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ABSTRACT Modern real-time embedded systems are equipped with multi-core processors to execute
computationally intensive tasks. In multi-core architecture, last-level cache memory is shared by cores.
The shared cache becomes a non-deterministic resource, which affects the independent execution of real-
time tasks. We propose a solution to remedy a variation in execution time when interference happens in a
shared cache. Current solutions have relied on memory scheduling approaches that avoid concurrent memory
access to guarantee deterministic execution time. However, these methods required complex analysis to
accurately estimate the worst-case execution time and to schedule tasks in an overly conservative manner.
Unlike existing works, the proposed method prevents simultaneous memory access using the side effect of
memory barriers rather than the complicated analysis. A memory barrier is inserted based on a simple code
analysis that is performed in units of basic blocks using the LLVM compiler. The proposed method not only
does not require the modification of the operating system or task execution flow but also relatively shows
fast analysis time. To verify the proposed method, we compared the standard deviation of the execution time
of each core in a situation where shared cache interference occurs in multi-core. Experimental results show
that the proposed basic block-based memory barrier insertion method can reduce the variation in execution
time by up to 80% when interference occurs.

INDEX TERMS Code analysis, embedded systems, multi-core architecture, real-time systems, shared cache
interference, software-level memory regulation.

I. INTRODUCTION

Multi-core architectures to real-time embedded systems have
attracted a lot of attention and has been illustrated to bring
tangible computational benefits in many applications over the
past few years [1], [2], [3]. However, typical commercial off-
the-shelf multi-core platforms have a structure in which cores
share a memory hierarchy such as cache, interconnect, and
external memory, and as such, memory interference between
cores may occur [4]. Memory interference poses a challenge
for timing analysis, an essential part of real-time systems.
In other words, in a real-time multi-core system, it is crucial
to ensure the execution of a task, but it is also important
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to consider the time constraint of the task [5]. For the time
constraint of the system, the execution time should be tightly
bounded by minimizing the task execution time variation.

A cache is one of the essential hardware parts because it
could improve system performance. The cache can reduce
computation time but can also cause interference between
tasks in multi-core architectures (e.g., cache miss because of
shared cache cleaning for the private cache replacement of
other cores) [6]. When a cache miss occurs, data is relocated
from the main memory based on the memory hierarchy.
At this time, because the bus between the processor and main
memory is shared by several platform hardware, performance
degradation may occur because of bus contention [7]. This
performance degradation depends on the cache replacement
policy and cache modeling [8]. An ARM processor for a
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widely used embedded system takes theoretically one to
two and eight cycles to access on-chip L1 and L2 cache,
respectively. In main memory case (CoreLink Level 2 Cache
Controller L2C-310), an ARM processor takes 30-100 cycles
to access main memory [9]. However, as mentioned earlier,
if the memory relocation operation is pending because of
bus contention, the required cycles to access the main mem-
ory become non-deterministic. Therefore, if a cache miss
happens, a deadline miss of the task may occur; thus, the
interference by the shared cache should be reduced.

The predictable execution model (PREM) has been pro-
posed to remedy interference at the task level by reducing
the inter-core memory access in a shared cache [10], [11],
[12], [13]. Specifically, PREM isolates each core (or task)’s
memory access and reduces cache misses by accessing mem-
ory below the private cache size. However, for PREM, it may
be necessary to modify the source code or logic of the task
and operating system (OS) as well as add a PREM memory
access control module. In addition, it takes a long time to
analyze because integer linear programming (ILP) analysis
is performed for accurate memory access isolation.

We propose a PREM-like method that does not require
hardware, task source code, and OS modification in ARM
multi-core architecture. By employing a memory barrier [14],
the variation in execution time because of shared cache inter-
ference is reduced through the prevention of simultaneous
memory access of each core in the multi-core. Although
memory barriers are typically used to manipulate the order
of memory accesses, we utilize the side effect of ARM archi-
tecture nature that makes other barriers pending status when
a barrier is issued. By doing that, load and store instructions
after a barrier could be blocked. In particular, we propose a
method that analyzes the task source code in units of basic
blocks with LLVM for counting the amount of memory usage
and then inserts a memory barrier based on three thresholds
of memory usage: 32, 64, and 128 bytes. Unlike the existing
PREM, we are aware of that the proposed method does
not fully prevent interference in the shared cache because
memory accesses are not thoroughly isolated in each region.
Nevertheless, experimental results show that the memory
barrier-based PREM-like method can reduce the variation
in task execution time by an average of 50% in the shared
cache architecture. The contributions to this study are as
follows:

o To reduce inter-core interference because of shared
cache in multi-core architectures, this study presents an
approach to reducing interference through the opera-
tional side effect of memory barriers for memory access
ordering. This study analyzes the variation in task exe-
cution time because of interference, showing that the
variation in execution time could be reduced by applying
the proposed method.

o The proposed method has the advantage of not requiring
any modifications to the execution flow of the task or OS
module. In addition, the proposed method can analyze
the source code within seconds on the target system.
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o This study presents a basic block-based fine-grained
analysis method and passes implementation using
LLVM to insert a memory barrier in the task code. In par-
ticular, it proposes inserting a memory barrier based on
the memory footprint of the basic block.

The structure of this paper is as follows. Section II
describes the memory structure and memory barriers of
the ARM architecture. Section III deals with the procedure
and implementation of the basic block-based memory bar-
rier insertion proposed in this study. Section IV describes
the experimental environment and analyzes the interference
reduction effect through the proposed method. Section V
describes related works, and Section VI describes the lim-
itations of the proposed method and future works. Finally,
Section VII provides the conclusion.

Il. BACKGROUNDS

This study presents a PREM-like method for reducing shared
cache interference using a barrier insertion technique that
controls task scheduling. The task is analyzed in units of basic
blocks and interference is reduced as a result of the inser-
tion of memory barriers based on the memory footprint of
the basic block. In particular, this paper prevents concurrent
access to memory by exploiting the operational side effect of
memory barriers for memory access ordering. In this section,
the memory hierarchy of the ARM Cortex-A architecture,
which is the experimental environment in this study, is briefly
described, and the operation of the memory barrier, based on
this, is explained.

A. MEMORY HIERARCHY OF ARM ARCHITECTURE

Figure 1 shows the memory hierarchy of the ARM Cortex-
AS53 processor used in this study. We focus on the data cache
because it only considers memory access.

Cortex-AS53 is equipped with a quad-core processor
wherein each core has a data and instruction cache (level 1
(L1) cache). The L1 data cache consists of a physically
indexed and tagged cache and operates with a write-back
(WB) policy. WB marks a cache line as dirty after a cache
write, and updates external memory only when the cache line
is evicted or explicitly cleaned.
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The level 2 (L2) cache is organized in the L2 memory
system as the data cache, and instruction cache is unified.
Data in the L2 cache is not filled when it is first fetched
from the system, and data allocation occurs only when evicted
from the L1 cache. The L2 memory system is composed of
the integrated snoop control unit (SCU), advanced microcon-
troller bus architecture (AMBA) 4 AXI coherency extensions
(ACE), AMBA 5 coherent hub interface (CHI) master bus
interface, accelerator coherency port (ACP), and an L2 cache.
The SCU maintains the coherency of the L1 data cache of
each core and connects the four cores to the cluster. The
SCU also manages interconnection actions such as arbitra-
tion, communication, cache to cache, and system memory
transfers [15]. Coherence between caches is performed based
on the MOESI state [16]. Data cache uses a pseudo-random
cache replacement policy. This policy randomly replaces the
next cache line in the set to be replaced, and the victim
counter is also selected in a pseudo-random manner. The ACE
protocol provides a framework for system-level coherence,
maintains correctness in data sharing between caches, and
enables interaction between components with different char-
acteristics, maximizing the reusability of cached data. ACP
is an AMBA 4 AXI-compatible slave interface that provides
core and interconnects points to support read and write trans-
actions without additional coherence requirements. The L2
cache and external memory system are connected by the ACE
or CHI bus.

In a symmetric multi-processing (SMP) system (or multi-
core processor), in addition to hardware that maintains data
consistency between caches, cache maintenance activities
performed by code running on a core must be broadcast to
other parts of the system [15].

B. MEMORY BARRIER IN ARM ARCHITECTURE

A barrier is a function (instruction) that prevents the
re-ordering of memory access instructions, such as out-of-
order execution for optimizing system performance. Depend-
ing on the processor architecture, the barrier is also called
a fence. Data barriers are generally used for data exchange
between threads, similar to semaphores, to ensure the order
of reading and writing data and for memory-based communi-
cation. The ARM architecture supports the following barriers
to ordering memory access [17]:

« Datamemory barrier (DMB): DMB prevents re-ordering
data access instructions through barrier instructions.
It ensures that data access operations such as load and
store before the barrier instruction are visible to the
masters of the corresponding shareable domain, and that
the instructions and execution order of all cores after the
DMB are guaranteed. It does not affect the order of other
instructions executed in core or fetch instructions.

« Data synchronization barrier (DSB): DSB is similar to
DMB but has the effect of blocking data access and
execution of other instructions until synchronization is
complete. However, this does not affect the prefetching
of instructions
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FIGURE 2. Shareable domain in ARM architecture.

In the use of a barrier, the access field parameter can be
used as follows [18]:

« Load-load/store: While all loads have to complete before
the barrier, stores do not. Loads and stores that appear
after the barrier in the program sequence must wait until
the barrier is completed.

« Store-store: The barrier only affects the store, and loads
can be freely re-ordered.

o Any-any: Both the load and store must be completed
before the barrier, and loads and stores after the barrier in
program order must wait until the barrier is completed.

Since a wait occurs in processing the memory barrier, the
execution time overhead according to the insertion of the
barrier must be considered. In addition, since the overhead of
the barrier depends on the processor and memory structure,
the characteristics of the architecture should also be analyzed.
A study analyzing overhead because of memory barriers in
ARM architecture showed that throughput could be reduced
by up to five times in DSB [19].

In the ARM architecture, the system’s memory map is
divided into several areas with various access rights, memory
types, and cache policies. Therefore, the range of the memory
area can be specified when calling the barrier [17]. The
memory area is depicted in Figure 2:

o Non-shareable (NSH) domain: An NSH is a memory
area only a single process can access. Therefore, an NSH
cannot be accessed from other processes. It generally
corresponds to the private cache of each processor.

o Inner-shareable (ISH) domain: The ISH is a memory
area shared between multiple processors. However, it is
not shared with other system domains (e.g., a graphical
processing unit (GPU)). Therefore, each processor’s pri-
vate and shared caches are included.

o Outer-shareable (OSH) domain: An OSH is a memory
area shared by one or more domains in the system.
As OSH includes ISH, it contains the main memory,
which can be shared by domains outside the processor,
such as a multi-core processor or GPU.

o Full system (SY) domain: The barrier instruction affects
all domains by applying a barrier to all system areas.
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In the ARM architecture, in the division of shareable
domains, hardware modules, such as cores, are expressed as
a manager (or master). When the manager issues a barrier,
it ensures that other managers in the domain can observe that
the transaction has been issued and must be able to observe
all transaction issues before the barrier. A barrier transaction
is divided into a read barrier transaction that reads the address
channel and a write barrier transaction that writes the address
channel. At this time, each transaction returns read and
write responses for the channel. Furthermore, the intercon-
nect between domains blocks all transactions received after
the barrier transaction and issues transactions downstream.
The block is removed for downstream issued barrier trans-
actions when it is received into the read and write response
channels. Therefore, transactions after the barrier transaction
wait until the corresponding barrier transaction response is
received [20]. Barrier transaction is provided by the ACE
protocol depicted in Figure 1.

This study applies a memory barrier to reduce the inter-
ference caused by shared cache between cores. In partic-
ular, as this study only considers the memory access part,
DMB is used. In addition, because the focus is on the inter-
ference between multi-cores, the ISH domain is targeted.
As described above, when the barrier is issued by the core
(manager), it is controlled by the ACE and ACP interfaces
of the L2 memory system. If multiple memory barriers
are issued, other barriers are blocked from processing the
response to the barrier transaction in a specific domain and
interconnect. In addition to this, read and write operations of
the corresponding domain are waiting. This study focuses on
this barrier transaction process and inserts a barrier in the part
that accesses the memory in each core. A side effect that is
suspended when memory barriers are issued simultaneously
is applied. In other words, the side effect is the delay that
occurs because of the response processing of the barrier trans-
action and the time for which the manager’s memory access
operation must wait until the end of the barrier. The authors
expect it would be possible to reduce the variation in execu-
tion time caused by share cache interference by reducing the
simultaneous memory access in each core. In addition, this
study presents the optimal memory barrier insertion method
by analyzing the insertion location and overhead.

Ill. FINE-GRAIN MEMORY ACCESS CONTROL

This study presents a PREM-like method for reducing shared
cache interference using a memory barrier insertion tech-
nique that controls simultaneous memory access. This study
aims to reduce shared cache interference in real-time multi-
core systems, where it is essential to bind the task execution
time tightly. The source code of the task in units of basic
block is analyzed to insert a memory barrier. As a basic
block is the smallest unit in the control flow of a system,
the proposed approach can achieve better fine-grain memory
access control compared with task-level access scheduling.
As described in Section II, blocks for additional requested
memory barriers occur in processing memory barriers in
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FIGURE 3. Basic block-based memory barrier insertion process.

ACE and interconnect. Moreover, using DMB, the memory
operation that occurs after the barrier is pending. Besides,
execution time or throughput overhead occurs because of
the insertion of memory barriers. To solve this problem, this
study also analyzes the overhead caused by the proposed
method by subdividing the threshold of the memory footprint
of the basic block as a criterion for inserting the memory
barrier. The aim here is to minimize concurrent memory
access on multiple cores by exploiting these side effects.
This section describes the basic block-based memory barrier
insertion method proposed in this study.

A. OVERVIEW OF MEMORY BARRIER INSERTION

The overall flow for inserting the memory barrier is shown
in Figure 3. The compiler generally divides the program into
basic blocks as the first step. A basic block is a straight-line
code sequence without branches, apart from entry and exit.
Therefore, the code is divided into basic blocks based on
branching (br) instructions between the blocks and the end
of the program (ret).

In this study, LLVM was used to convert C code to inter-
mediate representation (IR) code for basic blocks analysis
(Figure 3 (a) and (b)), and LLVM Pass was employed to
insert barriers (Figure 3 (c)). LLVM is capable of source-
and target-independent code generation. After converting the
source code, the IR basic block was analyzed using the imple-
mented LLVM Pass. To analyze the basic block, the anal-
ysis and insertion steps were separated using two passes:
a Basic Block Parsing Pass and an Insert Memory Barrier
Pass. Then, based on the analysis results, an IR code with
a memory barrier inserted was generated. This code was
compiled as a static library with Clang (version 9.0.0 armv71)
(Figure 3 (d)). An accurate analysis of the basic block is
impossible if the extra code for execution time measurement
is inserted into the source code. Therefore, this study built a
static library and called it from an external code to measure
the execution time. C code was converted into an IR using
LLVM Clang, and another code was developed to analyze the
basic IR blocks using ModulePass. For the experiment, bit-
code was converted into human-readable IR code (*.11) using
the llvm-dis tool. The dyn_cast<> template was used to
examine the instructions of each basic block. All basic blocks
of the program were statically analyzed for barrier insertion
using LLVM Pass. For barrier insertion, the memory footprint
of each basic block, which was calculated by examining each
barrier’s memory access instruction, was used.
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In the ARM architecture, load and store instructions con-
trol memory access. This study uses the memory alignment
values of the instructions to discover the memory footprint of
the basic block. The structures of the load and store instruc-
tions in IR code are as follows:

1 load 132, 132x %4, align 4
2 store 132 %69, 1i32% 5, align 4

The alignment of load and store instructions is considered
as the memory footprint of each basic block. Alignment
means the size of memory to be accessed in byte size. The
load instruction requires a pointer operand to read and store
a value and the store instruction requires the value type and a
pointer to store. Therefore, based on this, a specific threshold
value is compared to determine whether to insert a memory
barrier. In this study, the threshold for memory barrier inser-
tion was set to 32, 64, and 128 bytes based on the L2 data
cache line size of Cortex-A53 (64 bytes).

LLVM IR provides fence instruction for memory bar-
riers. The fence instruction is converted into the dmb
ish ARM instruction, after which it sets the data barrier.
IRBuilder is used to insert the instruction into the basic
blocks with LLVM Pass. IRBuilder is an application program-
ming interface (API) that can generate and insert instruc-
tions into a basic block’s end or a specific part. We use
Builder.CreateFence() to insert a barrier instruction before
the specified instruction of the basic block. The SetInsert-
Point function is used to insert a barrier next to a specific
instruction. If the insertion position is changed to the next
instruction (I.getNextNode()) using SetinsertPoint, the fence
is inserted after the current instruction. In LLVM, the PHIN-
ode or phi instruction should always be inserted at the top
of the basic block. Therefore, if the first instruction of the
basic block is a phi node, a barrier instruction is inserted after
the corresponding instruction. This study inserts memory
barriers at the beginning and end of the basic block; a basic
block that accesses a memory size larger than the threshold
may cause shared cache interference. As described above,
using the memory barrier makes it possible to prevent con-
current memory operation execution because of the delay in
the simultaneous barrier processing. In addition, all memory
operation execution before the execution of the basic block
is completed because of the memory barrier. Therefore, the
possibility of interference that may occur with other memory
accesses can be reduced for memory operations within the
basic block; thus, the variability in execution time may be
reduced.

B. BASIC BLOCK PARSING PASS
A Basic Block Parsing Pass is a pass that analyzes the code
converted to IR, and which is divided into the static and
dynamic analyses, as shown in Figure 3.

The first part of the Basic Block Parsing Pass statically
analyzes the IR. The pass gets the number of all basic blocks
of the IR code and the name (number) of the basic block.
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1 110:

2 %111 = load double,doublex %6, align 8

3 %112 = call double@atan (double 1.000000e+00) <>
#4

4 %113 = fmul double 4.000000e+00, %112

5 $114 = fmul double %111, %113

6 %115 = fdiv double %114, 1.800000e+02

;

br label %116

FIGURE 4. Example of basic block in IR code.

Algorithm 1 Parsing Basic Block in IR Code
1: BasicBlock[] < 0
2: MemorySize < 0
3: Index < 0
4: foreach Function F € Module do
5 foreach BasicBlock B € F do

6: foreach Instruction I € B do

7

8

> Array for barrier insert classification
> Memory alignment size of instruction
> Basic block number

if I = Storelnst then
: MemorySize < MemorySize + Align
9: else if I = LoadInst then

10: MemorySize < MemorySize + Align
11: else if / = Calllnst then

12: if MemorySize > Threshold then
13: BasicBlock[Index] < True
14: else

15: BasicBlock[Index] < False
16: end if

17: MemorySize < 0

18: Index < Index + 1

19: end if

20: end for

21: if MemorySize > Threshold then

22: BasicBlock[Index] < True

23: else

24: BasicBlock[Index] < False

25: end if

26: MemorySize < 0

27: Index < Index + 1

28: end for

29: end for

When the example IR code in Figure 4 is executed, it moves to
the @atan basic block with a call instruction. When the exe-
cution of the corresponding basic block is finished, it returns
to basic block #110. To identify the precise memory footprint
of basic block #110, it should be divided into two parts based
on the call instruction. Algorithm 1 provides a pseudo-code
that analyzes the memory footprint of the basic block with
consideration of this call flow.

The number of all basic blocks is allocated to the
BasicBlock[] array. The number of all basic blocks is allo-
cated to the BasicBlock[ ] array, used to determine whether to
insert a barrier into the corresponding basic block. This study
uses the Index variable to indicate the location of the barrier.
The basic block memory footprint (MemorySize) is used as
the barrier insertion criterion, the sum of the alignment values
of the basic block load and store instructions. The Basic Block
Parsing Pass sequentially searches all modules, functions,
basic blocks, and instructions using a “for” statement. If the
instruction is a load or store while searching for basic block
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bool BasicBlockParsing::runOnModule (Module &M) {
LLVMContext &Context = M.getContext(); o _
FunctionCallee print = M.getOrInsertFunction( :| Define information of

"print_bb_name", Type::getVoidTy(Context), “print_bb_name” function
Type::getint8PtrTy(Context));

void print_bb_name (char *bb_name) {
printf("%s\n", bb_name);

}

Insert a call instruction that calls the
“print_bb_name” function in the basic block

Value *args[] = {bbName};
Builder.CreateCall(print_count, args);

Value *bbName = Builder.CreateGlobalStringPtr(str.c_str()); —]
} —

FIGURE 5. Prints the name of the basic block example code.

Algorithm 2 Insert a Memory Barrier Into the Basic Block
in IR Code
1: BasicBlockl[]
2: Index < 0
3: foreach Function F € Module do
4 foreach BasicBlock B € F do
5: foreach Instruction I € B do
6: if BasicBlock[Index]| = True then
7.
8

> Array for barrier insert classification
> Basic block number

if I = First Instruction then
if I = PHI Node then

9: InsertBarrierToNextInstruction(Acquire)
10: else
11: InsertBarrier(Acquire)
12: end if
13: end if
14: if I = Branchinst then
15: InsertBarrier(Release)
16: else if I = Returninst then
17: InsertBarrier(Release)
18: end if
19: if I = Calllnst then
20: InsertBarrier(Release)
21: Index < Index + 1
22: end if
23: end if
24 end for
25: Index < Index + 1
26: end for
27: end for

#110, as shown in Figure 4, the align value is added to
the MemorySize variable (lines 8—19 of Algorithm 1). If the
instruction is a call instruction (third line in Figure 4), and the
MemorySize of the basic block is greater than the threshold
value, the corresponding index value of BasicBlock[] is set to
“true.” Then, the Index is increased by one and verified with
the following instruction (fourth line in Figure 4).

When the search for all instructions in the basic block
is finished, the memory size of the current Index and the
Threshold is compared. Then, the decision must be made on
whether or not to insert the barrier and write to BasicBlock[].
If MemorySize is less than Threshold, “false” is stored
in BasicBlock[Index]. Then, for the following basic block
check, MemorySize is set to zero, increasing the Index.

The second part of the Basic Block Parsing Pass process
involves inserting an output statement to print each basic
block’s name at runtime (Figure 3: Dynamic in Basic Block
Parsing Pass). This process involves code analysis and is not
included in the actual code execution for performance mea-
surement. It is necessary to identify how many basic blocks
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are executed; the basic block with a barrier inserted is exe-
cuted to compute the barrier insertion overhead. This study
implements a function that receives the basic block name as
an argument and prints it, as shown in Figure 5. The IRBuilder
getOrlnsertFunction() is used to pass the number of each
basic block as an argument to the function. The IRBuilder
CreateCall() inserts a call instruction that invokes the output
function in each basic block of the IR code. By doing this,
all the basic blocks executed at runtime are identified. The
execution rate of the basic block can then be calculated.

C. MEMORY BARRIER INSERTION PASS

BasicBlock[] is a check value for memory barrier insertion
for all basic blocks, which is derived from the result of the
previous Basic Block Parsing Pass. Accordingly, the Insert
Memory Barrier Pass inserts a memory barrier into the entry
and exit of the corresponding basic block while searching
for the basic block of the IR code. Algorithm 2 presents the
pseudo-code of the Insert Memory Barrier Pass.

Like the Basic Block Parsing Pass, the Insert Memory
Barrier Pass searches the module, basic block, and instruc-
tion. If BasicBlock[Index] is “true,” the fence instruction is
inserted at the beginning and end of the basic block. The
Fence Release instruction is inserted before the respective
branch, return, and call instructions (lines 15-22 of Algo-
rithm 2). If the basic block is a PHINode, a Fence Acquire
instruction is inserted after the phi instruction. Then, the
index value increases, and BasicBlock[Index] verification is
repeated with all basic blocks.

IV. EXPERIMENTS

To demonstrate the efficacy of the proposed method, experi-
ments were performed on a Raspberry Pi 3 Model B (RPi3)
equipped with a Broadcom BCM?2837 quad-core chipset
based on ARM Cortex-A53. RPi3 has 32 KB of L1 instruction
cache and data cache per core. The L2 cache is 512 MB in size
and is shared by four cores. It consists of a unified instruction
and data cache, and the cache line is 64 bytes. RPi3 has
a main memory of 1 GB. Debian-based Raspbian 32-bit
was used as the OS. For the experiment, the PREEMPT_RT
patch [21]' was applied to improve the real-time properties
of the Raspbian default kernel (kernel version 5.4.51).

For experimental measurements in PRi3, the performance
monitor unit (PMU) of Cortex-A53 was used. The target
board provides one cycle counter and six event-based per-
formance counters. this study used LID_CACHE_REFILL,
LID_CACHE, L2D_CACHE, and L2D_CACHE_REFILL
event counters. Because the PMU of Cortex-A53 does not
provide a cache miss counter, the cache miss rate was calcu-
lated by dividing the cache access by the cache miss refill.
In addition, the cycle counter of Cortex-A53 was used to
measure the execution time of the benchmark.

For the experiment, MiBench [22] was used. It consists of
35 benchmarks for embedded applications. Four benchmarks

1 https://github.com/raspberrypi/linux/tree/rpi-4.19.y-rt
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TABLE 1. Description of selected benchmarks.

Benchmark Benchmark

Suite

Description

Basicmath
(small, large)

Calculate road speed or vector val-
ues using the integer square root,
random equations, cubic polynomial,
and convert between radians and de-
grees

Calculate the number of bits of
an integer array using bit count-
ing, Optimized 1 bit/loop counter,
Ratko’s mystery algorithm, Recursive
bit count by nybbles, Non-recursive
bit count by nybbles

Qsort (small, | Sorts the input string array in ascend-
large) ing order with the quick sort algo-
rithm. Qsort_large consists of three-
tuples representing data points
Telecomm FFT (small, | Fast Fourier transforms (FFT) are
large) performed on the float data array.
The input to the Fourier transforms
operation is a polynomial function
with pseudo-random amplitude and
frequency sinusoidal components

Automotive

Bitcount
(small, large)

TABLE 2. Execution arguments and the number of basic blocks per
benchmark.

Benchmark Execution argument Runtime executed
number of basic block
Basicmath small loop = 1001 347,210
large loop = 10000 12,075,561
Bitcount small @teration =75000 19,000,274
large iteration = 112500 284,626,253
Qsort small 10000 integers 511,740
large 50000 integers and | 2,504,751
characters
FET small MAXSIZE = 4096, | 413,901
MAXWAVES =4
large MAXSIZE = 32768, | 4,669,701
MAXWAVES =8

from the Automotive and Telecomm suites were selected
and each benchmark function consisted of small and large
datasets. Parts that could affect execution time variabilities for
the experiment, such as file input/output and print statements
included in each benchmark code, were removed. Table 1
describes the benchmarks selected for the experiment and
Table 2 shows the arguments used for each benchmark and the
number of basic blocks for execution. Each benchmark was
run independently on the assigned core, and there were no
shared variables or interconnections with other benchmarks.
All experiments in this study were repeated 200 times.

A. MEMORY BARRIER INSERTION OVERHEAD

As described in Section II, execution time overhead occurs
because of memory barrier insertion. Therefore, in this study,
based on the memory alignment of each basic block, a mem-
ory barrier was inserted according to a specific threshold,
and the performance overhead was analyzed accordingly.
The execution time (cycles) of the benchmark was measured
and the performance overhead (increase in execution time)
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FIGURE 6. Overhead measurement process.

because of the insertion of memory barriers was analyzed.
For the experiment, as shown in Figure 6, the benchmark in
Table 1 was executed using only Core 0, and the cycle counter
of Cortex-A53 was read at the start and end points of the
benchmark to calculate the cycle elapsed. In addition, cached
memory data was cleaned for each benchmark execution.
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FIGURE 7. Barrier insertion and barrier execution rate by the benchmark.

1) ANALYSIS OF MEMORY BARRIER INSERTION RATIO

Before measuring the overhead of memory barrier insertion,
the number of barriers inserted according to the threshold for
each benchmark was analyzed. For this purpose, the insertion
ratio according to the static and dynamic analysis of the Basic
Block Parsing Pass of Section III was measured. In addition,
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because the basic blocks in the IR code are not all executed
according to the execution condition, this study counted the
execution rate of the basic block with the memory barrier
inserted at runtime. Figure 7 shows the static and dynamic
analysis results according to each threshold.

Figure 7 shows the number of basic blocks on the IR code
for each benchmark through static analysis and the number
of basic blocks with memory barriers inserted according to
the threshold. The y-axis is the number of basic blocks with
memory barriers inserted. Figure 7b shows the ratio of basic
blocks inserted with memory barriers for each threshold exe-
cuted at runtime. The y-axis represents the ratio of the basic
block in which the memory barrier is inserted in the executed
basic block. The x-axis of each graph is the benchmark for
the dataset.

‘When the threshold is 32, in the benchmarks of the small
dataset, a memory barrier is inserted into the basic blocks
of about 13.0, 7.4, 0.0, and 4.7%, respectively. At this time,
in each benchmark, the basic block with a memory barrier
inserted showed 25.1, 1.2, 0.0, and 6.9% execution propor-
tions at runtime, respectively. In the large dataset, barriers
were inserted in 16.9, 7.4, 14.3, and 4.7% of the basic blocks.
Execution of the basic block with barriers inserted at run-
time showed 19.0, 1.2, 30.7, and 6.0% of the execution,
respectively. In the case of a small dataset, Qsort performed
the quick sort on 10,000 integers, as shown in Table 2, but
no memory barrier was inserted in all 11 basic blocks. This
means that the sum of alignment of each basic block did not
exceed 32 bytes, and its analysis showed that a large-sized
memory operation did not occur according to the repeated
access to integer variables. In contrast, Qsort of the large
dataset was inserted into 14.3% of the basic blocks and
showed a weight of 30.7% in the overall execution. The large
dataset received and sorted mixed integer and char data as
input, and it can be seen that this was because more variables
were allocated and used than the source code of the small
dataset. When the threshold was 64, 4.3, 2.5, 0.0, and 1.9%
of the basic blocks were inserted in the benchmarks of the
small dataset, respectively, and 5.2, 0.8, 0.0, and 6.9% were
executed at runtime. The large dataset was inserted into 13.0,
2.5, 14.3, and 1.9% of the basic blocks and occupied the
runtime proportions of 0.5, 0.8, 30.7, and 6.0%, respectively.
When the threshold was 32, the proportion of insertions and
executions in Basicmath and Bitcount decreased in all data
sets. When the threshold was 128, basic blocks were inserted
at 2.9, 0.0, 0.0, and 0.9% of the small dataset benchmarks,
respectively, and were executed at 5.2, 0.0, 0.0, and 5.9% at
runtime. In the case of Basicmath and FFT, the proportion of
inserted basic blocks was lower than that of the case where
the threshold was 64, but the proportions executed at runtime
were the same. In the large dataset, the insertion ratios of
memory barriers were 1.3, 0.0, 0.0, and 0.9%, respectively,
and the execution ratios were 0.5, 0.0, 0.0, and 5.3% at
runtime. In the case of Qsort, when the threshold was 64,
memory barriers were inserted in 30.7% of basic blocks, but
none when the threshold was 128.
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FIGURE 8. Overhead because of barrier insertion.

2) ANALYSIS OF EXECUTION TIME OVERHEAD ACCORDING
TO MEMORY BARRIER INSERTION

Figure 8 shows the execution time overhead according to
the memory barrier insertion. For the experiment, the Insert
Memory Barrier Pass of Section III was used. It was also
measured when the memory barrier was inserted in all basic
blocks for each benchmark for comparison. As a result of the
experiment, the execution time of all benchmarks increased
when a memory barrier was inserted in all basic blocks.
In particular, in the case of Bitcount, the execution time of
small and large datasets increased by 2.2 times. Since the
Bitcount benchmark uses several algorithms for bit count,
there are fewer repetitively used codes than in other bench-
marks; further, as shown in Table 2, the total number of basic
blocks executed is more significant than in other benchmarks.
Therefore, it is concluded that the execution time increases
significantly when a memory barrier is inserted in the entire
basic block.

In the small dataset, the increase in execution time was
insignificant for the insertion of memory barriers according
to all thresholds. In the benchmark of the large dataset, when
the threshold was 32, Basicmath and Qsort had a 1.1-fold
increase in execution. Bitcount and FFT did not affect the
execution time, although the basic block with a memory
barrier inserted at runtime showed a 1.2 and 6.0% execution
proportion, respectively, as shown in Figure 7b. When the
threshold was 64, only Qsort increased the execution time by
1.1 times. Even though a memory barrier was inserted in the
Basicmath and FFT, there was no change in execution time
when the threshold was 128, as in the case of 64.

Through the threshold-based memory barrier insertion
method proposed in this study, a memory barrier is inserted
except for Qsort of a small dataset. In particular, at thresholds
32 and 64, the execution time of some benchmarks on large
datasets increased by 1.1 times, and there was no significant
change in others. Therefore, it can be seen that the execution
time overhead according to the insertion of the memory bar-
rier is not significant.

B. INTERFERENCE REDUCTION ANALYSIS
This section analyzes the interference caused by the shared
cache between cores and explains the effect of the basic
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FIGURE 9. Benchmark experiment with multi-core architecture.

block-based memory barrier insertion proposed in this study.
For the experiment, as shown in Figure 9, each benchmark
was assigned to each core and executed simultaneously. For
this, Linux’s sched_setaffinity() was used to dedicate bench-
marks to each core as much as possible. In addition, the cycle
counter and PMU register were read at the beginning and
end of each benchmark execution, and when the execution
was over, the cached data was cleaned. For the experiment,
we divided benchmarks into two groups according to the size
of the dataset: Group I (small dataset) and Group 2 (large
dataset). In each group’s experiment, Basicmath, Bitcount,
Qsort, and FFT were assigned to Cores 0, 1, 2, and 3.

1) ANALYSIS OF INTERFERENCE BETWEEN CORES
To confirm the effect of the memory barrier insertion, the
effect of inter-core interference was analyzed. Figure 10
shows the interference effect when executed simultaneously
by the group whereas Figure 10a shows the deviation in
execution time because of inter-core interference. The y-axis
shows the ratio of standard deviations. Figure 10b shows L1,
and L2 cache misses in benchmark execution by group; the
y-axis is the cache miss ratio. The x-axis of each graph rep-
resents the benchmark of each group. Moreover, the without
(w/o) interference bar on the x-axis of each graph refers to
the value when running each benchmark with a single core.

The benchmark of the small dataset, excluding Bitcount,
Basicmath, Qsort, and FFT, showed 3.6, 3.6, and 10.4 times
standard deviation changes in execution time, respectively.
As the standard deviation of the execution time increases,
the tight bounding of the execution time becomes impos-
sible. Although most of the benchmarks did not increase
the L1 cache miss ratio, the L2 cache miss increased up to
approximately 3.6 times. In the case of Bitcount, while the
L2 cache miss ratio increased from 2.9 to 10.5%, the standard
deviation of the execution time did not change significantly.
In contrast, in Qsort, the L2 cache miss increased by 0.2%,
but the standard deviation of the execution time was large.
As shown in Table 2, as Bitcount’s execution time was the
longest, it is concluded that the effect of interference is minor,
even if it is run simultaneously with other benchmarks.

In the case of the large dataset, similar to that of the small
dataset, the execution time standard deviations of Basic-
math, Qsort, and FFT increased by 1.6, 2.2, and 2.4 times,
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FIGURE 10. Measurements of impact of interference.

respectively, except for Bitcount. In the cache miss ratio,
Basicmath and Bitcount more than doubled, while Qsort and
FFT decreased slightly.

2) ANALYSIS OF VARIABILITY IN EXECUTION TIME BECAUSE
OF MEMORY BARRIER INSERTION

To insert the memory barrier through the basic block analysis
proposed in this study, the Insert Memory Barrier Pass shown
in Figure 3 was used. To analyze the change in execution time
because of the insertion of the memory barrier, the experi-
mental method shown in Figure 9 was followed, as in the
previous experiment. Moreover, for comparison, the insertion
of memory barriers in all basic blocks was measured.

Figure 11 shows the experimental results on a small
dataset. The x-axis of each graph shows the experimental
results according to the threshold, and each benchmark indi-
cates Core 0-4 (for comparison with the existing graph, the
benchmark’s name was written instead of the core number
for convenience). Figure 11a shows the increase in execution
time because of memory barrier insertion and interference,
Figure 11b shows the standard deviation ratio of execution
time, and Figure 11c shows the amount of change in the cache
miss ratio for each case. The value of each graph represents
the ratio of the value in case of interference in Figure 10.

When a memory barrier is inserted in all basic blocks
(full in Figure 11), the execution time changes by about
1.1 to 2.2 times. The increase in execution time was simi-
lar to the overhead caused by the insertion of the memory
barrier in Figure 8, but in the case of Qsort, it increased
by 0.3 times because of interference. This means that the
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FIGURE 11. Barrier insertion result of small dataset benchmarks.

overhead because of the memory barrier is greater than
the increase in execution time because of interference. For
the standard deviation of execution time, while Basicmath
increased by 1.1 times and Bitcount by 2.5 times, Qsort
and FFT decreased by 0.6 and 0.7 times, respectively. Each
benchmark’s change in cache miss ratio showed little change
in the L1 cache, but L2 cache miss in Basicmath and Bit-
count decreased by 0.3 and 2.3%, respectively. The L2 cache
miss ratios of Qsort and FFT increased by 0.2 and 0.3%,
respectively. When the threshold was 32, there was hardly any
increase in each benchmark’s execution time. The standard
deviation change of execution time also decreased for all
except Bitcount. In particular, in the case of FFT, the stan-
dard deviation of the execution time decreased by 0.2 times
compared to the case where interference occurred because of
the insertion of the memory barrier. In contrast, in the case of
cache misses, excluding FFT, L2 cache misses increased by
up to 0.5%. Even when the threshold was 64, the execution
time of each benchmark did not increase. However, unlike
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when the threshold was 32, the standard deviation ratio of the
execution time increased by 1.6 times in the case of Basic-
math. The rest of the benchmarks had standard deviations
reduced by 0.2 times. The cache miss ratio was also similar
to that of threshold 32. When the threshold was 128, the
execution time did not increase, but Basicmath’s execution
time standard deviation ratio increased by a factor of 3.0.
In the case of cache miss ratio, except for FFT, the L2 cache
miss ratio slightly increased.

Through experiments on small datasets, the threshold-
based memory barrier insertion method did not reduce the
execution time compared to the situation where interference
occurred but typically reduced the standard deviation of the
execution time. In particular, when the threshold was 32,
the standard deviation of the benchmark execution time of
all cores did not increase in preparation for the interference
situation. Moreover, while there was no significant change in
the case of a cache miss, it decreased in the execution of some
core benchmarks. In the case of Qsort, no memory barrier
was inserted for all thresholds, as shown in Figure 7b, but the
standard deviation ratio of the execution time was reduced by
up to 0.3 times. This means that even if the memory barrier
is not inserted, it may be affected by the memory barrier
operation performed by other cores.

Figure 12 shows the result of inserting a memory barrier
for a large dataset. The axes and expression of the graph are
the same as in Figure 10.

When interference occurs, and memory barriers are
inserted in all basic blocks, results are similar to that of the
memory barrier insertion overhead in Figure 8. Similar to the
experimental results of the small dataset, the large dataset
also indicates that the overhead caused by the insertion of
the memory barrier is larger than the effect of interference
when the memory barrier is inserted in all basic blocks. The
standard deviation of execution time also increased by up to
2.2 times compared to the interference situation, and cache
misses by 1.6%. When the Threshold was 32, the execution
times increased by 1.1, 1.0, 1.1, and 1.0 times for each bench-
mark, but the standard deviations of the execution times were
0.6, 1.0. 0.9 and 0.6 times. In contrast, there was no decrease
in the cache miss ratio as it increased by up to 1.6%. When
the threshold was 64, the change in execution time did not
increase except for Qsort. However, the standard deviation
of the execution time and the cache miss ratio also increased
up to 1.5 times. When the Threshold was 128, there was no
change in the execution time. The standard deviation of the
execution time also increased by up to 1.6, excluding the FFT.
As shown in Figure 7b, when the threshold was 128, except
for the FFT, almost no memory barrier was inserted in the
remaining benchmarks, indicating that the standard deviation
of the FFT execution time partially improved. Therefore, the
cache miss ratio did not show a significant change.

Based on the experimental results of the large dataset, the
standard deviation of the execution time was reduced when
the threshold was 32, similar to that of the small dataset.
However, although the execution time increased by about
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FIGURE 12. Barrier insertion result of large dataset benchmarks.

1.1 times, the change in cache miss ratio because of memory
barrier insertion was insignificant.

Through experiments, this study shows that the proposed
memory barrier insertion method according to the thresh-
old based on the basic block analysis can reduce the distri-
bution of execution time when interference between cores
occurs. In particular, when the threshold was 32, there was
no increase in the execution time except in some cases, and
the standard deviation of the execution time decreased by up
to 0.2 times. The goal here is not to reduce the execution
time but to help tightly bound the execution time so that the
proposed method is valid. In addition, the proposed method
did not have a significant effect on reducing cache misses.

V. RELATED WORKS

The PREM method [10], [11], [12], [13] was proposed to
control task scheduling and reduce the interference caused
by resource sharing and contention in a multi-core system.
PREM arranges the execution of tasks to avoid contention in
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FIGURE 13. Examples of the execution model.

each core’s access to shared resources (e.g., cache memory).
Memory-centric scheduling (MCS) [23], [24], [25] was pro-
posed to avoid or limit concurrent access to shared memory.

Task scheduling using time-division multiple access
(TDMA) [5], [26] in Figure 13 is a typical MCS approach that
executes only one task per globally scheduled time slot. In a
multi-core architecture, this approach is inefficient because
it allows only one core to run at a time. Therefore, TDMA
has low utilization but does not cause inter-core interference.
Consequently, the tight bounding of execution time is possi-
ble, even in a shared memory structure.

A three-phase execution model was proposed to com-
pensate for the low utilization of TDMA [27], [28], [29],
as shown in Figure 13b. The three-phase execution model
in Figure 13b is an example of several execution flows.
It increases concurrency by dividing the task into a memory-
centric (M) phase (“Read” and “Write” in Figure 13b) and a
computation (C) phase (“Execution” in Figure 13b). The M
phase prefetch reads data and instructions from the shared
global memory to the local memory. During the C phase,
the processor performs computations with the data. By not
accessing shared memory, it avoids contention and can be
concurrently executed under the M phase. A problem with
this model is that either the code must be implemented from
scratch, or the legacy code must be modified according to the
model.

State-of-the-art [12], [13] three-phase execution mod-
els comprise automated code analysis, transformation, and
scheduling for PREM execution. These studies aim to
avoid contention and eliminate interference between cores.
As shown in Table 3, the state-of-the-art PREM methods are
compared to the proposed method.

Previous studies performed automated region-based mem-
ory profiling for source code transformation using a
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TABLE 3. Comparison of state-of-the-art methods with the proposed

method.
State-of-the-art Proposed method
Goal Contention-free Contention-allowed
Optimization Region Basic block
level
Memory v v

footprint analysis
Memory access
control

v (Under private cache
size)

v (Based on the mem-
ory footprint of a basic

block)
Source code | v X
refactoring
WCET analysis v X
Scheduling algo- | Heuristic [12], Genetic | X
rithm algorithm [13]
Code  analysis | More than several | A few seconds on the
time minutes on the | target device *

desktop [12], [13]

* This result was measured in our experimental environment (MiBench on
Raspberry Pi 3 model B)

three-phase model. The source code of the task was divided
into several segments for this model. Each segment was
then configured to be smaller than the core’s private cache
(e.g., L1) based on the memory footprint used during the
code execution. Accordingly, the code was analyzed and loop
unrolling and tiling were performed. Each segment consisted
of three phases: read, execute, and write. As its memory usage
was larger than the original, the transformed code was divided
into more segments. Therefore, the time required for memory
access isolation increased in other cores.

The worst-case execution time (WCET) was estimated
using ILP analysis to optimize the three-phase task schedul-
ing. Based on the results, the execution time of each seg-
ment phase was set. Furthermore, a schedule that arranges
segments using a genetic algorithm [13] and heuristic
method [12] was implemented to ensure optimal execution
time without inter-core interference. No variations in the
task execution time were experienced, even during inter-core
interference.

In a previous PREM study, a method for registering a
memory-access-block system call in the kernel area [29] or a
memory mutex [12] was used to control each phase. However,
owing to the change from user mode to privileged mode, and
depending on the OS, using a system call can incur execution
time overhead. Moreover, in the source code, controlling
memory access is frequently called, and the execution time
increases by up to 2.5 times or more owing to prefetch oper-
ations during the read phase. Moreover, only single-entry,
single-exit codes that form without recursion are applicable
to automatic code conversion. Another problem is that ILP
computation requires tens of minutes of computation time.
Furthermore, ILP analysis has the disadvantage of recalcula-
tion when the instruction set architecture is changed.

VI. DISCUSSION AND FUTURE WORKS
This study proposed a memory barrier insertion method based
on basic block analysis to reduce the interference caused by a
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shared cache that may occur in a multi-core real-time system.
A benchmark consisting of tasks for a traditional embedded
system was used for the experiment. In particular, four bench-
marks were selected and tested in two groups according to the
amount of input data.

A limitation of this study is the lack of experiments accord-
ing to the combination of benchmarks with various work-
loads. The impact of shared cache interference may vary
depending on the performance characteristics of each bench-
mark. In particular, recently, memory-intensive deep learning
operations have been applied to real-time systems [30], [31].
Therefore, future work will analyze the interference effect
according to the performance characteristics using various
benchmarks. In the experiment, the insertion of the memory
barrier is decided based on the threshold. At this time, the
same threshold value is applied to the benchmark of each
core. It is also necessary to consider performance overhead
and interference reduction by applying a threshold based on
the characteristics of the benchmark.

Another limitation of this study is that, unlike the previ-
ously proposed PREM studies, inter-core interference may
still occur even if a memory barrier is used. Furthermore,
optimizations such as out-of-order cannot be used because of
the insertion of memory barriers. Performance degradation
because of this part should also be analyzed.

Finally, the operating characteristics of memory barri-
ers differ depending on each architecture’s implementation
method. Hence, it is necessary to analyze whether the pro-
posed method can reduce the interference caused by the
shared cache outside of the ARM architecture.

VIi. CONCLUSION

This study aims to reduce the distribution of task execution
time because of the interference caused by the shared cache.
This can assist in the tight bounding of execution time, which
is one of the important factors in a real-time system. The
occurrence of interference caused by shared cache contention
in a multi-core architecture was analyzed and a method to
reduce task execution time variations by inserting memory
barriers into the basic blocks of the source code using LLVM
Pass was proposed. This study used side effects such as delay
of memory operation execution because of the memory bar-
rier and block when simultaneous memory barrier requests
occur, and presented a fine-grain analysis method for dividing
a basic block based on its call instructions. The memory
footprint of each basic block was used for the memory barrier
insertion. Through experiments, the execution time overhead
according to the insertion of memory barriers was analyzed
to show the distribution of execution time by threshold.
In particular, when the threshold was 32-byte, because of
the insertion of the memory barrier, no increase in execution
time was evident. Additionally, it was shown that the stan-
dard deviation of the execution time of all core tasks was
reduced by up to 80%. In addition, the proposed method
has the advantage of not modifying OS or task execution
flow.
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