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ABSTRACT The presence of forest tree pathogens may lead to substantial problems and their early detection
during seed storage or in nurseries may be critical for the choice of appropriate management strategy. A new
construction of a low-cost electronic nose was tested on the samples of pathogenic fungi and oomycetes of
Fusarium oxysporum and Phytopthora plurivora. The electronic nose uses Figaro Inc. TGS series sensors
with applied heater voltage modulation. Such a mode of electronic nose operation may be more appropriate
for application for constant monitoring of seeds storage, when we compare it to the method making use of
modulation of the gas concentration. A rectangular shape of the sensors’ heater voltage modulation pattern,
with a shallow drop of the heater voltage from the nominal voltage, was proposed. Data visualization using
the principal component analysis method and the random forest machine learning technique was used to
build classification models. A classification accuracy of 97% was obtained by a fusion of data collected by
TGS 2610 and TGS 2602 sensors.

12 INDEX TERMS Electronic nose, odor classification, VOC, volatile organic compounds, fungi, oomycetes.

I. INTRODUCTION13

A main motivation for conducting the research is the tran-14

sition of crop protection in Europe from chemical pest con-15

trol to integrated pest management (IPM), in which physical16

and biological methods play an important role. In this situa-17

tion, new tools are needed to support this strategy to ensure18

expected yields while improving environmental quality. One19

such innovative direction is the use of scents to identify insect20

pests and pathogens. Detection of odours can be done by21

different techniques of chemical analysis of gases. First of22

all, most information can be obtained by classical chemi-23

cal analysis techniques, including gas chromatography-mass24

spectrometry. This approach provides the most objective and25

reliable identification of individual chemical components and26

their relative concentrations. However, due to the significant27

cost of equipment and the need for highly skilled personnel,28

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan Zhang .

this method is usually limited to applications under laboratory 29

conditions. 30

The concept of the electronic nose is to use a series of 31

nonspecific gas sensors [1], [2], [3]. In this approach, the 32

individual chemical components of the measured gas are not 33

identified; instead, odors are classified and recognized using 34

pattern recognition techniques supported by machine learn- 35

ing algorithms. 36

Several applications for electronic noses have been pro- 37

posed, focusing on forestry and agriculture [4], [5], [6], 38

[7], [8], [9]. In addition, applications for fungal species 39

detection and identification have recently been explored by 40

Mota et al. [10]. 41

Gas sensors based on various physical phenomena can 42

be used to construct electronic noses, such as electro- 43

chemical [11], gravimetric [12], optical [13]. However, 44

when simple, low-cost devices are proposed, they are usu- 45

ally based on commercially available metal oxide (MOX) 46

sensors. 47
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In this research, we describe a low-cost electronic nose48

recently constructed in our laboratory. Unlike the previously49

reported constructions from our lab [14], [15], which were50

based on the same types of Figaro Inc. MOX type gas sensors,51

the new electronic nose applies a method of sensor heater52

modulation.53

Multiple research groups reported electronic nose con-54

structions based on such a principle of sensors operation.55

Numerous papers report new sensors construction, but also56

there is a large body of research, in which commercially avail-57

able sensors were used. From the perspective of the electronic58

nose construction, an important aspect is the choice of the59

pattern of the sensor heater modulation profile.60

Huang et al. [16] used a rectangular shape of of 20 mHz61

modulation applied to a single SnO2 sensor for detection of62

organic VOC. Hosseini-Golgoo et al. [17], [18], [19] investi-63

gated a staircase-like mounting profile from 1 to 5 V. Similar64

modulation profile was used by Liu et al. [20] in p-type NiO65

sensor. Sensors’ response to increasing heater voltage by rect-66

angular steps of various high was studied by Amini et al. [21]67

andGosangi andGutierrez-Osuna [22]. A rectangular heating68

voltage profile with a constant high but varying base voltage69

level was applied by Hossein-Babaei and Amini [23] in a70

low-cost, tin oxide-based, generic gas sensor. Yin et al. [24]71

applied triangular saw teeth-likemodulation of TGS 2602 and72

TGS 2620 sensors. Oates et al. [25] presented a low-cost73

electronic nose with sinusoidally heated standard commer-74

cially available sensors for the classification of oil types, and75

recently [26] demonstrated application to basic detection of76

different foodstuffs. He et al. [27] applied a spike-like pattern77

with a modulated frequency of spikes during the measure-78

ment procedure. A triangular modulation profile was used79

by Krivetskiy et al. [28]. Yuan et al. [29] used triangle and80

rectangle-like profiles, with baseline at low sensor tempera-81

ture conditions. Zhao et al. [30] applied rectangular tempera-82

ture modulation to SnO2 sensor for the detection of toxic and83

flammable gases. Iwata et al. [31] proposed to usemodulation84

profile with amplitude and frequency periodically changed.85

Vergara et al. [32] reviewed optimized feature extraction for86

temperature-modulated gas sensors.87

In most of the cases of reported constructions of low-cost88

electronic noses, theMOX sensors usedwere not designed for89

operation in the temperature modulation mode. Furthermore,90

most of the research applied modulation on the temperature91

on a wide scale, reaching regions far from the nominal sen-92

sor working conditions. In addition, in most of the research,93

multiple periods of the modulation were applied and used for94

gas recognition. In our research, we report investigations of95

the possibility to use only one period of modulation with a96

relatively small change of the sensor heater voltage, close to97

its nominal working conditions.98

The new electronic nose, presented in this manuscript, was99

applied to classify measured samples of fungi and oomycetes100

and differentiate them from non infested medium.101

To achieve the above objectives, data visualization using102

principal component analysis and random forest technique103

of machine learning was used to build classification models 104

showing the best classification accuracy of the modeling fea- 105

tures based on the data extracted from the sensors. Different 106

subsets of the data used for classification were tested to opti- 107

mize the list of sensors in the electronic nose sensor array 108

and the depth of the voltage modulation profile of the sensor 109

heating. 110

II. MOTIVATION FOR DETECTION OF PATHOGENIC FUNGI 111

AND OOMYCETES 112

As international trade in plants and plant materials increases, 113

the accidental introduction of insects or pathogens into new 114

areas becomes a serious problem. Their spread can lead to 115

forest health problems at a very early stage, such as damage 116

to plants in forest nurseries, resulting in a significant reduc- 117

tion in the number of seedlings and economic losses. One 118

of the most frequently observed problems is caused by the 119

pathogens of the so-called ‘‘damping-off seedlings disease’’. 120

Damping-off is a disease that causes death of germinating 121

seeds and young seedlings, especially in forest nurseries [33]. 122

This disease is caused by several organisms, such as: fungi 123

Fusarium,Rhizoctonia,Cylindrocarpon, and oomycetesPhy- 124

tophthora and Pythium. In Poland the genera Fusarium and 125

Phytophthora represent the most numerous pathogens in for- 126

est nurseries. Their pathogenic soil-borne strains are among 127

the most harmful microorganisms in the world due to their 128

potential adaptability. They cause root rot, tuber blight and 129

wilt [34], [35]. Pathogenic strains of the fungal species F. 130

oxysporum particularly affect seedlings of coniferous species 131

in nurseries. The most commonly observed symptoms are 132

needle wilt and, in some cases, small root and stem rots. 133

Seedlings lose their fine roots (in which case they are easily 134

pulled out of the ground) or fall over due to infected stem tis- 135

sue, which is usually damaged near the ground. The pathogen 136

moves upwards from the roots to the stems and hinders water 137

uptake, gradually clogging the xylem tissue, which leads to 138

wilting of the plant, yellowing of the needles and death. 139

Pathogenic oomycetes of the genus Phytophthora pose 140

an even threat to plants. When these organisms destroy the 141

fine roots (< 2 mm), the plants die quickly. If the seedlings 142

are raised in a water regime suitable for them, they often 143

do not show disease symptoms (are asymptomatic), and 144

chlamydospores are formed in the rhizosphere of the soil, 145

which become active only when the plants are planted in 146

moist habitats. Since they do not show external signs of 147

disease, visual selection of seedlings is not effective, and 148

the problem is shifted from the nursery to the forest planta- 149

tion. Molecular diagnostic tests conducted in many countries 150

have shown that infestation of plants prepared for planting in 151

nurseries in Europe is high, sometimes reaching 80% [36]. 152

In addition, fungicides are intended to control fungi, not 153

oomycetes. Thus, if used improperly, they only mask the 154

disease, which is usually the case in nurseries. Therefore, it is 155

critical to identify the organisms that foresters and arborists 156

are dealing with there, and accurate and rapid analysis with 157

e-nose would be very useful for this purpose. Currently, the 158
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recomended method for detecting oomycetes in soil is the159

baiting using plant material [37]. The currently recommended160

method for detecting oomycetes in soil is baiting with plant161

material [37]. In this approach, the organisms sought grow162

on oak, beech, or rhododendron leaves as bait, and the163

infected leaf pieces are usually placed on selective media164

(e.g., PARP) [38]. This approach requires several days, if not165

weeks, to obtain pure cultures of pathogens that can be identi-166

fied by classical (microscopic) or molecular (DNA sequenc-167

ing) methods. From an economic perspective, forestry and168

ornamental nurseries need to develop a rapid method for169

detecting pathogens that primarily cause damping-off dis-170

ease. Early detection can help to take action to reduce the171

loss of regeneration material due to the negative effects of the172

pathogens.173

III. ELECTRONIC NOSE174

A. GAS DETECTION USING MOX SENSORS175

Let us briefly recall the main components of a MOX-type176

gas sensor and its operation principle. The sensing material,177

typically tin dioxide, is heated by the built-in electric heater,178

usually made of platinum, up to the temperature of a few179

hundred Celsius degrees. In the conditions of clear air, oxy-180

gen is absorbed on the surface of the sensing element and181

attracts donor electrons, which prevents electric current flow.182

In the presence of reducing gases, oxygen reacts with the gas183

molecules and that reaction decreases the surface density of184

adsorbed oxygen. Electrons are released from the surface into185

the sensing material and that allows the electric current to186

flow. That means that the sensor temperature significantly187

influences the physical processes responsible for the sensor188

operating principle. A MOX gas sensor operating at different189

temperatures may have different response characteristics to190

measured gases [15] and exhibits different sensitivity and191

selectivity to various chemical components.192

A physical property measured in MOX sensors is their193

resistance in the presence of the considered gas sample. How-194

ever, the absolute value of themeasured resistance is not used,195

but its value in proportion to the resistance in the clean air196

conditions. It is a known property of this type of sensor that197

the measured magnitude of the sensor response exhibits drifts198

over time and that requires that the sensor baseline resis-199

tance (resistance in clear air) should be measured just before200

each measurement of the studied odor sample. As an output201

value from the electronic nose sensor array, one can use the202

stationary value of sensors resistance obtained after a suffi-203

ciently transient response after a change of gas conditions.204

However, more sensitivity and selectivity can be achieved,205

when one uses the whole sensor response characteristics cap-206

tured during changes in the measured gas condition: firstly207

from clean air to the measured odor sample (adsorption)208

and then back to the clear air (desorption). That approach209

exploits transient sensors response regions and allow odors210

discrimination using responses of even one sensor [23], [39],211

[40], [41], [42]. However, that approach also requires that the212

changes in the measured gas conditions should be abrupt and213

FIGURE 1. Experimental setup of Petri dish with the measured sample
and the low-cost electronic nose inside the laminar flow cabinet,
connected to the laptop controlling the operation and collecting data.

repeatable [43]. That requires advanced designs of sensor 214

array chamber [44] and precise pneumatic gas supply. 215

Another approach is to capture sensor resistance character- 216

istics while sensor temperature is modulated. That approach 217

allows the construction of a simpler low-cost electronic nose 218

as it doesn’t require as precise and advanced pneumatic 219

modulation of the supplied gas. Modulation of the sensor 220

temperature with the required time profile is much eas- 221

ier to achieve by a relatively simple electronic circuit. The 222

modulation is performed when the sensor already reached 223

the stationary state in the presence of the measured gas 224

conditions. 225

An important aspect of the construction of the electronic 226

nose based on heater temperature modulation is the choice 227

of the modulation profile. Various approaches were proposed 228

in this domain. As we reviewed in the Introduction section, 229

patterns or modulation such as sinusoidal, stair-like, or rect- 230

angular were demonstrated. Furthermore, most researchers 231

investigated cases when the sensors heater voltage explores a 232

wide range. Also in most cases, it was demonstrated that mul- 233

tiple periods of modulation were used to collect data required 234

for sample classification. In some cases also variation or tun- 235

ing of modulation frequency was required. 236

B. ELECTRONIC NOSE CONSTRUCTION 237

The described in this manuscript electronic nose device 238

(PW7) is an improved version of previously used and 239

described devices PW4 [14] and PW6 [15]. The whole exper- 240

imental setup is presented in Fig. 1. 241

The PW7 electronic nose is designed as low-cost equip- 242

ment to detect smells emitted by various types of fungus. 243

Each construction of an electronic nose consists of two main 244

parts: the sensors probe and the main electronic unit con- 245

nected to the computer. The probe is the round aluminum 246

block in which the sensors are placed. Similar to earlier 247

devices we used various types of metal oxide sensors made 248

by Figaro co., Japan. The sensor types are listed in Table 1. 249

Additionally, there were also placed HIH 4031 humidity sen- 250

sor (Honeywell, Charlotte, NC, USA) and LM35 temperature 251

sensor (Texas Instruments, Austin, TX, USA). 252
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The improvement of the PW7 device, compared to our253

previous constructions, is the ability to modulate the sensors’254

heater voltage. This leads to modulation of the operation255

temperature of the sensors. The changes could be made in256

every single sensor reading cycle from 0 to 7 V with a step of257

30 mV. The main unit has wires to connect with the sensors258

probe, a USB cable to connect with the computer, and a 12 V259

DC power supply. The complete schema of the device can be260

seen in Fig. 2. As one can see, it can be made at a relatively261

low cost as the most expensive parts of the device are the262

sensors themselves. This voltage is divided into two separate263

circuits. One of them is stabilized 5 V, which provides energy264

for most electronic parts and the sensors’ readings. The other265

is adjustable and stabilized voltage that powers up sensors’266

heaters. The core of the PW7 enose device is the ATmega267

328P-PU microcontroller. It controls all the communication268

between the computer and sensors. The measurements from269

the sensors are read using a multiplexer one by one with a270

delay of a few milliseconds, so we can assume that they are271

in the same moment. All readings are sent to a computer and272

archived in a text file that can be easily worked out.273

Additionally to the electronic nose, we prepared simple274

equipment to clean reference air during baseline measure-275

ments and between measurements. This simple construc-276

tion consists of a rotary vane pump (Thomas G6/01-K-LCL,277

Gardner Denver), a 5 V DC power supply, a self-made active278

charcoal filter, and a set of tubes with a diffuser. It helps to279

clean up sensors quicker and provide more stable baseline280

readings.281

C. SENSOR HEATER VOLTAGE MODULATION PROFILE282

In Section III-A we reviewed several proposed patterns of283

sensor heater modulation. In many cases, they rely on signifi-284

cant changes in voltage allowing them to exploit a wide range285

of sensor response characteristics in various temperatures.286

Also, often the exploited response relies on voltage increase287

from a very low voltage base level. That leads to heater con-288

ditions, which are usually far from the nominal operating289

temperature, for which the sensors were originally designed.290

When the sensors are operating at low temperatures, the gas291

molecules are adsorbed at the porous gas sensing layer. Their292

presence cannot be used to gas identified by the measure-293

ments of average electrical characteristics such as resistance,294

but only by the application of the fluctuation enhance sensing295

methods [45], [46]. That may suggest, that rather operation296

and modulation at higher heater voltages could give better297

results of gas recognition. In our approach, we decided to298

use relatively shallow heater voltagemodulation in conditions299

close to the ones recommended by the sensors’ manufacturer.300

The profile of the modulation is presented in Fig. 3(a).301

IV. MEASURED SAMPLES302

A. SAMPLES PREPARATION303

Strains of both pathogens were isolated in a forest nursery304

from pedunculate oaks (Quercus robur) with visible symp-305

toms of damping-off. The isolated organisms were stored306

TABLE 1. List of sensor models used in the PW7 electronic nose device
and target odors and gases.

in the Forest Protection Department of the Forest Research 307

Institute in Sękocin Stary (Poland). Two organisms Phy- 308

tophthora plurivora and Fusarium oxysporum as the most 309

frequently responsible for the occurrence of damping-off 310

symptoms in Polish forest nurseries were selected for detailed 311

analysis [33]. The pathogen isolates were cultured on clas- 312

sical PDA agar media (20 g dextrose, 15 g agar, 4 g potato 313

starch, and 1 L distilled water) in 9 cm Petri dishes. They 314

were kept at room temperature until the mycelium completely 315

covered the surface of the dishes. 316

B. MEASUREMENT PROCEDURES 317

From the point of view of the person making the measure- 318

ments, the procedure for the odor measurements was very 319

similar to that used in our previous experiments [14], [15]. 320

The whole experiment lasted two weeks, and during this 321

time we had 7 days of measurements. In total, we prepared 322

six Petri dishes for each category of samples. One set of three 323

dishes of each category was used during the first week of 324

the experiment. Since the samples could be contaminated by 325

other species, another set of dishes was used in the second 326

week of the experiment. Each Petri dish was measured only 327

once per day. Since the fungal and oomycete samples were 328
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FIGURE 2. The electronic circuit diagram of the PW7 low-cost electronic nose.

living organisms, they varied daily and so did the composition329

of the volatiles emitted by the samples. The order of sam-330

ple measurements was randomly selected at the beginning of331

each day.332

The sensors were preheated in clean air at a nominal volt-333

age of 5 V at least seven days before the experiment, as rec-334

ommended by the manufacturer. During the two weeks of335

the experiment, they were kept in clean air with a power336

supply. During the experiment, controlled conditions were337

maintained with a constant temperature of 20 ◦C and humid-338

ity of 20%. The measurement was performed in a laminar339

flow cabin.340

The operation of the electronic nose device was performed341

manually. One measurement procedure lasted 15 minutes342

and during this time 1200 readings of the sensor resistance343

were recorded. Fig. 3(a) shows an example of a sensor curve344

acquired during one cycle of sample measurement. The mea-345

sured quantity is the voltage read from the resistor, which346

represents the sensor resistance. According to the sensorman-347

ufacturer’s specification, the quantity that should be used is348

not the sensor resistance, but its magnitude relative to the349

resistance measured under clear air conditions. Thus, if volt-350

age is the primary measurable it corresponds to U/U0, where351

U is the voltage measured at the given time and U0 is the352

base value. After starting the measurement, the electronic353

nose was still kept in clean air during the 200 sensor readings 354

to ensure that the sensors response was flat, which means 355

that they already recovered to the baseline and were not 356

contaminated by residues from the previous measurement. 357

Then, the sensor array was placed over a Petri dish containing 358

the measured sample. It was waited for 100 measurements 359

(1 minute 15 seconds) and during this time the resistance of 360

the sensors reached a steady state. At this moment modu- 361

lation the heating voltage of the sensors started, with three 362

rectangular steps with a length of 50 sensor readings started 363

and a different modulation depth, as schematically shown in 364

Fig. 3(a). For the voltage modulation steps of voltage drop 365

steps of –0.3, –0.6, and –0.9 V, each from the nominal heater 366

voltage of 5 V were applied. After the temperature modu- 367

lation, the sensor array was manually moved to clean air, 368

where the residues of themeasured gas could be desorbed, the 369

sensors were cleaned and prepared for the next measurement 370

process. 371

V. DATA ANALYSIS TECHNIQUES 372

The data preparation, statistical analysis, and machine learn- 373

ing models presented in this manuscript were performed 374

using computer codes developed in the Python 3.8 language. 375

The statsmodels package [47] was used for statistical tests 376

and scikit-learn package [48] for machine learning modeling. 377
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FIGURE 3. Schematic representation of the sensor response during
measurement (a) and explanation of the extracted classification features
(b). The dashed rectangular in Figure (a) represents the period presented
in Figure (b). The time when sensors are placed in clear air and measured
gas, and the pattern of sensor heater voltage characteristics are
schematically represented in Figure (a). The x-axis is represented by
sensor response read number, where one read takes 0.75 s.
In Figure (a) the y-axis is the measured voltage relative to the baseline
voltage in clean air U/U0, in Figure (b) the y-axis is represented the
measured voltage relative to the voltage at the moment just before the
heater voltage drop U/Us. The definition of modeling features presented
schematically in Figure (b) is described in Table 2.

A. FEATURES EXTRACTED FROM SENSOR RESPONSE378

CURVES379

In Fig. 3(b), a portion of the sensor response curve taken380

during one step of the heater voltage drop is shown. The381

quantity used in the analysis is the voltage relative to its382

magnitude just before the voltage drop U/Us. This means383

that the output voltage measured under clean air conditions384

is not needed for the analysis. The sensor response curve385

contains 100 data points, and only five features describing386

the curve are extracted for further analysis. This allows the387

dimensionality of the problem to be significantly reduced.388

The definition of these features is shown schematically in the389

figure and listed in Table 2. The selected types of features390

allow to capture the behavior of the response curve in the391

different time domains and to reduce the influence of the392

instantaneous data fluctuations.393

B. PRINCIPAL COMPONENT ANALYSIS394

A common practice in analyzing multidimensional data is395

to project it into a low-dimensional space. Such transformed396

data can be used as input for further analysis or for visual-397

ization purposes to understand patterns in the distribution of398

data points for the case under study. The Principal Compo-399

nent Analysis (PCA) the commonly used statistical technique400

was used for this task. One of the advantages of the PCA401

TABLE 2. The list of types of modeling features extracted from the sensor
response curve, for each step of the sensor heating voltage drop.

transformation is an intuitive interpretation, as the rotation 402

of the coordinate system, which gives the new coordinates 403

in order of the amount of variability captured from the data 404

set. We used as input for the PCA transformation all features 405

extracted from the response curves of the sensors. Since the 406

input features represent non-comparable quantities expressed 407

in different units and have different ranges of values, we used 408

initial normalization of the input dataset to equal variance. 409

In our analysis, the PCA method was used only to visualize 410

the patterns of the data points in the two-dimensional space 411

of the two main principal components. 412

C. RANDOM FOREST MACHINE LEARNING MODELS 413

One goal of the electronic nose measurements is to apply 414

the collected data to create classification models that are able 415

to discriminate between the samples studied. Different types 416

of machine learning models have been applied to the data 417

collected by the sensors, and in the present work we have 418

chosen the Random Forest model [49]. This method has been 419

successfully used by other authors for classification tasks of 420

electronic noses [50], [51], [52], [53], [54] or in other sensor 421

array data [55], [56]. 422

RandomForest is one of themost popularmachine learning 423

algorithms used for classification tasks and belongs to the 424

ensemble model group. It is based on the creation of a large 425

number of decision tree models, each of them trained on a 426

subset of the dataset and a subset of modeling features. These 427

individual decision tree models are trained independently and 428

the average of their results is used as the output of the Ran- 429

dom Forest model. The ensemble estimator usually results in 430

much better model performance than any of the individual 431

models because its variance is reduced. Prediction accuracy 432

is improved and the Random Forest model is less prone to 433

overfitting. 434

The Random Forest models used in this analysis offer 435

several important advantages. Since during Random Forest 436

training the individual decision tree models are fit using a 437

subset of the entire training data set, the remaining portion of 438

the data can be used to estimate model performance. The so- 439

called out-of-bag score (OOB) can be calculated as the model 440

classification accuracy based on the observations that were 441

not used to fit the decision tree. The score calculated from 442

each tree is then averaged and used as a fair estimate of model 443

performance. The advantage of such an approach is that fewer 444

computations are required and the model can be tested while 445

it is trained. The OOB score is similar to the commonly used 446

cross-validation method for estimating the performance of 447
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classification models. The OOB score converges to the leave-448

one-out cross-validation score [57].449

An interesting output of the random forest model is the450

ranking of the predictive performance of the modeling fea-451

tures [58]. In this context, the measure of mean decrease in452

impurity [49] can be used. This measure is defined for a given453

feature as the sum of the weighted impurity decreases for454

all decision tree nodes where the feature is used in a split,455

averaged over all trees in the forest.456

VI. RESULTS AND DISCUSSION457

A. SENSOR RESPONSE458

As described earlier, the electronic nose is based on analyzing459

the response of the sensors to the voltage drop across the460

sensor heater, when the sensor is placed in the environment461

of the measured gas. In Fig. 4 we plot the collected data,462

where the voltage measured for each sensor is normalized by463

the voltage measured a moment before the voltage drop. The464

measurements for the different sample categories are shown465

in different colors. There are distinct patterns in the response466

of the sensors that can be used to distinguish between the467

volatiles emitted in the three cases studied. It is also inter-468

esting to note that among the patterns in the six types of469

sensors used, only the TGS 2612 and TGS 2630 sensors470

behave almost identically in all measurements. The results471

acquired by these two sensors were not analyzed further, since472

they cannot be used for the classification and detection of the473

samples studied.474

At the end of the measurement period, when the heating475

voltage was decreased, only the response of sensors TGS476

2602 and TGS 2611 was close to a stable value. For these477

and the other sensors, the response was still in the transi-478

tion region, and as can be seen, the slope of the last part of479

the recorded response shows a linear behavior that can be480

used for a reliable calculation of the response slope. Vari-481

ability between responses of the same sample category was482

observed, which is related to the variability of biological sam-483

ples, variations in external measurement conditions such as484

temperature or humidity, and measurement errors.485

B. MODELLING FEATURES486

As described in Section V-A, we extracted several features487

from each sensor response curve acquired during the mea-488

surement of a sample. These features sufficiently represent489

the collected data and should allow us to find patterns that490

distinguish the categories of samples. In Fig. 5 we show in491

the form of a box-plot diagram the distribution of features492

grouped by three categories of samples. The presented fea-493

tures were extracted from the first step of the sensor heating494

voltage drop (–0.3 V). However, features from two other steps495

were also used for the analysis, as described in the following496

sections.497

As one can see, different features allow discrimination498

between samples. To avoid relying solely on visual inspection499

and to confirm that these patterns were statistically signifi-500

cant, we calculated the p value using Tukey’s HSD (honestly501

FIGURE 4. The sensor responses during the first step of the heater voltage
modulation are shown as normalized U/Us, where the normalization is
due to the sensor response at the time just before the heater voltage
drops. The sensor type is indicated on the Y-axis in the subfigures. The
different types of samples measured are indicated by the line color. The
x-axis is shown in read events of the sensor response, counted from the
beginning of the voltage modulation step, with events lasting 0.75 s.

significant difference) test. The pairs of groups for which the 502

p value is < 0.05 are marked in the figure. 503

Interestingly, different patterns can be observedwhen look- 504

ing at Fig. 5. For example, looking at the features extracted 505

from the TGS 2610 sensor data, it is possible to distinguish 506

between Fusarium and two other categories if we use the 507

feature SEnd, but this feature does not allow us to distinguish 508

between Phytophthora and medium samples. Other features 509

extracted from this sensor allow us to distinguish between 510

medium and other samples, but not between infested samples. 511

This results in the ability to distinguish between all sample 512

categories by extracting at least two features from the data 513

collected by this sensor. We mention here the example of the 514

TGS 2610 sensor because, as we will show in the following 515

sections, the data acquired by this sensor exhibited the best 516

performance in terms of classification accuracy. 517

C. PRINCIPAL COMPONENT ANALYSIS 518

As shown in the previous section, the distributions of the 519

extracted modeling features differ significantly among the 520

three categories of samples considered. The data presented 521

above also show very similar behavior for different features 522

either extracted using different techniques or obtained from 523

data collected by different sensors. Further insight can be 524

gained by using more advanced data visualization techniques 525

and plotting the data after transforming the modeling features 526
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FIGURE 5. Distribution of classification features extracted from sensor response curves, starting with
the first stage of heater voltage drop (–0.3 V). The definition of the feature types given above the
subimages can be found in the Table 2. The different categories of samples are indicated by colors:
Fusarium (blue), Phytophthora (red), medium (green). The size of the feature is not important, only the
relative differences in the distribution are important, so the values on the y-axis are shown without
units. Category pairs where the difference is significant at the < 0.05 level are marked above the bars.

into a lower dimensional space using the Principal Compo-527

nent Analysis method.528

Fig. 6 shows the distribution of data points in the coordinate529

system of the two principal components resulting from the530

transformation of all features extracted from the three applied531

levels of heater sensor voltage drops. Notice that, as it can be532

observed, these principal components together contain 86%533

of the total variability in the data. What can be also noticed,534

there is no perfect linear separation of the clusters, even when535

the different categories of samples are clustered together. The536

clusters overlap, especially in the case where we consider537

the separation between theMedium and Fusarium categories.538

However, it should be noted that a clearer separation of cat-539

egories is possible when more dimensions of the data are540

included. Also, more flexible machine learning classification541

models can perform better than linear separation.542

D. MACHINE LEARNING MODELING543

As shown in section VI-B, the features extracted from544

the sensor response curves differ significantly for different545

categories of samples studied. However, the statistical test 546

checks the difference in the mean and is calculated for a 547

single feature. In this section, we present the results of the 548

multivariable analysis using the Random Forest classification 549

technique. 550

1) CLASSIFICATION ACCURACY 551

In Fig. 7, we compared the performance of several classifi- 552

cation models trained on different sets of modeling features, 553

with the goal of assessing whether there are ways to reduce 554

the sensor array to a smaller number of sensors or reduce the 555

time of data collection without significantly decreasing the 556

classification accuracy. 557

Fig. 7(a) shows the comparison of the classification per- 558

formance for the case when the models were trained with the 559

data from only one sensor and for the case when the modeling 560

features were extracted from the data from all sensors. The 561

results in this figure show that the models trained with the 562

data from all sensors gave the best classification performance, 563

while the models trained with the data from only one sensor 564
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FIGURE 6. Distribution of data points in a coordinate system of the two
principal components. PCA analysis transformed all features extracted
from the sensor response curves of the three levels of heater voltage
drop. The fraction of variance captured by the principal component is
indicated in the axis labels. Three types of sample categories are
indicated by colors and symbols.

TGS 2610 and TGS 2611 showed almost the same perfor-565

mance. This suggests that reducing the number of sensors566

used is feasible. We will return to the task of selection of567

sensors in Section VI-D3.568

In Fig. 7, we compared the performance results of the569

classification models to test the hypothesis of whether it is570

possible to reduce the data collection time by using features571

extracted from less than three steps of the heating sensor drop.572

Notice that, as it can be observed the performance is very573

similar when we use data from only one step compared to574

the performance the model achieves with all data collected.575

In these calculations, we used data from all sensors. This576

result may indicate that we can only use data from one step577

of the heater voltage drop.578

Another analysis we would like to present is to examine579

which step of the voltage drop should be chosen preferen-580

tially. In Fig. 8, we show a comparison of the performance581

of the models when they were trained only with features582

obtained from a single sensor data, and during a single voltage583

drop of the heating power. The performance of the models584

trained with single sensor data and features obtained from585

three steps of the heater voltage drop is also shown in the586

same subfigures. As it can be observed, the best performance587

was obtained for models trained with data extracted from the588

−0.3 V heater voltage drop response. This pattern is consis-589

tent for all sensors except the TGS 2611, but even in this case590

the difference in model performance between the −0.3 and591

−0.6 voltage drop cases is very small. The best model perfor-592

mance was also obtained for the cases modeling data from the593

TGS 2603 and TGS 2610 sensors. In these cases, the models594

with data collected during the –0.3 V voltage drop achieved595

performance close to that of the models based on data from596

the three heating voltage drops considered.597

FIGURE 7. Out of bag score (accuracy) of Random Forest classification
models. (a) - Models using data from a single sensor compared to the
model using data from all sensors. Features are extracted from three
levels of heater voltage drop. (b) - Models with features extracted from a
single stage of heater voltage drop compared to the model using all
features. Data from all sensors were used for modeling.

In our opinion, there is an additional argument for choosing 598

the stage with the lowest heater voltage drop (–0.3 V). This 599

depth of modulation results in the least disturbance in the 600

operation of the sensors and should be preferred since the 601

time to reach a steady state should be the shortest. Also, 602

that allows for avoiding sensor operation at low heater tem- 603

perature, at which gas composition does not influence the 604

electrical resistance. 605

2) RELATIVE IMPORTANCE OF MODELING FEATURES 606

An interesting output of the Random Forest classification 607

model is the ranking of the importance of the modeling fea- 608

tures. Fig. 9 shows such data for the models based on fea- 609

tures extracted from data from a single sensor and the –0.3 V 610

voltage drop of the sensor heater. An interesting observation 611

for the TGS 2610 sensor is that the most important feature is 612

SEnd (the slope of the sensor response curve at the end of 613

the observation range). For other sensors, SEnd is also often 614

the most important feature identified by the Random Forest 615

model. This may indicate that the observation time necessary 616

to differentiate between the studied sample categories cannot 617

be reduced to a much shorter period, as it is necessary to 618

achieve the region of the sensor response where the linear 619

slope is detected after the minimum value is reached. 620
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FIGURE 8. Out of bag score (accuracy) of Random Forest classification
models. Models that use data from a single stage of heater voltage drop
compared to models that use features from all stages. Model uses data
from a single sensor, sensor type is specified in the subframes.

FIGURE 9. Ranking of importance of modeling features expressed as
mean decrease in contamination extracted by the Random Forest model.
The classification models were trained using features extracted from data
from a single sensor from the first stage of the heater voltage drop
(–0.3 V). The sensor type is specified in the subframes.

3) SENSOR ARRAY SELECTION621

As can be seen in Fig. 8, the best performing classification622

model achieved 92% accuracy using data collected with a623

single sensor (TGS 2610) and a single heater voltage drop624

(−0.3 V).Moreover, we can see in this figure that the addition625

of other features extracted from the data collected by this626

sensor did not improve the classification performance. On the627

other hand, the results presented in Fig. 7 show that by fusing628

FIGURE 10. Out of bag score (accuracy) of Random Forest classification
models. Comparison of models trained with data from different number
of sensors. The best model with the given number of sensors was
selected. The data were extracted from the response curves of the
sensors during the first stage of the heater voltage drop (–0.3 V). The lists
of sensors are given in the bars.

the data from multiple sensors, we were able to improve the 629

classification accuracy up to 95%. 630

We trained a series of Random Forest models with the goal 631

of the optimization of the electronic nose sensors. In this task 632

we chose to use only data collected during the first step of 633

the heater voltage drop (–0.3 V). In addition to the previously 634

presented models based on data collected from a single sen- 635

sor, we evaluated the models based on all combinations of 636

two, three, etc. sensors evaluated. For each number of sensors, 637

we selected the model with the best performance and the 638

results are shown in Fig. 10. As it can be noticed, merging 639

the data from the TGS 2610 and TGS 2602 sensors resulted in 640

a much better classification accuracy of nearly 97%. Adding 641

data from additional sensors may slightly improve the esti- 642

mated performance, but in our opinion the electronic nose 643

with two sensors is sufficient. 644

VII. COMPARISON WITH OTHER RESULTS 645

Our results can be compared to other reports for the cases 646

when measurements and classification of similar types of 647

samples were reported. Lebanska et al. [59] used PEN3 com- 648

mercial electronic nose for detection of Fusarium basal rot 649

infection in onions and shallots and reached classification 650

accuracy up to 89.6%. In our previous research, we inves- 651

tigated the possibility of recognition of similar pathogenic 652

fungi and oomycetes species. We reported [14] accuracy of 653

classification between Pythium intermedium and Phytoph- 654

thora plurivora of 90%. Previously reported [15] accuracy 655

of recognition between medium, Fusarium oxysporum and 656

Rhizoctonia solani reached 78%. These results were obtained 657

employing low-cost electronic noses based on the same types 658

of Figaro Inc. sensors but without applying dynamic heater 659

temperature modulation. 660

Another comparison can be made with results of other 661

research, in which electronic noses, based on the same opera- 662

tion principle of sensors heater temperature modulation, were 663
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used. Hosseini-Golgoo et al. [18] applied stairs-like modula-664

tion between 1 and 5 V and reported classification accuracy665

up to 96.27% for differentiation between samples of pure666

gases like methanol, ethanol, and other. Oates et al. [25]667

used sinusoidally heated sensors to differentiate between668

oil samples and reached accuracies up to 93.75%. Another669

application [26] of a similar device allowed to reach accu-670

racy up to 94.43% for differentiation between various food-671

stuffs. He et al. [27] applied sensors temperature modulation672

with varying frequency to recognize gases such as hydrogen,673

methane, carbon monoxide, and benzene and obtained an674

accuracy of 84.5-98.5% depending on the machine learning675

model. Amini et al. [21] investigated recognition of various676

concentrations of methanol using rectangular modulation of677

various heights, starting from a relatively low voltage of 2 V678

and reaching an accuracy of 92%. Iwata et al. [31] used mod-679

ulation with various frequencies and amplitude for recogni-680

tion between acetone, ethanol, and butyl acetate and reported681

accuracy up to 98.8%.682

These results demonstrate that when similar odor samples683

were measured with electronic noses, the reported devices684

showed less accurate performance without sensor heater volt-685

age modulation. But with such modulation, the performance686

of classification may be improved. When we compare with687

other results obtained with devices applying various patterns688

of sensor temperature modulation, our results exhibit a simi-689

lar level of classification performance.690

VIII. SUMMARY691

One of the most important seedling diseases in conifer nurs-692

eries is root rot, which causes seedlings to fall over and693

die. It is also known as ‘‘damping off.’’ There are many694

pathogens, including Phytophthora oomycetes and Fusarium695

fungi, responsible for this disease. Distinguishing between696

oomycete and fungal infestation is very important in order697

to choose an appropriate treatment, as fungicides are often698

class specific, and can control certain groups of fungi and not699

oomycetes or vice-versa, and the application of inappropriate700

chemicals usually only masks disease symptoms.701

A low-cost electronic nose with MOX sensors from Figaro702

Inc. TGS sensors was constructed. The proposed device is703

based on an analysis of the measurement of the resistance704

of the sensors (expressed as measured voltage) during the705

modulation of the heating voltage of the sensors. The choice706

of such amode of operation could be suitable for the construc-707

tion of low-cost electronic nose devices used for continuous708

monitoring, for example, in the storage of seeds when they709

are infested with pathogens. Such a design does not require710

a sophisticated pneumatic system to supply clean air to the711

sensors, and does not require a precise and abrupt change in712

the environment of the sensors from clean air to the gas being713

measured.714

A rectangular profile of voltage modulation was applied,715

with voltage drop steps of –0.3, –0.6, and –0.9V, starting from716

the level of nominal heater voltage of 5 V. Unlike in other717

reported constructions of electronic noses, we decided to use718

sensor modulation at the heater voltage range close to the 719

sensor nominal operating conditions. We also used relatively 720

shallow modulation magnitude, which shows faster opera- 721

tion and especially faster sensor accommodation to changes 722

in environmental conditions. In addition, small change of 723

the sensor’s heater voltage, starting from the nominal one 724

(shallow modulation) allows for avoiding sensor opera- 725

tion at lower temperatures, where their resistance does not 726

depend on the composition of the gas in which the sensor is 727

immersed. 728

Experiments with measurements were performed on 729

samples of pathogenic fungi - Fusarium oxysporum and 730

oomycetes - Phytophthora plurivora cultured on classical 731

PDA agar media, with the aim of using the collected sensor 732

responses to discriminate between sample categories. 733

Five types of features describing the obtained curves were 734

extracted from the sensor responses and used for further anal- 735

ysis. The Principal Component Analysis method was used 736

after transforming the modeling features for data visualiza- 737

tion. Random Forest machine learning models were trained 738

with the data and the out-of-bag score was used as a mea- 739

sure of the performance of the models, which corresponds to 740

the accuracy of classification between three categories under 741

study. 742

It was found that the rectangular step of the heater voltage 743

drop by –0.3 V from the nominal voltage of 5 V allowed col- 744

lection of data that gave the best classification performance. 745

The analysis also allowed us to estimate the time (duration of 746

the rectangular heater voltage modulation steps) necessary to 747

collect the data required for sample classification. 748

The fusion of the data collected by the two sensors, TGS 749

2610 and TGS 2602, was the optimal configuration of the 750

electronic nose sensor array, which allowed a classification 751

accuracy of 97%. This result is very promising as the obtained 752

accuracy is higher than in the case of our previous construc- 753

tions of low-cost electronic noses without dynamic sensors 754

temperature modulation. 755
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