: An OSH is a memory 228

area shared by one or more domains in the system. 229

As OSH includes ISH, it contains the main memory, 230

which can be shared by domains outside the processor, 231

such as a multi-core processor or GPU. 232

• Full system (SY) domain: The barrier instruction affects 233

all domains by applying a barrier to all system areas. 234
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In the ARM architecture, in the division of shareable235

domains, hardware modules, such as cores, are expressed as236

a manager (or master). When the manager issues a barrier,237

it ensures that other managers in the domain can observe that238

the transaction has been issued and must be able to observe239

all transaction issues before the barrier. A barrier transaction240

is divided into a read barrier transaction that reads the address241

channel and a write barrier transaction that writes the address242

channel. At this time, each transaction returns read and243

write responses for the channel. Furthermore, the intercon-244

nect between domains blocks all transactions received after245

the barrier transaction and issues transactions downstream.246

The block is removed for downstream issued barrier trans-247

actions when it is received into the read and write response248

channels. Therefore, transactions after the barrier transaction249

wait until the corresponding barrier transaction response is250

received [20]. Barrier transaction is provided by the ACE251

protocol depicted in Figure 1.252

This study applies a memory barrier to reduce the inter-253

ference caused by shared cache between cores. In partic-254

ular, as this study only considers the memory access part,255

DMB is used. In addition, because the focus is on the inter-256

ference between multi-cores, the ISH domain is targeted.257

As described above, when the barrier is issued by the core258

(manager), it is controlled by the ACE and ACP interfaces259

of the L2 memory system. If multiple memory barriers260

are issued, other barriers are blocked from processing the261

response to the barrier transaction in a specific domain and262

interconnect. In addition to this, read and write operations of263

the corresponding domain are waiting. This study focuses on264

this barrier transaction process and inserts a barrier in the part265

that accesses the memory in each core. A side effect that is266

suspended when memory barriers are issued simultaneously267

is applied. In other words, the side effect is the delay that268

occurs because of the response processing of the barrier trans-269

action and the time for which the manager’s memory access270

operation must wait until the end of the barrier. The authors271

expect it would be possible to reduce the variation in execu-272

tion time caused by share cache interference by reducing the273

simultaneous memory access in each core. In addition, this274

study presents the optimal memory barrier insertion method275

by analyzing the insertion location and overhead.276

III. FINE-GRAIN MEMORY ACCESS CONTROL277

This study presents a PREM-like method for reducing shared278

cache interference using a memory barrier insertion tech-279

nique that controls simultaneous memory access. This study280

aims to reduce shared cache interference in real-time multi-281

core systems, where it is essential to bind the task execution282

time tightly. The source code of the task in units of basic283

block is analyzed to insert a memory barrier. As a basic284

block is the smallest unit in the control flow of a system,285

the proposed approach can achieve better fine-grain memory286

access control compared with task-level access scheduling.287

As described in Section II, blocks for additional requested288

memory barriers occur in processing memory barriers in289

FIGURE 3. Basic block-based memory barrier insertion process.

ACE and interconnect. Moreover, using DMB, the memory 290

operation that occurs after the barrier is pending. Besides, 291

execution time or throughput overhead occurs because of 292

the insertion of memory barriers. To solve this problem, this 293

study also analyzes the overhead caused by the proposed 294

method by subdividing the threshold of the memory footprint 295

of the basic block as a criterion for inserting the memory 296

barrier. The aim here is to minimize concurrent memory 297

access on multiple cores by exploiting these side effects. 298

This section describes the basic block-based memory barrier 299

insertion method proposed in this study. 300

A. OVERVIEW OF MEMORY BARRIER INSERTION 301

The overall flow for inserting the memory barrier is shown 302

in Figure 3. The compiler generally divides the program into 303

basic blocks as the first step. A basic block is a straight-line 304

code sequence without branches, apart from entry and exit. 305

Therefore, the code is divided into basic blocks based on 306

branching (br) instructions between the blocks and the end 307

of the program (ret). 308

In this study, LLVM was used to convert C code to inter- 309

mediate representation (IR) code for basic blocks analysis 310

(Figure 3 (a) and (b)), and LLVM Pass was employed to 311

insert barriers (Figure 3 (c)). LLVM is capable of source- 312

and target-independent code generation. After converting the 313

source code, the IR basic block was analyzed using the imple- 314

mented LLVM Pass. To analyze the basic block, the anal- 315

ysis and insertion steps were separated using two passes: 316

a Basic Block Parsing Pass and an Insert Memory Barrier 317

Pass. Then, based on the analysis results, an IR code with 318

a memory barrier inserted was generated. This code was 319

compiled as a static library with Clang (version 9.0.0 armv7l) 320

(Figure 3 (d)). An accurate analysis of the basic block is 321

impossible if the extra code for execution time measurement 322

is inserted into the source code. Therefore, this study built a 323

static library and called it from an external code to measure 324

the execution time. C code was converted into an IR using 325

LLVMClang, and another code was developed to analyze the 326

basic IR blocks using ModulePass. For the experiment, bit- 327

code was converted into human-readable IR code (*.ll) using 328

the llvm-dis tool. The dyn_cast<> template was used to 329

examine the instructions of each basic block. All basic blocks 330

of the program were statically analyzed for barrier insertion 331

using LLVMPass. For barrier insertion, the memory footprint 332

of each basic block, which was calculated by examining each 333

barrier’s memory access instruction, was used. 334
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In the ARM architecture, load and store instructions con-335

trol memory access. This study uses the memory alignment336

values of the instructions to discover the memory footprint of337

the basic block. The structures of the load and store instruc-338

tions in IR code are as follows:339

1 load i32, i32* %4, align 4340

2 store i32 %69, i32* 5, align 4341

The alignment of load and store instructions is considered342

as the memory footprint of each basic block. Alignment343

means the size of memory to be accessed in byte size. The344

load instruction requires a pointer operand to read and store345

a value and the store instruction requires the value type and a346

pointer to store. Therefore, based on this, a specific threshold347

value is compared to determine whether to insert a memory348

barrier. In this study, the threshold for memory barrier inser-349

tion was set to 32, 64, and 128 bytes based on the L2 data350

cache line size of Cortex-A53 (64 bytes).351

LLVM IR provides fence instruction for memory bar-352

riers. The fence instruction is converted into the dmb353

ish ARM instruction, after which it sets the data barrier.354

IRBuilder is used to insert the instruction into the basic355

blockswith LLVMPass. IRBuilder is an application program-356

ming interface (API) that can generate and insert instruc-357

tions into a basic block’s end or a specific part. We use358

Builder.CreateFence() to insert a barrier instruction before359

the specified instruction of the basic block. The SetInsert-360

Point function is used to insert a barrier next to a specific361

instruction. If the insertion position is changed to the next362

instruction (I.getNextNode()) using SetInsertPoint, the fence363

is inserted after the current instruction. In LLVM, the PHIN-364

ode or phi instruction should always be inserted at the top365

of the basic block. Therefore, if the first instruction of the366

basic block is a phi node, a barrier instruction is inserted after367

the corresponding instruction. This study inserts memory368

barriers at the beginning and end of the basic block; a basic369

block that accesses a memory size larger than the threshold370

may cause shared cache interference. As described above,371

using the memory barrier makes it possible to prevent con-372

current memory operation execution because of the delay in373

the simultaneous barrier processing. In addition, all memory374

operation execution before the execution of the basic block375

is completed because of the memory barrier. Therefore, the376

possibility of interference that may occur with other memory377

accesses can be reduced for memory operations within the378

basic block; thus, the variability in execution time may be379

reduced.380

B. BASIC BLOCK PARSING PASS381

A Basic Block Parsing Pass is a pass that analyzes the code382

converted to IR, and which is divided into the static and383

dynamic analyses, as shown in Figure 3.384

The first part of the Basic Block Parsing Pass statically385

analyzes the IR. The pass gets the number of all basic blocks386

of the IR code and the name (number) of the basic block.387

FIGURE 4. Example of basic block in IR code.

Algorithm 1 Parsing Basic Block in IR Code
1: BasicBlock[]← 0 F Array for barrier insert classification
2: MemorySize← 0 FMemory alignment size of instruction
3: Index ← 0 F Basic block number
4: foreach Function F ∈ Module do
5: foreach BasicBlock B ∈ F do
6: foreach Instruction I ∈ B do
7: if I = StoreInst then
8: MemorySize← MemorySize+ Align
9: else if I = LoadInst then

10: MemorySize← MemorySize+ Align
11: else if I = CallInst then
12: if MemorySize ≥ Threshold then
13: BasicBlock[Index]← True
14: else
15: BasicBlock[Index]← False
16: end if
17: MemorySize← 0
18: Index ← Index + 1
19: end if
20: end for
21: if MemorySize ≥ Threshold then
22: BasicBlock[Index]← True
23: else
24: BasicBlock[Index]← False
25: end if
26: MemorySize← 0
27: Index ← Index + 1
28: end for
29: end for

When the example IR code in Figure 4 is executed, it moves to 388

the@atan basic block with a call instruction. When the exe- 389

cution of the corresponding basic block is finished, it returns 390

to basic block #110. To identify the precise memory footprint 391

of basic block #110, it should be divided into two parts based 392

on the call instruction. Algorithm 1 provides a pseudo-code 393

that analyzes the memory footprint of the basic block with 394

consideration of this call flow. 395

The number of all basic blocks is allocated to the 396

BasicBlock[] array. The number of all basic blocks is allo- 397

cated to the BasicBlock[] array, used to determine whether to 398

insert a barrier into the corresponding basic block. This study 399

uses the Index variable to indicate the location of the barrier. 400

The basic block memory footprint (MemorySize) is used as 401

the barrier insertion criterion, the sum of the alignment values 402

of the basic block load and store instructions. TheBasic Block 403

Parsing Pass sequentially searches all modules, functions, 404

basic blocks, and instructions using a ‘‘for’’ statement. If the 405

instruction is a load or store while searching for basic block 406
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FIGURE 5. Prints the name of the basic block example code.

Algorithm 2 Insert a Memory Barrier Into the Basic Block
in IR Code
1: BasicBlock[] F Array for barrier insert classification
2: Index ← 0 F Basic block number
3: foreach Function F ∈ Module do
4: foreach BasicBlock B ∈ F do
5: foreach Instruction I ∈ B do
6: if BasicBlock[Index] = True then
7: if I = First Instruction then
8: if I = PHI Node then
9: InsertBarrierToNextInstruction(Acquire)
10: else
11: InsertBarrier(Acquire)
12: end if
13: end if
14: if I = BranchInst then
15: InsertBarrier(Release)
16: else if I = ReturnInst then
17: InsertBarrier(Release)
18: end if
19: if I = CallInst then
20: InsertBarrier(Release)
21: Index ← Index + 1
22: end if
23: end if
24: end for
25: Index ← Index + 1
26: end for
27: end for

#110, as shown in Figure 4, the align value is added to407

the MemorySize variable (lines 8–19 of Algorithm 1). If the408

instruction is a call instruction (third line in Figure 4), and the409

MemorySize of the basic block is greater than the threshold410

value, the corresponding index value of BasicBlock[] is set to411

‘‘true.’’ Then, the Index is increased by one and verified with412

the following instruction (fourth line in Figure 4).413

When the search for all instructions in the basic block414

is finished, the memory size of the current Index and the415

Threshold is compared. Then, the decision must be made on416

whether or not to insert the barrier and write to BasicBlock[].417

If MemorySize is less than Threshold, ‘‘false’’ is stored418

in BasicBlock[Index]. Then, for the following basic block419

check,MemorySize is set to zero, increasing the Index.420

The second part of the Basic Block Parsing Pass process421

involves inserting an output statement to print each basic422

block’s name at runtime (Figure 3: Dynamic in Basic Block423

Parsing Pass). This process involves code analysis and is not424

included in the actual code execution for performance mea-425

surement. It is necessary to identify how many basic blocks426

are executed; the basic block with a barrier inserted is exe- 427

cuted to compute the barrier insertion overhead. This study 428

implements a function that receives the basic block name as 429

an argument and prints it, as shown in Figure 5. The IRBuilder 430

getOrInsertFunction() is used to pass the number of each 431

basic block as an argument to the function. The IRBuilder 432

CreateCall() inserts a call instruction that invokes the output 433

function in each basic block of the IR code. By doing this, 434

all the basic blocks executed at runtime are identified. The 435

execution rate of the basic block can then be calculated. 436

C. MEMORY BARRIER INSERTION PASS 437

BasicBlock[] is a check value for memory barrier insertion 438

for all basic blocks, which is derived from the result of the 439

previous Basic Block Parsing Pass. Accordingly, the Insert 440

Memory Barrier Pass inserts a memory barrier into the entry 441

and exit of the corresponding basic block while searching 442

for the basic block of the IR code. Algorithm 2 presents the 443

pseudo-code of the Insert Memory Barrier Pass. 444

Like the Basic Block Parsing Pass, the Insert Memory 445

Barrier Pass searches the module, basic block, and instruc- 446

tion. If BasicBlock[Index] is ‘‘true,’’ the fence instruction is 447

inserted at the beginning and end of the basic block. The 448

Fence Release instruction is inserted before the respective 449

branch, return, and call instructions (lines 15–22 of Algo- 450

rithm 2). If the basic block is a PHINode, a Fence Acquire 451

instruction is inserted after the phi instruction. Then, the 452

index value increases, and BasicBlock[Index] verification is 453

repeated with all basic blocks. 454

IV. EXPERIMENTS 455

To demonstrate the efficacy of the proposed method, experi- 456

ments were performed on a Raspberry Pi 3 Model B (RPi3) 457

equipped with a Broadcom BCM2837 quad-core chipset 458

based onARMCortex-A53. RPi3 has 32KBof L1 instruction 459

cache and data cache per core. The L2 cache is 512MB in size 460

and is shared by four cores. It consists of a unified instruction 461

and data cache, and the cache line is 64 bytes. RPi3 has 462

a main memory of 1 GB. Debian-based Raspbian 32-bit 463

was used as the OS. For the experiment, the PREEMPT_RT 464

patch [21]1 was applied to improve the real-time properties 465

of the Raspbian default kernel (kernel version 5.4.51). 466

For experimental measurements in PRi3, the performance 467

monitor unit (PMU) of Cortex-A53 was used. The target 468

board provides one cycle counter and six event-based per- 469

formance counters. this study used L1D_CACHE_REFILL, 470

L1D_CACHE, L2D_CACHE, and L2D_CACHE_REFILL 471

event counters. Because the PMU of Cortex-A53 does not 472

provide a cache miss counter, the cache miss rate was calcu- 473

lated by dividing the cache access by the cache miss refill. 474

In addition, the cycle counter of Cortex-A53 was used to 475

measure the execution time of the benchmark. 476

For the experiment, MiBench [22] was used. It consists of 477

35 benchmarks for embedded applications. Four benchmarks 478

1https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
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TABLE 1. Description of selected benchmarks.

TABLE 2. Execution arguments and the number of basic blocks per
benchmark.

from the Automotive and Telecomm suites were selected479

and each benchmark function consisted of small and large480

datasets. Parts that could affect execution time variabilities for481

the experiment, such as file input/output and print statements482

included in each benchmark code, were removed. Table 1483

describes the benchmarks selected for the experiment and484

Table 2 shows the arguments used for each benchmark and the485

number of basic blocks for execution. Each benchmark was486

run independently on the assigned core, and there were no487

shared variables or interconnections with other benchmarks.488

All experiments in this study were repeated 200 times.489

A. MEMORY BARRIER INSERTION OVERHEAD490

As described in Section II, execution time overhead occurs491

because of memory barrier insertion. Therefore, in this study,492

based on the memory alignment of each basic block, a mem-493

ory barrier was inserted according to a specific threshold,494

and the performance overhead was analyzed accordingly.495

The execution time (cycles) of the benchmark was measured496

and the performance overhead (increase in execution time)497

FIGURE 6. Overhead measurement process.

because of the insertion of memory barriers was analyzed. 498

For the experiment, as shown in Figure 6, the benchmark in 499

Table 1 was executed using onlyCore 0, and the cycle counter 500

of Cortex-A53 was read at the start and end points of the 501

benchmark to calculate the cycle elapsed. In addition, cached 502

memory data was cleaned for each benchmark execution. 503

FIGURE 7. Barrier insertion and barrier execution rate by the benchmark.

1) ANALYSIS OF MEMORY BARRIER INSERTION RATIO 504

Before measuring the overhead of memory barrier insertion, 505

the number of barriers inserted according to the threshold for 506

each benchmark was analyzed. For this purpose, the insertion 507

ratio according to the static and dynamic analysis of the Basic 508

Block Parsing Pass of Section III was measured. In addition, 509
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because the basic blocks in the IR code are not all executed510

according to the execution condition, this study counted the511

execution rate of the basic block with the memory barrier512

inserted at runtime. Figure 7 shows the static and dynamic513

analysis results according to each threshold.514

Figure 7 shows the number of basic blocks on the IR code515

for each benchmark through static analysis and the number516

of basic blocks with memory barriers inserted according to517

the threshold. The y-axis is the number of basic blocks with518

memory barriers inserted. Figure 7b shows the ratio of basic519

blocks inserted with memory barriers for each threshold exe-520

cuted at runtime. The y-axis represents the ratio of the basic521

block in which the memory barrier is inserted in the executed522

basic block. The x-axis of each graph is the benchmark for523

the dataset.524

When the threshold is 32, in the benchmarks of the small525

dataset, a memory barrier is inserted into the basic blocks526

of about 13.0, 7.4, 0.0, and 4.7%, respectively. At this time,527

in each benchmark, the basic block with a memory barrier528

inserted showed 25.1, 1.2, 0.0, and 6.9% execution propor-529

tions at runtime, respectively. In the large dataset, barriers530

were inserted in 16.9, 7.4, 14.3, and 4.7% of the basic blocks.531

Execution of the basic block with barriers inserted at run-532

time showed 19.0, 1.2, 30.7, and 6.0% of the execution,533

respectively. In the case of a small dataset, Qsort performed534

the quick sort on 10,000 integers, as shown in Table 2, but535

no memory barrier was inserted in all 11 basic blocks. This536

means that the sum of alignment of each basic block did not537

exceed 32 bytes, and its analysis showed that a large-sized538

memory operation did not occur according to the repeated539

access to integer variables. In contrast, Qsort of the large540

dataset was inserted into 14.3% of the basic blocks and541

showed a weight of 30.7% in the overall execution. The large542

dataset received and sorted mixed integer and char data as543

input, and it can be seen that this was because more variables544

were allocated and used than the source code of the small545

dataset. When the threshold was 64, 4.3, 2.5, 0.0, and 1.9%546

of the basic blocks were inserted in the benchmarks of the547

small dataset, respectively, and 5.2, 0.8, 0.0, and 6.9% were548

executed at runtime. The large dataset was inserted into 13.0,549

2.5, 14.3, and 1.9% of the basic blocks and occupied the550

runtime proportions of 0.5, 0.8, 30.7, and 6.0%, respectively.551

When the threshold was 32, the proportion of insertions and552

executions in Basicmath and Bitcount decreased in all data553

sets. When the threshold was 128, basic blocks were inserted554

at 2.9, 0.0, 0.0, and 0.9% of the small dataset benchmarks,555

respectively, and were executed at 5.2, 0.0, 0.0, and 5.9% at556

runtime. In the case of Basicmath and FFT, the proportion of557

inserted basic blocks was lower than that of the case where558

the threshold was 64, but the proportions executed at runtime559

were the same. In the large dataset, the insertion ratios of560

memory barriers were 1.3, 0.0, 0.0, and 0.9%, respectively,561

and the execution ratios were 0.5, 0.0, 0.0, and 5.3% at562

runtime. In the case of Qsort, when the threshold was 64,563

memory barriers were inserted in 30.7% of basic blocks, but564

none when the threshold was 128.565

FIGURE 8. Overhead because of barrier insertion.

2) ANALYSIS OF EXECUTION TIME OVERHEAD ACCORDING 566

TO MEMORY BARRIER INSERTION 567

Figure 8 shows the execution time overhead according to 568

the memory barrier insertion. For the experiment, the Insert 569

Memory Barrier Pass of Section III was used. It was also 570

measured when the memory barrier was inserted in all basic 571

blocks for each benchmark for comparison. As a result of the 572

experiment, the execution time of all benchmarks increased 573

when a memory barrier was inserted in all basic blocks. 574

In particular, in the case of Bitcount, the execution time of 575

small and large datasets increased by 2.2 times. Since the 576

Bitcount benchmark uses several algorithms for bit count, 577

there are fewer repetitively used codes than in other bench- 578

marks; further, as shown in Table 2, the total number of basic 579

blocks executed is more significant than in other benchmarks. 580

Therefore, it is concluded that the execution time increases 581

significantly when a memory barrier is inserted in the entire 582

basic block. 583

In the small dataset, the increase in execution time was 584

insignificant for the insertion of memory barriers according 585

to all thresholds. In the benchmark of the large dataset, when 586

the threshold was 32, Basicmath and Qsort had a 1.1-fold 587

increase in execution. Bitcount and FFT did not affect the 588

execution time, although the basic block with a memory 589

barrier inserted at runtime showed a 1.2 and 6.0% execution 590

proportion, respectively, as shown in Figure 7b. When the 591

threshold was 64, only Qsort increased the execution time by 592

1.1 times. Even though a memory barrier was inserted in the 593

Basicmath and FFT, there was no change in execution time 594

when the threshold was 128, as in the case of 64. 595

Through the threshold-based memory barrier insertion 596

method proposed in this study, a memory barrier is inserted 597

except for Qsort of a small dataset. In particular, at thresholds 598

32 and 64, the execution time of some benchmarks on large 599

datasets increased by 1.1 times, and there was no significant 600

change in others. Therefore, it can be seen that the execution 601

time overhead according to the insertion of the memory bar- 602

rier is not significant. 603

B. INTERFERENCE REDUCTION ANALYSIS 604

This section analyzes the interference caused by the shared 605

cache between cores and explains the effect of the basic 606
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FIGURE 9. Benchmark experiment with multi-core architecture.

block-based memory barrier insertion proposed in this study.607

For the experiment, as shown in Figure 9, each benchmark608

was assigned to each core and executed simultaneously. For609

this, Linux’s sched_setaffinity() was used to dedicate bench-610

marks to each core as much as possible. In addition, the cycle611

counter and PMU register were read at the beginning and612

end of each benchmark execution, and when the execution613

was over, the cached data was cleaned. For the experiment,614

we divided benchmarks into two groups according to the size615

of the dataset: Group 1 (small dataset) and Group 2 (large616

dataset). In each group’s experiment, Basicmath, Bitcount,617

Qsort, and FFT were assigned to Cores 0, 1, 2, and 3.618

1) ANALYSIS OF INTERFERENCE BETWEEN CORES619

To confirm the effect of the memory barrier insertion, the620

effect of inter-core interference was analyzed. Figure 10621

shows the interference effect when executed simultaneously622

by the group whereas Figure 10a shows the deviation in623

execution time because of inter-core interference. The y-axis624

shows the ratio of standard deviations. Figure 10b shows L1,625

and L2 cache misses in benchmark execution by group; the626

y-axis is the cache miss ratio. The x-axis of each graph rep-627

resents the benchmark of each group. Moreover, the without628

(w/o) interference bar on the x-axis of each graph refers to629

the value when running each benchmark with a single core.630

The benchmark of the small dataset, excluding Bitcount,631

Basicmath, Qsort, and FFT, showed 3.6, 3.6, and 10.4 times632

standard deviation changes in execution time, respectively.633

As the standard deviation of the execution time increases,634

the tight bounding of the execution time becomes impos-635

sible. Although most of the benchmarks did not increase636

the L1 cache miss ratio, the L2 cache miss increased up to637

approximately 3.6 times. In the case of Bitcount, while the638

L2 cache miss ratio increased from 2.9 to 10.5%, the standard639

deviation of the execution time did not change significantly.640

In contrast, in Qsort, the L2 cache miss increased by 0.2%,641

but the standard deviation of the execution time was large.642

As shown in Table 2, as Bitcount’s execution time was the643

longest, it is concluded that the effect of interference is minor,644

even if it is run simultaneously with other benchmarks.645

In the case of the large dataset, similar to that of the small646

dataset, the execution time standard deviations of Basic-647

math, Qsort, and FFT increased by 1.6, 2.2, and 2.4 times,648

FIGURE 10. Measurements of impact of interference.

respectively, except for Bitcount. In the cache miss ratio, 649

Basicmath and Bitcount more than doubled, while Qsort and 650

FFT decreased slightly. 651

2) ANALYSIS OF VARIABILITY IN EXECUTION TIME BECAUSE 652

OF MEMORY BARRIER INSERTION 653

To insert the memory barrier through the basic block analysis 654

proposed in this study, the Insert Memory Barrier Pass shown 655

in Figure 3 was used. To analyze the change in execution time 656

because of the insertion of the memory barrier, the experi- 657

mental method shown in Figure 9 was followed, as in the 658

previous experiment. Moreover, for comparison, the insertion 659

of memory barriers in all basic blocks was measured. 660

Figure 11 shows the experimental results on a small 661

dataset. The x-axis of each graph shows the experimental 662

results according to the threshold, and each benchmark indi- 663

cates Core 0-4 (for comparison with the existing graph, the 664

benchmark’s name was written instead of the core number 665

for convenience). Figure 11a shows the increase in execution 666

time because of memory barrier insertion and interference, 667

Figure 11b shows the standard deviation ratio of execution 668

time, and Figure 11c shows the amount of change in the cache 669

miss ratio for each case. The value of each graph represents 670

the ratio of the value in case of interference in Figure 10. 671

When a memory barrier is inserted in all basic blocks 672

(full in Figure 11), the execution time changes by about 673

1.1 to 2.2 times. The increase in execution time was simi- 674

lar to the overhead caused by the insertion of the memory 675

barrier in Figure 8, but in the case of Qsort, it increased 676

by 0.3 times because of interference. This means that the 677
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FIGURE 11. Barrier insertion result of small dataset benchmarks.

overhead because of the memory barrier is greater than678

the increase in execution time because of interference. For679

the standard deviation of execution time, while Basicmath680

increased by 1.1 times and Bitcount by 2.5 times, Qsort681

and FFT decreased by 0.6 and 0.7 times, respectively. Each682

benchmark’s change in cache miss ratio showed little change683

in the L1 cache, but L2 cache miss in Basicmath and Bit-684

count decreased by 0.3 and 2.3%, respectively. The L2 cache685

miss ratios of Qsort and FFT increased by 0.2 and 0.3%,686

respectively.When the threshold was 32, there was hardly any687

increase in each benchmark’s execution time. The standard688

deviation change of execution time also decreased for all689

except Bitcount. In particular, in the case of FFT, the stan-690

dard deviation of the execution time decreased by 0.2 times691

compared to the case where interference occurred because of692

the insertion of the memory barrier. In contrast, in the case of693

cache misses, excluding FFT, L2 cache misses increased by694

up to 0.5%. Even when the threshold was 64, the execution695

time of each benchmark did not increase. However, unlike696

when the threshold was 32, the standard deviation ratio of the 697

execution time increased by 1.6 times in the case of Basic- 698

math. The rest of the benchmarks had standard deviations 699

reduced by 0.2 times. The cache miss ratio was also similar 700

to that of threshold 32. When the threshold was 128, the 701

execution time did not increase, but Basicmath’s execution 702

time standard deviation ratio increased by a factor of 3.0. 703

In the case of cache miss ratio, except for FFT, the L2 cache 704

miss ratio slightly increased. 705

Through experiments on small datasets, the threshold- 706

based memory barrier insertion method did not reduce the 707

execution time compared to the situation where interference 708

occurred but typically reduced the standard deviation of the 709

execution time. In particular, when the threshold was 32, 710

the standard deviation of the benchmark execution time of 711

all cores did not increase in preparation for the interference 712

situation. Moreover, while there was no significant change in 713

the case of a cache miss, it decreased in the execution of some 714

core benchmarks. In the case of Qsort, no memory barrier 715

was inserted for all thresholds, as shown in Figure 7b, but the 716

standard deviation ratio of the execution time was reduced by 717

up to 0.3 times. This means that even if the memory barrier 718

is not inserted, it may be affected by the memory barrier 719

operation performed by other cores. 720

Figure 12 shows the result of inserting a memory barrier 721

for a large dataset. The axes and expression of the graph are 722

the same as in Figure 10. 723

When interference occurs, and memory barriers are 724

inserted in all basic blocks, results are similar to that of the 725

memory barrier insertion overhead in Figure 8. Similar to the 726

experimental results of the small dataset, the large dataset 727

also indicates that the overhead caused by the insertion of 728

the memory barrier is larger than the effect of interference 729

when the memory barrier is inserted in all basic blocks. The 730

standard deviation of execution time also increased by up to 731

2.2 times compared to the interference situation, and cache 732

misses by 1.6%. When the Threshold was 32, the execution 733

times increased by 1.1, 1.0, 1.1, and 1.0 times for each bench- 734

mark, but the standard deviations of the execution times were 735

0.6, 1.0. 0.9 and 0.6 times. In contrast, there was no decrease 736

in the cache miss ratio as it increased by up to 1.6%. When 737

the threshold was 64, the change in execution time did not 738

increase except for Qsort. However, the standard deviation 739

of the execution time and the cache miss ratio also increased 740

up to 1.5 times. When the Threshold was 128, there was no 741

change in the execution time. The standard deviation of the 742

execution time also increased by up to 1.6, excluding the FFT. 743

As shown in Figure 7b, when the threshold was 128, except 744

for the FFT, almost no memory barrier was inserted in the 745

remaining benchmarks, indicating that the standard deviation 746

of the FFT execution time partially improved. Therefore, the 747

cache miss ratio did not show a significant change. 748

Based on the experimental results of the large dataset, the 749

standard deviation of the execution time was reduced when 750

the threshold was 32, similar to that of the small dataset. 751

However, although the execution time increased by about 752
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FIGURE 12. Barrier insertion result of large dataset benchmarks.

1.1 times, the change in cache miss ratio because of memory753

barrier insertion was insignificant.754

Through experiments, this study shows that the proposed755

memory barrier insertion method according to the thresh-756

old based on the basic block analysis can reduce the distri-757

bution of execution time when interference between cores758

occurs. In particular, when the threshold was 32, there was759

no increase in the execution time except in some cases, and760

the standard deviation of the execution time decreased by up761

to 0.2 times. The goal here is not to reduce the execution762

time but to help tightly bound the execution time so that the763

proposed method is valid. In addition, the proposed method764

did not have a significant effect on reducing cache misses.765

V. RELATED WORKS766

The PREM method [10], [11], [12], [13] was proposed to767

control task scheduling and reduce the interference caused768

by resource sharing and contention in a multi-core system.769

PREM arranges the execution of tasks to avoid contention in770

FIGURE 13. Examples of the execution model.

each core’s access to shared resources (e.g., cache memory). 771

Memory-centric scheduling (MCS) [23], [24], [25] was pro- 772

posed to avoid or limit concurrent access to shared memory. 773

Task scheduling using time-division multiple access 774

(TDMA) [5], [26] in Figure 13 is a typicalMCS approach that 775

executes only one task per globally scheduled time slot. In a 776

multi-core architecture, this approach is inefficient because 777

it allows only one core to run at a time. Therefore, TDMA 778

has low utilization but does not cause inter-core interference. 779

Consequently, the tight bounding of execution time is possi- 780

ble, even in a shared memory structure. 781

A three-phase execution model was proposed to com- 782

pensate for the low utilization of TDMA [27], [28], [29], 783

as shown in Figure 13b. The three-phase execution model 784

in Figure 13b is an example of several execution flows. 785

It increases concurrency by dividing the task into a memory- 786

centric (M) phase (‘‘Read’’ and ‘‘Write’’ in Figure 13b) and a 787

computation (C) phase (‘‘Execution’’ in Figure 13b). The M 788

phase prefetch reads data and instructions from the shared 789

global memory to the local memory. During the C phase, 790

the processor performs computations with the data. By not 791

accessing shared memory, it avoids contention and can be 792

concurrently executed under the M phase. A problem with 793

this model is that either the code must be implemented from 794

scratch, or the legacy code must be modified according to the 795

model. 796

State-of-the-art [12], [13] three-phase execution mod- 797

els comprise automated code analysis, transformation, and 798

scheduling for PREM execution. These studies aim to 799

avoid contention and eliminate interference between cores. 800

As shown in Table 3, the state-of-the-art PREM methods are 801

compared to the proposed method. 802

Previous studies performed automated region-based mem- 803

ory profiling for source code transformation using a 804

VOLUME 10, 2022 93809



S. Park et al.: Software-Level Memory Regulation to Reduce Execution Time Variation on Multicore Real-Time Systems

TABLE 3. Comparison of state-of-the-art methods with the proposed
method.

three-phase model. The source code of the task was divided805

into several segments for this model. Each segment was806

then configured to be smaller than the core’s private cache807

(e.g., L1) based on the memory footprint used during the808

code execution. Accordingly, the code was analyzed and loop809

unrolling and tiling were performed. Each segment consisted810

of three phases: read, execute, andwrite. As its memory usage811

was larger than the original, the transformed codewas divided812

into more segments. Therefore, the time required for memory813

access isolation increased in other cores.814

The worst-case execution time (WCET) was estimated815

using ILP analysis to optimize the three-phase task schedul-816

ing. Based on the results, the execution time of each seg-817

ment phase was set. Furthermore, a schedule that arranges818

segments using a genetic algorithm [13] and heuristic819

method [12] was implemented to ensure optimal execution820

time without inter-core interference. No variations in the821

task execution time were experienced, even during inter-core822

interference.823

In a previous PREM study, a method for registering a824

memory-access-block system call in the kernel area [29] or a825

memorymutex [12] was used to control each phase. However,826

owing to the change from user mode to privileged mode, and827

depending on the OS, using a system call can incur execution828

time overhead. Moreover, in the source code, controlling829

memory access is frequently called, and the execution time830

increases by up to 2.5 times or more owing to prefetch oper-831

ations during the read phase. Moreover, only single-entry,832

single-exit codes that form without recursion are applicable833

to automatic code conversion. Another problem is that ILP834

computation requires tens of minutes of computation time.835

Furthermore, ILP analysis has the disadvantage of recalcula-836

tion when the instruction set architecture is changed.837

VI. DISCUSSION AND FUTURE WORKS838

This study proposed amemory barrier insertionmethod based839

on basic block analysis to reduce the interference caused by a840

shared cache that may occur in a multi-core real-time system. 841

A benchmark consisting of tasks for a traditional embedded 842

systemwas used for the experiment. In particular, four bench- 843

marks were selected and tested in two groups according to the 844

amount of input data. 845

A limitation of this study is the lack of experiments accord- 846

ing to the combination of benchmarks with various work- 847

loads. The impact of shared cache interference may vary 848

depending on the performance characteristics of each bench- 849

mark. In particular, recently, memory-intensive deep learning 850

operations have been applied to real-time systems [30], [31]. 851

Therefore, future work will analyze the interference effect 852

according to the performance characteristics using various 853

benchmarks. In the experiment, the insertion of the memory 854

barrier is decided based on the threshold. At this time, the 855

same threshold value is applied to the benchmark of each 856

core. It is also necessary to consider performance overhead 857

and interference reduction by applying a threshold based on 858

the characteristics of the benchmark. 859

Another limitation of this study is that, unlike the previ- 860

ously proposed PREM studies, inter-core interference may 861

still occur even if a memory barrier is used. Furthermore, 862

optimizations such as out-of-order cannot be used because of 863

the insertion of memory barriers. Performance degradation 864

because of this part should also be analyzed. 865

Finally, the operating characteristics of memory barri- 866

ers differ depending on each architecture’s implementation 867

method. Hence, it is necessary to analyze whether the pro- 868

posed method can reduce the interference caused by the 869

shared cache outside of the ARM architecture. 870

VII. CONCLUSION 871

This study aims to reduce the distribution of task execution 872

time because of the interference caused by the shared cache. 873

This can assist in the tight bounding of execution time, which 874

is one of the important factors in a real-time system. The 875

occurrence of interference caused by shared cache contention 876

in a multi-core architecture was analyzed and a method to 877

reduce task execution time variations by inserting memory 878

barriers into the basic blocks of the source code using LLVM 879

Pass was proposed. This study used side effects such as delay 880

of memory operation execution because of the memory bar- 881

rier and block when simultaneous memory barrier requests 882

occur, and presented a fine-grain analysis method for dividing 883

a basic block based on its call instructions. The memory 884

footprint of each basic block was used for the memory barrier 885

insertion. Through experiments, the execution time overhead 886

according to the insertion of memory barriers was analyzed 887

to show the distribution of execution time by threshold. 888

In particular, when the threshold was 32-byte, because of 889

the insertion of the memory barrier, no increase in execution 890

time was evident. Additionally, it was shown that the stan- 891

dard deviation of the execution time of all core tasks was 892

reduced by up to 80%. In addition, the proposed method 893

has the advantage of not modifying OS or task execution 894

flow. 895
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