
Received 17 August 2022, accepted 25 August 2022, date of publication 1 September 2022, date of current version 14 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203566

FER: A Benchmark for the Roofline Analysis of
FPGA Based HPC Accelerators
ENRICO CALORE AND SEBASTIANO FABIO SCHIFANO
Università degli Studi di Ferrara, 44121 Ferrara, Italy
INFN Ferrara, 44122 Ferrara, Italy

Corresponding author: Enrico Calore (enrico.calore@fe.infn.it)

This work was supported in part by the European Union’s H2020 Research and Innovation Program through the EuroEXA under
Agreement 754337, and in part by the COKA and COSA INFN Projects.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ABSTRACT Nowadays, the use of hardware accelerators to boost the performance of HPC applications is
a consolidated practice, and among others, GPUs are by far the most widespread. More recently, some data
centers have successfully deployed also FPGA accelerated systems, especially to boost machine learning
inference algorithms. Given the growing use of machine learning methods in various computational fields,
and the increasing interest towards reconfigurable architectures, we may expect that in the near future FPGA
based accelerators will be more common in HPC systems, and that they could be exploited also to accelerate
general purpose HPC workloads. In view of this, tools able to benchmark FPGAs in the context of HPC are
necessary for code developers to estimate the performance of applications, as well as for computer architects
to model that of systems at scale. To fulfill these needs, we have developed FER (FPGA Empirical Roofline),
a benchmarking tool able to empirically measure the computing performance of FPGA based accelerators,
as well as the bandwidth of their on-chip and off-chip memories. FERmeasurements enable to draw Roofline
plots for FPGAs, allowing for performance comparisons with other processors, such as CPUs and GPUs,
and to estimate at the same time the performance upper-bounds that applications could achieve on a target
device. In this paper we describe the theoretical model on which FER relies, its implementation details, and
the results measured on Xilinx Alveo accelerator cards.

16 INDEX TERMS Accelerator, benchmark, FPGA, HPC, performance, roofline.

I. INTRODUCTION17

In the context of HPC (High Performance Computing) sys-18

tems the use of highly parallel hardware accelerators to boost19

the performance of applications is nowadays a very common20

option, adopted by a large and increasing share of HPC sys-21

tems listed in the Top500 ranking [1]. In this sector, GPUs are22

definitively the most common accelerators, whereas FPGAs23

are hardly, or even not, used at all. Despite this, some data24

centers have recently started to adopt FPGAs to speed-up25

network interconnects [2], and specific workloads [3] such26

as Machine Learning (ML) inference algorithms [4], [5].27

Given the rapidly increasing use of ML methods in several28

application fields, and the interest in reconfigurable architec-29

tures, which is rising in the HPC community since several30

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

years [6], [7], [8], we may expect FPGAs to become a more 31

common option, as accelerators, for next generations of HPC 32

systems. 33

In the past, several reasons have prevented this. First, 34

FPGAs were not designed to provide high floating-point (FP) 35

computing performance [7], whereas typical HPC workloads 36

usually require double-precision (DP) and single-precision 37

(SP) FP computations. Secondly, FPGA programming could 38

be a very time consuming process, requiring the use of 39

specific hardware programming skills and the use of pro- 40

gramming languages not common among HPC developers 41

communities [9]. Thirdly, the code written for one FPGA 42

could hardly run across different devices without a com- 43

plete re-design, causing serious portability problems not 44

acceptable for a wide set of HPC applications, for which 45

even the porting to GPUs had been a long and suffered 46

process [10]. 47

94220 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2301-3838
https://orcid.org/0000-0002-0132-9196
https://orcid.org/0000-0002-3360-9440

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

However, more recently, these barriers started to fade48

thanks to improvements in hardware architectures and pro-49

gramming frameworks. In fact, latest generations of FPGAs50

integrate thousands of programmable DSPs (Digital Sig-51

nal Processors) able to implement SP- and DP-FP opera-52

tions [11], [12], [13], and may also embed custom FP DSP53

blocks. This is leading to devices able to reach a perfor-54

mance in the same order of magnitude as commodity HPC55

processors (i.e., TFLOP/s), and in some cases able to deliver56

a better energy-efficiency [14], [15]. At the same time, the57

recent improvements of synthesis tools, and the development58

of new programming approaches such as HLS (High Level59

Synthesis) [16], allow programmers to develop codes using60

high level languages. As an example, OpenCL [15] could be61

used, as well as plain C/C++ annotated with pragma direc-62

tives to guide the compiler to automaticallymap the code onto63

FPGA hardware resources [17]. These approaches are very64

similar to those (e.g., OpenMP and OpenACC) commonly65

used by HPC developers to target multi-core CPUs and other66

accelerators, which are also able to guarantee a fair level of67

code portability [18].68

All the above improvements combined with the urging69

quest for higher energy-efficiency and lower latency intercon-70

nects in exascale HPC systems, are leading to a significant71

increase in the interest towards heterogeneity and specialized72

computing in the form of reconfigurable accelerators [19].73

This makes the use of FPGAs very attractive as they allow74

to scale-out resources by enabling distributed computing, and75

can be programmed to be network-capable processors imple-76

menting custom interconnects featuring low-latency commu-77

nications without involving the CPU control [20].78

First prototypes of FPGA accelerated HPC systems are79

already being designed and deployed. One example is the80

Alveo FPGA Cluster installed at ETH Zurich in the context81

of the Xilinx Adaptive Compute Clusters (XACC) initia-82

tive, using commodity hardware to support novel research83

in adaptive compute acceleration for HPC. Another exam-84

ple is the EU-H2020 EuroEXA Project, which has devel-85

oped a HPC system prototype with custom hardware,86

adopting FPGA based accelerators for both computing and87

networking [20].88

Consequently, as a future scenario wemay expect next gen-89

erations of HPC systems to be equipped with FPGA-based90

accelerators, probably alongside other accelerators, such as91

GPUs, being programmedwith high level languages, possibly92

based on pragma directives, allowing to address several kind93

of different accelerators in a uniformed way [18].94

In this context, application developers need to estimate the95

performance achievable on target FPGAs, to decide whether96

an application kernel is worth to be ported, or which FPGA97

better fits its computing requirements. At the same time,98

system architects and engineers need to estimate the perfor-99

mance of a single FPGA, to feed performance models to tune,100

balance and optimize the performance at system level [19].101

These are in fact the needs that arose, for example, while102

evaluating the performance of the EuroEXA FPGA-based103

accelerators and the optimization level of HPC applications 104

ported to its custom architecture. 105

To tackle these needs, we have developed FER (FPGA 106

Empirical Roofline), a benchmarking tool we have released 107

as Free Software [21]. FER is based on a similar principle as 108

ERT (Empirical Roofline Toolkit) [22], but it is specifically 109

designed to target FPGA based accelerators, using C/HLS, 110

to determine their hardware characteristics, allowing for the 111

Roofline analysis of their architectures. It is able to mea- 112

sure an empirical estimate of the peak compute performance 113

achievable on a given FPGA, as well as its on-chip and off- 114

chip memories bandwidth. The choice of C/HLS is strategic, 115

since it allows to measure performance upper-bounds using 116

the same high level programming approach that we expect 117

to be used by most HPC developers, thanks to its approach 118

based on pragma directives, but at the same time it allows for 119

fairly low level optimizations. 120

This work is an extension of our previous conference paper 121

where we presented a preliminary implementation of the 122

FER benchmark focusing only on measuring the compute 123

performance, and off-chip DDR (Double Data Rate) DRAM 124

bandwidth, of a Xilinx Alveo U250 [23]. Here, we present an 125

improved version of FER allowing to benchmark also on-chip 126

memories, providing a more comprehensive description of its 127

implementation details and of the theoretical model on which 128

it relies. Moreover, we also show how FER could be used 129

on accelerators embedding off-chip HBM (High Bandwidth 130

Memory) [24], running it also on the Xilinx Alveo U50 and 131

U280 data center cards, and show how close third party 132

application kernels can get to the performance upper-bound 133

measured by FER. 134

As far as we know, FER is the first tool, developed using a 135

pragma directives based high level programming paradigm, 136

able to benchmark FPGAbased accelerators in the framework 137

of the Roofline Model [25], and the first able to take into 138

account also on-chip memories. 139

The rest of the paper is organized as follow: in the next 140

section we give an overview of related works; in Sec. III we 141

present the FER benchmark, including the theoretical model 142

on which it relies and its implementation details; in Sec. IV 143

we describe the FPGA based accelerators adopted; in Sec. V 144

we present the experimental results provided by FER, running 145

on such accelerators; and finally in Sec. VI we give our 146

concluding remarks. 147

II. RELATED WORKS 148

Several research works have investigated FPGAs perfor- 149

mance when used as hardware accelerators, mostly using 150

synthetic benchmarks to estimate the bandwidth of off-chip 151

memories [26], [27], [28], and OpenCL kernels to measure 152

the FPGA computing performance [29], [30], [31]. However, 153

only few tools utilize the Roofline Model, and none assess 154

also the on-chip memories bandwidth. 155

In [26] is presented the Shuhai Verilog benchmark, 156

used to characterize the performance of HBM and DDR 157

off-chip memories embedded in the Xilinx Alveo U280. 158

VOLUME 10, 2022 94221

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

This benchmark is mainly meant to guide Verilog and VHDL159

designers in the implementation of applications, and allows160

also to make a fine low-level characterization of the off-chip161

memory sub-systems. On the Alveo U280, it measures a162

bandwidth of 425 GB/s and 36 GB/s, respectively for the163

32-channels HBM and the 2-channels DDR4 memories.164

In [30] is presented an OpenCL implementation of the165

HPCChallenge Benchmark Suite, reporting the results for166

different FPGAs. In particular, they show that on the Alveo167

U280 the GEMM benchmark achieves a performance of168

202.6 GFLOP/s in SP, using ≈28% of the available DSPs,169

whereas the STREAM benchmark achieves a bandwidth170

of ≈34.6 GB/s using the 2-channels DDR4 memory banks.171

In [31] is reported a C/HLS implementation of the HPCG172

Benchmark targeting FPGAs. Interestingly, in this case the173

Roofline Model has been used, but only to assess the opti-174

mization level of the specific application, with respect to175

theoretical estimations.176

In fact the Roofline Model has already been used in the177

past to evaluate the performance of specific applications [32],178

being ported to FPGAs. But few works provide a generic179

application-independent extension of this model for these180

architectures, mainly due to the difficulty in defining the181

maximum compute performance for a reconfigurable device.182

A first comprehensive work extending the Roofline Model183

to FPGAs has been presented in [33], but the authors focus184

mainly on aiding developers to explore the design space185

options, moreover, not taking into account FP operations.186

They estimate the expected performance of algorithms run187

on FPGAs by evaluating the hardware resources required to188

implement a single PE (Processing Element) of the specific189

algorithm, and deriving the maximum number of PEs to fill190

the device.191

Building on the same principle, more recently, in [34] and192

in its extended version [35], a semi-automated performance193

optimization methodology based on the Roofline model for194

FPGAs has been proposed. In this case the authors, aim for a195

tool to explore the design space, whereas in our case we aim196

to provide a benchmarking tool.197

The first work proposing a methodology for the per-198

formance analysis of FPGAs allowing to make Roofline199

plots and cross-architectural comparisons, has been reported200

in [36]. In this case, the authors use OpenCL as programming201

language to provide mini-apps, such as SHOCL0, LINPACK202

and STREAM, to measure the computing performance and203

the memory bandwidth of the off-chip memory.204

In [37] we have reported the first C/HLS benchmark tool205

able to provide empirical Roofline plots for FPGAs. It is a206

C kernel annotated with OmpSs@FPGA [18] pragmas direc-207

tives, and it has been used to assess the FP performance of208

the Xilinx ZU9 FPGA in the context of the EuroEXA Project.209

Later, we have extended this initial tool porting it also to the210

Xilinx Vitis workflow to allow for a wider adoption [23].211

Also an OpenCL version of the ERT benchmark has been212

reported to run on FPGAs in [38] and in its extension [39].213

In these works the authors focus on the performance and214

energy-efficiency evaluation of two FPGAs. Roofline plots 215

are presented for an Intel Arria 10 FPGA and the Xilinx 216

Alveo U280, and for the latter they report for the SGEMM 217

and DGEMM kernels respectively ≈ 500 and 150 GFLOP/s. 218

This research work is that with the most similar aims to ours. 219

The main differences are that FER adopts a directive based 220

C/HLS programming approach, focusing on a lower level 221

characterization, allowing to strictly correlate its results with 222

hardware resources by means of a theoretical model; and that 223

it takes into account also on-chip memories bandwidth. 224

The work we present here extends the above works in 225

several directions. We focus on application-agnostic perfor- 226

mance assessment of FPGA based accelerators, aiming to a 227

comprehensive machine characterization, allowing for cross- 228

architectural comparisons and for performance estimations 229

of generic HPC kernels on a given device. To this aim, FER 230

is able to measure both the computing peak performance of 231

FPGAs, and the bandwidths of on-chip and off-chip memo- 232

ries. It is based on the Roofline Model and it is implemented 233

having at its core a directives annotated C/HLS kernel, with 234

tunable operational intensity and hardware resources usage. 235

Moreover, it relies on a theoretical model aiming to strictly 236

link the performance results to the hardware resources. The 237

choice of C/HLS allows at the same time to expose to the 238

users low level fine tuning knobs, as well as to use a high- 239

level programming paradigm that can easily be used by the 240

HPC user community for development and porting. At the 241

moment FER has been used both with the proprietary Xilinx 242

Vitis workflow, as well as with OmpSs@FPGA [40]. 243

III. THE FPGA EMPIRICAL ROOFLINE 244

The Roofline Model [25] is a visual performance model used 245

to provide performance upper bounds for compute kernels, 246

or more complex applications, when run on a target archi- 247

tecture. The most basic Roofline plot shows the maximum 248

computational performance (e.g., FLOP/s) achievable by an 249

application running on a specific processor as a function of 250

the application arithmetic intensity I = O/D, where O is 251

the number of operations performed (e.g., FLOPs), andD the 252

amount of data exchanged with memory (e.g., Bytes). 253

In general, each computing architecture is characterized 254

by a specific machine balance [41] Mb = C/B, where C is 255

the peak compute performance (e.g. the maximum theoretical 256

FLOP/s), and B is the peak memory bandwidth (e.g. the max- 257

imum theoretical Byte/s). The performance reached by an 258

applicationwith arithmetic intensity I , running on a processor 259

with machine balance Mb, is then limited either by the peak 260

compute performance or by the peak memory bandwidth, 261

respectively if I is greater or lower than Mb. Kernels with 262

an arithmetic intensity lower than the machine balance are 263

said memory-bound for the specific processor architecture, 264

otherwise they are said compute-bound. 265

The Roofline plot for a specific processor architecture can 266

be drawn using its theoretical peak compute performance and 267

memory bandwidth, but real applications are commonly able 268

to exploit just a fraction of those values. For this reason, 269

94222 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

to have more realistic Roofline ceilings in the plot, it is useful270

to exploit empirical values, measured running appropriate271

benchmarks. For FPGAs this is even more important, given272

that on these devices a theoretical estimation of the peak273

performance can lead to values which are quite higher than274

what could actually be achieved by real applications [42].275

A first challenge in extending the Roofline Model to276

FPGAs, is given by the difficulty to define their compute277

performance before configuring them with a bitstream [33].278

In fact, their peak performance strongly depends on the279

operations being implemented and on how these operations280

get mapped onto the hardware resources available in the281

FPGA [34]. This impacts on the number of implementable282

compute cores, as well as on the maximum clock frequency,283

clearly affecting the theoretical peak performance.284

Actually, due to the growing complexity of CPUs285

and GPUs, also on these devices the theoretical com-286

pute performance is not anymore so trivial to estimate.287

In fact, according to the compute operations performed, and288

the kind of resources exploited (e.g., vector instructions,289

Fused-Multiply-Add instructions, etc.) different compute290

performance peaks can be theoretically estimated, and also291

empirically measured. Moreover, in recent processors also292

the maximum reachable clock frequency depends on the type293

of instructions being executed (e.g., if vector instructions are294

used, or not), and additionally, it could also be lowered due295

to thermal throttling. For these reasons, the Roofline Model296

for CPUs and GPUs has been extended to take into account297

different ceilings [43] for different sets of resources, and298

software tools have been developed to measure empirically299

these ceilings, such as the ERT benchmark [22].300

For FPGAs, the higher degree of dimensions in the design301

space, increases the complexity in dealing with the different302

possible ceilings. Despite of this, focusing on the use of high303

level synthesis tools, and with the help of a simple theoretical304

model, we aim to show that the Roofline Model for FPGAs305

can still be useful to understand their compute performance306

and guide the optimization of HPC applications to exploit307

them. In the following we first describe the theoretical model308

on which the FER benchmark relies, and then we describe its309

implementation.310

A. THEORETICAL MODEL FOR FPGAs311

To produce the Roofline plot for a target FPGA, we need to312

estimate its machine balance Mb = C/B, where C is the313

peak computational performance, as operations per second,314

and B the memory bandwidth, as bytes per second.315

We can start to define the relation between C and the hard-316

ware resources available in the FPGA. Assuming to imple-317

ment a core performing the operation op (e.g., a FP addition),318

which requires Rop hardware resources, and assuming that319

Rav of these resources are available on the target FPGA:320

the ratio Rav/Rop gives the number of multiple op-cores that321

could be implemented on the device, potentially executing322

the op operation in parallel. If each core can be operated323

at a maximum clock frequency fop, the corresponding peak324

theoretical compute performance C in op/s for the FPGA is: 325

C = fop ×
(
Rav
Rop

)
. (1) 326

This equation is valid under the assumption of using all FPGA 327

hardware resources to implement multiple instances of the 328

same computing core, each able to start to perform one new 329

op operation per clock cycle. 330

Since on FPGAs are commonly available different types of 331

resources, such as LUTs (Look Up Tables), FFs (Flip-Flops), 332

DSPs, etc., Eq. 1 can be extended to take into account all of 333

them as following: 334

C = fop ×min
k

(
Rkav
Rkop

)
, (2) 335

where Rkav is the amount of resources of type k , available on 336

the target FPGA, whereas Rkop is the amount of resources of 337

type k used to implement the selected compute core. 338

In practice, it is slightly more complicated, since on recon- 339

figurable devices the same operation can be implemented 340

in several different ways, trading-off one resource type for 341

another. However, focusing only on using high level synthesis 342

tools, we may assume that common operations are imple- 343

mented using pre-defined RTL (Register Transfer Level) 344

cores picked from an IP (Intellectual Property) library, which 345

are placed and wired for the target FPGA by the synthesis 346

tool. As a consequence of this, the set of available cores 347

is limited, and the resource number Rkop used for each of 348

them is commonly available in the library documentation. 349

In practice, we rely on the same idea presented in [33], but 350

we adopt as a PE an elementary RTL core from the IP library, 351

performing an elementary operation (i.e., a FP addition, or a 352

FP multiplication), not related to any specific algorithm, but 353

commonly used by generic HPC kernels. 354

Theoretical models similar to that reported in Eq. 2, have 355

already been used by FPGA manufacturers to publicize their 356

devices peak performance, but some limitations should be 357

taken into account to get realistic results [42], especially when 358

large fractions of FPGA resources are used. In particular, the 359

assumption to be able to exploit all the available resources of 360

one specific type is rather optimistic, as well as the assump- 361

tion to reach, for an actual application, the maximum theoret- 362

ical clock frequency claimed by manufacturers for one single 363

RTL core. 364

A more accurate performance model should take into 365

account the implemented design clock frequency fimp 366

achieved when many resources are in use, and a factor u < 1 367

for each resource corresponding to the fraction that can be 368

successfully placed and routed in real designs. This leads to 369

a slightly more complex model equation: 370

C = fimp ×min
k

(
Rkav
Rkop
× uRk

)
. (3) 371

Implementation frequency and resource utilization factors, 372

introduced in Eq. 3, are dependent on FPGA architectures, 373

VOLUME 10, 2022 94223

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

synthesis tools, and the kind of operations to implement.374

Consequently to obtain those values we can consider two375

approaches. The first is to make empirical measurements376

with specific benchmarks, such as FER. While the second,377

is to use values provided by the hardware manufacturers,378

which could be available in the documentation as recommen-379

dations to avoid timing issues. Anyhow, the latter approach380

can be applied only if such recommendations are available,381

and anyway the former approach is the only viable one to382

validate the latter. For example, in the case of Xilinx Alveo383

cards, as will be discussed in Sec. IV, fimp could be set to384

the nominal frequency or default frequency [44], cited in the385

devices datasheet. While the different uR could be set to the386

recommended maximum resource utilization to avoid timing387

closure issues, mentioned in [45].388

The other quantity needed to compute the machine bal-389

ance is the peak memory bandwidth B. FPGAs have on-chip390

memories, such as Block-RAM (BRAM) and Ultra-RAM391

(URAM), but they may also be connected to off-chip mem-392

ories, such as DDR and/or HBM (High Bandwidth Memory)393

banks. The Roofline plot can show different ceilings accord-394

ing to the different memory levels usable by an application,395

as commonly done for CPUs cache levels.396

For on-chip memories the theoretical maximum bandwidth397

can be estimated with a similar approach as for the peak398

performance. Assuming that the clock frequency of the on-399

chip memory is the same as that of the kernel, the bandwidth400

can be computed as:401

Bram = fimp ×Wram × RRAMav × uRRAM , (4)402

where Wram is the bit-width of the on-chip memory banks403

(e.g., BRAMs or URAMs), RRAMav is the amount of available404

on-chip memory banks and uRRAM is the maximum utilization405

factor (i.e., uRRAM < 1). If the on-chip memory works at406

a different clock frequency (e.g., Intel BRAMs can work407

at twice the kernel frequency), fimp can be multiplied by a408

constant and the equation is still valid. Interestingly enough,409

keeping data in on-chip memories, Mb becomes frequency410

independent, corresponding to the ratio:411

Mb =

mink

(
Rkav
Rkop
× uRk

)
Wram × RRAMav × uRRAM

. (5)412

On the other side, when using off-chip memories (such as413

DDR or HBM), two different clock frequencies are actually414

involved: fimp corresponding to that of the user kernel; and415

fext corresponding to the clock frequency of the off-chip416

memory. The maximum bandwidth Bext attained is then given417

by the minimum between the on-chip and off-chip interfaces418

bandwidths:419

Bext = min(fimp ×W × Ch, fext ×Wext × Chext), (6)420

where W is the bit-width of the on-chip interface (e.g., an421

AXI interface), andWext for the off-chip memory (e.g., DDR422

or HBM), whereas Ch is the number of available on-chip423

channels, and Chext the off-chip ones. Different channels424

(e.g., multiple AXI interfaces) are commonly used to connect 425

to different memory banks. 426

B. FER IMPLEMENTATION 427

The first aim of the FER benchmark is to be able to measure 428

the peak compute performance, and max bandwidths of the 429

different memory levels, of a target FPGA-based architecture, 430

allowing to produce a Roofline plot. In addition, it also aims 431

to empirically establish realistic values for the maximum 432

implementation frequency fimp and utilization factors uR, to 433

be used in Eq. 3. 434

The first version of FER has been implemented as a plain 435

C kernel decorated with Vivado HLS directives [46], and 436

managed using the OmpSs@FPGA [18], [40] programming 437

model, required to handle kernel launching and data move- 438

ments between host and device memories. Preliminary results 439

of this version have been reported in [37], running a single 440

instance of the FER kernel on the FPGA embedded in aXilinx 441

Zynq ZU9MPSoC. Later, the host-side of the benchmark has 442

been implemented also using the Xilinx Vitis workflow [23] 443

to manage kernel launches and data transfers, allowing for a 444

wider adoption and to target more FPGA devices. 445

The latest version of FER, with a significant set of new 446

features, is meant to have an user configurable computational 447

intensity I , applying one or more times a given op operation 448

to each of the elements of an input array, and writing for 449

each of them a corresponding output one in an output array. 450

FER can be configured to allocate a single or multiple CU 451

(Compute Unit) instances, each instance operating on a chunk 452

of the input buffer. This allows to easily map CUs on different 453

SLRs (Super Logic Regions) avoiding costly inter-region 454

long paths, and also to exploit different memory channels, if 455

available on the target FPGA. 456

The FER top-level kernel include three different functions, 457

two I/O functions to load and store data, and one compute 458

function to process it. The kernel can be configured to run 459

in two different ways, namely the dataflow and datalocal 460

modes. These are actually two different kernels that can be 461

used alternatively, providing the same interface. The former 462

is suitable to measure peak values reachable keeping data in 463

off-chip memories (e.g., on-board DDR or HBM memory 464

banks), whereas the latter keeping it in on-chip memories 465

(e.g., BRAM or URAM). In fact, to obtain the Roofline 466

ceilings corresponding to on-chip memory levels, as com- 467

monly done for CPU cache levels, in the case of FPGAs 468

it is required to explicitly program data movements to/from 469

on-chip memories, and thus different kernels are needed. 470

When FER runs in dataflow mode, see Fig. 1, the com- 471

putation is arranged as a task level pipeline defined by the 472

HLS dataflow pragma directive [17], as shown in Listing 1. 473

Each stage of this coarse pipeline is one of the three functions, 474

namely read(), computeDflow() and write(); and 475

data between stages is passed through FIFO queues inFifo 476

and outFifo, getting implemented on on-chip memories. 477

This allows to decouple I/O and compute functions, enabling 478

to execute each stage concurrently, overlapping computations 479

94224 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

FIGURE 1. Schematic architecture of the FER Kernel for dataflow mode.
The kernel is divided in three task level pipeline stages, reading and
writing elements from the buffers stored onto the FPGA off-chip DRAM.
Data movements and computations are overlapped and FIFO buffers are
used to move data between input, compute and output stages.

Listing 1. Organization of the main kernel function for dataflow mode.

and I/O operations, hiding the latency to access off-chip480

memories.481

Conversely, when FER runs in datalocal mode, see Fig. 2482

and Listing 2, the three functions are executed in a serial483

fashion. In this case, data are moved by I/O functions between484

off-chip and on-chip memories and vice-versa, just once,485

at the beginning and at the end of the kernel execution,486

whereas the compute function is executed for several itera-487

tions. This allows the compute function to operate only on488

on-chip data, measuring the corresponding on-chip memories489

bandwidth. Multiple iterations are performed to increase the490

benchmark execution time and reliably measure it.491

In both modes, I/O functions read and write data elements492

as SIMD (Single Instruction Multiple Data) vectors of length493

V from/to off-chip memories. Consequently, V can be set to494

select the optimal bit-width to fully utilize memory buses.495

Burst operations are then used to move data between off-chip496

and on-chip memories.497

As shown in Listing 1, for the dataflow mode, SIMD498

vectors are passed to the compute function through FIFOs,499

whereas in Listing 2, for the datalocal mode, they are500

passed trough local buffers. Such local buffers (see Listing 2,501

Line 3-7), are explicitly requested to be implemented using502

on-chip dual port memory blocks (in this case URAMs),503

to allow for two reads/writes per clock cycle per memory504

block. Actually, for the output local buffer a True Dual Port505

(T2P) has to be requested (see Listing 2, Line 7), since the506

FIGURE 2. Schematic architecture of the FER Kernel for datalocal mode.
In this case, load and store functions are run just once. The load function
load the input buffer onto on-chip memories (such as URAM); the
compute function reads and writes from/to on-chip memories for
multiple iterations, and eventually the store function save results on
external DRAM.

Listing 2. Organization of the main kernel function for datalocal mode.

kernel will need to write in parallel, during the same clock 507

cycle, on the the two ports of each memory block. On the 508

other hand, for the input local buffer a Simple Dual Port (2P) 509

is enough (see Listing 2, Line 5) to read in parallel on the 510

two ports [47]. Then, both buffers need to be partitioned [17] 511

across multiple memory blocks (see Listing 2, Line 8-9), 512

to allow to read/write from/to the widest possible number of 513

memory blocks, during the same clock cycle, to reach the 514

maximum bandwidth. 515

The two compute functions, namely computeDflow and 516

computeDlocal are outlined respectively in Listing 3, and 517

in Listing 4. 518

Concerning the computeDflow function, for the 519

dataflow mode, outlined in Listing 3, the outer loop at line 3 520

is pipelined with an Initiation Interval of IIc, and this requires 521

the synthesis tool to automatically fully unroll the inner loops 522

(in fact unroll directives for inner loops could be omitted). 523

The loop at line 6 is horizontally unrolled [17] and thus 524

vectorized into SIMD operations reading vectors of V data 525

elements and applying the operation op() for Oe times, 526

to each element of the SIMD vector. In fact, the loop at line 527

9 gets unrolled as well, translating into a chain of sequential 528

operations to be applied to each vector element. 529

VOLUME 10, 2022 94225

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

Listing 3. Organization of the main compute function in dataflow mode.

The loop at line 3 is actually translated to a hardware SIMD530

vector unit, able to start to process a new vector of V elements531

every IIc clock cycles. The amount Hc of cores implemented532

in hardware is then given by (V × Oe)/IIc. In particular,533

with IIc = 1 the vector unit starts processing a new SIMD534

vector of width V at each clock cycle, whereas for IIc > 1 a535

fraction equal to 1/IIc of the SIMD vector length is processed536

per cycle. In fact, for example, setting IIc = 2 allows the537

synthesis tool to implement the hardware cores needed to start538

processing just half of a SIMD vector, at each clock cycle.539

As HLS tools try to optimize also the resources utilization,540

this translate to halving the hardware resources required.541

The possibility to also set Oe, and IIc allows to config-542

ure FER with any number of operations per element Oe543

(i.e., the Arithmetic Intensity), independently from the hard-544

ware resources available on a target device. Clearly, configur-545

ing FER with parameters leading to an Hc greater than what546

allowed by the available hardware resources will lead to a547

not synthesizable configuration, but the user can increase IIc,548

to lower Hc, keeping Oe high enough to match the desired549

arithmetic intensity.550

Once the three parameters are set, since C is limited by551

the number of cores implementable in hardware, as shown in552

Sec. III-A, the expected performance of each CU of the FER553

benchmark is given by equation:554

C = f × Hc = f ×
V × Oe
IIc

. (7)555

Concerning the computeDlocal function, for the dat-556

alocal mode, outlined in Listing 4, the rationale is similar,557

apart from the facts that: in and out vectors are read/written558

from/to local arrays allocated on on-chip memories; and the559

width of the SIMD hardware unit which get implemented560

is a multiple of V , as wide as the number of used memory561

blocks allows. This is achieved by unrolling the loop at Line 6562

in Listing 4, which automatically unroll all the inner loops,563

lettingwider SIMDvectors to be read/written during the same564

clock cycle, using multiple on-chip memory blocks in paral-565

lel. In particular to write concurrently on the two ports, of the566

same memory block, it is needed to relieve the synthesis tool567

to enforce the WAW (Write-After-Write) output dependence,568

Listing 4. Organization of the main compute function in datalocal mode.

with the pragma at Line 4, taking the responsibility for writing 569

at different addresses. 570

If RRAM is the maximum number of usable on-chip mem- 571

ory blocks, half would be used for the input and half for the 572

output buffer, but being dual port blocks, 2 elements can be 573

read/written to/from each block per clock cycle, thus a RRAM 574

elements wide SIMD hardware unit could be implemented, 575

operating on a newwide SIMDvector per clock cycle; assum- 576

ing the single vector element does not exceed the memory 577

block port width (e.g., 64-bit for Xilinx UltraScale+URAM, 578

when ECC is enabled). 579

Consequently, also for the computeDlocal function, 580

for the datalocal mode, the same observations leading to 581

Eq. 7 hold true, apart from the fact that V should be replaced 582

by RRAM . Anyhow, in this case the interest is not in C , but 583

towards the reachable on-chip memories bandwidth, which 584

can be directly computed using Eq. 4, when IIc = 1 in order 585

to process one SIMD vector per clock cycle. Given that com- 586

monly RRAM � V , the maximum number of implementable 587

Hc could easily be reached, thus in this case it is also desirable 588

to lower the operations per element (e.g., Oe = 1) to contain 589

the final Hc. 590

IV. EXPERIMENTAL SETUP 591

In the context of HPC, the peak performance of CPUs and 592

GPUs is commonly publicized using the DP-FP throughput, 593

usually derived from the number of FMA (Fused Multiply 594

Accumulate) instructions processed per second. For this rea- 595

son, we initially configured FER to use a DP FMA as its core 596

op operation, allowing for a direct comparison of its results 597

against the ones obtained with similar benchmarks [22], [48] 598

on commodity processors. 599

We remark that this is not the best option to show the 600

highest FP performance achievable by FPGAs, but it is indeed 601

for CPUs and GPUs, which are specifically designed and 602

optimized to excel in FP FMAs throughput. In fact, this is 603

commonly the only instruction accounting for two FLOPs 604

per clock cycle when executed on CPUs FP units, whereas 605

on most FPGAs its cost is approximately the same as an 606

addition plus a multiplication. On the other side, this also 607

translate to the fact that an actual FP intense application, when 608

94226 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

not able to exploit FMAs, could reach at most half of the609

theoretical performance of an ordinary CPU, whereas it could610

theoretically reach the maximum performance measured by611

FER on a FPGA. In any case, FER can be easily configured to612

perform different op operations, also with a different numer-613

ical precision, as shown later.614

In this work we have benchmarked different Xilinx Alveo615

Accelerator Cards: the U250 offering the highest num-616

ber of hardware resources among the Alveos; the U50,617

a more recent board, with less resources compared to the618

U250, but embedding HBM2 high speed memory banks;619

and the U280, offering more resources than U50, together620

with both HBM2 and DRAM memory banks. The syn-621

theses have been performed using the Xilinx Vitis version622

2020.1, running on GNU/Linux CentOS 7 nodes of the623

COKA cluster hosted at INFN and University of Ferrara.624

Since Vitis allows for different synthesis and implemen-625

tation strategies, we have selected those aiming to max-626

imize the performance, and run multiple syntheses of627

our code for each test we have performed. In particular,628

we have used alternatively the Performance_EarlyBlock-629

Placement, the Performance_ExploreWithRemap or the Per-630

formance_WLBlockPlacementFanoutOpt strategies, targeting631

a FPGA clock frequency from 300 MHz up to 600 MHz,632

in steps of 50 MHz. All the results reported in the following633

refer to those settings and clock frequencies giving the best634

performance.635

On the selected FPGAs, the Vitis synthesis tool imple-636

ments FP operations using pre-defined RTL cores from a637

software library [49], although just a subset of them can be638

used when adopting high level synthesis [46]. In particu-639

lar, in our case, the FMA operation is implemented using640

separate addition and multiplication cores, and the hardware641

resources they mostly utilize on the tested devices are DSPs642

and LUTs.643

In the following sections, we first estimate the comput-644

ing performance and bandwidths for each card using the645

theoretical models we have developed in Sec. III-A, and646

then we present and discuss the empirical results reporting647

our measurements achieved running the FER benchmark on648

each FPGA.649

A. THE ALVEO U250650

The Alveo U250 is a PCIe card embedding 4 × 16 GB651

DDR4 memory banks, for a total of 64 GB of on-board652

memory, and a XCU250 FPGA using Xilinx Stacked Silicon653

Interconnect (SSI) technology. The SSI allows for increased654

density by combining multiple physically separated Super655

Logic Regions (SLRs), four in the case of the XCU250,656

interconnected through Super Long Line (SLL) routes. How-657

ever, the use of these connections should be limited to avoid658

timing issues that may prevent to synthesize the design at a659

high clock frequency. Therefore, the best strategy to fit FER660

(as any other application if possible) onto this architecture is661

to place 4 instances of the kernel, one per SLR, each using662

one different memory bank.663

FIGURE 3. Maximum clock frequency (left axis) achieved synthesizing
FER for the Alveo U250 and the corresponding DP-FP performance (right
axis), as a function of the DSPs utilized by the implemented design.
Linear fit lines are shown over experimental points.

The XCU250 accounts for 1.728 · 106 LUTs and 664

12288 DSPs, and is divided into two logical parts named 665

static region and dynamic region. The first implements the 666

Shell or Platform [44] provided by Xilinx, allowing for PCIe 667

communications and bitstream loading into the FPGA, in the 668

dynamic region. The latter is then used to implement the 669

user designs. For the U250, we have used the U250 XDMA 670

201830_2 Platform, which leaves for the dynamic region 671

1.380 · 106 LUTs and 11508 DSPs. 672

In [49] is reported the number of resources used to imple- 673

ment DP addition and multiplication cores on this FPGA 674

architecture, using this synthesis tool, and the corresponding 675

maximum frequency at which theymay operate. From the dif- 676

ferent available cores we selected the default ones used by the 677

synthesis tool, which revealed to be also the best choice from 678

a theoretical point of view, given the resources available on 679

this device. For the addition operation are required: 616 LUTs 680

and 3 DSPs, whereas for the multiplication: 172 LUTs and 681

8 DSPs. The maximum frequency at which both of the cores 682

can operate is 694 MHz. Using Eq. 2 we can then derive the 683

maximum number of FMAs we may fit into the FPGA and 684

estimate a theoretical performance value: 685

C = f ×min

(
RLUTav

RLUTadd + R
LUT
mul

,
RDSPav

RDSPadd + R
DSP
mul

)
686

= 694 MHz×min
(

1.380 · 106

616+ 172
,
11508
3+ 8

)
687

= 726 · 109 FMA/s 688

= 1.45 TFLOP/s. (8) 689

As claimed in [42], this approach may lead to not realistic 690

values. In fact, synthesizing FER for the U250 using the esti- 691

mated maximum number of mul- and add-cores leads to a not 692

routable design.While, reducing the number of cores to allow 693

for a successful routing, clearly shows that the frequency of 694

694 MHz is not reachable. 695

To make this evident, we have synthesized FER multi- 696

ple times targeting the U250, for an increasing number of 697

FMAs cores, keeping the benchmark in the compute-bound 698

VOLUME 10, 2022 94227

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

region (i.e., the performance is never limited by the band-699

width), up to fit as much as possible the hardware resources700

with FMA cores. In Fig. 3 we report the clock frequency701

achieved by our syntheses and the corresponding perfor-702

mance as a function of the DSPs utilization, since this is703

the main resource limiting the number of FMA cores that704

can be implemented. As we see, to reach clock frequencies705

significantly higher than 300 MHz less than 20% of the706

available DSPs should be used, whereas usingmore than 80%707

of DSPs rapidly leads to a not routable design. An interesting708

result highlighted by Fig. 3 is that despite the lower frequency709

reached, exploiting as much resources as possible pays in710

terms of performance. Moreover, as shown by the fit, a linear711

relation links the amount of used DSPs with the performance:712

C ≈ 5 × uRDSP + 44. And when uRDSP ≥ 15%, another713

linear relation also links the amount of used DSPs with the714

maximum reached frequency: fimp ≈ −1.4× uRDSP + 354.715

Interestingly, using the conservative values suggested by716

Xilinx best practices for designers, namely a clock frequency717

of 300 MHz and an utilization factor lower than 70% for718

LUTs and 80% for DSPs [44], [45] (with respect to the total719

amount of resources, not just the user available ones), Eq. 3720

estimates a more realistic theoretical performance:721

C = 300 MHz×min
(
1.728 · 106

616+ 172
× 0.7,

12288
3+ 8

× 0.8
)

722

= 536 GFLOP/s, (9)723

resulting approximately 20% higher with respect to the max-724

imum performance we measured empirically with FER, and725

reported in Fig. 3.726

Concerning the on-chip memories, such as URAMs,727

we can use a similar approach to estimate their maxi-728

mum bandwidth. Using the conservative values suggested by729

Xilinx best practices, in this case 300MHz of clock frequency730

and 80% as utilization factor, Eq. 4 gives:731

Buram = 300 MHz× 64 bit× 2× 1280× 0.8732

= 4.91 TB/s, (10)733

where 1280 is the amount of available dual-port (thus we734

multiply by 2 their number) URAMs. Each URAM block is735

72 bits wide, but with ECC (Error Correction Code) enabled736

it offers 64 bits wide protected data words. In this paper we737

always consider ECC to be enabled. The maximum band-738

width would be 6.1TB/s with a 100% utilization.739

Concerning the off-chipmemory bandwidth, assuming that740

this is not limited by the user design, the maximum value741

estimated by Eq. 6 for the 4 DDR4 banks results in:742

Bddr = 2× 1.2 GHz× 64 bit× 4743

= 76.8 GB/s. (11)744

The 1.2 GHz clock frequency is multiplied by 2, since the745

memory banks are DDR (i.e., Double Data Rate).746

Off-chip memory is accessed from the programmable logic747

through AXI interfaces that can be configured with a maxi-748

mum bus width of 512 bits. Then, implementing a 512 bit749

interface for each of the 4 DDR4 banks and running at the 750

nominal frequency of 300 MHz we achieve a bandwidth of 751

0.3 GHz× 512 bit× 4 = 76.8 GB/s perfectly balancing that 752

of DDRs. 753

Having estimated the computing performance and the 754

memory bandwidths, it is possible to estimate the theoretical 755

machine balance for the U250, for DP-FP operations, and in 756

particular: Mb = 536/4910 ≈ 0.1 when data are stored onto 757

on-chip URAM, whereas Mb = 536/76.8 ≈ 7.0 when data 758

are stored onto off-chip DDR4 memory. 759

B. THE ALVEO U50 760

The Alveo U50 is a PCIe card embedding 8 GB of HBM2 761

(High BandwidthMemory v2) accessible through 32 pseudo- 762

channels and a XCU50 FPGA featuring SSI technology. 763

With respect to the U250, the U50 provides less hardware 764

resources (i.e., 872 · 103 LUTs and 5952 DSPs), divided in 765

just two SLRs, but the HBM2 memory allows for a much 766

higher bandwidth compared to DDR. As shown in Fig. 4b, 767

only the SLR#0 is connected to the off-chip HBM2 memory 768

banks, and then in this case SLL routes can not be avoided 769

for accessing data from logic allocated in SLR#1. For the 770

U50 all tests have been performed with the U50 Gen3 × 16 771

XDMA201920_3 Platform, leaving to the user 731·103 LUTs 772

and 5340 DSPs in the dynamic region. Using Eq. 3, with 773

the default Platform frequency and recommended utilization 774

values by Xilinx (with respect to the total amount of hardware 775

resources), the expected performance is: 776

C = 300×min
(

872 · 103

616+ 172
× 0.7,

5952
3+ 8

× 0.8
)

777

= 260 GFLOP/s. (12) 778

To measure the HBM2 bandwidth we have allocated mul- 779

tiple kernel instances (i.e., multiple CUs) in order to use 780

the 28 (out of 32) memory pseudo-channels exploitable by 781

the user design with the current platform [44]. In particular, 782

we have used 14 CUs, each using two different pseudo- 783

channels, one for the input, and one for the output buffer. The 784

HBM2 peak bandwidth on this device is limited by the power 785

provided by the PCIe rails (i.e., 10W for the memory), thus 786

being limited to 316 GB/s [50] out of the theoretical 460 GB/s 787

if all HBM2 channels could be used without power limits. 788

The theoretical machine balance for DP-FP operations when 789

reading data from the HBM2 is then Mb = 260/316 ≈ 0.82, 790

suitable for memory-bound applications with low arithmetic 791

intensity. 792

To estimate the URAM on-chip memory bandwidth, using 793

again the conservative values of 300MHz for clock frequency 794

and 80% as URAM utilization factor, Eq. 4 gives for this 795

device: 796

Buram = 300 MHz× 64 bit× 2× 640× 0.8 797

= 2.46 TB/s, (13) 798

where 640 is the number of available URAM units, resulting 799

in a machine balance Mb = 260/2460 ≈ 0.1. Theoretical 800

bandwidth would be 2.8 TB/s with 100% URAM utilization. 801

94228 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

FIGURE 4. Schematic views of the FER CUs allocation on: Alveo U250 (Fig. 4a), one CU per SLR; Alveo U50 (Fig. 4b), multiple CU per
SLR, to exploit all the available HBM memory pseudo-channels; Alveo U280 (Fig. 4c), one CU per SLR and Alveo U280 (Fig. 4d),
multiple CU per SLR, to exploit all the available HBM memory pseudo-channels.

C. THE ALVEO U280802

The Alveo U280 is a PCIe card embedding two HBM2 (High803

Bandwidth Memory v2) stacks, of a total size of 8 GB, acces-804

sible through 32 pseudo-channels; 32 GB of DDR memory;805

and a XCU280 FPGA featuring SSI technology. The U280806

provides a set of features which is a mix of the ones that could807

be found in the U250 and the U50. It provides less hardware808

resources (i.e., 1304·103 LUTs and 9024 DSPs), with respect809

to the U250, but more than the U50. The programmable logic810

is divided in 3 SLRs, and can access both HBM2 memory811

banks, as well as ordinary DDR memory banks.812

As shown in Fig. 4c, on the U280, only SLR#0 and SLR#1813

are connected to the 2 off-chip DDR memory banks, and814

then in this case SLL routes can not be avoided for accessing815

DDRs from logic allocated in SLR#2. On the other hand,816

as shown in Fig. 4d, only the SLR#0 is connected to the off-817

chip HBM2 memory banks, and then in this case SLL routes818

can not be avoided for accessing data from logic allocated in819

SLR#1 and SLR#2.820

For the U280, all tests have been performed with the U280821

XDMA 201920_3 Platform, leaving to the user 1069 · 103822

LUTs and 8490 DSPs in the dynamic region. Using Eq. 3,823

with the default Platform frequency and recommended uti-824

lization values by Xilinx (with respect to the total amount of825

hardware resources), the expected performance is:826

C = 300×min
(

1304 · 103

616+ 172
× 0.7,

9024
3+ 8

× 0.8
)

827

= 394 GFLOP/s. (14)828

To measure the HBM2 bandwidth we have allocated mul- 829

tiple kernel instances (i.e., multiple CUs) in order to use all 830

of the 32 memory pseudo-channels (16 per stack) exploitable 831

by the user, as shown in Fig. 4d. In particular, we have used 832

16 CUs, each using two different pseudo-channels, one for 833

the input, and one for the output buffer. The HBM2 peak 834

bandwidth on this device is not limited by the power (as for 835

the U50), thus its theoretical bandwidth, can be estimated 836

by Eq. 6: 837

Bhbm = 2× 0.9 GHz× 64 bit× 32 838

= 460 GB/s. (15) 839

The theoretical machine balance for DP-FP operations 840

when reading data from the HBM2 is thenMb = 394/460 ≈ 841

0.86, suitable for memory-bound applications with low arith- 842

metic intensity. 843

To estimate the URAM on-chip memory bandwidth, using 844

again the conservative values of 300MHz for clock frequency 845

and 80% as URAM utilization factor, Eq. 4 gives for this 846

device: 847

Buram = 300 MHz× 64 bit× 2× 960× 0.8 848

= 3.69 TB/s, (16) 849

where 960 is the number of available URAM units (320 per 850

SLR), resulting in a machine balanceMb = 394/3690 ≈ 0.1. 851

The theoretical bandwidth would be 4.6 TB/s under 100% 852

URAM utilization. 853

VOLUME 10, 2022 94229

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

V. RESULTS854

In this sectionwe report the results measured running the FER855

benchmark on the U250, U50 and U280 Alveo cards.856

To measure the DP-FP peak computing performance we857

have run FER configured in dataflow mode (see Fig. 1,858

Listing 1 and Listing 3), using the FMA as main op operation,859

allowing for cross-architectural comparisons. For the off-chip860

memory bandwidths we have benchmarked both DDR4 and861

HBM2 where available, using again the dataflowmode, con-862

figuring the kernel for a low arithmetic intensity, to let it863

become memory-bound, while paying attention to exploit all864

the available memory channels on the different devices as865

shown in Fig. 4. To measure the on-chip URAM memory866

bandwidth, we have run FER configured in datalocal mode867

(see Fig. 2, Listing 2 and Listing 4), using as main op a single868

DP-FP addition, to reduce the arithmetic intensity to the869

lowest value of 1 FLOP per element, avoiding other resources870

than URAM to became limiting factors.871

A. DATAFLOW MODE872

On the Alveo U250, FER has measured a maximum compute873

performance of 444 GFLOP/s, using 83.18% of DSPs and874

69.6% of LUTs. This is ≈20% less than the value esti-875

mated by Eq. 9. The maximum DDR4 bandwidth achieved876

by FER is 71 GB/s, i.e., 17.75 GB/s per channel, corre-877

sponding to ≈99% of the bandwidth per channel measured878

by the Shuhai Verilog benchmark [26] and ≈92% of the879

total 77 GB/s maximum theoretical bandwidth. As a refer-880

ence, running on the U250 a highly optimized third-party881

HLS implementation of the compute-bound MMM (Matrix-882

Matrix-Multiplication) [51], computing 4 MMM in parallel,883

one kernel instance per SLR, we reached an aggregated per-884

formance of 327 GFLOP/s, as reported in Fig. 5.885

On the U50, FER has measured a maximum compute per-886

formance of 191 GFLOP/s, corresponding to a ≈26% lower887

performance than estimated by Eq. 12. This is most likely due888

to the need for SLL paths crossing SLR boundaries, which889

are required to reach HBM memory banks from SLR#1.890

A slightly higher performance (≈10%) could be reached891

using just 2 CUs, one per SLR, but with such configuration892

FER could not exploit all of the HBM memory channels. For893

the HBM2 bandwidth, a peak of 257 GB/s (9.17 GB/s per894

pseudo-channel) has been reported, corresponding to ≈81%895

of the 316 GB/s maximum declared bandwidth. Interestingly,896

in a recent third party article [52], the FER benchmark (being897

already released as Free Software), has been used to evaluate898

the performance on the Alveo U50 of the Gridding Kernel,899

used for the acceleration of radio-astronomical imaging. This900

third-party application reaches ≈90% of the single-precision901

FP performance measured by FER on this device.902

On the U280, FER has measured a maximum compute903

performance of 308GFLOP/s. This is≈78% of the value esti-904

mated by Eq. 14. The maximum DDR4 bandwidth achieved905

by FER is 35.6 GB/s, corresponding to ≈ 99% of the band-906

width measured by the Shuhai Verilog benchmark [26] and907

FIGURE 5. Empirical Roofline plot, showing DP-FP performance and both
on-chip and off-chip memory bandwidths, obtained by FER in dataflow
and datalocal modes, running on Xilinx Alveo cards. Points represents the
performance of DP-FP third-party applications.

≈94% of the total 38 GB/s maximum theoretical bandwidth. 908

For the HBM2 bandwidth, a peak of 407 GB/s (12.7 GB/s 909

per pseudo-channel) has been measured, corresponding to 910

≈96% of the bandwidth measured by the Shuhai [26] and 911

≈88% of the 460 GB/s maximum theoretical bandwidth. As a 912

reference, running MMM [51] on the U280, we reached a 913

performance of 210 GFLOP/s, as reported also in Fig. 5. 914

Moreover, on this device has been recently ported a C/HLS 915

version of HPCG [31], a memory-bound benchmark, able to 916

exploit both the HBMmemory channels and on-chip URAM 917

blocks. We show in Fig. 5 the point corresponding to its 918

computational intensity and performance, as reported in [31]. 919

B. DATALOCAL MODE 920

Running FER also in datalocal mode, we have been able to 921

add in the Roofline plots, reported in Fig. 5, the memory- 922

bound ceilings corresponding to URAMs on-chip bandwidth. 923

In particular, for the U250, FER reports a bandwidth of 924

4.22 TB/s, which is ≈14% lower than the 4.91 TB/s esti- 925

mated by Eq. 10. The synthesis achieved a maximum clock 926

frequency of 245 MHz instead of 300 MHz, although a 927

larger number (i.e., 90%) of the available URAM units have 928

been used. Trying to use more URAMs in the attempt to 929

further increase the bandwidth, leads to a not routable design. 930

Higher URAM utilization may be achieved performing non 931

FP operations, not involving the use of DSPs, and thus freeing 932

additional routing resources. 933

For the U50 the bandwidth achieved is 2.27 TB/s using 934

80% of the URAMs corresponding almost exactly to what 935

estimated by Eq. 13. In this case in fact, SSL path are used 936

just to load the URAMs and store the results, at the beginning 937

and at the end of the benchmark execution, thus their use does 938

not impact on the on-chip memory performance. 939

For the U280 the bandwidth achieved is 3.23 TB/s using 940

90% of the URAMs corresponding almost exactly to what 941

94230 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

FIGURE 6. Empirical Roofline plot, for DP-FP, obtained by FER on Xilinx
Alveo cards; for comparison, we also report the Roofline plots obtained
by the ERT benchmark on an Intel Skylake CPU and by an Arm optimized
version of ERT on a Marvell ThunderX2 CPU.

estimated by Eq. 16. Also in this case the use of SSL paths942

does not impact on the local memory performance.943

C. CROSS-ARCHITECTURAL COMPARISON944

Using the DP-FP FMAs as main mathematical operation, for945

which the floating point accuracy is granted to be compliant946

with the IEEE-754 standard [53], we can also use FER results947

to compare FPGAs with commodity processors.948

In Fig. 6 we compare the Roofline plots of U50, U250 and949

U280 FPGAs, with that of Intel Xeon Gold 6130 (based on950

Skylake micro-architecture) measured using the ERT bench-951

mark [22], and that of Marvell ThunderX2 CPU (based on the952

Arm v8-A architecture) measured using an optimized ERT953

version we have developed [48]. Both processors appeared on954

the market in the same time frame as the Alveo architecture.955

Aswe see, the computing performance of the U250 is approx-956

imately 20% higher than the ThunderX2 CPU and a factor957

2× lower than the Skylake CPU, whereas that of the U50 and958

the U280 are lower. Regarding the memory bandwidth, the959

U280 delivers approximately a factor 3.8× and 4.6× higher960

compared respectively to the ThunderX2 and Skylake.961

As alreadymentioned, measuring the performance in terms962

of the FP-DP FMA throughput is extremely favorable to963

CPUs, but we believe it to be interesting since, in the context964

of HPC, architectures are commonly compared using this965

metric. We also remark that on FPGAs any mix of FP-DP966

additions and multiplications would lead approximately to967

the same DP-FP performance peak, whereas on CPUs this968

can be achieved just using only FMA instructions, otherwise969

the performance could easily be halved.970

D. LOWER PRECISION DATA TYPES971

Besides using DP for the FMA operation, we have also run972

FER on the U250 using SP, half-precision (HP) and fixed-973

point precision, to highlight one of the main features offered974

by reconfigurable accelerators.975

FIGURE 7. Empirical Roofline plot, for different numerical precisions
(i.e., fixed-point; and floating-point in double- single- and half-
precision), obtained by FER on a Xilinx Alveo U250.

For the fixed-point FMA, we have arbitrarily selected data 976

types that maps efficiently onto the DSP48E2 units available 977

on these devices. In particular, in this case, FMA operations 978

are executed multiplying a 27-bit fixed-point operand by a 979

18-bit one, accumulating the result on another 27-bit one. For 980

27-bit operands we have used 15-bits for the integer part and 981

12-bits for the decimal one, whereas for 18-bit operands we 982

have used respectively 9-bits and 12-bits; anyhow, this choice 983

does not affect the computing performance achieved. 984

The results for the different data-types we have tested are 985

shown in Fig. 7. Highlighting that using fixed-point opera- 986

tions leads to a much higher performance, achieving a peak 987

value of approximately 2.7 TOP/s, almost doubling the HP 988

performance, and improving respectively by a factor 6.7× 989

and 2.7× the DP and SP ones. 990

E. DISCUSSION 991

In Tab. 1 we summarize the results measured by FER on 992

the three Alveo cards. It can be noticed that FER is able to 993

achieve almost the same off-chip bandwidths as reported by 994

the Shuhai benchmark [26], despite HLS is a higher level pro- 995

gramming language than Verilog. At the same time, FER is 996

able to reach a higher compute performance than the OpenCL 997

benchmarks cited in Sec. II, since HLS allows for lower level 998

optimizations than OpenCL. 999

Tab. 1 compares also empirical results with theoretical 1000

estimations, showing that FER reaches ≈80% of the perfor- 1001

mance estimated by Eq. 3, and an even higher fraction of 1002

the on-chip and off-chip theoretical bandwidths. The lower 1003

performance with respect to the theoretical estimations of 1004

Eq. 3 is due to the use of fimp and uRk values obtained from the 1005

Xilinx documentation of the devices, which result to be too 1006

optimistic compared to the real values measured empirically 1007

by the benchmark; in fact, as shown in Fig. 3 for the Alveo 1008

U250, the nominal frequency of 300 MHz can not be reached 1009

in practice, when a high fraction of resources is being used. 1010

As measured by FER, the clock frequencies reached are 1011

VOLUME 10, 2022 94231

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

TABLE 1. Comparison between theoretical estimations using Eq. 3, 4, 6
and empirical results measured by FER. Theoretical estimations assume
the nominal clock frequency of 300 MHz and utilization factors ≤70% for
LUTs and ≤80% for DSPs and URAMs.

respectively 242 MHz for the U250, 290 MHz for the U50,1012

and 273 MHz for the U280. Fig. 3 also highlights that using1013

as much resources as possible pays in terms of performance,1014

despite the lower frequency achieved. On the other hand, for1015

devices having an uneven distribution of resources between1016

SLRs and designs requiring the use of SLL paths, it may also1017

be difficult to reach the utilization factors mentioned in the1018

Xilinx documentation. In fact the maximum uRDSP reached1019

are respectively 83% for the U250, but 62% for the U50 and1020

70% for the U280. This explains the discrepancies with the1021

theoretical values, in fact using the values of fimp and uRk1022

measured by FER into Eq. 3 leads to the same performance1023

measured empirically.1024

Within the HPC community, there are currently few open1025

source C/HLS applications available, but some of them have1026

shown to nicely fit under the ceilings of the Roofline mea-1027

sured by FER. In particular, the compute-bound MMM [51]1028

reaches ≈80% of the peak performance measured by FER1029

on different cards; the Gridding Kernel, used for a radio-1030

astronomical imaging application [52], reaches ≈90% of the1031

SP peak performance measured by FER on the U50; and1032

also the reported performance of the memory-bound HPCG1033

benchmark [31] on the U280 lies between the HBM and the1034

URAM ceilings reported by FER on this device.1035

These applications have been reported in research papers as1036

success stories. However, we do not expect every application1037

to be able to get so close to the Roofline ceilings, since FER1038

provides only the performance upper-bound, highlighting1039

some of the limits that applications can face, but not all of1040

them. As an example, complex compute kernels can easily be1041

limited by routing congestion, strongly reducing the amount1042

of implementable hardware compute cores and consequently1043

the corresponding performance. In our experience, compute-1044

bound kernels can get quite close to the Roofline ceiling,1045

if their main compute kernel is made of simple loops, pos-1046

sibly nested, that could be easily pipelined and unrolled [17].1047

On the other hand, complex codes (e.g., involving lot of con-1048

ditional statements, complex dependencies, reduction opera-1049

tions, lot of partial results to be kept in memory, etc.), may hit1050

other performance limits.1051

Off-chip bandwidth peaks can be reached taking care of1052

using all of the available memory channels and of exploiting1053

their full bit-width. The same holds true for on-chip memo- 1054

ries, but in this case it could be more difficult for an actual 1055

application to reach the maximum bandwidth, in particular 1056

if several operations per element need to be applied. As an 1057

example, on the U250, FER in datalocal mode, using 90% 1058

of the URAMs and performing just 1 FLOP per element, 1059

required to use 29% of the available DSPs. For this reason 1060

we evaluated just the URAMs bandwidth, but not the BRAMs 1061

one. This could be done in principle, but the operation to be 1062

applied on each element should be elementary to avoid to hit 1063

other limits due to the lack of other resources. 1064

VI. CONCLUSION 1065

In this paper we have presented FER, a synthetic benchmark 1066

we developed using C/HLS, allowing to produce Roofline 1067

plots for FPGA-based accelerators, measuring their com- 1068

puting performance, as well as their on-chip and off-chip 1069

memory bandwidths. 1070

As described in Sec. III-A, a Roofline plot could be esti- 1071

mated by theoretical models, but to obtain realistic values, 1072

empirical parameters are needed, such as the maximum clock 1073

frequency and utilization factors for the different resources 1074

used in the design. The FER benchmark can be used to 1075

measure these parameters for a given architecture; to validate 1076

them if already available in the datasheets; or to directly 1077

measure the peak performance, and peakmemory bandwidths 1078

for off-chip and on-chip memories. 1079

In this paper we have described the theoretical model 1080

on which FER relies, we have presented its implementation 1081

details and we have highlighted the fact that third party appli- 1082

cations can reach a performance in line with FER predictions. 1083

Using FER we have also assessed the performance of three 1084

different Xilinx Alveo cards and compared it with the one 1085

measured by the ERT benchmark on two commodity CPU 1086

processors, based on different architectures. 1087

The collected results show that FP workloads with a high 1088

arithmetic intensity, can reach on FPGAs a performance in the 1089

same order of magnitude as the one on CPU processors. Thus 1090

in this context FPGAs can not stand yet the competition with 1091

GPUs. On the other hand, for workloads with a lower arith- 1092

metic intensity, FPGAs equipped with HBM memories can 1093

outperform CPUs, since their off-chip memory bandwidth is 1094

comparable with the ones of GPUs. It is also worth tomention 1095

that FPGA on-chip memories have a bandwidth in the same 1096

order as cache memories, but the former may allow for paral- 1097

lel accesses in any order, whereas the latter are organized in 1098

cache lines. This makes FPGAs particularly well suited for 1099

memory-bound kernels requiring complex memory accesses, 1100

being difficult to optimize on cache based architectures 1101

(e.g., performing complex stencil operations [54]). 1102

Moreover, using half-precision and fixed-point operations, 1103

FPGAs could outperform CPU processors also from the com- 1104

pute performance point of view. In fact, in this case the U250 1105

is able to deliver respectively up to 1.4 TF/s and 2.7 TOp/s, 1106

whereas the tested CPU architectures would not show any 1107

94232 VOLUME 10, 2022

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

performance benefit in using such low-precision math, over1108

their SP performance.1109

We expect that in the next future FPGAs will embed more1110

hardened FP cores, but we doubt that they will be able to1111

compete in this field with other accelerators, such as GPUs.1112

At the same time, we believe that the interest towards recon-1113

figurable hardware is increasing, favoring the use of FPGAs1114

where precision can be traded for performance [55]. This1115

requires to exploit new performance optimization strategies1116

for HPC applications adopting math with lower and cus-1117

tom precisions. As an example, in the context of machine1118

learning, the weights associated to graph nodes can be quan-1119

tized and reduced in precision without negative impacts on1120

results accuracy [56]. And the same approach has started1121

to be investigated also for more traditional HPC workloads1122

[57], [58], initially motivated by the availability of half-1123

precision hardware cores on GPUs [59], but possibly further1124

motivated in the next future by a wider availability of FPGA-1125

based accelerators.1126

As future works, we plan to port and run FER on other1127

FPGA-based accelerators. In fact, thanks to the C/HLS ker-1128

nel at its core, FER is easy to port across different frame-1129

works sharing similar directives, allowing to target also other1130

devices, such as Intel FPGAs [17]. Moreover, running FER1131

with more complex op we also aim to study the impact on1132

routing resources and investigate the conditions in which they1133

became a performance limiting factor, aiming to refine the1134

presented theoretical model accordingly.1135

ACKNOWLEDGMENT1136

The authors are extremely grateful to Prof. Raffaele Tripic-1137

cione or simply Lele, as he preferred to be called, for all the1138

thoughts he shared with us over the past years. He has been1139

all one could look for in a good mentor and friend. They1140

thank Dr. Aggelos D. Ioannou for his help with the HPCG1141

benchmark for FPGAs. They also acknowledge Xilinx and1142

ETH Zurich for providing access to the Alveo U280 cards1143

installed at the Xilinx Adaptive Computing Cluster (XACC).1144

REFERENCES1145

[1] Top500 Ranking. Accessed: Dec. 2021. [Online]. Available: https://www.1146

top500.org/1147

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,1148

J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, and1149

M. Haselman, ‘‘A reconfigurable fabric for accelerating large-scale data-1150

center services,’’ IEEE Micro, vol. 35, no. 3, pp. 10–22, May/Jun. 2015.1151

[3] G. Alonso and P. Bailis, ‘‘Research for practice: FPGAs in datacenters,’’1152

Commun. ACM, vol. 61, no. 9, pp. 48–49, Aug. 2018.1153

[4] A. Shawahna, S. M. Sait, and A. El-Maleh, ‘‘FPGA-based accelerators of1154

deep learning networks for learning and classification: A review,’’ IEEE1155

Access, vol. 7, pp. 7823–7859, 2019.1156

[5] J. Fowers, K. Ovtcharov, M. K. Papamichael, T. Massengill, M. Liu,1157

D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,1158

A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,1159

E. S. Chung, and D. Burger, ‘‘Inside project Brainwave’s cloud-scale, real-1160

time AI processor,’’ IEEE Micro, vol. 39, no. 3, pp. 20–28, May 2019.1161

[6] W. Vanderbauwhede and K. Benkrid,High-Performance Computing Using1162

FPGAs, vol. 3. Berlin, Germany: Springer, 2013.1163

[7] M. Véstias and H. Neto, ‘‘Trends of CPU, GPU and FPGA for high-1164

performance computing,’’ in Proc. 24th Int. Conf. Field Program. Log.1165

Appl. (FPL), Sep. 2014, pp. 1–6.1166

[8] F. A. Escobar, X. Chang, and C. Valderrama, ‘‘Suitability analysis of 1167

FPGAs for heterogeneous platforms in HPC,’’ IEEE Trans. Parallel Dis- 1168

trib. Syst., vol. 27, no. 2, pp. 600–612, Feb. 2016. 1169

[9] D. F. Bacon, R. Rabbah, and S. Shukla, ‘‘FPGA programming for the 1170

masses,’’ Commun. ACM, vol. 56, no. 4, pp. 56–63, Apr. 2013. 1171

[10] B. van Werkhoven, W. J. Palenstijn, and A. Sclocco, ‘‘Lessons learned in 1172

a decade of research software engineering GPU applications,’’ in Proc. 1173

ICCS. Cham: Springer, 2020, pp. 399–412. 1174

[11] F. Brosser, H. Y. Cheah, and S. A. Fahmy, ‘‘Iterative floating point compu- 1175

tation using FPGA DSP blocks,’’ in Proc. 23rd Int. Conf. Field Program. 1176

Log. Appl., Sep. 2013, pp. 1–6. 1177

[12] B. Ronak and S. A. Fahmy, ‘‘Mapping for maximum performance on 1178

FPGA DSP blocks,’’ IEEE Trans. Comput.-Aided Des. Integr. Circuits 1179

Syst., vol. 35, no. 4, pp. 573–585, Apr. 2016. 1180

[13] T. Vanevenhoven, ‘‘High-level implementation of bit- and cycle-accurate 1181

floating-point DSP algorithms with Xilinx FPGAs,’’ Xilinx, San Jose, CA, 1182

USA, White Paper 409, Oct. 2011. 1183

[14] BDT. (Feb. 2013). Floating-Point DSP Energy Efficiency on Altera 1184

28 nm FPGAs. Berkeley Design Technology. Independent Evaluation. 1185

[Online]. Available: http://www.altera.com/literature/wp/wp-01192-bdti- 1186

altera-fp-dsp-energy-efficiency.pdf 1187

[15] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka, 1188

‘‘Evaluating and optimizing OpenCL kernels for high performance com- 1189

puting with FPGAs,’’ in Proc. Int. Conf. High Perform. Comput., Netw., 1190

Storage Anal., Nov. 2016, pp. 409–420. 1191

[16] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, 1192

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey 1193

and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.- 1194

Aided Des. Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604, Oct. 2016. 1195

[17] J. D. F. Licht, M. Besta, S. Meierhans, and T. Hoefler, ‘‘Transformations of 1196

high-level synthesis codes for high-performance computing,’’ IEEE Trans. 1197

Parallel Distrib. Syst., vol. 32, no. 5, pp. 1014–1029, May 2021. 1198

[18] J. Bosch, X. Tan, A. Filgueras, M. Vidal, M. Mateu, D. Jimenez-Gonzalez, 1199

C. Alvarez, X. Martorell, E. Ayguade, and J. Labarta, ‘‘Application accel- 1200

eration on FPGAs with OmpSsFPGA,’’ in Proc. Int. Conf. Field-Program. 1201

Technol. (FPT), Dec. 2018, pp. 70–77. 1202

[19] R. Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, and 1203

T. Becker, ‘‘Performance estimation for exascale reconfigurable dataflow 1204

platforms,’’ in Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2018, 1205

pp. 314–317. 1206

[20] J. Lant, J. Navaridas, M. Lujan, and J. Goodacre, ‘‘Toward FPGA-based 1207

HPC: Advancing interconnect technologies,’’ IEEE Micro, vol. 40, no. 1, 1208

pp. 25–34, Jan. 2020. 1209

[21] E. Calore. (2020). FPGA Empirical Roofline. [Online]. Available: 1210

https://baltig.infn.it/EuroEXA/FER 1211

[22] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, 1212

N. J. Wright, M. W. Hall, and L. Oliker, ‘‘Roofline model toolkit: A prac- 1213

tical tool for architectural and program analysis,’’ in High Performance 1214

Computing Systems, Performance Modeling, Benchmarking, and Simu- 1215

lation, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Cham, 1216

Switzerland: Springer, 2015, pp. 129–148. 1217

[23] E. Calore and S. F. Schifano, ‘‘Performance assessment of FPGAs as HPC 1218

accelerators using the FPGA empirical roofline,’’ in Proc. 31st Int. Conf. 1219

Field-Program. Log. Appl. (FPL), Aug. 2021, pp. 83–90. 1220

[24] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and G. Alonso, 1221

‘‘High bandwidth memory on FPGAs: A data analytics perspective,’’ in 1222

Proc. 30th Int. Conf. Field-Program. Log. Appl. (FPL), Aug. 2020, pp. 1–8. 1223

[25] S. Williams, A. Waterman, and D. Patterson, ‘‘Roofline: An insightful 1224

visual performance model for multicore architectures,’’ Commun. ACM, 1225

vol. 52, no. 4, pp. 65–76, 2009. 1226

[26] Z. Wang, H. Huang, J. Zhang, and G. Alonso, ‘‘Shuhai: Benchmarking 1227

high bandwidth memory on FPGAS,’’ in Proc. IEEE 28th Annu. Int. Symp. 1228

Field-Program. CustomComput. Mach. (FCCM), May 2020, pp. 111–119. 1229

[27] S. W. Nabi and W. Vanderbauwhede, ‘‘MP-STREAM: A memory perfor- 1230

mance benchmark for design space exploration on heterogeneous HPC 1231

devices,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops 1232

(IPDPSW), May 2018, pp. 194–197. 1233

[28] H. R. Zohouri and S. Matsuoka, ‘‘The memory controller wall: Bench- 1234

marking the Intel FPGA SDK for OpenCL memory interface,’’ in Proc. 1235

IEEE/ACM Int. Workshop Heterogeneous High-Perform. Reconfigurable 1236

Comput., Nov. 2019, pp. 11–18. 1237

[29] Z. Jin, H. Finkel, K. Yoshii, and F. Cappello, ‘‘Evaluation of a floating- 1238

point intensive kernel on FPGA,’’ in Euro-Par Parallel Processing Work- 1239

shops. Cham, Switzerland: Springer, 2018, pp. 664–675. 1240

VOLUME 10, 2022 94233

E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

[30] M. Meyer, T. Kenter, and C. Plessl, ‘‘Evaluating FPGA accelerator perfor-1241

mance with a parameterized OpenCL adaptation of selected benchmarks1242

of the HPCChallenge benchmark suite,’’ in Proc. IEEE/ACM Int. Work-1243

shop Heterogeneous High-Perform. Reconfigurable Comput., Nov. 2020,1244

pp. 10–18.1245

[31] A. Zeni, K. O’Brien, M. Blott, and M. D. Santambrogio, ‘‘Optimized1246

implementation of the HPCG benchmark on reconfigurable hardware,’’1247

in Euro-Par Parallel Processing, L. Sousa, N. Roma, and P. Tomás, Eds.1248

Cham, Switzerland: Springer, 2021, pp. 616–630.1249

[32] K. Nagasu, K. Sano, F. Kono, and N. Nakasato, ‘‘FPGA-based tsunami1250

simulation: Performance comparison with GPUs, and roofline model for1251

scalability analysis,’’ J. Parallel Distrib. Comput., vol. 106, pp. 153–169,1252

Aug. 2017.1253

[33] B. D. Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi, ‘‘Performance1254

modeling for FPGAs: Extending the rooflinemodel with high-level synthe-1255

sis tools,’’ Int. J. Reconfigurable Comput., vol. 2013, pp. 1–10, Jan. 2013.1256

[34] M. Siracusa, L. D. Tucci, M. Rabozzi, S. Williams, E. D. Sozzo, and1257

M. D. Santambrogio, ‘‘A CAD-based methodology to optimize HLS code1258

via the roofline model,’’ in Proc. 39th Int. Conf. Comput.-Aided Design,1259

Nov. 2020, pp. 1–9.1260

[35] M. Siracusa, E. Del Sozzo,M. Rabozzi, L. Di Tucci, S.Williams, D. Sciuto,1261

and M. D. Santambrogio, ‘‘A comprehensive methodology to optimize1262

FPGA designs via the roofline model,’’ IEEE Trans. Comput., vol. 71,1263

no. 8, pp. 1903–1915, Aug. 2022.1264

[36] S.Muralidharan, K. O’Brien, andC. Lalanne, ‘‘A semi-automated tool flow1265

for roofline anaylsis of OpenCL kernels on accelerators,’’ in Proc. 1st Int.1266

Workshop Heterogeneous High-Perform. Reconfigurable Comput., 2015,1267

pp. 1–8.1268

[37] E. Calore and S. Schifano, ‘‘Energy-efficiency evaluation of FPGAs for1269

floating-point intensive workloads,’’ in Parallel Computing is Everywhere1270

(Advances in Parallel Computing), vol. 36. Amsterdam, The Netherlands:1271

IOS Press, 2020, pp. 555–564.1272

[38] T. Nguyen, S. Williams, M. Siracusa, C. MacLean, D. Doerfler, and1273

N. J. Wright, ‘‘The performance and energy efficiency potential of FPGAs1274

in scientific computing,’’ in Proc. IEEE/ACM Perform. Model., Bench-1275

marking Simul. High Perform. Comput. Syst. (PMBS), Nov. 2020,1276

pp. 8–19.1277

[39] T. Nguyen, C. MacLean, M. Siracusa, D. Doerfler, N. J. Wright, and1278

S. Williams, ‘‘FPGA-based HPC accelerators: An evaluation on per-1279

formance and energy efficiency,’’ Concurrency Comput., Pract. Exper.,1280

vol. 34, no. 20, p. e6570, Sep. 2022.1281

[40] J. M. de Haro, J. Bosch, A. Filgueras, M. Vidal, D. Jiménez-González,1282

C. Álvarez, X. Martorell, E. Ayguadé, and J. Labarta, ‘‘OmpSsFPGA1283

framework for high performance FPGA computing,’’ IEEE Trans. Com-1284

put., vol. 70, no. 12, pp. 2029–2042, Dec. 2021.1285

[41] J. D. McCalpin, ‘‘Memory bandwidth and machine balance in current high1286

performance computers,’’ IEEE Comput. Soc. Tech. Committee Comput.1287

Archit. (TCCA) Newslett., vol. 2, nos. 19–25, pp. 1–8, Dec. 1995.1288

[42] M. Parker, ‘‘Understanding peak floating-point performance claims,’’ Intel,1289

Santa Clara, CA, USA, White Paper 01222, 2017.1290

[43] C. Yang, T. Kurth, and S. Williams, ‘‘Hierarchical roofline analysis for1291

GPUs: Accelerating performance optimization for the NERSC-9 perlmut-1292

ter system,’’Concurrency Comput., Pract. Exper., vol. 32, no. 20, p. e5547,1293

Oct. 2020.1294

[44] Alveo Data Center Accelerator Card Platforms, UG1120, V1.2, Xilinx,1295

San Jose, CA, USA, Jun. 2020.1296

[45] Vitis Unified Software Platform Documentation, UG1393, V2020.1, Xil-1297

inx, San Jose, CA, USA, Aug. 2020.1298

[46] VivadoHLS. Accessed: Aug. 2020. [Online]. Available: https://www.1299

xilinx.com/products/design-tools/vivado/integration/esl-design.html1300

[47] UltraScale Architecture Memory Resources, UG573, V1.11, Xilinx, San1301

Jose, CA, USA, Aug. 2020.1302

[48] E. Calore, A. Gabbana, S. Schifano, and R. Tripiccione, ‘‘ThunderX21303

performance and energy-efficiency for HPC workloads,’’ Computation,1304

vol. 8, no. 1, p. 20, 2020.1305

[49] Performance and Resource Utilization for Floating-Point V7.1, Vivado1306

Design Suite Release 2020.1, Xilinx, San Jose, CA, USA, 2020.1307

[50] Alveo U50 Data Center AcceleratorCard Data Sheet, V1.7.1, Xilinx, San1308

Jose, CA, USA, Aug. 2020.1309

[51] J. D. F. Licht, G. Kwasniewski, and T. Hoefler, ‘‘Flexible communication1310

avoiding matrix multiplication on FPGA with high-level synthesis,’’ in1311

Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays. NewYork, NY,1312

USA, Feb. 2020, pp. 244–254.1313

[52] S. Corda, B. Veenboer, A. J. Awan, J. W. Romein, R. Jordans, A. Kumar, 1314

A.-J. Boonstra, and H. Corporaal, ‘‘Reduced-precision acceleration of 1315

radio-astronomical imaging on reconfigurable hardware,’’ IEEE Access, 1316

vol. 10, pp. 22819–22843, 2022. 1317

[53] Floating-Point Operator V7.1, Vivado Design Suite, Xilinx, San Jose, CA, 1318

USA, 2020. 1319

[54] E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, ‘‘Optimization 1320

of lattice Boltzmann simulations on heterogeneous computers,’’ Int. J. 1321

High Perform. Comput. Appl., vol. 33, no. 1, pp. 124–139, 2019. 1322

[55] U. I. Minhas, S. Bayliss, and G. A. Constantinides, ‘‘GPU vs FPGA: 1323

A comparative analysis for non-standard precision,’’ in Reconfigurable 1324

Computing: Architectures, Tools, and Applications (Lecture Notes in 1325

Computer Science), vol. 8405. Cham, Switzerland: Springer, 2014, 1326

pp. 298–305. 1327

[56] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and 1328

K. Nealis, ‘‘Exploration of low numeric precision deep learning inference 1329

using Intel FPGAs,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-Program. 1330

Custom Comput. Mach. (FCCM), Apr. 2018, pp. 73–80. 1331

[57] S. Cherubin, G. Agosta, I. Lasri, E. Rohou, and O. Sentieys, ‘‘Implica- 1332

tions of reduced-precision computations in HPC: Performance, energy 1333

and error,’’ in Parallel Computing is Everywhere (Advances in Parallel 1334

Computing), vol. 32. Amsterdam, Netherlands: IOS, 2018, pp. 297–306. 1335

[58] S. Cherubin and G. Agosta, ‘‘Tools for reduced precision computation: 1336

A survey,’’ ACM Comput. Surveys, vol. 53, no. 2, pp. 1–35, Apr. 2020. 1337

[59] A. Haidar, P. Wu, S. Tomov, and J. Dongarra, ‘‘Investigating half precision 1338

arithmetic to accelerate dense linear system solvers,’’ in Proc. 8th Work- 1339

shop Latest Adv. Scalable Algorithms Large-Scale Syst., 2017, pp. 1–8. 1340

ENRICO CALORE received the graduate degree 1341

in computer engineering from the University of 1342

Padua, Italy, in 2010, and the Ph.D. degree in com- 1343

puter science from the University of Milan, Italy, 1344

in 2014. He has been a Postdoctoral Researcher 1345

with the Italian National Institute of Nuclear 1346

Physics (INFN), as well as with the University 1347

of Ferrara, where he has also been an Adjunct 1348

Professor with the Mathematics and Computer 1349

Science Department. He is currently a Research 1350

Fellow with the University of Ferrara and INFN Associate. He is the author 1351

of more than 50 articles and conference papers. His research interests 1352

include HPC, parallel, and distributed computing; focusing in particular on 1353

scientific computing, parallel programming, performance engineering, and 1354

energy-efficiency. 1355

SEBASTIANO FABIO SCHIFANO received the 1356

degree in computer science from the University 1357

of Pisa, Italy. He spent the early scientific career 1358

at IEI-CNR and INFN. He is currently a Profes- 1359

sor with the University of Ferrara, Italy. He had 1360

a major role in several projects for the develop- 1361

ment of parallel systems optimized for Lattice 1362

Gauge Theory, fluid dynamics, and spin-glasses. 1363

In 2007, he was a coauthor of the QPACE Project 1364

to develop a massively parallel system based on 1365

IBM Cell-BE Processors, interconnected by a custom 3D-mesh network. 1366

From 2005 to 2010, he contributed to the design and development of the 1367

Janus systems and an array of FPGAs for spin-glass simulations. He is the 1368

author of more than 100 articles and conference papers. More recently, his 1369

research interests include the design and optimization of applications for 1370

multi- and many-core processor architectures. He was awarded as the Best 1371

Green500 System, from November 2009 to June 2010. 1372

1373

94234 VOLUME 10, 2022

