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ABSTRACT The presence of forest tree pathogens may lead to substantial problems and their early detection
during seed storage or in nurseries may be critical for the choice of appropriate management strategy. A new
construction of a low-cost electronic nose was tested on the samples of pathogenic fungi and oomycetes of
Fusarium oxysporum and Phytopthora plurivora. The electronic nose uses Figaro Inc. TGS series sensors
with applied heater voltage modulation. Such a mode of electronic nose operation may be more appropriate
for application for constant monitoring of seeds storage, when we compare it to the method making use of
modulation of the gas concentration. A rectangular shape of the sensors’ heater voltage modulation pattern,
with a shallow drop of the heater voltage from the nominal voltage, was proposed. Data visualization using
the principal component analysis method and the random forest machine learning technique was used to
build classification models. A classification accuracy of 97% was obtained by a fusion of data collected by

TGS 2610 and TGS 2602 sensors.

INDEX TERMS Electronic nose, odor classification, VOC, volatile organic compounds, fungi, oomycetes.

I. INTRODUCTION

A main motivation for conducting the research is the tran-
sition of crop protection in Europe from chemical pest con-
trol to integrated pest management (IPM), in which physical
and biological methods play an important role. In this situa-
tion, new tools are needed to support this strategy to ensure
expected yields while improving environmental quality. One
such innovative direction is the use of scents to identify insect
pests and pathogens. Detection of odours can be done by
different techniques of chemical analysis of gases. First of
all, most information can be obtained by classical chemi-
cal analysis techniques, including gas chromatography-mass
spectrometry. This approach provides the most objective and
reliable identification of individual chemical components and
their relative concentrations. However, due to the significant
cost of equipment and the need for highly skilled personnel,
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this method is usually limited to applications under laboratory
conditions.

The concept of the electronic nose is to use a series of
nonspecific gas sensors [1], [2], [3]. In this approach, the
individual chemical components of the measured gas are not
identified; instead, odors are classified and recognized using
pattern recognition techniques supported by machine learn-
ing algorithms.

Several applications for electronic noses have been pro-
posed, focusing on forestry and agriculture [4], [5], [6],
[7], [8], [9]. In addition, applications for fungal species
detection and identification have recently been explored by
Mota et al. [10].

Gas sensors based on various physical phenomena can
be used to construct electronic noses, such as electro-
chemical [11], gravimetric [12], optical [13]. However,
when simple, low-cost devices are proposed, they are usu-
ally based on commercially available metal oxide (MOX)
Sensors.
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In this research, we describe a low-cost electronic nose
recently constructed in our laboratory. Unlike the previously
reported constructions from our lab [14], [15], which were
based on the same types of Figaro Inc. MOX type gas sensors,
the new electronic nose applies a method of sensor heater
modulation.

Multiple research groups reported electronic nose con-
structions based on such a principle of sensors operation.
Numerous papers report new sensors construction, but also
there is a large body of research, in which commercially avail-
able sensors were used. From the perspective of the electronic
nose construction, an important aspect is the choice of the
pattern of the sensor heater modulation profile.

Huang et al. [16] used a rectangular shape of of 20 mHz
modulation applied to a single SnO; sensor for detection of
organic VOC. Hosseini-Golgoo et al. [17], [18], [19] investi-
gated a staircase-like mounting profile from 1 to 5 V. Similar
modulation profile was used by Liu et al. [20] in p-type NiO
sensor. Sensors’ response to increasing heater voltage by rect-
angular steps of various high was studied by Amini ez al. [21]
and Gosangi and Gutierrez-Osuna [22]. A rectangular heating
voltage profile with a constant high but varying base voltage
level was applied by Hossein-Babaei and Amini [23] in a
low-cost, tin oxide-based, generic gas sensor. Yin et al. [24]
applied triangular saw teeth-like modulation of TGS 2602 and
TGS 2620 sensors. Oates et al. [25] presented a low-cost
electronic nose with sinusoidally heated standard commer-
cially available sensors for the classification of oil types, and
recently [26] demonstrated application to basic detection of
different foodstuffs. He er al. [27] applied a spike-like pattern
with a modulated frequency of spikes during the measure-
ment procedure. A triangular modulation profile was used
by Krivetskiy et al. [28]. Yuan et al. [29] used triangle and
rectangle-like profiles, with baseline at low sensor tempera-
ture conditions. Zhao et al. [30] applied rectangular tempera-
ture modulation to SnO, sensor for the detection of toxic and
flammable gases. Iwata et al. [31] proposed to use modulation
profile with amplitude and frequency periodically changed.
Vergara et al. [32] reviewed optimized feature extraction for
temperature-modulated gas sensors.

In most of the cases of reported constructions of low-cost
electronic noses, the MOX sensors used were not designed for
operation in the temperature modulation mode. Furthermore,
most of the research applied modulation on the temperature
on a wide scale, reaching regions far from the nominal sen-
sor working conditions. In addition, in most of the research,
multiple periods of the modulation were applied and used for
gas recognition. In our research, we report investigations of
the possibility to use only one period of modulation with a
relatively small change of the sensor heater voltage, close to
its nominal working conditions.

The new electronic nose, presented in this manuscript, was
applied to classify measured samples of fungi and oomycetes
and differentiate them from non infested medium.

To achieve the above objectives, data visualization using
principal component analysis and random forest technique
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of machine learning was used to build classification models
showing the best classification accuracy of the modeling fea-
tures based on the data extracted from the sensors. Different
subsets of the data used for classification were tested to opti-
mize the list of sensors in the electronic nose sensor array
and the depth of the voltage modulation profile of the sensor
heating.

Il. MOTIVATION FOR DETECTION OF PATHOGENIC FUNGI
AND OOMYCETES
As international trade in plants and plant materials increases,
the accidental introduction of insects or pathogens into new
areas becomes a serious problem. Their spread can lead to
forest health problems at a very early stage, such as damage
to plants in forest nurseries, resulting in a significant reduc-
tion in the number of seedlings and economic losses. One
of the most frequently observed problems is caused by the
pathogens of the so-called “damping-off seedlings disease’.
Damping-off is a disease that causes death of germinating
seeds and young seedlings, especially in forest nurseries [33].
This disease is caused by several organisms, such as: fungi
Fusarium, Rhizoctonia, Cylindrocarpon, and oomycetes Phy-
tophthora and Pythium. In Poland the genera Fusarium and
Phytophthora represent the most numerous pathogens in for-
est nurseries. Their pathogenic soil-borne strains are among
the most harmful microorganisms in the world due to their
potential adaptability. They cause root rot, tuber blight and
wilt [34], [35]. Pathogenic strains of the fungal species F.
oxysporum particularly affect seedlings of coniferous species
in nurseries. The most commonly observed symptoms are
needle wilt and, in some cases, small root and stem rots.
Seedlings lose their fine roots (in which case they are easily
pulled out of the ground) or fall over due to infected stem tis-
sue, which is usually damaged near the ground. The pathogen
moves upwards from the roots to the stems and hinders water
uptake, gradually clogging the xylem tissue, which leads to
wilting of the plant, yellowing of the needles and death.
Pathogenic oomycetes of the genus Phytophthora pose
an even threat to plants. When these organisms destroy the
fine roots (< 2 mm), the plants die quickly. If the seedlings
are raised in a water regime suitable for them, they often
do not show disease symptoms (are asymptomatic), and
chlamydospores are formed in the rhizosphere of the soil,
which become active only when the plants are planted in
moist habitats. Since they do not show external signs of
disease, visual selection of seedlings is not effective, and
the problem is shifted from the nursery to the forest planta-
tion. Molecular diagnostic tests conducted in many countries
have shown that infestation of plants prepared for planting in
nurseries in Europe is high, sometimes reaching 80% [36].
In addition, fungicides are intended to control fungi, not
oomycetes. Thus, if used improperly, they only mask the
disease, which is usually the case in nurseries. Therefore, it is
critical to identify the organisms that foresters and arborists
are dealing with there, and accurate and rapid analysis with
e-nose would be very useful for this purpose. Currently, the
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recomended method for detecting oomycetes in soil is the
baiting using plant material [37]. The currently recommended
method for detecting oomycetes in soil is baiting with plant
material [37]. In this approach, the organisms sought grow
on oak, beech, or rhododendron leaves as bait, and the
infected leaf pieces are usually placed on selective media
(e.g., PARP) [38]. This approach requires several days, if not
weeks, to obtain pure cultures of pathogens that can be identi-
fied by classical (microscopic) or molecular (DNA sequenc-
ing) methods. From an economic perspective, forestry and
ornamental nurseries need to develop a rapid method for
detecting pathogens that primarily cause damping-off dis-
ease. Early detection can help to take action to reduce the
loss of regeneration material due to the negative effects of the
pathogens.

Ill. ELECTRONIC NOSE

A. GAS DETECTION USING MOX SENSORS

Let us briefly recall the main components of a MOX-type
gas sensor and its operation principle. The sensing material,
typically tin dioxide, is heated by the built-in electric heater,
usually made of platinum, up to the temperature of a few
hundred Celsius degrees. In the conditions of clear air, oxy-
gen is absorbed on the surface of the sensing element and
attracts donor electrons, which prevents electric current flow.
In the presence of reducing gases, oxygen reacts with the gas
molecules and that reaction decreases the surface density of
adsorbed oxygen. Electrons are released from the surface into
the sensing material and that allows the electric current to
flow. That means that the sensor temperature significantly
influences the physical processes responsible for the sensor
operating principle. A MOX gas sensor operating at different
temperatures may have different response characteristics to
measured gases [15] and exhibits different sensitivity and
selectivity to various chemical components.

A physical property measured in MOX sensors is their
resistance in the presence of the considered gas sample. How-
ever, the absolute value of the measured resistance is not used,
but its value in proportion to the resistance in the clean air
conditions. It is a known property of this type of sensor that
the measured magnitude of the sensor response exhibits drifts
over time and that requires that the sensor baseline resis-
tance (resistance in clear air) should be measured just before
each measurement of the studied odor sample. As an output
value from the electronic nose sensor array, one can use the
stationary value of sensors resistance obtained after a suffi-
ciently transient response after a change of gas conditions.
However, more sensitivity and selectivity can be achieved,
when one uses the whole sensor response characteristics cap-
tured during changes in the measured gas condition: firstly
from clean air to the measured odor sample (adsorption)
and then back to the clear air (desorption). That approach
exploits transient sensors response regions and allow odors
discrimination using responses of even one sensor [23], [39],
[40], [41], [42]. However, that approach also requires that the
changes in the measured gas conditions should be abrupt and
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FIGURE 1. Experimental setup of Petri dish with the measured sample
and the low-cost electronic nose inside the laminar flow cabinet,
connected to the laptop controlling the operation and collecting data.

repeatable [43]. That requires advanced designs of sensor
array chamber [44] and precise pneumatic gas supply.

Another approach is to capture sensor resistance character-
istics while sensor temperature is modulated. That approach
allows the construction of a simpler low-cost electronic nose
as it doesn’t require as precise and advanced pneumatic
modulation of the supplied gas. Modulation of the sensor
temperature with the required time profile is much eas-
ier to achieve by a relatively simple electronic circuit. The
modulation is performed when the sensor already reached
the stationary state in the presence of the measured gas
conditions.

An important aspect of the construction of the electronic
nose based on heater temperature modulation is the choice
of the modulation profile. Various approaches were proposed
in this domain. As we reviewed in the Introduction section,
patterns or modulation such as sinusoidal, stair-like, or rect-
angular were demonstrated. Furthermore, most researchers
investigated cases when the sensors heater voltage explores a
wide range. Also in most cases, it was demonstrated that mul-
tiple periods of modulation were used to collect data required
for sample classification. In some cases also variation or tun-
ing of modulation frequency was required.

B. ELECTRONIC NOSE CONSTRUCTION

The described in this manuscript electronic nose device
(PW7) is an improved version of previously used and
described devices PW4 [14] and PW6 [15]. The whole exper-
imental setup is presented in Fig. 1.

The PW7 electronic nose is designed as low-cost equip-
ment to detect smells emitted by various types of fungus.
Each construction of an electronic nose consists of two main
parts: the sensors probe and the main electronic unit con-
nected to the computer. The probe is the round aluminum
block in which the sensors are placed. Similar to earlier
devices we used various types of metal oxide sensors made
by Figaro co., Japan. The sensor types are listed in Table 1.
Additionally, there were also placed HIH 4031 humidity sen-
sor (Honeywell, Charlotte, NC, USA) and LM35 temperature
sensor (Texas Instruments, Austin, TX, USA).
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The improvement of the PW7 device, compared to our
previous constructions, is the ability to modulate the sensors’
heater voltage. This leads to modulation of the operation
temperature of the sensors. The changes could be made in
every single sensor reading cycle from 0 to 7 V with a step of
30 mV. The main unit has wires to connect with the sensors
probe, a USB cable to connect with the computer, and a 12 V
DC power supply. The complete schema of the device can be
seen in Fig. 2. As one can see, it can be made at a relatively
low cost as the most expensive parts of the device are the
sensors themselves. This voltage is divided into two separate
circuits. One of them is stabilized 5 V, which provides energy
for most electronic parts and the sensors’ readings. The other
is adjustable and stabilized voltage that powers up sensors’
heaters. The core of the PW7 enose device is the ATmega
328P-PU microcontroller. It controls all the communication
between the computer and sensors. The measurements from
the sensors are read using a multiplexer one by one with a
delay of a few milliseconds, so we can assume that they are
in the same moment. All readings are sent to a computer and
archived in a text file that can be easily worked out.

Additionally to the electronic nose, we prepared simple
equipment to clean reference air during baseline measure-
ments and between measurements. This simple construc-
tion consists of a rotary vane pump (Thomas G6/01-K-LCL,
Gardner Denver), a 5 V DC power supply, a self-made active
charcoal filter, and a set of tubes with a diffuser. It helps to
clean up sensors quicker and provide more stable baseline
readings.

C. SENSOR HEATER VOLTAGE MODULATION PROFILE

In Section III-A we reviewed several proposed patterns of
sensor heater modulation. In many cases, they rely on signifi-
cant changes in voltage allowing them to exploit a wide range
of sensor response characteristics in various temperatures.
Also, often the exploited response relies on voltage increase
from a very low voltage base level. That leads to heater con-
ditions, which are usually far from the nominal operating
temperature, for which the sensors were originally designed.
When the sensors are operating at low temperatures, the gas
molecules are adsorbed at the porous gas sensing layer. Their
presence cannot be used to gas identified by the measure-
ments of average electrical characteristics such as resistance,
but only by the application of the fluctuation enhance sensing
methods [45], [46]. That may suggest, that rather operation
and modulation at higher heater voltages could give better
results of gas recognition. In our approach, we decided to
use relatively shallow heater voltage modulation in conditions
close to the ones recommended by the sensors’ manufacturer.
The profile of the modulation is presented in Fig. 3(a).

IV. MEASURED SAMPLES

A. SAMPLES PREPARATION

Strains of both pathogens were isolated in a forest nursery
from pedunculate oaks (Quercus robur) with visible symp-
toms of damping-off. The isolated organisms were stored
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TABLE 1. List of sensor models used in the PW?7 electronic nose device
and target odors and gases.

Sensor Target gas detection

TGS 2600  Has a high sensitivity to low concentrations of gaseous
air contaminants such as hydrogen and carbon monoxide,
which exist in cigarette smoke. The sensor can detect
hydrogen at a level of several ppm.

Has high sensitivity to low concentrations of odorous
gases such as ammonia and Ha2S generated from waste
materials in office and home environments. The sensor
also has a high sensitivity to low concentrations of VOCs
such as toluene emitted from wood finishing and construc-
tion products.

Has high sensitivity to low concentrations of odorous
gases such as amine-series and sulfurous odors generated
from waste materials or spoiled foods such as fish.

Uses filter material in its housing, eliminating the influ-
ence of interference gases such as alcohol, resulting in a
highly selective response to LP gas.

Uses filter material in its housing which eliminates the
influence of interference gases such as alcohol, resulting
in a highly selective response to methane gas.

Has high sensitivity to methane, propane and butane,
making it ideal for LNG and LPG monitoring. Due to
its low sensitivity to alcohol vapors (a typical interference
gas in the residential environment), the sensor is ideal for
consumer market gas alarms.

Has high sensitivity to organic solvents and other volatile
vapors, making it suitable for organic vapor detec-
tors/alarms.

Has high sensitivity to low GWP (Global Warming Po-
tential), low-flammable refrigerant gases such as R-32
and R-1234yf, as well as to R-404a and R-410a which
are commonly used in air conditioning and refrigeration
systems. Uses filter material in its housing to eliminate the
influence of interference gases such as alcohol, resulting
in highly selective response to low-flammable refrigerant
gases.

TGS 2602

TGS 2603

TGS 2610

TGS 2611

TGS 2612

TGS 2620

TGS 2630

in the Forest Protection Department of the Forest Research
Institute in Sekocin Stary (Poland). Two organisms Phy-
tophthora plurivora and Fusarium oxysporum as the most
frequently responsible for the occurrence of damping-off
symptoms in Polish forest nurseries were selected for detailed
analysis [33]. The pathogen isolates were cultured on clas-
sical PDA agar media (20 g dextrose, 15 g agar, 4 g potato
starch, and 1 L distilled water) in 9 cm Petri dishes. They
were kept at room temperature until the mycelium completely
covered the surface of the dishes.

B. MEASUREMENT PROCEDURES
From the point of view of the person making the measure-
ments, the procedure for the odor measurements was very
similar to that used in our previous experiments [14], [15].
The whole experiment lasted two weeks, and during this
time we had 7 days of measurements. In total, we prepared
six Petri dishes for each category of samples. One set of three
dishes of each category was used during the first week of
the experiment. Since the samples could be contaminated by
other species, another set of dishes was used in the second
week of the experiment. Each Petri dish was measured only
once per day. Since the fungal and oomycete samples were
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FIGURE 2. The electronic circuit diagram of the PW7 low-cost electronic nose.

living organisms, they varied daily and so did the composition
of the volatiles emitted by the samples. The order of sam-
ple measurements was randomly selected at the beginning of
each day.

The sensors were preheated in clean air at a nominal volt-
age of 5V at least seven days before the experiment, as rec-
ommended by the manufacturer. During the two weeks of
the experiment, they were kept in clean air with a power
supply. During the experiment, controlled conditions were
maintained with a constant temperature of 20 °C and humid-
ity of 20%. The measurement was performed in a laminar
flow cabin.

The operation of the electronic nose device was performed
manually. One measurement procedure lasted 15 minutes
and during this time 1200 readings of the sensor resistance
were recorded. Fig. 3(a) shows an example of a sensor curve
acquired during one cycle of sample measurement. The mea-
sured quantity is the voltage read from the resistor, which
represents the sensor resistance. According to the sensor man-
ufacturer’s specification, the quantity that should be used is
not the sensor resistance, but its magnitude relative to the
resistance measured under clear air conditions. Thus, if volt-
age is the primary measurable it corresponds to U/Uy, where
U is the voltage measured at the given time and Uy is the
base value. After starting the measurement, the electronic
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nose was still kept in clean air during the 200 sensor readings
to ensure that the sensors response was flat, which means
that they already recovered to the baseline and were not
contaminated by residues from the previous measurement.
Then, the sensor array was placed over a Petri dish containing
the measured sample. It was waited for 100 measurements
(1 minute 15 seconds) and during this time the resistance of
the sensors reached a steady state. At this moment modu-
lation the heating voltage of the sensors started, with three
rectangular steps with a length of 50 sensor readings started
and a different modulation depth, as schematically shown in
Fig. 3(a). For the voltage modulation steps of voltage drop
steps of —0.3, 0.6, and —0.9 V, each from the nominal heater
voltage of 5 V were applied. After the temperature modu-
lation, the sensor array was manually moved to clean air,
where the residues of the measured gas could be desorbed, the
sensors were cleaned and prepared for the next measurement
process.

V. DATA ANALYSIS TECHNIQUES

The data preparation, statistical analysis, and machine learn-
ing models presented in this manuscript were performed
using computer codes developed in the Python 3.8 language.
The statsmodels package [47] was used for statistical tests
and scikit-learn package [48] for machine learning modeling.
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FIGURE 3. Schematic representation of the sensor response during
measurement (a) and explanation of the extracted classification features
(b). The dashed rectangular in Figure (a) represents the period presented
in Figure (b). The time when sensors are placed in clear air and measured
gas, and the pattern of sensor heater voltage characteristics are
schematically represented in Figure (a). The x-axis is represented by
sensor response read number, where one read takes 0.75 s.
In Figure (a) the y-axis is the measured voltage relative to the baseline
voltage in clean air U/Uy, in Figure (b) the y-axis is represented the
measured voltage relative to the voltage at the moment just before the
heater voltage drop U/Us. The definition of modeling features presented
schematically in Figure (b) is described in Table 2.

A. FEATURES EXTRACTED FROM SENSOR RESPONSE
CURVES

In Fig. 3(b), a portion of the sensor response curve taken
during one step of the heater voltage drop is shown. The
quantity used in the analysis is the voltage relative to its
magnitude just before the voltage drop U/U;. This means
that the output voltage measured under clean air conditions
is not needed for the analysis. The sensor response curve
contains 100 data points, and only five features describing
the curve are extracted for further analysis. This allows the
dimensionality of the problem to be significantly reduced.
The definition of these features is shown schematically in the
figure and listed in Table 2. The selected types of features
allow to capture the behavior of the response curve in the
different time domains and to reduce the influence of the
instantaneous data fluctuations.

B. PRINCIPAL COMPONENT ANALYSIS

A common practice in analyzing multidimensional data is
to project it into a low-dimensional space. Such transformed
data can be used as input for further analysis or for visual-
ization purposes to understand patterns in the distribution of
data points for the case under study. The Principal Compo-
nent Analysis (PCA) the commonly used statistical technique
was used for this task. One of the advantages of the PCA
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TABLE 2. The list of types of modeling features extracted from the sensor
response curve, for each step of the sensor heating voltage drop.

Feature  Definition

Area Area under the response curve.

End Final value of the collected response.
Min Minimum value of the response.
SBeg Slope at the beginning of the response.
SEnd Slope at the end of the response.

transformation is an intuitive interpretation, as the rotation
of the coordinate system, which gives the new coordinates
in order of the amount of variability captured from the data
set. We used as input for the PCA transformation all features
extracted from the response curves of the sensors. Since the
input features represent non-comparable quantities expressed
in different units and have different ranges of values, we used
initial normalization of the input dataset to equal variance.
In our analysis, the PCA method was used only to visualize
the patterns of the data points in the two-dimensional space
of the two main principal components.

C. RANDOM FOREST MACHINE LEARNING MODELS

One goal of the electronic nose measurements is to apply
the collected data to create classification models that are able
to discriminate between the samples studied. Different types
of machine learning models have been applied to the data
collected by the sensors, and in the present work we have
chosen the Random Forest model [49]. This method has been
successfully used by other authors for classification tasks of
electronic noses [50], [51], [52], [53], [54] or in other sensor
array data [55], [56].

Random Forest is one of the most popular machine learning
algorithms used for classification tasks and belongs to the
ensemble model group. It is based on the creation of a large
number of decision tree models, each of them trained on a
subset of the dataset and a subset of modeling features. These
individual decision tree models are trained independently and
the average of their results is used as the output of the Ran-
dom Forest model. The ensemble estimator usually results in
much better model performance than any of the individual
models because its variance is reduced. Prediction accuracy
is improved and the Random Forest model is less prone to
overfitting.

The Random Forest models used in this analysis offer
several important advantages. Since during Random Forest
training the individual decision tree models are fit using a
subset of the entire training data set, the remaining portion of
the data can be used to estimate model performance. The so-
called out-of-bag score (OOB) can be calculated as the model
classification accuracy based on the observations that were
not used to fit the decision tree. The score calculated from
each tree is then averaged and used as a fair estimate of model
performance. The advantage of such an approach is that fewer
computations are required and the model can be tested while
it is trained. The OOB score is similar to the commonly used
cross-validation method for estimating the performance of
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classification models. The OOB score converges to the leave-
one-out cross-validation score [57].

An interesting output of the random forest model is the
ranking of the predictive performance of the modeling fea-
tures [58]. In this context, the measure of mean decrease in
impurity [49] can be used. This measure is defined for a given
feature as the sum of the weighted impurity decreases for
all decision tree nodes where the feature is used in a split,
averaged over all trees in the forest.

VI. RESULTS AND DISCUSSION

A. SENSOR RESPONSE

As described earlier, the electronic nose is based on analyzing
the response of the sensors to the voltage drop across the
sensor heater, when the sensor is placed in the environment
of the measured gas. In Fig. 4 we plot the collected data,
where the voltage measured for each sensor is normalized by
the voltage measured a moment before the voltage drop. The
measurements for the different sample categories are shown
in different colors. There are distinct patterns in the response
of the sensors that can be used to distinguish between the
volatiles emitted in the three cases studied. It is also inter-
esting to note that among the patterns in the six types of
sensors used, only the TGS 2612 and TGS 2630 sensors
behave almost identically in all measurements. The results
acquired by these two sensors were not analyzed further, since
they cannot be used for the classification and detection of the
samples studied.

At the end of the measurement period, when the heating
voltage was decreased, only the response of sensors TGS
2602 and TGS 2611 was close to a stable value. For these
and the other sensors, the response was still in the transi-
tion region, and as can be seen, the slope of the last part of
the recorded response shows a linear behavior that can be
used for a reliable calculation of the response slope. Vari-
ability between responses of the same sample category was
observed, which is related to the variability of biological sam-
ples, variations in external measurement conditions such as
temperature or humidity, and measurement errors.

B. MODELLING FEATURES

As described in Section V-A, we extracted several features
from each sensor response curve acquired during the mea-
surement of a sample. These features sufficiently represent
the collected data and should allow us to find patterns that
distinguish the categories of samples. In Fig. 5 we show in
the form of a box-plot diagram the distribution of features
grouped by three categories of samples. The presented fea-
tures were extracted from the first step of the sensor heating
voltage drop (0.3 V). However, features from two other steps
were also used for the analysis, as described in the following
sections.

As one can see, different features allow discrimination
between samples. To avoid relying solely on visual inspection
and to confirm that these patterns were statistically signifi-
cant, we calculated the p value using Tukey’s HSD (honestly

VOLUME 10, 2022

1.0 T T T T

v b b d
b d

| LALLRLRRAS LR

TTT

TTTT T T T T T T T T T T I T T T T T TTTTT

B b d Bu

TTTTTTTTTTTT1]

[NEENE RRRRRRRERS

T FRRRRTTET A

2
©
T

d

N9 3 3
© = E
N 3 3
0.8 —i —2
0 10 20 30 40 50 0 10 20 30 40 50
Sensor read Sensor read
I Medium I Phytopthora I Fusarium

FIGURE 4. The sensor responses during the first step of the heater voltage
modulation are shown as normalized U/Us, where the normalization is
due to the sensor response at the time just before the heater voltage
drops. The sensor type is indicated on the Y-axis in the subfigures. The
different types of samples measured are indicated by the line color. The
x-axis is shown in read events of the sensor response, counted from the
beginning of the voltage modulation step, with events lasting 0.75 s.

significant difference) test. The pairs of groups for which the
p value is < 0.05 are marked in the figure.

Interestingly, different patterns can be observed when look-
ing at Fig. 5. For example, looking at the features extracted
from the TGS 2610 sensor data, it is possible to distinguish
between Fusarium and two other categories if we use the
feature SEnd, but this feature does not allow us to distinguish
between Phytophthora and medium samples. Other features
extracted from this sensor allow us to distinguish between
medium and other samples, but not between infested samples.
This results in the ability to distinguish between all sample
categories by extracting at least two features from the data
collected by this sensor. We mention here the example of the
TGS 2610 sensor because, as we will show in the following
sections, the data acquired by this sensor exhibited the best
performance in terms of classification accuracy.

C. PRINCIPAL COMPONENT ANALYSIS

As shown in the previous section, the distributions of the
extracted modeling features differ significantly among the
three categories of samples considered. The data presented
above also show very similar behavior for different features
either extracted using different techniques or obtained from
data collected by different sensors. Further insight can be
gained by using more advanced data visualization techniques
and plotting the data after transforming the modeling features
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FIGURE 5. Distribution of classification features extracted from sensor response curves, starting with
the first stage of heater voltage drop (0.3 V). The definition of the feature types given above the
subimages can be found in the Table 2. The different categories of samples are indicated by colors:
Fusarium (blue), Phytophthora (red), medium (green). The size of the feature is not important, only the
relative differences in the distribution are important, so the values on the y-axis are shown without
units. Category pairs where the difference is significant at the < 0.05 level are marked above the bars.

into a lower dimensional space using the Principal Compo-
nent Analysis method.

Fig. 6 shows the distribution of data points in the coordinate
system of the two principal components resulting from the
transformation of all features extracted from the three applied
levels of heater sensor voltage drops. Notice that, as it can be
observed, these principal components together contain 86%
of the total variability in the data. What can be also noticed,
there is no perfect linear separation of the clusters, even when
the different categories of samples are clustered together. The
clusters overlap, especially in the case where we consider
the separation between the Medium and Fusarium categories.
However, it should be noted that a clearer separation of cat-
egories is possible when more dimensions of the data are
included. Also, more flexible machine learning classification
models can perform better than linear separation.

D. MACHINE LEARNING MODELING
As shown in section VI-B, the features extracted from
the sensor response curves differ significantly for different
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categories of samples studied. However, the statistical test
checks the difference in the mean and is calculated for a
single feature. In this section, we present the results of the
multivariable analysis using the Random Forest classification
technique.

1) CLASSIFICATION ACCURACY

In Fig. 7, we compared the performance of several classifi-
cation models trained on different sets of modeling features,
with the goal of assessing whether there are ways to reduce
the sensor array to a smaller number of sensors or reduce the
time of data collection without significantly decreasing the
classification accuracy.

Fig. 7(a) shows the comparison of the classification per-
formance for the case when the models were trained with the
data from only one sensor and for the case when the modeling
features were extracted from the data from all sensors. The
results in this figure show that the models trained with the
data from all sensors gave the best classification performance,
while the models trained with the data from only one sensor
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FIGURE 6. Distribution of data points in a coordinate system of the two
principal components. PCA analysis transformed all features extracted
from the sensor response curves of the three levels of heater voltage
drop. The fraction of variance captured by the principal component is
indicated in the axis labels. Three types of sample categories are
indicated by colors and symbols.

TGS 2610 and TGS 2611 showed almost the same perfor-
mance. This suggests that reducing the number of sensors
used is feasible. We will return to the task of selection of
sensors in Section VI-D3.

In Fig. 7, we compared the performance results of the
classification models to test the hypothesis of whether it is
possible to reduce the data collection time by using features
extracted from less than three steps of the heating sensor drop.
Notice that, as it can be observed the performance is very
similar when we use data from only one step compared to
the performance the model achieves with all data collected.
In these calculations, we used data from all sensors. This
result may indicate that we can only use data from one step
of the heater voltage drop.

Another analysis we would like to present is to examine
which step of the voltage drop should be chosen preferen-
tially. In Fig. 8, we show a comparison of the performance
of the models when they were trained only with features
obtained from a single sensor data, and during a single voltage
drop of the heating power. The performance of the models
trained with single sensor data and features obtained from
three steps of the heater voltage drop is also shown in the
same subfigures. As it can be observed, the best performance
was obtained for models trained with data extracted from the
—0.3 V heater voltage drop response. This pattern is consis-
tent for all sensors except the TGS 2611, but even in this case
the difference in model performance between the —0.3 and
—0.6 voltage drop cases is very small. The best model perfor-
mance was also obtained for the cases modeling data from the
TGS 2603 and TGS 2610 sensors. In these cases, the models
with data collected during the —0.3 V voltage drop achieved
performance close to that of the models based on data from
the three heating voltage drops considered.
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single stage of heater voltage drop compared to the model using all
features. Data from all sensors were used for modeling.

In our opinion, there is an additional argument for choosing
the stage with the lowest heater voltage drop (0.3 V). This
depth of modulation results in the least disturbance in the
operation of the sensors and should be preferred since the
time to reach a steady state should be the shortest. Also,
that allows for avoiding sensor operation at low heater tem-
perature, at which gas composition does not influence the
electrical resistance.

2) RELATIVE IMPORTANCE OF MODELING FEATURES

An interesting output of the Random Forest classification
model is the ranking of the importance of the modeling fea-
tures. Fig. 9 shows such data for the models based on fea-
tures extracted from data from a single sensor and the -0.3 V
voltage drop of the sensor heater. An interesting observation
for the TGS 2610 sensor is that the most important feature is
SEnd (the slope of the sensor response curve at the end of
the observation range). For other sensors, SEnd is also often
the most important feature identified by the Random Forest
model. This may indicate that the observation time necessary
to differentiate between the studied sample categories cannot
be reduced to a much shorter period, as it is necessary to
achieve the region of the sensor response where the linear
slope is detected after the minimum value is reached.
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(-0.3 V). The sensor type is specified in the subframes.

3) SENSOR ARRAY SELECTION

As can be seen in Fig. 8, the best performing classification
model achieved 92% accuracy using data collected with a
single sensor (TGS 2610) and a single heater voltage drop
(—0.3 V). Moreover, we can see in this figure that the addition
of other features extracted from the data collected by this
sensor did not improve the classification performance. On the
other hand, the results presented in Fig. 7 show that by fusing
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FIGURE 10. Out of bag score (accuracy) of Random Forest classification
models. Comparison of models trained with data from different number
of sensors. The best model with the given number of sensors was
selected. The data were extracted from the response curves of the
sensors during the first stage of the heater voltage drop (0.3 V). The lists
of sensors are given in the bars.

the data from multiple sensors, we were able to improve the
classification accuracy up to 95%.

We trained a series of Random Forest models with the goal
of the optimization of the electronic nose sensors. In this task
we chose to use only data collected during the first step of
the heater voltage drop (0.3 V). In addition to the previously
presented models based on data collected from a single sen-
sor, we evaluated the models based on all combinations of
two, three, etc. sensors evaluated. For each number of sensors,
we selected the model with the best performance and the
results are shown in Fig. 10. As it can be noticed, merging
the data from the TGS 2610 and TGS 2602 sensors resulted in
a much better classification accuracy of nearly 97%. Adding
data from additional sensors may slightly improve the esti-
mated performance, but in our opinion the electronic nose
with two sensors is sufficient.

Vil. COMPARISON WITH OTHER RESULTS
Our results can be compared to other reports for the cases
when measurements and classification of similar types of
samples were reported. Lebanska et al. [59] used PEN3 com-
mercial electronic nose for detection of Fusarium basal rot
infection in onions and shallots and reached classification
accuracy up to 89.6%. In our previous research, we inves-
tigated the possibility of recognition of similar pathogenic
fungi and oomycetes species. We reported [14] accuracy of
classification between Pythium intermedium and Phytoph-
thora plurivora of 90%. Previously reported [15] accuracy
of recognition between medium, Fusarium oxysporum and
Rhizoctonia solani reached 78%. These results were obtained
employing low-cost electronic noses based on the same types
of Figaro Inc. sensors but without applying dynamic heater
temperature modulation.

Another comparison can be made with results of other
research, in which electronic noses, based on the same opera-
tion principle of sensors heater temperature modulation, were
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used. Hosseini-Golgoo et al. [18] applied stairs-like modula-
tion between 1 and 5 V and reported classification accuracy
up to 96.27% for differentiation between samples of pure
gases like methanol, ethanol, and other. Oates et al. [25]
used sinusoidally heated sensors to differentiate between
oil samples and reached accuracies up to 93.75%. Another
application [26] of a similar device allowed to reach accu-
racy up to 94.43% for differentiation between various food-
stuffs. He et al. [27] applied sensors temperature modulation
with varying frequency to recognize gases such as hydrogen,
methane, carbon monoxide, and benzene and obtained an
accuracy of 84.5-98.5% depending on the machine learning
model. Amini et al. [21] investigated recognition of various
concentrations of methanol using rectangular modulation of
various heights, starting from a relatively low voltage of 2 V
and reaching an accuracy of 92%. Iwata et al. [31] used mod-
ulation with various frequencies and amplitude for recogni-
tion between acetone, ethanol, and butyl acetate and reported
accuracy up to 98.8%.

These results demonstrate that when similar odor samples
were measured with electronic noses, the reported devices
showed less accurate performance without sensor heater volt-
age modulation. But with such modulation, the performance
of classification may be improved. When we compare with
other results obtained with devices applying various patterns
of sensor temperature modulation, our results exhibit a simi-
lar level of classification performance.

VIIl. SUMMARY

One of the most important seedling diseases in conifer nurs-
eries is root rot, which causes seedlings to fall over and
die. It is also known as “‘damping off.” There are many
pathogens, including Phytophthora oomycetes and Fusarium
fungi, responsible for this disease. Distinguishing between
oomycete and fungal infestation is very important in order
to choose an appropriate treatment, as fungicides are often
class specific, and can control certain groups of fungi and not
oomycetes or vice-versa, and the application of inappropriate
chemicals usually only masks disease symptoms.

A low-cost electronic nose with MOX sensors from Figaro
Inc. TGS sensors was constructed. The proposed device is
based on an analysis of the measurement of the resistance
of the sensors (expressed as measured voltage) during the
modulation of the heating voltage of the sensors. The choice
of such a mode of operation could be suitable for the construc-
tion of low-cost electronic nose devices used for continuous
monitoring, for example, in the storage of seeds when they
are infested with pathogens. Such a design does not require
a sophisticated pneumatic system to supply clean air to the
sensors, and does not require a precise and abrupt change in
the environment of the sensors from clean air to the gas being
measured.

A rectangular profile of voltage modulation was applied,
with voltage drop steps of —0.3,-0.6, and —0.9 V, starting from
the level of nominal heater voltage of 5 V. Unlike in other
reported constructions of electronic noses, we decided to use
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sensor modulation at the heater voltage range close to the
sensor nominal operating conditions. We also used relatively
shallow modulation magnitude, which shows faster opera-
tion and especially faster sensor accommodation to changes
in environmental conditions. In addition, small change of
the sensor’s heater voltage, starting from the nominal one
(shallow modulation) allows for avoiding sensor opera-
tion at lower temperatures, where their resistance does not
depend on the composition of the gas in which the sensor is
immersed.

Experiments with measurements were performed on
samples of pathogenic fungi - Fusarium oxysporum and
oomycetes - Phytophthora plurivora cultured on classical
PDA agar media, with the aim of using the collected sensor
responses to discriminate between sample categories.

Five types of features describing the obtained curves were
extracted from the sensor responses and used for further anal-
ysis. The Principal Component Analysis method was used
after transforming the modeling features for data visualiza-
tion. Random Forest machine learning models were trained
with the data and the out-of-bag score was used as a mea-
sure of the performance of the models, which corresponds to
the accuracy of classification between three categories under
study.

It was found that the rectangular step of the heater voltage
drop by —0.3 V from the nominal voltage of 5 V allowed col-
lection of data that gave the best classification performance.
The analysis also allowed us to estimate the time (duration of
the rectangular heater voltage modulation steps) necessary to
collect the data required for sample classification.

The fusion of the data collected by the two sensors, TGS
2610 and TGS 2602, was the optimal configuration of the
electronic nose sensor array, which allowed a classification
accuracy of 97%. This result is very promising as the obtained
accuracy is higher than in the case of our previous construc-
tions of low-cost electronic noses without dynamic sensors
temperature modulation.
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