
Received 18 August 2022, accepted 29 August 2022, date of publication 1 September 2022, date of current version 12 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203590

Worst-Case Response Time Analysis of Multitype
DAG Tasks Based on Reconstruction
CHEN SHUSHAN1, XIAO FENG1, HUANG SHUJUAN 1, ZHANG WENJUAN 2,
HAN XINGXING1, AND LI TIANSEN1
1School of Computer Science and Engineering, Xi’an Technological University, Xi’an, Shanxi 710072, China
2School of Sciences, Xi’an Technological University, Xi’an, Shanxi 710072, China

Corresponding author: Xiao Feng (xffriends207@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 62171361, in part by the General
Project of the Key Research and Development Plan of Shaanxi Province under Grant 2022GY-119, in part by the Scientific and
Technological Project of Shaanxi Province under Grant 2021JM-440, in part by the Industrial Science and Technology Research Project of
Shaanxi Province under Grant 2020GY-066, and in part by the Weiyang District Science and Technology Project under Grant 201925.

1

2

3

4

5

6

7

8

9

10

ABSTRACT With thewide application of heterogeneousmulti-core processor real-time systems, the existing
analysis methods of worst-case response time (WCRT) overestimate the blocking information among
tasks, resulting in a rather pessimistic estimation. To improve the accuracy of the WCRT, we propose a
reconstruction-based WCRT analysis method for multi-type directed acyclic graph (DAG) tasks scheduling
algorithm(RMDS). The RMDS algorithm comprises the following steps: First, we unitize all task nodes in
the multi-type DAG task; Then, we use key factors as task priorities to schedule tasks and reconstruct the
DAG task model into a parallel node segment model; Finally, we estimate the WCRT of multi-type DAG
tasks according to the parallel node segment model to assess task schedulability. To verify the performance of
our algorithm, we compared it with traditional algorithms. RDMS showed an acceptance rate 6.13% higher
and its overall performance increased by 25.95% in comparison with traditional algorithms.

11 INDEX TERMS Worst-case response time, reconstruction, task scheduling, RMDS, multitype DAG tasks.

I. INTRODUCTION12

Real-time embedded systems are increasingly being imple-13

mented on heterogeneous multi-core processor platforms to14

meet their diverse and high computing demands [1] owing15

to their continuous improvement of processor performance.16

Real-time systems based on heterogeneous multi-core pro-17

cessors have been successfully applied in the fields of digital18

signal processing [2], image processing [3], [4], and dis-19

tributed systems [5], and have achieved remarkable results.20

Resource allocation [6] and energy consumption [7] in the21

process of task scheduling based on heterogeneousmulti-core22

processor platforms are always the key issues to be faced.23

To address these problems, this study adopts a migration24

method that can avoid cache misses and processor task state25

transitions. The study focuses on the overhead non-migration26

scheduling method [8].27

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

The worst-case response time (WCRT) is the maximum 28

time spent by all DAG tasks on a heterogeneous multi-core 29

platform under the corresponding DAG task scheduling pol- 30

icy. This bound is used to judge whether a current DAG task 31

can be scheduled and completed within the specified time 32

and is an important evaluation index to measure the quality 33

of DAG task scheduling algorithms. Current methods to cal- 34

culate the upper bound of worst response times overestimate 35

the required overhead time and are thus too pessimistic. 36

The WCRT of each task is the most important indicator 37

to measure the real-time performance of the system. The 38

schedulability of the task is assessed by itsWCRT, which pro- 39

vides the basis for real-time scheduling. Since the real-time 40

task scheduling is a non-deterministic polynomial (NP) com- 41

plete problem [9], and only suboptimal solutions WCRT can 42

be obtained. The WCRT computing method for real-time 43

tasks has become a topic in the field of embedded research. 44

Directed acyclic graphs (DAG) are widely used to model 45

applications executed on heterogeneous multi-core plat- 46

forms. Typically, applications are divided into subtasks that 47

93140
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-2432-1322
https://orcid.org/0000-0003-0259-6779
https://orcid.org/0000-0003-3181-4480

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

are scheduled to be executed on a set of available pro-48

cessor cores. Each vertex of the DAG corresponds to an49

execution sequence, and each directed edge represents a50

precedence constraint between vertices. The critical path51

is the length of the path with the longest execution time52

in the entire DAG task, which represents the lower limit of53

the WCRT.54

Previous studies [10], [11], [12], [13] analyzed the execu-55

tion sequence of the tasks, studied the relationship among56

the execution time of tasks, the length of the critical path,57

and the WCRT, and helped improve the effect of the task58

execution time on the WCRT for polynomial solving tasks.59

Using polynomial needs to consider the influence of different60

factors on the WCRT, and the calculation method is com-61

plicated. Other studies [14], [15], [16], [17], [18], [19], [20]62

analyzed the tasks latest deadline and earliest start time to cal-63

culate the task priority and generated a priority list to obtain64

the WCRT according to that sequence. Still other studies65

[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]66

used a heuristic algorithm to dynamically simulate the task67

scheduling problem and generated the optimal scheduling68

sequence through continuous iterations to obtain the WCRT.69

This method requires a large amount of computation to iter-70

atively generate the task scheduling sequence. The structure71

of the task graph is complex, and it is easy to fall into a local72

optimum whereas ignoring the global optimum scheduling73

goal.74

This paper focuses on the multi-type DAGmodel, and pro-75

poses a reconstruction-basedmulti-typeDAG task scheduling76

method (RMDS) and a WCRT analysis method.77

(1) First, the DAG task graph unitizes the tasks,78

unifies the execution time of the tasks, and improves the79

accuracy of obtaining blocking information during task80

execution;81

(2) Second, a key factor calculation method is proposed82

as the priority index of task nodes, make the task scheduling83

order globally optimal.84

(3) Third, each task node in the DAG is assigned to the85

corresponding parallel node segment, so that the DAG task86

model is reconstructed into a parallel node segment [12]87

model, optimize the scheduling process of tasks and improve88

the efficiency of task allocation.89

(4) Finally, the WCRT of multi-type DAG tasks is esti-90

mated based on the parallel node segment information to91

acquired task WCRT is more accurate.92

The experimental results show that the RMDS algorithm93

proposed here improves the schedulability assessment accu-94

racy by 25.95% compared with the DTA algorithms.95

This paper is organized as follows: Section 2 discusses96

related work; Section 3 introduces the system and task97

model; Section 4 describes the WCRT analysis method98

proposed in this paper; Section 5 compares the proposed99

algorithm with existing algorithms and verifies the superi-100

ority and correctness of this method; conclusions are stated101

in Section 6.102

II. RELATED WORK 103

Many experts and scholars have made significant research on 104

how to efficiently obtain a more accurateWCRT for real-time 105

tasks. 106

A. POLYNOMIAL CALCULATION 107

Jaffe et al. [10] proposed a calculation method for the WCRT 108

of real-time tasks for the scheduling problem of different 109

types of tasks on different processors, but the obtainedWCRT 110

did not consider the self-sustainability problem that get a 111

larger WCRT. Han et al. [11] proposed two WCRT analysis 112

methods by studying multi-type DAG tasks, which solved 113

the non-self-sustainability problem of the algorithm [10] and 114

improved the WCRT calculation accuracy. The algorithm 115

overestimates the interference of non-critical path nodes to 116

the execution of critical path nodes. Melani et al. [12] ana- 117

lyzed theDAG taskmodel with conditional structure and used 118

the worst-case execution time and longest path length of the 119

task to characterize the complex structure of the conditional 120

task graph and proposed the concept of parallel node seg- 121

ments. The node segment divides the execution interval of 122

the task and calculates its WCRT. The algorithm does not 123

consider the task execution interval defined by the parallel 124

node segment, which will cause a large number of processors 125

to be idle waiting for the execution of other task nodes in 126

the same node segment, and the WCRT obtained is less 127

accurate. Serrano et al. [13] proposed aDAGconversion strat- 128

egy for DAG tasks that support parallel and heterogeneous 129

computing. This strategy avoids the interference between 130

parallel tasks by allocating some of them to the accelerator 131

for execution, reduces the idle waiting time of the processor, 132

and obtains the WCRT of the task, but this method does not 133

consider the possibility that the assignment of different tasks 134

leads to different results. 135

B. SIMULATION SCHEDULING 136

Axer et al. [14] studied fork-join tasks with fixed priority and 137

proposed a WCRT analysis method based on fixed-priority 138

tasks, considering the interference of tasks with higher prior- 139

ity. The algorithm is a trade-off inadequate consideration of 140

priorities and task selection results in poor accurate WCRTs. 141

Maia et al. [15] proposed a schedulability analysis method 142

based on global fixed-priority tasks onmultiprocessors, using 143

task decomposition and sliding window to derive the inter- 144

ference information between tasks, and calculated the worst- 145

case response of each task time, but the time complexity 146

of the algorithm is high, and it cannot analyze large-scale 147

real-time tasks. Yang et al. [16] proposed an end-to-end 148

response time analysis method by studying DAG tasks that 149

allow parallelism within tasks, calculating the WCRT in the 150

case of priority scheduling of tasks with the earliest deadline. 151

The WCRT obtained by the algorithm is not very accurate. 152

Chang et al. [17] proposed a critical assignment strategy for 153

the schedulability problem of multi-type DAG task models, 154

VOLUME 10, 2022 93141

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

assigning a criticality to each subtask as the priority constraint155

of task execution to obtain the WCRT. Nogd et al. [18]156

proposed a response time analysis method based on fixed157

priority and ordered spin lock for the problem of lack of158

response time analysis for non-preemptive global scheduling159

of shared resources. However, the WCRT obtained by the160

algorithm fluctuates greatly in different situations. He et al.161

[19] proposed a response time analysis method for DAG tasks162

based on arbitrary priority to solve the problem that DAG163

task scheduling is constrained by priority, high priority tasks164

are scheduled first, which improves the efficiency of finding165

the tasks’ WCRT, but the accuracy was poor. Sun et al. [20]166

showed that the traditional real-time scheduling algorithm of167

OpenMP tasks cannot guarantee the upper bound accuracy168

of the response time and proposed a hierarchical schedul-169

ing algorithm (HS) to schedule OpenMP tasks and gave a170

response time analysismethod based on theHS algorithm, but171

their algorithm has great limitations in scheduling flexibility172

and response time analysis accuracy.173

C. HEURISTIC ALGORITHM174

According to the difference of task classification, experts175

have invested a lot of research on the scheduling problem of176

related tasks [21], independent tasks [22], and periodic tasks177

[23], [24], using heuristic algorithms.178

Moghadam et al. [25] proposed a simulation-based179

response time analysis method for the high complexity of180

industrial real-time systems, using reinforcement learning to181

simulate the execution scenario of the program to estimate the182

WCRT, but the algorithm requires a significant time to train.183

Sun et al. [26] proposed a linear-time dynamic programming184

algorithm to estimate the WCRT and achieved good results,185

although the algorithm’s high complexity requires significant186

computational time. He et al. [27] proposed to control the187

execution order of tasks through vertex priority assignment,188

and designed a heuristic algorithm for proper task priority189

assignment. In order to improve the schedulability of the190

system, the algorithm has a large time overhead for DAG191

tasks with a large number of nodes. Skr et al. [28] showed192

that the heuristic algorithm can only reach the local optimum,193

and the result deviates from the optimal solution. An ILP-NC194

algorithm based on integer linear programming is proposed.195

This algorithm reduces the number of constraints required for196

task scheduling and improves its performance by modifying197

the number of processors set by the platform and the deadline198

for a given task. But the computations needed for this method199

are highly complex. Roy et al. [29] proposed a low-cost200

heuristic algorithm CC-TMS to solve the problem of high201

computational complexity of the optimal solution of task202

scheduling by integer linear programming, which reduces the203

algorithm for finding the optimal solution of task scheduling.204

However, when scheduling more complex tasks, the algo-205

rithm only considers how to quickly obtain the scheduling206

order and ignores the scheduling time. Devaraj et al. [30]207

addressed the problem that traditional heuristic task schedul-208

ing algorithms cannot consider all necessary conditions, and209

proposed a fault-tolerant scheduling method based on super- 210

visory control and designed a search strategy to maximize 211

fault-tolerance, thereby improving task scheduling. But this 212

algorithm is very time consuming. 213

Current research uses different scheduling strategies to 214

solve the task scheduling problem, and has achieved great 215

results, but the results of the existing methods to obtain the 216

worst response time of the task are pessimistic, and they do 217

not consider the impact of other tasks in the task scheduling 218

process. In view of the above, this study proposes aworst-case 219

response time analysis method for multi-type DAG tasks 220

based on reconstruction, which improves the accuracy of 221

task response time and reduces the time overhead of task 222

scheduling. 223

III. SYSTEM MODEL AND RELATED DEFINITIONS 224

A. PROCESSOR MODEL 225

Here we assume that the heterogeneous multi-core platform 226

consists of K different types of processors, represented by 227

H = {H1,H2, . . . ,HK } . The number of processor cores of 228

each type is not necessarily the same, so let mk represent the 229

number of processor cores of the kth type, that is mk = |Hk |. 230

All cores can execute tasks in parallel. The computing speed 231

at which each processor core executes the corresponding task 232

node is one unit of time. 233

B. TASK MODEL 234

The multi-type DAG task model can be represented as a 235

quadruple G = {V ,E,P, c}, where V = {v1, v2, . . . , 236

vi, . . . , vn} is the set of nodes, each node vi represents the 237

ith task in the DAG, and n = |V | is the number of tasks in 238

the DAG. E is the set of DAG edges, whose elements are 239

two-dimensional matrix, (eij) for 1 ≤ i, j ≤ 2, and eij = 240

1 indicates that there is a predecessor dependency between 241

the nodes
(
vi, vj

)
, where vi is called the predecessor node of vj 242

and vj the successor node of vi, that is, vj can only be executed 243

after vi is executed. The relationship between task nodes and 244

processors is denoted by P, all tasks are to be executed on 245

a fixed type of processor. In the processor modeling stage, 246

each type of processor is marked, and tasks are assigned to 247

the processor with the fastest execution speed by default, and 248

each node has a type of processor. For example, P (vi) = 249

k, (k ∈ [1,K]) means that the node vi must be executed on 250

set Hk of processor cores of type k. The execution time of 251

each task node is denoted by c, and c (vi) is the maximum 252

execution time of the node vi on its corresponding type of 253

processor Hk . 254

Definition 1: Let prep(vi) denote the set of direct prede- 255

cessor tasks of the task vi in the multiple-type DAG task. 256

If pred(vi) = ∅, then the node is called the start node and 257

is denoted vstart . The set succ(vi) denotes the set of tasks that 258

directly succeed vi. If succ(vi) = ∅, then the node is called 259

the termination node and denoted vend . 260

In a DAG task, if there are multiple start and end nodes, a 261

virtual start node and end node with an execution time of 0 is 262

added. 263

93142 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 1. DAG task graph example G.

When a continuous execution sequence includes both the264

start and the end nodes it is called a complete path l. L =265

{l1, l2, l3, . . . , lM represents the set of all complete paths, and266

lmax is the longest complete path, which is called the critical267

path, len(lm) represents the time cost of executing the com-268

plete path lm, and len(G) is expressed as the time overhead of269

the longest path lmax in the DAG, which determines the lower270

bound of the WCRT. We have:271

len (lm) =
∑

vi∈lm
c(vi) (1)272

len(G) = max
lm∈L
{len (lm)} (2)273

Definition 2: Let des(vi) be the set of descendent nodes of274

vi. If node vj ∈ des (vi), then vj must be executed after vi275

and vj has no other predecessors. All nodes, except vstart , are276

descendants of vstart .277

Definition 3: If we consider all the connected nodes from278

the node vi to the terminal node vend as a subgraph of the279

DAG task, the longest path of the subgraph is called the local280

critical path PCP(vi), and LPCP(vi) the local key. The local281

critical paths of nodes on the critical path are a subset of282

the critical paths of the DAG. The length of the path is:283

LPCP (vi) = max
vj∈succ(vi)

c (vi)+
(
LPCP

(
vj
))

(3)284

Definition 4: Let’s be the set of multiple parallel tasks285

where all tasks in the node segment are executed at the286

same time and different node segments are serially connected287

through directional arcs. By converting the DAG task into288

an execution sequence composed of multiple node segments,289

the task model is simplified. The worst execution time of all290

parallel node segments depends on the task node with the291

longest execution time:292

c (segments) = max
vi∈segmentsi

c (vi) (4)293

Fig. 1 shows amulti-typeDAG example G running on three294

types of processors, where each node represents a task of the295

DAG, the node name of the current task and the execution296

time of the task are given in the node, different colors indicate297

the different processor cores in which they are executed; vi is298

the name of the node, and the digital sub-table represents the299

execution of the node on the corresponding processor type300

FIGURE 2. Schematic diagram of node splitting.

and the size of its execution time. In this example, m1 = 2, 301

and m2 = m3 = 1. From Definition 1 and Definition 2, 302

we know that prep (v0) = {v1, v2, v3}, since succ (v0) = ∅ 303

and prep (v15) = ∅, so vstart = v0, vend = v15. The 304

critical path is lmax = {v0, v3, v7, v10, v13, v15} whose length 305

is len (G) = 12. From definition 3 it can be concluded that 306

LPCP (v3) = 10. 307

IV. RMDS ALGORITHM 308

To obtain a more accurate WCRT, we propose a 309

reconstruction-based WCRT analysis method for multi-type 310

DAG tasks (RMDS). 311

A. TASK PREPROCESSING 312

The execution time of each task node in the DAG is randomly 313

generated. Since the execution time of task nodes is not 314

uniform, when calculating the WCRT many processors will 315

be idle when the task node divides the execution interval 316

and the WCRT of the task cannot be accurately calculated. 317

To solve the above problems, this study unitizes each task 318

node of the DAG according to the execution time and divide 319

all task nodes except the start node and all end nodes into 320

multiple nodes with the same execution time preserving their 321

sequential connection. We end up with a collection of unit 322

nodes. To reduce the number of node splits, the execution 323

time of a unit node is set to the greatest common divisor d 324

of all nodes that need to be split. We normalize the tasks 325

whose execution time is less than one unit and then perform 326

the unitization operation of the tasks to ensure that to each of 327

them is assigned at least one unit node. 328

Fig. 2 is a schematic diagram of how a node with an 329

execution time h and d = 1 is split into h nodes with an 330

execution time of d . Through node splitting, each split unit 331

node vi,j is represented as the jth unit node of the ith node. 332

The Fig. 3 shows the task graph G′ after unitizing the task 333

graph G. All nodes in G except the start node vstart and the 334

end node vend are split into unit nodes. The other attributes of 335

each unit node are the same as those before the split, and all 336

unitized nodes are connected by edges. 337

The number of nodes |V ′| of the DAG after unitization is: 338∣∣V ′∣∣ =∑|V |−2

i=1

c (vi)
d
+ 2 (5) 339

Equation (5), |V | is the number of nodes in the DAG 340

before unitization, and d is the greatest common divisor of 341

the execution time of the split nodes. 342

B. TASK PRIORITIES IN RMDS 343

The accuracy of improving the WCRT of task scheduling 344

depends largely on assigning priorities to tasks. If a task is 345

scheduled first, resulting in a shortened WCRT, the task must 346

VOLUME 10, 2022 93143

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 3. Unitized task graph G′ .

have a high priority. This study proposes key factors as task347

priority indicators and evaluates the impact of current node348

priority allocation on subsequent nodes by calculating key349

factors and prioritizes tasks with large key factors. The key350

factor is mainly composed of two parts.351

(1) The local critical path length LPCP from the current352

node vi to the terminal node vend , as shown in Definition 3,353

which represents theWCRT lower limit of the DAG subgraph354

formed by the current node and the terminal node. It is used355

as the main reference factor for task scheduling.356

(2) The criticality µ (vi) of the current node to subsequent357

nodes. If the current node has many descendant nodes, pref-358

erentially assigning this node can effectively reduce the idle359

waiting time of the processor. To ensure the minimum overall360

response time, µ (vi) is used as a secondary indicator of task361

priority assignment, as shown in (6):362

µ (vi) = max
vj∈succvi

µ
(
vj
)

363

+ max
k∈[1,K]

∑ vj ∈ succ (vi)
P
(
vj
)
= k

c
(
vj
)

mk

 (6)364

where succ (vi) is the direct successor node set of task node365

vi, P
(
vj
)
= k indicates that task node vj is scheduled on the366

processor core of type k, and mk is the number of processor367

cores of type k. µ (vend) is defined as 0.368

In summary, for the task scheduling priority assignment369

problem, the calculation method of the key factor is shown370

in the following equation:371

Iprio (vi) = LPCP (vi)+ µ (vi) (7)372

Table 1 is a list of task priorities based on key factors.373

According to Table 1, the key factors proposed in this paper374

expand the range of priorities and subdivide the degree of375

influence of each task on subsequent task scheduling.376

C. TASK GRAPH RECONSTRUCTION377

Based on the priority list of DAG tasks shown in Table 1,378

the DAG is reconstructed into a parallel node segment model,379

TABLE 1. Task priority list.

the execution interval of each task node is limited, and the 380

priority selection strategy is used to ensure that tasks are in 381

a relatively optimal time period scheduling, thereby reducing 382

the execution time of task nodes. The reconstruction of the 383

DAG is divided into the following steps. 384

(1) Obtain nodes with 0 in-degree nodes from the DAG, 385

and form a ready node set, and execute step (2). 386

(2) Allocate the ready node set to the node segments 387

according to the size of the key factor and assign the node 388

with the largest key factor first. If the key factor is the same, 389

go to step (3), otherwise, delete the currently allocated node 390

and go to step (6). 391

(3) The nodes with the long local critical paths are pref- 392

erentially allocated to the node segments. If the local critical 393

93144 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

Algorithm 1 RMDS
Input: G = {V ,E,P,C}, System
Output: Segment
1 Initialize all nodes of DAG
2 Seglength = 0
3 For each vi ∈ G
4 If there are multiple nodes that degree is 0
5 Create a node vinput (voutput) with c (v) = 0
6 succ

(
vinput

)
= vi or prep

(
voutput

)
= vi

7 End if
8 End for
9 Calculate the greatest common divisor d of all the nodes

10 For each node vi ∈ G && vi 6= vstart , vend
11 If c (vi) > d
12 vi→

{
vi,1, vi,2, . . . , vi,c(vi)/d

}
13 End if
14 End for
15 calculate the priority of each node Eq. 6
16 While G 6= NULL
17 Initialize the usage of each processor core and clear readyList
18 For each vi,j ∈ Gandprep

(
vi,j
)
= ∅

19 Input vi,j to readyList
20 End for
21 Rank(readyList) according to priority
22 For each vi,j : readyList
23 If P

(
vi,j
)
= k and Type of k processor idle

24 Input vi,j into Segment[Seglength] and delete vi,j from G
25 End if
26 End for
27 Seglength = Seglength+ 1
28 End while
29 Return Segment

FIGURE 4. Segment model.

paths have the same length, step (4) is performed; otherwise,394

the currently allocated nodes are deleted, and step (6) is395

performed.396

(4) Priority is given to node segments with the largest397

number of direct successor nodes; if the number of direct398

successor nodes is the same, perform step (5); otherwise,399

perform step (6).400

(5) Allocate nodes in the order of the node sequence, delete 401

the currently allocated nodes, and execute step (6). 402

(6) If the current node segment has no idle processor core 403

or the current ready node set is empty, repeat steps (1-6) until 404

the node in the DAG is empty. 405

According to the above method, the DAG is transformed 406

into a parallel node segment model without affecting the 407

VOLUME 10, 2022 93145

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 5. Comparison of task simulation scheduling before and after algorithm processing.

dependencies among task nodes. The execution interval of408

each task is specified to avoid unnecessary blocking between409

tasks, thereby reducing the WCRT of the task.410

Pseudocode of the RMDS algorithm.411

Lines 1-2 of the algorithm initialize all nodes in the DAG412

input by the algorithm, that is, perform zero-setting opera-413

tions on indicators such as the priority of each node, and414

initialize the length of the node segment to 0. Lines 3-8415

normalize the DAG G and transform the input irregular task416

graph into a standard DAG with only one start node and end417

node. Line 9 obtains the greatest common divisor d of the418

execution time of all nodes except the start node and the419

termination node by calculation. Lines 10-14 unitize the task420

graph G with the information obtained earlier. Line 15 calcu-421

lates the priority of each node using 6. Lines 16-28 converts422

the DAG model into a parallel node segment model. Line 17423

initializes the processor and clears the ready list. Lines 18-20424

get the current list of ready tasks. Line 21 orders the list of425

ready tasks by priority. Lines 22-28 place the node into the426

current node segment and delete the corresponding node in427

the DAG until no node that meets the requirements exist or428

the current node segment has no corresponding idle processor429

core. By analyzing the algorithm, during its execution the430

nodes will be split into unit nodes, and then the corresponding431

operations are performed on the tasks (lines 16-28). Through432

analysis, the outermost loop is in the worst case, the entire 433

DAG task is connected in series, it needs to loop V ′ times to 434

complete the task scheduling. In this case, the inner loop time 435

is 1, the total time complexity is O(
∣∣V ′∣∣ + 1), and becomes 436

O(
∣∣V ′∣∣) after eliminating the constant. In the best case of the 437

outer loop, all nodes are scheduled in parallel. At this time, the 438

time complexity of the task is
[
|V ′|∑

k∈[1,K] mk
+ 1, |V

′|
mk
+ 1

]
, 439

so the time complexity is O(
∣∣V ′∣∣). The task node is divided 440

into V ′ unit nodes, so the space complexity is O(
∣∣V ′∣∣). 441

The task graph is converted into a segment model by the 442

RMDS algorithm, and the result is shown in fig. 4. 443

Fig. 5 shows the comparison of task simulation scheduling 444

time after and before model conversion. It can be seen that the 445

WCRT obtained by converting G using the RMDS algorithm 446

one unit shorter of the traditional algorithm. 447

D. WCRT ANALYSIS 448

The RMDS algorithm proposed in this paper converts the 449

DAG task model into a segment model and divides the exe- 450

cution interval of each task node to obtain the WCRT of 451

the task according to the information of the node segment. 452

Compared with the WCRT analysis method that has been 453

proposed so far, this paper reconstructs the DAG task model 454

into a parallel node segment model. During the reconstruction 455

93146 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

process, the number of parallel nodes in each node segment is456

set, thereby delaying start time. Changing the start execution457

time of some nodes optimizes the scheduling sequence of458

DAG tasks, thereby reducing the WCRT. Through the model459

conversion strategy, the WCRT of this paper can be obtained460

using the following equations:461

WCRT =
∑

seg∈Segment
c (seg) (8)462

(8) can be simplified into the equation:463

WCRT = d ∗ (lenth (Segment)− 2)464

+ c (vstart)+ c (vend) (9)465

where d is the greatest common divisor of the execution time466

of all task nodes in the unitized DAG, and lenth (Segment)467

represents the total length of the parallel node segment trans-468

formed by the DAG.469

Theorem: The WCRT of a DAG task is bounded by470

R
(
G′
)
≤ d ∗ (length (Segment)− 2)471

+ c (vstart)+ c (vend) (10)472

Proof: According to the calculation method of WCRT,473

the WCRT of the DAG task depends on the execution time474

d of the unitized task and the number of node segments after475

task transformation. Assuming that the actual execution time476

of a node in the multi-type DAG is less than the WCRT of the477

task node, then c(vi) ≥ c′(vi).478

If the number of node splits remains the same, then d > d ′479

and length (Segment) = length
(
Segment ′

)
. According to (9),480

it can be known thatWCRT ≥ WCRT ′ holds.481

To sum up, when the actual execution time of the task node482

is less than the worst execution time of the task, the actual483

execution time never exceeds the upper bound of the WCRT484

proposed in this paper. The theorem is proven.485

This paper proposes a WCRT analysis method for486

multi-type DAG tasks based on reconstruction. By adjusting487

the scheduling order of different task nodes and limiting488

the scheduling interval of different nodes, the interference489

between tasks is reduced, thus reducing the task schedul-490

ing time and obtaining a more accurate upper bound of491

the WCRT.492

V. EVALUATION493

In order to verify the performance and accuracy of the RMDS494

algorithm. A comparative analysis with four algorithms: JEF495

[10], HAN-1 [11], HAN-2 [11], and DTF [17] is presented496

to verify the performance of the RMDS algorithm. The DAG497

is randomly generated using the layer-by-layer method [31].498

The WCRT of each algorithm on different task graphs is499

obtained through experimental simulation. The results are500

compared using the following metrics.501

(1) Acceptance Ratio (AR): Specifies the WCRT upper502

bound as the ratio between the number of tasks that can503

be scheduled, and the total number of tasks generated. The504

higher the acceptance rate, the more accurate the worst-case505

response of the algorithm. 506

AR =
∑

Gi∈set

count (WCRT (Gi) < Di)

|set|
(11) 507

In (11), the set is the DAG task set, WCRT (Gi) is the 508

WCRT of the ith task graph, Di is the deadline of the current 509

task graph Gi, and |set| represents the amount of data in the 510

current task set. 511

(2) Average WCRT (AWCRT): The experiment is random, 512

and multiple sets of data are averaged to obtain the aver- 513

age WCRT of the task. The performance of the algorithm 514

is assessed by comparing the average WCRT obtained by 515

different algorithms. 516

AWCRT =
∑

Gi∈set

WCRT (Gi)

|set|
(12) 517

(3) Normalized upper bound (NR): This performance index 518

is based on the JEF algorithm as a reference and performs 519

a normalized comparison of the other algorithms based on 520

the WCRT obtained by the JEF algorithm. If the normalized 521

result is smaller, the better the algorithm is. 522

NR =
∑

Gi∈set

WCRT (Gi)

JEF (Gi)
(13) 523

(4) Speedup: The ratio of the task sequence execution 524

time to the WCRT, to obtain the acceleration of the current 525

algorithm for task scheduling. 526

Speedup =
vol (G)
WCRT

(14) 527

In (14), vol (G) represents the time overhead of sequential 528

execution of tasks. 529

(5) Slack: Slack is a measure of the robustness of a task 530

scheduling algorithm, which reflects the uncertainty of the 531

WCRT of a task generated by an algorithm scheduling. The 532

definition of Slack is shown in eq. (15). 533

Slack =
∑n

i=1WCRT − Inter (vi)− Exit (vi)
n

(15) 534

where n is the number of task nodes, Inter(vi) denotes the 535

length of the longest path from the entry node vstart to the 536

task node vi (excluding the task vi), and Exit(vi) represents 537

the length of the longest path from the task node vi to the 538

termination node vexit . 539

The algorithm considers the influence of different numbers 540

of processor types and the number of cores. When creating 541

a processor model, the number of processor types K is ran- 542

domly selected in the range of [2, 10], and the number of cores 543

for each processor, mk , is randomly selected as a number 544

between 2 and 8. 545

The first parameter is the parallelism factor Pr [17], which 546

controls the probability of the existence of an edge between 547

the current node and its subsequent nodes in the DAG task, 548

to judge the influence of the parallelism of the task on the 549

algorithm; the parallelism factor Pr is randomly selected 550

between [0.04, 0.2]. 551

VOLUME 10, 2022 93147

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 6. Variation of indicators of different algorithms with U.

The second parameter is the number of task nodes |V|,552

which is used to control the impact of the scale of DAG tasks553

on the upper bound of the WCRT. The number of task nodes 554

|V| is randomly selected between [10, 50]. 555

93148 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 7. Variation of indicators of different algorithms with K.

The third parameter is the task total utilization rate U. The556

task utilization rate of all task nodes is randomly assigned557

by the UuniFast method [32], and U =
∑

vi∈G u (vi),558

to obtain the WCRT, u (vi) is the utilization of node vi. 559

The total task utilization U is randomly selected from 560

[0.5, 5], and the sum of the worst execution times of all 561

VOLUME 10, 2022 93149

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 8. Variation of indicators of different algorithms with Pr .

nodes of the DAG task is vol(G) = U × T , where the562

deadline D ≤ T .563

According to three parameters, the layer-by-layer method564

is used to randomly generate 37,500 DAGs as the dataset for565

the control experiment. During the experiment, the algorithm 566

was used to conduct comparative experiments for each task 567

graph. For example, a total of 45 groups of experiments 568

with a step size of 0.1 were carried out for the parameter U, 569

93150 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 9. Variation of indicators of different algorithms with V.

for values of U in the range [0.5, 5], and each group of570

experiments was randomly generated. The same experiment571

was performed on 300 different DAG task graphs, and the 572

experimental results were averaged. 573

VOLUME 10, 2022 93151

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

TABLE 2. Summary of the comparison between the RMDS algorithm and other algorithms.

Fig. 6 shows the curves of each performance index of dif-574

ferent algorithms as a function of the total task utilization U.575

Fig. 6(a) is a graph of the variation of the acceptance rate of576

different algorithms with U. From the experimental results577

in Fig. 6(a), the RMDS algorithm is more accurate than the578

traditional algorithm in judging the schedulability of tasks,579

and it shows an average improvement over the DTF algorithm580

up 6.13%. When U is in the range of (1.5, 4), the task581

acceptance rate of the RMDS algorithm is 18.04%higher than582

that of the DTF algorithm. Fig. 6(b) shows the variation of583

the normalized upper bound with U for different algorithms.584

From the experimental results in Fig. 6(b), the RMDS algo-585

rithm greatly reduces the WCRT of the task. Compared with586

the DTF algorithm, the response time obtained by the RMDS587

algorithm is reduced by 4.63%. Fig. 6(c) shows the variation588

of the average WCRT of different algorithms with U. From589

the experimental results in Fig. 6(c), as the total utilization of590

the task increases, the WCRT of the task increases linearly,591

From Fig. 6(c), it can be seen that the WCRT of the RMDS592

algorithm slightly increases compared with the traditional593

algorithm. The average WCRT is 4.49% lower than that of594

the DTF algorithm. Fig. 6(d) shows the speedup of different595

algorithms changing with U. From the experimental results596

in Fig. 6(d), the RMDS algorithm has a higher speedup597

for task scheduling than the existing algorithm under dif-598

ferent task utilization rates. The MDS algorithm achieves599

a better performance for heterogeneous multi-core proces-600

sors, and with the increase of U, the speedup of the algo-601

rithm has remained stable. By comparing the results, the602

speedup of the RMDS algorithm is 5.01% higher compared603

with the DTF algorithm. Fig. 6(e) is a comparison chart of604

Slack with U of different algorithms. From the experimental605

results in Fig. 6(e), the stability of the RMDS algorithm is606

higher than that of the existing algorithm. The stability of607

the RMDS algorithm is 4.69% higher than that of the DTF608

algorithm.609

Fig. 7 shows the graphs of variation of the performance610

indicators of different algorithms varying with the number611

of processor types K. Fig. 7(a) is a graph showing the vari-612

ation of the acceptance rate of different algorithms with613

K. From the experimental results in Fig. 7(a), as K increases,614

the algorithm has higher scheduling performance for tasks.615

Fig. 7(b) shows the variation of the normalized upper bound616

with K for different algorithms. From the experimental617

results in Fig. 7(b), the WCRT of the RMDS algorithm618

is always relatively stable with the increase of K. Solved619

non-self-sustaining problems. Compared with the DTF algo- 620

rithm, the normalized WCRT obtained by the RMDS algo- 621

rithm is reduced by 4.01%. Fig. 7(c) shows the variation 622

of the average WCRT of different algorithms with K. From 623

the experimental results in Fig. 7(c), the average WCRT of 624

the RMDS algorithm is 3.98% lower than that of the DTF 625

algorithm. Fig. 7(d) shows the variation of speedup with K 626

for different algorithms. From the experimental results in 627

Fig. 7(d), the speedup of the RMDS algorithm under different 628

processor environments is always higher than that of the 629

existing algorithm. By comparing the results, the speedup 630

of the RMDS algorithm is 4.25% higher than that of the 631

DTF algorithm. Fig. 7(e) shows the comparison of Slack 632

withK for different algorithms. From the experimental results 633

in Fig. 7(e), with the increase in the number of processor 634

types, the stability of the RMDS algorithm remains balanced, 635

and higher than the current one. The stability of the RMDS 636

algorithm is 3.98% higher than that of the DTF algorithm. 637

Fig. 8 shows the variation of the performance index of 638

different algorithms where Pr denotes the number of types 639

of processors. Fig. 8(a) is a graph of the variation of the 640

acceptance rate of different algorithms with Pr . From the 641

experimental results of Fig. 8(a), as the number of paral- 642

lel nodes of the task increases, the acceptance rate of the 643

algorithm gradually increases. Fig. 8(b) shows the variation 644

of the normalized upper bound with Pr for different algo- 645

rithms. From the experimental results in Fig. 8(b), the WCRT 646

obtained by the RMDS algorithm with the increase of Pr 647

is the WCRT obtained by the RMDS algorithm which is 648

lower than the results of traditional algorithms. Compared 649

with the DTF algorithm, the normalized WCRT obtained by 650

the RMDS algorithm is reduced by 5.14%. Fig. 8(c) shows 651

the average WCRT of different algorithms as a function of 652

Pr. From the experimental results in Fig. 8(c), tasks with high 653

parallelism can be scheduled in a shorter time. The RMDS 654

algorithm’s average WCRT is 5.07% lower than that of the 655

DTF algorithm. Fig. 8(d) shows the variation of speedup with 656

Pr for different algorithms. From the experimental results in 657

Fig. 8(d), with the increase in task parallelism, the algorithm 658

accelerates task scheduling, and the speedup of the RMDS 659

algorithm is 5.67% higher than the DTF algorithm. Fig. 8(e) 660

is a comparison chart of slack with Pr of different algorithms. 661

From the experimental results of Fig. 8(e), the higher the 662

task parallelism, the worse the stability of the algorithm. The 663

stability of the RMDS algorithm is 5.13% higher than that of 664

the DTF algorithm. 665

93152 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

Fig. 9 shows the graphs of the performance indicators666

of different algorithms varying with the number of tasks667

V. Fig. 9(a) shows the variation of the acceptance rate of668

different algorithms with the number of tasks V. From the669

experimental results in Fig. 8(a), as the number of tasks670

increases, the acceptance rate of the algorithm gradually671

increases. Fig. 9(b) shows the variation of the normalized672

upper bound with V for different algorithms. From the exper-673

imental results in Fig. 9(b), as the number of tasks increases,674

the WCRT obtained by the RMDS algorithm is always lower675

than the results of traditional algorithms. Compared with676

the DTF algorithm, the normalized WCRT obtained by the677

RMDS algorithm is reduced by 5.82%. Fig. 9(c) shows the678

variation of the average WCRT with V for different algo-679

rithms. From the experimental results in Fig. 9(c), the average680

WCRT of the RMDS algorithm is 5.63% lower than that of681

the DTF algorithm. Fig. 9(d) shows the speedup of different682

algorithms as a function of V. From the experimental results683

in Fig. 9(d), the Speedup of the RMDS algorithm is 6.03%684

higher than that of the DTF algorithm. As the number of685

tasks increases, the RMDS algorithm can also stabilize the686

performance of the processor. Fig. 9(e) is a comparison chart687

of the variation of Slack with V for different algorithms.688

From the experimental results in Fig. 9(e), the stability of689

the RMDS algorithm is always in a balanced state, which690

is higher than that of the existing algorithm. The stability of691

the RMDS algorithm is 5.72% higher than that of the DTF692

algorithm.693

Table 2 summarizes the results of the comparison of vari-694

ous indicators between the RMDS algorithm and the JEF [9],695

HAN-1 [10], HAN-2 [10], and DTF [16] algorithms. Each696

value in the table represents the current RMDS algorithm.697

The indicator’s performance improvement for the current698

algorithm. Based on the above experiments, the RMDS algo-699

rithm proposed in this paper has improved performance in all700

aspects compared with the existing algorithms. It can be seen701

from Table 2 that the RMDS algorithm proposed in this paper702

has a comprehensive performance improvement of 25.9453%703

compared with the DTF algorithm.704

VI. CONCLUSION705

This paper studies the WCRT analysis method for multi-type706

DAG tasks on heterogeneous platforms and proposes a707

reconstruction-basedWCRT analysis (RMDS) for multi-type708

DAG tasks. In the RMDS algorithm, each task is processed709

as a unit, and the blocking information of each task schedul-710

ing is accurate. To determine the scheduling order of task711

nodes, a priority calculation method based on key factors712

is proposed. Finally, the DAG task graph is reconstructed713

into a parallel node segment model to schedule tasks. In this714

paper, a new scheduling method is proposed to obtain the715

WCRT of tasks more accurately. The experimental results716

show that the WCRT accuracy of the DAG task obtained by717

the RMDS algorithm is 25.9453% higher than that of the718

traditional algorithm. Due to the complexity of the struc-719

ture of multi-type DAG tasks, the selection of task priority720

determines the accuracy of the WCRT finally obtained by 721

the algorithm. How to choose an appropriate task priority 722

calculation method is the focus of our next research. 723

ACKNOWLEDGMENT 724

The authors would like to thank AiMi Academic Services 725

(www.aimieditor.com) for the English language editing and 726

review services. 727

REFERENCES 728

[1] N. Zhou, J. Hu, and H. M. Hu, ‘‘Development trend and key technologies 729

of multi-core processors,’’ Comput. Eng. Des., vol. 39, no. 2, pp. 393–399 730

and 467, 2018. 731

[2] W. Huang, L. Ding, G. Zhai, X. Min, J.-N. Hwang, Y. Xu, and W. Zhang, 732

‘‘Utility-oriented resource allocation for 360-degree video transmission 733

over heterogeneous networks,’’ Digit. Signal Process., vol. 84, pp. 1–14, 734

Jan. 2019. 735

[3] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, ‘‘An energy-efficient deep 736

learning processor with heterogeneous multi-core architecture for convo- 737

lutional neural networks and recurrent neural networks,’’ in Proc. IEEE 738

Symp. Low-Power High-Speed Chips (COOL CHIPS), Apr. 2017, pp. 1–2, 739

doi: 10.1109/COOLCHIPS.2017.7946376. 740

[4] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, ‘‘Scheduling of deep 741

learning applications onto heterogeneous processors in an embed- 742

ded device,’’ IEEE Access, vol. 8, pp. 43980–43991, 2020, doi: 743

10.1109/ACCESS.2020.2977496. 744

[5] H. B. Hu, X. Li, and J. Liang, ‘‘Research and implementation of het- 745

erogeneous distributed database system integration,’’ Appl. Res. Comput., 746

vol. 10, pp. 67–70, May 2002. 747

[6] S. Moulik, R. Devaraj, and A. Sarkar, ‘‘Hetero-Sched: A low-overhead 748

heterogeneous multi-core scheduler for real-time periodic tasks,’’ in 749

Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., IEEE 750

16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst. 751

(HPCC/SmartCity/DSS), Jun. 2018, pp. 659–666. 752

[7] S. Moulik, Z. Das, R. Devaraj, and S. Chakraborty, ‘‘SEAMERS: A semi- 753

partitioned energy-aware scheduler for heterogeneous multicore real-time 754

systems,’’ J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101953. 755

[8] R. Devaraj, ‘‘A solution to drawbacks in capturing execution require- 756

ments on heterogeneous platforms,’’ J. Supercomput., vol. 76, no. 9, 757

pp. 6901–6916, Sep. 2020. 758

[9] J. D. Ullman, ‘‘NP-complete scheduling problems,’’ J. Comput. Syst. Sci., 759

vol. 10, no. 3, pp. 384–393, 1975. 760

[10] J. M. Jaffe, ‘‘Bounds on the scheduling of typed task systems,’’ SIAM 761

J. Comput., vol. 9, no. 3, pp. 541–551, Aug. 1980. 762

[11] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, ‘‘Response time 763

bounds for typed DAG parallel tasks on heterogeneous multi-cores,’’ IEEE 764

Trans. Parallel Distrib. Syst., vol. 30, no. 11, pp. 2567–2581, Nov. 2019. 765

[12] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and 766

G. C. Buttazzo, ‘‘Response-time analysis of conditional DAG tasks in 767

multiprocessor systems,’’ in Proc. 27th Euromicro Conf. Real-Time Syst., 768

Jul. 2015, pp. 211–221, doi: 10.1109/ECRTS.2015.26. 769

[13] M. A. Serrano and E. Quiñones, ‘‘Response-time analysis of DAG tasks 770

supporting heterogeneous computing,’’ in Proc. 55th Annu. Design Autom. 771

Conf., Jun. 2018, pp. 1–6. 772

[14] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig, 773

‘‘Response-time analysis of parallel fork-join workloads with real-time 774

constraints,’’ in Proc. 25th Euromicro Conf. Real-Time Syst., Jul. 2013, 775

pp. 215–224. 776

[15] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, ‘‘Response-time 777

analysis of synchronous parallel tasks in multiprocessor systems,’’ in Proc. 778

22nd Int. Conf. Real-Time Netw. Syst. (RTNS), 2014, pp. 3–12. 779

[16] K. Yang, M. Yang, and J. H. Anderson, ‘‘Reducing response-time bounds 780

for DAG-based task systems on heterogeneous multicore platforms,’’ in 781

Proc. 24th Int. Conf. Real-Time Netw. Syst., Oct. 2016, pp. 349–358. 782

[17] S. Chang, X. Zhao, Z. Liu, and Q. Deng, ‘‘Real-time scheduling and 783

analysis of parallel tasks on heterogeneous multi-cores,’’ J. Syst. Archit., 784

vol. 105, May 2020, Art. no. 101704. 785

[18] S. Nogd, G. Nelissen, M. Nasri, and B. B. Brandenburg, ‘‘Response-time 786

analysis for non-preemptive global scheduling with FIFO spin locks,’’ in 787

Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2020, pp. 115–127, doi: 788

10.1109/RTSS49844.2020.00021. 789

VOLUME 10, 2022 93153

http://dx.doi.org/10.1109/COOLCHIPS.2017.7946376
http://dx.doi.org/10.1109/ACCESS.2020.2977496
http://dx.doi.org/10.1109/ECRTS.2015.26
http://dx.doi.org/10.1109/RTSS49844.2020.00021

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

[19] Q. He, M. Lv, and N. Guan, ‘‘Response time bounds for DAG tasks with790

arbitrary intratask priority assignment,’’ in Proc. 33rd Euromicro Conf.791

Real-Time Syst. (ECRTS), 2021, pp. 1–10.792

[20] J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi, ‘‘Real-time scheduling793

and analysis of OpenMP DAG tasks supporting nested parallelism,’’ IEEE794

Trans. Comput., vol. 69, no. 9, pp. 1335–1348, Sep. 2020.795

[21] J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, ‘‘Energy-aware scheduling for796

dependent tasks in heterogeneous multiprocessor systems,’’ J. Syst. Archit.,797

vol. 129, Aug. 2022, Art. no. 102598.798

[22] J. Chen, P. Han, Y. Liu, and X. Du, ‘‘Scheduling independent tasks in799

cloud environment based onmodified differential evolution,’’Concurrency800

Comput., Pract. Exper., vol. 21, Mar. 2021, Art. no. e6256.801

[23] J. Chen, C. Du, P. Han, and X. Du, ‘‘Work-in-progress: Non-preemptive802

scheduling of periodic tasks with data dependency upon heterogeneous803

multiprocessor platforms,’’ in Proc. IEEE Real-Time Syst. Symp. (RTSS),804

Dec. 2019, pp. 540–543.805

[24] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Scheduling non-preemptive tasks with806

strict periods in multi-core real-time systems,’’ J. Syst. Archit., vol. 90,807

pp. 72–84, Oct. 2018.808

[25] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper,809

‘‘Learning-based response time analysis in real-time embedded systems:810

A simulation-based approach,’’ in Proc. 1st Int. Workshop Softw. Qualities811

Dependencies, May 2018, pp. 21–24.812

[26] J. Sun, N. Guan, Z. Guo, Y. Xue, J. He, and G. Tan, ‘‘Calculating worst-813

case response time bounds for openMP programs with loop structures,’’ in814

Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2021, pp. 123–135, doi:815

10.1109/RTSS52674.2021.00022.816

[27] Q. He, X. Jiang, N. Guan, and Z. Guo, ‘‘Intra-task priority assignment817

in real-time scheduling of DAG tasks on multi-cores,’’ IEEE Trans.818

Parallel Distrib. Syst., vol. 30, no. 10, pp. 2283–2295, Oct. 2019, doi:819

10.1109/TPDS.2019.2910525.820

[28] S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, ‘‘Contention-821

aware optimal scheduling of real-time precedence-constrained task graphs822

on heterogeneous distributed systems,’’ J. Syst. Archit., vol. 105,May 2020,823

Art. no. 101706.824

[29] S. K. Roy, R. Devaraj, and A. Sarkar, ‘‘Contention cognizant scheduling825

of task graphs on shared bus-based heterogeneous platforms,’’ IEEE Trans.826

Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 2, pp. 281–293,827

Feb. 2022.828

[30] R. Devaraj and A. Sarkar, ‘‘Resource-optimal fault-tolerant scheduler829

design for task graphs using supervisory control,’’ IEEE Trans. Ind. Infor-830

mat., vol. 17, no. 11, pp. 7325–7337, Nov. 2021.831

[31] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and832

F. Wagner, ‘‘Random graph generation for scheduling simulations,’’ in833

Proc. 3rd Int. ICST Conf. Simulation Tools Techn., 2010, pp. 1–10.834

[32] E. Bini and G. C. Buttazzo, ‘‘Measuring the performance of schedulability835

tests,’’ Real-Time Syst., vol. 30, nos. 1–2, pp. 129–154, May 2005.836

CHEN SHUSHAN was born in Xinyang, Henan,837

China, in 1998. He received the master’s degree838

in computer software and theory from the School839

of Computer Science and Engineering, Xi’an840

Technological University. His research interests841

include embedded real-time systems andmulticore842

computing.843

XIAO FENG was born in Jiaozuo, Henan, China,844

in 1976. He received the B.S. and M.S. degrees845

in computer science from Xi’an Technological846

University, China, in 2000 and 2003, respectively,847

and the Ph.D. degree from Northwest University,848

in 2012. From 2003 to 2006, he was a Teacher849

with Xi’an Technological University. Since 2006,850

he has been an Assistant Professor with the Com-851

puter Science and Engineering College, Xi’an852

Technological University, where he has been a853

Professor with the School of Computer Science and Engineering, since 2016.854

He is the author of three books and more than 70 articles. His research855

interests include intelligent information processing, pattern recognition, and856

computer vision.857

HUANG SHUJUAN was born in Weinan, 858

Shanxi, China, in 1975. She received the B.S. 859

degree from the Computer Software Department, 860

North Western University, Xi’an, Shanxi, in 1996, 861

and the M.S. and Ph.D. degrees from the Com- 862

puter College, Northwestern Polytechnical Uni- 863

versity, Xi’an, in 2005 and 2014, respectively. 864

From 1996 to 2002, she was a Research Assistant 865

at the Tenth Research Institute of Telecommunica- 866

tion Science and Technology. From 2005 to 2013, 867

she was a Lecturer at the Software and Microelectronic College, North 868

Western Polytechnical University. Since 2014, she has been an Assistant 869

Professor with the School of Computer Science and Engineering, Xi’an 870

Technological University, Shanxi. Her main research interests include the 871

internet of things, multicore computing, and embedded systems. 872

ZHANG WENJUAN was born in 1980. She 873

received the Ph.D. degree in applied mathematics 874

from Xidian University. From November 2018 to 875

November 2019, she was a Visiting Scholar at the 876

Department ofMathematics, University of Florida, 877

USA. She is currently an Associate Professor and 878

a master’s Supervisor with Xi’an Technological 879

University, Xi’an, China. Her research interests 880

include image processing, computer vision, and 881

machine learning. 882

HAN XINGXING was born in Shangluo, Shanxi, 883

China, in 1996. She received the master’s 884

degree in electronic information from the School 885

of Computer Science and Engineering, Xi’an 886

Technological University. Her research interests 887

include embedded real-time systems andmulticore 888

computing. 889

LI TIANSEN was born in Wuwei, Gansu, China, 890

in 1996. He received the master’s degree in soft- 891

ware engineering from the School of Computer 892

Science and Engineering, Xi’an Technological 893

University. His research interests include embed- 894

ded real-time systems and mixed-criticality. 895

896

93154 VOLUME 10, 2022

http://dx.doi.org/10.1109/RTSS52674.2021.00022
http://dx.doi.org/10.1109/TPDS.2019.2910525

