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ABSTRACT This paper presents a multivariate time series prediction framework based on a transformer
model consisting of convolutional neural networks (CNNs). The proposed model has a structure that extracts
temporal features of input data through CNN and interprets correlations between variables through an atten-
tion mechanism. This framework solves the problem of the inability to simultaneously analyze the temporal
features of the input data and the correlation between variables, which is a limitation of the forecasting models
presented in existing studies. We designed a forecasting experiment using several time series datasets with
various data characteristics to precisely evaluate the proposed model. In addition, comparative experiments
were performed between the proposed model and several predictive models proposed in recent studies.
Furthermore, we conducted ablation studies on the extent to which the proposed CNN structure in the
prediction model affects the forecasting results by substituting a specific layer of the model. The results
of the experiments showed that the proposed predictive model exhibited good performance in predicting
time series data with a clear cycle and high correlation between variables, and improved the accuracy by

approximately 3% to 5% compared with that of previous studies’ time series prediction models.

INDEX TERMS Artificial neural networks, predictive models, time series prediction.

I. INTRODUCTION
A multivariate time series is sequential data with values of
several variables at a regular time unit. Multivariate time
series prediction refers to predicting multiple variables at
a future point in time after a certain period based on mul-
tivariate time series data in a specific period. This subject
has been actively studied because it can be applied to vari-
ous fields. Precisely forecasting variables can influence the
decision-making process and strategy establishment in vari-
ous applications such as manufacturing [1], medical field [2],
tourism [3], and transportation [4]. Therefore, it is crucial to
design a framework that efficiently and accurately forecasts
future variables.

With the development of Al-based forecasting methods,
recent studies have presented a time series prediction frame-
work with deep learning models. Researches on designing a
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time series predictive model using recursive models such as
recurrent neural network [5] (RNN), long-short term memory
(LSTM) [6], and gated recurrent units (GRU) [7] are predomi-
nant. Recent studies have proposed the transformer model [8]
for a time series prediction task to solve the long-term
dependency problem and parallel operation limitations of
the recursive models. These deep learning models are supe-
rior to conventional regression models and machine learning
methods.

Although deep learning-based models show good predic-
tion results, there are structural limitations for directly apply-
ing these models to multivariate time series prediction. First,
neural network models used in previous studies have special-
ized structures enabling them to process a single sequence.
Early studies using deep learning models mainly compose a
multivariate time series prediction framework with a structure
in which the same neural networks are collocated in paral-
lel in as many as the number of variables. Recent studies
have designed models to deal with these problems, but they
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cannot simultaneously extract correlations between variables
and time-domain features. In addition, multivariate time
series data have immense input sizes compared with single
time series data, and models in existing studies do not have
structures for compressing this massive amount of informa-
tion. This problem appears as an overfitting or long compu-
tation time problem. In a time series prediction task, where
the input’s longer time-axis data affect the prediction accu-
racy, increasing the receptive field range with an information
compression procedure is essential.

In this study, we propose a convolutional transformer
model to handle the limitations of existing time series pre-
dictive models. The proposed model has a transformer struc-
ture [8] with convolutional neural networks (CNN). The
encoder and decoder in the transformer model are com-
posed of a self-attention layer, point-wise CNN layer, and
one-dimensional CNN layer. The encoder extracts the com-
pressed spatiotemporal features from the given multivariate
time series data by combining referred constituent layers.
The prediction result is directly derived by analyzing the
spatiotemporal features extracted from the encoder through
the decoder layer with a similar structure.

The proposed transformer model has a great potential for
contributing to the field of multivariate time series predic-
tion. Our model is unique in that it simultaneously extracts
the spatiotemporal features of the given multivariate time
series inputs with a deeply designed transformer model,
while the models of existing studies analyzed temporal fea-
tures and inter-variable features through a separated process.
Furthermore, the results of the extensive prediction experi-
ments performed with various time series datasets show that
the proposed model outperforms other existing time series
predictive models in terms of forecasting accuracy.

Il. PREVIOUS WORK

Time series prediction problems have been studied in var-
ious fields owing to their utility and importance. Many
studies have proposed forecasting models that predict a
single variable rather than multiple variables. Previously,
simple regression models such as linear regression or
autoregressive integrated moving average (ARIMA) model
were utilized for time-series forecasting [9], [10], [11].
Machine learning-based models such as support vector
regression (SVR) [12] and classification and regression tree
(CART) [13] are also used to deal with nonlinear time series
data [14], [15], [16]. Lately, time series prediction studies
with artificial neural network models such as RNN, CNN,
and LSTM have become predominant [17], [18], [19], [20],
[21], [22]. As the prediction methodology evolves, the pro-
posed models can now precisely interpret time series data
with complex patterns.

The deep learning-based prediction framework presented
in the latest studies attentively interprets real-world time
series data and shows highly-accurate prediction results.
More specifically, forecasting models with artificial neu-
ral networks learn various patterns and features that can-
not be interpreted by existing machine-learning techniques
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and regression models, to output accurate prediction
results [23], [24]. However, there is a crucial problem in
utilizing the aforementioned univariate predictive models
for multivariate predictions. Unlike univariate time series,
multivariate time series data include both time-domain fea-
tures and correlations between variables, which are essential
for accurate forecasting. Existing single-variable forecasting
models have architectures that specialize in analyzing only
time-domain features. Therefore, the forecasting accuracy is
inevitably lowered when using a univariate predictive model
for a multivariate forecasting case.

Because of the mentioned properties of multivariate time
series data, designing multivariate prediction frameworks is
more complex than the univariate prediction case. Despite
this difficulty, recent studies have suggested multivariate pre-
diction frameworks that utilize deep learning manners. For
example, Shih et al. devised a temporal pattern attention
method to select relevant time series for multivariate fore-
casting [25]. Du et al. combined the attention mechanism
in an encoder-decoder structure to extract multivariate corre-
lations [26]. Huang ef al. adopted the attention mechanism
twice to reveal both temporal patterns and dependencies
among variables [27]. Like these, several studies have pro-
posed a multivariate prediction framework using the latest
deep learning methods [28], [29], [30], [31], [32].

Existing multivariate prediction studies have demonstrated
good prediction performance achieved through extensive
experiments. However, the mentioned models do not pro-
vide a precise manner for implicitly reducing the amount
of information in the entire multivariate data. Owing to the
nature of time series forecasting, which is advantageous for
prediction as the length of the time dimension is longer [33],
condensing the extensive data is crucial. To address this issue,
we designed a multivariate time series prediction model with
an improved transformer structure.

IIl. PRELIMINARY

This section introduces the terms and notations used in this
study, and defines the multivariate time series prediction
problem before explaining the proposed model.

A. NOTATION
Let X; be the multivariate time series data at time point ¢ to

be inputted into the time series prediction framework. This is
defined by (1).

X, = {Xt—m+1, Xi—m+2, " Xt | X € Rn} (H

Here, m is the length of the input multivariate time series data,
and x; is the multivariate vector at time point ¢. A multivariate
vector X, contains n variables for a single time point. The
value of n depends on the dataset used. This can be expressed
by (2).

X = {X1) %), - Xy | Xy € R} (2)

Note that the numbers in parentheses represent enumerated
variables that are not based on any specific criteria.
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FIGURE 1. Description of input data and target data of multivariate time
series prediction problem. A multivariate vector x; . € R” is inferred
from the real-time series data X; € R™*",

In summary, the multivariate time series input X, € R"*"
represents the historical multivariate data for a certain period
from (t —m+ 1) tot.

B. PROBLEM STATEMENT

Time series forecasting problems involve predicting
data at a future point in time based on past data.
In this paper, we aim to predict a multivariate vec-
tOr Xrr = {X(t4r)(1)s X))+ -+ + Xe4r)ny | Of time point
(t + r) with past multivariate time series data X; =
{X¢—m+1, Xr—m+2, - - - , X¢} as input. Note that » indicates the
output interval, which is a specific future point. The inputs
and targets of the defined problem are shown in Fig. 1.

IV. PREDICTIVE MODEL

We propose a novel transformer model for the defined mul-
tivariate time series prediction problem. Unlike the existing
multivariate prediction models, the designed model extracts
spatiotemporal features from a multivariate time series input
using a one-forward procedure. In addition, the process of
implicitly compressing information to extend the receptive
field is also a unique feature of the proposed model. Note that
The overall structure of the model is illustrated in Fig. 2.

A. COMPONENTS

The encoder and decoder blocks composing the transformer
comprise several encoder and decoder layers. These lay-
ers consist of several elements. The components are posi-
tional encoding, one-dimensional (1D) dilated causal CNN,
self-attention, and pointwise CNN. The elements represent
pre-processing, temporal feature extraction, correlation
extraction between variables, and additional weighted learn-
ing. Both the encoder and decoder layers operate through a
combination of several components.

1) POSITIONAL ENCODING

Prior to inputting the time series data into the predic-
tive model, time information is inserted into the input
data. We used the positional encoding method to insert
time-domain imprints into a given sequential input. The
encoding technique was devised to add positional informa-
tion to natural language data input in an existing transformer
study [8]. The encoding value is a non-duplicate real number
that represents each location. A positional encoding function
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PE(-) for a given multivariate time series data X; is shown
in (3).

Xi

PE(x;, 2k) = X; + sin(——)
10000

PE(x;, 2k + 1) = x; + cos(———) 3)
10000

Note that x; indicates the multivariate vector of X; at the ith
time point. This procedure inserts positional information of
multiple dimensions (d) for a single instance, with the given
input data X; shaped n x m.

2) DILATED-CAUSAL CNN

A 1D CNN is a neural network that performs a convolution
operation with a 1D filter. While the conventional CNN (two-
dimensional CNN) is mainly used for image processing, the
1D CNN is used for 1D data tasks such as electronic signal
processing and audio data analysis.

The 1D CNN is also widely used in time series prediction
research. However, the time series forecasting problem dif-
fers significantly from other signal processing tasks in that
future data cannot be referenced for prediction or long-term
dependency owing to their periodic features. For these issues,
variations in the 1D CNN are utilized for designing the time
series forecasting model. In this study, a variation of the 1D
CNN is applied to interpret the temporal features of the mul-
tivariate time series input.

The dilated convolution method can be used to handle
sequential data. This convolution manner is a variation of
the 1D-convolutional operation that compresses long-length
information. By taking only a certain portion of the fea-
tures from the previous layer, the amount of computation of
the input values calculated for each layer can be reduced.
The concrete formula for the dilated convolution operation
is given by (4).

(Fak)p)= Y Fsk() )

s+Ilt=p

Here, F(-) indicates the input feature, k(-) is the convolutional
filter, and [ is the dilation rate. Note that p, s and 7 refers to the
positions of the features. The number of output features was
reduced by 1/1 because only 1/I of the total calculation was
performed. With a deeper dilation layer, the neural network
can cover a wider receptive field, leading to the analysis of a
longer sequence input.

The causal convolution is a 1D CNN technique that con-
siders that current data are only affected by past data. While
the normal convolutional network is an operation computes
through values adjacent to each other in both filter directions,
the causal convolution operation proceeds with values adja-
cent to each other in one order (past direction) in each filter.
The causal convolution operation through the convolution
filter is given by (5).

p
(Frk)p)= Y Fs)k) (5)

p—t+1

The notations in (5) are the same as those in (4).
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FIGURE 2. Overall structure of the proposed convolutional transformer model. The transformer consists of N encoder

layers (left part) and N decoder layers (right part).

Past Time-domain Present

T
Receptive Field

FIGURE 3. lllustrated procedure of 1D Dilated-Causal CNN. The kernel
size of the CNN is 3 and the stride is 1. The deeper the convolutional
layer, the wider is the range of inputs that can be covered in the network.

The proposed model utilizes a dilated-causal convolutional
neural network (DCCNN) that combines the two mentioned
methods to obtain temporal features of multivariate time
series data. Using this convolutional layer, the model can
extract compressed features from a given long time series
input. The process by which a DCCNN extracts features from
a given information is schematically shown in Fig. 3.
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3) SELF-ATTENTION
The attention mechanism plays a key role in the transformer
model. Determining the correlation between elements in a
single input is called self-attention. This mechanism can
determine the relevance of features that are far from each
other in the time domain, which recurrent models structurally
unextractable. Therefore, it is mainly used in natural language
processing to determine the relevance between elements. This
study utilized the self-attention mechanism to analyze the
correlation between variables in multivariate time series data.
The initial input of the attention layer is converted into a
Query, Key, and Value. A Query indicates the data affected
by a particular value and a Key represents the data that affects
a particular data value. The Value expresses the weight of
the influence. The Query, Key, and Value are computed by
multiplying the same initial input by the independent weight
matrices for each output. With positional-encoded input data
X, the procedure of gathering the corresponding Query (Q;),
Key (K;), and Value (V;) using each weight matrix (W, Wy,
W,) is shown in (6).

O =W)X, Ki=WX, V,=WX (6)

The Query, Key, and Value gathered using (6) are trans-
mitted to the attention layer. The attention layer obtains the
attention score using the input Query and Key. The attention
score, which refers to the variable having a significant effect
on a variable in the multivariate input, is converted into a
Query and Key. Note that the dimensions of the Oy, K;, and V;
are n x m which are equal to the initial input. In this study, the
dot product method proposed by Luong et al. [34] was used
for attention score computation. We gathered the attention
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score Score(Qs, K;) through Q; and K; using (7).
Score(Qy, K;) = Tanh(W, O, + WK, + b) 7

Note that Wé and W, are weight matrices that are addition-
ally calculated for Q; and K;, respectively; b is the bias, and
Tanh(-) is the activation function, which is a tangent hyper-
bolic function. The obtained Score(Q;, K;) has the dimension
of n x n.

We then obtain the Content C; by using the attention score
Score(Qy, K;) and Value V;. Content is the final output feature
of the attention layer, and indicates the result of the correla-
tion between the input data for each variable. The C; value
was obtained using (8).

C; = SoftMax(Score(Q;, K;))V; (8)

The final result of the attention layer, C; has a matrix form
with the same shape as the positional-encoded initial input,
and it represents the variable-wise relevance of the input
features.

4) POINTWISE CNN

Existing transformer models weigh the attention layer out-
puts using a fully-connected neural network (feed-forward
neural network). Through a fully-connected neural network,
features can be better extracted through a weight matrix oper-
ation and can be transformed to fit the output shape. How-
ever, the fully-connected neural network does not consider
the spatiality of multidimensional inputs. Therefore, it has
a drawback in interpreting two-dimensional multivariate
time series inputs, which include time-domain and variable
features.

We leverage a point-wise convolutional neural network
(PCNN) to analyze multivariate time series inputs instead of
a fully-connected neural network. A PCNN is a variation of
the CNN that operates with a convolutional filter of size 1.
The PCNN is similar to the fully-connected neural network
in that one value is multiplied by one weight. However, it is
different in that it operates while maintaining the shape of
the input. In addition, this neural network has the advantage
of adjusting the channels of the features through the num-
ber of convolution filters, as in other convolution operations.
The difference between a fully-connected neural network and
PCNN is shown in Fig. 4.

B. ENCODER

The key role of the encoder layer is to extract spatiotemporal
features while compressing the size of a given multivariate
time series input. The encoder layer consists of the following
layers: Self-attention, PCNN, and DCCNN. Compressed spa-
tiotemporal features are returned by passing through a single
encoder layer. Table 1 presents the configuration details of
the encoder layers.

The first layer of the encoder block receives positional-
encoded multivariate time series data as the input. Next, the
self-attention layer analyzes the variables’ relevance of the
given multivariate data. The extracted features are then sub-
jected to a 2-layer PCNN operation for additional learning
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FIGURE 4. Two types of neural networks. (a) Fully-connected neural
network and (b) PCNN. While the fully-connected neural network loses
the spatiality of input features, PCNN can retain the spatiality of input
features while adjusting the output size (number of channels).

while maintaining spatial information. Finally, the 2-layer
DCCNN compresses the overall feature size while extract-
ing the temporal features from the processed information.
By stacking multiple deep encoder layers, the entire encoder
block can better interpret the complex patterns of a given
multivariate time series input.

Additionally, we considered the Add and Norm process
between two neighboring component layers. The Add and
Norm process consists of residual connection and layer nor-
malization operations. The residual connection process links
the results of each component layer with the features before
the component layer. Layer normalization is a normalization
method for finding the mean and variance of the features
in a batch. Unlike other normalization techniques such as
batch normalization and weight normalization, layer normal-
ization is advantageous for handling sequential data features.
These two methods prevent the vanishing gradient issue in the
stacked encoder networks.

The final output of the entire encoder block is a spatiotem-
poral feature, with a size much smaller than that of the initial
input. This feature was included in the prediction-generating
procedure for the decoder layer.

C. DECODER
The decoder generates the final prediction result using spa-
tiotemporal features extracted from the encoder. In our trans-
former model, a single decoder layer consists of components
in a different order than that of an encoder. The asymmet-
ric structure is empirically designed to output accurate pre-
diction results from a given input using one-way analysis.
One decoder layer consists of the following components: a
DCCNN, Self-attention and PCNN. Similar to the encoder
block, the decoder block is stacked with multiple decoder
layers to generate the final prediction result from the initial
input. The detailed specifications of the decoder layer are
listed in Table 2.

The first decoder layer receives the positional-encoded
multivariate time series data as the input. The 2-layer
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TABLE 1. Structure of a single encoder layer.

TABLE 3. Details of experimental multivariate time series datasets.

[ Component [ Output Channel | Details [ Dataset | Total Length [ # of variables | Time Unit |
Self-attention - Traffic 17,544 862 1 Hour
PCNN-1 F=1, 5=1, P=Same Exchange Rate 7,588 8 1 Day
PCNN-2 Same as input F=1, S=1, P=Same Electricity 26,304 321 1 Hour
DCCNN-1 F=3, S=1, P=Same, [=2 Solar Energy 52,560 137 10 Minutes
DCCNN-2 F=3, S=1, P=Same, [=2
F indicates the convolution filter size, S refers stride, P is padding and
[ stands for dilation rate.
series prediction research. Details of the datasets are listed in
TABLE 2. Structure of a single decoder layer. Table 3
[ Component |  Output Channel | Details |
DCCNN-1 Same as input T'=3, 5=1, P=Same, [=2 2) DATA PREPARATION
DCCNN-2 (# of Input channel) / 2 F=3, S=1, P=Same, [=1 a: PREPROCESSING
Self-attention - . . . .
PCONN- Same as input F=T 5=, P=Same We standardized the datasets. Th.e mult{varlate time series
PCNN-2 F=1, 5=1, P=Same data were standardized for every time series of a single vari-
F indicates the convolution filter size, S refers stride, P is padding and able. Model learning was stabilized by fixing variables with

[ stands for dilation rate.

DCCNN of the decoder layer compresses the temporal infor-
mation of the given input. Note that the second DCCNN
reduces the number of channels of the input features aug-
mented through positional encoding by half. This procedure
is employed for the final output with a single value (one chan-
nel). Subsequently, the self-attention layer receives the final
output of the encoder as a query and key, and the output of the
previous DCCNN layer as a value. Finally, the self-attention
layer returns the attention results as the final predictive out-
comes. The last 2-layer PCNN additionally extracts features
from the output attention result to derive the final prediction
result. Note that the internal networks of the decoder layer
include the Add and Norm process for dealing with gradient
vanishing issues.

The final forecasting results are returned from the fea-
tures of the decoder block with a fully-connected layer. The
fully-connected layer is the last layer of the transformer
model, and it consists of a single-layer weight without an
activation function or dropout. The outputs of the last decoder
layer are transformed to fit the input of the fully-connected
layer through the flattening process. The final returns from
the last layer are vector-shaped multivariate values X;, which
indicate the prediction of ;.

V. EXPERIMENTS

We performed comparative, ablation, and in-depth exper-
iments to evaluate the designed transformer model. This
section describes the details of the prediction experiment, and
discusses the performance results.

A. SETUP

1) DATASET

We considered four multivariate time series datasets to eval-
uate the performance of the proposed time series prediction
model. The multivariate dataset considered datasets of traffic,
exchange rate, electricity, and solar energy [35]. These pub-
lic datasets are mainly used as benchmark datasets in time
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different numerical scales to a constant scale (mean 0 and
variance 1). Along the time axis of the preprocessed dataset,
80% of the front part was used as the training data, and 20%
of the rear part was used as the test data.

b: DATA SEGMENTATION

The proposed framework forecasts the expected multivariate
with the given historical multivariate time series, as men-
tioned in Section I1I-B. We prepared the training and test data
by splitting the given dataset into data segments. The data
segments, consisting of the input matrix and output vector,
were created using the sliding window method. The sliding
window method is a data segment generation method that
slides the window into a single time unit for the entire dataset
period. For example, with the length of the given data L and
the size of the window being (m+r), atotal of L —(m—+r)+1
data pieces were created. Note that the first m multivariate
data of a (m + r)-sized window is the input (X;), and the
(m + r)-th multivariate vector is the ground truth (X;4,). The
process of creating data segments in a sliding window manner
for a given dataset is shown in Fig. 5.

3) HYPERPARAMETER DETAILS

As in a previous study [8], each of the encoder and decoder
block consists of six layers. The number of encoding dimen-
sions mentioned in Section IV-A1l was set to 64. We define
the default input length (m) and output interval (r) as 90 and
90, respectively. The batch size of the input data was set to 32,
and the number of training epochs was set to 100. We utilize
Adam [36] optimizer with a learning rate of 0.001. The loss
function of the model is Mean Squared Error (MSE).

4) EVALUATION METRICS

In this study, the root-mean-square error (RMSE), rooted
relative squared error (RRSE), and correlation coefficient
(CORR) were used as evaluation metrics. These three indi-
cators are evaluation metrics that are mainly used in existing
time series prediction and regression studies. The definitions
of these indicators are discussed herein.
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Total Da[astl:( (L length)

2" Data Segment

variables

15 Data Segment (L-m-r+1)" Data Segment

FIGURE 5. Illustration showing the process of creating data segments.
A data segment consists of an input matrix X; and an output vector x; .
Note that X; € R™*" and x;,, € R".

The RMSE is the positive square root of the squared error
sum divided by the total number of test data points. The loss
value increases in proportion to the increase in the error of
the individual values because the RMSE is derived by squar-
ing the difference between the actual and predicted values,
The RMSE indicates how accurately the predictive model fits
the individual values. The RMSE is gathered with the total
length of the test data (Tes) and the number of variables (1)
using (9).

Test n
1 Z Z 5
RMSE = T (X,‘(j) — X,'(]‘))z (9)
test i=1 j=1

The RRSE differs from RMSE in that it is not divided
by the total amount of test data but by the statistic (square
deviation) of the actual value of the test data. The RRSE value
indicates how similarly the model predicts for that time series
variable. Similar to the RMSE, the RRSE is also affected
by the error of the individual values. The RRSE is obtained
from the total length of the test data (7.g) and the number of
variables (n), using (10).

1< _Tiesl Xin — Xin)2
RRSE= |- Zl—Tllf v i(’)i (10)
o s Xig) — X))

Here, X; is the average value of the jth variable.

The CORR is the correlation coefficient between the actual
and predicted values. The CORR value indicates whether the
overall trend is well predicted for the test data. This metric
is less sensitive than the RMSE and RRSE. The formula for
calculating CORR is shown in (11).

n Thes = \/A =
CORR = ! Z 2im) (i) — X)Xy — X];)
= \/ > (i) — %) Rigy — %))?

(1D

Note that ):(j stands for the average value of the predicted jth
variable.

B. RESULTS AND DISCUSSIONS
1) PREDICTION PERFORMANCE

We first performed a prediction experiment with the hyper-
parameter specifications mentioned in Section V-A3. The
specific metric results are described in comparison with the
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experimental results. A comparison of the predicted results
and ground-truth data is shown in Fig. 6.

We observed the prediction results based on dataset fea-
tures. For the prediction results of the exchange rate dataset,
the model predicted the overall trend with a small error.
In addition, it predicted data with periodicity and high accu-
racy, as seen in the Electricity_var301 case. The proposed
model showed accurate prediction results even for data where
specific values are repeated at regular intervals (solar energy
dataset). However, the model forecasted the expected value
slightly inaccurately when dealing with data with large vari-
ance or rapidly-changing data such as Traffic_varl75 and
Electricity_var57.

We also determined that the forecasting model predicted
similar values with a slight lag from the actual values, regard-
less of the data characteristics. This error occurs when a
distant time point is inferred from the input data. Neverthe-
less, the proposed model predicted the result with a time lag
smaller than the defined output interval (i = 90).

a: COMPARISON WITH OTHER WORKS

We designed a comparative experiment with existing
prediction models to evaluate the objective performance of
the proposed forecasting model. The comparison models
are the general transformer [8] and the latest models of
time series prediction such as LogSparse Transformer [33],
Informer [37], LSTNet [35], and SpringNet [38]. The com-
parative test results were evaluated based on the three eval-
uation metrics mentioned in Section V-A4. The input/output
shape of all models were the same, m = 90 and r = 90. The
experimental results are listed in Table 4.

As shown in Table 4, the prediction performance of the
proposed model is almost the same as that of Informer and
SpringNet. The Solar-dataset dataset result is slightly infe-
rior to other recent models because the proposed model face
adversity to predict accurate values (non-zero values) for
data in which zero and non-zero values appear periodically.
However, we note that our prediction model showed slightly
better accuracy than the other prediction models on the fraffic
dataset and the electricity dataset. As described in Table 3
and Fig. 6, these two datasets contain many variables, and the
patterns of the variables are similar to each other compared
with the other two datasets (exchange rate, solar energy).
Therefore, considering the precise forecasting results for this
dataset type, it is apparent that the designed prediction model
can better interpret multivariate data with a higher correlation
between variables than the other existing forecasting models.

b: COMPUTATION COSTS
We check how much computation cost is required for the
designed model. We additionally note the FLOPs (FLoating
point OPerations) of the proposed model and other compar-
ative models by using the exact same computing resources.
The results are in Table 5.

We observe that the proposed model has more FLOPs than
the general transformer model. Still, the computational cost is
slightly lower than the prediction models of the latest studies.
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FIGURE 6. Multivariate prediction results of the proposed model. They show the prediction results for an arbitrary time period (300 time units). It is not
possible to show the results for all variables in one figure, so only the prediction results for four random variables in each dataset are shown.

TABLE 4. Prediction results of comparison experiments with existing time series forecasting models. The best results are in bold type, and the second

best results are italic type.

Transformer RMSE | RRSE | CORR LogSparse RMSE | RRSE | CORR Informer RMSE | RRSE | CORR
Traffic 0.671 0.685 0.489 Traffic 0.603 0.599 0.521 Traffic 0.299 0.323 0.695
Exchange Rate 0.591 0.633 0.491 Exchange Rate 0.571 0.607 0.535 Exchange Rate 0.286 0.291 0.732
Electricity 0.652 0.628 0.475 Electricity 0.538 0.588 0.519 Electricity 0.297 | 0.290 0.717
Solar Energy 0.679 0.731 0.496 Solar Energy 0.594 0.610 0.498 Solar Energy 0.251 0.262 0.757
LSTNet RMSE | RRSE | CORR SpringNet RMSE | RRSE | CORR Ours RMSE | RRSE | CORR
Traffic 0.305 0.398 0.671 Traffic 0.279 | 0.286 | 0.708 Traffic 0.278 0.289 | 0.711
Exchange Rate 0.322 0.357 0.705 Exchange Rate 0.301 | 0325 | 0.720 || Exchange Rate 0.303 0.288 0.709
Electricity 0.317 0.371 0.698 Electricity 0.298 0.284 0.715 Electricity 0.271 0.285 | 0.732
Solar Energy 0.302 0.336 0.723 Solar Energy 0.273 0.278 0.743 Solar Energy 0.269 | 0.273 | 0.748

The reason of the lower FLOPs costs is the decoder structure
is simplified compared to other transformer-based prediction
models.

2) ABLATION STUDY

In this study, we evaluated the performance changes that
occur while changing or removing the structure of the
designed model.

a: POINTWISE CNN

An ablation experiment was performed on the pointwise CNN
layers of the presented model. We replaced the PCNN layer
of the proposed model with a feed-forward neural network
(FFNN), similar to the existing transformer model. The out-
put of the FFNN was designed to have the same shape as
that of the existing PCNN layer. All the other structures and
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hyperparameter settings were the same as those of the origi-
nally proposed model. The prediction results of this study are
shown in Fig. 7.

We observed that the prediction performance of the
redesigned model degraded, regardless of the datasets used.
In particular, the prediction accuracy for the exchange
rate dataset, which had a trend rather than periodicity,
drastically deteriorated (approximately 13—15%). From this
result, it is apparent that the PCNN layers of the pro-
posed model, which preserve the spatiality of the hidden
states, have a substantial effect on predicting the overall
trend.

b: ENCODER-DECODER STRUCTURE

We proposed an asymmetric transformer model whose layer
orders of the encoder and decoder are different. The perfor-
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TABLE 5. Computation costs (FLOPs) of the experimental models.

| Performance Results (FLOPs) |

Study Traffic Exchange Rate
Transformer | 3.16 x 1017 2.97 x 101°
LogSparse | 3.33 x 107 3.08 x 10'®
Informer 3.21 x 1017 3.01 x 10'°
LSTNet 3.42 x 1017 3.12 x 10'°
SpringNet | 3.47 x 1017 3.13 x 1015
Ours 3.19 x 1017 2.99 x 10%°
Study Electricity Solar Energy
Transformer | 7.85 x 10'° 1.11 x 10%7
LogSparse | 8.01 x 106 1.36 x 107
Informer 7.97 x 1016 1.20 x 107
LSTNet 8.04 x 1016 1.41 x 10'7
SpringNet | 8.06 x 1016 1.43 x 1017
Ours 7.95 x 1016 1.18 x 1017
RMSE
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FIGURE 7. Ablation experiment results according to dataset and
evaluation metrics.

mance significance of the asymmetric structure was evaluated
by designing the encoder and decoder in the same layer order
as in other existing transformer studies. A symmetric struc-
ture was designed by making the decoder structure identical
to the encoder structure. The reordered model was tuned so
that all other input/output flows proceeded in the same man-
ner as in the original model. The rest of the model training
settings were identical. The change in the prediction results
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FIGURE 8. Evaluation metrics changes for each dataset according to the
input length.

according to the structural transformation of the model is
shown in Fig. 7.

The results of the CORR metrics in the referred figure were
slightly worse than those of the original models. However,
in the cases of the RMSE and RRSE metrics, the performance
results were significantly lower than those of the original
model (approximately 10-12%). The proposed asymmetric
model predicted individual values better than the symmetric-
structured model.
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FIGURE 9. Evaluation metrics changes for each dataset according to the
output interval.

3) IN-DEPTH EXPERIMENT

In addition, we evaluated how the performance of the pro-
posed model changed by adjusting the hyperparameters of the
input length (m) and output interval (r).

a: EXPERIMENT WITH INPUT LENGTH

In this experiment, we performed the test while the output
interval was fixed and the input length was changed. r is fixed
at 30, and the experiment was performed while changing m to
10, 30, 60, 90. The experimental results are shown in Fig. 8.
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There was no significant difference in the accuracy
between the prediction experiments with input time lengths of
60 and 90, except for the exchange rate dataset. We observed
that the performance improved with a longer input, especially
for data with a long-term trend, such as the exchange rate
dataset. For the electricity and solar energy datasets, which
have a distinct cycle of 24 hours, the prediction outcome with
an m = 30 showed a significant performance improvement in
all metrics compared with the result with m = 10.

The results of this experiment show that the proposed
model is significantly affected by the periodicity of the input
data. In addition, we observed that the input length and per-
formance are directly proportional to the data showing a long-
term trend.

b: EXPERIMENT WITH OUTPUT INTERVAL

As in the previous experiment, we checked how the perfor-
mance of the designed model changed as the output interval
increased. m was fixed at 30, and r was changed to 10, 30, 60,
and 90 to compare the forecasting performance of the near
future and far future. The results of the prediction tests are
shown in Fig. 9.

As shown in Fig. 9, the model shows a good performance
in predicting a point in the near future ( = 10) compared with
the input length, while sharp decreases in performance in the
CORR metrics are observed at r = 30. However, except for the
RRSE in traffic dataset, there was no significant performance
deterioration between r = 60 and r = 90, which are tasks that
predict a future point farther than the input length.

We observed that the performance of the proposed model
decreased as the prediction interval increased, particularly
in terms of overall trends. Furthermore, compared with the
prediction results in Section V-B1, a longer input length is
required to forecast distant future points.

VI. CONCLUSION

We present a multivariate time series prediction model that
leverages a convolutional neural network with a transformer
model structure. The proposed model simultaneously ana-
lyzes the correlation between the input variables and temporal
features of a given multivariate time series data in one model
while the existing methodologies are difficult to deal with.
In addition, we performed experiments using several time
series datasets with different data characteristics to demon-
strate the superior predictive performance of the designed
model. The performance results of the extensive experiments
proved that the proposed model enables multivariate predic-
tion at a future time point with high accuracy for many vari-
ables and long sequences.
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