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ABSTRACT Efficient energy in the wireless sensor networks (WSNs) is a critical issue because sensor
nodes are equipped with one-time or low-energy batteries. In these networks, efficient energy saving methods
involve clustering network nodes to avoid long-distance communications with base stations (BS) to conserve
their energy over a long period of time and extend their lifetimes. In other words, the choice of cluster heads
(CHs) to improve routing and energy efficiency plays a central role in extending the network lifetime. This
study proposes a new central cluster algorithm based on an improved genetic algorithm (EGA) that finds
appropriate numbers of CHs in networks. This enhancement concerns about the application of two new
crossover methods: Whole Arithmetic Crossover (WOX), and Local Crossover (LX) methods. This study
explored the impact of the two aforementioned crossover methods on WSN energy efficiency and the effect of
applying the scaled fitness function on network lifetime. For evaluation, we conducted a comparison between
the crossover methods WOX and LX with three crossover methods; Simple Arithmetic Crossover (SMX),
Single Arithmetic Crossover (SNX), and Discrete Crossover (DX) considering fitness scaling or without
fitness scaling to identify the method that influences energy consumption. The results were then compared
with the Low Energy Adaptive Clustering Hierarchy protocol (LEACH). All the simulation experiments were
performed in MATLAB. The simulation results reveal that WOX and SNX with a scaled fitness function lead
to a longer network lifetime by selecting CHs with longer lifetimes than the SMX, DX and LX methods. As a
result, the proposed method exhibited better performance in terms of the power consumption and throughput
rate.

INDEX TERMS Fitness-scaling, genetic algorithm (GA), local crossover (LX), whole arithmetic crossover
(WOX), wireless sensor network (WSN).

I. INTRODUCTION

The history of Wireless Sensor Networks (WSNs) usage has
begun in the military and defense industries. This type of
network has a wide range of applications owing to its afford-
ability and multi-functionality. These WSNs have adaptable
applications such as a real-time volcano warning system,
which is used for high-risk and dangerous environmental
monitoring. [1], monitoring enemy territory [2], healthcare
systems [3] and the Intelligence Traffic Management System
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(ITMS) [4]. For such applications, several sensor networks
(SNs) and a set of Base stations (BSs) are required to achieve
the required mission. In general, WSN must be able to operate
autonomously for extended periods of time in the majority of
their applications.

One of the main advantages of WSN is that they can
operate in high-risk environments, especially in humans, such
as active volcanos and earthquakes. However, the deployment
of thousands of low-cost SN gives these sensing applications
new advantages such as reducing the cost of nodes, improving
network accuracy and reliability, and extending the scope of
the sensor.
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Furthermore, constraints on the size and cost of SNs gener-
ally lead to constraints on resources such as energy, memory,
computational speed, and the network bandwidth needed to
make resource use very efficient. WSN plays an important
role in energy and life, and the main barrier to WSN applica-
tions is the threat of restricted energy resources.

SN are usually equipped with one-time batteries, most of
which are low-energy [6]. Furthermore, in most applications
of WSN:ss, it is often infeasible or very difficult to recharge or
replace the batteries attached to SNs once they are deployed.
Therefore, the energy efficiency of such networks is crucial.
In a WSN, the energy is consumed during data sensing,
processing, and transmission. However, a node consumes
almost 90% of the overall energy used in communications [7].
Therefore, the design and development of an energy-efficient
routing protocol are the main goals for prolonging the lifetime
of a WSN and improving its performance.

Energy-efficient, routing-based clustering is important to
improve the lifetime of a WSN by virtue of clustering
advantages, data aggregation or fusion, and CH selection
techniques. LEACH is the main clustering-based, energy-
efficient, distributed routing protocol that is commonly used
by researchers to analyze, modify, and extend clustering rout-
ing protocols and compare their performance.

Many researchers have investigated ways to improve net-
work lifetime through energy-efficient routing designs. How-
ever, the design of an energy-efficient routing algorithm for
WSN is essentially an optimization problem. Several stud-
ies on energy consumption in WSN have been carried out
using metaheuristic algorithms, as in [8], to present a survey
that focuses on energy consumption in WSN and can guide
researchers in term of energy efficiency.

Consequently, this study developed and presented a new
centralized cluster algorithm based on the application of an
enhanced genetic algorithm (CCA-EGA) to ensure that the
network has an adequate CH to improve the efficiency of
WSN energy. The major contributions of this study can be
summarized as follows:

o Applying real coding in Genetic Algorithm (GA) based
on the proposed clustering technique (CCA-EGA) to
develop a more energy-efficient routing algorithm than
that obtained from a binary representation.

o Developing a fitness-scaling function that facilitates
highly energy-efficient routing for WSN.

« Examining the potential of several crossover operators
to improve the GA’s ability to find better solutions than
the current solution.

« The ability of fitness scaling to improve the convergence
efficiency of the genetic solution is greater than that of
the traditional approach.

The remainder of this paper is organized as follows: Section II
reviews previous related studies, and Section III presents the
proposed GA for WSN clustering. Section IV analyses and
discusses the experimental results of the GA for WSN cluster-
ing. Finally, Section V presents the conclusions of this study.
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Il. RELATED WORK

Several routing protocols have been developed for WSNs.
The main criteria for the performance and quality of these
protocols, and for differentiating between them are data col-
lection efficiency, resource consumption reduction, and net-
work lifetime maximization.

The Low-Energy Adaptive Clustering Hierarchy (LEACH)
protocol is the first, basic, energy-efficient routing protocol in
cluster-based routing protocols. It was developed by Heinzel-
man in 2000 [9]. This was the pioneering protocols. This
is the first protocol that applies a clustering technique for
cost-effective energy management in WSNs. LEACH uses
randomized rotation of the CHs such that the high-energy
squandering caused by the communication of the WSNs with
the BS is circularized to all sensor nodes in the network.
Consequently, node selects CH by selecting a random number
T between zero and one. In any round, the node classified as a
CH is determined to be the node whose random number is less
than a threshold value, which is calculated according to (1):

— P _ ifheG
1—p<rm0d%) (1)
0, Otherwise

T ) =

where p is the desired percentage of the CH nodes of the
sensor population, In other words, it is the probability that
a node is selected as a CH. For example, p = 0.05, r denotes
the current or existing round number and G is the set of nodes
that have not been CH in the previous 1/p rounds. Thus, the
number of nodes in G is compared to T(n). If the number of
the node is less than the threshold value T(n), then the node
defines itself as a CH.

The LEACH protocol, as in [10], has some deficiencies
in term of energy consumption and network lifetime, which
prompted researchers to investigate its enhancement. One of
these shortcomings is that the criterion for the selection of
CHs in LEACH is not evenly positioned across the network,
because the CHs are selected in this protocol based on the
principle of probability. Consequently, during certain rounds,
the selected CHs may be concentrated in a part or area of the
network. Thus, LEACH randomly selects CHs. The amount
of residual energy in the selected CH is not considered. This
causes an imbalance in the energy load, which means that
the nodes with low energy have the same likelihood of being
selected as CHs, unlike nodes with high residual energy.

From another perspective, the distance factor is not consid-
ered in LEACH when selecting CHs. In general, the higher
the distance between the CH and BS, the higher the energy
consumption. Therefore, LEACH is unsuitable for large net-
works. When the BS is located far away, this leads to more
energy consumption because the LEACH protocol assumes
that all SNs can communicate with each other and that they
have the ability to reach the BS, irrespective of where it
is situated. Furthermore, in LEACH, the BS has no control
over CH selection. This negatively affects the residual energy
through the wastage of a large amount of energy if the CH
is located far away from the BS. Moreover, a BS usually
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possesses high capabilities that should be utilized to assist
in the routing process as much as possible. Furthermore,
the failure of a CH sharply reduces the robustness of the
network. The LEACH protocol uses dynamic clustering after
the completion of each round, which results in extra overhead,
that is, periodic changes in CH that adversely affect network
performance by increasing energy consumption [11].

Therefore, it is necessary to prevent the rapid death of CHs,
which mainly affects network lifetime [12]. In addition, there
is a need to periodically change the CHs for each round in a
specific manner to ensure a long network lifetime. However,
optimal CHs can reduce energy consumption and extend the
network lifetime. Subsequently, proposed CCA-EGA aims to
identify and select the optimum CHs in terms of enhancing
energy consumption and elongating the lifetime of the net-
work, taking into account the residual energy, which plays a
significant role in enduring the CHs.

Several researchers have focused in their works on
improving the energy efficiencies of WSNs. For example,
Heinzelman et al. [9] proposed one of the first and most
popular standard clustering techniques, LEACH, and applied
it to SNs. It is a dynamic, self-adaptive, probabilistic, and
single-hop protocol. This protocol essentially forms clus-
ters, and CH selection is based on weighted probability.
The LEACH protocol employs distributed (or noncentralized)
clustering method. The running process of the LEACH pro-
tocol depends on the round, which each round is divided
into two phases. The first phase is the set-up phase, where
the second phase is the steady-state phase. The main aim of
the LEACH protocol is to distribute the energy load evenly
among all sensor nodes in the network, elongate the network
lifetime, and use data aggregation or fusion to compress
data.

Heinzelman et al. [13] developed a Centralized Low
Energy Adaptive Clustering Hierarchy (LEACH-C) protocol.
The classical LEACH protocol applies a distributed clus-
tering method to produce clusters and selects the CHs for
the network through the nodes themselves. However, the
LEACH-C protocol applies a centralized clustering method
that sets the BS as a coordinator to organize the produced
clusters and CH selection. The operation of the LEACH-C
protocol was standardized in a manner similar to that the
original LEACH protocol. The two protocols progress in two
phases: set-up phase and steady-state phase. However, fun-
damentally, the set-up phase in LEACH-C is different from
that in LEACH whereas the steady-state phase is the same as
the set-up phase in the original LEACH protocol. During the
set-up phase, at the beginning of each round of the LEACH-C
protocol, each sensor node sends essential information about
its residual energy and current location to the remote BS.
After the BS receives the essential information from all the
sensor nodes, the LEACH-C protocol calculates the average
node energy based only on energy and checks or identifies it
based on the following rules:

« A node whose energy is higher than the average energy

can qualify as CH.
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« A node whose energy is less than the average energy
is eliminated as a member node (MN) that cannot
be a CH.

Once the selected CHs and associated clusters are deter-
mined, the BS transmits a message containing the CH identi-
fier (ID) to each node in the network. If the ID of the CH of the
node matches its own ID and the other nodes are not selected
as CH, then this node will join the nearest CH according to the
CH identifier. Subsequently, nodes identified as CH are used
to collect data from cluster members using Time Division
Multiple Access (TDMA). The LEACH-C protocol was more
effective than the LEACH protocol alone. It has a longer
lifetime than the LEACH protocol. The LEACH-C protocol
exhibits a better performance owing to the CH distribution
across the network.

Liu and Ravishankar [14] developed an energy-efficient
adaptive cluster protocol depend on GA, called the LEACH-
Genetic Algorithm (LEACH-GA). It operates on the basis
of the principles of the LEACH protocol. It should be noted
that the original LEACH protocol requires the user to identify
the anticipated probability for CHs and employs a thresh-
old function to determine whether a node is a CH or not.
However, in the LEACH-GA protocol, the GA is used to
calculate and determine the optimal threshold probability of
clustering in WSNs. Consequently, the optimal value of CH
probability is assigned. The LEACH-GA protocol establishes
a third phase in addition to the set-up and steady-state phases
of the LEACH protocol. This phase was referred to as the
preparation phase. In principle, the LEACH-GA protocol
starts with the preparation phase, which is executed only
once. During the preparation phase, similar to the procedure
in the LEACH protocol, the nodes send information on their
locations, IDs, and the probability of being CHs to the BS.
After the messages are received by the BS, the GA is run to
compute the optimal probability value for the nodes to serve
as CHs and broadcasts this probability value to all the member
nodes using an advertisement message for these nodes to
be used in the formation of clusters in the following set-up
phase. The set-up and steady-state phases of this protocol
were similar to those of the LEACH protocol. The results
of the study by Liu and Ravishankar [14] support the idea
that the LEACH-GA protocol prolongs the lifetime of the
network over the lifetime obtained when the original LEACH
protocol is used, because it uses the optimal probability in the
formation of CHs. Although LEACH-GA improves the CH
threshold function, it does not consider the residual energy
that is the selection of the CH is performed randomly.

Tabatabaei [15] proposed a novel algorithm, called the
Social Spider Optimization (SSO) algorithm, for SN clus-
tering. The algorithm is based on the use of social spider
optimization and fuzzy logic to balance power consumption
in WSNs. In SSO algorithms, nodes mimic spider groups and
interact according to biological rules of a colony. Further-
more, the node is selected using fuzzy logic depended on
two measures: the battery level and depth. This algorithm
divides the energy consumption of clusters into intra- and
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inter-cluster electricity consumptions. In this protocol, the
nodes compete to become a CH based on the lasting power
and distance from the sinks. Nodes with higher power levels
and shorter distances from the sinks were selected as the
CHs. Nodes that were selected as CHs and those that were
not selected as CHs joined the nearest CH. In addition, this
protocol depends on the mobile sink because the nodes near
the fixed sink share multihop routes and data and are inte-
grated into the sink. In fact, these nodes tend to consume more
battery energy than other nodes in the network. To evaluate
the performance of the proposed protocol, a comparison was
made between the Dynamic Command Response and Reply
Protocol (DCRRP) and Novel Distributed Clustering Routing
Protocol (NODIC). The comparison results revealed tha the
proposed protocol has better performance in terms of power
consumption than the two aforementioned protocols.

Wang et al. [16] presented a novel trajectory scheduling
method that depends on the coverage of several mobility sinks
in large-scale WSNs, abbreviated as TSCR-M. TSCR-M
uses the Particle Swarm Optimization (PSO) heuristic algo-
rithm and GA. PSO was integrated with mutation operators
to search for optimal coverage-efficient parking positions.
GA was used to determine the movement direction of various
mobile sinks. In TSCR-M, all sensors prefer to use single-hop
communications within their transmission ranges to transfer
the monitored data to the mobile sink. In addition, mobile
sinks travel along the loops and stop only at parking posi-
tions for data collection. The simulation results verified the
efficiency of the TSCR-M method using the energy consump-
tion and network lifetime. Furthermore, researchers in [17]
employed PSO as an optimization algorithm combined with
the Cuckoo Search (CS) algorithm to design Multi-Objective
Optimization (MOO) algorithms for CH selection. Their
results revealed that through network division, energy con-
sumption was improved.

In [18] an improved LEACH protocol for mobile SNs
was proposed to extend the life of the network and reduce
packet loss through a fuzzy classification system called
LEACH-mobile-fuzzy (LEACH-MF). The hierarchical clus-
tering method combines various parameters with fuzzy logic
for the CH selection. In addition to the residual energy, during
CH selection, the speed of movement and break time (as
movement) are introduced as vague descriptions. Therefore,
the life cycle of the network is increased by balancing the
energy consumption between the nodes. In addition, package
loss is reduced by choosing more stable CHs with low mobil-
ity. The simulation results revealed that the LEACH-MF
method improves network life and packet loss and that it
is more efficient than other clustering algorithms such as
the cluster-based routing protocol for mobile sensor nodes
(CBR-mobile) and mobility-based clustering (MBC).

Alami et al. [19] proposed a novel scheme for an energy-
efficient adaptive clustering algorithm for mobile WSNis,
known as EEA. The proposed scheme offers a new form of
node association to minimize the distance for data commu-
nication in WSNs to improve the energy efficiency of these
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networks. After the random deployment of SN, cluster head
selection is performed based on the difference between the
SNs using a clustering method that considers their energy
levels. Thus, the energy problem associated with cluster for-
mation is solved. Furthermore, the EEA scheme binds sensor
nodes to the CH in a free-adaptive association mode such
as the backward mode. The transmission is eliminated and
the total communication distance through which the locally
collected data are traversed is minimized. Because the EFA
associated mode reduces the total distance between the WSN
data and messages, energy consumption is minimized and
network life is maximized. Simulations were performed using
100 nodes that were randomly distributed in a network area
of 100 x 100 m, where CCA-EGA was run on 600 nodes that
provided a high diversity of nodes in the network area.

Idrissi et al. [20] proposed a new routing technique called
optimal selection of a CH on the grid (OSCH-Gi). This
method divides the network into multiple grids, where the
CH of each grid is selected according to the residual energy
and distance to the BS. The simulation results show that
OSCH-Gi is more efficient in term of network lifetime and
energy consumption than the other cluster algorithms.

Moridi et al. [21] proposed a fault-tolerant, clustering-
based, multi-path algorithm (FTCM) that is based on a
hybrid, energy-efficient, distributed clustering method called
the HEED algorithm. The FTCM algorithm focuses on select-
ing a CH and backup node for each cluster to reduce the CH
error. The backup nodes monitor the performance of CHs and
store their data until they are delivered to their destination.
In the FTCM, three pathways connecting sources CH and
BS were identified. These routes are selected based on four
parameters: the number of hops, residual energy, speed of
spread, and reliability. According to the simulation results,
the FTCM improved the energy consumption, reduced the
end-to-end delay and packet loss rate, and increased the
amount of correct data in the network. However, these
researchers [21] did not discuss how to handle the connec-
tion and their method did not include a phase for routing
maintenance.

Hajipour and Barati [22] proposed an energy-efficient,
layered, routing protocol (EELRP) that divides the network
area into eight equal sections, where every section is produced
after performing a crossover between layers and sections.
Each section contained a set of nodes, and the most appro-
priate node was likely to receive data from other nodes.
Subsequently, every agent sends the aggregated information
to the agent in the lower section of the same sector until
the information arrives at the BS. The study results provide
evidence that the EELRP protocol improves network lifetime.

Barati and Naghibi [23] investigated the possibility of
reducing the power consumption by reducing the number
of packets exchanged in WSNs. This task was accom-
plished by applying Secure Hybrid Structure Data Aggre-
gation (SHSDA) based on tree and star topologies. In this
method, the network is divided into four equal parts, each
with a star structure. Each node transmits its data to a single
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parent. The BS then receives the data from the parent nodes
using a tree structure. Barati et al. [24], [25] adapted artificial
algorithms such as the Firefly algorithm (FA) and fuzzy logic
(FL) to achieve the goals of reduced energy consumption
and increased network lifetime. The method proposed in
[24] consists of three phases, where FA and FL are applied
in phases one and two, respectively. FA is used to cluster
the WSN, whereas FL is employed to discover the paths
between CHs by creating a primary path and backup path. The
primary path is used to transmit data to the BS under normal
conditions, whereas the backup path is used during failure of
the primary path. The last phase is intended to maintain the
network operation by restarting the route discovery process
in the case of path failure.

GA has been widely used with WSNs to improve network
lifetime [26], [27], [28], [29]. This reflects the significance
of GA in the elongation of the lifetime of the network and
the reduction in energy consumption. Researchers have also
developed fitness functions to enhance the performance of
these networks. The simulation results indicate that these
functions achieved their goals. For example, in [26], the
researcher applied a method called Genetic Algorithm Based
Energy Efficient Clusters (GABEEC). This method proceeds
in two phases: the set-up phase and the steady-state phase.
Once clusters are created in the set-up phase, they remain
static while the CHs change dynamically. In the steady-state
phase, all nodes begin to communicate with their CHs for data
aggregation. The data were then compressed and sent to the
BS. After completion of the two phases, the BS evaluates
the energy status of the CHs. If the CH energy is smaller
than the MN’s average energy, the CH is modified by select-
ing the MN with the highest residual energy. The GABEEC
method uses binary encoding with a roulette wheel selection
method with a random crossover point. Different parameters
were considered to formulate a fitness function to enhance
the network lifetime such as, the residual energy of the node,
the distance metric between the node and BS, the probability
of the node to become a CH, and the round in which the first
node dies, as in [25] and [29]. In GABEEC, three parameters
are considered in the fitness function: the first node dies
round, the last node dies round, and the distance between
clusters. The results of the evaluation showed that GABEEC
was more effective than conventional LEACH and extended
the network lifetime. However, the limitations of GABEEC
is CH rotations, which reduce efficiency because clusters do
not change during the WSN lifetime [27], [28].

Sabor et al. [29] applied a GA to develop a new pro-
tocol called the GA-based Energy-Efficient Adaptive Clus-
tering Hierarchy Protocol (GAEEP). This protocol focuses
on maximizing network lifetime by delaying the death of
the first node. The main GAEEP processes were similar to
those used in the LEACH protocol. In principle, the GAEEP
protocol applies a binary encoding. The fitness function,
however, is determined by several parameters, including the
total energy of all alive SN, the total dissipated energy of
all alive SN, and energy is dispersed in control packages of
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CH and MN. This algorithm incorporates the GA processes
of selection, crossover, and mutation into GAEEP to obtain
a solution that improves the stability of the network lifetime
over that provided by LEACH.

Ill. THE GENETIC ALGORITHM PROPOSED FOR WSN
CLUSTERING

Many cluster algorithms have been proposed to maximize
the WSN energy efficiency. In the clustering algorithm, all
nodes are organized within clusters where data transmission
is initiated from every node to the BS through a CH. However,
these protocols also have several limitations.

- the residual energy is not considered in CH selection.

- rotation of the CHs occurs, which negatively affects
energy efficiency, where the CHs do not change through-
out the lifetime of the WSN.

- In some protocols that apply GA, there is a need to
apply an appropriate fitness function and crossover to
maximize energy efficiency.

Considering the limitations of clustering algorithms, the
CCA-EGA algorithm considers the residual energy in the
selection of the CH. Furthermore, it employs a fitness func-
tion to improve the lifetime of the network. In addition, a node
located far away from the BS was utilized to increase network
robustness.

The algorithm proposed (CCA-EGA) in this study is a
clustering algorithm based on a GA as a centralized system
to utilize all BS operations. Therefore, the BS strives to
optimize cluster formation and CH selection processes based
on routing energy efficiently to cluster networks. Moreover,
GA procedures are used to enhance the CH selection and
network lifetime. This algorithm mainly takes into account
the dynamic re-clustering (or clustering) to configure routes
to prolng the lifetime of the network. In the CCA-EGA
algorithm, operations are separated into rounds similar to
the LEACH protocol. The setup phase includes CH selection
and cluster construction, and data transmission is included
in the steady-state phase. Although, the steady-state phase
of the CCA-EGA protocol is essentially equivalent to that of
LEACH, the setup phase differs from LEACH as it employs
a GA-based method to perform the required computations in
the BS to optimize the CH selection for each node to become
a CH.

1) THE SET-UP PHASE

The set-up phase can be referred to as the cluster-building
phase, which is the phase in which clusters are created and
a set of CHs is specified. This phase relies on a centralized
clustering method that provides the BS with computational
resources and unlimited power and storage. Furthermore,
a GA was applied to improve the cluster configurations in the
WSN. To the best of our knowledge, all existing clustering
protocols and algorithms have been designed in such a way
as to progressively re-cluster the configuration processes.
At the end of round r, the configuration (r+ 1) of the round
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was determined without considering the configuration of the
next round. This round-by-round re-clustering process cre-
ates local optimization problems. The set-up phase in the
CCA-EGA protocol differs from the set-up phases in all
existing clustering techniques in that the CCA-EGA protocol
performs clustering configurations for the entire network dur-
ing the first round of the set-up phase. This process consists
of two steps: clustering and information collection. Both steps
focus on selecting the optimal CH for the entire cluster. In the
information collection phase, network information is only
collected once. In other words, this step was performed only
once before the start of the first round. Each alive SN in the
network field sends information about the ID number and
location (i.e., distance), and the amount of energy to the BS
at the beginning of the network initialization. The clustering
step then begins, and the BS uses the information received to
run the central CH based on the GA and optimizes the selec-
tion of the CH depending on the design of the fitness function
and the overall life time of the network. When selecting the
CH, the Euclidean distance d (i, ) is utilized when calculating
the distance between nodes, and the distance between node
and BS is considered as in (2):

d (i) = /G =32 + (i — 3P @)

In this equation, variables (x;y;) and (x;,y;) represent the
cartesian coordinates of nodes i and j. GA begins by initial-
izing a randomly selected population of possible solutions.
Each population solution is represented by chromosomes
containing gene sequences. Each of these genes was assigned
to a CH in the WSN. The fitness function is then evaluated
for each population member in every solution to determine
its goodness. In every genetic iteration, the GA attempts to
improve the on-hand population through selection, crossover
and mutation operators. Subsequently, GA is operated to gen-
erate the next population and improve the lifetime of the net-
work. When the BS selects the optimal CH set to identify all
the cluster configurations, the first round transmits a message
defining cluster configuration (ADV_CONFIGURATION
message). This message contains the CH ID, each CH’s
associated MN, and TDMA calendar. In principle, the TDMA
schedule assigned by BS or each cluster member is pro-
portional to the cluster size. Thus, each node turns off its
radio to conserve energy. It only activates (ON) to transmit
data when it arrives at the TS. However, TDMA schedules
organize intra-group communications, thereby reducing the
interference of each group. After the clustering is completed,
the TDMA schedule is constructed and distributed, and the
steady-state phase begins. After the WSN’s first round ends,
and during the second round of the set-up phase, BS broad-
casts a message ADV_CONFIGURATION containing the
pre-defined configurations of the already calculated input
round. However, because large and small CHs drain network
energy, the percentage of “optimal” CHs is important and
must be considered carefully.
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The choice of the CHs is crucial for energy-efficient clus-
tering. The following section explains the procedure that
the GA employs to identify the best CHs sequence, which
significantly affect the network lifetime.

o Genetic algorithm encoding
In WSNs, the optimization of clustering and the reduction of
energy consumption using an energy-efficient routing algo-
rithm elongates the lifetime of the network. A Real Coded
Genetic Algorithm (RCGA) was used for this purpose instead
of integer or binary coding. Integer coding is suitable for non-
fractional numbers or values where this work depends on the
real (fractional) number. In addition, binary coding requires
mapping entire real values to be converted into binary code.
Furthermore, real coding is appropriate in this study for the
proposed crossover methods. Each solution represents the
specific length of the chromosome, each chromosome being
divided into several genes. A group of chromosomes is known
as a population. This represents a collection of feasible solu-
tions. In this representation, a chromosome is constructed as a
special sequence of allocated CHs selected from SNs where
the value of the gene within any chromosome specifies the
node ID (a unique identifier of 1 to n is a number of SNs in
a network.). The chromosome itself was divided into several
equal parts equivalent to the maximum number of iterations
(max ), €ach part of this chromosome contained a fixed set of
CHs used for a specific transmission iteration (percentage of
CHs). Fig. 1 shows the structure of the chromosome that used
in the proposed CCA-EGA protocol. The fixed length of each
chromosome is specified as in (3):

Chr penght = percentage of CHS X Fpax 3)

where rpax is the network’s maximum round count and
Chrengm is the length of the chromosome. The clustering
configurations are improved by allocating CHs in advance
for each cycle, which also eliminates the expenses associated
with periodic re-clustering. To demonstrate the representation
of a solution, consider a 100 sensor network with 500 trans-
mission cycles. Suppose that five nodes were selected as CHs
for each cycle (5%). Chrrengn can be calculated as 2,500
(50 x 50) genes. Each gene of a chromosome represents a CH
ID in a network. as shown in Fig. 1.

| | I |
CHs of 1y CHsofr, CHsofrs..... CHs of 1,4,

FIGURE 1. Chromosome structure.

In Fig. 1, nodes 1, 2, 3, 4, and 5 are the CHs in the first
round whereas nodes 9, 8, 6, 7, and 11 are the CHs in the
second round.

« Population Initialization
The populations were randomly initialized and stored in the
BS. Each possible solution has a fitness value assigned to
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it based on the fitness function calculations and is stored in
another vector matrix. In the beginning, during population
(Pop) initialization, the elementary, or starting, solutions have
to be smoothly pre-defined to form the population that is
mostly produced in a random manner, which consists of
randomly generated CH chromosomes. The size of the initial
population (i.e., the number of chromosomes) is important for
GA and is a pre-defined value. Population size is a critical
variable based on the nature of the problem under considera-
tion. A large Popsiz. will help to cover all points in the search
space, but this will lead to slow convergence. Conversely,
very small values of Popsi, result in fast convergence to
non-optimal solutions (premature convergence). To give all
variables a chance to be included, it is recommended that the
initial population be sufficiently large, which is determined
in this study to be 50 possible solutions.

« Fitness function
In a WSN, clustering and energy-efficient routing are nonde-
terministic, polynomial-time hardness (NP-Hard) problems.
As a result, CH selection for energy-efficient routing is
important for prolonging the life of the network and must
focus. Thus, the new fitness function f(x) plays a significant
role in increasing the useful life of a network. This is required
to evaluate the quality of member solutions (organized CHs).
The more appropriate the solution, the greater is the fitness
value. Furthermore, an elitism strategy contributes to the
preservation of the historically obtained elite chromosome,
which is expected to enhance the performance of the GA
in dynamic clustering. However, emphasis on transmission
distance is crucial because it has an important impact on
energy consumption, network life and data routing reliability.

The fitness function applied in this study was formulated
as in (4):

Ny = 0, de.ad node @
1, alive node

First, variable N j is used as an indicator of whether node i in
round j is alive or dead:

At a specific round as in (5):

g () =D Nij )
i=1

where g(i) represents the number of alive nodes in specific
(j) rounds, n is the number of nodes and i is the index of the
node.

The GA then maximizes the number of transmissions while
having a fraction of alive nodes. Each GA solution is gener-
ated to maximize the number of rounds, j, when a specific
number of alive nodes is recorded as shown in (6).

f(x) = max(j) V g(j) >= alive fraction*n (6)

Lastly, the fitness function is scaled as follows:

Scaling fitness function = 1/ (Rank(i))0.5

In the CCA-EGA protocol, users specify the wanted prob-
ability of CH, and use a threshold functions to determine

VOLUME 10, 2022

whether node become CH. The threshold was specified as
the percentage of alive nodes required before the transmission
was stopped.

o Selection

The selection is done to open the way to subsequent pairing
or crossover the selected chromosomes (CHs used as parent
chromosomes) to extract the current population. Basically,
the more suitable the chromosomes are, the greater their
probability of transmission to the next generation.

In the algorithm proposed in the present study (CCA-EGA),
the elitism and roulette wheel methods are used to evalu-
ate chromosomes to select those that can produce the next
generation. First, the elitism method was used to select 2%
of the chromosomes with the best-fit fitness value as elites
for propagation to the next generation. It is necessary to
protect a good solution from being lost so that it will be
incorporated into subsequent generations. Here, the selection
of elitism contributes to tracking the best solution obtained
in a given generation. In addition, we used the roulette wheel
method to generate other chromosomes for the next genera-
tion. However, the roulette-wheel strategy causes a premature
convergence problem of the GA, which sometimes results in
an incorrect optimal solution [30]. Therefore, we employed a
fitness scaling method to improve the performance of roulette
wheel selection in the GA. In the classical roulette wheel
method, the most fitting chromosome occupies the largest
section of the wheel, further increasing the probability of an
unfitting chromosome (i.e., least fitting) [30]. To address this
problem, many fitness scaling methods have been developed,
including linear, power, and exponential scaling [31]. The
scaling method adopted in the present study preserves the
population diversity by ensuring small differences between
members with small and large fitness value. The main objec-
tive of this method is to avoid destroying unfitting chromo-
somes early in the process, which may have reasonably good
characteristics.

o Crossover

Once the chromosomes selection process is completed, it is
based on the use of roulette wheels and elite. The selected
chromosomes are ready for crossover. In the GA, the decision
to complete crossover process depends on the probability of
crossover (Px) which usually lies between 0.5 and 1.0 [32].
In this study, Px equals 0.8 which indicates a high possibility
of crossover. However, the crossover process ensures that
genetic materials are exchanged between two members of the
population called the “‘parent chromosomes” (Pra and Prp),
and produces chromosomes that are probably better than the
parents chromosomes, inheriting the parents’ best character-
istics and producing new children (new solutions). However,
the selection of appropriate crossing operators should avoid
early GA convergence as far as possible.

In this study, two crossover operators were used based
on real parameters. These are Whole Arithmetic Crossover
(WOX), and Local Crossover (LX) operators. These two
crossover operators were compared with three crossover

93445



IEEE Access

W. Alsharafat et al.: New Crossover Methods and Fitness Scaling for Reducing Energy Consumption of WSNs

operators: the Simple Arithmetic Crossover (SMX) operator,
Single Arithmetic Crossover (SNX), and Discrete Crossover
(DX) operator which were used in [33] and [34]. These
operators determine distinct parameter values to represent O
— 1 random values, as described in [9]. However, these oper-
ators are not used with a real-parameter GA.

WOX is the most common operator that works by taking
the weighted sum with the same a« of the two parental gene
values for every gene [9] to produce a new child as in (7):

Chi™" = a x Pri™ + (1 —a) x Pri™ (7)

The LX operator uses the same equation as the WOX oper-
ator, except that the WOX operator selects the value of « at
random for every gene position [9].

« Mutation

A mutation process was implemented to ensure the popu-
lation genetic diversity by introducing random changes to
create new individuals. In general, mutation is carried out in
sequence after crossover, depending on the mutation prob-
ability (Pp). This probability represents the percentage of
genes with mutations. In general, GA has a Py, ranging from
0.001 to 0.05 [32]. High mutation rates interfere with evolu-
tionary processes, while low mutation rates do not produce
good changes.; thus, the value of Py, was determined to be
0.05. In the proposed CCA-EGA protocol, mutations are
carried out based on Pn by randomly changing the gene
values [1, n], where n is the ID of the network node.

o Termination process

Basically, when the GA reaches one or more termination
criteria, the algorithm stops the cycle and gives the best
chromosomes in the current population. In the current study,
the process was terminated when the maximum generation
number (Maxgen) was reached or when a generation reached
a pre-defined value (rmax)-

2) THE STEADY-STATE PHASE

The Steady- state phase typically begins after the setup phase
is completed. In the current study, the steady-state phase
was identical to that used in the LEACH protocol. It was
started once the clusters had been organized and the TDMA
schedule was fixed. Data transmission is controlled when
each node transmits the data sensing to the CH corresponding
to the TDMA plan received by the BS. After the CH receives
all the required data, each CH processes the aggregation of
the data received to discard redundant and uncorrelated data
and transmit a single-hop communication of consolidated or
fused data to the BS.

IV. EXPERIMENTAL RESULTS AND EVALUATION

A. SIMULATION SOFTWARE (MATLAB)

All GA-based cluster operations and simulations are per-
formed using MATLAB software installed on a laptop with
the following specifications: Intel Core i5 CPU (2.2GHz),
4.0 GB RAM and Windows 7 64-bit operating system.
MATLAB was used because it has several toolboxes for
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modeling and simulation, data analysis and processing, and
algorithm development.

B. ENERGY CONSUMPTION MODEL

Normally, radio models are composed of three main compo-
nents: transmitter, power amplifier and the receiver. In this
study, we used a simplified energy model (known as the
first radio model) introduced by LEACH [9] to estimate the
energy consumption in WSNs. In this model, both the free
space (for d? power loss) and multi-path fading (for d* power
loss) channels were relayed along the path extending from
the transmitter node to the receiver node to route data trans-
mission. Therefore, when the distance is less than a threshold
value that is calculated using the equation: dyp = Sqrt(fs/mp),
efs then the free space (fsfs) is used, otherwise, the multi-
path (mp) model is used when the distance is greater than
the threshold value. The energy is distributed at the distance
d between the transmitter (ETX) and the receiver (ERX)
and transmits the 1-bit data packet d can be mathematically
calculated as in (8) and (9) [9]:

I XE I xepxd?ifd<d
Erx (,d) = clec T 7 X & ;lf =0
I X Egec +1 X ep X d=, ifd > dg
(8)
ERX (l) =1IX Eelec (9)
where

d: the distance between the transmitter and the receiver.

do: the transmission distance threshold.

fs: the amplification coefficient of the free space signal.

mp: the multi-path fading signal amplification coefficient.

Eclec: the energy consumed to transmit or receive
data packets of length 1 in bits. However, Eg. can be
affected by digital coding, modulation, filtering, and signal
scattering.

C. NETWORK MODEL
To test the proposed CCA-EGA, a set of network assumptions
was first made. These are:

1. There is only one BS at a fixed location that is immo-
bilized and has an unlimited memory, calculations, and
battery resources.

2. The BS is located away from the sensor field.

3. All SNs are homogeneous, have known locations, have
the same capabilities and characteristics, and have lim-
ited initial energy resources (equivalent amounts of
energy). In addition, they are not rechargeable. More-
over, they always have data to be transmitted.

4. Each SN has a unique identifier (node ID).

5. Single-hop communication is applied whereby the MN
transmits its sensory data to the CH, which, in turn,
transmits these data to the BS at a very far distance.

6. The radio models of the transmitters and receivers
for the energy consumption calculations are similar to
those presented in [9].

VOLUME 10, 2022



W. Alsharafat et al.: New Crossover Methods and Fitness Scaling for Reducing Energy Consumption of WSNs

IEEE Access

D. PERFORMANCE MEASUREMENT
To evaluate the proposed CCA-EGA protocol, we compared
the performance of the known LEACH with five metrics.

1) The Network lifetime
There is no universal agreement on the definition of the
network lifetime [34]. However, it can be defined based on
the network requirements. This can be described as [34]:

e The time when the first node dies (FND).
The time when the half node dies (HND).
The time when the last node dies (LND).
Time when a certain fraction (percentage) of the nodes
died (e.g., 10%, 60%, or 90%).

2. Total number of alive nodes per round. This met-
ric is related to the network lifetime. This deter-
mined the number of alive nodes in each round.

3. Total number of dead nodes per round. This
metric is also related to the network lifetime.
The number of dead nodes in each round was
measured.

4. Total residual energy per round. This metric com-
putes the average energy remaining in all the
nodes during the rounds.

5. The throughput is the total number of packets in
the BS. This metric counts the total number of
packets received by a BS.

E. THE SIMULATION SETTINGS

The proposed CCA-EGA simulation is based on the random
distribution of 100 random SNs over 2D representations of
network areas (i.e., sensor field) of 100 m * 100 m with a
far BS located at the coordinates of 100 and 375 m. In addi-
tion, in the simulation, the SN is a homogeneous node. The

parameters used in the simulation and their values are listed
in Table 1.

F. SIMULATION RESULTS AND EVALUATION OF THE
PROPOSED GA-BASED CLUSTERING ALGORITHM

The following paragraph deals with the simulation results of
the proposed CCA-EGA algorithms by analyzing the lifetime
of the network, total number of alive nodes per round, and
total number of dead nodes per round. The results were
compared with those obtained using the LEACH protocol.
The results below are the average of 10 independent runs of
600 rounds per run.

1) COMPARISON OF NETWORK LIFETIMES

The proposed GA-based clustering algorithm (CCA-EGA)
was primarily designed as a new method to provide an energy-
efficient algorithm for maximizing WSN network lifetime.
Intrinsically, GA operators, selection, crossover, and muta-
tion are central to achieve the best performance. Therefore,
we investigated the performance of five crossover opera-
tors: WOX, SNX, SMX, LX, and DX, and implemented
them based on the two selection operators of elitism and
roulette wheels. Simulations were conducted to evaluate the
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TABLE 1. Simulation parameters and their values.

Simulation Simulation
Parameter Value(s) Parameter Value(s)
Network Size | 100 mx 100 | Energy to run | 50 nJ/bit
(nX n) m radio
electronics
circuit (Egjec)
BS Location | (100m, 375 | Threshold 87 m
X,Y) m) distance (d0)
Number  of 50, 100 Mutation 0.05
SNs probability
Percentage of 5% Crossover 0.8
CHs probability
Packet Size 4,000 bits Primary 50
population
size
Control 200 bits Generation 50
packet size size
Maximum 600 Elite 2
number  of
rounds
Initial energy 0.5,0.4 Selection Roulette
(Ey) of SNs Joule/node operators Wheel
based
fitness
scaling,
and
elitism
Data 5 Crossover WOX,
aggregation nJ/bit/signal operator SNX,
energy (Ep,) SMX,
LX, and
DX
Amplification 0.0013 Mutation Uniform
energy  for pJ/bit/m* operators
multi-path
Eump)
Amplification 10
energy  for | pl/bit/m?
free space
(gfs)

TABLE 2. Comparison of network lifetimes without fitness scaling (Ey =
0.40).

Number of Rounds until Death of Nodes
Crossover FN 10 20 30 50 70 80 90
Operator D % % % % % % %
SNX 30 60 78 91 124 | 170 | 203 | 310
WOX 27 47 66 80 113 | 162 | 206 | 371
SMX 24 59 78 92 118 | 153 | 173 | 211
LX 26 54 72 86 119 | 161 | 201 | 278
DX 29 58 73 88 114 | 147 | 174 | 213

performance of each crossover operator with and without
fitness scaling for various E( values. The results of these
simulations are listed in Tables 3 to 5. The network life
metrics considered were (i) FND and (ii) a certain percentage
of dead nodes (10% - 90%).

Tables 3 to 4 show that there are differences between
the various examined GA crossover operators when using
elitism selection and roulette wheel selection with and with-
out fitness scaling. Regarding network lifetime, the results
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TABLE 3. Comparison of network lifetimes with fitness scaling (Ey =

0.40).
Number of Rounds until Death of Nodes
Crossover | FN 10 20 30 50 70 80 90
Operator D % % % % % % %
SNX 26 50 66 82 117 | 180 | 251 | 478
WOX 24 57 77 96 125 | 177 | 227 | 433
SMX 26 |54 |71 |87 | 115 | 159 | 191 | 286
LX 25 56 73 90 120 | 167 | 203 | 332
DX 27 54 73 90 117 | 153 | 175 | 208

TABLE 4. Comparison of network lifetimes without fitness scaling (Eg =

0.50).
Number of Rounds until Death of Nodes
Crossover ) ) ) ) ) ) )
Operator FND 10% 20% 30% 50% 70% 80% 90%
SNX 38 71 92 111 148 194 234 310
WOX 39 71 93 111 141 181 213 289
SMX 45 77 100 118 150 191 225 282
LX 38 72 91 107 147 192 229 326
DX 38 71 93 110 141 181 209 254

TABLE 5. Comparison of network lifetimes with fitness scaling (Ey =

0.50).
Number of Rounds until Death of Nodes
Crossover FN 10 20 30 50 70 80 90
Operator D % % % % % % %
SNX 36 62 87 106 | 150 | 217 | 297 | 496
WOX 36 71 92 | 108 | 147 | 200 | 247 | 439
SMX 43 77 96 | 113 146 | 187 | 227 | 298
LX 33 71 91 109 | 147 196 | 246 | 368
DX 41 78 | 101 122 | 158 | 196 | 220 | 264

summarized in Tables 2 and 4 demonstrate the impact of
Ey without fitness scaling when the value of Ej is changed
from 0.4. to 0.50. The results reflect an improvement in the
FND for all crossover methods when Ejy was increased to
0.50. For example, the FND using SMX improved from 24 to
45 rounds, suggesting an approximately double lifetime
improvement. Similar to SNX, the other methods improved
the FND. This leads to the conclusion that charging nodes
with a suitable initial amount of energy increases their life-
time. However, with fitness scaling, all crossover methods
resulted in an improvement in the FND and a decrease in
the percentage of nodes that died. The best results were
obtained with fitness scaling and an Ey value of 0.50. In the
SNX and WOX cases, node deaths occurred during rounds
496 and 439, respectively. However, for the LX operator,
Tables 4 and 5 show that 70%, 80%, and 90% of the nodes
died during rounds 192, 229, and 326, respectively. However,
with fitness scaling, these death percentages were reached in
rounds 196, 246, and 368.
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FIGURE 2. Comparison of alive nodes in each round without fitness
scaling (Eg= 0.40).
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FIGURE 3. Comparison of alive nodes in each round with fitness scaling
(Eg= 0.40).
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FIGURE 4. Comparison of alive nodes in each round without fitness
scaling (Eg= 0.50).

In summary, the results reported in Tables 3 to 5 indicate
that the SNX, WOX, and LX crossover methods produced
better results than the SMS and DX methods.

2) COMPARISON OF ALIVE AND DEAD NODES

Figures 2 to 5 present a comparison of the numbers of alive
nodes in each round between the case when fitness scaling
was applied and the case when it was not, taking into account
the residual energy when Ey had a value of 0.40 and when it
had a value of 0.50. These figures confirm that the proposed
crossover methods last for the lifetimes of multiple nodes for
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FIGURE 5. Comparison of alive nodes in each round with fitness scaling
(Eg= 0.50).
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FIGURE 6. Comparison of dead nodes in each round without fitness
scaling (Eg= 0.40).
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FIGURE 7. Comparison of dead nodes in each round with fitness scaling
(Eg= 0.40).

more than 600 rounds, where WOX and SNX outperform
the other crossover methods under fitness scaling with an
Eq value of 0.50. In addition, the WOX and SNX crossover
methods keep the nodes alive longer than the SMX, DX, and
LX methods.

Figures 6 through 9 present comparisons of the incidences
of node deaths in each round between the case when fitness
scaling was applied and the case when it was not under
the condition of varying Eq values. It can be observed that
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FIGURE 10. Comparison of alive nodes in each round.

the SNX and WOX methods have fewer dead nodes during
rounds with and without fitness scaling under varying Ej
values. In contrast, the DX crossover method suffers from
a faster node death than the other crossover methods under
study.

3) COMPARISON OF ALIVE AND DEAD NODES IN LEACH
A comparison of the performance of the CCA-EGA algo-
rithm in terms of the number of alive SNs for different
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numbers of rounds is shown in Fig. 10. It can be observed
in this figure that, in the protocol proposed here, the number
of alive SNs is higher than the corresponding number in
the LEACH protocol. This confirms that in the CCA-EGA
algorithm, SNs remain alive in the network for a long period
and that the probability of early death of SN is reduced. The
lifetime of the network is in reverse proportion to the number
of SNs that died. Consequently, the number of dead SN's must
be minimized to maximize the network lifetime.

4) COMPARISON OF TOTAL RESIDUAL ENERGIES

Fig. 11 shows a plot of the residual energy of the WSN
per round for various numbers of rounds. Based on this
plot, it can be concluded that the residual energy gradually
increased in the proposed CCA-EGA clustering algorithm as
the SNs died. This energy increase is owing to the successful
selection of the objective function, which mainly considers
the transmission distance that affects the residual energy of
the SNs. However, the network still had some residual energy,
even after 600 rounds.

Table 6 summarizes the results of a comparative analysis
of the network lifetimes associated with the five different
crossover methods that were applied to WSNs in terms of
energy efficiency based on simulations using 100 randomly
deployed SNs. This table lists the network lifetimes obtained
using FND, HND, and LND performance measures. The
proposed method proved its efficiency by delay the death
of the last node. As seen in Table 6, the last node died
before completing 600 rounds as in [38] and [39] whereas the
proposed method prevents the death of the last node before
600 rounds. Compared to LEACH, LEACH suffers from the
death of the last node earlier than the proposed method.

For further performance evaluation, the proposed cluster-
ing protocol was executed for 2000 rounds in response to the
fact that the time required for the last node to die (LND) can
be reached after 2000 rounds. For comparison, the artificial
neural network (ANN) was used to extend the network life-
time [35]. Our results indicated that LND occurred in round
894. By implementing the GA in OGA [36], the last node
died in round 1561 whereas in GABEEC [26], the death of
the last node occurred in round 1571. However, the last node
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TABLE 6. Comparison of network lifetimes associated with various
methods.

Method result LEACH
Method FND | HND | LND | FND | HND | LND
Proposed work 26 117 | > 600 62 112 213
f;é?l and Nazari 2| 18| s47| 53 97 | 251
Kim et al. [39] 557 | - 598 | 245 - 590

died in round 2280 of LEACH-T [37]. As aresult, CCA-EGA
achieved remarkable achievements in that it improved the
WSN lifetime.

The comparisons presented in Table 6 indicate what
follows:

e FND occurred in round 62 in LEACH whereas HND
and LND occurred in rounds 112 and 213, respectively.
In contrast, CCA-EGA performed better in terms of
HND and LND which occurred in rounds 117 and more
than 600, respectively.

e In [38], FND occurred in round 53 with LEACH,
whereas HND and LND occurred in rounds 97 and
251, respectively. However, in the protocol proposed by
Fathi and Nazar [38], FND, HND, and LND occurred
in rounds 22, 118, and 574, respectively. Therefore, the
algorithm proposed by Fathi and Nazar [38] performed
better in terms of HND and LND.

e Kim et al. [39] reported that FND and LND occurred
in rounds 245 and 590, respectively, in the case of
LEACH, whereas in the case of their proposed algo-
rithm, FND and LND occurred in rounds 557 and
598, respectively, indicating that the proposed algo-
rithm performs better than LEACH, especially in large
networks.

V. CONCLUSION

The main objective of this study is to find ways to extend the
lifetime of WSN. For this purpose, we developed CCA-EGA
for energy efficiency in WSN. To handle the clustering and
CH selection problems, some decisions were made for the
eventual purpose of elongating the network lifetime. The
major decisions are summarized as follows:

1- Real encoding is implemented to represent a possible
solution to the existing problem of designing an energy-
efficient routing algorithm. Real encoding improves the flex-
ibility of the algorithm over binary encoding in representing
real-world problems.

2- A new scaling fitness function was developed to avoid
premature convergence and strengthen the global search.

3- In order to optimize the network life, we used two
crossover operators and analyzed their performance to deter-
mine their impact on the network lifetime.

The simulation results show that real encoding, crossover
operators, and scaling fitness functions affect the lifetime
of the network. Using a GA with suitable tuning for all its
operations can produce better results than traditional GA
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operations. Additionally, no specific crossover operator can
be applied to any problem.

In view of the study’s findings, several issues must be
considered in future studies to address the limitations of the
present study. First, this study did not discuss how to deal
with a failed link between the BS and CH, which affects
the stability of the network. Therefore, it is necessary to
specify a maintenance policy during transmission between
the BS and CH to reduce the risk of disconnection between
stations. In addition, the values of the mutation and crossover
probabilities were fixed during the simulation. Therefore,
it is necessary to study the adaptive crossover and mutation
probabilities to improve the performance of WSN in terms of
energy efficiency. Finally, a CCA-EGA protocol is proposed
for wireless immovable sensors. Future research could extend
this approach to address mobile sensors and the optimal num-
ber of CHs. A mathematical model that represents clustering
algorithms is proposed.
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