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ABSTRACT There has been an enormous increase in information flow and communication data due to
the rapid rise in the number of Internet of Everything (IoE) devices and the development of cutting-edge
technologies such as the rollout of the Sixth Generation (6G) network. The rising and inevitable off-loading
requirements of IoE devices have resulted in an unprecedented increase in the reliance on edge and cloud
paradigms. However, such a reliance on far-end technologies to access already scarce resources can often
result in increased latency and unstable connection issues due to limited bandwidth. In this paper, we inves-
tigate the solution for such a stringent network design by presenting a conceptual cloud architecture based
on key components such as resource allocation, scheduling and task off-loading for IoE devices. The IoE
devices utilise a scheduler to access resources from nearby higher resourced IoE devices for their task
computation, where the scheduler allocates incoming requests according to the availability of resources
within a cluster of devices or to other devices in nearby clusters. Motivated by these design characteristics,
we propose a design of a novel Main Task Off-loading Scheduling Algorithm (MTOSA) for efficient
task allocation and dissemination. We present a theoretical analysis of five different scheduling policies
namely Round Robin (RR), Strongest Channel (SC), Max Rate (MR), Proportional Fair (PF) and Priority
Base (PB) scheduling to find an optimal technique for task off-loading in futuristic networks. Furthermore,
we compare the performance of these five scheduling policies with the two existing scheduling policies from
the literature. It is shown through various experiments that the proposed MTOSA algorithm performs better
when compared with the existing schemes for different performance parameters.
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INDEX TERMS Edge-based cloud, 6G, IoE, smart devices, AI, QoS, task off-loading, machine learning
(ML), scheduling, resource allocation.

I. INTRODUCTION21

Enormous increase of information flow expected in futur-22

istic networks such as 6G communication will mainly be23

driven by the constant flow of data generated by smart24

devices and has now given rise to the Internet of Everything25

(IoE) paradigm [1], [2]. For such a diverse IoE environ-26

ment, a smart resource allocation management paradigm is27

vital to efficiently address resource allocation and processing28

tasks either locally or off-loading to higher resource-enriched29

clouds [3]. Scheduling policies [4], [5] play a vital role in30

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng-Yong Kong .

situations where tasks are outsourced in order to achieve 31

efficient information dissemination. For the best utilisation 32

of locally available resources, the availability of an efficient 33

task scheduler with the ability to optimise task allocation is 34

necessary. In addition to that, the use of a combination of 35

different scheduling algorithms and policies helps to achieve 36

satisfying outcomes. These scheduling policies vary in nature 37

depending on the type of tasks being generated in the edge 38

network. 39

It is envisioned that 6G wireless communication will 40

rely on smart edge emerging technologies such as Artifi- 41

cial Intelligence (AI) and Machine Learning (ML) to utilise 42

edge-based cloud architectures to transform task scheduling 43
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FIGURE 1. Layered architecture model of IoE devices for 6G enabled smart edge environments.

and off-loading for real-time intelligent applications [6], [7].44

In [8], authors have proposed an AI-enabled architecture for45

6G networks to improve resource management and automatic46

network adjustment by employing intelligent service provi-47

sioning. Authors argue that due to the increasingly complex48

nature of applications running on 6G networks and their strin-49

gent requirements, the 6G networks need to be more revolu-50

tionised than their predecessors. In [9] author has presented51

a task scheduling algorithm based on a Genetic Algorithm52

(GA) design for a cloud campus platform architecture. The53

cloud campus platform has been visualised as having users54

that are connected through virtual machines where resource55

allocations are dynamically allocated for efficient resource56

usage. The author has subdivided the problem into two types;57

first that can be scheduled on the basis of execution time58

and second that is based on load prediction. In this work,59

a task scheduling method established upon task scheduling60

prediction and particle swarm optimisation methods has been61

utilised by the authors to tackle resource management issues62

in a cloud architecture.63

Recent literature [10], [11], [12] highlights the need of64

an efficient mechanism to facilitate seamless communica-65

tion in the resource-intensive futuristic networks. Due to the66

unprecedented increase in the use of low-power IoE devices67

and the volume of data it generates, there is a need to develop68

a state-of-art architecture to support a wide range of applica-69

tions in order to manage smart environment resources in an70

efficient and intelligent manner. As highlighted in some of71

the recently published articles [13], [14], [15], [16], authors72

have investigated the solutions for some inherent challenges73

such as minimising energy consumption, the processing effi-74

ciency of IoE nodes, task computational and transmission75

delays due to network congestion, collaborative load bal- 76

ancing approaches for resource allocation. In this article, 77

we investigate a comprehensive solution to address such 78

challenges associated with task off-loading, scheduling and 79

information dissemination in futuristic edge-based networks. 80

We present the detailed elaboration of this architecture in 81

Figure 1 consisting of several IoE devices as key elements. 82

We describe the design components by investigating vari- 83

ous scheduling and task off-loading mechanisms within IoE 84

cluster. Using conventional as well as practical scheduling 85

techniques, we evaluate the performance of these algorithms 86

and present a comprehensive theoretical analysis of this archi- 87

tecture. The key contributions of this article are summarised 88

as follows: 89

1) Presented a comprehensive conceptual design architec- 90

ture of conventional and practical resource allocation 91

model for IoE devices in a futuristic edge-based 6G 92

network. 93

2) Formulated the research problem in the proposed sys- 94

temmodel of the edge-based architecture as a cost/time 95

minimisation problem for the scheduler. 96

3) Proposed a novel centralised scheduling algorithm, 97

Main Task Off-loading and Scheduling Algorithm 98

(MTOSA), that uses five different scheduling policies 99

namely RR, SC, MR, PF and PB. 100

4) Evaluated the performance of the proposed MTOSA 101

scheduling algorithm for several practical edge-based 102

scenarios and analysed the results of the algorithm by 103

comparing it with existing schemes. 104

The rest of the section-wise paper outline is detailed as fol- 105

lows: Section II presents a brief synopsis of recent literature 106
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in this area. Section III describes the system model used in107

this work and we formulate the central research question by108

describing the key components of the model in this section.109

The proposed algorithm working principle is explained in110

Section IV. Numerical results and evaluation are analysed in111

Section V. Finally, Section VI concludes the paper.112

II. RELATED WORK113

A lot of recent research [17], [18], [19], [20], [21], [22], [23],114

[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],115

[35], [36], [37], [38], [39], [40], [41], [42], [43] has been116

instigated in the domain of task off-loading and resourceman-117

agement to overcome the challenges associated with complex118

network design. In the following subsections, we present a119

brief synopsis of recent (i) related articles analytical overview120

and (ii) a comparative overview in tabular form for meaning-121

ful comparison with the proposed algorithm MTOSA.122

A. BRIEF OVERVIEW123

In this subsection, we review some of the recent significant124

contributions of different researchers. The analysis helps to125

signify lessons learnt from existing schemes and highlight126

unique differences between the proposed work of this paper.127

A technological evolution-based survey is presented in128

relation to the recent challenges in task off-loading in edge129

network in [17]. Edge computing shifts the functionalities and130

services to the user’s proximity from the cloud. It enhances131

edge network capabilities regarding data rates, efficient com-132

munication, storage, and powerful computing. But, this shift133

leads to extra challenges such as efficient resource allocation134

and task scheduling. To address these challenges, the authors135

in [18] suggested exploring flexible computation models, the136

attention required on computation migration and considering137

the nature of tasks through different optimisation variables.138

Therefore, innovative aspects of this study lead to a flexible139

resource scheduling and allocation paradigm. Furthermore,140

it is suggested that the scheduler should employee different141

scheduling policies to minimise cost and time, based on pri-142

oritising tasks according to their nature.143

The researchers in [19] modelled efficient and quick144

off-loading decisions on the basis of optimal computation145

for the Internet of Vehicles (IoV) architecture. The com-146

putation and communication resources required by vehi-147

cles at the same instance are argued by researchers as the148

main reason for such computation off-loading. Therefore,149

the IoV self-learning scheme based on distributed compu-150

tation off-loading is proposed with the aid of a fully dis-151

tributed algorithm to minimise off-loading cost and latency.152

Task off-loading and scheduling research problem is further153

analysed in [20] and [21], where the prime focus was to154

devise solutions to efficiently manage computation and com-155

munication resources. Authors have provided the guarantee156

of the overall system performance while minimising the costs157

by task allocation in order of arrival through a scheduling158

algorithm.159

In another study [22], a reliable scheduling of the resources 160

in Cloud-Fog environment is implemented through a set 161

of scheduling algorithms and load balancing techniques are 162

utilised to assign specific requests. These requests are clas- 163

sified as time-tolerant, important and real-time. Hence, the 164

scheduling process considered resources failure rate for the 165

provision of high reliability to requested services. So far, 166

different recent studies [23], [24], [25] extensively designed 167

and implemented different sorts of algorithms to optimise 168

communication overheads, focused on minimising time, cost 169

and latency to perform efficient scheduling. 170

These works [20], [21], [22], [23], [24], [25] considered 171

different scheduling paradigms to minimise time, cost and 172

latency to improve the overall performance efficiency of the 173

system in the task off-loading process. However, there was a 174

lack of emphasis on the local execution of IoE tasks to utilise 175

maximum resources in a cluster by considering the nature of 176

the task. Thus, these algorithms may not fulfil the stringent 177

requirements to optimise task scheduling and allocation in an 178

edge-based futuristic 6G network. 179

In different real-time scenarios, limited coverage and high 180

cost raise the demand for efficient resource management for 181

transmission in any mode of communication service. The 182

authors explored different mechanisms of device-to-device 183

(D2D) communication and have been presented in [26]. 184

In order to optimise D2D system, the authors considered the 185

willingness of users-end pairing and the performance of the 186

physical link. Similarly, in another study [27] researchers Dif- 187

ferentiated Grouping D2D (GD2D) communication model 188

from the traditional D2D communicationmodel. They formu- 189

lated a resource allocation problem with the aim to guarantee 190

maximum energy efficiency of the system by maintaining 191

the user’s Quality of Service (QoS). The convex optimisation 192

problem is transformed into a non-convex optimisation prob- 193

lem to obtain a feasible solution. The researchers have also 194

presented a comprehensive comparative analysis of their 195

technique and showed a better energy efficient solution 196

through their proposed iterative power allocation algorithm. 197

The authors in [26] and [27] used physical link perfor- 198

mance for end-users pairing to improve communication and 199

resource allocation problems in D2D system. Whereas, the 200

proposed algorithms lack scalability and do not perform 201

satisfactorily for tasks of complex nature. Therefore, effi- 202

cient resource management and task off-loading state-of- 203

the-art schemes are anticipated. Specifically, for end-to-end 204

task computation and ensuring the network’s QoS and users 205

Quality of Experience (QoE). 206

The ultra-dense deployment of 5G specific to IoE will hin- 207

der inherent challenges associated with service coverage and 208

limited communication range for futuristic networks such as 209

6G [28], [29]. To address such limitations, authors in [29] 210

proposed a framework based on mobile resource-sharing 211

through mobile edge-servers to enable edge resource-sharing 212

for 6G cost-effective deployment at the edge. Moreover, task 213

scheduling and path planning as a joint problem is mod- 214

elled by authors to decouple the resulting and requesting 215
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TABLE 1. Comparison table of existing work in literature.

edge task off-loading. In order to achieve the overall task216

efficiency, which is improved through task scheduling and217

path planning. In comparison, scheduling extended the flex-218

ibility to address both task scheduling and movement of the219

edge servers. Also, the authors proposed a two-layer iterative220

updating algorithm to provide resource utilisation optimal221

solutions for IoT systems without needing prior knowledge222

of task workloads.223

In particular, the authors anticipate that 6G technolo-224

gies [37] remarkable development is mandated for handling225

massive IoT [38], [39] tasks for complex computations [19],226

[35], [36] in real-time environments [37], [38], [39], [40],227

[41], [42], [43]. Thus, an enormous amount of data and the228

massive number of connections initiated within a cluster of229

IoE devices are challenging for an edge-based 6G futuristic230

network.231

B. COMPARATIVE OVERVIEW232

In this subsection, we provide a comparative overview of the233

literature in a tabular format (Table 1). Our focus here is to234

compare various architectures and the relevant performance235

parameters used in the literature. In particular, we compare236

what architecture is used in each article and what perfor-237

mance parameters are used to evaluate the performance of238

proposed algorithms. For clarity and the context in which we239

considered these architectures and performance parameters,240

we provide below a brief definition/explanation of each term241

used in Table 1.We also provide a summary of lessons learned242

from this study at the end of this subsection.243

IoT / IoE: An IoT/IoE architecture is a network of edge 244

devices that communicate with each other for information 245

sharing and various task computations. 246

Local execution: An architecture based on local exe- 247

cution is defined as a network architecture where tasks 248

from different devices are computed/executed within 249

the cluster without going to the cloud or any other 250

cluster. 251

Fog: An architecture based on fog is similar to the edge 252

architecture where devices are located far from the centralised 253

access point and nearby the edge of a bigger ormore extensive 254

network. The name fog stems from the idea that the actual fog 255

is close to the earth’s surface. 256

Cloud: An architecture based on a cloud is defined as a 257

collection of resources at a centralised location far from the 258

IoT/IoE devices. 259

6G: 6G are the communication models with the standard- 260

ised parameters such as frequency, bandwidth, latency, etc., 261

All IoT/IoE devices in a cluster will use 6G communication 262

model. 263

Vehicular edge: An architecture based on the vehicular 264

edge is defined as an edge network with various vehicles 265

capable of communicating with each other. These vehicles 266

within an edge network can formulate a network and provide 267

task computational capabilities. 268

Internet of Drones: An architecture based on unmanned 269

aerial vehicles commonly known as drones. These drones 270

can formulate a temporary network at the edge of a bigger 271

network to provide communication services. 272
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Resource allocation: A resource allocation is a parameter273

of interest within the IoT/IoE network, where a scheduler274

allocates a device to compute a task.275

Scheduling: Scheduling is a mechanism/process to obtain276

a task from a device, find an appropriate resource and allocate277

that resource for the computation of the task.278

Off-loading:Off-loading is a parameter of interest where a279

task is assigned to another device for computational or storage280

purposes.281

Multi-objective algorithm: An algorithm that has more282

than one objective to satisfy under certain constraints.283

Energy efficiency: Energy efficiency is a parameter of284

interest that defines how efficiently and effectively a task is285

computed by a device. This parameter commonly relates to286

the battery life of a device in the network.287

Optimisation:Optimisation is a process to achieve the best288

possible outcome of a given problem.289

Load balancing: Load balancing is a parameter of interest290

where a scheduler allocates various tasks among different291

devices evenly so that a single device may not be getting most292

of the tasks for computation.293

Task computation: Task computation is a parameter of294

interest where a task allocated to a device is completed suc-295

cessfully from the allocation to execution and returns to the296

original device.297

Intelligence: Intelligence is a parameter of interest where298

a scheduler may use various characteristics of the devices,299

such as battery level, task computing history etc., to make the300

scheduling decisions.301

Lessons Learned: It is obvious from the Table 1 that there302

is a lack of research work that focuses on the local execu-303

tion of tasks for IoE devices in a fog architecture. Further-304

more, there is also a lack of incorporating intelligence as305

defined above in scheduling and task off-loading processes306

for an IoE-based edge network. On the other hand, several307

articles have focused on over-arching multi-objective task308

off-loading and resource scheduling algorithms. However,309

they have neglected to design an overall efficient algorithm to310

find an optimal solution for the resource allocation, schedul-311

ing and task off-loading problem. On the architectural side312

of the networks, there is a significant research interest in the313

IoT, IoE and smart edge-based networks. It is evident that314

the futuristic 6G communication network is gaining a lot of315

attention as an emerging area of research.316

Contrary to previous work, we consider a cluster based IoE317

network and designed a scheduling mechanism that uses sev-318

eral scheduling algorithms for task computation. This work319

aims to propose an overall solution that minimises cost and320

time for task scheduling to manage resources efficiently.321

This proposed algorithm is called MTOSA. The designed322

algorithm MTOSA leverages the benefits of five different323

scheduling policies to compute a task efficiently and effec-324

tively. These scheduling policies leverage optimal schedul-325

ing through optimisation and load balancing for various IoE326

tasks.327

III. SYSTEM MODEL 328

In this section, we describe the system model used in this 329

paper. Earlier in [44], we presented detailed design of a con- 330

ventional resource allocation model for IoE devices in 6G 331

environment. The proposed architecture in this paper consists 332

of an IoE based fog network where multiple IoE devices 333

want to compute their various tasks locally. This architecture 334

aims to efficiently compute IoE tasks locally while minimis- 335

ing communication with the servers at the external cloud. 336

It should be noted that the proposed architecture tries to solve 337

the task computation. The long-distance geographical distri- 338

bution of IoE devices is sub-divided into several IoE clusters. 339

Each IoE cluster has a number of IoE devices within close 340

proximity that can communicate with each other directly. The 341

communication within an IoE cluster and between the clus- 342

ters is assumed to be using 6G based wireless communication 343

networks. 344

To handle and allocate tasks for computation to different 345

devices, a computing entity calls the scheduler is available 346

within each IoE cluster. The responsibilities of the scheduler 347

are to collect the tasks from IoE devices for computation, 348

keep up-to-date information about the tasks dispersion and 349

the capability of IoE devices to compute such tasks, allocate 350

the tasks to these available and capable IoE devices, re-collect 351

the computed tasks and re-transmit the results to the original 352

devices. This proposed architecture takes the leverage of hav- 353

ing a main task off-loading and scheduling algorithm at the 354

scheduler that has a number of scheduling policies available 355

at its disposal, depending on the objectives of task scheduling. 356

The proposed architecture tries to compute the tasks within 357

the IoE cluster as much as possible. This architecture has the 358

advantages of local task computing, low latency, minimal use 359

of backbone bandwidth and improved quality of service for 360

IoE devices. A complete description of this architecture is 361

given in Figure 1. 362

Our discussion in this section evolves around the IoE 363

architecture as highlighted in Figure 1 and is focused 364

on the design of the IoE cluster as visualised in layer 365

1 of this figure. We start our discussion by describing 366

the need of the scheduler for efficient task computation 367

for such a stringent network in the coming subsection. 368

Readers are encouraged to refer to Table 2 that describes 369

the symbols and notations used throughout this article. 370

Furthermore, in the following, we define the entities, com- 371

munication and assumptions that are frequently used in this 372

article. 373

Entities: The entities in this paper are considered as IoE 374

devices, scheduler, resource allocator, communication links, 375

6G Access Point (AP) and types of resources such as storage, 376

information and computation. 377

Communication: The ‘communication’ in this paper is 378

defined as the data transmission between IoE devices and 379

the scheduler. This communication happens through multi- 380

ple wireless links using 6G radio spectrum. These links are 381

considered to work in full-duplex mode and provide ample 382
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TABLE 2. Symbols and notations.

capacity for stable data transmission between IoE devices and383

the scheduler.384

Assumptions: There are various assumptions made in this385

paper to formulate a near practical fog based network. It is386

assumed that the IoE devices in the fog network have different387

tasks that cannot be computed by the devices themselves.388

A scheduler is required to schedule these tasks to an appro-389

priate device. The devices predefined these tasks and have a390

specific size and time to live (TTL), which is considered ten391

seconds for each task. The arrival of tasks at the scheduler392

is independent of each other, and the scheduler can hold the393

task for a certain period of time if required while the tasks394

are being scheduled. It is further assumed that the network395

has sufficient wireless communication links, and each device396

can communicate with each other and the scheduler without397

having a communication bottleneck. We also assume that all398

scheduled tasks are computed within the IoE cluster, which399

means that the task allocation between IoE clusters is not400

required at this stage and will be investigated in future work.401

A. PRELIMINARIES402

We start by explaining the need of an appropriate sched-403

uler with the help of two scenarios as elaborated in404

Figures 2 (a) and (b). In the first scenario, as shown in405

Figure 2(a), we assume there are four IoE devices406

d1, d2, d3 and d4 in the system. These devices want to407

compute their tasks without the help of any scheduler. Let408

us assume that IoE device d1 has a task T1 that requires409

computation which cannot be done at the IoE device d1 itself. 410

Therefore, IoE device d1 requires support from other devices 411

to compute its task T1. The IoE device d1 initiates a request 412

message m1
i (where subscript i represents the initiated mes- 413

sage and superscript 1 denotes the device number) that is for- 414

warded to all other devices (d2, d3 and d4) to check whether 415

they have the required resources to compute this task T1 in 416

consideration. This communication from d1 is shown with 417

solid lines in Figure 2(a). In reply to this request (shown 418

with dotted lines in Figure 2(a)) each IoE device d2, d3 and 419

d4 (except d1) will send a binary message, mdir (i = 2, 3, 4) 420

to d1, 421

mdir =

{
1, resources available
0, resources not available

(1) 422

The device d1 then decides to send task T1 for computation 423

to the available devices. In this scenario, IoE device d1 is pro- 424

cessing all communication to and from other devices directly. 425

This depicts a simple task computation scenario without any 426

scheduler involved. 427

However, consider a complex scenario, where each IoE 428

device di where i = 1, 2, 3, 4, has a task Ti that requires 429

some computation. Each IoE device di requires a different IoE 430

device to perform this computation. This scenario is shown 431

in Figure 2(b). All IoE devices will be sending and receiving 432

requests for task computation from each other. For example, 433

as shown in Figure 2(b), the IoE device d1 is required to 434

handle twelve different communications simultaneously, and 435
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FIGURE 2. Preliminaries: Layered architecture model of IoE devices for 6G enabled smart edge environments.

FIGURE 3. An example illustration of a centralised scheduler.

the same is true for the remaining IoE devices as well. In our436

research scenario, where we have IoE devices with limited437

communication and computational powers, handling such a438

complex communication scenario for these devices is a chal-439

lenging task. Therefore, it is appropriate to have a centralised440

entity, such as a scheduler, that can handle this communi-441

cation for all the devices within an IoE cluster. An example442

illustration of such a scheduler is shown in Figure 3.443

This illustrative scheduling example has input tasks Ti,444

a queuing system to store tasks when required and infor-445

mation on devices that are able to compute the input tasks.446

A scheduler of such a design is placed at the centre of an447

IoE cluster. Let us assume there is a set of IoE devices D448

as defined below that want their tasks to be scheduled for449

computation. 450

D =
{
d1, d2 . . . . . . . . . dN

}
. (2) 451

The set of tasks T , to be computed is defined as below: 452

T =
{
T1, T2 . . . . . . . . . TN

}
. (3) 453

Let us assume that the scheduler selects an IoE device, 454

di ∈ D and its task Ti to be scheduled at a particular instant 455

of time. We assume that all tasks and their arrival at the 456

scheduler are independent of each other. 457

The scheduler also selects a device da s.t. da ∈ D and 458

da 6= di to allocate the selected task Ti. The task Ti then 459

arrives at the scheduler and it decides whether the task needs 460
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FIGURE 4. Task selection and computational phases.

to wait within the scheduler or it can be scheduled imme-461

diately. This depends on the queue status of the device da.462

Once the task is transmitted to da, the task may need to wait463

in the queuing system of da for the computational resource464

to be available. Therefore, the task Ti is computed at da, it is465

transmitted back to the scheduler where the scheduler again466

decides to immediately transmit it back to di or keep it in467

the queuing system until di is ready to receive. This process468

explains task scheduling, off-loading and computation of a469

single task Ti. The scheduler is generally capable of handling470

multiple tasks simultaneously.471

Motivated by the above discussion, in subsequent subsec-472

tions, we describe various components in an IoE cluster as473

shown in the proposed architecture (see Figure 1 and 2) to474

formulate the research problem.475

B. IoE CLUSTER COMPONENTS476

Components of an IoE cluster, given in our proposed archi-477

tecture can be divided into two categories. The first category478

represents the hardware-based components, whereas the sec-479

ond category represents conceptual components. The hard-480

ware components are IoE devices and resource allocator. The481

conceptual components in the IoE clusters are tasks generated482

by devices, scheduling algorithms, communication links and483

computational resources.484

IoE devices in the cluster can be of different types and485

can have varying computational powers. Examples of such486

devices include smart mobile devices, sensors, actuators and 487

any other participating device having little computing and 488

storage capability. They have different hardware architec- 489

tures, processing abilities, storage capacities, power sup- 490

ply and operating systems. Some high-end devices may be 491

equipped with AI chips, but their computing/storage capacity 492

may still be limited. Also, each IoE device has a different life 493

cycle. We consider a set of devices D within an IoE cluster 494

where each device does generate tasks Ti that require some 495

computation. The set of tasks T corresponding to the set of 496

devices D is represented as per equation (3). 497

C. RESOURCE ALLOCATOR 498

Each IoE cluster in the proposed architecture has a resource 499

allocator, which combines the functions of a scheduler and 500

resource allocation unit. The scheduler has a set of available 501

scheduling algorithms as shown in equation (4) below. The 502

function of the scheduler is to select a specific algorithm from 503

this set that optimises the objective function. 504

Sched =
{
RR, SC,MR,PF,PB

}
. (4) 505

Depending on the location of the scheduler, it can be 506

divided into two categories as a local scheduler (LoS) and 507

a layer scheduler (LaS). 508

Local Scheduler (LoS): This scheduler is located within 509

the IoE cluster of layer 1. This scheduler uses multiple 510

scheduling algorithm as per the need. For the sake of brevity, 511
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let Schedi represent a scheduling algorithm from equation (4)512

that can be used in LoS. Let i = 1, 2, . . .M where M is513

the maximum number of scheduling algorithms as given in514

equation (4).515

Layer Scheduler (LaS): This scheduler is located between516

the layers i.e., Layer 1, Layer 2 and Layer 3, hence named517

layer scheduler. The role of LaS is to schedule tasks between518

layers when the tasks cannot be computed locally within the519

layer.520

Resource: Each device in an IoE cluster has some com-521

putational capability called resource. Some common types522

(Rtyp) of these resources are storage (Rstg), information523

(Rinf ) and computation (Rcpt ). The set of available resources524

R is represented as:525

R =
{
R1,R2 . . . . . . . . .RN

}
. (5)526

The resource allocation part of the systemmodel is respon-527

sible for scheduling computational tasks to the potential528

devices with computational resources available and after-529

wards getting the computed task back from the devices and530

returning the information to the original IoE device as shown531

in Figure 4.532

D. COMMUNICATION MODEL533

The communication model used in the design is assumed534

to be based on 6G technology. As illustrated in Figure 1,535

multiple wireless links between IoE devices and the sched-536

uler are considered, as well as between the scheduler and537

AP. We represent such a wireless link as L(i,j) where (i, j)538

represents a source and a destination device pair and this link539

can support a full duplex mode of communication. A set of540

such communication links in an IoE cluster is represented as:541

L =
{
L1,L2 . . . . . . . . .LN

}
, (6)542

where N represents the total number of devices in an IoE543

cluster as shown in Figure 2.544

E. PROBLEM FORMULATION545

The main objective here is to use one of the scheduling algo-546

rithms presented in section IV for selecting an appropriate547

device to compute the scheduled task T . An overarching548

goal of the scheduler is to minimise the total time Ttotal for549

a task to be scheduled, computed and returned back to the550

original IoE device. We formulate each scheduling problem551

as PSched
i , where P denotes the research problem (time min-552

imisation problem), depending on certain selection criteria553

as described in Problem 1. The subscript i in PSched
i , where554

i = 1, 2, . . . , 5, represents eachminimisation problem.Math-555

ematically, we can write these research problems, PSched
i ,556

as follows:557

558

Problem 1:559

min
{D}

{
Ttotal

}
,560

s.t. i) Select ds using(Sched)561

ii) Use PSched
i562

Each minimisation problem, formulated from Problem 1 563

has two main parts. The first part is to select a scheduling IoE 564

device using a particular scheduling algorithm Sched such 565

that the schedule device ds minimised Ttotal and it can take 566

any value as per equation (4). Note that we use ds and d∗ in 567

the same context throughout this paper such that both sym- 568

bols represent the scheduled/selected device after applying 569

the respective scheduling algorithm. Whereas in the second 570

part, we use the subsequent research problem PSched
i formu- 571

lated in the set of following Problems 2 - 6 to implement the 572

scheduling algorithm. 573

Problem 2: 574{
PRR
1

}
H⇒ Select ds 575

ds = rand{D} 576

Problem 3: 577{
PSC
2

}
H⇒ Select ds 578

s.t. ||hs||2F >
{
||hi||2F

}N
i=1

579

Problem 4: 580{
PMR
3

}
H⇒ Select ds 581

s.t. rds >
{
ri
}N
i=1

582

Problem 5: 583{
PPF
4

}
H⇒ Select ds 584

s.t.
{ r̃s(t)
rs(t)

}
>
{ r̃i(t)
r i(t)

}N
i=1

585

Problem 6: 586{
PPB
5

}
H⇒ Select ds 587

s.t. using equations (15 and 19) 588

In Problems 2 - 6, to resolve the scheduling prob- 589

lem PSched
i , five different scheduling algorithms (RR, 590

SC, MR, PF and PB) are defined in detail in sub- 591

sections (IV-A1 - IV-A5). Problem 2 describes RR schedul- 592

ing, Problem 3 describes SC scheduling with the condition 593

that the scheduled device has the largest channel strength, 594

Problem 4 describes the MR scheduling algorithm where 595

the selected device has the maximum data rate between 596

the selected and the original device, Problem 5 describes 597

the PF scheduling algorithm where selected device is the 598

fairest scheduled device. Finally, Problem 6 describes the PB 599

scheduling algorithmwhere a device is selected in such a way 600

that it is capable of computing the prioritised tasks. 601

IV. PROPOSED ALGORITHM 602

In this section, we present the main task off-loading schedul- 603

ing algorithm referred as MTOSA. This algorithm takes a 604

task when it becomes available from a requesting IoE device, 605

selects an appropriate scheduling algorithm, handles all com- 606

munication related to the task from a source device to a sched- 607

uled device, and then returns the task-related information to 608
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FIGURE 5. Flow diagram of MTOSA.

the source device. In the following subsection, we explain the609

detailed working of the proposed MTOSA algorithm.610

A. MTOSA ALGORITHM611

The scheduling algorithm MTOSA in Algorithm 1 serves as612

the main algorithm to select a task waiting to be computed,613

schedule the task by selecting the appropriate algorithm, off-614

loading to compute the task and then re-transmitting the com-615

puted task back to the actual device as shown in Figure 5. The616

MTOSA algorithm has five main steps. Initial variables are617

set as input to the main algorithm.618

In step-1, the pre-scheduling preparation is done where619

task Ti and device di are identified.620

In step-2, MTOSA algorithm uses the function Sched ,621

equation (4), to select an appropriate scheduling algorithm622

from the pool of five available algorithms such as RR, SC,623

MR, PF and PB. When Sched equals to 1, 2, 3, 4 and 5, the624

scheduler selects RR, SC, MR, PF and PB algorithms respec-625

tively. It should be noted that the performance of MTOSA626

algorithm depends on one of these selected scheduling627

policies.628

In step-3, MTOSA algorithm performs task off-loading629

from source device di which is requesting to compute its task,630

to device da (available device having resources to compute631

the scheduled task).632

In step-4, MTOSA algorithm performs the back transmis-633

sion of the computed task from device ds (note that any634

available device da can become the scheduled device ds once 635

the task is assigned to it) to device di. 636

Algorithm 1:MTOSA Scheduling Algorithm
Input: Set of tasks {T } to be computed, Set of available
devices {DA} s.t. DA = {D} \ di
Processes: Scheduling, off-loading, transmission
Output: Computed task
Step1: Pre-scheduling preparation; Pick a task Ti of
device di ∈ {D}
Step2: Select a scheduling algorithm using equation (4)
Select d∗ accordingly
Subroutine (Sched)
for iter = 1 : No. of Scheduling Algorithms do

Sched = {RR, SC, MR, PF, PB}
if Sched == 1 then Sched ⇐H Algorithm 2 (RR)
if Sched == 2 then Sched ⇐H Algorithm 3 (SC)
if Sched == 3 then Sched ⇐H Algorithm 4 (MR)
if Sched == 4 then Sched ⇐H Algorithm 5 (PF)
if Sched == 5 then Sched ⇐H Algorithm 6 (PB)

end
Step3: Off-load Tschd to da
Step4: Collect and transmit back the computed task to di
Step5: End of the algorithm

In step-5, after allocating all available tasks the algorithm 637

terminates. 638

The relationship between MTOSA algorithm and the other 639

scheduling schemes such as RR, SC, MR, PF and PB is evi- 640

denced through the performance of MTOSA algorithm. For 641

example, when the MTOSA algorithm selects SC scheduling 642

policy, prioritising the available tasks will not be the schedul- 643

ing objective of MTOSA algorithm. In this case, the device 644

with the strongest wireless channel will be allocated the task 645

for computational purposes. Similarly, the performance of 646

MTOSA algorithm can be explained when other scheduling 647

policies such as RR, MR, PF and PB are selected. 648

1) ROUND ROBIN SCHEDULING 649

Round Robin (RR) scheduling is the simplest scheduling 650

algorithm (Algorithm 2) used in many applications. We use 651

RR as a base scheduling algorithm for the proposed system. 652

Let us explain the working principle of RR. In RR algorithm, 653

all devices are scheduled equally when the algorithm is run 654

for a long period of time. The function rand used in equa- 655

tion (7) given below, randomly selects a device d∗ from the 656

set of given devices D. 657

d∗ = rand
d∗∈{D}

{
d1, d2, d3, . . . , dD

}
. (7) 658

It should be noted that each device in equation (7) has equal 659

selection probability and the set of selected devices follow a 660

uniform distribution. The RR scheduling (Algorithm 2) takes 661

a set of tasks T and a set of devices D as input, the output of 662

RR algorithm is d∗ which is fed back to MTOSA algorithm 663

(Algorithm 1). 664
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Algorithm 2: Round Robin Scheduling Algorithm
Input: T = {T1, T2 . . . , TN }, D = {d1, d2, . . . , dN }
where N = Total number of devices
Output: d∗ ⇐H Sched{D}
for iter = 1 : TimeSlot do

da← {D \ ds}
Select scheduled device d∗ using equation (7)

end

2) STRONGEST CHANNEL SCHEDULING665

The strongest channel (SC) scheduling algorithm (Algo-666

rithm 3) selects a device d∗ with the strongest channel.667

The purpose of SC algorithm is to provide the best QoS in668

guaranteeing the task completion to the scheduled device.669

In this algorithm, it is assumed that wireless channels of all670

the devices are feasible for communication. This means that671

when the scheduler selects any particular device or set of672

devices for communication, their wireless channels are capa-673

ble of supporting the data transmission. The selection process674

of SC algorithm can be described as below:675

d∗ = argmax
d∗∈D

{
||h1||, ||h2||, . . . , ||hN ||

}
, (8)676

where ||.|| represents norm,D is a set of devices with the total677

number of N elements and d∗ ∈ D is the selected device678

with the strongest channel. The norm of a channel matrix679

H ∈ Cm×n can be calculated by using the Frobenius norm680

expression as:681

||H||2F =
m∑
i=1

n∑
j=1

(
|hij|

)
. (9)682

where hij represents the ijth column of the channel matrix H.683

Algorithm 3: Strong Channel Scheduling Algorithm
Input: D = {d1, d2, . . . , dN }, H = {h1,h2,· · · ,hN },
where N = Total number of devices.
Output: d∗ ⇐H Sched{D}
for iter = 1 : TimeSlot do

Calculate channel norm using equation (9)
Select d∗ with the strong channel using
equation (8)

end

Input to the SC algorithm is set of device D, time slots T684

and wireless channel matrix H. During each iteration, the685

algorithm calculates the channel norm of each device using686

equation (9), orders all the norm values in descending order687

and then selects the device with the strongest norm value.688

3) MAX RATE SCHEDULING689

The Max Rate (MR) scheduling algorithm (Algorithm 4)690

selects a device d∗ based on the maximum channel rate ri of691

the devices [45]. This ensures to meet the data rate require- 692

ments of the requesting device as per the nature of the task. 693

In a sense, MR is similar to SC but ensures that the wireless 694

channel has the required data rate. Let us define the data rate 695

of ith device as follows: 696

ri(t) = BW × log2
(
1+ ξi

)
, i = 1, . . . , dN , (10) 697

where BW is the channel bandwidth (Hz) and ξi is the Signal 698

to Interference plus Noise Ratio (SINR) of the ith device and 699

is defined as: 700

ξi =
ρi(hih∗i )

σ 2 +
∑dN

j=1,j6=i

(
ρjhjh∗j

) , (11) 701

where ρ and σ 2 represent the transmit power and additive 702

noise respectively. Nowwe can write theMR device selection 703

as: 704

d∗ = argmax
d∗∈D

{
r1(t), r2(t), r3(t), . . . , rdN (t)

}
. (12) 705

Algorithm 4:Max Rate Scheduling Algorithm
Input: D = {d1, d2, . . . , dN }, H = {h1,h2,· · · ,hN },
where N = Total number of devices.
Output: d∗ ⇐H Sched{D}
for iter = 1 : TimeSlot do

Select scheduled device d∗ using equation (12)
end

4) PROPORTIONAL FAIR SCHEDULING 706

The Proportional Fair (PF) scheduling algorithm (Algo- 707

rithm 5) selects a device d∗ based on the ratio of instantaneous 708

data rate r̃i(t) and the average aggregated data rate r i(t). The 709

purpose of using this ratio is to introduce fairness in device 710

selection. A device with the highest data rate may get the first 711

few time slots allocated, however, since its average aggre- 712

gated data rate will keep increasing, which will decrease the 713

possibility of selection for this device in the next time slots. 714

This way, selecting those devices with low instantaneous data 715

rates can be possible through this algorithm. Mathematically, 716

PF algorithm can be written as: 717

d∗ = argmax
d∗∈D

{( r̃1(t)
r1(t)

)
,
r̃2(t)
r2(t)

,
r̃3(t)
r3(t)

, . . . ,
r̃D(t)
rD(t)

}
, (13) 718

where r̃i(t) and r i(t) represent the instantaneous and average 719

aggregate data rates of the ith device. 720

Algorithm 5: Proportional Fair Scheduling Algorithm
Input: D = {d1, d2, . . . , dN }, Set of TimeSlot = {T}
Output: d∗ ⇐H Sched{D}
for iter = 1 : TimeSlot do

Select scheduled device d∗ using equation (13)
end
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5) PRIORITY BASED SCHEDULING721

Although RR is the simplest and the fairest scheduling algo-722

rithm, in practical situations, one needs to prioritise certain723

tasks as per their importance. Hence, we present a priority724

based scheduling algorithm (Algorithm 6) for the devices in725

the network. This algorithm identifies the priorities of each726

task and schedules it accordingly. A complete description of727

PB scheduling algorithm and related components is given728

below.729

Classification of Tasks: In PB scheduling algorithm,730

we define that each device can assign a priority level p to its731

task T . There can be three priority levels for each task defined732

as:733

Priority =


p = 3, High
p = 2, Medium
p = 1, Low

(14)734

Let us represent task Ti with its priority level denoted by p as735

T p
i where p = {3, 2, 1}. For example T 3

i means a task with736

the highest priority over all other tasks. A high priority task737

can be considered an emergency task, whereas a low priority738

task can be considered a simple calculation or information739

request.740

This should be noted that the role of the PB scheduler is to741

allocate the tasks to available devices that are capable of com-742

puting the tasks and have computational resources available.743

The scheduler does not analyse the nature of the tasks, which744

means the scheduler itself is unaware of the priority levels745

of the tasks. Instead, each device in an IoE cluster assigns a746

priority level to its own task.747

There can be situations when multiple tasks will have748

the same priority levels, whereas in other situations tasks749

can have different priorities. Based on these scenarios,750

PB scheduling algorithm can have the following two cases.751

Case - 1: Tasks with Different Priority Levels: In this case,752

let us consider that the scheduler has all tasks with different753

priority levels. We can represent this scenario as follows:754

T p6=p
=

{
T p
1 , T

p
2 , . . . , T

p
D

}
. (15)755

Left hand side of the equation (15) shows that each task in756

the set of tasks available to the PB scheduler has a different757

priority level, i.e. pi 6= pj. In this case, PB scheduler selects a758

set of tasks with the highest priority levels. For example, if the759

scheduler can schedule a maximum of |T | tasks, it will select760

these tasks from the set of tasks available as in equation (15).761

If the tasks with the highest priority level in equation (15) are762

greater than the maximum capacity of the scheduler, it will763

randomly pick the tasks equal to its capacity with the highest764

priority level. This scenario of PB algorithm is shown in765

Algorithm 6.766

Case - 2: Tasks with Same Priority Level: In this case,767

the scheduler has all tasks T from various devices with same768

priority level, i.e. pi = pj where i, j are device indices. This is769

a complicated scheduling scenario where the scheduler needs770

to implement some strategy S to resolve the conflict of which771

Algorithm 6: Priority Based Scheduling Algorithm
Input: D = {d1, d2, . . . , dN }, Set of TimeSlots = {T}
Output: d∗ ⇐H Sched{D}
where Sched = PB
for iter = 1 : TimeSlot do

if Case == 1 then

Ts ⇐H argmax
p

{
T p6=p

}
else

if Case == 2 then
Ts ⇐H Go to equation (19)

end
end

end

tasks need to be scheduled. In order to resolve this conflict, 772

we propose the following conflict resolution strategy. 773

Conflict Resolution Strategy: Let us assume that the 774

scheduler has the following set of tasks: 775

T p=p
= {T 3

1 , T
3
2 , . . . , T

3
D }, (16) 776

where the left hand side of the equation (16) shows that 777

tasks have the same priority level and the right hand side 778

of this equation represents that all tasks are with the high- 779

est priority level, i.e. p = 3. This priority level can also 780

be either 1 or 2 but all tasks will have the same priority 781

level. The scheduling algorithm for this case is presented in 782

Algorithm 6. 783

The Strategy S: In order to resolve the conflict mentioned 784

above, the scheduler uses a strategy S to schedule the tasks 785

based on their cost function represented by C . This cost func- 786

tion is associated with each task in T p=p. More formally, our 787

cost function Cp(Ti) represents the total computational cost 788

in terms of time of a task Ti with priority p, when sched- 789

uled to device dj for computation and returned back to the 790

scheduler. 791

Let us define (i, j) as the source-destination (SD) device 792

pair where i, j ∈ D denote the source and destination devices 793

respectively. It is important to note that the set of avail- 794

able devices for the scheduler to allocate the selected task 795

is D \ i. 796

Let us represent device da as the available device willing 797

and having the resources to compute T p
i ∈ T p=p. We assume 798

that the scheduler has complete information of all the avail- 799

able devices da ∈ D, for example through a dynamic intel- 800

ligent resource availability table. Once a device is selected 801

for task scheduling its status becomes a scheduled device, 802

represented as ds. It should be noted that it is not necessary 803

for all da to become ds, i.e. the device with the scheduled task. 804

The scheduler sends a query message mj (j ∈ {D \ i}) to all 805

potential da ∈ (D\ i) about the tasks available for scheduling. 806

The content of mj consists of calculating the total computa- 807

tional cost C in terms of time for each task and returning this 808

information to the scheduler. 809
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Each available device da calculates the cost corresponding810

to each task as follows:811

CT
da∈(D\i) =

{
C1,C2, . . . ,C|T |

}
=

{
Ci
}|T |
i=1
, (17)812

where |T | represents the total number of tasks in equa-813

tion (16). Each device da ∈ (D \ i)) then calculates the cost814

function Ci as follows:815

Ci = t fi + t
f
schd + t

f
s + tc + t

b
s + t

b
schd + t

b
i , (18)816

where variables in above equation (18) are defined in Table 2.817

The scheduler now has the information ofC from all available818

devices. Then the strategy S for each device da can be defined819

as:820

j = argmin
{
CT
da∈(D\i)

}
,821

Ts ⇐H Tj. (19)822

This leads us to an optimisation problem at the scheduler823

where the task of the scheduler becomes to select a task with824

the minimum computational time such that the expiry time825

of the task does not reach. Let us define the expiry time of a826

task Ti as tTiexp. Then theminimisation problem at the scheduler827

becomes as:828

829

Problem 7:830

min
{
Ci
}|T |
i=1
,831

s.t. Ci < tTiexp,832

where the objective function of Problem 7 is similar to the833

objective function of Problem 1, but defined in terms of the834

total cost for computing each task.835

B. COMPLEXITY ANALYSES836

Themain computational complexity of the proposedMTOSA837

algorithm (Algorithm 1) comes from one of the scheduling838

algorithms selected by MTOSA algorithm. There are three839

stages in terms of the overall complexity analysis of the pro-840

posed algorithm. Let us represent the complexity of MTOSA841

algorithm as:842

CompMTOSA = CompStage1 + CompStage2 + CompStage3,843

(20)844

where term Comp represents the computational complexity.845

Stage 1: This is the input and preparation stage of MTOSA846

algorithm. During this stage, the main algorithm MTOSA847

reads the set of devices and the number of tasks to be sched-848

uled. Both of these tasks are linear in nature, and the algo-849

rithm complexity follows linear additive operations. So the850

input complexity of the algorithm can be written as (c1+c2)n851

where ci where i = 1, 2 is a constant and n is a variable852

representing number of operations. Given this is a linear853

expression, we canwrite the input complexity of the proposed854

algorithm asO((c1 + c2)n). For the best-case scenario, when855

only a single cycle is needed to read each input, the com- 856

plexity will follow O(2). Hence, we can write CompStage1 = 857

O((c1 + c2)n). 858

Stage 2: In this stage, the main MTOSA algorithm invokes 859

one of the scheduling algorithms from RR, SC, MR, PF and 860

PB. 861

From this list of the algorithms, RR is the simplest algo- 862

rithm with the computational complexity of O(1) as it 863

requires a single operation to select an available device for 864

task allocation. 865

The second scheduling algorithm that we consider is SC 866

which uses equation (9) to calculate channel norms and then 867

selects the device with the best channel. To compute chan- 868

nel norms, there are three operations required including a 869

mod computation followed by two summations. The overall 870

complexity of this operation can be written as O(cn) where 871

c = 3 in this case. Also, after norm calculation, the algorithm 872

sorts out all norm values to pick the best norm. This sorting 873

operation has the complexity of O(n2). The squared value of 874

n shows the two steps of selecting the best value and replacing 875

it with the head element in the array. This gives us the overall 876

computation complexity of SC algorithm as O(cn)+O(n2). 877

For MR scheduling algorithm, two steps are required by 878

the algorithm to compute channel rates and then sort them 879

in decreasing order. The complexity of the wireless channel 880

capacity formula is given as O(log n) whereas, as mentioned 881

before, the complexity of the sorting operation is O(n2). 882

Hence the computational complexity of MR algorithm can 883

be written as O log(n) +O(n2). 884

The complexity of PF algorithm is similar to the complex- 885

ity of MR algorithm with an extra step where PF algorithm 886

calculates the ratio between the instantaneous and average 887

rates of each device. Since this is a linear calculation oper- 888

ation, the complexity of this step can be written as O(n). 889

Hence, giving us the overall complexity of PF algorithm as 890

O log(n) +O(n)+O(n2) which can be further simplified as 891

O log(n) +O(n3). 892

The last scheduling algorithm in the list is PB schedul- 893

ing algorithm, where tasks are sorted into three priority 894

levels which are low, medium and high. Then based on 895

the priority level assigned to each task, it is allocated to 896

the available devices for computation. Given three sorting 897

operations are happening in PB scheduling algorithm, the 898

computational complexity of this algorithm can be written 899

as O(n3). 900

Hence, we can write the complexity of stage 2 depends 901

on the selected scheduling algorithm as explained above. 902

Mathematically we can write as CompStage2 = Comp 903

(selected scheduling algorithm). 904

Stage 3: This stage includes the complexity of collecting 905

and re-transmitting the computed tasks back to the original 906

devices. These are linear operations with a constant and a 907

variable depending on the number of tasks being handled. For 908

example, for n number of tasks with c = 2 representing two 909

operations (collection and re-transmission), the complexity of 910

stage 3 can be written as O(cn). 911
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FIGURE 6. Scenario I: Pictorial representation of various selected devices using RR, SC, MR, PF, PB, ECT [46] and EBS [47] scheduling algorithms. ECT and
EBS scheduling algorithms are used for comparison purposes.

Hence, using equation (20) and the complexity expressions912

presented above in stage 1, 2 and 3, we can re-write equa-913

tion (20) as equation (21):914

CompMTOSA915

= O(c1 + c2)n916

+Comp (selectedscheduling algorithm)+O(cn).917

(21)918

V. RESULTS AND DISCUSSION919

In this section, we analyse the performance of the proposed920

MTOSA scheduling algorithm (Algorithm 1) by presenting921

a number of simulation scenarios. We compare the results of922

various scheduling policies presented in this work, and also923

compare them with the existing scheduling policies such as924

from [46], [47]. Similar to many other works in literature,925

such as [46], [47], [48], we also used MATLAB to create and926

simulate different scenarios using system parameters that are927

close to real-life setups.928

In the following, we describe the experimental setup used929

in this work, and elaborate on the two existing scheduling930

policies namely, ECT (Expected Computation Time) [46] and931

EBS (Energy Based Scheduling) [47], which are used for932

comparison purpose. The reasons for selecting ECT and EBS 933

policies for the comparison purposes are (i) the relevance 934

to our work in this paper, (ii) the recent relevant literature 935

(iii) the practical nature of these policies for implementation 936

purposes. 937

The experimental setup used in this work mimics an IoE 938

based cluster where a number of IoE devices co-locate within 939

the cluster in close proximity to each other. Within the IoE 940

cluster, there is a scheduler and a number of IoE devices. 941

The scheduler is provided with the fixed set of devices D as 942

defined in equation (2) within the IoE network. Simulation 943

parameters used for the experiments in this work are sim- 944

ilar to [46], [47]. We used a HP-laptop with the following 945

configuration: CPU AMD Ryzen 5 4500U, operating sys- 946

tem 64-bit Windows-10 and memory of 8GB. The sched- 947

uler and IoE devices are configured using the computing 948

resources of this laptop. Furthermore, we used a single sched- 949

uler within IoE cluster, and the number of IoE devices varies 950

according to each simulation scenario. The obtained results 951

are manifested through independent simulation repetition of 952

each experiment by 30 times. The results obtained and pre- 953

sented are the average over the total number of the simulation 954

run. 955
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TABLE 3. Representation of preliminaries for simulation results.

TABLE 4. Scenario I: Tabular representation of various selected devices
using RR, SC, MR, PF, PB, ECT [46] and EBS [47] scheduling algorithms.

In the following paragraph, we describe two existing956

scheduling schemes from the current literature, namely957

ECT [46] and EBS [47]. In ECT based scheduling scheme,958

a task from a particular IoE device is scheduled with the min-959

imum execution time by the allocated device. This scheme960

uses the parameters such as task length and allocated device961

computing power to minimise the execution time. Whereas,962

in EBS scheme, the authors defined the QoE parameter for963

each fog node and computed the task based on QoE. The964

scheduler computing power is divided equally in the begin-965

ning for all the competing nodes, and the task with minimum966

execution time is given priority during the scheduling. The967

authors used Game Theory to maximise each user’s own968

QoE compared to the other user’s strategies. Furthermore,969

they proposed a weighted potential game to achieve the Nash970

equilibrium in the scheduling process.971

Preliminaries: We start our discussion by describing the972

key simulation preliminaries such as IoE cluster, devices,973

tasks, resource type, cost and priorities that are an inte-974

gral components of the entire design on which simulations975

are built. The key parameters of these components related976

to this simulation are tabulated in Table 3. For example,977

a device d1 = 2 is available for scheduling in IoE clus-978

ter at time slot t1. The relevant parameters of this device979

d1 = 2 are shown in the first column of Table 3 and explained980

below.981

A predefined task with the task ID as T1 = 6 is assigned982

to the task of this device (d1 = 2). The type of the983

requested resource by this device is ‘information’, denoted984

by Rinf . The total cost (C) required to compute this task is985

12 units. The task has a medium level priority represented by986

p = 2.987

A set of ten devices is considered in our simulations as988

shown in the first row of Table 3. During each simula-989

tion scenario, a device di is selected as per the scheduling990

policy used by MTOSA algorithm. The selected device ID 991

is shown in second row of Table 3. Each device has its own 992

task denoted by Ti having a specific task ID as shown in 993

third row of Table 3. The requested resources from devices 994

in the IoE cluster can have various types such as information, 995

computation and storage which are shown in the fourth row 996

of Table 3. The fifth row of the Table 3 shows the total cost 997

in terms of computational time for each scheduled task. The 998

sixth and the final row of Table 3 shows the priority level of 999

each task (3- high), (2- medium) and (1-low) to be used when 1000

PB scheduling policy is used. 1001

Relevance between Performance Parameters and the 1002

Application: The parameter to evaluate the performance of 1003

the proposed MTOSA algorithm in this article, is the knowl- 1004

edge of selected devices (device selection) by the scheduler. 1005

This information (device selection) is directly relevant to 1006

the application performance of the overall system consid- 1007

ered in this paper, which is an IoE based edge network. 1008

In all three evaluation scenarios given below, device selection 1009

and its derived parameter, such as the percentage of device 1010

selection, are the focus parameters. The proposed MTOSA 1011

algorithm selects different devices for the same task when 1012

different scheduling algorithms (such as RR, SC, MR, PF, 1013

PB) are used. The knowledge of selected devices determines 1014

the overall performance of the devices in the edge network. 1015

If a particular device or a group of devices are being selected 1016

repeatedly, their long-term performance will degrade dramat- 1017

ically due to the overloading of the scheduled tasks. These 1018

devices being selected for task computation again and again 1019

will lead to fast failure because of the extra workload assigned 1020

to them. With this information, the scheduler can balance the 1021

workload for the devices in the network that are repeatedly 1022

selected and distribute the tasks to those devices that are 1023

assigned fewer tasks. 1024

Scenario I: In this scenario, we show the device selection 1025

using all five scheduling algorithms (RR, SC, MR, PF, PB) 1026

as described in section IV. We also show the device selection 1027

using existing schemes ECT and EBS for comparison pur- 1028

poses. Simulation results of this scenario are shown in Table 4 1029

and Figure 6. 1030

The results in Table 4 are shown for only three time slots 1031

(t1, t2, t3) whereas in Figure 6 results are shown for ten time 1032

slots. First column of Table 4 shows scheduling policies 1033

which are the five scheduling algorithms investigated in this 1034

paper and two scheduling policies used for result comparison 1035

from literature. Second column-first row of Table 4 shows the 1036

first time slot t1, whereas second column-second row shows 1037
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TABLE 5. Scenario II: Tabular representation of the percentages of the selected devices.

FIGURE 7. Scenario II: Pictorial representation of the percentages of the selected devices.

scheduled / selected devices d∗. There are three out of a total1038

of ten devices selected in each time slot. Similarly second and1039

third columns in Table 4 show selected devices during time1040

slots t2 and t3 respectively.1041

Figure 6 shows the pictorial representation of the selected1042

devices for ten time slots t1, . . . , t10 using all five scheduling1043

algorithms and two existing scheduling policies from liter-1044

ature. It is clear from this scenario that various devices are1045

being selected during each time slot when using different1046

scheduling algorithms. This scenario sets the foundation of1047

other simulation scenarios and confirms the working accu- 1048

racy of each scheduling algorithm through different selected 1049

devices. 1050

Scenario II: In this scenario, we show the selection per- 1051

centage of each device for all five scheduling algorithm, 1052

as well as for ECT [46] and EBS [47], in the simulation. 1053

The selection percentage is defined as that how many times 1054

a device is selected by a specific scheduling algorithm over 1055

total time slots. For example, if a device is selected twice dur- 1056

ing ten time slots, then the selection percentage of that device 1057
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TABLE 6. Scenario III: Devices selection in IoE cluster with PB scheduling algorithm.

TABLE 7. Scenario III: A comparison of device selection RR, ECT [46] and
EBS [47] under PB various cases.

is twenty percent. This study is important to understand the1058

computation workload of each device within the cluster. If a1059

particular device is being scheduled for task computation1060

most of the time, it may damage the life span of that particular1061

device. Therefore, the scheduler examines this information1062

and can manage the scheduling of each device in the clus-1063

ter. The results of this scenario are shown in Table 5 and1064

Figure 7.1065

The results in Table 5 are shown for ten time slots1066

(t1, . . . , t10) and all ten devices N = 1, . . . , 10. First col-1067

umn of Table 5 shows all five scheduling algorithms and two1068

scheduling policies, ECT [46] and EBS [47] which are used1069

for comparison. The top row of Table 5 shows time slots and1070

the second row of the table shows the percentage of selection1071

of each device in the cluster. For example, third row of Table 51072

shows the selection percentages of all ten devices when RR1073

scheduling algorithm is used. The remaining four rows in the 1074

table show similar results for the remaining four scheduling 1075

algorithms as well. Whereas, the last two rows in the table 1076

show the results of ECT [46] and EBS [47]. 1077

Figure 7 shows the pictorial representation of the selec- 1078

tion percentages for each device. Vertical axis of the figure 1079

shows the selection percentage and the horizontal axis shows 1080

the number of devices in the cluster. Different colours of 1081

bars in Figure 7(a) represent five different scheduling algo- 1082

rithms and the height of each bar represents the selection 1083

percentage of each device. Similarly, Figure 7(b) represents 1084

the same results for ECT [46] and EBS [47] policies for 1085

the comparison purposes. For example, it is clear that under 1086

RR scheduling algorithm, device d2 is selected most of the 1087

time and has a selection percentage value of 50%, whereas 1088

amongst all scheduling algorithms and all devices, d9 has 1089

been selected 60% under PF scheduling algorithm. Based on 1090

this data, the scheduler can manage the selection workload 1091

for d9 to optimise its life span. In comparison, device d4 is 1092

selected by ECT [46] 70% and device d6 has been selected 1093

by EBS [47] 60%. The results of these policies highlight the 1094

imbalance in device selection and require application of load 1095

balancing through the scheduler to improve the quality of 1096

service. 1097

Scenario III: In this scenario, we investigate the perfor- 1098

mance of PB scheduling algorithm while considering the 1099

tasks with different priorities (see equation (14)) and dif- 1100

ferent computation requirements. Description of task prior- 1101

ities, computational requirements and strategies to schedule 1102

such tasks is given in subsection IV-A5. Simulation results 1103

of various studies on PB scheduling algorithm are shown in 1104

Tables 6, 7, 8 and also in Figures 8 and 9. 1105

Table 6 describes the simulation preliminaries for PB 1106

scheduling algorithm. We assume there are ten total devices 1107

N = 10 and (d1, . . . , d10) with each device has a task with a 1108

pre-defined priority level. Each device and its task have the 1109

same IDs, i.e. for example device 4 has its own task with the 1110

task ID number 4. Note from equation (14) that priority levels 1111

p = 1, 2, 3 represent low, medium and high priorities respec- 1112

tively. Each task in this scenario is assigned a random priority 1113
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FIGURE 8. Scenario III: Devices selection in IoE cluster with PB scheduling under different cases. Also, comparison of PB various cases with RR, ECT [46]
and EBS [47] device selection.

level. For example, from Table 6, under case-1, task 5 has1114

high priority (p = 3), device 1 has its task with low priority1115

(p = 1) and so on. The table also shows two cases where tasks 1116

have different and have the same priority levels respectively, 1117
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FIGURE 9. Scenario III: A comparison of selection percentage RR, ECT [46] and EBS [47] with PB different cases.

case PB-Cost where the device with the minimum cost is1118

selected and case PB-Type, where a device is selected that1119

can best compute the task based on its type, e.g. information,1120

computation and storage types.1121

Table 7 shows the simulation results of PB algorithm for 1122

the scenario explained above and compare these results with 1123

RR, ECT [46] and EBS [47] algorithms. These results are 1124

shown for only three time slots while during each time slot 1125
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TABLE 8. Scenario III: Device selection percentage comparison RR, ECT [46], EBS [47] with PB various cases.

three devices are selected by the PB, ECT, EBS and RR1126

algorithms, whereas, Figure 8 represents these simulation1127

results for the complete run of the simulation, i.e. for time1128

slots t1, . . . , t10.1129

Finally, Table 8 and Figure 9 present a comparison among1130

ECT [46], EBS [47], RR and PB scheduling algorithms in1131

terms of selection percentage of the selected device. Similar1132

to the earlier argument, this study is important to manage the1133

workload of each selected device. It is clear from Table 81134

that during case-1, EBS selects 90% of times the device d9,1135

ECT selects 60% of times the device d8, RR selects 70% of1136

times the device d2 whereas the device d10 is selected 50%1137

by the PB algorithm. Also, from Figure 9, it is clear that1138

during case-1, EBS selects the ninth device, ECT selects the1139

device number eighth, RR selects the second device whereas1140

PB selects the tenth device most of the time. Similarly, during1141

PB-Type scenario, EBS, ECT, RR and PB policies selects1142

the third, second, fifth and seventh device most of the time1143

respectively. This information helps the scheduler balance1144

the workload of all IoE device much more effectively in the1145

cluster.1146

VI. CONCLUSION1147

This paper presents a conceptual design architecture of the1148

conventional resource allocation model for IoE devices in1149

6G enabled smart edge based communication environment.1150

Based on the proposed conceptual model, a novel task1151

off-loading, scheduling and resource allocation algorithm1152

MTOSA is presented and its performance is investigated for1153

several edge scenarios. The proposed algorithm, MTOSA,1154

schedules the devices by choosing the appropriate schedul-1155

ing policy from the list of five scheduling policies, i.e., RR,1156

SC, MR, PB and PF. The analysis of MTOSA results shows1157

that each scheduling algorithm performs optimally under 1158

the specific and predefined scenario with the IoE cluster. 1159

This scheduling performance analysis helps to optimise the 1160

IoE device life span and working within the cluster. The 1161

paper showed that for tasks of trivial nature, RR algorithm 1162

provides acceptable performance. RR algorithm was also 1163

found to be suitable for most tasks since IoE devices have 1164

low power and low computational profiles. For tasks requir- 1165

ing more stringent conditions to be met, such as minimum 1166

data rates, time constraints and priorities, one of the more 1167

sophisticated scheduling policies such as SC, MR, PF and 1168

PB should be used for optimal solutions. These results are 1169

compared with the two existing scheduling policies from 1170

the literature, such as ECT [46] and EBS [47]. It is shown 1171

through various experiments that the proposed algorithm 1172

MTOSA performs better with respect to every performance 1173

parameter studied in this paper compared to the existing 1174

policies. 1175

As a part of future work, we would investigate the possible 1176

integration of intelligence within the scheduler to achieve 1177

more efficiency within the design by analysing the perfor- 1178

mance history of IoE devices as a parameter tomake informed 1179

decisions. A future extension can help to refine the overall 1180

design for a better edge-based smart environment for futuris- 1181

tic 6G networks. 1182

REFERENCES 1183

[1] C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, 1184

M. Isomursu, E. S. Lohan, Y. Miao, A. N. Barreto, and M. R. K. Aziz, 1185

‘‘Convergent communication, sensing and localization in 6G systems: An 1186

overview of technologies, opportunities and challenges,’’ IEEE Access, 1187

vol. 9, pp. 26902–26925, 2021. 1188

[2] L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, ‘‘6G wireless 1189

systems: A vision, architectural elements, and future directions,’’ IEEE 1190

Access, vol. 8, pp. 147029–147044, 2020. 1191

VOLUME 10, 2022 93561



S. U. Jamil et al.: Resource Allocation and Task Off-Loading for 6G Enabled Smart Edge Environments

[3] S. U. Jamil, M. A. Khan, and S. Rehman, ‘‘Edge computing enabled1192

technologies for secure 6G smart environment-an overview,’’ in Proc. 12th1193

Int. Conf. Soft Comput. Pattern Recognit. (SoCPaR). Cham, Switzerland:1194

Springer, 2021, pp. 934–945.1195

[4] S.Wenqi, S. Yuxuan, H. Xiufeng, Z. Sheng, and N. Zhisheng, ‘‘Scheduling1196

policies for federated learning in wireless networks: An overview,’’ ZTE1197

Commun., vol. 18, no. 2, pp. 11–19, 2020.1198

[5] U. Bhoi and P. N. Ramanuj, ‘‘Enhanced max-min task scheduling algo-1199

rithm in cloud computing,’’ Int. J. Appl. Innov. Eng. Manage. (IJAIEM),1200

vol. 2, no. 4, pp. 259–264, 2013.1201

[6] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, and Q. E. Ul Haq,1202

‘‘Machine learning techniques for 5G and beyond,’’ IEEE Access, vol. 9,1203

pp. 23472–23488, 2021.1204

[7] M. M. Razaq, B. Tak, L. Peng, and M. Guizani, ‘‘Privacy-aware collabo-1205

rative task offloading in fog computing,’’ IEEE Trans. Computat. Social1206

Syst., vol. 9, no. 1, pp. 88–96, Feb. 2021.1207

[8] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,1208

‘‘Artificial-intelligence-enabled intelligent 6G networks,’’ IEEE Netw.,1209

vol. 34, no. 6, pp. 272–280, Nov./Dec. 2020.1210

[9] Z.-C. Chen, ‘‘Task scheduling algorithm based on campus cloud platform,’’1211

in Proc. Int. Conf. Artif. Intell. Secur. Cham, Switzerland: Springer, 2019,1212

pp. 299–308.1213

[10] A. Lakhan, M. A. Mohammed, M. Elhoseny, M. D. Alshehri, and1214

K. H. Abdulkareem, ‘‘Blockchain multi-objective optimization approach-1215

enabled secure and cost-efficient scheduling for the Internet of Medical1216

Things (IoMT) in fog-cloud system,’’ Soft Comput., vol. 26, pp. 1–14,1217

May 2022.1218

[11] Y. Wang, X. Qi, X. Lin, and X. Wang, ‘‘Computing offloading-based task1219

scheduling for space-based cloud-fog networks,’’ in Proc. 2nd Int. Seminar1220

Artif. Intell., Netw. Inf. Technol. (AINIT), Oct. 2021, pp. 266–270.1221

[12] M. K. Hussein and M. H. Mousa, ‘‘Efficient task offloading for IoT-based1222

applications in fog computing using ant colony optimization,’’ IEEE1223

Access, vol. 8, pp. 37191–37201, 2020.1224

[13] N. Magaia, P. Ferreira, P. R. Pereira, K. Muhammad, J. D. Ser, and1225

V. H. C. De Albuquerque, ‘‘Group’n route: An edge learning-based clus-1226

tering and efficient routing scheme leveraging social strength for the1227

internet of vehicles,’’ IEEE Trans. Intell. Transp. Syst., early access,1228

May 16, 2022, doi: 10.1109/TITS.2022.3171978.1229

[14] R. Lin, T. Xie, S. Luo, X. Zhang, Y. Xiao, B. Moran, and M. Zukerman,1230

‘‘Energy-efficient computation offloading in collaborative edge com-1231

puting,’’ IEEE Internet Things J., early access, May 30, 2022, doi:1232

10.1109/JIOT.2022.3179000.1233

[15] Q. Zhang, L. Gui, S. Zhu, and X. Lang, ‘‘Task offloading and resource1234

scheduling in hybrid edge-cloud networks,’’ IEEE Access, vol. 9,1235

pp. 85350–85366, 2021.1236

[16] A. Hazra, P. K. Donta, T. Amgoth, and S. Dustdar, ‘‘Cooperative trans-1237

mission scheduling and computation offloading with collaboration of1238

fog and cloud for industrial IoT applications,’’ IEEE Internet Things J.,1239

early access, Feb. 9, 2022, doi: 10.1109/JIOT.2022.3150070.1240

[17] S. K. Uz Zaman, A. I. Jehangiri, T. Maqsood, Z. Ahmad, A. I. Umar,1241

J. Shuja, E. Alanazi, and W. Alasmary, ‘‘Mobility-aware computational1242

offloading in mobile edge networks: A survey,’’ Cluster Comput., vol. 24,1243

pp. 1–22, Dec. 2021.1244

[18] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, ‘‘Resource scheduling in edge1245

computing: A survey,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4,1246

pp. 2131–2165, 4th Quart., 2021.1247

[19] Q. Luo, C. Li, T. H. Luan, W. Shi, and W. Wu, ‘‘Self-learning based1248

computation offloading for internet of vehicles: Model and algorithm,’’1249

IEEE Trans. Wireless Commun., vol. 20, no. 9, pp. 5913–5925, Sep. 2021.1250

[20] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, and X. Chen, ‘‘Dynamic offload-1251

ing and resource scheduling for mobile-edge computing with energy har-1252

vesting devices,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 2,1253

pp. 2154–2165, Jun. 2021.1254

[21] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, and M. Ylianttila, ‘‘Cloud1255

and edge computation offloading for latency limited services,’’ IEEE1256

Access, vol. 9, pp. 55764–55776, 2021.1257

[22] F. Alqahtani, M. Amoon, and A. A. Nasr, ‘‘Reliable scheduling and load1258

balancing for requests in cloud-fog computing,’’ Peer-to-Peer Netw. Appl.,1259

vol. 14, pp. 1–12, Jul. 2021.1260

[23] X. Huang, R. Yu, D. Ye, L. Shu, and S. Xie, ‘‘Efficient workload allocation1261

and user-centric utility maximization for task scheduling in collaborative1262

vehicular edge computing,’’ IEEE Trans. Veh. Technol., vol. 70, no. 4,1263

pp. 3773–3787, Apr. 2021.1264

[24] N. Cha, C. Wu, T. Yoshinaga, Y. Ji, and K.-L.-A. Yau, ‘‘Virtual edge: 1265

Exploring computation offloading in collaborative vehicular edge comput- 1266

ing,’’ IEEE Access, vol. 9, pp. 37739–37751, 2021. 1267

[25] S. Zhou andW. Jadoon, ‘‘Jointly optimizing offloading decision and band- 1268

width allocation with energy constraint in mobile edge computing environ- 1269

ment,’’ Computing, vol. 103, pp. 1–27, Dec. 2021. 1270

[26] X. Huang, K. Wu, M. Jiang, L. Huang, and J. Xu, ‘‘Distributed resource 1271

allocation for general energy efficiency maximization in offshore maritime 1272

device-to-device communication,’’ IEEE Wireless Commun. Lett., vol. 10, 1273

no. 6, pp. 1344–1348, Jun. 2021. 1274

[27] J. Cao, X. Song, S. Xu, Z. Xie, and Y. Xue, ‘‘Energy-efficient resource allo- 1275

cation for heterogeneous network with grouping D2D,’’ China Commun., 1276

vol. 18, no. 3, pp. 132–141, Mar. 2021. 1277

[28] M. Wang, T. Zhu, T. Zhang, J. Zhang, S. Yu, and W. Zhou, ‘‘Security and 1278

privacy in 6G networks: New areas and new challenges,’’ Digit. Commun. 1279

Netw., vol. 6, no. 3, pp. 281–291, Aug. 2020. 1280

[29] R. Cong, Z. Zhao, G. Min, C. Feng, and Y. Jiang, ‘‘EdgeGO: A mobile 1281

resource-sharing framework for 6G edge computing in massive IoT 1282

systems,’’ IEEE Internet Things J., vol. 9, no. 16, pp. 14521–14529, 1283

Aug. 2021. 1284

[30] C. Pu and L. Carpenter, ‘‘Psched: A priority-based service schedul- 1285

ing scheme for the Internet of Drones,’’ IEEE Syst. J., vol. 15, no. 3, 1286

pp. 4230–4239, Sep. 2020. 1287

[31] X. Fan, B. Liu, C. Huang, S. Wen, and B. Fu, ‘‘Utility maximization 1288

data scheduling in drone-assisted vehicular networks,’’Comput. Commun., 1289

vol. 175, pp. 68–81, Jul. 2021. 1290

[32] X. Li, R. Fan, H. Hu, N. Zhang, X. Chen, and A. Meng, ‘‘Energy-efficient 1291

resource allocation for mobile edge computing withmultiple relays,’’ IEEE 1292

Internet Things J., vol. 9, no. 13, pp. 10732–10750, Jul. 2021. 1293

[33] X. An, R. Fan, H. Hu, N. Zhang, S. Atapattu, and T. A. Tsiftsis, ‘‘Joint 1294

task offloading and resource allocation for IoT edge computing with 1295

sequential task dependency,’’ IEEE Internet Things J., vol. 9, no. 17, 1296

pp. 16546–16561, 2022. 1297

[34] M. Afhamisis and M. R. Palattella, ‘‘SALSA: A scheduling algorithm for 1298

LoRa to LEO satellites,’’ IEEE Access, vol. 10, pp. 11608–11615, 2022. 1299

[35] E. M. Shiriaev, N. N. Kycherov, and V. A. Kuchukov, ‘‘Analytical review 1300

of the methods of dynamic load balancing under conditions of uncertainty 1301

in the execution time of tasks,’’ in Proc. IEEE Conf. Russian Young Res. 1302

Electr. Electron. Eng. (ElConRus), Jan. 2021, pp. 674–677. 1303

[36] C. Wu, E. Haihong, and M. Song, ‘‘A distributed task scheduling system 1304

suitable for massive environments,’’ in Proc. Int. Conf. Inventive Comput. 1305

Technol. (ICICT), Feb. 2020, pp. 750–755. 1306

[37] T. K. Rodrigues, J. Liu, and N. Kato, ‘‘Offloading decision for 1307

mobile multi-access edge computing in a multi-tiered 6G network,’’ 1308

IEEE Trans. Emerg. Topics Comput., early access, Jun. 21, 2021, doi: 1309

10.1109/TETC.2021.3090061. 1310

[38] Z. Liao, J. Peng, J. Huang, J. Wang, J. Wang, P. K. Sharma, and U. Ghosh, 1311

‘‘Distributed probabilistic offloading in edge computing for 6G-enabled 1312

massive Internet of Things,’’ IEEE Internet Things J., vol. 8, no. 7, 1313

pp. 5298–5308, Apr. 2021. 1314

[39] Z. Wang, B. Lin, L. Sun, and Y. Wang, ‘‘Intelligent task offloading for 1315

6G-enabled maritime IoT based on reinforcement learning,’’ in Proc. Int. 1316

Conf. Secur., Pattern Anal., Cybern. (SPAC), Jun. 2021, pp. 566–570. 1317

[40] H. Hu,W. Song, Q.Wang, F. Zhou, andR. Q. Hu, ‘‘Mobility-aware offload- 1318

ing and resource allocation in MEC-enabled IoT networks,’’ in Proc. 16th 1319

Int. Conf. Mobility, Sens. Netw. (MSN), Dec. 2020, pp. 554–560. 1320

[41] G. Feng, X. Li, Z. Gao, C. Wang, H. Lv, and Q. Zhao, ‘‘Multi-path and 1321

multi-hop task offloading in mobile ad hoc networks,’’ IEEE Trans. Veh. 1322

Technol., vol. 70, no. 6, pp. 5347–5361, Jun. 2021. 1323

[42] B. Yang, X. Cao, K. Xiong, C. Yuen, Y. L. Guan, S. Leng, L. Qian, and 1324

Z. Han, ‘‘Edge intelligence for autonomous driving in 6G wireless system: 1325

Design challenges and solutions,’’ IEEE Wireless Commun., vol. 28, no. 2, 1326

pp. 40–47, Apr. 2021. 1327

[43] D.Wu, L. Deng, Z. Liu, Y. Zhang, and Y. S. Han, ‘‘Reinforcement learning 1328

random access for delay-constrained heterogeneous wireless networks: 1329

A two-user case,’’ in Proc. IEEE Globecom Workshops (GC Wkshps), 1330

Dec. 2021, pp. 1–7. 1331

[44] S. U. Jamil, M. A. Khan, and S. U. Rehman, ‘‘Intelligent task off-loading 1332

and resource allocation for 6G smart city environment,’’ inProc. IEEE 45th 1333

Conf. Local Comput. Netw. (LCN), Nov. 2020, pp. 441–444. 1334

[45] S. Ur Rehman, M. A. Khan, M. Imran, T. A. Zia, andM. Iftikhar, ‘‘Enhanc- 1335

ing Quality-of-Service conditions using a cross-layer paradigm for ad-hoc 1336

vehicular communication,’’ IEEE Access, vol. 5, pp. 12404–12416, 2017. 1337

93562 VOLUME 10, 2022

http://dx.doi.org/10.1109/TITS.2022.3171978
http://dx.doi.org/10.1109/JIOT.2022.3179000
http://dx.doi.org/10.1109/JIOT.2022.3150070
http://dx.doi.org/10.1109/TETC.2021.3090061


S. U. Jamil et al.: Resource Allocation and Task Off-Loading for 6G Enabled Smart Edge Environments

[46] M. Abd Elaziz, L. Abualigah, and I. Attiya, ‘‘Advanced optimization tech-1338

nique for scheduling IoT tasks in cloud-fog computing environments,’’1339

Future Gener. Comput. Syst., vol. 124, pp. 142–154, Nov. 2021.1340

[47] H. Shah-Mansouri and V.W. S. Wong, ‘‘Hierarchical fog-cloud computing1341

for IoT systems: A computation offloading game,’’ IEEE Internet Things1342

J., vol. 5, no. 4, pp. 3246–3257, Aug. 2018.1343

[48] B. Wang, H. Zhu, H. Xu, Y. Bao, and H. Di, ‘‘Distribution network recon-1344

figuration based on NoisyNet deep Q-learning network,’’ IEEE Access,1345

vol. 9, pp. 90358–90365, 2021.1346

SYED USMAN JAMIL (Graduate Student1347

Member, IEEE) received the M.Sc. degree in1348

computer science from GC University Lahore,1349

Pakistan, in 2004, the Master of Business Admin-1350

istration degree from Allama Iqbal Open Univer-1351

sity, Pakistan, in 2009, the Master of Information1352

Technology degree in network computing from the1353

University of Canberra, Australia, in 2014, and1354

the Bachelor of Computing degree (Hons.) from1355

Charles Sturt University, in 2019. He is currently a1356

Ph.D. Scholar at Charles Sturt University. He was included on the Executive1357

Dean’s List for outstanding academic achievement with the School of Com-1358

puting, Mathematics and Engineering, Charles Sturt University. He has pre-1359

viously worked in industry as a System Administrator for a number of years.1360

His research interests include the areas of cloud computing technologies, the1361

Internet of Everything (IoE), resource allocation, scheduling, intelligence,1362

and information security for wireless networks.1363

M. ARIF KHAN (Member, IEEE) received 1364

the B.Sc. degree in electrical engineering from 1365

the University of Engineering and Technology 1366

Lahore, Pakistan, the M.S. degree in electronic 1367

engineering from the GIK Institute of Engineering 1368

Sciences and Technology, Pakistan, and the Ph.D. 1369

degree in electronic engineering from Macquarie 1370

University Sydney, Australia. He is currently a 1371

Senior Lecturer with the School of Computing, 1372

Mathematics and Engineering, Charles Sturt Uni- 1373

versity, Australia. His research interests include future wireless communica- 1374

tion technologies, smart cities, massive MIMO systems, and cyber security. 1375

He was a recipient of the Prestigious International Macquarie University 1376

Research Scholarship (iMURS), and ICT CSIRO scholarships for his Ph.D. 1377

degree. He also has the competitive GIK Scholarship for his master’s degree. 1378

SABIH UR REHMAN (Member, IEEE) received 1379

the bachelor’s degree (Hons.) in electronics and 1380

telecommunication engineering from the Univer- 1381

sity of South Australia, Adelaide, and the Ph.D. 1382

degree in the area of wireless sensor networks from 1383

Charles Sturt University, Australia. He is currently 1384

a Senior Lecturer and the Course Director of the 1385

School of Computing, Mathematics and Engineer- 1386

ing, Charles Sturt University. He has extensive 1387

industry experience in delivering large scale net- 1388

working solutions along with providing system administration, security, and 1389

data integration services. His current research interests include wireless com- 1390

munication, network planning, routing and switching, information security, 1391

the Internet of Things (IoT), robotics and big data analytic, especially in 1392

the domains of intelligent transport systems, environmental sustainability, 1393

e-health and precision agriculture, with the aim to positively influence social, 1394

economic, and environmental sustainability of communities in rural Aus- 1395

tralia via digitally enabled solutions. He regularly publishes his research and 1396

serves as a reviewer for a number of respected journals and conferences. He is 1397

a member of Australian Computer Society (ACS). 1398

1399

VOLUME 10, 2022 93563


