IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 18 August 2022, accepted 29 August 2022, date of publication 1 September 2022, date of current version 12 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203590

== RESEARCH ARTICLE

Worst-Case Response Time Analysis of Multitype
DAG Tasks Based on Reconstruction

CHEN SHUSHAN!, XIAO FENG', HUANG SHUJUAN"', ZHANG WENJUAN"“2,
HAN XINGXING', AND LI TIANSEN!

!School of Computer Science and Engineering, Xi’an Technological University, Xi’an, Shanxi 710072, China
2School of Sciences, Xi’an Technological University, Xi’an, Shanxi 710072, China

Corresponding author: Xiao Feng (xffriends207@163.com)
This work was supported in part by the National Natural Science Foundation of China under Grant 62171361, in part by the General
Project of the Key Research and Development Plan of Shaanxi Province under Grant 2022GY-119, in part by the Scientific and

Technological Project of Shaanxi Province under Grant 2021JM-440, in part by the Industrial Science and Technology Research Project of
Shaanxi Province under Grant 2020GY-066, and in part by the Weiyang District Science and Technology Project under Grant 201925.

ABSTRACT With the wide application of heterogeneous multi-core processor real-time systems, the existing
analysis methods of worst-case response time (WCRT) overestimate the blocking information among
tasks, resulting in a rather pessimistic estimation. To improve the accuracy of the WCRT, we propose a
reconstruction-based WCRT analysis method for multi-type directed acyclic graph (DAG) tasks scheduling
algorithm(RMDS). The RMDS algorithm comprises the following steps: First, we unitize all task nodes in
the multi-type DAG task; Then, we use key factors as task priorities to schedule tasks and reconstruct the
DAG task model into a parallel node segment model; Finally, we estimate the WCRT of multi-type DAG
tasks according to the parallel node segment model to assess task schedulability. To verify the performance of
our algorithm, we compared it with traditional algorithms. RDMS showed an acceptance rate 6.13% higher
and its overall performance increased by 25.95% in comparison with traditional algorithms.

INDEX TERMS Worst-case response time, reconstruction, task scheduling, RMDS, multitype DAG tasks.

I. INTRODUCTION

Real-time embedded systems are increasingly being imple-
mented on heterogeneous multi-core processor platforms to
meet their diverse and high computing demands [1] owing
to their continuous improvement of processor performance.
Real-time systems based on heterogeneous multi-core pro-
cessors have been successfully applied in the fields of digital
signal processing [2], image processing [3], [4], and dis-
tributed systems [5], and have achieved remarkable results.
Resource allocation [6] and energy consumption [7] in the
process of task scheduling based on heterogeneous multi-core
processor platforms are always the key issues to be faced.
To address these problems, this study adopts a migration
method that can avoid cache misses and processor task state
transitions. The study focuses on the overhead non-migration
scheduling method [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen

The worst-case response time (WCRT) is the maximum
time spent by all DAG tasks on a heterogeneous multi-core
platform under the corresponding DAG task scheduling pol-
icy. This bound is used to judge whether a current DAG task
can be scheduled and completed within the specified time
and is an important evaluation index to measure the quality
of DAG task scheduling algorithms. Current methods to cal-
culate the upper bound of worst response times overestimate
the required overhead time and are thus too pessimistic.

The WCRT of each task is the most important indicator
to measure the real-time performance of the system. The
schedulability of the task is assessed by its WCRT, which pro-
vides the basis for real-time scheduling. Since the real-time
task scheduling is a non-deterministic polynomial (NP) com-
plete problem [9], and only suboptimal solutions WCRT can
be obtained. The WCRT computing method for real-time
tasks has become a topic in the field of embedded research.

Directed acyclic graphs (DAG) are widely used to model
applications executed on heterogeneous multi-core plat-
forms. Typically, applications are divided into subtasks that

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

93140

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022

https://orcid.org/0000-0002-2432-1322
https://orcid.org/0000-0003-0259-6779
https://orcid.org/0000-0003-3181-4480

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

are scheduled to be executed on a set of available pro-
cessor cores. Each vertex of the DAG corresponds to an
execution sequence, and each directed edge represents a
precedence constraint between vertices. The critical path
is the length of the path with the longest execution time
in the entire DAG task, which represents the lower limit of
the WCRT.

Previous studies [10], [11], [12], [13] analyzed the execu-
tion sequence of the tasks, studied the relationship among
the execution time of tasks, the length of the critical path,
and the WCRT, and helped improve the effect of the task
execution time on the WCRT for polynomial solving tasks.
Using polynomial needs to consider the influence of different
factors on the WCRT, and the calculation method is com-
plicated. Other studies [14], [15], [16], [17], [18], [19], [20]
analyzed the tasks latest deadline and earliest start time to cal-
culate the task priority and generated a priority list to obtain
the WCRT according to that sequence. Still other studies
(21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]
used a heuristic algorithm to dynamically simulate the task
scheduling problem and generated the optimal scheduling
sequence through continuous iterations to obtain the WCRT.
This method requires a large amount of computation to iter-
atively generate the task scheduling sequence. The structure
of the task graph is complex, and it is easy to fall into a local
optimum whereas ignoring the global optimum scheduling
goal.

This paper focuses on the multi-type DAG model, and pro-
poses areconstruction-based multi-type DAG task scheduling
method (RMDS) and a WCRT analysis method.

(1) First, the DAG task graph unitizes the tasks,
unifies the execution time of the tasks, and improves the
accuracy of obtaining blocking information during task
execution;

(2) Second, a key factor calculation method is proposed
as the priority index of task nodes, make the task scheduling
order globally optimal.

(3) Third, each task node in the DAG is assigned to the
corresponding parallel node segment, so that the DAG task
model is reconstructed into a parallel node segment [12]
model, optimize the scheduling process of tasks and improve
the efficiency of task allocation.

(4) Finally, the WCRT of multi-type DAG tasks is esti-
mated based on the parallel node segment information to
acquired task WCRT is more accurate.

The experimental results show that the RMDS algorithm
proposed here improves the schedulability assessment accu-
racy by 25.95% compared with the DTA algorithms.

This paper is organized as follows: Section 2 discusses
related work; Section 3 introduces the system and task
model; Section 4 describes the WCRT analysis method
proposed in this paper; Section 5 compares the proposed
algorithm with existing algorithms and verifies the superi-
ority and correctness of this method; conclusions are stated
in Section 6.

VOLUME 10, 2022

Il. RELATED WORK

Many experts and scholars have made significant research on
how to efficiently obtain a more accurate WCRT for real-time
tasks.

A. POLYNOMIAL CALCULATION

Jaffe et al. [10] proposed a calculation method for the WCRT
of real-time tasks for the scheduling problem of different
types of tasks on different processors, but the obtained WCRT
did not consider the self-sustainability problem that get a
larger WCRT. Han e al. [11] proposed two WCRT analysis
methods by studying multi-type DAG tasks, which solved
the non-self-sustainability problem of the algorithm [10] and
improved the WCRT calculation accuracy. The algorithm
overestimates the interference of non-critical path nodes to
the execution of critical path nodes. Melani et al. [12] ana-
lyzed the DAG task model with conditional structure and used
the worst-case execution time and longest path length of the
task to characterize the complex structure of the conditional
task graph and proposed the concept of parallel node seg-
ments. The node segment divides the execution interval of
the task and calculates its WCRT. The algorithm does not
consider the task execution interval defined by the parallel
node segment, which will cause a large number of processors
to be idle waiting for the execution of other task nodes in
the same node segment, and the WCRT obtained is less
accurate. Serrano et al. [13] proposed a DAG conversion strat-
egy for DAG tasks that support parallel and heterogeneous
computing. This strategy avoids the interference between
parallel tasks by allocating some of them to the accelerator
for execution, reduces the idle waiting time of the processor,
and obtains the WCRT of the task, but this method does not
consider the possibility that the assignment of different tasks
leads to different results.

B. SIMULATION SCHEDULING

Axer et al. [14] studied fork-join tasks with fixed priority and
proposed a WCRT analysis method based on fixed-priority
tasks, considering the interference of tasks with higher prior-
ity. The algorithm is a trade-off inadequate consideration of
priorities and task selection results in poor accurate WCRTs.
Maia et al. [15] proposed a schedulability analysis method
based on global fixed-priority tasks on multiprocessors, using
task decomposition and sliding window to derive the inter-
ference information between tasks, and calculated the worst-
case response of each task time, but the time complexity
of the algorithm is high, and it cannot analyze large-scale
real-time tasks. Yang et al. [16] proposed an end-to-end
response time analysis method by studying DAG tasks that
allow parallelism within tasks, calculating the WCRT in the
case of priority scheduling of tasks with the earliest deadline.
The WCRT obtained by the algorithm is not very accurate.
Chang et al. [17] proposed a critical assignment strategy for
the schedulability problem of multi-type DAG task models,

93141

IEEE Access

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

assigning a criticality to each subtask as the priority constraint
of task execution to obtain the WCRT. Nogd et al. [18]
proposed a response time analysis method based on fixed
priority and ordered spin lock for the problem of lack of
response time analysis for non-preemptive global scheduling
of shared resources. However, the WCRT obtained by the
algorithm fluctuates greatly in different situations. He et al.
[19] proposed a response time analysis method for DAG tasks
based on arbitrary priority to solve the problem that DAG
task scheduling is constrained by priority, high priority tasks
are scheduled first, which improves the efficiency of finding
the tasks’ WCRT, but the accuracy was poor. Sun et al. [20]
showed that the traditional real-time scheduling algorithm of
OpenMP tasks cannot guarantee the upper bound accuracy
of the response time and proposed a hierarchical schedul-
ing algorithm (HS) to schedule OpenMP tasks and gave a
response time analysis method based on the HS algorithm, but
their algorithm has great limitations in scheduling flexibility
and response time analysis accuracy.

C. HEURISTIC ALGORITHM

According to the difference of task classification, experts
have invested a lot of research on the scheduling problem of
related tasks [21], independent tasks [22], and periodic tasks
[23], [24], using heuristic algorithms.

Moghadam et al. [25] proposed a simulation-based
response time analysis method for the high complexity of
industrial real-time systems, using reinforcement learning to
simulate the execution scenario of the program to estimate the
WCRT, but the algorithm requires a significant time to train.
Sun et al. [26] proposed a linear-time dynamic programming
algorithm to estimate the WCRT and achieved good results,
although the algorithm’s high complexity requires significant
computational time. He et al. [27] proposed to control the
execution order of tasks through vertex priority assignment,
and designed a heuristic algorithm for proper task priority
assignment. In order to improve the schedulability of the
system, the algorithm has a large time overhead for DAG
tasks with a large number of nodes. Skr et al. [28] showed
that the heuristic algorithm can only reach the local optimum,
and the result deviates from the optimal solution. An ILP-NC
algorithm based on integer linear programming is proposed.
This algorithm reduces the number of constraints required for
task scheduling and improves its performance by modifying
the number of processors set by the platform and the deadline
for a given task. But the computations needed for this method
are highly complex. Roy et al. [29] proposed a low-cost
heuristic algorithm CC-TMS to solve the problem of high
computational complexity of the optimal solution of task
scheduling by integer linear programming, which reduces the
algorithm for finding the optimal solution of task scheduling.
However, when scheduling more complex tasks, the algo-
rithm only considers how to quickly obtain the scheduling
order and ignores the scheduling time. Devaraj et al. [30]
addressed the problem that traditional heuristic task schedul-
ing algorithms cannot consider all necessary conditions, and

93142

proposed a fault-tolerant scheduling method based on super-
visory control and designed a search strategy to maximize
fault-tolerance, thereby improving task scheduling. But this
algorithm is very time consuming.

Current research uses different scheduling strategies to
solve the task scheduling problem, and has achieved great
results, but the results of the existing methods to obtain the
worst response time of the task are pessimistic, and they do
not consider the impact of other tasks in the task scheduling
process. In view of the above, this study proposes a worst-case
response time analysis method for multi-type DAG tasks
based on reconstruction, which improves the accuracy of
task response time and reduces the time overhead of task
scheduling.

IIl. SYSTEM MODEL AND RELATED DEFINITIONS

A. PROCESSOR MODEL

Here we assume that the heterogeneous multi-core platform
consists of K different types of processors, represented by
H = {H|,H>,...,Hg}. The number of processor cores of
each type is not necessarily the same, so let my represent the
number of processor cores of the kth type, that is my = |Hg|.
All cores can execute tasks in parallel. The computing speed
at which each processor core executes the corresponding task
node is one unit of time.

B. TASK MODEL

The multi-type DAG task model can be represented as a
quadruple G = {V,E,P,c}, where V. = {vi,v,...,
Vi, ..., vy} is the set of nodes, each node v; represents the
i task in the DAG, and n = |V| is the number of tasks in
the DAG. E is the set of DAG edges, whose elements are
two-dimensional matrix, (e;) for 1 < i,j < 2, and ¢;; =
1 indicates that there is a predecessor dependency between
the nodes (vi, vj) , where v; is called the predecessor node of v;
and v; the successor node of v;, that is, v; can only be executed
after v; is executed. The relationship between task nodes and
processors is denoted by P, all tasks are to be executed on
a fixed type of processor. In the processor modeling stage,
each type of processor is marked, and tasks are assigned to
the processor with the fastest execution speed by default, and
each node has a type of processor. For example, P (v;) =
k, (k € [1,K]) means that the node v; must be executed on
set Hy of processor cores of type k. The execution time of
each task node is denoted by c, and ¢ (v;) is the maximum
execution time of the node v; on its corresponding type of
processor Hy.

Definition 1: Let prep(v;) denote the set of direct prede-
cessor tasks of the task v; in the multiple-type DAG task.
If pred(v;) = 0, then the node is called the start node and
is denoted vy,,+. The set succ(v;) denotes the set of tasks that
directly succeed v;. If succ(v;) = @, then the node is called
the termination node and denoted v,

In a DAG task, if there are multiple start and end nodes, a
virtual start node and end node with an execution time of 0 is
added.

VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

le”

FIGURE 1. DAG task graph example G.

When a continuous execution sequence includes both the
start and the end nodes it is called a complete path [. L =
{l1, 1o, I3, ..., Iy represents the set of all complete paths, and
Lnax 1s the longest complete path, which is called the critical
path, len(l,,) represents the time cost of executing the com-
plete path [, and len(G) is expressed as the time overhead of
the longest path /4, in the DAG, which determines the lower
bound of the WCRT. We have:

len (1) = Zwelm c(v;) (D
len(G) = ;nai({len (1,,)} 2)

Definition 2: Let des(v;) be the set of descendent nodes of
vi. If node v; € des (v;), then v; must be executed after v;
and v; has no other predecessors. All nodes, except Vg, are
descendants of vgs.

Definition 3: If we consider all the connected nodes from
the node v; to the terminal node v,,; as a subgraph of the
DAG task, the longest path of the subgraph is called the local
critical path PCP(v;), and Lpcp(v;) the local key. The local
critical paths of nodes on the critical path are a subset of
the critical paths of the DAG. The length of the path is:

max c¢ (v;) + (LPCP (Vj)) 3)

vjesucc(v;)

Lpcp (vi) =

Definition 4: Let’s be the set of multiple parallel tasks
where all tasks in the node segment are executed at the
same time and different node segments are serially connected
through directional arcs. By converting the DAG task into
an execution sequence composed of multiple node segments,
the task model is simplified. The worst execution time of all
parallel node segments depends on the task node with the
longest execution time:

c (segment;) = max
viEsegments;

¢ (i) “

Fig. 1 shows a multi-type DAG example G running on three
types of processors, where each node represents a task of the
DAG, the node name of the current task and the execution
time of the task are given in the node, different colors indicate
the different processor cores in which they are executed; v; is
the name of the node, and the digital sub-table represents the
execution of the node on the corresponding processor type

VOLUME 10, 2022

() 2| — -~

FIGURE 2. Schematic diagram of node splitting.

and the size of its execution time. In this example, m; = 2,

and my = m3 = 1. From Definition 1 and Definition 2,
we know that prep (vo) = {v1, v2, v3}, since succ (vg) = @
and prep (vis) = #, SO Vsurr = V0, Vend = Vi5. The

critical path is I = {vo, v3, v7, V10, V13, v15} whose length
is len (G) = 12. From definition 3 it can be concluded that
Lpcp (v3) = 10.

IV. RMDS ALGORITHM

To obtain a more accurate WCRT, we propose a
reconstruction-based WCRT analysis method for multi-type
DAG tasks (RMDS).

A. TASK PREPROCESSING

The execution time of each task node in the DAG is randomly
generated. Since the execution time of task nodes is not
uniform, when calculating the WCRT many processors will
be idle when the task node divides the execution interval
and the WCRT of the task cannot be accurately calculated.
To solve the above problems, this study unitizes each task
node of the DAG according to the execution time and divide
all task nodes except the start node and all end nodes into
multiple nodes with the same execution time preserving their
sequential connection. We end up with a collection of unit
nodes. To reduce the number of node splits, the execution
time of a unit node is set to the greatest common divisor d
of all nodes that need to be split. We normalize the tasks
whose execution time is less than one unit and then perform
the unitization operation of the tasks to ensure that to each of
them is assigned at least one unit node.

Fig. 2 is a schematic diagram of how a node with an
execution time 4 and d = 1 is split into & nodes with an
execution time of d. Through node splitting, each split unit
node v; j is represented as the 7™ unit node of the i’ node.

The Fig. 3 shows the task graph G’ after unitizing the task
graph G. All nodes in G except the start node v,y and the
end node v,y are split into unit nodes. The other attributes of
each unit node are the same as those before the split, and all
unitized nodes are connected by edges.

The number of nodes |V’| of the DAG after unitization is:

VI=EL ®

Equation (5), |V| is the number of nodes in the DAG
before unitization, and d is the greatest common divisor of
the execution time of the split nodes.

B. TASK PRIORITIES IN RMDS

The accuracy of improving the WCRT of task scheduling
depends largely on assigning priorities to tasks. If a task is
scheduled first, resulting in a shortened WCRT, the task must

93143

IEEE Access

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

FIGURE 3. Unitized task graph G'.

have a high priority. This study proposes key factors as task
priority indicators and evaluates the impact of current node
priority allocation on subsequent nodes by calculating key
factors and prioritizes tasks with large key factors. The key
factor is mainly composed of two parts.

(1) The local critical path length Lpcp from the current
node v; to the terminal node v,,4, as shown in Definition 3,
which represents the WCRT lower limit of the DAG subgraph
formed by the current node and the terminal node. It is used
as the main reference factor for task scheduling.

(2) The criticality w (v;) of the current node to subsequent
nodes. If the current node has many descendant nodes, pref-
erentially assigning this node can effectively reduce the idle
waiting time of the processor. To ensure the minimum overall
response time, 1 (v;) is used as a secondary indicator of task
priority assignment, as shown in (6):

p(vi) = max p(v)

vjesuccy;

+ max
ke[1,K]

C \vj
Z vj € succ (v;) (J) (6)

P =k Mk

where succ (v;) is the direct successor node set of task node
vi, P (vj) = k indicates that task node v; is scheduled on the
processor core of type k, and my is the number of processor
cores of type k. it (Venq) is defined as 0.

In summary, for the task scheduling priority assignment
problem, the calculation method of the key factor is shown
in the following equation:

Iprio (v;) = Lpcp (vi) + p (%) @)

Table 1 is a list of task priorities based on key factors.

According to Table 1, the key factors proposed in this paper
expand the range of priorities and subdivide the degree of
influence of each task on subsequent task scheduling.

C. TASK GRAPH RECONSTRUCTION
Based on the priority list of DAG tasks shown in Table 1,
the DAG is reconstructed into a parallel node segment model,

93144

TABLE 1. Task priority list.

Node Lpcp(v) u(w;) Iprio(v;)
Vo 12 115 235
Via 8 5.0 13.0
Vi 7 45 115
Vas 9 7.0 16.0
Vs, 8 6.0 14.0
V3, 10 9.5 19.5
Vs 9 75 16.5
Vas 6 35 9.5
Vs 6 3.5 9.5
Ver 7 5.0 12.0
Va1 8 5.5 13.5
Vss 7 5.0 12.0
Ver 5 5.0 10.0
Vos 5 3.0 8.0
V1o 6 40 10.0
Vios 5 3.0 8.0
Viis 4 3.0 7.0
Viza 4 4.0 8.0
Vg 4 2.5 6.5
Viss 3 2.0 5.0
Vs 3 2.0 5.0
Vis1 2 0 2.0

the execution interval of each task node is limited, and the
priority selection strategy is used to ensure that tasks are in
a relatively optimal time period scheduling, thereby reducing
the execution time of task nodes. The reconstruction of the
DAG is divided into the following steps.

(1) Obtain nodes with 0 in-degree nodes from the DAG,
and form a ready node set, and execute step (2).

(2) Allocate the ready node set to the node segments
according to the size of the key factor and assign the node
with the largest key factor first. If the key factor is the same,
go to step (3), otherwise, delete the currently allocated node
and go to step (6).

(3) The nodes with the long local critical paths are pref-
erentially allocated to the node segments. If the local critical

VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based

IEEE Access

on Reconstruction

Algorithm 1 RMDS

Input: G = {V, E, P, C}, System
Output: Segment
1 Initialize all nodes of DAG

2 Seglength =0
3 Foreachv, € G
4 If there are multiple nodes that degree is 0
5 Create a node Viypur (Vouspur) With ¢ (v) =0
6 succ (Vinpu) = vi or prep (Voupur) = vi
7 End if
8 End for
9 Calculate the greatest common divisor d of all the nodes
10 For each node v; € G && Vi # Vstarts Vend
11 Ifc(vi) >d
12 v, —> {V,',] JVi2s ey Vi,c(v,-)/d}
13 End if
14 End for

15 calculate the priority of each node Eq. 6

16 While G # NULL

17 Initialize the usage of each processor core and clear readyList
18 For each v;j € Gandprep (v ;) = 0

19 Input v; j to readyList

20 End for

21 Rank(readyList) according to priority

22 For each v; j : readyList

23 If P (vij) = k and Type of k processor idle

24 Input v; j into Segment[Seglength] and delete v; j from G
25 End if

26 End for

27 Seglength = Seglength + 1

28 End while
29 Return Segment

o0

|

V6,1
1/2

®-®

V10,2
1/2

Vio,1
1/2

FIGURE 4. Segment model.

paths have the same length, step (4) is performed; otherwise,
the currently allocated nodes are deleted, and step (6) is
performed.

(4) Priority is given to node segments with the largest
number of direct successor nodes; if the number of direct
successor nodes is the same, perform step (5); otherwise,
perform step (6).

VOLUME 10, 2022

(5) Allocate nodes in the order of the node sequence, delete
the currently allocated nodes, and execute step (6).

(6) If the current node segment has no idle processor core
or the current ready node set is empty, repeat steps (1-6) until
the node in the DAG is empty.

According to the above method, the DAG is transformed
into a parallel node segment model without affecting the

93145

IEEE Access

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

Before reconstruction

H1 Hl HZ H3
0 —
1 -
2 -
- vZ
3 2/3
4 -
H ;
1/2 V3
5 23
6 v
7L 1/3
H ;
1/3
8 Vi
| Vo 1/3
? 2/2
10 .
1k 1/2
Vis
12 1/3
| V15,1
13 2/3
141
150

After reconstruction

Hl H] Hz H3
0 —
1 _ I
2r V31
3L 1/3
V32
4 1/3
[ii]
5L 1/3
L
6L 1/3
V6,1 Va1
7L . 1/2 1/3
V10,1 V8,1
sk 12 1/3
V10,2 Vi1
9l 1/2 1/3
Vi1
1/2
10 I VMJ
1- 1/3
» Vis,1
12 23
13-
14
15

FIGURE 5. Comparison of task simulation scheduling before and after algorithm processing.

dependencies among task nodes. The execution interval of
each task is specified to avoid unnecessary blocking between
tasks, thereby reducing the WCRT of the task.

Pseudocode of the RMDS algorithm.

Lines 1-2 of the algorithm initialize all nodes in the DAG
input by the algorithm, that is, perform zero-setting opera-
tions on indicators such as the priority of each node, and
initialize the length of the node segment to 0. Lines 3-8
normalize the DAG G and transform the input irregular task
graph into a standard DAG with only one start node and end
node. Line 9 obtains the greatest common divisor d of the
execution time of all nodes except the start node and the
termination node by calculation. Lines 10-14 unitize the task
graph G with the information obtained earlier. Line 15 calcu-
lates the priority of each node using 6. Lines 16-28 converts
the DAG model into a parallel node segment model. Line 17
initializes the processor and clears the ready list. Lines 18-20
get the current list of ready tasks. Line 21 orders the list of
ready tasks by priority. Lines 22-28 place the node into the
current node segment and delete the corresponding node in
the DAG until no node that meets the requirements exist or
the current node segment has no corresponding idle processor
core. By analyzing the algorithm, during its execution the
nodes will be split into unit nodes, and then the corresponding
operations are performed on the tasks (lines 16-28). Through

93146

analysis, the outermost loop is in the worst case, the entire
DAG task is connected in series, it needs to loop V' times to
complete the task scheduling. In this case, the inner loop time
is 1, the total time complexity is 0(’V’| + 1), and becomes
O(IV’ |) after eliminating the constant. In the best case of the
outer loop, all nodes are scheduled in parallel. At this time, the
4 v/

Zk![l,ll]mk + 1’|m_k| + l:l’
so the time complexity is 0(|V/ |). The task node is divided
into V’ unit nodes, so the space complexity is O(|V'|).

The task graph is converted into a segment model by the
RMDS algorithm, and the result is shown in fig. 4.

Fig. 5 shows the comparison of task simulation scheduling
time after and before model conversion. It can be seen that the
WCRT obtained by converting G using the RMDS algorithm
one unit shorter of the traditional algorithm.

time complexity of the task is [

D. WCRT ANALYSIS

The RMDS algorithm proposed in this paper converts the
DAG task model into a segment model and divides the exe-
cution interval of each task node to obtain the WCRT of
the task according to the information of the node segment.
Compared with the WCRT analysis method that has been
proposed so far, this paper reconstructs the DAG task model
into a parallel node segment model. During the reconstruction

VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

process, the number of parallel nodes in each node segment is
set, thereby delaying start time. Changing the start execution
time of some nodes optimizes the scheduling sequence of
DAG tasks, thereby reducing the WCRT. Through the model
conversion strategy, the WCRT of this paper can be obtained
using the following equations:

WCRT = Z c (seg) (®)

seg ESegment

(8) can be simplified into the equation:

WCRT = d * (lenth (Segment) — 2)
+¢ (Vstart) +€ Wena) (9)

where d is the greatest common divisor of the execution time
of all task nodes in the unitized DAG, and lenth (Segment)
represents the total length of the parallel node segment trans-
formed by the DAG.

Theorem: The WCRT of a DAG task is bounded by

R (G') < d x (length (Segment) — 2)
+¢ (Vstart) + € (Vena) (10)

Proof: According to the calculation method of WCRT,
the WCRT of the DAG task depends on the execution time
d of the unitized task and the number of node segments after
task transformation. Assuming that the actual execution time
of a node in the multi-type DAG is less than the WCRT of the
task node, then c(v;) > ¢’ (v;).

If the number of node splits remains the same, thend > d’
and length (Segment) = length (Segment’). According to (9),
it can be known that WCRT > WCRT’ holds.

To sum up, when the actual execution time of the task node
is less than the worst execution time of the task, the actual
execution time never exceeds the upper bound of the WCRT
proposed in this paper. The theorem is proven.

This paper proposes a WCRT analysis method for
multi-type DAG tasks based on reconstruction. By adjusting
the scheduling order of different task nodes and limiting
the scheduling interval of different nodes, the interference
between tasks is reduced, thus reducing the task schedul-
ing time and obtaining a more accurate upper bound of
the WCRT.

V. EVALUATION

In order to verify the performance and accuracy of the RMDS
algorithm. A comparative analysis with four algorithms: JEF
[10], HAN-1 [11], HAN-2 [11], and DTF [17] is presented
to verify the performance of the RMDS algorithm. The DAG
is randomly generated using the layer-by-layer method [31].
The WCRT of each algorithm on different task graphs is
obtained through experimental simulation. The results are
compared using the following metrics.

(1) Acceptance Ratio (AR): Specifies the WCRT upper
bound as the ratio between the number of tasks that can
be scheduled, and the total number of tasks generated. The
higher the acceptance rate, the more accurate the worst-case

VOLUME 10, 2022

response of the algorithm.

(In

_ count (WCRT (G;) < D;)
AR = ZG eset |set|

In (11), the set is the DAG task set, WCRT (G;) is the
WCRT of the i task graph, D; is the deadline of the current
task graph G;, and |set| represents the amount of data in the
current task set.

(2) Average WCRT (AWCRT): The experiment is random,
and multiple sets of data are averaged to obtain the aver-
age WCRT of the task. The performance of the algorithm
is assessed by comparing the average WCRT obtained by
different algorithms.

WCRT (G;)
AWCRT = ZGiem el (12)

(3) Normalized upper bound (NR): This performance index
is based on the JEF algorithm as a reference and performs
a normalized comparison of the other algorithms based on
the WCRT obtained by the JEF algorithm. If the normalized
result is smaller, the better the algorithm is.

WCRT (G;)
NR = ZG,eset JEF (G)) (13)

(4) Speedup: The ratio of the task sequence execution
time to the WCRT, to obtain the acceleration of the current
algorithm for task scheduling.

vol (G)
WCRT

In (14), vol (G) represents the time overhead of sequential
execution of tasks.

(5) Slack: Slack is a measure of the robustness of a task
scheduling algorithm, which reflects the uncertainty of the
WCRT of a task generated by an algorithm scheduling. The
definition of Slack is shown in eq. (15).

Speedup =

(14)

Y% 1 WCRT — Inter (v;) — Exit (v;)
n

Slack =

15)

where n is the number of task nodes, Inter(v;) denotes the
length of the longest path from the entry node vy, to the
task node v; (excluding the task v;), and Exit(v;) represents
the length of the longest path from the task node v; to the
termination node vey;;.

The algorithm considers the influence of different numbers
of processor types and the number of cores. When creating
a processor model, the number of processor types K is ran-
domly selected in the range of [2, 10], and the number of cores
for each processor, my, is randomly selected as a number
between 2 and 8.

The first parameter is the parallelism factor Pr [17], which
controls the probability of the existence of an edge between
the current node and its subsequent nodes in the DAG task,
to judge the influence of the parallelism of the task on the
algorithm; the parallelism factor Pr is randomly selected
between [0.04, 0.2].

93147

IEE E ACCGSS) C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

—]

0.85

0.8

0.7

0.65 FM

0.6

Acceptance Ratio
Normalized WCRT bound

0.5

(a). Plot of acceptance ratio with U. (b). Plot of normalized WCRT bound with U.

480

430

380

=
g
= 280 £
& g 14
g &
3 230 \/\N
13
180
12— ~—
S
130
80 L e— == —
30 1
0.5 1 1.5 2 25 3 35 4 45 5
U

(d). Plot of speedup with U.

— | F

HAN-1

0.75

Slack

0.65 -/\M

0.55

(e). Plot of slack with U.

FIGURE 6. Variation of indicators of different algorithms with U.

The second parameter is the number of task nodes | V]|, on the upper bound of the WCRT. The number of task nodes
which is used to control the impact of the scale of DAG tasks |V| is randomly selected between [10, 50].

93148 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

uJEF
mHAN-1
1 =HAN-2

mD

0.9 L] S
0.8
0.7
0.6
0.5
04
03
0.2
0.1

0

(a). Plot of acceptance ratio with K.

Acceptance Ratio

mJEF
mHAN-1
®HAN-2

180
160

140 RMDS

120
100
80
60
40
20
0

K

Average WCRT

(c). Plot of average WCRT with K.

0.6
0
2 3 4

Slack
(=] =1 (=]
[S] v N w

=3

1 mHAN-1

= HAN-2
0.9

mPTF
- ‘ I ‘ I‘ I‘ “ I‘ ‘ |
0 ‘I || |l || || || ' |'
2 3 4 5 7 8 9 10

(b). Plot of normalized WCRT bound with K.

Normalized WCRT bound
=3 (=1 (=3 =3 =3 =1 (=3
L L R o 49 =

=3

mJEF
2 mHAN-1
®mHAN-2
1. BDT,
mRMDS
1.6
1.4
12
o
=
31
o
12
0.8
0.6
0.4
0.2
0
2 3 4 5 6 7 8 9 10

K

(d). Plot of speedup with K.

mJEF
BHAN-1
= HAN-2
BDTF

5 6 7 8 9 10

K

(e). Plot of slack with K.

FIGURE 7. Variation of indicators of different algorithms with K.

The third parameter is the task total utilization rate U. The
task utilization rate of all task nodes is randomly assigned
by the UuniFast method [32], and U = ZweG u(v;),

VOLUME 10, 2022

to obtain the WCRT, u (v;) is the utilization of node v;.
The total task utilization U is randomly selected from
[0.5, 5], and the sum of the worst execution times of all

93149

IEEE ACCGSS) C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

mJEF BHAN-1
12 EHAN-1 ! HHAN-2
®mHAN-2 0.9
| mDTF
= RNIDS 0.8
g 0.7
o 08 3
= = 0.6
o -4
3 Z 05
g 0.6 -q:) X
g = 04
E
0.4 £ 03
0.2
0.2
0 0
0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.2 0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18
Pr Pr
(a). Plot of acceptance ratio with Pr. (b). Plot of normalized WCRT bound with Pr.
mJEF u JEF
180 EHAN-1 2 BHAN-1
= HAN-2 I " HAN-2
160 "DTF ‘ =D
RMDS 1 =R s
140 E
14
120
E 1.2
§ 100 g 1
2w 5
Z 038
60
0.6
40 04
20 0.2
0 0
002 004 006 008 0.1 012 014 016 018 02 002 004 006 008 0.1 012 014 016 018 02
Pr Pr
(c). Plot of average WCRT with Pr. (d). Plot of speedup with Pr.
uJEF
1 B HAN-1
®HAN-2
0.9 EDTF
= RMDS
0.8
0.7
0.6
-
205
12}
0.4
0.3
02
0.1
0
0.02 0.04 0.06 0.08 0.12 0.14 0.16 0.18 0.2
Pr
(e). Plot of slack with Pr.
FIGURE 8. Variation of indicators of different algorithms with Pr.
nodes of the DAG task is vol(G) = U x T, where the the control experiment. During the experiment, the algorithm
deadline D < T. was used to conduct comparative experiments for each task

According to three parameters, the layer-by-layer method graph. For example, a total of 45 groups of experiments
is used to randomly generate 37,500 DAGs as the dataset for with a step size of 0.1 were carried out for the parameter U,

93150 VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

FIGURE 9. Variation of indicators of different algorithms with V.

for values of U in the range [0.5, 5], and each group of
experiments was randomly generated. The same experiment

VOLUME 10, 2022

Acceptance Ratio

Average WCRT

0.

=)

0.

)

0.

“

0

2N

0.

n

0.

'S

0.

w

0.

o

0.

0

180

160

140

120

100

EREIDS
| mD
10 15 20 25 30 35 40 45 50

v

(a). Plot of acceptance ratio with V.

v

= JEF
®HAN-1
®HAN-2

RMDS

(c). Plot of average WCRT with V

Slack

o
9

=
=N

o
n

<
=

e
i

=
o

o

0

10 15 20 25 30 35 40 45 50

0.9

Normalized WCRT bound
© © o © o ©o o
L L = = 49 »

e

0

8

Speedup
=3 (=] (=) —_— —_ —
£ 3 % - 5 5 o=

o
o

0

v

(e). Plot of slack with V.

EHAN-1
WHAN-2
= DTF

10 15 20 25 30 35 40 45

(b). Plot of normalized WCRT bound with V.

10 15 20 25 30 35 40 45 50

(d). Plot of speedup with V.

m JEF
mHAN-1
BHAN-2
mp
uRNIDS

m JEF
®mHAN-1
mHAN-2
mD
ERNIDS

was performed on 300 different DAG task graphs, and the

experimental results were averaged.

93151

IEEE Access

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

TABLE 2. Summary of the comparison between the RMDS algorithm and other algorithms.

Algorithm JEF HAN-1 HAN-2 DTF
Acceptance Ratio 234.8074% 39.4602% 101.1992% 6.1293%
Average WCRT 58.7477% 28.2046% 40.9967% 4.867%
Normalized WCRT bound 0] 28.1035% 41.2983% 4.8292%
Speedup 59.4710% 29.1931% 43.7133% 5.239%
Slack 57.1461% 26.8674% 41.1600% 4.8808%

Fig. 6 shows the curves of each performance index of dif-
ferent algorithms as a function of the total task utilization U.
Fig. 6(a) is a graph of the variation of the acceptance rate of
different algorithms with U. From the experimental results
in Fig. 6(a), the RMDS algorithm is more accurate than the
traditional algorithm in judging the schedulability of tasks,
and it shows an average improvement over the DTF algorithm
up 6.13%. When U is in the range of (1.5, 4), the task
acceptance rate of the RMDS algorithm is 18.04% higher than
that of the DTF algorithm. Fig. 6(b) shows the variation of
the normalized upper bound with U for different algorithms.
From the experimental results in Fig. 6(b), the RMDS algo-
rithm greatly reduces the WCRT of the task. Compared with
the DTF algorithm, the response time obtained by the RMDS
algorithm is reduced by 4.63%. Fig. 6(c) shows the variation
of the average WCRT of different algorithms with U. From
the experimental results in Fig. 6(c), as the total utilization of
the task increases, the WCRT of the task increases linearly,
From Fig. 6(c), it can be seen that the WCRT of the RMDS
algorithm slightly increases compared with the traditional
algorithm. The average WCRT is 4.49% lower than that of
the DTF algorithm. Fig. 6(d) shows the speedup of different
algorithms changing with U. From the experimental results
in Fig. 6(d), the RMDS algorithm has a higher speedup
for task scheduling than the existing algorithm under dif-
ferent task utilization rates. The MDS algorithm achieves
a better performance for heterogeneous multi-core proces-
sors, and with the increase of U, the speedup of the algo-
rithm has remained stable. By comparing the results, the
speedup of the RMDS algorithm is 5.01% higher compared
with the DTF algorithm. Fig. 6(e) is a comparison chart of
Slack with U of different algorithms. From the experimental
results in Fig. 6(e), the stability of the RMDS algorithm is
higher than that of the existing algorithm. The stability of
the RMDS algorithm is 4.69% higher than that of the DTF
algorithm.

Fig. 7 shows the graphs of variation of the performance
indicators of different algorithms varying with the number
of processor types K. Fig. 7(a) is a graph showing the vari-
ation of the acceptance rate of different algorithms with
K. From the experimental results in Fig. 7(a), as K increases,
the algorithm has higher scheduling performance for tasks.
Fig. 7(b) shows the variation of the normalized upper bound
with K for different algorithms. From the experimental
results in Fig. 7(b), the WCRT of the RMDS algorithm
is always relatively stable with the increase of K. Solved

93152

non-self-sustaining problems. Compared with the DTF algo-
rithm, the normalized WCRT obtained by the RMDS algo-
rithm is reduced by 4.01%. Fig. 7(c) shows the variation
of the average WCRT of different algorithms with K. From
the experimental results in Fig. 7(c), the average WCRT of
the RMDS algorithm is 3.98% lower than that of the DTF
algorithm. Fig. 7(d) shows the variation of speedup with K
for different algorithms. From the experimental results in
Fig. 7(d), the speedup of the RMDS algorithm under different
processor environments is always higher than that of the
existing algorithm. By comparing the results, the speedup
of the RMDS algorithm is 4.25% higher than that of the
DTF algorithm. Fig. 7(e) shows the comparison of Slack
with K for different algorithms. From the experimental results
in Fig. 7(e), with the increase in the number of processor
types, the stability of the RMDS algorithm remains balanced,
and higher than the current one. The stability of the RMDS
algorithm is 3.98% higher than that of the DTF algorithm.

Fig. 8 shows the variation of the performance index of
different algorithms where Pr denotes the number of types
of processors. Fig. 8(a) is a graph of the variation of the
acceptance rate of different algorithms with Pr. From the
experimental results of Fig. 8(a), as the number of paral-
lel nodes of the task increases, the acceptance rate of the
algorithm gradually increases. Fig. 8(b) shows the variation
of the normalized upper bound with Pr for different algo-
rithms. From the experimental results in Fig. 8(b), the WCRT
obtained by the RMDS algorithm with the increase of Pr
is the WCRT obtained by the RMDS algorithm which is
lower than the results of traditional algorithms. Compared
with the DTF algorithm, the normalized WCRT obtained by
the RMDS algorithm is reduced by 5.14%. Fig. 8(c) shows
the average WCRT of different algorithms as a function of
Pr. From the experimental results in Fig. 8(c), tasks with high
parallelism can be scheduled in a shorter time. The RMDS
algorithm’s average WCRT is 5.07% lower than that of the
DTF algorithm. Fig. 8(d) shows the variation of speedup with
Pr for different algorithms. From the experimental results in
Fig. 8(d), with the increase in task parallelism, the algorithm
accelerates task scheduling, and the speedup of the RMDS
algorithm is 5.67% higher than the DTF algorithm. Fig. 8(e)
is a comparison chart of slack with Pr of different algorithms.
From the experimental results of Fig. 8(e), the higher the
task parallelism, the worse the stability of the algorithm. The
stability of the RMDS algorithm is 5.13% higher than that of
the DTF algorithm.

VOLUME 10, 2022

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

IEEE Access

Fig. 9 shows the graphs of the performance indicators
of different algorithms varying with the number of tasks
V. Fig. 9(a) shows the variation of the acceptance rate of
different algorithms with the number of tasks V. From the
experimental results in Fig. 8(a), as the number of tasks
increases, the acceptance rate of the algorithm gradually
increases. Fig. 9(b) shows the variation of the normalized
upper bound with V for different algorithms. From the exper-
imental results in Fig. 9(b), as the number of tasks increases,
the WCRT obtained by the RMDS algorithm is always lower
than the results of traditional algorithms. Compared with
the DTF algorithm, the normalized WCRT obtained by the
RMDS algorithm is reduced by 5.82%. Fig. 9(c) shows the
variation of the average WCRT with V for different algo-
rithms. From the experimental results in Fig. 9(c), the average
WCRT of the RMDS algorithm is 5.63% lower than that of
the DTF algorithm. Fig. 9(d) shows the speedup of different
algorithms as a function of V. From the experimental results
in Fig. 9(d), the Speedup of the RMDS algorithm is 6.03%
higher than that of the DTF algorithm. As the number of
tasks increases, the RMDS algorithm can also stabilize the
performance of the processor. Fig. 9(e) is a comparison chart
of the variation of Slack with V for different algorithms.
From the experimental results in Fig. 9(e), the stability of
the RMDS algorithm is always in a balanced state, which
is higher than that of the existing algorithm. The stability of
the RMDS algorithm is 5.72% higher than that of the DTF
algorithm.

Table 2 summarizes the results of the comparison of vari-
ous indicators between the RMDS algorithm and the JEF [9],
HAN-1 [10], HAN-2 [10], and DTF [16] algorithms. Each
value in the table represents the current RMDS algorithm.
The indicator’s performance improvement for the current
algorithm. Based on the above experiments, the RMDS algo-
rithm proposed in this paper has improved performance in all
aspects compared with the existing algorithms. It can be seen
from Table 2 that the RMDS algorithm proposed in this paper
has a comprehensive performance improvement of 25.9453%
compared with the DTF algorithm.

VI. CONCLUSION

This paper studies the WCRT analysis method for multi-type
DAG tasks on heterogeneous platforms and proposes a
reconstruction-based WCRT analysis (RMDS) for multi-type
DAG tasks. In the RMDS algorithm, each task is processed
as a unit, and the blocking information of each task schedul-
ing is accurate. To determine the scheduling order of task
nodes, a priority calculation method based on key factors
is proposed. Finally, the DAG task graph is reconstructed
into a parallel node segment model to schedule tasks. In this
paper, a new scheduling method is proposed to obtain the
WCRT of tasks more accurately. The experimental results
show that the WCRT accuracy of the DAG task obtained by
the RMDS algorithm is 25.9453% higher than that of the
traditional algorithm. Due to the complexity of the struc-
ture of multi-type DAG tasks, the selection of task priority

VOLUME 10, 2022

determines the accuracy of the WCRT finally obtained by
the algorithm. How to choose an appropriate task priority
calculation method is the focus of our next research.

ACKNOWLEDGMENT

The authors would like to thank AiMi Academic Services
(www.aimieditor.com) for the English language editing and
review services.

REFERENCES

[1] N. Zhou, J. Hu, and H. M. Hu, “Development trend and key technologies
of multi-core processors,” Comput. Eng. Des., vol. 39, no. 2, pp. 393-399
and 467, 2018.

[2] W. Huang, L. Ding, G. Zhai, X. Min, J.-N. Hwang, Y. Xu, and W. Zhang,

“Utility-oriented resource allocation for 360-degree video transmission

over heterogeneous networks,” Digit. Signal Process., vol. 84, pp. 1-14,

Jan. 2019.

D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “An energy-efficient deep

learning processor with heterogeneous multi-core architecture for convo-

lutional neural networks and recurrent neural networks,” in Proc. IEEE

Symp. Low-Power High-Speed Chips (COOL CHIPS), Apr. 2017, pp. 1-2,

doi: 10.1109/COOLCHIPS.2017.7946376.

D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, “Scheduling of deep

learning applications onto heterogeneous processors in an embed-

ded device,” IEEE Access, vol. 8, pp.43980-43991, 2020, doi:
10.1109/ACCESS.2020.2977496.

H. B. Hu, X. Li, and J. Liang, “Research and implementation of het-

erogeneous distributed database system integration,” Appl. Res. Comput.,

vol. 10, pp. 67-70, May 2002.

[6] S. Moulik, R. Devaraj, and A. Sarkar, “‘Hetero-Sched: A low-overhead

heterogeneous multi-core scheduler for real-time periodic tasks,” in

Proc. IEEE 20th Int. Conf. High Perform. Comput. Commun., IEEE

16th Int. Conf. Smart City, IEEE 4th Int. Conf. Data Sci. Syst.

(HPCC/SmartCity/DSS), Jun. 2018, pp. 659-666.

S. Moulik, Z. Das, R. Devaraj, and S. Chakraborty, “SEAMERS: A semi-

partitioned energy-aware scheduler for heterogeneous multicore real-time

systems,” J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101953.

R. Devaraj, “A solution to drawbacks in capturing execution require-

ments on heterogeneous platforms,” J. Supercomput., vol. 76, no. 9,

pp. 6901-6916, Sep. 2020.

[9] J.D. Ullman, “NP-complete scheduling problems,” J. Comput. Syst. Sci.,
vol. 10, no. 3, pp. 384-393, 1975.

[10] J. M. Jaffe, “Bounds on the scheduling of typed task systems,” SIAM
J. Comput., vol. 9, no. 3, pp. 541-551, Aug. 1980.

[11] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, “Response time
bounds for typed DAG parallel tasks on heterogeneous multi-cores,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 11, pp. 2567-2581, Nov. 2019.

[12] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, ‘“Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in Proc. 27th Euromicro Conf. Real-Time Syst.,
Jul. 2015, pp. 211-221, doi: 10.1109/ECRTS.2015.26.

[13] M. A. Serrano and E. Quiflones, “Response-time analysis of DAG tasks
supporting heterogeneous computing,” in Proc. 55th Annu. Design Autom.
Conf., Jun. 2018, pp. 1-6.

[14] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in Proc. 25th Euromicro Conf. Real-Time Syst., Jul. 2013,
pp. 215-224.

[15] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in Proc.
22nd Int. Conf. Real-Time Netw. Syst. (RTNS), 2014, pp. 3—12.

[16] K. Yang, M. Yang, and J. H. Anderson, ‘‘Reducing response-time bounds
for DAG-based task systems on heterogeneous multicore platforms,” in
Proc. 24th Int. Conf. Real-Time Netw. Syst., Oct. 2016, pp. 349-358.

[17] S. Chang, X. Zhao, Z. Liu, and Q. Deng, “Real-time scheduling and
analysis of parallel tasks on heterogeneous multi-cores,” J. Syst. Archit.,
vol. 105, May 2020, Art. no. 101704.

[18] S. Nogd, G. Nelissen, M. Nasri, and B. B. Brandenburg, “Response-time
analysis for non-preemptive global scheduling with FIFO spin locks,” in
Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2020, pp. 115-127, doi:
10.1109/RTSS49844.2020.00021.

3

[l

[4

=

[5

[7

—

[8

—

93153

http://dx.doi.org/10.1109/COOLCHIPS.2017.7946376
http://dx.doi.org/10.1109/ACCESS.2020.2977496
http://dx.doi.org/10.1109/ECRTS.2015.26
http://dx.doi.org/10.1109/RTSS49844.2020.00021

IEEE Access

C. Shushan et al.: Worst-Case Response Time Analysis of Multitype DAG Tasks Based on Reconstruction

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Q. He, M. Ly, and N. Guan, “Response time bounds for DAG tasks with
arbitrary intratask priority assignment,” in Proc. 33rd Euromicro Conf.
Real-Time Syst. (ECRTS), 2021, pp. 1-10.

J. Sun, N. Guan, F. Li, H. Gao, C. Shi, and W. Yi, “Real-time scheduling
and analysis of OpenMP DAG tasks supporting nested parallelism,” IEEE
Trans. Comput., vol. 69, no. 9, pp. 1335-1348, Sep. 2020.

J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, “Energy-aware scheduling for
dependent tasks in heterogeneous multiprocessor systems,” J. Syst. Archit.,
vol. 129, Aug. 2022, Art. no. 102598.

J. Chen, P. Han, Y. Liu, and X. Du, “Scheduling independent tasks in
cloud environment based on modified differential evolution,” Concurrency
Comput., Pract. Exper., vol. 21, Mar. 2021, Art. no. €6256.

J. Chen, C. Du, P. Han, and X. Du, ‘“Work-in-progress: Non-preemptive
scheduling of periodic tasks with data dependency upon heterogeneous
multiprocessor platforms,” in Proc. IEEE Real-Time Syst. Symp. (RTSS),
Dec. 2019, pp. 540-543.

J. Chen, C. Du, F. Xie, and B. Lin, ““Scheduling non-preemptive tasks with
strict periods in multi-core real-time systems,” J. Syst. Archit., vol. 90,
pp. 72-84, Oct. 2018.

M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B. Lisper,
“Learning-based response time analysis in real-time embedded systems:
A simulation-based approach,” in Proc. 1st Int. Workshop Softw. Qualities
Dependencies, May 2018, pp. 21-24.

J. Sun, N. Guan, Z. Guo, Y. Xue, J. He, and G. Tan, “Calculating worst-
case response time bounds for openMP programs with loop structures,” in
Proc. IEEE Real-Time Syst. Symp. (RTSS), Dec. 2021, pp. 123-135, doi:
10.1109/RTSS52674.2021.00022.

Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-task priority assignment
in real-time scheduling of DAG tasks on multi-cores,” [EEE Trans.
Parallel Distrib. Syst., vol. 30, no. 10, pp. 2283-2295, Oct. 2019, doi:
10.1109/TPDS.2019.2910525.

S. K. Roy, R. Devaraj, A. Sarkar, K. Maji, and S. Sinha, “Contention-
aware optimal scheduling of real-time precedence-constrained task graphs
on heterogeneous distributed systems,” J. Syst. Archit., vol. 105, May 2020,
Art. no. 101706.

S. K. Roy, R. Devaraj, and A. Sarkar, “Contention cognizant scheduling
of task graphs on shared bus-based heterogeneous platforms,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 2, pp. 281-293,
Feb. 2022.

R. Devaraj and A. Sarkar, ‘“Resource-optimal fault-tolerant scheduler
design for task graphs using supervisory control,” IEEE Trans. Ind. Infor-
mat., vol. 17, no. 11, pp. 7325-7337, Nov. 2021.

D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
Proc. 3rd Int. ICST Conf. Simulation Tools Techn., 2010, pp. 1-10.

E. Bini and G. C. Buttazzo, ‘‘Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, nos. 1-2, pp. 129-154, May 2005.

CHEN SHUSHAN was born in Xinyang, Henan,
China, in 1998. He received the master’s degree
in computer software and theory from the School
of Computer Science and Engineering, Xi’an
Technological University. His research interests
include embedded real-time systems and multicore
computing.

XIAO FENG was born in Jiaozuo, Henan, China,
in 1976. He received the B.S. and M.S. degrees
in computer science from Xi’an Technological
University, China, in 2000 and 2003, respectively,
and the Ph.D. degree from Northwest University,
in 2012. From 2003 to 2006, he was a Teacher
with Xi’an Technological University. Since 2006,
he has been an Assistant Professor with the Com-
puter Science and Engineering College, Xi’an
Technological University, where he has been a

Professor with the School of Computer Science and Engineering, since 2016.
He is the author of three books and more than 70 articles. His research
interests include intelligent information processing, pattern recognition, and
computer vision.

93154

-
o~
-

HUANG SHUJUAN was born in Weinan,
Shanxi, China, in 1975. She received the B.S.
degree from the Computer Software Department,
North Western University, Xi’an, Shanxi, in 1996,
and the M.S. and Ph.D. degrees from the Com-
puter College, Northwestern Polytechnical Uni-
versity, Xi’an, in 2005 and 2014, respectively.
From 1996 to 2002, she was a Research Assistant
at the Tenth Research Institute of Telecommunica-
tion Science and Technology. From 2005 to 2013,

she was a Lecturer at the Software and Microelectronic College, North
Western Polytechnical University. Since 2014, she has been an Assistant
Professor with the School of Computer Science and Engineering, Xi’an
Technological University, Shanxi. Her main research interests include the
internet of things, multicore computing, and embedded systems.

ZHANG WENJUAN was born in 1980. She
received the Ph.D. degree in applied mathematics
from Xidian University. From November 2018 to
November 2019, she was a Visiting Scholar at the
Department of Mathematics, University of Florida,
USA. She is currently an Associate Professor and
a master’s Supervisor with Xi’an Technological
University, Xi’an, China. Her research interests
include image processing, computer vision, and
machine learning.

HAN XINGXING was born in Shangluo, Shanxi,
China, in 1996. She received the master’s
degree in electronic information from the School
of Computer Science and Engineering, Xi’an
Technological University. Her research interests
include embedded real-time systems and multicore
computing.

LI TIANSEN was born in Wuwei, Gansu, China,
in 1996. He received the master’s degree in soft-
ware engineering from the School of Computer
Science and Engineering, Xi’an Technological
University. His research interests include embed-
ded real-time systems and mixed-criticality.

VOLUME 10, 2022

http://dx.doi.org/10.1109/RTSS52674.2021.00022
http://dx.doi.org/10.1109/TPDS.2019.2910525

