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ABSTRACT This paper presents a multivariate time series prediction framework based on a transformer
model consisting of convolutional neural networks (CNNs). The proposed model has a structure that extracts
temporal features of input data through CNN and interprets correlations between variables through an atten-
tion mechanism. This framework solves the problem of the inability to simultaneously analyze the temporal
features of the input data and the correlation between variables, which is a limitation of the forecastingmodels
presented in existing studies. We designed a forecasting experiment using several time series datasets with
various data characteristics to precisely evaluate the proposed model. In addition, comparative experiments
were performed between the proposed model and several predictive models proposed in recent studies.
Furthermore, we conducted ablation studies on the extent to which the proposed CNN structure in the
prediction model affects the forecasting results by substituting a specific layer of the model. The results
of the experiments showed that the proposed predictive model exhibited good performance in predicting
time series data with a clear cycle and high correlation between variables, and improved the accuracy by
approximately 3% to 5% compared with that of previous studies’ time series prediction models.

14 INDEX TERMS Artificial neural networks, predictive models, time series prediction.

I. INTRODUCTION15

A multivariate time series is sequential data with values of16

several variables at a regular time unit. Multivariate time17

series prediction refers to predicting multiple variables at18

a future point in time after a certain period based on mul-19

tivariate time series data in a specific period. This subject20

has been actively studied because it can be applied to vari-21

ous fields. Precisely forecasting variables can influence the22

decision-making process and strategy establishment in vari-23

ous applications such as manufacturing [1], medical field [2],24

tourism [3], and transportation [4]. Therefore, it is crucial to25

design a framework that efficiently and accurately forecasts26

future variables.27

With the development of AI-based forecasting methods,28

recent studies have presented a time series prediction frame-29

work with deep learning models. Researches on designing a30

The associate editor coordinating the review of this manuscript and

approving it for publication was Baozhen Yao .

time series predictive model using recursive models such as 31

recurrent neural network [5] (RNN), long-short termmemory 32

(LSTM) [6], and gated recurrent units (GRU) [7] are predomi- 33

nant. Recent studies have proposed the transformer model [8] 34

for a time series prediction task to solve the long-term 35

dependency problem and parallel operation limitations of 36

the recursive models. These deep learning models are supe- 37

rior to conventional regression models and machine learning 38

methods. 39

Although deep learning-based models show good predic- 40

tion results, there are structural limitations for directly apply- 41

ing these models to multivariate time series prediction. First, 42

neural network models used in previous studies have special- 43

ized structures enabling them to process a single sequence. 44

Early studies using deep learning models mainly compose a 45

multivariate time series prediction frameworkwith a structure 46

in which the same neural networks are collocated in paral- 47

lel in as many as the number of variables. Recent studies 48

have designed models to deal with these problems, but they 49
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cannot simultaneously extract correlations between variables50

and time-domain features. In addition, multivariate time51

series data have immense input sizes compared with single52

time series data, and models in existing studies do not have53

structures for compressing this massive amount of informa-54

tion. This problem appears as an overfitting or long compu-55

tation time problem. In a time series prediction task, where56

the input’s longer time-axis data affect the prediction accu-57

racy, increasing the receptive field range with an information58

compression procedure is essential.59

In this study, we propose a convolutional transformer60

model to handle the limitations of existing time series pre-61

dictive models. The proposed model has a transformer struc-62

ture [8] with convolutional neural networks (CNN). The63

encoder and decoder in the transformer model are com-64

posed of a self-attention layer, point-wise CNN layer, and65

one-dimensional CNN layer. The encoder extracts the com-66

pressed spatiotemporal features from the given multivariate67

time series data by combining referred constituent layers.68

The prediction result is directly derived by analyzing the69

spatiotemporal features extracted from the encoder through70

the decoder layer with a similar structure.71

The proposed transformer model has a great potential for72

contributing to the field of multivariate time series predic-73

tion. Our model is unique in that it simultaneously extracts74

the spatiotemporal features of the given multivariate time75

series inputs with a deeply designed transformer model,76

while the models of existing studies analyzed temporal fea-77

tures and inter-variable features through a separated process.78

Furthermore, the results of the extensive prediction experi-79

ments performed with various time series datasets show that80

the proposed model outperforms other existing time series81

predictive models in terms of forecasting accuracy.82

II. PREVIOUS WORK83

Time series prediction problems have been studied in var-84

ious fields owing to their utility and importance. Many85

studies have proposed forecasting models that predict a86

single variable rather than multiple variables. Previously,87

simple regression models such as linear regression or88

autoregressive integrated moving average (ARIMA) model89

were utilized for time-series forecasting [9], [10], [11].90

Machine learning-based models such as support vector91

regression (SVR) [12] and classification and regression tree92

(CART) [13] are also used to deal with nonlinear time series93

data [14], [15], [16]. Lately, time series prediction studies94

with artificial neural network models such as RNN, CNN,95

and LSTM have become predominant [17], [18], [19], [20],96

[21], [22]. As the prediction methodology evolves, the pro-97

posed models can now precisely interpret time series data98

with complex patterns.99

The deep learning-based prediction framework presented100

in the latest studies attentively interprets real-world time101

series data and shows highly-accurate prediction results.102

More specifically, forecasting models with artificial neu-103

ral networks learn various patterns and features that can-104

not be interpreted by existing machine-learning techniques105

and regression models, to output accurate prediction 106

results [23], [24]. However, there is a crucial problem in 107

utilizing the aforementioned univariate predictive models 108

for multivariate predictions. Unlike univariate time series, 109

multivariate time series data include both time-domain fea- 110

tures and correlations between variables, which are essential 111

for accurate forecasting. Existing single-variable forecasting 112

models have architectures that specialize in analyzing only 113

time-domain features. Therefore, the forecasting accuracy is 114

inevitably lowered when using a univariate predictive model 115

for a multivariate forecasting case. 116

Because of the mentioned properties of multivariate time 117

series data, designing multivariate prediction frameworks is 118

more complex than the univariate prediction case. Despite 119

this difficulty, recent studies have suggested multivariate pre- 120

diction frameworks that utilize deep learning manners. For 121

example, Shih et al. devised a temporal pattern attention 122

method to select relevant time series for multivariate fore- 123

casting [25]. Du et al. combined the attention mechanism 124

in an encoder-decoder structure to extract multivariate corre- 125

lations [26]. Huang et al. adopted the attention mechanism 126

twice to reveal both temporal patterns and dependencies 127

among variables [27]. Like these, several studies have pro- 128

posed a multivariate prediction framework using the latest 129

deep learning methods [28], [29], [30], [31], [32]. 130

Existing multivariate prediction studies have demonstrated 131

good prediction performance achieved through extensive 132

experiments. However, the mentioned models do not pro- 133

vide a precise manner for implicitly reducing the amount 134

of information in the entire multivariate data. Owing to the 135

nature of time series forecasting, which is advantageous for 136

prediction as the length of the time dimension is longer [33], 137

condensing the extensive data is crucial. To address this issue, 138

we designed a multivariate time series prediction model with 139

an improved transformer structure. 140

III. PRELIMINARY 141

This section introduces the terms and notations used in this 142

study, and defines the multivariate time series prediction 143

problem before explaining the proposed model. 144

A. NOTATION 145

Let Xt be the multivariate time series data at time point t to 146

be inputted into the time series prediction framework. This is 147

defined by (1). 148

Xt =
{
xt−m+1, xt−m+2, · · · , xt | xi ∈ Rn} (1) 149

Here,m is the length of the input multivariate time series data, 150

and xt is the multivariate vector at time point t . A multivariate 151

vector xt contains n variables for a single time point. The 152

value of n depends on the dataset used. This can be expressed 153

by (2). 154

xt =
{
xt(1), xt(2), · · · , xt(n) | xt(i) ∈ R

}
(2) 155

Note that the numbers in parentheses represent enumerated 156

variables that are not based on any specific criteria. 157
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FIGURE 1. Description of input data and target data of multivariate time
series prediction problem. A multivariate vector xt+r ∈ Rn is inferred
from the real-time series data Xt ∈ Rm×n.

In summary, the multivariate time series input Xt ∈ Rm×n
158

represents the historical multivariate data for a certain period159

from (t − m+ 1) to t .160

B. PROBLEM STATEMENT161

Time series forecasting problems involve predicting162

data at a future point in time based on past data.163

In this paper, we aim to predict a multivariate vec-164

tor xt+r =
{
x(t+r)(1), x(t+r)(2), · · · , x(t+r)(n)

}
of time point165

(t + r) with past multivariate time series data Xt =166

{xt−m+1, xt−m+2, · · · , xt } as input. Note that r indicates the167

output interval, which is a specific future point. The inputs168

and targets of the defined problem are shown in Fig. 1.169

IV. PREDICTIVE MODEL170

We propose a novel transformer model for the defined mul-171

tivariate time series prediction problem. Unlike the existing172

multivariate prediction models, the designed model extracts173

spatiotemporal features from a multivariate time series input174

using a one-forward procedure. In addition, the process of175

implicitly compressing information to extend the receptive176

field is also a unique feature of the proposed model. Note that177

The overall structure of the model is illustrated in Fig. 2.178

A. COMPONENTS179

The encoder and decoder blocks composing the transformer180

comprise several encoder and decoder layers. These lay-181

ers consist of several elements. The components are posi-182

tional encoding, one-dimensional (1D) dilated causal CNN,183

self-attention, and pointwise CNN. The elements represent184

pre-processing, temporal feature extraction, correlation185

extraction between variables, and additional weighted learn-186

ing. Both the encoder and decoder layers operate through a187

combination of several components.188

1) POSITIONAL ENCODING189

Prior to inputting the time series data into the predic-190

tive model, time information is inserted into the input191

data. We used the positional encoding method to insert192

time-domain imprints into a given sequential input. The193

encoding technique was devised to add positional informa-194

tion to natural language data input in an existing transformer195

study [8]. The encoding value is a non-duplicate real number196

that represents each location. A positional encoding function197

PE(·) for a given multivariate time series data Xt is shown 198

in (3). 199

PE(xi, 2k) = xi + sin(
xi

10000
2k
d

) 200

PE(xi, 2k + 1) = xi + cos(
xi

10000
2k
d

) (3) 201

Note that xi indicates the multivariate vector of Xt at the ith 202

time point. This procedure inserts positional information of 203

multiple dimensions (d) for a single instance, with the given 204

input data Xt shaped n× m. 205

2) DILATED-CAUSAL CNN 206

A 1D CNN is a neural network that performs a convolution 207

operation with a 1D filter. While the conventional CNN (two- 208

dimensional CNN) is mainly used for image processing, the 209

1D CNN is used for 1D data tasks such as electronic signal 210

processing and audio data analysis. 211

The 1D CNN is also widely used in time series prediction 212

research. However, the time series forecasting problem dif- 213

fers significantly from other signal processing tasks in that 214

future data cannot be referenced for prediction or long-term 215

dependency owing to their periodic features. For these issues, 216

variations in the 1D CNN are utilized for designing the time 217

series forecasting model. In this study, a variation of the 1D 218

CNN is applied to interpret the temporal features of the mul- 219

tivariate time series input. 220

The dilated convolution method can be used to handle 221

sequential data. This convolution manner is a variation of 222

the 1D-convolutional operation that compresses long-length 223

information. By taking only a certain portion of the fea- 224

tures from the previous layer, the amount of computation of 225

the input values calculated for each layer can be reduced. 226

The concrete formula for the dilated convolution operation 227

is given by (4). 228

(F ∗l k)(p) =
∑
s+lt=p

F(s)k(t) (4) 229

Here, F(·) indicates the input feature, k(·) is the convolutional 230

filter, and l is the dilation rate. Note that p, s and t refers to the 231

positions of the features. The number of output features was 232

reduced by 1/l because only 1/l of the total calculation was 233

performed. With a deeper dilation layer, the neural network 234

can cover a wider receptive field, leading to the analysis of a 235

longer sequence input. 236

The causal convolution is a 1D CNN technique that con- 237

siders that current data are only affected by past data. While 238

the normal convolutional network is an operation computes 239

through values adjacent to each other in both filter directions, 240

the causal convolution operation proceeds with values adja- 241

cent to each other in one order (past direction) in each filter. 242

The causal convolution operation through the convolution 243

filter is given by (5). 244

(F ∗l k)(p) =
p∑

p−t+1

F(s)k(t) (5) 245

The notations in (5) are the same as those in (4). 246

VOLUME 10, 2022 101321



D.-K. Kim, K. Kim: Convolutional Transformer Model for Multivariate Time Series Prediction

FIGURE 2. Overall structure of the proposed convolutional transformer model. The transformer consists of N encoder
layers (left part) and N decoder layers (right part).

FIGURE 3. Illustrated procedure of 1D Dilated-Causal CNN. The kernel
size of the CNN is 3 and the stride is 1. The deeper the convolutional
layer, the wider is the range of inputs that can be covered in the network.

The proposed model utilizes a dilated-causal convolutional247

neural network (DCCNN) that combines the two mentioned248

methods to obtain temporal features of multivariate time249

series data. Using this convolutional layer, the model can250

extract compressed features from a given long time series251

input. The process by which a DCCNN extracts features from252

a given information is schematically shown in Fig. 3.253

3) SELF-ATTENTION 254

The attention mechanism plays a key role in the transformer 255

model. Determining the correlation between elements in a 256

single input is called self-attention. This mechanism can 257

determine the relevance of features that are far from each 258

other in the time domain, which recurrent models structurally 259

unextractable. Therefore, it is mainly used in natural language 260

processing to determine the relevance between elements. This 261

study utilized the self-attention mechanism to analyze the 262

correlation between variables in multivariate time series data. 263

The initial input of the attention layer is converted into a 264

Query, Key, and Value. A Query indicates the data affected 265

by a particular value and a Key represents the data that affects 266

a particular data value. The Value expresses the weight of 267

the influence. The Query, Key, and Value are computed by 268

multiplying the same initial input by the independent weight 269

matrices for each output. With positional-encoded input data 270

Xt , the procedure of gathering the corresponding Query (Qt ), 271

Key (Kt ), and Value (Vt ) using each weight matrix (Wq, Wk , 272

Wv) is shown in (6). 273

Qt = WqXt Kt = WkXt Vt = WvXt (6) 274

The Query, Key, and Value gathered using (6) are trans- 275

mitted to the attention layer. The attention layer obtains the 276

attention score using the input Query and Key. The attention 277

score, which refers to the variable having a significant effect 278

on a variable in the multivariate input, is converted into a 279

Query and Key. Note that the dimensions of theQt ,Kt , and Vt 280

are n×mwhich are equal to the initial input. In this study, the 281

dot product method proposed by Luong et al. [34] was used 282

for attention score computation. We gathered the attention 283
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score Score(Qt ,Kt ) through Qt and Kt using (7).284

Score(Qt ,Kt ) = Tanh(W ′qQt +W
′
kKt + b) (7)285

Note that W ′q and W ′k are weight matrices that are addition-286

ally calculated for Qt and Kt , respectively; b is the bias, and287

Tanh(·) is the activation function, which is a tangent hyper-288

bolic function. The obtained Score(Qt ,Kt ) has the dimension289

of n× n.290

We then obtain the Content Ct by using the attention score291

Score(Qt ,Kt ) andValueVt . Content is the final output feature292

of the attention layer, and indicates the result of the correla-293

tion between the input data for each variable. The Ct value294

was obtained using (8).295

Ct = SoftMax(Score(Qt ,Kt ))Vt (8)296

The final result of the attention layer, Ct has a matrix form297

with the same shape as the positional-encoded initial input,298

and it represents the variable-wise relevance of the input299

features.300

4) POINTWISE CNN301

Existing transformer models weigh the attention layer out-302

puts using a fully-connected neural network (feed-forward303

neural network). Through a fully-connected neural network,304

features can be better extracted through a weight matrix oper-305

ation and can be transformed to fit the output shape. How-306

ever, the fully-connected neural network does not consider307

the spatiality of multidimensional inputs. Therefore, it has308

a drawback in interpreting two-dimensional multivariate309

time series inputs, which include time-domain and variable310

features.311

We leverage a point-wise convolutional neural network312

(PCNN) to analyze multivariate time series inputs instead of313

a fully-connected neural network. A PCNN is a variation of314

the CNN that operates with a convolutional filter of size 1.315

The PCNN is similar to the fully-connected neural network316

in that one value is multiplied by one weight. However, it is317

different in that it operates while maintaining the shape of318

the input. In addition, this neural network has the advantage319

of adjusting the channels of the features through the num-320

ber of convolution filters, as in other convolution operations.321

The difference between a fully-connected neural network and322

PCNN is shown in Fig. 4.323

B. ENCODER324

The key role of the encoder layer is to extract spatiotemporal325

features while compressing the size of a given multivariate326

time series input. The encoder layer consists of the following327

layers: Self-attention, PCNN, and DCCNN. Compressed spa-328

tiotemporal features are returned by passing through a single329

encoder layer. Table 1 presents the configuration details of330

the encoder layers.331

The first layer of the encoder block receives positional-332

encoded multivariate time series data as the input. Next, the333

self-attention layer analyzes the variables’ relevance of the334

given multivariate data. The extracted features are then sub-335

jected to a 2-layer PCNN operation for additional learning336

FIGURE 4. Two types of neural networks. (a) Fully-connected neural
network and (b) PCNN. While the fully-connected neural network loses
the spatiality of input features, PCNN can retain the spatiality of input
features while adjusting the output size (number of channels).

while maintaining spatial information. Finally, the 2-layer 337

DCCNN compresses the overall feature size while extract- 338

ing the temporal features from the processed information. 339

By stacking multiple deep encoder layers, the entire encoder 340

block can better interpret the complex patterns of a given 341

multivariate time series input. 342

Additionally, we considered the Add and Norm process 343

between two neighboring component layers. The Add and 344

Norm process consists of residual connection and layer nor- 345

malization operations. The residual connection process links 346

the results of each component layer with the features before 347

the component layer. Layer normalization is a normalization 348

method for finding the mean and variance of the features 349

in a batch. Unlike other normalization techniques such as 350

batch normalization and weight normalization, layer normal- 351

ization is advantageous for handling sequential data features. 352

These twomethods prevent the vanishing gradient issue in the 353

stacked encoder networks. 354

The final output of the entire encoder block is a spatiotem- 355

poral feature, with a size much smaller than that of the initial 356

input. This feature was included in the prediction-generating 357

procedure for the decoder layer. 358

C. DECODER 359

The decoder generates the final prediction result using spa- 360

tiotemporal features extracted from the encoder. In our trans- 361

former model, a single decoder layer consists of components 362

in a different order than that of an encoder. The asymmet- 363

ric structure is empirically designed to output accurate pre- 364

diction results from a given input using one-way analysis. 365

One decoder layer consists of the following components: a 366

DCCNN, Self-attention and PCNN. Similar to the encoder 367

block, the decoder block is stacked with multiple decoder 368

layers to generate the final prediction result from the initial 369

input. The detailed specifications of the decoder layer are 370

listed in Table 2. 371

The first decoder layer receives the positional-encoded 372

multivariate time series data as the input. The 2-layer 373
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TABLE 1. Structure of a single encoder layer.

TABLE 2. Structure of a single decoder layer.

DCCNN of the decoder layer compresses the temporal infor-374

mation of the given input. Note that the second DCCNN375

reduces the number of channels of the input features aug-376

mented through positional encoding by half. This procedure377

is employed for the final output with a single value (one chan-378

nel). Subsequently, the self-attention layer receives the final379

output of the encoder as a query and key, and the output of the380

previous DCCNN layer as a value. Finally, the self-attention381

layer returns the attention results as the final predictive out-382

comes. The last 2-layer PCNN additionally extracts features383

from the output attention result to derive the final prediction384

result. Note that the internal networks of the decoder layer385

include the Add and Norm process for dealing with gradient386

vanishing issues.387

The final forecasting results are returned from the fea-388

tures of the decoder block with a fully-connected layer. The389

fully-connected layer is the last layer of the transformer390

model, and it consists of a single-layer weight without an391

activation function or dropout. The outputs of the last decoder392

layer are transformed to fit the input of the fully-connected393

layer through the flattening process. The final returns from394

the last layer are vector-shaped multivariate values x̂t , which395

indicate the prediction of x̂t .396

V. EXPERIMENTS397

We performed comparative, ablation, and in-depth exper-398

iments to evaluate the designed transformer model. This399

section describes the details of the prediction experiment, and400

discusses the performance results.401

A. SETUP402

1) DATASET403

We considered four multivariate time series datasets to eval-404

uate the performance of the proposed time series prediction405

model. The multivariate dataset considered datasets of traffic,406

exchange rate, electricity, and solar energy [35]. These pub-407

lic datasets are mainly used as benchmark datasets in time408

TABLE 3. Details of experimental multivariate time series datasets.

series prediction research. Details of the datasets are listed in 409

Table 3. 410

2) DATA PREPARATION 411

a: PREPROCESSING 412

We standardized the datasets. The multivariate time series 413

data were standardized for every time series of a single vari- 414

able. Model learning was stabilized by fixing variables with 415

different numerical scales to a constant scale (mean 0 and 416

variance 1). Along the time axis of the preprocessed dataset, 417

80% of the front part was used as the training data, and 20% 418

of the rear part was used as the test data. 419

b: DATA SEGMENTATION 420

The proposed framework forecasts the expected multivariate 421

with the given historical multivariate time series, as men- 422

tioned in Section III-B. We prepared the training and test data 423

by splitting the given dataset into data segments. The data 424

segments, consisting of the input matrix and output vector, 425

were created using the sliding window method. The sliding 426

window method is a data segment generation method that 427

slides the window into a single time unit for the entire dataset 428

period. For example, with the length of the given data L and 429

the size of the window being (m+r), a total of L−(m+r)+1 430

data pieces were created. Note that the first m multivariate 431

data of a (m + r)-sized window is the input (Xt ), and the 432

(m+ r)-th multivariate vector is the ground truth (xt+r ). The 433

process of creating data segments in a sliding windowmanner 434

for a given dataset is shown in Fig. 5. 435

3) HYPERPARAMETER DETAILS 436

As in a previous study [8], each of the encoder and decoder 437

block consists of six layers. The number of encoding dimen- 438

sions mentioned in Section IV-A1 was set to 64. We define 439

the default input length (m) and output interval (r) as 90 and 440

90, respectively. The batch size of the input data was set to 32, 441

and the number of training epochs was set to 100. We utilize 442

Adam [36] optimizer with a learning rate of 0.001. The loss 443

function of the model is Mean Squared Error (MSE). 444

4) EVALUATION METRICS 445

In this study, the root-mean-square error (RMSE), rooted 446

relative squared error (RRSE), and correlation coefficient 447

(CORR) were used as evaluation metrics. These three indi- 448

cators are evaluation metrics that are mainly used in existing 449

time series prediction and regression studies. The definitions 450

of these indicators are discussed herein. 451
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FIGURE 5. Illustration showing the process of creating data segments.
A data segment consists of an input matrix Xt and an output vector xt+r .
Note that Xt ∈ Rm×n and xt+r ∈ Rn.

The RMSE is the positive square root of the squared error452

sum divided by the total number of test data points. The loss453

value increases in proportion to the increase in the error of454

the individual values because the RMSE is derived by squar-455

ing the difference between the actual and predicted values,456

The RMSE indicates how accurately the predictive model fits457

the individual values. The RMSE is gathered with the total458

length of the test data (Ttest) and the number of variables (n)459

using (9).460

RMSE =

√√√√√ 1
Ttest

Ttest∑
i=1

n∑
j=1

(xi(j) − x̂i(j))2 (9)461

The RRSE differs from RMSE in that it is not divided462

by the total amount of test data but by the statistic (square463

deviation) of the actual value of the test data. The RRSE value464

indicates how similarly the model predicts for that time series465

variable. Similar to the RMSE, the RRSE is also affected466

by the error of the individual values. The RRSE is obtained467

from the total length of the test data (Ttest) and the number of468

variables (n), using (10).469

RRSE =

√√√√1
n

n∑
j=1

∑Ttest
i=1 (xi(j) − x̂i(j))2∑Ttest
i=1 (xi(j) − x̄j)2

(10)470

Here, x̄j is the average value of the jth variable.471

The CORR is the correlation coefficient between the actual472

and predicted values. The CORR value indicates whether the473

overall trend is well predicted for the test data. This metric474

is less sensitive than the RMSE and RRSE. The formula for475

calculating CORR is shown in (11).476

CORR =
1
n

n∑
j=1

∑Ttest
i=1 (xi(j) − x̄j)(x̂i(j) − ¯̂xj)√∑Ttest
i=1 (xi(j) − x̄j)2(x̂i(j) − ¯̂xj)2

(11)477

Note that ¯̂xj stands for the average value of the predicted jth478

variable.479

B. RESULTS AND DISCUSSIONS480

1) PREDICTION PERFORMANCE481

We first performed a prediction experiment with the hyper-482

parameter specifications mentioned in Section V-A3. The483

specific metric results are described in comparison with the484

experimental results. A comparison of the predicted results 485

and ground-truth data is shown in Fig. 6. 486

We observed the prediction results based on dataset fea- 487

tures. For the prediction results of the exchange rate dataset, 488

the model predicted the overall trend with a small error. 489

In addition, it predicted data with periodicity and high accu- 490

racy, as seen in the Electricity_var301 case. The proposed 491

model showed accurate prediction results even for data where 492

specific values are repeated at regular intervals (solar energy 493

dataset). However, the model forecasted the expected value 494

slightly inaccurately when dealing with data with large vari- 495

ance or rapidly-changing data such as Traffic_var175 and 496

Electricity_var57. 497

We also determined that the forecasting model predicted 498

similar values with a slight lag from the actual values, regard- 499

less of the data characteristics. This error occurs when a 500

distant time point is inferred from the input data. Neverthe- 501

less, the proposed model predicted the result with a time lag 502

smaller than the defined output interval (m = 90). 503

a: COMPARISON WITH OTHER WORKS 504

We designed a comparative experiment with existing 505

prediction models to evaluate the objective performance of 506

the proposed forecasting model. The comparison models 507

are the general transformer [8] and the latest models of 508

time series prediction such as LogSparse Transformer [33], 509

Informer [37], LSTNet [35], and SpringNet [38]. The com- 510

parative test results were evaluated based on the three eval- 511

uation metrics mentioned in Section V-A4. The input/output 512

shape of all models were the same, m = 90 and r = 90. The 513

experimental results are listed in Table 4. 514

As shown in Table 4, the prediction performance of the 515

proposed model is almost the same as that of Informer and 516

SpringNet. The Solar-dataset dataset result is slightly infe- 517

rior to other recent models because the proposed model face 518

adversity to predict accurate values (non-zero values) for 519

data in which zero and non-zero values appear periodically. 520

However, we note that our prediction model showed slightly 521

better accuracy than the other prediction models on the traffic 522

dataset and the electricity dataset. As described in Table 3 523

and Fig. 6, these two datasets contain many variables, and the 524

patterns of the variables are similar to each other compared 525

with the other two datasets (exchange rate, solar energy). 526

Therefore, considering the precise forecasting results for this 527

dataset type, it is apparent that the designed prediction model 528

can better interpret multivariate data with a higher correlation 529

between variables than the other existing forecasting models. 530

b: COMPUTATION COSTS 531

We check how much computation cost is required for the 532

designed model. We additionally note the FLOPs (FLoating 533

point OPerations) of the proposed model and other compar- 534

ative models by using the exact same computing resources. 535

The results are in Table 5. 536

We observe that the proposed model has more FLOPs than 537

the general transformer model. Still, the computational cost is 538

slightly lower than the prediction models of the latest studies. 539
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FIGURE 6. Multivariate prediction results of the proposed model. They show the prediction results for an arbitrary time period (300 time units). It is not
possible to show the results for all variables in one figure, so only the prediction results for four random variables in each dataset are shown.

TABLE 4. Prediction results of comparison experiments with existing time series forecasting models. The best results are in bold type, and the second
best results are italic type.

The reason of the lower FLOPs costs is the decoder structure540

is simplified compared to other transformer-based prediction541

models.542

2) ABLATION STUDY543

In this study, we evaluated the performance changes that544

occur while changing or removing the structure of the545

designed model.546

a: POINTWISE CNN547

An ablation experiment was performed on the pointwise CNN548

layers of the presented model. We replaced the PCNN layer549

of the proposed model with a feed-forward neural network550

(FFNN), similar to the existing transformer model. The out-551

put of the FFNN was designed to have the same shape as552

that of the existing PCNN layer. All the other structures and553

hyperparameter settings were the same as those of the origi- 554

nally proposed model. The prediction results of this study are 555

shown in Fig. 7. 556

We observed that the prediction performance of the 557

redesigned model degraded, regardless of the datasets used. 558

In particular, the prediction accuracy for the exchange 559

rate dataset, which had a trend rather than periodicity, 560

drastically deteriorated (approximately 13–15%). From this 561

result, it is apparent that the PCNN layers of the pro- 562

posed model, which preserve the spatiality of the hidden 563

states, have a substantial effect on predicting the overall 564

trend. 565

b: ENCODER-DECODER STRUCTURE 566

We proposed an asymmetric transformer model whose layer 567

orders of the encoder and decoder are different. The perfor- 568
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TABLE 5. Computation costs (FLOPs) of the experimental models.

FIGURE 7. Ablation experiment results according to dataset and
evaluation metrics.

mance significance of the asymmetric structure was evaluated569

by designing the encoder and decoder in the same layer order570

as in other existing transformer studies. A symmetric struc-571

ture was designed by making the decoder structure identical572

to the encoder structure. The reordered model was tuned so573

that all other input/output flows proceeded in the same man-574

ner as in the original model. The rest of the model training575

settings were identical. The change in the prediction results576

FIGURE 8. Evaluation metrics changes for each dataset according to the
input length.

according to the structural transformation of the model is 577

shown in Fig. 7. 578

The results of the CORRmetrics in the referred figure were 579

slightly worse than those of the original models. However, 580

in the cases of the RMSE and RRSEmetrics, the performance 581

results were significantly lower than those of the original 582

model (approximately 10–12%). The proposed asymmetric 583

model predicted individual values better than the symmetric- 584

structured model. 585
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FIGURE 9. Evaluation metrics changes for each dataset according to the
output interval.

3) IN-DEPTH EXPERIMENT586

In addition, we evaluated how the performance of the pro-587

posedmodel changed by adjusting the hyperparameters of the588

input length (m) and output interval (r).589

a: EXPERIMENT WITH INPUT LENGTH590

In this experiment, we performed the test while the output591

interval was fixed and the input length was changed. r is fixed592

at 30, and the experiment was performed while changingm to593

10, 30, 60, 90. The experimental results are shown in Fig. 8.594

There was no significant difference in the accuracy 595

between the prediction experiments with input time lengths of 596

60 and 90, except for the exchange rate dataset. We observed 597

that the performance improved with a longer input, especially 598

for data with a long-term trend, such as the exchange rate 599

dataset. For the electricity and solar energy datasets, which 600

have a distinct cycle of 24 hours, the prediction outcome with 601

an m = 30 showed a significant performance improvement in 602

all metrics compared with the result with m = 10. 603

The results of this experiment show that the proposed 604

model is significantly affected by the periodicity of the input 605

data. In addition, we observed that the input length and per- 606

formance are directly proportional to the data showing a long- 607

term trend. 608

b: EXPERIMENT WITH OUTPUT INTERVAL 609

As in the previous experiment, we checked how the perfor- 610

mance of the designed model changed as the output interval 611

increased.mwas fixed at 30, and r was changed to 10, 30, 60, 612

and 90 to compare the forecasting performance of the near 613

future and far future. The results of the prediction tests are 614

shown in Fig. 9. 615

As shown in Fig. 9, the model shows a good performance 616

in predicting a point in the near future (r = 10) compared with 617

the input length, while sharp decreases in performance in the 618

CORRmetrics are observed at r = 30. However, except for the 619

RRSE in traffic dataset, there was no significant performance 620

deterioration between r = 60 and r = 90, which are tasks that 621

predict a future point farther than the input length. 622

We observed that the performance of the proposed model 623

decreased as the prediction interval increased, particularly 624

in terms of overall trends. Furthermore, compared with the 625

prediction results in Section V-B1, a longer input length is 626

required to forecast distant future points. 627

VI. CONCLUSION 628

We present a multivariate time series prediction model that 629

leverages a convolutional neural network with a transformer 630

model structure. The proposed model simultaneously ana- 631

lyzes the correlation between the input variables and temporal 632

features of a given multivariate time series data in one model 633

while the existing methodologies are difficult to deal with. 634

In addition, we performed experiments using several time 635

series datasets with different data characteristics to demon- 636

strate the superior predictive performance of the designed 637

model. The performance results of the extensive experiments 638

proved that the proposed model enables multivariate predic- 639

tion at a future time point with high accuracy for many vari- 640

ables and long sequences. 641
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