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ABSTRACT Nowadays, the use of hardware accelerators to boost the performance of HPC applications is
a consolidated practice, and among others, GPUs are by far the most widespread. More recently, some data
centers have successfully deployed also FPGA accelerated systems, especially to boost machine learning
inference algorithms. Given the growing use of machine learning methods in various computational fields,
and the increasing interest towards reconfigurable architectures, we may expect that in the near future FPGA
based accelerators will be more common in HPC systems, and that they could be exploited also to accelerate
general purpose HPC workloads. In view of this, tools able to benchmark FPGAs in the context of HPC are
necessary for code developers to estimate the performance of applications, as well as for computer architects
to model that of systems at scale. To fulfill these needs, we have developed FER (FPGA Empirical Roofline),
a benchmarking tool able to empirically measure the computing performance of FPGA based accelerators,
as well as the bandwidth of their on-chip and off-chip memories. FER measurements enable to draw Roofline
plots for FPGAs, allowing for performance comparisons with other processors, such as CPUs and GPUs,
and to estimate at the same time the performance upper-bounds that applications could achieve on a target
device. In this paper we describe the theoretical model on which FER relies, its implementation details, and
the results measured on Xilinx Alveo accelerator cards.

INDEX TERMS Accelerator, benchmark, FPGA, HPC, performance, roofline.

I. INTRODUCTION

In the context of HPC (High Performance Computing) sys-
tems the use of highly parallel hardware accelerators to boost
the performance of applications is nowadays a very common
option, adopted by a large and increasing share of HPC sys-
tems listed in the Top500 ranking [1]. In this sector, GPUs are
definitively the most common accelerators, whereas FPGAs
are hardly, or even not, used at all. Despite this, some data
centers have recently started to adopt FPGAs to speed-up
network interconnects [2], and specific workloads [3] such
as Machine Learning (ML) inference algorithms [4], [5].
Given the rapidly increasing use of ML methods in several
application fields, and the interest in reconfigurable architec-
tures, which is rising in the HPC community since several
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years [6], [7], [8], we may expect FPGAs to become a more
common option, as accelerators, for next generations of HPC
systems.

In the past, several reasons have prevented this. First,
FPGAs were not designed to provide high floating-point (FP)
computing performance [7], whereas typical HPC workloads
usually require double-precision (DP) and single-precision
(SP) FP computations. Secondly, FPGA programming could
be a very time consuming process, requiring the use of
specific hardware programming skills and the use of pro-
gramming languages not common among HPC developers
communities [9]. Thirdly, the code written for one FPGA
could hardly run across different devices without a com-
plete re-design, causing serious portability problems not
acceptable for a wide set of HPC applications, for which
even the porting to GPUs had been a long and suffered
process [10].
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However, more recently, these barriers started to fade
thanks to improvements in hardware architectures and pro-
gramming frameworks. In fact, latest generations of FPGAs
integrate thousands of programmable DSPs (Digital Sig-
nal Processors) able to implement SP- and DP-FP opera-
tions [11], [12], [13], and may also embed custom FP DSP
blocks. This is leading to devices able to reach a perfor-
mance in the same order of magnitude as commodity HPC
processors (i.e., TFLOP/s), and in some cases able to deliver
a better energy-efficiency [14], [15]. At the same time, the
recent improvements of synthesis tools, and the development
of new programming approaches such as HLS (High Level
Synthesis) [16], allow programmers to develop codes using
high level languages. As an example, OpenCL [15] could be
used, as well as plain C/C++ annotated with pragma direc-
tives to guide the compiler to automatically map the code onto
FPGA hardware resources [17]. These approaches are very
similar to those (e.g., OpenMP and OpenACC) commonly
used by HPC developers to target multi-core CPUs and other
accelerators, which are also able to guarantee a fair level of
code portability [18].

All the above improvements combined with the urging
quest for higher energy-efficiency and lower latency intercon-
nects in exascale HPC systems, are leading to a significant
increase in the interest towards heterogeneity and specialized
computing in the form of reconfigurable accelerators [19].
This makes the use of FPGAs very attractive as they allow
to scale-out resources by enabling distributed computing, and
can be programmed to be network-capable processors imple-
menting custom interconnects featuring low-latency commu-
nications without involving the CPU control [20].

First prototypes of FPGA accelerated HPC systems are
already being designed and deployed. One example is the
Alveo FPGA Cluster installed at ETH Zurich in the context
of the Xilinx Adaptive Compute Clusters (XACC) initia-
tive, using commodity hardware to support novel research
in adaptive compute acceleration for HPC. Another exam-
ple is the EU-H2020 EuroEXA Project, which has devel-
oped a HPC system prototype with custom hardware,
adopting FPGA based accelerators for both computing and
networking [20].

Consequently, as a future scenario we may expect next gen-
erations of HPC systems to be equipped with FPGA-based
accelerators, probably alongside other accelerators, such as
GPUs, being programmed with high level languages, possibly
based on pragma directives, allowing to address several kind
of different accelerators in a uniformed way [18].

In this context, application developers need to estimate the
performance achievable on target FPGAs, to decide whether
an application kernel is worth to be ported, or which FPGA
better fits its computing requirements. At the same time,
system architects and engineers need to estimate the perfor-
mance of a single FPGA, to feed performance models to tune,
balance and optimize the performance at system level [19].
These are in fact the needs that arose, for example, while
evaluating the performance of the EuroEXA FPGA-based
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accelerators and the optimization level of HPC applications
ported to its custom architecture.

To tackle these needs, we have developed FER (FPGA
Empirical Roofline), a benchmarking tool we have released
as Free Software [21]. FER is based on a similar principle as
ERT (Empirical Roofline Toolkit) [22], but it is specifically
designed to target FPGA based accelerators, using C/HLS,
to determine their hardware characteristics, allowing for the
Roofline analysis of their architectures. It is able to mea-
sure an empirical estimate of the peak compute performance
achievable on a given FPGA, as well as its on-chip and off-
chip memories bandwidth. The choice of C/HLS is strategic,
since it allows to measure performance upper-bounds using
the same high level programming approach that we expect
to be used by most HPC developers, thanks to its approach
based on pragma directives, but at the same time it allows for
fairly low level optimizations.

This work is an extension of our previous conference paper
where we presented a preliminary implementation of the
FER benchmark focusing only on measuring the compute
performance, and off-chip DDR (Double Data Rate) DRAM
bandwidth, of a Xilinx Alveo U250 [23]. Here, we present an
improved version of FER allowing to benchmark also on-chip
memories, providing a more comprehensive description of its
implementation details and of the theoretical model on which
it relies. Moreover, we also show how FER could be used
on accelerators embedding off-chip HBM (High Bandwidth
Memory) [24], running it also on the Xilinx Alveo U50 and
U280 data center cards, and show how close third party
application kernels can get to the performance upper-bound
measured by FER.

As far as we know, FER is the first tool, developed using a
pragma directives based high level programming paradigm,
able to benchmark FPGA based accelerators in the framework
of the Roofline Model [25], and the first able to take into
account also on-chip memories.

The rest of the paper is organized as follow: in the next
section we give an overview of related works; in Sec. III we
present the FER benchmark, including the theoretical model
on which it relies and its implementation details; in Sec. IV
we describe the FPGA based accelerators adopted; in Sec. V
we present the experimental results provided by FER, running
on such accelerators; and finally in Sec. VI we give our
concluding remarks.

Il. RELATED WORKS
Several research works have investigated FPGAs perfor-
mance when used as hardware accelerators, mostly using
synthetic benchmarks to estimate the bandwidth of off-chip
memories [26], [27], [28], and OpenCL kernels to measure
the FPGA computing performance [29], [30], [31]. However,
only few tools utilize the Roofline Model, and none assess
also the on-chip memories bandwidth.

In [26] is presented the Shuhai Verilog benchmark,
used to characterize the performance of HBM and DDR
off-chip memories embedded in the Xilinx Alveo U280.
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This benchmark is mainly meant to guide Verilog and VHDL
designers in the implementation of applications, and allows
also to make a fine low-level characterization of the off-chip
memory sub-systems. On the Alveo U280, it measures a
bandwidth of 425 GB/s and 36 GB/s, respectively for the
32-channels HBM and the 2-channels DDR4 memories.

In [30] is presented an OpenCL implementation of the
HPCChallenge Benchmark Suite, reporting the results for
different FPGAs. In particular, they show that on the Alveo
U280 the GEMM benchmark achieves a performance of
202.6 GFLOP/s in SP, using ~28% of the available DSPs,
whereas the STREAM benchmark achieves a bandwidth
of ~34.6 GB/s using the 2-channels DDR4 memory banks.

In [31] is reported a C/HLS implementation of the HPCG
Benchmark targeting FPGAs. Interestingly, in this case the
Roofline Model has been used, but only to assess the opti-
mization level of the specific application, with respect to
theoretical estimations.

In fact the Roofline Model has already been used in the
past to evaluate the performance of specific applications [32],
being ported to FPGAs. But few works provide a generic
application-independent extension of this model for these
architectures, mainly due to the difficulty in defining the
maximum compute performance for a reconfigurable device.

A first comprehensive work extending the Roofline Model
to FPGAs has been presented in [33], but the authors focus
mainly on aiding developers to explore the design space
options, moreover, not taking into account FP operations.
They estimate the expected performance of algorithms run
on FPGAs by evaluating the hardware resources required to
implement a single PE (Processing Element) of the specific
algorithm, and deriving the maximum number of PEs to fill
the device.

Building on the same principle, more recently, in [34] and
in its extended version [35], a semi-automated performance
optimization methodology based on the Roofline model for
FPGAs has been proposed. In this case the authors, aim for a
tool to explore the design space, whereas in our case we aim
to provide a benchmarking tool.

The first work proposing a methodology for the per-
formance analysis of FPGAs allowing to make Roofline
plots and cross-architectural comparisons, has been reported
in [36]. In this case, the authors use OpenCL as programming
language to provide mini-apps, such as SHOCLO, LINPACK
and STREAM, to measure the computing performance and
the memory bandwidth of the off-chip memory.

In [37] we have reported the first C/HLS benchmark tool
able to provide empirical Roofline plots for FPGAs. It is a
C kernel annotated with OmpSs @FPGA [18] pragmas direc-
tives, and it has been used to assess the FP performance of
the Xilinx ZU9 FPGA in the context of the EuroEXA Project.
Later, we have extended this initial tool porting it also to the
Xilinx Vitis workflow to allow for a wider adoption [23].

Also an OpenCL version of the ERT benchmark has been
reported to run on FPGAs in [38] and in its extension [39].
In these works the authors focus on the performance and
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energy-efficiency evaluation of two FPGAs. Roofline plots
are presented for an Intel Arria 10 FPGA and the Xilinx
Alveo U280, and for the latter they report for the SGEMM
and DGEMM kernels respectively ~ 500 and 150 GFLOP/s.
This research work is that with the most similar aims to ours.
The main differences are that FER adopts a directive based
C/HLS programming approach, focusing on a lower level
characterization, allowing to strictly correlate its results with
hardware resources by means of a theoretical model; and that
it takes into account also on-chip memories bandwidth.

The work we present here extends the above works in
several directions. We focus on application-agnostic perfor-
mance assessment of FPGA based accelerators, aiming to a
comprehensive machine characterization, allowing for cross-
architectural comparisons and for performance estimations
of generic HPC kernels on a given device. To this aim, FER
is able to measure both the computing peak performance of
FPGAs, and the bandwidths of on-chip and off-chip memo-
ries. It is based on the Roofline Model and it is implemented
having at its core a directives annotated C/HLS kernel, with
tunable operational intensity and hardware resources usage.
Moreover, it relies on a theoretical model aiming to strictly
link the performance results to the hardware resources. The
choice of C/HLS allows at the same time to expose to the
users low level fine tuning knobs, as well as to use a high-
level programming paradigm that can easily be used by the
HPC user community for development and porting. At the
moment FER has been used both with the proprietary Xilinx
Vitis workflow, as well as with OmpSs @FPGA [40].

Ill. THE FPGA EMPIRICAL ROOFLINE

The Roofline Model [25] is a visual performance model used
to provide performance upper bounds for compute kernels,
or more complex applications, when run on a target archi-
tecture. The most basic Roofline plot shows the maximum
computational performance (e.g., FLOP/s) achievable by an
application running on a specific processor as a function of
the application arithmetic intensity I = O/D, where O is
the number of operations performed (e.g., FLOPs), and D the
amount of data exchanged with memory (e.g., Bytes).

In general, each computing architecture is characterized
by a specific machine balance [41] M = C/B, where C is
the peak compute performance (e.g. the maximum theoretical
FLOP/s), and B is the peak memory bandwidth (e.g. the max-
imum theoretical Byte/s). The performance reached by an
application with arithmetic intensity /, running on a processor
with machine balance M, is then limited either by the peak
compute performance or by the peak memory bandwidth,
respectively if I is greater or lower than M. Kernels with
an arithmetic intensity lower than the machine balance are
said memory-bound for the specific processor architecture,
otherwise they are said compute-bound.

The Roofline plot for a specific processor architecture can
be drawn using its theoretical peak compute performance and
memory bandwidth, but real applications are commonly able
to exploit just a fraction of those values. For this reason,

VOLUME 10, 2022



E. Calore, S. F. Schifano: FER: A Benchmark for the Roofline Analysis of FPGA Based HPC Accelerators

IEEE Access

to have more realistic Roofline ceilings in the plot, it is useful
to exploit empirical values, measured running appropriate
benchmarks. For FPGAs this is even more important, given
that on these devices a theoretical estimation of the peak
performance can lead to values which are quite higher than
what could actually be achieved by real applications [42].

A first challenge in extending the Roofline Model to
FPGAs, is given by the difficulty to define their compute
performance before configuring them with a bitstream [33].
In fact, their peak performance strongly depends on the
operations being implemented and on how these operations
get mapped onto the hardware resources available in the
FPGA [34]. This impacts on the number of implementable
compute cores, as well as on the maximum clock frequency,
clearly affecting the theoretical peak performance.

Actually, due to the growing complexity of CPUs
and GPUs, also on these devices the theoretical com-
pute performance is not anymore so trivial to estimate.
In fact, according to the compute operations performed, and
the kind of resources exploited (e.g., vector instructions,
Fused-Multiply-Add instructions, etc.) different compute
performance peaks can be theoretically estimated, and also
empirically measured. Moreover, in recent processors also
the maximum reachable clock frequency depends on the type
of instructions being executed (e.g., if vector instructions are
used, or not), and additionally, it could also be lowered due
to thermal throttling. For these reasons, the Roofline Model
for CPUs and GPUs has been extended to take into account
different ceilings [43] for different sets of resources, and
software tools have been developed to measure empirically
these ceilings, such as the ERT benchmark [22].

For FPGAs, the higher degree of dimensions in the design
space, increases the complexity in dealing with the different
possible ceilings. Despite of this, focusing on the use of high
level synthesis tools, and with the help of a simple theoretical
model, we aim to show that the Roofline Model for FPGAs
can still be useful to understand their compute performance
and guide the optimization of HPC applications to exploit
them. In the following we first describe the theoretical model
on which the FER benchmark relies, and then we describe its
implementation.

A. THEORETICAL MODEL FOR FPGAs

To produce the Roofline plot for a target FPGA, we need to
estimate its machine balance M, = C/B, where C is the
peak computational performance, as operations per second,
and B the memory bandwidth, as bytes per second.

We can start to define the relation between C and the hard-
ware resources available in the FPGA. Assuming to imple-
ment a core performing the operation op (e.g., a FP addition),
which requires R,, hardware resources, and assuming that
R,y of these resources are available on the target FPGA:
the ratio R,,/R,p gives the number of multiple op-cores that
could be implemented on the device, potentially executing
the op operation in parallel. If each core can be operated
at a maximum clock frequency f,,, the corresponding peak
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theoretical compute performance C in op/s for the FPGA is:

C = Rev 1
—fopX(Rop)~ €))

This equation is valid under the assumption of using all FPGA
hardware resources to implement multiple instances of the
same computing core, each able to start to perform one new
op operation per clock cycle.

Since on FPGAs are commonly available different types of
resources, such as LUTs (Look Up Tables), FFs (Flip-Flops),
DSPs, etc., Eq. 1 can be extended to take into account all of
them as following:

C=f xmin(Rl‘;"> 2)
op s Rl;p s
where R];v is the amount of resources of type k, available on
the target FPGA, whereas Rf)p is the amount of resources of
type k used to implement the selected compute core.

In practice, it is slightly more complicated, since on recon-
figurable devices the same operation can be implemented
in several different ways, trading-off one resource type for
another. However, focusing only on using high level synthesis
tools, we may assume that common operations are imple-
mented using pre-defined RTL (Register Transfer Level)
cores picked from an IP (Intellectual Property) library, which
are placed and wired for the target FPGA by the synthesis
tool. As a consequence of this, the set of available cores
is limited, and the resource number R’;p used for each of
them is commonly available in the library documentation.
In practice, we rely on the same idea presented in [33], but
we adopt as a PE an elementary RTL core from the IP library,
performing an elementary operation (i.e., a FP addition, or a
FP multiplication), not related to any specific algorithm, but
commonly used by generic HPC kernels.

Theoretical models similar to that reported in Eq. 2, have
already been used by FPGA manufacturers to publicize their
devices peak performance, but some limitations should be
taken into account to get realistic results [42], especially when
large fractions of FPGA resources are used. In particular, the
assumption to be able to exploit all the available resources of
one specific type is rather optimistic, as well as the assump-
tion to reach, for an actual application, the maximum theoret-
ical clock frequency claimed by manufacturers for one single
RTL core.

A more accurate performance model should take into
account the implemented design clock frequency finp
achieved when many resources are in use, and a factor u < 1
for each resource corresponding to the fraction that can be
successfully placed and routed in real designs. This leads to
a slightly more complex model equation:

Rk
C:ﬁm,,xn}(in ]%XMRk . 3)

op

Implementation frequency and resource utilization factors,
introduced in Eq. 3, are dependent on FPGA architectures,
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synthesis tools, and the kind of operations to implement.
Consequently to obtain those values we can consider two
approaches. The first is to make empirical measurements
with specific benchmarks, such as FER. While the second,
is to use values provided by the hardware manufacturers,
which could be available in the documentation as recommen-
dations to avoid timing issues. Anyhow, the latter approach
can be applied only if such recommendations are available,
and anyway the former approach is the only viable one to
validate the latter. For example, in the case of Xilinx Alveo
cards, as will be discussed in Sec. IV, fi;,, could be set to
the nominal frequency or default frequency [44], cited in the
devices datasheet. While the different up could be set to the
recommended maximum resource utilization to avoid timing
closure issues, mentioned in [45].

The other quantity needed to compute the machine bal-
ance is the peak memory bandwidth B. FPGAs have on-chip
memories, such as Block-RAM (BRAM) and Ultra-RAM
(URAM), but they may also be connected to off-chip mem-
ories, such as DDR and/or HBM (High Bandwidth Memory)
banks. The Roofline plot can show different ceilings accord-
ing to the different memory levels usable by an application,
as commonly done for CPUs cache levels.

For on-chip memories the theoretical maximum bandwidth
can be estimated with a similar approach as for the peak
performance. Assuming that the clock frequency of the on-
chip memory is the same as that of the kernel, the bandwidth
can be computed as:

RAM
Bram :ﬁmp X Wiam % Rav X URRAM , “)

where W, is the bit-width of the on-chip memory banks
(e.g., BRAMs or URAMs), Rff‘f‘M is the amount of available
on-chip memory banks and ugzran is the maximum utilization
factor (i.e., ugram < 1). If the on-chip memory works at
a different clock frequency (e.g., Intel BRAMs can work
at twice the kernel frequency), fiup can be multiplied by a
constant and the equation is still valid. Interestingly enough,
keeping data in on-chip memories, M} becomes frequency
independent, corresponding to the ratio:

. Rk
ming ﬁ X Upk
op

Wiam X RfféM X URRAM

My, = )

On the other side, when using off-chip memories (such as
DDR or HBM), two different clock frequencies are actually
involved: f;,, corresponding to that of the user kernel; and
fext corresponding to the clock frequency of the off-chip
memory. The maximum bandwidth B,,; attained is then given
by the minimum between the on-chip and off-chip interfaces
bandwidths:

Bext = min(fimp X W x Ch, foxy X Weyr X Chey),  (6)

where W is the bit-width of the on-chip interface (e.g., an
AXT interface), and W,,, for the off-chip memory (e.g., DDR
or HBM), whereas Ch is the number of available on-chip
channels, and Ch,,; the off-chip ones. Different channels
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(e.g., multiple AXI interfaces) are commonly used to connect
to different memory banks.

B. FER IMPLEMENTATION

The first aim of the FER benchmark is to be able to measure
the peak compute performance, and max bandwidths of the
different memory levels, of a target FPGA-based architecture,
allowing to produce a Roofline plot. In addition, it also aims
to empirically establish realistic values for the maximum
implementation frequency fi,, and utilization factors ug, to
be used in Eq. 3.

The first version of FER has been implemented as a plain
C kernel decorated with Vivado HLS directives [46], and
managed using the OmpSs @FPGA [18], [40] programming
model, required to handle kernel launching and data move-
ments between host and device memories. Preliminary results
of this version have been reported in [37], running a single
instance of the FER kernel on the FPGA embedded in a Xilinx
Zynq ZU9 MPSoC. Later, the host-side of the benchmark has
been implemented also using the Xilinx Vitis workflow [23]
to manage kernel launches and data transfers, allowing for a
wider adoption and to target more FPGA devices.

The latest version of FER, with a significant set of new
features, is meant to have an user configurable computational
intensity /, applying one or more times a given op operation
to each of the elements of an input array, and writing for
each of them a corresponding output one in an output array.
FER can be configured to allocate a single or multiple CU
(Compute Unit) instances, each instance operating on a chunk
of the input buffer. This allows to easily map CUs on different
SLRs (Super Logic Regions) avoiding costly inter-region
long paths, and also to exploit different memory channels, if
available on the target FPGA.

The FER top-level kernel include three different functions,
two I/O functions to load and store data, and one compute
function to process it. The kernel can be configured to run
in two different ways, namely the dataflow and datalocal
modes. These are actually two different kernels that can be
used alternatively, providing the same interface. The former
is suitable to measure peak values reachable keeping data in
off-chip memories (e.g., on-board DDR or HBM memory
banks), whereas the latter keeping it in on-chip memories
(e.g., BRAM or URAM). In fact, to obtain the Roofline
ceilings corresponding to on-chip memory levels, as com-
monly done for CPU cache levels, in the case of FPGAs
it is required to explicitly program data movements to/from
on-chip memories, and thus different kernels are needed.

When FER runs in dataflow mode, see Fig. 1, the com-
putation is arranged as a task level pipeline defined by the
HLS dataflow pragma directive [17], as shown in Listing 1.
Each stage of this coarse pipeline is one of the three functions,
namely read (), computeDflow () and write (); and
data between stages is passed through FIFO queues inFifo
and outFifo, getting implemented on on-chip memories.
This allows to decouple I/O and compute functions, enabling
to execute each stage concurrently, overlapping computations
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DRAM
Bank
input buffer ‘ loutput buffer

SLR
Ccu
—_ —
read () write()
| 1
<+ L]
computeDflow ()

FIGURE 1. Schematic architecture of the FER Kernel for dataflow mode.
The kernel is divided in three task level pipeline stages, reading and
writing elements from the buffers stored onto the FPGA off-chip DRAM.
Data movements and computations are overlapped and FIFO buffers are
used to move data between input, compute and output stages.

void fer( const data_v *input, data_v =*output ) {
#pragma HLS interface ...
#pragma HLS dataflow
hls::stream<data_v> inFifo, outFifo;
#pragma HLS stream variable=inFifo
#pragma HLS stream variable=outFifo
read (input, inFifo);
computeDflow (inFifo, outFifo);
write (output, outFifo);

}

— O 000NN RN =

—_——

Listing 1. Organization of the main kernel function for dataflow mode.

and I/O operations, hiding the latency to access off-chip
memories.

Conversely, when FER runs in datalocal mode, see Fig. 2
and Listing 2, the three functions are executed in a serial
fashion. In this case, data are moved by I/O functions between
off-chip and on-chip memories and vice-versa, just once,
at the beginning and at the end of the kernel execution,
whereas the compute function is executed for several itera-
tions. This allows the compute function to operate only on
on-chip data, measuring the corresponding on-chip memories
bandwidth. Multiple iterations are performed to increase the
benchmark execution time and reliably measure it.

In both modes, I/0 functions read and write data elements
as SIMD (Single Instruction Multiple Data) vectors of length
V from/to off-chip memories. Consequently, V can be set to
select the optimal bit-width to fully utilize memory buses.
Burst operations are then used to move data between off-chip
and on-chip memories.

As shown in Listing 1, for the dataflow mode, SIMD
vectors are passed to the compute function through FIFOs,
whereas in Listing 2, for the datalocal mode, they are
passed trough local buffers. Such local buffers (see Listing 2,
Line 3-7), are explicitly requested to be implemented using
on-chip dual port memory blocks (in this case URAMs),
to allow for two reads/writes per clock cycle per memory
block. Actually, for the output local buffer a True Dual Port
(T2P) has to be requested (see Listing 2, Line 7), since the
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DRAM
Bank
input buffer | |output buffer
SLR
Cu URAM
=t==d in out sm==d
Load () ||| 5252 || S5y ||| store O
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1 IE— | S
T T
computeDlocal ()

FIGURE 2. Schematic architecture of the FER Kernel for datalocal mode.
In this case, load and store functions are run just once. The load function
load the input buffer onto on-chip memories (such as URAM); the
compute function reads and writes from/to on-chip memories for
multiple iterations, and eventually the store function save results on
external DRAM.

1

2 wvoid fer( const data_v xinput, data_v =*output ) {

3 data_v inLocal[DIM], outLocal[DIM];

4 #pragma HLS bind_storage variable=inLoc

5 type=RAM_2P impl=URAM

6 #pragma HLS bind_storage variable=outLoc

7 type=RAM_T2P impl=URAM

8 #pragma HLS array_partition variable=inLoc cyclic ...
9 #pragma HLS array_partition variable=outLoc cyclic ..
10 loadData (inLoc, input);

11 for ( int iter=0; iter < NITER; iter++ ) {

12 computeDlocal (inLoc, outLoc);

13 }

14 dumpData (outLoc, output);

Listing 2. Organization of the main kernel function for datalocal mode.

kernel will need to write in parallel, during the same clock
cycle, on the the two ports of each memory block. On the
other hand, for the input local buffer a Simple Dual Port (2P)
is enough (see Listing 2, Line 5) to read in parallel on the
two ports [47]. Then, both buffers need to be partitioned [17]
across multiple memory blocks (see Listing 2, Line 8-9),
to allow to read/write from/to the widest possible number of
memory blocks, during the same clock cycle, to reach the
maximum bandwidth.

The two compute functions, namely computeDf1low and
computeDlocal are outlined respectively in Listing 3, and
in Listing 4.

Concerning the computeDflow function, for the
dataflow mode, outlined in Listing 3, the outer loop at line 3
is pipelined with an Initiation Interval of 11, and this requires
the synthesis tool to automatically fully unroll the inner loops
(in fact unroll directives for inner loops could be omitted).
The loop at line 6 is horizontally unrolled [17] and thus
vectorized into SIMD operations reading vectors of V data
elements and applying the operation op () for O, times,
to each element of the SIMD vector. In fact, the loop at line
9 gets unrolled as well, translating into a chain of sequential
operations to be applied to each vector element.
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void computeDflow( hls::stream<data_v> &inFifo,
hls::stream<data_v> &outFifo ) {
for (1 = 0; 1 < DIM; i++) {
#pragma HLS pipeline II=IIc
data_v in = inFifo.read();
for (e = 0; e < V; e++) {
#pragma HLS unroll
data_t elem = in.elem[e];
for (o = 0; o < Oe; o++) {
10 #pragma HLS unroll
11 elem = op(elem);
12 }
13 out.elem[v] = elem;
14 }
15 outFifo.write (out);
16 }

O 00NN W=

Listing 3. Organization of the main compute function in dataflow mode.

The loop at line 3 is actually translated to a hardware SIMD
vector unit, able to start to process a new vector of V elements
every 1. clock cycles. The amount H, of cores implemented
in hardware is then given by (V x O,)/Il.. In particular,
with 7I. = 1 the vector unit starts processing a new SIMD
vector of width V at each clock cycle, whereas for II. > 1 a
fraction equal to 1 /11, of the SIMD vector length is processed
per cycle. In fact, for example, setting II. = 2 allows the
synthesis tool to implement the hardware cores needed to start
processing just half of a SIMD vector, at each clock cycle.
As HLS tools try to optimize also the resources utilization,
this translate to halving the hardware resources required.

The possibility to also set O,, and I, allows to config-
ure FER with any number of operations per element O,
(i.e., the Arithmetic Intensity), independently from the hard-
ware resources available on a target device. Clearly, configur-
ing FER with parameters leading to an H. greater than what
allowed by the available hardware resources will lead to a
not synthesizable configuration, but the user can increase /1,
to lower H., keeping O, high enough to match the desired
arithmetic intensity.

Once the three parameters are set, since C is limited by
the number of cores implementable in hardware, as shown in
Sec. ITI-A, the expected performance of each CU of the FER
benchmark is given by equation:

V x O,

C = H. =
fxH.=fx 1I,

)

Concerning the computeDlocal function, for the dat-
alocal mode, outlined in Listing 4, the rationale is similar,
apart from the facts that: in and out vectors are read/written
from/to local arrays allocated on on-chip memories; and the
width of the SIMD hardware unit which get implemented
is a multiple of V, as wide as the number of used memory
blocks allows. This is achieved by unrolling the loop at Line 6
in Listing 4, which automatically unroll all the inner loops,
letting wider SIMD vectors to be read/written during the same
clock cycle, using multiple on-chip memory blocks in paral-
lel. In particular to write concurrently on the two ports, of the
same memory block, it is needed to relieve the synthesis tool
to enforce the WAW (Write-After-Write) output dependence,
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1 void computeDlocal ( data_vx inLoc, data_vx outLoc ) {
2 for (i = 0; i < (DIM/MEM/V); i++) {

3 #pragma HLS pipeline II=IIc

4 #pragma HLS dependence variable=outLoc

5 inter WAW false

6 for (k = 0; k < MEM/V; k++) {

7 #pragma HLS unroll

8 J = i% (MEM/V) + k;

9 data_v in = input[i];

10 for (e = 0; e < V; e++) {

11 // Same as Listing 3, line 7-13
12 }

13 output [j] = out;

14 }
15 }
16}

Listing 4. Organization of the main compute function in datalocal mode.

with the pragma at Line 4, taking the responsibility for writing
at different addresses.

If RRAM is the maximum number of usable on-chip mem-
ory blocks, half would be used for the input and half for the
output buffer, but being dual port blocks, 2 elements can be
read/written to/from each block per clock cycle, thus a RFAM
elements wide SIMD hardware unit could be implemented,
operating on a new wide SIMD vector per clock cycle; assum-
ing the single vector element does not exceed the memory
block port width (e.g., 64-bit for Xilinx UltraScale+ URAM,
when ECC is enabled).

Consequently, also for the computeDlocal function,
for the datalocal mode, the same observations leading to
Eq. 7 hold true, apart from the fact that V should be replaced
by RFAM _ Anyhow, in this case the interest is not in C, but
towards the reachable on-chip memories bandwidth, which
can be directly computed using Eq. 4, when /I, = 1 in order
to process one SIMD vector per clock cycle. Given that com-
monly RR4M >3, V| the maximum number of implementable
H_ could easily be reached, thus in this case it is also desirable
to lower the operations per element (e.g., O, = 1) to contain
the final H,.

IV. EXPERIMENTAL SETUP

In the context of HPC, the peak performance of CPUs and
GPUs is commonly publicized using the DP-FP throughput,
usually derived from the number of FMA (Fused Multiply
Accumulate) instructions processed per second. For this rea-
son, we initially configured FER to use a DP FMA as its core
op operation, allowing for a direct comparison of its results
against the ones obtained with similar benchmarks [22], [48]
on commodity processors.

We remark that this is not the best option to show the
highest FP performance achievable by FPGAs, but it is indeed
for CPUs and GPUs, which are specifically designed and
optimized to excel in FP FMAs throughput. In fact, this is
commonly the only instruction accounting for two FLOPs
per clock cycle when executed on CPUs FP units, whereas
on most FPGAs its cost is approximately the same as an
addition plus a multiplication. On the other side, this also
translate to the fact that an actual FP intense application, when
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not able to exploit FMAs, could reach at most half of the
theoretical performance of an ordinary CPU, whereas it could
theoretically reach the maximum performance measured by
FER on a FPGA. In any case, FER can be easily configured to
perform different op operations, also with a different numer-
ical precision, as shown later.

In this work we have benchmarked different Xilinx Alveo
Accelerator Cards: the U250 offering the highest num-
ber of hardware resources among the Alveos; the US50,
a more recent board, with less resources compared to the
U250, but embedding HBM?2 high speed memory banks;
and the U280, offering more resources than U50, together
with both HBM2 and DRAM memory banks. The syn-
theses have been performed using the Xilinx Vitis version
2020.1, running on GNU/Linux CentOS 7 nodes of the
COKA cluster hosted at INFN and University of Ferrara.
Since Vitis allows for different synthesis and implemen-
tation strategies, we have selected those aiming to max-
imize the performance, and run multiple syntheses of
our code for each test we have performed. In particular,
we have used alternatively the Performance_EarlyBlock-
Placement, the Performance_ExploreWithRemap or the Per-
formance_WLBlockPlacementFanoutOpt strategies, targeting
a FPGA clock frequency from 300 MHz up to 600 MHz,
in steps of 50 MHz. All the results reported in the following
refer to those settings and clock frequencies giving the best
performance.

On the selected FPGAs, the Vitis synthesis tool imple-
ments FP operations using pre-defined RTL cores from a
software library [49], although just a subset of them can be
used when adopting high level synthesis [46]. In particu-
lar, in our case, the FMA operation is implemented using
separate addition and multiplication cores, and the hardware
resources they mostly utilize on the tested devices are DSPs
and LUTs.

In the following sections, we first estimate the comput-
ing performance and bandwidths for each card using the
theoretical models we have developed in Sec. III-A, and
then we present and discuss the empirical results reporting
our measurements achieved running the FER benchmark on
each FPGA.

A. THE ALVEO U250

The Alveo U250 is a PCle card embedding 4 x 16 GB
DDR4 memory banks, for a total of 64 GB of on-board
memory, and a XCU250 FPGA using Xilinx Stacked Silicon
Interconnect (SSI) technology. The SSI allows for increased
density by combining multiple physically separated Super
Logic Regions (SLRs), four in the case of the XCU250,
interconnected through Super Long Line (SLL) routes. How-
ever, the use of these connections should be limited to avoid
timing issues that may prevent to synthesize the design at a
high clock frequency. Therefore, the best strategy to fit FER
(as any other application if possible) onto this architecture is
to place 4 instances of the kernel, one per SLR, each using
one different memory bank.
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FIGURE 3. Maximum clock frequency (left axis) achieved synthesizing
FER for the Alveo U250 and the corresponding DP-FP performance (right
axis), as a function of the DSPs utilized by the implemented design.
Linear fit lines are shown over experimental points.

The XCU250 accounts for 1.728 - 10° LUTs and
12288 DSPs, and is divided into two logical parts named
static region and dynamic region. The first implements the
Shell or Platform [44] provided by Xilinx, allowing for PCIe
communications and bitstream loading into the FPGA, in the
dynamic region. The latter is then used to implement the
user designs. For the U250, we have used the U250 XDMA
201830_2 Platform, which leaves for the dynamic region
1.380 - 10° LUTSs and 11508 DSPs.

In [49] is reported the number of resources used to imple-
ment DP addition and multiplication cores on this FPGA
architecture, using this synthesis tool, and the corresponding
maximum frequency at which they may operate. From the dif-
ferent available cores we selected the default ones used by the
synthesis tool, which revealed to be also the best choice from
a theoretical point of view, given the resources available on
this device. For the addition operation are required: 616 LUTSs
and 3 DSPs, whereas for the multiplication: 172 LUTs and
8 DSPs. The maximum frequency at which both of the cores
can operate is 694 MHz. Using Eq. 2 we can then derive the
maximum number of FMAs we may fit into the FPGA and
estimate a theoretical performance value:

RLUT RDSP

_ . av av
C = x min RLUT | RLUT" gDSP | pDSP
add mul add mul

1.380 - 10° 11508
616 +172° 3+8

= 694 MHz x min <

= 726 - 10° FMA/s
— 1.45 TFLOP/s. 8)

As claimed in [42], this approach may lead to not realistic
values. In fact, synthesizing FER for the U250 using the esti-
mated maximum number of mul- and add-cores leads to a not
routable design. While, reducing the number of cores to allow
for a successful routing, clearly shows that the frequency of
694 MHz is not reachable.

To make this evident, we have synthesized FER multi-
ple times targeting the U250, for an increasing number of
FMAs cores, keeping the benchmark in the compute-bound
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region (i.e., the performance is never limited by the band-
width), up to fit as much as possible the hardware resources
with FMA cores. In Fig. 3 we report the clock frequency
achieved by our syntheses and the corresponding perfor-
mance as a function of the DSPs utilization, since this is
the main resource limiting the number of FMA cores that
can be implemented. As we see, to reach clock frequencies
significantly higher than 300 MHz less than 20% of the
available DSPs should be used, whereas using more than 80%
of DSPs rapidly leads to a not routable design. An interesting
result highlighted by Fig. 3 is that despite the lower frequency
reached, exploiting as much resources as possible pays in
terms of performance. Moreover, as shown by the fit, a linear
relation links the amount of used DSPs with the performance:
C &~ 5 X ugpse + 44. And when ugpsp > 15%, another
linear relation also links the amount of used DSPs with the
maximum reached frequency: fiy,, ~ —1.4 X ugpse + 354.

Interestingly, using the conservative values suggested by
Xilinx best practices for designers, namely a clock frequency
of 300 MHz and an utilization factor lower than 70% for
LUTs and 80% for DSPs [44], [45] (with respect to the total
amount of resources, not just the user available ones), Eq. 3
estimates a more realistic theoretical performance:

1.728 - 100 12288
x 0.8

616172 " 318
— 536 GFLOPYs, ©)

C = 300 MHz x min(

resulting approximately 20% higher with respect to the max-
imum performance we measured empirically with FER, and
reported in Fig. 3.

Concerning the on-chip memories, such as URAMs,
we can use a similar approach to estimate their maxi-
mum bandwidth. Using the conservative values suggested by
Xilinx best practices, in this case 300 MHz of clock frequency
and 80% as utilization factor, Eq. 4 gives:

Buram = 300 MHz x 64 bit x 2 x 1280 x 0.8
— 4.91 TB/s, (10)

where 1280 is the amount of available dual-port (thus we
multiply by 2 their number) URAMs. Each URAM block is
72 bits wide, but with ECC (Error Correction Code) enabled
it offers 64 bits wide protected data words. In this paper we
always consider ECC to be enabled. The maximum band-
width would be 6.1TB/s with a 100% utilization.
Concerning the off-chip memory bandwidth, assuming that
this is not limited by the user design, the maximum value
estimated by Eq. 6 for the 4 DDR4 banks results in:

Bair =2 x 1.2 GHz x 64 bit x 4
= 76.8 GBI/s. (11)
The 1.2 GHz clock frequency is multiplied by 2, since the
memory banks are DDR (i.e., Double Data Rate).
Off-chip memory is accessed from the programmable logic

through AXI interfaces that can be configured with a maxi-
mum bus width of 512 bits. Then, implementing a 512 bit
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interface for each of the 4 DDR4 banks and running at the
nominal frequency of 300 MHz we achieve a bandwidth of
0.3 GHz x 512 bit x 4 = 76.8 GB/s perfectly balancing that
of DDRs.

Having estimated the computing performance and the
memory bandwidths, it is possible to estimate the theoretical
machine balance for the U250, for DP-FP operations, and in
particular: M}, = 536/4910 ~ 0.1 when data are stored onto
on-chip URAM, whereas M;, = 536/76.8 ~ 7.0 when data
are stored onto off-chip DDR4 memory.

B. THE ALVEO U50

The Alveo U50 is a PCle card embedding 8 GB of HBM2
(High Bandwidth Memory v2) accessible through 32 pseudo-
channels and a XCUS50 FPGA featuring SSI technology.
With respect to the U250, the US0 provides less hardware
resources (i.e., 872 - 10° LUTs and 5952 DSPs), divided in
just two SLRs, but the HBM2 memory allows for a much
higher bandwidth compared to DDR. As shown in Fig. 4b,
only the SLR#0 is connected to the off-chip HBM2 memory
banks, and then in this case SLL routes can not be avoided
for accessing data from logic allocated in SLR#1. For the
U50 all tests have been performed with the U50 Gen3 x 16
XDMA 201920_3 Platform, leaving to the user 731-103 LUTSs
and 5340 DSPs in the dynamic region. Using Eq. 3, with
the default Platform frequency and recommended utilization
values by Xilinx (with respect to the total amount of hardware
resources), the expected performance is:

872103 5952
— %07, —=x0.8
616 + 172 348

= 260 GFLOP/s. (12)

To measure the HBM2 bandwidth we have allocated mul-
tiple kernel instances (i.e., multiple CUs) in order to use
the 28 (out of 32) memory pseudo-channels exploitable by
the user design with the current platform [44]. In particular,
we have used 14 CUs, each using two different pseudo-
channels, one for the input, and one for the output buffer. The
HBM2 peak bandwidth on this device is limited by the power
provided by the PCle rails (i.e., I0W for the memory), thus
being limited to 316 GB/s [50] out of the theoretical 460 GB/s
if all HBM2 channels could be used without power limits.
The theoretical machine balance for DP-FP operations when
reading data from the HBM2 is then M} = 260/316 ~ 0.82,
suitable for memory-bound applications with low arithmetic
intensity.

To estimate the URAM on-chip memory bandwidth, using
again the conservative values of 300 MHz for clock frequency
and 80% as URAM utilization factor, Eq. 4 gives for this
device:

C=300><min<

Buram = 300 MHz x 64 bit x 2 x 640 x 0.8
= 2.46 TB/s, (13)

where 640 is the number of available URAM units, resulting
in a machine balance M, = 260/2460 =~ 0.1. Theoretical
bandwidth would be 2.8 TB/s with 100% URAM utilization.
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FIGURE 4. Schematic views of the FER CUs allocation on: Alveo U250 (Fig. 4a), one CU per SLR; Alveo U50 (Fig. 4b), multiple CU per
SLR, to exploit all the available HBM memory pseudo-channels; Alveo U280 (Fig. 4c), one CU per SLR and Alveo U280 (Fig. 4d),
multiple CU per SLR, to exploit all the available HBM memory pseudo-channels.

C. THE ALVEO U280

The Alveo U280 is a PCle card embedding two HBM2 (High
Bandwidth Memory v2) stacks, of a total size of 8 GB, acces-
sible through 32 pseudo-channels; 32 GB of DDR memory;
and a XCU280 FPGA featuring SSI technology. The U280
provides a set of features which is a mix of the ones that could
be found in the U250 and the U50. It provides less hardware
resources (i.e., 1304 - 10° LUTs and 9024 DSPs), with respect
to the U250, but more than the U50. The programmable logic
is divided in 3 SLRs, and can access both HBM2 memory
banks, as well as ordinary DDR memory banks.

As shown in Fig. 4¢, on the U280, only SLR#0 and SLR#1
are connected to the 2 off-chip DDR memory banks, and
then in this case SLL routes can not be avoided for accessing
DDRs from logic allocated in SLR#2. On the other hand,
as shown in Fig. 4d, only the SLR#0 is connected to the off-
chip HBM2 memory banks, and then in this case SLL routes
can not be avoided for accessing data from logic allocated in
SLR#1 and SLR#2.

For the U280, all tests have been performed with the U280
XDMA 201920_3 Platform, leaving to the user 1069 - 103
LUTs and 8490 DSPs in the dynamic region. Using Eq. 3,
with the default Platform frequency and recommended uti-
lization values by Xilinx (with respect to the total amount of
hardware resources), the expected performance is:

1304 - 103 9024

C =300 xmin " x 0.7, % 0.8
Xmm<616+172X 318" )
— 394 GFLOPYS. (14)

VOLUME 10, 2022

To measure the HBM2 bandwidth we have allocated mul-
tiple kernel instances (i.e., multiple CUs) in order to use all
of the 32 memory pseudo-channels (16 per stack) exploitable
by the user, as shown in Fig. 4d. In particular, we have used
16 CUs, each using two different pseudo-channels, one for
the input, and one for the output buffer. The HBM2 peak
bandwidth on this device is not limited by the power (as for
the U50), thus its theoretical bandwidth, can be estimated
by Eq. 6:

Bnpm = 2 x 0.9 GHz x 64 bit x 32
= 460 GB/s. (15)

The theoretical machine balance for DP-FP operations
when reading data from the HBM2 is then M}, = 394/460 ~
0.86, suitable for memory-bound applications with low arith-
metic intensity.

To estimate the URAM on-chip memory bandwidth, using
again the conservative values of 300 MHz for clock frequency
and 80% as URAM utilization factor, Eq. 4 gives for this
device:

Buram = 300 MHz x 64 bit x 2 x 960 x 0.8
= 3.69 TB/s, (16)

where 960 is the number of available URAM units (320 per
SLR), resulting in a machine balance Mj;, = 394/3690 ~ 0.1.
The theoretical bandwidth would be 4.6 TB/s under 100%
URAM utilization.
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V. RESULTS
In this section we report the results measured running the FER
benchmark on the U250, U50 and U280 Alveo cards.

To measure the DP-FP peak computing performance we
have run FER configured in dataflow mode (see Fig. 1,
Listing 1 and Listing 3), using the FMA as main op operation,
allowing for cross-architectural comparisons. For the off-chip
memory bandwidths we have benchmarked both DDR4 and
HBM2 where available, using again the dataflow mode, con-
figuring the kernel for a low arithmetic intensity, to let it
become memory-bound, while paying attention to exploit all
the available memory channels on the different devices as
shown in Fig. 4. To measure the on-chip URAM memory
bandwidth, we have run FER configured in datalocal mode
(see Fig. 2, Listing 2 and Listing 4), using as main op a single
DP-FP addition, to reduce the arithmetic intensity to the
lowest value of 1 FLOP per element, avoiding other resources
than URAM to became limiting factors.

A. DATAFLOW MODE

On the Alveo U250, FER has measured a maximum compute
performance of 444 GFLOP/s, using 83.18% of DSPs and
69.6% of LUTs. This is ~20% less than the value esti-
mated by Eq. 9. The maximum DDR4 bandwidth achieved
by FER is 71 GB/s, i.e., 17.75 GB/s per channel, corre-
sponding to ~99% of the bandwidth per channel measured
by the Shuhai Verilog benchmark [26] and ~92% of the
total 77 GB/s maximum theoretical bandwidth. As a refer-
ence, running on the U250 a highly optimized third-party
HLS implementation of the compute-bound MMM (Matrix-
Matrix-Multiplication) [51], computing 4 MMM in parallel,
one kernel instance per SLR, we reached an aggregated per-
formance of 327 GFLOP/s, as reported in Fig. 5.

On the U50, FER has measured a maximum compute per-
formance of 191 GFLOP/s, corresponding to a ~26% lower
performance than estimated by Eq. 12. This is most likely due
to the need for SLL paths crossing SLR boundaries, which
are required to reach HBM memory banks from SLR#1.
A slightly higher performance (*10%) could be reached
using just 2 CUs, one per SLR, but with such configuration
FER could not exploit all of the HBM memory channels. For
the HBM2 bandwidth, a peak of 257 GB/s (9.17 GB/s per
pseudo-channel) has been reported, corresponding to ~81%
of the 316 GB/s maximum declared bandwidth. Interestingly,
in a recent third party article [52], the FER benchmark (being
already released as Free Software), has been used to evaluate
the performance on the Alveo U50 of the Gridding Kernel,
used for the acceleration of radio-astronomical imaging. This
third-party application reaches ~90% of the single-precision
FP performance measured by FER on this device.

On the U280, FER has measured a maximum compute
performance of 308 GFLOP/s. This is &78% of the value esti-
mated by Eq. 14. The maximum DDR4 bandwidth achieved
by FER is 35.6 GB/s, corresponding to & 99% of the band-
width measured by the Shuhai Verilog benchmark [26] and
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FIGURE 5. Empirical Roofline plot, showing DP-FP performance and both
on-chip and off-chip memory bandwidths, obtained by FER in dataflow
and datalocal modes, running on Xilinx Alveo cards. Points represents the
performance of DP-FP third-party applications.

~94% of the total 38 GB/s maximum theoretical bandwidth.
For the HBM2 bandwidth, a peak of 407 GB/s (12.7 GB/s
per pseudo-channel) has been measured, corresponding to
~96% of the bandwidth measured by the Shuhai [26] and
~88% of the 460 GB/s maximum theoretical bandwidth. As a
reference, running MMM [51] on the U280, we reached a
performance of 210 GFLOP/s, as reported also in Fig. 5.
Moreover, on this device has been recently ported a C/HLS
version of HPCG [31], a memory-bound benchmark, able to
exploit both the HBM memory channels and on-chip URAM
blocks. We show in Fig. 5 the point corresponding to its
computational intensity and performance, as reported in [31].

B. DATALOCAL MODE

Running FER also in datalocal mode, we have been able to
add in the Roofline plots, reported in Fig. 5, the memory-
bound ceilings corresponding to URAMs on-chip bandwidth.

In particular, for the U250, FER reports a bandwidth of
4.22 TB/s, which is ~14% lower than the 4.91 TB/s esti-
mated by Eq. 10. The synthesis achieved a maximum clock
frequency of 245 MHz instead of 300 MHz, although a
larger number (i.e., 90%) of the available URAM units have
been used. Trying to use more URAMs in the attempt to
further increase the bandwidth, leads to a not routable design.
Higher URAM utilization may be achieved performing non
FP operations, not involving the use of DSPs, and thus freeing
additional routing resources.

For the U50 the bandwidth achieved is 2.27 TB/s using
80% of the URAMs corresponding almost exactly to what
estimated by Eq. 13. In this case in fact, SSL path are used
just to load the URAMs and store the results, at the beginning
and at the end of the benchmark execution, thus their use does
not impact on the on-chip memory performance.

For the U280 the bandwidth achieved is 3.23 TB/s using
90% of the URAMs corresponding almost exactly to what
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FIGURE 6. Empirical Roofline plot, for DP-FP, obtained by FER on Xilinx
Alveo cards; for comparison, we also report the Roofline plots obtained
by the ERT benchmark on an Intel Skylake CPU and by an Arm optimized
version of ERT on a Marvell ThunderX2 CPU.

estimated by Eq. 16. Also in this case the use of SSL paths
does not impact on the local memory performance.

C. CROSS-ARCHITECTURAL COMPARISON

Using the DP-FP FMAs as main mathematical operation, for
which the floating point accuracy is granted to be compliant
with the IEEE-754 standard [53], we can also use FER results
to compare FPGAs with commodity processors.

In Fig. 6 we compare the Roofline plots of U50, U250 and
U280 FPGAs, with that of Intel Xeon Gold 6130 (based on
Skylake micro-architecture) measured using the ERT bench-
mark [22], and that of Marvell ThunderX2 CPU (based on the
Arm v8-A architecture) measured using an optimized ERT
version we have developed [48]. Both processors appeared on
the market in the same time frame as the Alveo architecture.
As we see, the computing performance of the U250 is approx-
imately 20% higher than the ThunderX2 CPU and a factor
2x lower than the Skylake CPU, whereas that of the U50 and
the U280 are lower. Regarding the memory bandwidth, the
U280 delivers approximately a factor 3.8 x and 4.6x higher
compared respectively to the ThunderX?2 and Skylake.

As already mentioned, measuring the performance in terms
of the FP-DP FMA throughput is extremely favorable to
CPUs, but we believe it to be interesting since, in the context
of HPC, architectures are commonly compared using this
metric. We also remark that on FPGAs any mix of FP-DP
additions and multiplications would lead approximately to
the same DP-FP performance peak, whereas on CPUs this
can be achieved just using only FMA instructions, otherwise
the performance could easily be halved.

D. LOWER PRECISION DATA TYPES

Besides using DP for the FMA operation, we have also run
FER on the U250 using SP, half-precision (HP) and fixed-
point precision, to highlight one of the main features offered
by reconfigurable accelerators.
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FIGURE 7. Empirical Roofline plot, for different numerical precisions
(i.e., fixed-point; and floating-point in double- single- and half-
precision), obtained by FER on a Xilinx Alveo U250.

For the fixed-point FMA, we have arbitrarily selected data
types that maps efficiently onto the DSP48E2 units available
on these devices. In particular, in this case, FMA operations
are executed multiplying a 27-bit fixed-point operand by a
18-bit one, accumulating the result on another 27-bit one. For
27-bit operands we have used 15-bits for the integer part and
12-bits for the decimal one, whereas for 18-bit operands we
have used respectively 9-bits and 12-bits; anyhow, this choice
does not affect the computing performance achieved.

The results for the different data-types we have tested are
shown in Fig. 7. Highlighting that using fixed-point opera-
tions leads to a much higher performance, achieving a peak
value of approximately 2.7 TOP/s, almost doubling the HP
performance, and improving respectively by a factor 6.7 x
and 2.7x the DP and SP ones.

E. DISCUSSION

In Tab. 1 we summarize the results measured by FER on
the three Alveo cards. It can be noticed that FER is able to
achieve almost the same off-chip bandwidths as reported by
the Shuhai benchmark [26], despite HLS is a higher level pro-
gramming language than Verilog. At the same time, FER is
able to reach a higher compute performance than the OpenCL
benchmarks cited in Sec. II, since HLS allows for lower level
optimizations than OpenCL.

Tab. 1 compares also empirical results with theoretical
estimations, showing that FER reaches ~80% of the perfor-
mance estimated by Eq. 3, and an even higher fraction of
the on-chip and off-chip theoretical bandwidths. The lower
performance with respect to the theoretical estimations of
Eq. 3is due to the use of fj;, and ug« values obtained from the
Xilinx documentation of the devices, which result to be too
optimistic compared to the real values measured empirically
by the benchmark; in fact, as shown in Fig. 3 for the Alveo
U250, the nominal frequency of 300 MHz can not be reached
in practice, when a high fraction of resources is being used.
As measured by FER, the clock frequencies reached are
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TABLE 1. Comparison between theoretical estimations using Eq. 3, 4, 6
and empirical results measured by FER. Theoretical estimations assume
the nominal clock frequency of 300 MHz and utilization factors <70% for
LUTs and <80% for DSPs and URAMs.

U250 Us0 U280
Theor. FER | Theor. FER | Theor. FER
DP Perf. [GF/s] 536 444 | 260 191 | 394 308
URAM [TB/s] 491 4.22 2.46 2.27 3.69 3.23
HBM [GB/s] - - 3162 257 460 407
DDR [GB/s] 77 71 - - 38 36

2 Alveo U50 HBM theoretical bandwidth can not be computed using
Eq. 6, since it is limited by the memory power drain (i.e., 10 Watt) [50].

respectively 242 MHz for the U250, 290 MHz for the U50,
and 273 MHz for the U280. Fig. 3 also highlights that using
as much resources as possible pays in terms of performance,
despite the lower frequency achieved. On the other hand, for
devices having an uneven distribution of resources between
SLRs and designs requiring the use of SLL paths, it may also
be difficult to reach the utilization factors mentioned in the
Xilinx documentation. In fact the maximum ugpse reached
are respectively 83% for the U250, but 62% for the US0 and
70% for the U280. This explains the discrepancies with the
theoretical values, in fact using the values of fj,, and ug«
measured by FER into Eq. 3 leads to the same performance
measured empirically.

Within the HPC community, there are currently few open
source C/HLS applications available, but some of them have
shown to nicely fit under the ceilings of the Roofline mea-
sured by FER. In particular, the compute-bound MMM [51]
reaches ~80% of the peak performance measured by FER
on different cards; the Gridding Kernel, used for a radio-
astronomical imaging application [52], reaches ~90% of the
SP peak performance measured by FER on the U50; and
also the reported performance of the memory-bound HPCG
benchmark [31] on the U280 lies between the HBM and the
URAM ceilings reported by FER on this device.

These applications have been reported in research papers as
success stories. However, we do not expect every application
to be able to get so close to the Roofline ceilings, since FER
provides only the performance upper-bound, highlighting
some of the limits that applications can face, but not all of
them. As an example, complex compute kernels can easily be
limited by routing congestion, strongly reducing the amount
of implementable hardware compute cores and consequently
the corresponding performance. In our experience, compute-
bound kernels can get quite close to the Roofline ceiling,
if their main compute kernel is made of simple loops, pos-
sibly nested, that could be easily pipelined and unrolled [17].
On the other hand, complex codes (e.g., involving lot of con-
ditional statements, complex dependencies, reduction opera-
tions, lot of partial results to be kept in memory, etc.), may hit
other performance limits.

Off-chip bandwidth peaks can be reached taking care of
using all of the available memory channels and of exploiting
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their full bit-width. The same holds true for on-chip memo-
ries, but in this case it could be more difficult for an actual
application to reach the maximum bandwidth, in particular
if several operations per element need to be applied. As an
example, on the U250, FER in datalocal mode, using 90%
of the URAMs and performing just 1 FLOP per element,
required to use 29% of the available DSPs. For this reason
we evaluated just the URAMSs bandwidth, but not the BRAMSs
one. This could be done in principle, but the operation to be
applied on each element should be elementary to avoid to hit
other limits due to the lack of other resources.

VI. CONCLUSION

In this paper we have presented FER, a synthetic benchmark
we developed using C/HLS, allowing to produce Roofline
plots for FPGA-based accelerators, measuring their com-
puting performance, as well as their on-chip and off-chip
memory bandwidths.

As described in Sec. III-A, a Roofline plot could be esti-
mated by theoretical models, but to obtain realistic values,
empirical parameters are needed, such as the maximum clock
frequency and utilization factors for the different resources
used in the design. The FER benchmark can be used to
measure these parameters for a given architecture; to validate
them if already available in the datasheets; or to directly
measure the peak performance, and peak memory bandwidths
for off-chip and on-chip memories.

In this paper we have described the theoretical model
on which FER relies, we have presented its implementation
details and we have highlighted the fact that third party appli-
cations can reach a performance in line with FER predictions.
Using FER we have also assessed the performance of three
different Xilinx Alveo cards and compared it with the one
measured by the ERT benchmark on two commodity CPU
processors, based on different architectures.

The collected results show that FP workloads with a high
arithmetic intensity, can reach on FPGAs a performance in the
same order of magnitude as the one on CPU processors. Thus
in this context FPGAs can not stand yet the competition with
GPUs. On the other hand, for workloads with a lower arith-
metic intensity, FPGAs equipped with HBM memories can
outperform CPUs, since their off-chip memory bandwidth is
comparable with the ones of GPUs. It is also worth to mention
that FPGA on-chip memories have a bandwidth in the same
order as cache memories, but the former may allow for paral-
lel accesses in any order, whereas the latter are organized in
cache lines. This makes FPGAs particularly well suited for
memory-bound kernels requiring complex memory accesses,
being difficult to optimize on cache based architectures
(e.g., performing complex stencil operations [54]).

Moreover, using half-precision and fixed-point operations,
FPGAs could outperform CPU processors also from the com-
pute performance point of view. In fact, in this case the U250
is able to deliver respectively up to 1.4 TF/s and 2.7 TOp/s,
whereas the tested CPU architectures would not show any
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performance benefit in using such low-precision math, over
their SP performance.

We expect that in the next future FPGAs will embed more
hardened FP cores, but we doubt that they will be able to
compete in this field with other accelerators, such as GPUs.
At the same time, we believe that the interest towards recon-
figurable hardware is increasing, favoring the use of FPGAs
where precision can be traded for performance [55]. This
requires to exploit new performance optimization strategies
for HPC applications adopting math with lower and cus-
tom precisions. As an example, in the context of machine
learning, the weights associated to graph nodes can be quan-
tized and reduced in precision without negative impacts on
results accuracy [56]. And the same approach has started
to be investigated also for more traditional HPC workloads
[57], [58], initially motivated by the availability of half-
precision hardware cores on GPUs [59], but possibly further
motivated in the next future by a wider availability of FPGA-
based accelerators.

As future works, we plan to port and run FER on other
FPGA-based accelerators. In fact, thanks to the C/HLS ker-
nel at its core, FER is easy to port across different frame-
works sharing similar directives, allowing to target also other
devices, such as Intel FPGAs [17]. Moreover, running FER
with more complex op we also aim to study the impact on
routing resources and investigate the conditions in which they
became a performance limiting factor, aiming to refine the
presented theoretical model accordingly.
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