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ABSTRACT There has been an enormous increase in information flow and communication data due to
the rapid rise in the number of Internet of Everything (IoE) devices and the development of cutting-edge
technologies such as the rollout of the Sixth Generation (6G) network. The rising and inevitable off-loading
requirements of IoE devices have resulted in an unprecedented increase in the reliance on edge and cloud
paradigms. However, such a reliance on far-end technologies to access already scarce resources can often
result in increased latency and unstable connection issues due to limited bandwidth. In this paper, we inves-
tigate the solution for such a stringent network design by presenting a conceptual cloud architecture based
on key components such as resource allocation, scheduling and task off-loading for IoE devices. The IoE
devices utilise a scheduler to access resources from nearby higher resourced IoE devices for their task
computation, where the scheduler allocates incoming requests according to the availability of resources
within a cluster of devices or to other devices in nearby clusters. Motivated by these design characteristics,
we propose a design of a novel Main Task Off-loading Scheduling Algorithm (MTOSA) for efficient
task allocation and dissemination. We present a theoretical analysis of five different scheduling policies
namely Round Robin (RR), Strongest Channel (SC), Max Rate (MR), Proportional Fair (PF) and Priority
Base (PB) scheduling to find an optimal technique for task off-loading in futuristic networks. Furthermore,
we compare the performance of these five scheduling policies with the two existing scheduling policies from
the literature. It is shown through various experiments that the proposed MTOSA algorithm performs better
when compared with the existing schemes for different performance parameters.

INDEX TERMS Edge-based cloud, 6G, IoE, smart devices, Al, QoS, task off-loading, machine learning
(ML), scheduling, resource allocation.

I. INTRODUCTION

Enormous increase of information flow expected in futur-
istic networks such as 6G communication will mainly be
driven by the constant flow of data generated by smart
devices and has now given rise to the Internet of Everything
(IoE) paradigm [1], [2]. For such a diverse IoE environ-
ment, a smart resource allocation management paradigm is
vital to efficiently address resource allocation and processing
tasks either locally or off-loading to higher resource-enriched
clouds [3]. Scheduling policies [4], [5] play a vital role in
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situations where tasks are outsourced in order to achieve
efficient information dissemination. For the best utilisation
of locally available resources, the availability of an efficient
task scheduler with the ability to optimise task allocation is
necessary. In addition to that, the use of a combination of
different scheduling algorithms and policies helps to achieve
satisfying outcomes. These scheduling policies vary in nature
depending on the type of tasks being generated in the edge
network.

It is envisioned that 6G wireless communication will
rely on smart edge emerging technologies such as Artifi-
cial Intelligence (AI) and Machine Learning (ML) to utilise
edge-based cloud architectures to transform task scheduling
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FIGURE 1. Layered architecture model of IoE devices for 6G enabled smart edge environments.

and off-loading for real-time intelligent applications [6], [7].
In [8], authors have proposed an Al-enabled architecture for
6G networks to improve resource management and automatic
network adjustment by employing intelligent service provi-
sioning. Authors argue that due to the increasingly complex
nature of applications running on 6G networks and their strin-
gent requirements, the 6G networks need to be more revolu-
tionised than their predecessors. In [9] author has presented
a task scheduling algorithm based on a Genetic Algorithm
(GA) design for a cloud campus platform architecture. The
cloud campus platform has been visualised as having users
that are connected through virtual machines where resource
allocations are dynamically allocated for efficient resource
usage. The author has subdivided the problem into two types;
first that can be scheduled on the basis of execution time
and second that is based on load prediction. In this work,
a task scheduling method established upon task scheduling
prediction and particle swarm optimisation methods has been
utilised by the authors to tackle resource management issues
in a cloud architecture.

Recent literature [10], [11], [12] highlights the need of
an efficient mechanism to facilitate seamless communica-
tion in the resource-intensive futuristic networks. Due to the
unprecedented increase in the use of low-power IoE devices
and the volume of data it generates, there is a need to develop
a state-of-art architecture to support a wide range of applica-
tions in order to manage smart environment resources in an
efficient and intelligent manner. As highlighted in some of
the recently published articles [13], [14], [15], [16], authors
have investigated the solutions for some inherent challenges
such as minimising energy consumption, the processing effi-
ciency of IoE nodes, task computational and transmission
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delays due to network congestion, collaborative load bal-
ancing approaches for resource allocation. In this article,
we investigate a comprehensive solution to address such
challenges associated with task off-loading, scheduling and
information dissemination in futuristic edge-based networks.
We present the detailed elaboration of this architecture in
Figure 1 consisting of several IoE devices as key elements.
We describe the design components by investigating vari-
ous scheduling and task off-loading mechanisms within IoE
cluster. Using conventional as well as practical scheduling
techniques, we evaluate the performance of these algorithms
and present a comprehensive theoretical analysis of this archi-
tecture. The key contributions of this article are summarised
as follows:

1) Presented a comprehensive conceptual design architec-
ture of conventional and practical resource allocation
model for IoE devices in a futuristic edge-based 6G
network.

2) Formulated the research problem in the proposed sys-
tem model of the edge-based architecture as a cost/time
minimisation problem for the scheduler.

3) Proposed a novel centralised scheduling algorithm,
Main Task Off-loading and Scheduling Algorithm
(MTOSA), that uses five different scheduling policies
namely RR, SC, MR, PF and PB.

4) Evaluated the performance of the proposed MTOSA
scheduling algorithm for several practical edge-based
scenarios and analysed the results of the algorithm by
comparing it with existing schemes.

The rest of the section-wise paper outline is detailed as fol-
lows: Section II presents a brief synopsis of recent literature
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in this area. Section III describes the system model used in
this work and we formulate the central research question by
describing the key components of the model in this section.
The proposed algorithm working principle is explained in
Section IV. Numerical results and evaluation are analysed in
Section V. Finally, Section VI concludes the paper.

Il. RELATED WORK

A lot of recent research [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43] has been
instigated in the domain of task off-loading and resource man-
agement to overcome the challenges associated with complex
network design. In the following subsections, we present a
brief synopsis of recent (i) related articles analytical overview
and (ii) a comparative overview in tabular form for meaning-
ful comparison with the proposed algorithm MTOSA.

A. BRIEF OVERVIEW

In this subsection, we review some of the recent significant
contributions of different researchers. The analysis helps to
signify lessons learnt from existing schemes and highlight
unique differences between the proposed work of this paper.

A technological evolution-based survey is presented in
relation to the recent challenges in task off-loading in edge
network in [17]. Edge computing shifts the functionalities and
services to the user’s proximity from the cloud. It enhances
edge network capabilities regarding data rates, efficient com-
munication, storage, and powerful computing. But, this shift
leads to extra challenges such as efficient resource allocation
and task scheduling. To address these challenges, the authors
in [18] suggested exploring flexible computation models, the
attention required on computation migration and considering
the nature of tasks through different optimisation variables.
Therefore, innovative aspects of this study lead to a flexible
resource scheduling and allocation paradigm. Furthermore,
it is suggested that the scheduler should employee different
scheduling policies to minimise cost and time, based on pri-
oritising tasks according to their nature.

The researchers in [19] modelled efficient and quick
off-loading decisions on the basis of optimal computation
for the Internet of Vehicles (IoV) architecture. The com-
putation and communication resources required by vehi-
cles at the same instance are argued by researchers as the
main reason for such computation off-loading. Therefore,
the IoV self-learning scheme based on distributed compu-
tation off-loading is proposed with the aid of a fully dis-
tributed algorithm to minimise off-loading cost and latency.
Task off-loading and scheduling research problem is further
analysed in [20] and [21], where the prime focus was to
devise solutions to efficiently manage computation and com-
munication resources. Authors have provided the guarantee
of the overall system performance while minimising the costs
by task allocation in order of arrival through a scheduling
algorithm.
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In another study [22], a reliable scheduling of the resources
in Cloud-Fog environment is implemented through a set
of scheduling algorithms and load balancing techniques are
utilised to assign specific requests. These requests are clas-
sified as time-tolerant, important and real-time. Hence, the
scheduling process considered resources failure rate for the
provision of high reliability to requested services. So far,
different recent studies [23], [24], [25] extensively designed
and implemented different sorts of algorithms to optimise
communication overheads, focused on minimising time, cost
and latency to perform efficient scheduling.

These works [20], [21], [22], [23], [24], [25] considered
different scheduling paradigms to minimise time, cost and
latency to improve the overall performance efficiency of the
system in the task off-loading process. However, there was a
lack of emphasis on the local execution of IoE tasks to utilise
maximum resources in a cluster by considering the nature of
the task. Thus, these algorithms may not fulfil the stringent
requirements to optimise task scheduling and allocation in an
edge-based futuristic 6G network.

In different real-time scenarios, limited coverage and high
cost raise the demand for efficient resource management for
transmission in any mode of communication service. The
authors explored different mechanisms of device-to-device
(D2D) communication and have been presented in [26].
In order to optimise D2D system, the authors considered the
willingness of users-end pairing and the performance of the
physical link. Similarly, in another study [27] researchers Dif-
ferentiated Grouping D2D (GD2D) communication model
from the traditional D2D communication model. They formu-
lated a resource allocation problem with the aim to guarantee
maximum energy efficiency of the system by maintaining
the user’s Quality of Service (QoS). The convex optimisation
problem is transformed into a non-convex optimisation prob-
lem to obtain a feasible solution. The researchers have also
presented a comprehensive comparative analysis of their
technique and showed a better energy efficient solution
through their proposed iterative power allocation algorithm.

The authors in [26] and [27] used physical link perfor-
mance for end-users pairing to improve communication and
resource allocation problems in D2D system. Whereas, the
proposed algorithms lack scalability and do not perform
satisfactorily for tasks of complex nature. Therefore, effi-
cient resource management and task off-loading state-of-
the-art schemes are anticipated. Specifically, for end-to-end
task computation and ensuring the network’s QoS and users
Quality of Experience (QoE).

The ultra-dense deployment of 5G specific to IoE will hin-
der inherent challenges associated with service coverage and
limited communication range for futuristic networks such as
6G [28], [29]. To address such limitations, authors in [29]
proposed a framework based on mobile resource-sharing
through mobile edge-servers to enable edge resource-sharing
for 6G cost-effective deployment at the edge. Moreover, task
scheduling and path planning as a joint problem is mod-
elled by authors to decouple the resulting and requesting
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edge task off-loading. In order to achieve the overall task
efficiency, which is improved through task scheduling and
path planning. In comparison, scheduling extended the flex-
ibility to address both task scheduling and movement of the
edge servers. Also, the authors proposed a two-layer iterative
updating algorithm to provide resource utilisation optimal
solutions for IoT systems without needing prior knowledge
of task workloads.

In particular, the authors anticipate that 6G technolo-
gies [37] remarkable development is mandated for handling
massive [oT [38], [39] tasks for complex computations [19],
[35], [36] in real-time environments [37], [38], [39], [40],
[41], [42], [43]. Thus, an enormous amount of data and the
massive number of connections initiated within a cluster of
IoE devices are challenging for an edge-based 6G futuristic
network.

B. COMPARATIVE OVERVIEW

In this subsection, we provide a comparative overview of the
literature in a tabular format (Table 1). Our focus here is to
compare various architectures and the relevant performance
parameters used in the literature. In particular, we compare
what architecture is used in each article and what perfor-
mance parameters are used to evaluate the performance of
proposed algorithms. For clarity and the context in which we
considered these architectures and performance parameters,
we provide below a brief definition/explanation of each term
used in Table 1. We also provide a summary of lessons learned
from this study at the end of this subsection.
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IoT / IoE: An IoT/IoE architecture is a network of edge
devices that communicate with each other for information
sharing and various task computations.

Local execution: An architecture based on local exe-
cution is defined as a network architecture where tasks
from different devices are computed/executed within
the cluster without going to the cloud or any other
cluster.

Fog: An architecture based on fog is similar to the edge
architecture where devices are located far from the centralised
access point and nearby the edge of a bigger or more extensive
network. The name fog stems from the idea that the actual fog
is close to the earth’s surface.

Cloud: An architecture based on a cloud is defined as a
collection of resources at a centralised location far from the
IoT/IoE devices.

6G: 6G are the communication models with the standard-
ised parameters such as frequency, bandwidth, latency, etc.,
All IoT/IoE devices in a cluster will use 6G communication
model.

Vehicular edge: An architecture based on the vehicular
edge is defined as an edge network with various vehicles
capable of communicating with each other. These vehicles
within an edge network can formulate a network and provide
task computational capabilities.

Internet of Drones: An architecture based on unmanned
aerial vehicles commonly known as drones. These drones
can formulate a temporary network at the edge of a bigger
network to provide communication services.
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Resource allocation: A resource allocation is a parameter
of interest within the IoT/IoE network, where a scheduler
allocates a device to compute a task.

Scheduling: Scheduling is a mechanism/process to obtain
a task from a device, find an appropriate resource and allocate
that resource for the computation of the task.

Off-loading: Off-loading is a parameter of interest where a
task is assigned to another device for computational or storage
purposes.

Multi-objective algorithm: An algorithm that has more
than one objective to satisfy under certain constraints.

Energy efficiency: Energy efficiency is a parameter of
interest that defines how efficiently and effectively a task is
computed by a device. This parameter commonly relates to
the battery life of a device in the network.

Optimisation: Optimisation is a process to achieve the best
possible outcome of a given problem.

Load balancing: 1oad balancing is a parameter of interest
where a scheduler allocates various tasks among different
devices evenly so that a single device may not be getting most
of the tasks for computation.

Task computation: Task computation is a parameter of
interest where a task allocated to a device is completed suc-
cessfully from the allocation to execution and returns to the
original device.

Intelligence: Intelligence is a parameter of interest where
a scheduler may use various characteristics of the devices,
such as battery level, task computing history etc., to make the
scheduling decisions.

Lessons Learned: 1t is obvious from the Table 1 that there
is a lack of research work that focuses on the local execu-
tion of tasks for IoE devices in a fog architecture. Further-
more, there is also a lack of incorporating intelligence as
defined above in scheduling and task off-loading processes
for an IoE-based edge network. On the other hand, several
articles have focused on over-arching multi-objective task
off-loading and resource scheduling algorithms. However,
they have neglected to design an overall efficient algorithm to
find an optimal solution for the resource allocation, schedul-
ing and task off-loading problem. On the architectural side
of the networks, there is a significant research interest in the
IoT, IoE and smart edge-based networks. It is evident that
the futuristic 6G communication network is gaining a lot of
attention as an emerging area of research.

Contrary to previous work, we consider a cluster based IoE
network and designed a scheduling mechanism that uses sev-
eral scheduling algorithms for task computation. This work
aims to propose an overall solution that minimises cost and
time for task scheduling to manage resources efficiently.
This proposed algorithm is called MTOSA. The designed
algorithm MTOSA leverages the benefits of five different
scheduling policies to compute a task efficiently and effec-
tively. These scheduling policies leverage optimal schedul-
ing through optimisation and load balancing for various IoE
tasks.
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Ill. SYSTEM MODEL

In this section, we describe the system model used in this
paper. Earlier in [44], we presented detailed design of a con-
ventional resource allocation model for IoE devices in 6G
environment. The proposed architecture in this paper consists
of an IoE based fog network where multiple IoE devices
want to compute their various tasks locally. This architecture
aims to efficiently compute IoE tasks locally while minimis-
ing communication with the servers at the external cloud.
It should be noted that the proposed architecture tries to solve
the task computation. The long-distance geographical distri-
bution of IoE devices is sub-divided into several IoE clusters.
Each IoE cluster has a number of IoE devices within close
proximity that can communicate with each other directly. The
communication within an IoE cluster and between the clus-
ters is assumed to be using 6G based wireless communication
networks.

To handle and allocate tasks for computation to different
devices, a computing entity calls the scheduler is available
within each IoE cluster. The responsibilities of the scheduler
are to collect the tasks from IoE devices for computation,
keep up-to-date information about the tasks dispersion and
the capability of IoE devices to compute such tasks, allocate
the tasks to these available and capable IoE devices, re-collect
the computed tasks and re-transmit the results to the original
devices. This proposed architecture takes the leverage of hav-
ing a main task off-loading and scheduling algorithm at the
scheduler that has a number of scheduling policies available
atits disposal, depending on the objectives of task scheduling.
The proposed architecture tries to compute the tasks within
the IoE cluster as much as possible. This architecture has the
advantages of local task computing, low latency, minimal use
of backbone bandwidth and improved quality of service for
IoE devices. A complete description of this architecture is
given in Figure 1.

Our discussion in this section evolves around the IoE
architecture as highlighted in Figure 1 and is focused
on the design of the IoE cluster as visualised in layer
1 of this figure. We start our discussion by describing
the need of the scheduler for efficient task computation
for such a stringent network in the coming subsection.
Readers are encouraged to refer to Table 2 that describes
the symbols and notations used throughout this article.
Furthermore, in the following, we define the entities, com-
munication and assumptions that are frequently used in this
article.

Entities: The entities in this paper are considered as IoE
devices, scheduler, resource allocator, communication links,
6G Access Point (AP) and types of resources such as storage,
information and computation.

Communication: The ‘communication’ in this paper is
defined as the data transmission between IoE devices and
the scheduler. This communication happens through multi-
ple wireless links using 6G radio spectrum. These links are
considered to work in full-duplex mode and provide ample
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TABLE 2. Symbols and notations.

Variable Description Variable Description
D Set of IoE devices T Set of tasks
mf«ii Binary message Schd Scheduler
Sched Scheduling algorithms LoS Local scheduler
LaS Layer Scheduler RA Resource allocator
Da Set of available devices T Set of time slot
R Set of resources L Set of communication links
RYP Resource type RS Resource storage
RN Resource information Rept Resource computation
N Number of devices Ti it task
Te Scheduled task d; i*h device
ds Scheduled device dg Available device
IT] Total number of tasks d* Selected / scheduled device
Ti_schd Task scheduling queue Ti_schd_immd | Task scheduling immediate queue
da_schd_immd | Device scheduling immediate queue da_schd_wait Device scheduling waiting queue
da_schd Device scheduling queue Ti schd_wait Task Scheduling wait queue
t; Forward transmission time Pf ched Scheduling research problem
Tiotal Total task execution time tf chd Forward schedule time in queue
téc Forward transmission time of the scheduled task te Computational time required by the d
4 Transmission time from ds to scheduler, b Time taken by the scheduler to send the
s where b presents backward direction communication schd computed task back to original device d
t? Backward transmission time of task tz;'p Expiry time of a task
AP Access Point H Wireless channel matrix
cmxn Complex number m X n BW Channel bandwidth (Hz)
ri(t) Instantaneous data rate 7 () Average aggregated data rate
& Signal to Interference plus Noise Ratio (SINR) T; Maximum channel rate
o Additive White Gaussian Noise (AWGN) p Transmit power
C Cost function p Priority level ( high =3, medium =2 and low = 1)
Cp(Ti) Cost associated with a task (time) 111 Norm representation

capacity for stable data transmission between [oE devices and
the scheduler.

Assumptions: There are various assumptions made in this
paper to formulate a near practical fog based network. It is
assumed that the IoE devices in the fog network have different
tasks that cannot be computed by the devices themselves.
A scheduler is required to schedule these tasks to an appro-
priate device. The devices predefined these tasks and have a
specific size and time to live (TTL), which is considered ten
seconds for each task. The arrival of tasks at the scheduler
is independent of each other, and the scheduler can hold the
task for a certain period of time if required while the tasks
are being scheduled. It is further assumed that the network
has sufficient wireless communication links, and each device
can communicate with each other and the scheduler without
having a communication bottleneck. We also assume that all
scheduled tasks are computed within the IoE cluster, which
means that the task allocation between IoE clusters is not
required at this stage and will be investigated in future work.

A. PRELIMINARIES

We start by explaining the need of an appropriate sched-
uler with the help of two scenarios as elaborated in
Figures 2 (a) and (b). In the first scenario, as shown in
Figure 2(a), we assume there are four IoE devices
di,dy,ds and dy in the system. These devices want to
compute their tasks without the help of any scheduler. Let
us assume that IoE device d; has a task 77 that requires
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computation which cannot be done at the IoE device d itself.
Therefore, IoE device d; requires support from other devices
to compute its task 77. The IoE device d; initiates a request
message m[1 (where subscript i represents the initiated mes-
sage and superscript 1 denotes the device number) that is for-
warded to all other devices (d>, d3 and dj4) to check whether
they have the required resources to compute this task 77 in
consideration. This communication from d; is shown with
solid lines in Figure 2(a). In reply to this request (shown
with dotted lines in Figure 2(a)) each IoE device d5, d3 and
ds (except dq) will send a binary message, m‘fi (i=23,4)
todi,

di 1, resources available
mii = , M
0, resources not available

The device d; then decides to send task 7; for computation
to the available devices. In this scenario, IoE device d is pro-
cessing all communication to and from other devices directly.
This depicts a simple task computation scenario without any
scheduler involved.

However, consider a complex scenario, where each IoE
device d; where i = 1,2, 3,4, has a task 7; that requires
some computation. Each IoE device d; requires a different IoE
device to perform this computation. This scenario is shown
in Figure 2(b). All IoE devices will be sending and receiving
requests for task computation from each other. For example,
as shown in Figure 2(b), the IoE device d; is required to
handle twelve different communications simultaneously, and
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FIGURE 2. Preliminaries: Layered architecture model of IoE devices for 6G enabled smart edge environments.

Immediately schedule

the task OR

FIGURE 3. An example illustration of a centralised scheduler.

the same is true for the remaining IoE devices as well. In our
research scenario, where we have IoE devices with limited
communication and computational powers, handling such a
complex communication scenario for these devices is a chal-
lenging task. Therefore, it is appropriate to have a centralised
entity, such as a scheduler, that can handle this communi-
cation for all the devices within an IoE cluster. An example
illustration of such a scheduler is shown in Figure 3.

This illustrative scheduling example has input tasks 7;,
a queuing system to store tasks when required and infor-
mation on devices that are able to compute the input tasks.
A scheduler of such a design is placed at the centre of an
IoE cluster. Let us assume there is a set of IoE devices D
as defined below that want their tasks to be scheduled for

93548

T- schd Ttotn.l: tz'f + tfschd + tsf + tc + tsb + tbschd + tz'b
:ljjjj T .a = Total time taken for a task T';to be scheduled, transmitted
{both forward and backward transmission) and computed. d, _schd
T’ _schd_immd dID
. _schd immd
|
T, _schd_wait d, _schd_wait
11
d, T d , d, will perform
¢ computationon T,
tf

(t)
Immediate compute
OR wait & compute

Put the task in waiting
list and then schedule it

computation.
D={didc.... dy . @)
The set of tasks 7T, to be computed is defined as below:
T={TToo v} 3)

Let us assume that the scheduler selects an IoE device,
d; € D and its task 7; to be scheduled at a particular instant
of time. We assume that all tasks and their arrival at the
scheduler are independent of each other.

The scheduler also selects a device d,; s.t. d, € D and
d, # d; to allocate the selected task 7;. The task 7; then
arrives at the scheduler and it decides whether the task needs

VOLUME 10, 2022
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FIGURE 4. Task selection and computational phases.

to wait within the scheduler or it can be scheduled imme-
diately. This depends on the queue status of the device d,.
Once the task is transmitted to d,, the task may need to wait
in the queuing system of d, for the computational resource
to be available. Therefore, the task 7; is computed at d, it is
transmitted back to the scheduler where the scheduler again
decides to immediately transmit it back to d; or keep it in
the queuing system until d; is ready to receive. This process
explains task scheduling, off-loading and computation of a
single task 7;. The scheduler is generally capable of handling
multiple tasks simultaneously.

Motivated by the above discussion, in subsequent subsec-
tions, we describe various components in an IoE cluster as
shown in the proposed architecture (see Figure 1 and 2) to
formulate the research problem.

B. IoE CLUSTER COMPONENTS
Components of an IoE cluster, given in our proposed archi-
tecture can be divided into two categories. The first category
represents the hardware-based components, whereas the sec-
ond category represents conceptual components. The hard-
ware components are IoE devices and resource allocator. The
conceptual components in the IoE clusters are tasks generated
by devices, scheduling algorithms, communication links and
computational resources.

IoE devices in the cluster can be of different types and
can have varying computational powers. Examples of such

VOLUME 10, 2022

devices include smart mobile devices, sensors, actuators and
any other participating device having little computing and
storage capability. They have different hardware architec-
tures, processing abilities, storage capacities, power sup-
ply and operating systems. Some high-end devices may be
equipped with Al chips, but their computing/storage capacity
may still be limited. Also, each IoE device has a different life
cycle. We consider a set of devices D within an IoE cluster
where each device does generate tasks 7; that require some
computation. The set of tasks 7 corresponding to the set of
devices D is represented as per equation (3).

C. RESOURCE ALLOCATOR

Each IoE cluster in the proposed architecture has a resource
allocator, which combines the functions of a scheduler and
resource allocation unit. The scheduler has a set of available
scheduling algorithms as shown in equation (4) below. The
function of the scheduler is to select a specific algorithm from
this set that optimises the objective function.

“

Depending on the location of the scheduler, it can be
divided into two categories as a local scheduler (LoS) and
a layer scheduler (LaS).

Local Scheduler (LoS): This scheduler is located within
the IoE cluster of layer 1. This scheduler uses multiple
scheduling algorithm as per the need. For the sake of brevity,

Sched = {RR, SC. MR, PF, PB}.
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let Sched; represent a scheduling algorithm from equation (4)
that can be used in LoS. Let i = 1,2,...M where M is
the maximum number of scheduling algorithms as given in
equation (4).

Layer Scheduler (LaS): This scheduler is located between
the layers i.e., Layer 1, Layer 2 and Layer 3, hence named
layer scheduler. The role of LaS is to schedule tasks between
layers when the tasks cannot be computed locally within the
layer.

Resource: Each device in an IoE cluster has some com-
putational capability called resource. Some common types
(R™P) of these resources are storage (R*'$), information
(R™') and computation (R"). The set of available resources
R is represented as:

R = {Rl,Rz ......... RN}. (5)

The resource allocation part of the system model is respon-
sible for scheduling computational tasks to the potential
devices with computational resources available and after-
wards getting the computed task back from the devices and
returning the information to the original IoE device as shown
in Figure 4.

D. COMMUNICATION MODEL

The communication model used in the design is assumed
to be based on 6G technology. As illustrated in Figure 1,
multiple wireless links between IoE devices and the sched-
uler are considered, as well as between the scheduler and
AP. We represent such a wireless link as L j where (i, )
represents a source and a destination device pair and this link
can support a full duplex mode of communication. A set of
such communication links in an IoE cluster is represented as:

L= [z:],z:z ......... EN}, 6)

where N represents the total number of devices in an IoE
cluster as shown in Figure 2.

E. PROBLEM FORMULATION

The main objective here is to use one of the scheduling algo-
rithms presented in section IV for selecting an appropriate
device to compute the scheduled task 7. An overarching
goal of the scheduler is to minimise the total time Ty, for
a task to be scheduled, computed and returned back to the
original IoE device. We formulate each scheduling problem
as PiSCh"d, where P denotes the research problem (time min-
imisation problem), depending on certain selection criteria
as described in Problem 1. The subscript i in P;w’“l, where
i=1,2,...,5, represents each minimisation problem. Math-
ematically, we can write these research problems, P;W’ed,
as follows:

Problem 1I:

min {Ttotal } s
{D}
s.t. i) Select dy using(Sched)

ii) Use Poched
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Each minimisation problem, formulated from Problem 1
has two main parts. The first part is to select a scheduling IoE
device using a particular scheduling algorithm Sched such
that the schedule device dy minimised T}, and it can take
any value as per equation (4). Note that we use d; and d* in
the same context throughout this paper such that both sym-
bols represent the scheduled/selected device after applying
the respective scheduling algorithm. Whereas in the second
part, we use the subsequent research problem PiSChEd formu-
lated in the set of following Problems 2 - 6 to implement the
scheduling algorithm.

Problem 2:
{PfeR] = Select d
d; = rand{D}
Problem 3:
{ch} = Select d;
N
s Il > {imlE |
Problem 4.
{73§4R} = Select d;
N
S.t.rqg; > {r,-}
i=1
Problem 5:
{PfF} = Select d;
{”Fs(t)] {%‘(t) }N
s.t. > 1 —
7(t) 7i(t) Ji=1
Problem 6:

{7358} = Select d;

s.t. using equations (15 and 19)

In Problems 2 - 6, to resolve the scheduling prob-
lem PiSCh“’, five different scheduling algorithms (RR,
SC, MR, PF and PB) are defined in detail in sub-
sections (IV-A1 - IV-A5). Problem 2 describes RR schedul-
ing, Problem 3 describes SC scheduling with the condition
that the scheduled device has the largest channel strength,
Problem 4 describes the MR scheduling algorithm where
the selected device has the maximum data rate between
the selected and the original device, Problem 5 describes
the PF scheduling algorithm where selected device is the
fairest scheduled device. Finally, Problem 6 describes the PB
scheduling algorithm where a device is selected in such a way
that it is capable of computing the prioritised tasks.

IV. PROPOSED ALGORITHM

In this section, we present the main task off-loading schedul-
ing algorithm referred as MTOSA. This algorithm takes a
task when it becomes available from a requesting IoE device,
selects an appropriate scheduling algorithm, handles all com-
munication related to the task from a source device to a sched-
uled device, and then returns the task-related information to
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FIGURE 5. Flow diagram of MTOSA.

the source device. In the following subsection, we explain the
detailed working of the proposed MTOSA algorithm.

A. MTOSA ALGORITHM

The scheduling algorithm MTOSA in Algorithm 1 serves as
the main algorithm to select a task waiting to be computed,
schedule the task by selecting the appropriate algorithm, off-
loading to compute the task and then re-transmitting the com-
puted task back to the actual device as shown in Figure 5. The
MTOSA algorithm has five main steps. Initial variables are
set as input to the main algorithm.

In step-1, the pre-scheduling preparation is done where
task 7; and device d; are identified.

In step-2, MTOSA algorithm uses the function Sched,
equation (4), to select an appropriate scheduling algorithm
from the pool of five available algorithms such as RR, SC,
MR, PF and PB. When Sched equals to 1, 2, 3,4 and 5, the
scheduler selects RR, SC, MR, PF and PB algorithms respec-
tively. It should be noted that the performance of MTOSA
algorithm depends on one of these selected scheduling
policies.

In step-3, MTOSA algorithm performs task off-loading
from source device d; which is requesting to compute its task,
to device d, (available device having resources to compute
the scheduled task).

In step-4, MTOSA algorithm performs the back transmis-
sion of the computed task from device d; (note that any
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available device d, can become the scheduled device dg once
the task is assigned to it) to device d;.

Algorithm 1: MTOSA Scheduling Algorithm

Input: Set of tasks {7} to be computed, Set of available
devices {Dy} s.t. Dy = {D} \ d;
Processes: Scheduling, off-loading, transmission
Output: Computed task
Step1: Pre-scheduling preparation; Pick a task 7; of
device d; € {D}
Step2: Select a scheduling algorithm using equation (4)
Select d* accordingly
Subroutine (Sched)
for iter = I : No. of Scheduling Algorithms do

Sched = {RR, SC, MR, PF, PB}

if Sched == 1 then Sched <— Algorithm 2 (RR)

if Sched == 2 then Sched <= Algorithm 3 (SC)

if Sched == 3 then Sched <= Algorithm 4 (MR)

if Sched == 4 then Sched <= Algorithm 5 (PF)

if Sched == 5 then Sched <— Algorithm 6 (PB)
end
Step3: Off-load Tycpq to d,
Step4: Collect and transmit back the computed task to d;
StepS: End of the algorithm

In step-5, after allocating all available tasks the algorithm
terminates.

The relationship between MTOSA algorithm and the other
scheduling schemes such as RR, SC, MR, PF and PB is evi-
denced through the performance of MTOSA algorithm. For
example, when the MTOSA algorithm selects SC scheduling
policy, prioritising the available tasks will not be the schedul-
ing objective of MTOSA algorithm. In this case, the device
with the strongest wireless channel will be allocated the task
for computational purposes. Similarly, the performance of
MTOSA algorithm can be explained when other scheduling
policies such as RR, MR, PF and PB are selected.

1) ROUND ROBIN SCHEDULING
Round Robin (RR) scheduling is the simplest scheduling
algorithm (Algorithm 2) used in many applications. We use
RR as a base scheduling algorithm for the proposed system.
Let us explain the working principle of RR. In RR algorithm,
all devices are scheduled equally when the algorithm is run
for a long period of time. The function rand used in equa-
tion (7) given below, randomly selects a device d* from the
set of given devices D.

d* = rand dl,dz,d3,...,dD]. %)

d*e(D)}

It should be noted that each device in equation (7) has equal
selection probability and the set of selected devices follow a
uniform distribution. The RR scheduling (Algorithm 2) takes
a set of tasks 7 and a set of devices D as input, the output of
RR algorithm is d* which is fed back to MTOSA algorithm
(Algorithm 1).
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Algorithm 2: Round Robin Scheduling Algorithm
Input: 7 ={71,72..., v}, D ={di,da, ..., dyN}
where N = Total number of devices
Output: d* <= Sched{D}
for iter = 1 : TimeSlot do

dq < {D\ ds}
Select scheduled device d* using equation (7)
end

2) STRONGEST CHANNEL SCHEDULING

The strongest channel (SC) scheduling algorithm (Algo-
rithm 3) selects a device d* with the strongest channel.
The purpose of SC algorithm is to provide the best QoS in
guaranteeing the task completion to the scheduled device.
In this algorithm, it is assumed that wireless channels of all
the devices are feasible for communication. This means that
when the scheduler selects any particular device or set of
devices for communication, their wireless channels are capa-
ble of supporting the data transmission. The selection process
of SC algorithm can be described as below:

a* = argmax{ ||, [lall,.... [hall}, ®)
d*eD

where ||.|| represents norm, D is a set of devices with the total
number of N elements and d* € D is the selected device
with the strongest channel. The norm of a channel matrix
H € C™" can be calculated by using the Frobenius norm
expression as:

HIE =323 (1hgt)- ©)
i=1 j=1

where h;j represents the ij column of the channel matrix H.

Algorithm 3: Strong Channel Scheduling Algorithm
Input: D = {dy,d>, ...,dy}, H={h{,hy,--- hy},
where N = Total number of devices.

Output: d* < Sched{D}
for iter = 1 : TimeSlot do

Calculate channel norm using equation (9)
Select ¢* with the strong channel using
equation (8)

end

Input to the SC algorithm is set of device D, time slots T
and wireless channel matrix H. During each iteration, the
algorithm calculates the channel norm of each device using
equation (9), orders all the norm values in descending order
and then selects the device with the strongest norm value.

3) MAX RATE SCHEDULING
The Max Rate (MR) scheduling algorithm (Algorithm 4)
selects a device d* based on the maximum channel rate r; of
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the devices [45]. This ensures to meet the data rate require-
ments of the requesting device as per the nature of the task.
In a sense, MR is similar to SC but ensures that the wireless
channel has the required data rate. Let us define the data rate
of i device as follows:

ri(t) = BW x log, (1 +5i), i=1.....dy. (10)

where BW is the channel bandwidth (Hz) and §; is the Signal
to Interference plus Noise Ratio (SINR) of the i device and
is defined as:

_ pith;h})
B d
o2+ Zjil,j;ﬁi (pjhjh}k)

where p and o represent the transmit power and additive
noise respectively. Now we can write the MR device selection
as:

&i . Y

d* = argmax{rl(t), ra(0), 13(), . . rdN(t)}. (12)
d*eD

Algorithm 4: Max Rate Scheduling Algorithm
Input: D ={d, ds, ...,dy}, H={h; ,hy,--- hy},
where N = Total number of devices.

Output: d* < Sched{D}
for iter = 1 : TimeSlot do

‘ Select scheduled device d* using equation (12)
end

4) PROPORTIONAL FAIR SCHEDULING

The Proportional Fair (PF) scheduling algorithm (Algo-
rithm 5) selects a device d™* based on the ratio of instantaneous
data rate 7;(¢) and the average aggregated data rate 7;(¢). The
purpose of using this ratio is to introduce fairness in device
selection. A device with the highest data rate may get the first
few time slots allocated, however, since its average aggre-
gated data rate will keep increasing, which will decrease the
possibility of selection for this device in the next time slots.
This way, selecting those devices with low instantaneous data
rates can be possible through this algorithm. Mathematically,
PF algorithm can be written as:

{<7l(t)> (1) T3(1) 7D(t)} (13)
7)) Fae) T3() T Tp(0) )
where 7;(¢) and 7;(¢) represent the instantaneous and average
aggregate data rates of the i/ device.

d* = argmax
d*eD

Algorithm 5: Proportional Fair Scheduling Algorithm

Input: D = {d1, d>, ..., dn}, Set of TimeSlot = {T}
Output: d* <= Sched{D}
for iter = 1 : TimeSlot do

‘ Select scheduled device d* using equation (13)
end
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5) PRIORITY BASED SCHEDULING

Although RR is the simplest and the fairest scheduling algo-
rithm, in practical situations, one needs to prioritise certain
tasks as per their importance. Hence, we present a priority
based scheduling algorithm (Algorithm 6) for the devices in
the network. This algorithm identifies the priorities of each
task and schedules it accordingly. A complete description of
PB scheduling algorithm and related components is given
below.

Classification of Tasks: In PB scheduling algorithm,
we define that each device can assign a priority level p to its
task 7. There can be three priority levels for each task defined
as:

p =3, High
Priority = { p =2, Medium 14)
p=1, Low

Let us represent task 7; with its priority level denoted by p as
77’7 where p = {3, 2, 1}. For example 7;3 means a task with
the highest priority over all other tasks. A high priority task
can be considered an emergency task, whereas a low priority
task can be considered a simple calculation or information
request.

This should be noted that the role of the PB scheduler is to
allocate the tasks to available devices that are capable of com-
puting the tasks and have computational resources available.
The scheduler does not analyse the nature of the tasks, which
means the scheduler itself is unaware of the priority levels
of the tasks. Instead, each device in an IoE cluster assigns a
priority level to its own task.

There can be situations when multiple tasks will have
the same priority levels, whereas in other situations tasks
can have different priorities. Based on these scenarios,
PB scheduling algorithm can have the following two cases.

Case - 1: Tasks with Different Priority Levels: In this case,
let us consider that the scheduler has all tasks with different
priority levels. We can represent this scenario as follows:

e _ {TP,TP, 7;5’} (15)

Left hand side of the equation (15) shows that each task in
the set of tasks available to the PB scheduler has a different
priority level, i.e. p; # p;. In this case, PB scheduler selects a
set of tasks with the highest priority levels. For example, if the
scheduler can schedule a maximum of | 7| tasks, it will select
these tasks from the set of tasks available as in equation (15).
If the tasks with the highest priority level in equation (15) are
greater than the maximum capacity of the scheduler, it will
randomly pick the tasks equal to its capacity with the highest
priority level. This scenario of PB algorithm is shown in
Algorithm 6.

Case - 2: Tasks with Same Priority Level: In this case,
the scheduler has all tasks 7 from various devices with same
priority level, i.e. p; = p; where i, j are device indices. This is
a complicated scheduling scenario where the scheduler needs
to implement some strategy S to resolve the conflict of which
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Algorithm 6: Priority Based Scheduling Algorithm
Input: D = {dy, d», ..., dn}, Set of TimeSlots = {T}
Output: d* <= Sched{D}
where Sched = PB
for iter = I : TimeSlot do

if Case == I then

Ts <= argmax { TP#P }
p

else
if Case == 2 then
| Ts <= Go to equation (19)
end
end

end

tasks need to be scheduled. In order to resolve this conflict,
we propose the following conflict resolution strategy.

Conflict Resolution Strategy: Let us assume that the
scheduler has the following set of tasks:

TP = (T2, T3, ..., T3}, (16)

where the left hand side of the equation (16) shows that
tasks have the same priority level and the right hand side
of this equation represents that all tasks are with the high-
est priority level, i.e. p = 3. This priority level can also
be either 1 or 2 but all tasks will have the same priority
level. The scheduling algorithm for this case is presented in
Algorithm 6.

The Strategy S: In order to resolve the conflict mentioned
above, the scheduler uses a strategy S to schedule the tasks
based on their cost function represented by C. This cost func-
tion is associated with each task in 77=. More formally, our
cost function C,(7;) represents the total computational cost
in terms of time of a task 7; with priority p, when sched-
uled to device d; for computation and returned back to the
scheduler.

Let us define (i, j) as the source-destination (SD) device
pair where i, j € D denote the source and destination devices
respectively. It is important to note that the set of avail-
able devices for the scheduler to allocate the selected task
isD\i.

Let us represent device d, as the available device willing
and having the resources to compute 7;” € TP=". We assume
that the scheduler has complete information of all the avail-
able devices d, € D, for example through a dynamic intel-
ligent resource availability table. Once a device is selected
for task scheduling its status becomes a scheduled device,
represented as d;. It should be noted that it is not necessary
for all d, to become d;, i.e. the device with the scheduled task.

The scheduler sends a query message m; (j € {D\ i}) to all
potential d, € (D\ i) about the tasks available for scheduling.
The content of m; consists of calculating the total computa-
tional cost C in terms of time for each task and returning this
information to the scheduler.

93553



IEEE Access

S. U. Jamil et al.: Resource Allocation and Task Off-Loading for 6G Enabled Smart Edge Environments

Each available device d, calculates the cost corresponding
to each task as follows:

- 71
Clepw={C1Coocom} ={a} . ap

where |77| represents the total number of tasks in equa-
tion (16). Each device d, € (D \ i)) then calculates the cost
function C; as follows:

Ci=t +d, +d +t.+"+2,,+12,  (18)

where variables in above equation (18) are defined in Table 2.
The scheduler now has the information of C from all available
devices. Then the strategy S for each device d,, can be defined
as:

j = argmin{C{Za—e(D\D},
Ty <= T;. (19)

This leads us to an optimisation problem at the scheduler
where the task of the scheduler becomes to select a task with
the minimum computational time such that the expiry time
of the task does not reach. Let us define the expiry time of a
task 7; as tz)é,. Then the minimisation problem at the scheduler
becomes as:

Problem 7
. 71
min {Ci}. ,
=
st. C;< tZ;p,
where the objective function of Problem 7 is similar to the
objective function of Problem 1, but defined in terms of the
total cost for computing each task.

B. COMPLEXITY ANALYSES

The main computational complexity of the proposed MTOSA
algorithm (Algorithm 1) comes from one of the scheduling
algorithms selected by MTOSA algorithm. There are three
stages in terms of the overall complexity analysis of the pro-
posed algorithm. Let us represent the complexity of MTOSA
algorithm as:

CompMTOSA — CompStagel + CompStageZ + CompStage3’
(20)

where term Comp represents the computational complexity.
Stage 1: This is the input and preparation stage of MTOSA
algorithm. During this stage, the main algorithm MTOSA
reads the set of devices and the number of tasks to be sched-
uled. Both of these tasks are linear in nature, and the algo-
rithm complexity follows linear additive operations. So the
input complexity of the algorithm can be written as (c| +c2)n
where ¢; where i = 1,2 is a constant and » is a variable
representing number of operations. Given this is a linear
expression, we can write the input complexity of the proposed
algorithm as O((c1 + c2)n). For the best-case scenario, when
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only a single cycle is needed to read each input, the com-
plexity will follow O(2). Hence, we can write Comp5@8¢! =
O((c1 + c2)n).

Stage 2: In this stage, the main MTOSA algorithm invokes
one of the scheduling algorithms from RR, SC, MR, PF and
PB.

From this list of the algorithms, RR is the simplest algo-
rithm with the computational complexity of O(1) as it
requires a single operation to select an available device for
task allocation.

The second scheduling algorithm that we consider is SC
which uses equation (9) to calculate channel norms and then
selects the device with the best channel. To compute chan-
nel norms, there are three operations required including a
mod computation followed by two summations. The overall
complexity of this operation can be written as O(cn) where
¢ = 3 in this case. Also, after norm calculation, the algorithm
sorts out all norm values to pick the best norm. This sorting
operation has the complexity of O(n?). The squared value of
n shows the two steps of selecting the best value and replacing
it with the head element in the array. This gives us the overall
computation complexity of SC algorithm as O(cn) + O(n?).

For MR scheduling algorithm, two steps are required by
the algorithm to compute channel rates and then sort them
in decreasing order. The complexity of the wireless channel
capacity formula is given as O(log n) whereas, as mentioned
before, the complexity of the sorting operation is O(n?).
Hence the computational complexity of MR algorithm can
be written as O log(n) + O(n?).

The complexity of PF algorithm is similar to the complex-
ity of MR algorithm with an extra step where PF algorithm
calculates the ratio between the instantaneous and average
rates of each device. Since this is a linear calculation oper-
ation, the complexity of this step can be written as O(n).
Hence, giving us the overall complexity of PF algorithm as
Olog(n) + O(n) + O(n*) which can be further simplified as
Olog(n) + Om).

The last scheduling algorithm in the list is PB schedul-
ing algorithm, where tasks are sorted into three priority
levels which are low, medium and high. Then based on
the priority level assigned to each task, it is allocated to
the available devices for computation. Given three sorting
operations are happening in PB scheduling algorithm, the
computational complexity of this algorithm can be written
as O(3).

Hence, we can write the complexity of stage 2 depends
on the selected scheduling algorithm as explained above.
Mathematically we can write as Comp3®¢? = Comp
(selected scheduling algorithm).

Stage 3: This stage includes the complexity of collecting
and re-transmitting the computed tasks back to the original
devices. These are linear operations with a constant and a
variable depending on the number of tasks being handled. For
example, for n number of tasks with ¢ = 2 representing two
operations (collection and re-transmission), the complexity of
stage 3 can be written as O(cn).

VOLUME 10, 2022



S. U. Jamil et al.: Resource Allocation and Task Off-Loading for 6G Enabled Smart Edge Environments

IEEE Access

o Selected Device (RR)

o o o] 8 8
. O o o o fe) o 8 - o
T 6] o] o o] o
0 | 3 @ ¢ i ¢ ' | -
1 2 3 4 5 T I t 6 7 8 9 10
| imeslo Selected Device (SC)
0
"é] 5
0 I \ \ \ \ 1 I 1 |
1 2 3 4 5 | 6 7 & ¢ 1
Timeslot O Selected Device (MR)
103~ & 8 Q e 2 2
8 ¢ i ‘ : : o
=S sk o O 2 8 o
§ L | o i | @ ! o) i
1 2 3 4 5 T I 6 7 8 9 10
imeslot Selected Device (PF)
10—
NS s
0 | | | | | : . ; I
b 2 3 4 5 . 6 7 8 9 10
- Timeslot ©  Selected Device (PB)
il i 8 o o h g ©
! S € g g ¢
0 ! \ \ i 7 o 1 - >
1 2 3 4 5 6 7 8 9 10
Timeslot Selected Device (ECT
10—
™3 sl
0 | | | 1 | | I | ]
1 2 3 4 5 . 6 7 8 ° 0
Timeslot o Selected Device (EBS)
10— 8
S 4 & g 8 o o o o O °
il 2 8 o o o]
N | | ! 8 8 | o) \ |
1 2 3 4 ®  Timeslot °© ! ¢ ) N

FIGURE 6. Scenario I: Pictorial representation of various selected devices using RR, SC, MR, PF, PB, ECT [46] and EBS [47] scheduling algorithms. ECT and

EBS scheduling algorithms are used for comparison purposes.

Hence, using equation (20) and the complexity expressions
presented above in stage 1, 2 and 3, we can re-write equa-
tion (20) as equation (21):

CompMTOSA

= O(c1 +c2)n
+ Comp (selectedscheduling algorithm) + O(cn).
(21)

V. RESULTS AND DISCUSSION

In this section, we analyse the performance of the proposed
MTOSA scheduling algorithm (Algorithm 1) by presenting
a number of simulation scenarios. We compare the results of
various scheduling policies presented in this work, and also
compare them with the existing scheduling policies such as
from [46], [47]. Similar to many other works in literature,
such as [46], [47], [48], we also used MATLAB to create and
simulate different scenarios using system parameters that are
close to real-life setups.

In the following, we describe the experimental setup used
in this work, and elaborate on the two existing scheduling
policies namely, ECT (Expected Computation Time) [46] and
EBS (Energy Based Scheduling) [47], which are used for
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comparison purpose. The reasons for selecting ECT and EBS
policies for the comparison purposes are (i) the relevance
to our work in this paper, (ii) the recent relevant literature
(iii) the practical nature of these policies for implementation
purposes.

The experimental setup used in this work mimics an IoE
based cluster where a number of IoE devices co-locate within
the cluster in close proximity to each other. Within the IoE
cluster, there is a scheduler and a number of IoE devices.
The scheduler is provided with the fixed set of devices D as
defined in equation (2) within the IoE network. Simulation
parameters used for the experiments in this work are sim-
ilar to [46], [47]. We used a HP-laptop with the following
configuration: CPU AMD Ryzen 5 4500U, operating sys-
tem 64-bit Windows-10 and memory of 8GB. The sched-
uler and IoE devices are configured using the computing
resources of this laptop. Furthermore, we used a single sched-
uler within IoE cluster, and the number of IoE devices varies
according to each simulation scenario. The obtained results
are manifested through independent simulation repetition of
each experiment by 30 times. The results obtained and pre-
sented are the average over the total number of the simulation
run.
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TABLE 3. Representation of preliminaries for simulation results.

Device (d7) dl d2 d3 d4 d5 dﬁ d7 ds dg dlo
Device (d;) ID 2 8 10 4 9 1 6 5 3 7
Task (7;) ID 6 1 3 1 6 4 2 10 8 3

Resource type (R??) | R | R | Revt | RSt | RinS | Re%9 | ReP? | RePE | R | RS9
Cost (C) 12 18 30 40 9 1 16 15 13 17
Priority (p) 2 1 2 1 3 2 3 3 2 2

TABLE 4. Scenario I: Tabular representation of various selected devices
using RR, SC, MR, PF, PB, ECT [46] and EBS [47] scheduling algorithms.

Sched t1 tz ts
Policy d dr d*
RR 31 4 7141619 11215
2| 4 6 |1 [3110|1]5]| 8
MR 117 (101268 |5]|7]| 8
PF 213 714161041910
PB 31 4 9 141516 3|59
[46] | 9|10 | 6 | 5|7 1 179] 6
EBS[47] | 2| 8 6 |46 8 |8|7|9

In the following paragraph, we describe two existing
scheduling schemes from the current literature, namely
ECT [46] and EBS [47]. In ECT based scheduling scheme,
a task from a particular IoE device is scheduled with the min-
imum execution time by the allocated device. This scheme
uses the parameters such as task length and allocated device
computing power to minimise the execution time. Whereas,
in EBS scheme, the authors defined the QoE parameter for
each fog node and computed the task based on QoE. The
scheduler computing power is divided equally in the begin-
ning for all the competing nodes, and the task with minimum
execution time is given priority during the scheduling. The
authors used Game Theory to maximise each user’s own
QoE compared to the other user’s strategies. Furthermore,
they proposed a weighted potential game to achieve the Nash
equilibrium in the scheduling process.

Preliminaries: We start our discussion by describing the
key simulation preliminaries such as IoE cluster, devices,
tasks, resource type, cost and priorities that are an inte-
gral components of the entire design on which simulations
are built. The key parameters of these components related
to this simulation are tabulated in Table 3. For example,
a device di = 2 is available for scheduling in IoE clus-
ter at time slot #1. The relevant parameters of this device
dy = 2 are shown in the first column of Table 3 and explained
below.

A predefined task with the task ID as 77 = 6 is assigned
to the task of this device (d; 2). The type of the
requested resource by this device is ‘information’, denoted
by R™ . The total cost (C) required to compute this task is
12 units. The task has a medium level priority represented by
p=2.

A set of ten devices is considered in our simulations as
shown in the first row of Table 3. During each simula-
tion scenario, a device d; is selected as per the scheduling
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policy used by MTOSA algorithm. The selected device ID
is shown in second row of Table 3. Each device has its own
task denoted by 7; having a specific task ID as shown in
third row of Table 3. The requested resources from devices
in the IoE cluster can have various types such as information,
computation and storage which are shown in the fourth row
of Table 3. The fifth row of the Table 3 shows the total cost
in terms of computational time for each scheduled task. The
sixth and the final row of Table 3 shows the priority level of
each task (3- high), (2- medium) and (1-low) to be used when
PB scheduling policy is used.

Relevance between Performance Parameters and the
Application: The parameter to evaluate the performance of
the proposed MTOSA algorithm in this article, is the knowl-
edge of selected devices (device selection) by the scheduler.
This information (device selection) is directly relevant to
the application performance of the overall system consid-
ered in this paper, which is an IoE based edge network.
In all three evaluation scenarios given below, device selection
and its derived parameter, such as the percentage of device
selection, are the focus parameters. The proposed MTOSA
algorithm selects different devices for the same task when
different scheduling algorithms (such as RR, SC, MR, PF,
PB) are used. The knowledge of selected devices determines
the overall performance of the devices in the edge network.
If a particular device or a group of devices are being selected
repeatedly, their long-term performance will degrade dramat-
ically due to the overloading of the scheduled tasks. These
devices being selected for task computation again and again
will lead to fast failure because of the extra workload assigned
to them. With this information, the scheduler can balance the
workload for the devices in the network that are repeatedly
selected and distribute the tasks to those devices that are
assigned fewer tasks.

Scenario I: In this scenario, we show the device selection
using all five scheduling algorithms (RR, SC, MR, PF, PB)
as described in section IV. We also show the device selection
using existing schemes ECT and EBS for comparison pur-
poses. Simulation results of this scenario are shown in Table 4
and Figure 6.

The results in Table 4 are shown for only three time slots
(t1, 1, t3) whereas in Figure 6 results are shown for ten time
slots. First column of Table 4 shows scheduling policies
which are the five scheduling algorithms investigated in this
paper and two scheduling policies used for result comparison
from literature. Second column-first row of Table 4 shows the
first time slot #{, whereas second column-second row shows
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TABLE 5. Scenario II: Tabular representation of the percentages of the selected devices.

Time slot (t7) (tl, s ,t10)
Device (d;) di (%) | d2 (%) | d3 (%) | da (%) | ds (%) | de (%) | d7 (%) | ds (%) | do (%) | dio (%)

RR 20 50 30 40 40 20 40 20 40 10
30 40 40 20 40 30 30 40 10 20
MR 40 20 10 30 40 20 40 40 40 20
PF 30 40 20 30 20 20 30 10 60 40
PB 20 40 40 40 50 30 30 30 20 0
[46] 50 30 30 30 50 30 20 20 30 10
EBS [47] 20 30 20 40 10 40 40 70 20 10

60 1 I sciccted Device (RR)

5o | [ Selected Device (SC)

N
o
T
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(%]
(=]

I selccted Device (MR)
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(a)
80 r
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[
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o
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FIGURE 7. Scenario II: Pictorial representation of the percentages of the selected devices.

scheduled / selected devices d*. There are three out of a total
of ten devices selected in each time slot. Similarly second and
third columns in Table 4 show selected devices during time
slots #; and t3 respectively.

Figure 6 shows the pictorial representation of the selected
devices for ten time slots 1, . . ., t19 using all five scheduling
algorithms and two existing scheduling policies from liter-
ature. It is clear from this scenario that various devices are
being selected during each time slot when using different
scheduling algorithms. This scenario sets the foundation of
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other simulation scenarios and confirms the working accu-
racy of each scheduling algorithm through different selected
devices.

Scenario II: In this scenario, we show the selection per-
centage of each device for all five scheduling algorithm,
as well as for ECT [46] and EBS [47], in the simulation.
The selection percentage is defined as that how many times
a device is selected by a specific scheduling algorithm over
total time slots. For example, if a device is selected twice dur-
ing ten time slots, then the selection percentage of that device
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TABLE 6. Scenario llI: Devices selection in IoE cluster with PB scheduling algorithm.

Device (di) [ d1 [ d2 [ d3 [ [ ds [ dﬁ [ d7 [ ds [ dg [ d1o
Case -1

Device (d;) 5 1 4 10 6 8 9

Priority (p) 3 I I I 3 I I 1 2 1
Case - 2

Device (d;) 1 7 3 2 4 5 8 6 10
Priority (p) 3 3 3 3 3 3 3 3 3
Cost (C) 12 33 21 27 4 26 21 30 1
Case PB - Cost

Device (d;) 2 10 1 8 7 3 5 4 9
Cost (C) 9 2 17 39 3 35 24 26 17
Case PB - Type

Device (d;) 2 8 5 1 4 7 10 6 3
Resource Type (Rtyp) Rznf Rznf cht Rstg Rstg Rznf cht cht R(;pt Rstg

TABLE 7. Scenario Ill: A comparison of device selection RR, ECT [46] and
EBS [47] under PB various cases.

PB Cases t1 to t3
Policy dr dr d
Case -1
RR 1 |28 [3|8]10| 3 |4]| 5
91102 (3|10 4 |5 7
[46] [ 10| 6| 3 [ 2|5 1 6 | 8] 4
EBS [47] 00191 ([7]1] 9 9 6] 1
Case -2
RR 2 (5710|457 1 |41 6
1 4|10 1]6] 9 2 3] 8
[46] 21713 19|6]|5 6 | 8] 2
EBS [47] 1001516 [7]6] 5 4 16| 3
Case PB - Cost
RR 2 1319123 8 4 157110
2 7110|456 1 |5]09
[46] 6 3] 8 |57 2 1]10]9]|2
EBS [47] 5171219/ 4 1 | 3] 8
Case PB - Type
RR 31417 (21810 1 8 | 10
2 141 8 14| 8 1 51 7
[46] 4 1213 |51/ 4 4 171 2
EBS [47] 31911198 6 51419

is twenty percent. This study is important to understand the
computation workload of each device within the cluster. If a
particular device is being scheduled for task computation
most of the time, it may damage the life span of that particular
device. Therefore, the scheduler examines this information
and can manage the scheduling of each device in the clus-
ter. The results of this scenario are shown in Table 5 and
Figure 7.

The results in Table 5 are shown for ten time slots
(t1,...,10) and all ten devices N = 1, ..., 10. First col-
umn of Table 5 shows all five scheduling algorithms and two
scheduling policies, ECT [46] and EBS [47] which are used
for comparison. The top row of Table 5 shows time slots and
the second row of the table shows the percentage of selection
of each device in the cluster. For example, third row of Table 5
shows the selection percentages of all ten devices when RR
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scheduling algorithm is used. The remaining four rows in the
table show similar results for the remaining four scheduling
algorithms as well. Whereas, the last two rows in the table
show the results of ECT [46] and EBS [47].

Figure 7 shows the pictorial representation of the selec-
tion percentages for each device. Vertical axis of the figure
shows the selection percentage and the horizontal axis shows
the number of devices in the cluster. Different colours of
bars in Figure 7(a) represent five different scheduling algo-
rithms and the height of each bar represents the selection
percentage of each device. Similarly, Figure 7(b) represents
the same results for ECT [46] and EBS [47] policies for
the comparison purposes. For example, it is clear that under
RR scheduling algorithm, device d; is selected most of the
time and has a selection percentage value of 50%, whereas
amongst all scheduling algorithms and all devices, do has
been selected 60% under PF scheduling algorithm. Based on
this data, the scheduler can manage the selection workload
for dy to optimise its life span. In comparison, device dy is
selected by ECT [46] 70% and device dg has been selected
by EBS [47] 60%. The results of these policies highlight the
imbalance in device selection and require application of load
balancing through the scheduler to improve the quality of
service.

Scenario III: In this scenario, we investigate the perfor-
mance of PB scheduling algorithm while considering the
tasks with different priorities (see equation (14)) and dif-
ferent computation requirements. Description of task prior-
ities, computational requirements and strategies to schedule
such tasks is given in subsection IV-A5. Simulation results
of various studies on PB scheduling algorithm are shown in
Tables 6, 7, 8 and also in Figures 8 and 9.

Table 6 describes the simulation preliminaries for PB
scheduling algorithm. We assume there are ten total devices
N = 10and (dy, ..., dip) with each device has a task with a
pre-defined priority level. Each device and its task have the
same IDs, i.e. for example device 4 has its own task with the
task ID number 4. Note from equation (14) that priority levels
p =1, 2, 3 represent low, medium and high priorities respec-
tively. Each task in this scenario is assigned a random priority
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FIGURE 8. Scenario IlI: Devices selection in 10E cluster with PB scheduling under different cases. Also, comparison of PB various cases with RR, ECT [46]
and EBS [47] device selection.

level. For example, from Table 6, under case-1, task 5 has (p = 1) and so on. The table also shows two cases where tasks
high priority (p = 3), device 1 has its task with low priority have different and have the same priority levels respectively,

VOLUME 10, 2022 93559



IEE E ACCGSS S. U. Jamil et al.: Resource Allocation and Task Off-Loading for 6G Enabled Smart Edge Environments

I sclccted Device (RR) I ssiscted Device (ECT)
Ak [ selected Device (PB-Casel) Caset [ selected Device (EBS)
80

60

D
o

Percentage %
.

o
Percentage %
s
o

20 20
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Devices Devices
I sclected Device (RR) I sciccted Device (ECT)
o0 Case2 [ selected Device (PB-Case2) Case2 [ Selected Device (EBS)

80 r

S

=)
[s)]
[=]

Percentage %
w
o
Percentage %
.
o

20
20
10
0 0
0 2 4 , 6 8 10 0 2 4 6 8 10
Devices Devices
I sciccted Device (RR) I selected Device (ECT)
Case PB-Cost [ selected Device (PB-Cost) Case PB-Cost [ selected Device (EBS)

80 r 60

=2}
S

S

o

Percentage %
.

o
Percentage %
w
o

20
20
10
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Devices Devices
I sclected Device (RR) I sclected Device (ECT)
Case PB-Type I selected Device (PB-Type) 80 Case PB-Type [ selected Device (EBS)
40
® =2
S 30 &
8 5
5 5
© 20 2
@ ©
a o

-
o

Devices Devices

FIGURE 9. Scenario I1I: A comparison of selection percentage RR, ECT [46] and EBS [47] with PB different cases.

case PB-Cost where the device with the minimum cost is Table 7 shows the simulation results of PB algorithm for
selected and case PB-Type, where a device is selected that the scenario explained above and compare these results with
can best compute the task based on its type, e.g. information, RR, ECT [46] and EBS [47] algorithms. These results are
computation and storage types. shown for only three time slots while during each time slot
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TABLE 8. Scenario IlI: Device selection percentage comparison RR, ECT [46], EBS [47] with PB various cases.

Time slot (t:) (t1 -+ - t10)
Device (d) | di (%) | d> (%) | d5 (%) | da (%) | d5 (%) | do (%) | d (%) | ds (%) | do (%) | dio (%)
Case -1
RR 30 70 20 30 30 20 10 40 30 20
30 10 30 30 10 40 40 30 30 50
[46] 10 30 20 30 30 50 0 60 30 40
EBS [47] 30 20 30 0 10 20 10 50 80 50
Case -2
RR 60 10 50 10 40 30 30 50 0 20
40 30 40 0 30 30 20 30 40 40
[46] 10 30 70 0 30 50 20 40 20 30
EBS [47] 10 40 50 20 30 40 20 20 40 30
Case PB-Cost
RR 50 10 40 20 40 30 40 20 30 20
40 20 40 10 70 30 20 30 20 20
[46] 0 50 20 40 40 20 30 40 60 0
EBS [47] 40 30 20 30 40 50 30 20 40 0
Case PB-Type
RR 10 20 20 20 50 10 30 30 20 30
10 20 30 30 20 10 50 20 30 20
[46] 20 40 10 40 30 40 20 20 20 60
EBS [47] 60 30 30 50 20 20 10 30 40 10

three devices are selected by the PB, ECT, EBS and RR
algorithms, whereas, Figure 8 represents these simulation
results for the complete run of the simulation, i.e. for time
slots 71, ..., t0.

Finally, Table 8 and Figure 9 present a comparison among
ECT [46], EBS [47], RR and PB scheduling algorithms in
terms of selection percentage of the selected device. Similar
to the earlier argument, this study is important to manage the
workload of each selected device. It is clear from Table 8
that during case-1, EBS selects 90% of times the device do,
ECT selects 60% of times the device dg, RR selects 70% of
times the device dp whereas the device dj is selected 50%
by the PB algorithm. Also, from Figure 9, it is clear that
during case-1, EBS selects the ninth device, ECT selects the
device number eighth, RR selects the second device whereas
PB selects the tenth device most of the time. Similarly, during
PB-Type scenario, EBS, ECT, RR and PB policies selects
the third, second, fifth and seventh device most of the time
respectively. This information helps the scheduler balance
the workload of all IoE device much more effectively in the
cluster.

VI. CONCLUSION

This paper presents a conceptual design architecture of the
conventional resource allocation model for IoE devices in
6G enabled smart edge based communication environment.
Based on the proposed conceptual model, a novel task
off-loading, scheduling and resource allocation algorithm
MTOSA is presented and its performance is investigated for
several edge scenarios. The proposed algorithm, MTOSA,
schedules the devices by choosing the appropriate schedul-
ing policy from the list of five scheduling policies, i.e., RR,
SC, MR, PB and PF. The analysis of MTOSA results shows
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that each scheduling algorithm performs optimally under
the specific and predefined scenario with the IoE cluster.
This scheduling performance analysis helps to optimise the
IoE device life span and working within the cluster. The
paper showed that for tasks of trivial nature, RR algorithm
provides acceptable performance. RR algorithm was also
found to be suitable for most tasks since IoE devices have
low power and low computational profiles. For tasks requir-
ing more stringent conditions to be met, such as minimum
data rates, time constraints and priorities, one of the more
sophisticated scheduling policies such as SC, MR, PF and
PB should be used for optimal solutions. These results are
compared with the two existing scheduling policies from
the literature, such as ECT [46] and EBS [47]. It is shown
through various experiments that the proposed algorithm
MTOSA performs better with respect to every performance
parameter studied in this paper compared to the existing
policies.

As a part of future work, we would investigate the possible
integration of intelligence within the scheduler to achieve
more efficiency within the design by analysing the perfor-
mance history of IoE devices as a parameter to make informed
decisions. A future extension can help to refine the overall
design for a better edge-based smart environment for futuris-
tic 6G networks.
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