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ABSTRACT The feature fusion of the multi-scale features plays a significant role in localizing text instances
of different sizes in the scene text detection (STD) paradigm. The existing approaches are not sufficient to
tackle the issues of multi-scale text; consequently, their performance also varies with the text size. Here,
we propose a gated multi-scale input feature fusion (GMIF) approach to overcome this issue in STD.
The GMIF generates the local features from down-scaled input images and propagates these features from
low resolution to the higher resolution global features through a gated recurrent unit-like mechanism. The
consistent performance of the GMIF is validated with different text instance sizes of the test-set of the Total-
text dataset. The GMIF obtained the performance in range (Precision 88.554-89.106, Recall 85.452-85.790,
and f-measures 87.072 - 87.417) with marginal deviation, whereas the current state-of-the-art method,
DBNet++, acquired in range (Precision 73.005-82.666, Recall 80.912-87.274, and f-measures 76.755 -
84.183) with significant deviation. Besides this, GMIF also achieved the best performance (f-measures) over
ICDAR 2015 (as 88.0), Total-Text (as 87.4), and the second-best over the MSRA-TD500 (as 85.2) dataset.
We have conducted an ablation study to show the impact of different components of the GMIF on the STD
tasks, which shows the effectiveness of the overall GMIF approach.
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INDEX TERMS Scene text detection, multi-scale text, multi-scale feature, feature-fusion, deep neural
networks.

I. INTRODUCTION17

Many different pieces of information are present in an image,18

but the text contains a wide range of valuable information.19

Text appears in our day-to-day life as part of the road signs,20

shops, buildings, vehicle license plates, product packaging,21

and information media (online and offline). The advent of22

deep learning provides a wide range of possibilities for text23

analysis in practical applications like image/video under-24

standing, visual search, instant translation, automatic driving,25

blind assistance, scene understanding, and geolocation [1],26

[2], [3], [4], [5]. The detection and localization of all text27

instances in the natural images are the prerequisites for text28

understanding, also known as STD.29

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

The current state-of-the-art text detection methods can be 30

categorized into: 31

1) The bounding box regression methods 32

2) The segmentation-based methods 33

The bounding box regression methods generate the bound- 34

ing box’s representation, including the target text instance 35

from the input image. This representation includes horizontal 36

rectangles, oriented rectangles, quadrilateral boxes, and poly- 37

gons from the contour of the text instances. One of the draw- 38

backs of the bounding box regression method is its inability 39

to constitute curved text instances. Even for a polygon, the 40

number of points is changeable for all types of text instances, 41

and predicting these points through regression-basedmethods 42

is challenging. 43

The segmentation-based methods, on the contrary, repre- 44

sent the text instance by text region masking. The advantage 45
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FIGURE 1. Background Ambiguity: Some examples of ambiguity present
in real world images. The examples are selected from different dataset
under consideration. The green color box represents the text regions, and
the red color box represent some background region containing text
similarity.

of these methods is that they can handle all types of text46

shapes and orientations but require post-processing to get the47

localization information of the text instances.48

A. CHALLENGES IN STD49

Significant progress has been effectuated in STD by the50

techniques based on deep learning [6], [7], [8], [9], [10],51

[11], [12], [13]; nevertheless, the SDT continues to pose a52

challenge. The major obstacles for STD in natural images53

range from arbitrary orientations, scale, aspect ratio, and54

shapes to foreground, background, and texture interference.55

These impediments are discussed below.56

1) RECEPTIVE FIELD OF THE NEURAL NETWORK57

A deep neural network (DNN) provides promising results for58

STD, but it has a fixed receptive field that can provide text59

detection for the corresponding text size range. A multi-scale60

testing (MST) approach can extend this range and improve61

the recall of the text detection system as it can process a text62

with multiple scales. However, the MST approach decreases63

the system’s precision by producing multiple results for the64

same text instance.65

2) TextSize66

The size of the receptive field of the DNN regulates the67

recognition of text of varying sizes. If the effective recep-68

tive field of the DNN is large, the existing text localization69

methods are hindered from recognizing small text. Rescaling70

the input image can possibly resolve this issue. This method71

of flushing the input image to fit the text instances into72

the network effective receptive field is called multi-scale73

testing. References [6], [14] attained a better performance74

by increasing the size of the input image, indicating that75

the effective receptive field of the trained network [15] was76

quite large. The up-scaling of the input image to make text77

instances larger is not the desired solution as the existing78

resizing methods lack textual information, and generated79

image needs more computations. Besides this, the up-scaling80

also requires a solution from another research area named81

image super-resolution [16]. The down-scaling of the input82

image, on the contrary, is relatively easy and produces quite 83

good results [8], [17]. 84

3) OVERLAPPING TEXT REGIONS 85

Despite the small text size issues, the segmentation-based 86

text detection methods also suffer from overlapping text 87

instance masks. This overlapping complicates the text region 88

extraction task; therefore, these methods require a few 89

post-processing steps to separate these masks. The bounding 90

box regression-basedmethods generatemultiple boxes for the 91

same text instances and need non-max suppression [18] to get 92

the best representation. 93

4) REAL-TIME PERFORMANCE 94

A conventional approach to increase the receptive field of 95

the output neurons of a DNN is to apply a pooling opera- 96

tion followed by a sequence of convolution operations. This 97

approach facilitates covering a larger text region [19], [20], 98

[21], [22], [23]. Since most of the computation done by a 99

DNN is dense at the initial layers, the number of convolu- 100

tional kernels used at these layers is kept relatively low. How- 101

ever, these layers provide the core feature for text understand- 102

ing. So increasing the capacity of these layers might help in 103

decision making, but real-time performance is compromised. 104

Besides this, the vanishing gradient [24] and dying ReLu 105

issue make learning these kernels obstinate. 106

B. MOTIVATION 107

The techniques discussed in the previous sections are capable 108

of detecting text that is contingent on the size of the text. This 109

limitation is exposed further when the real world presents 110

an untold variation of text, and it becomes very challenging 111

to detect these variations. These limitations carved the way 112

for the presented work. The authors have identified a couple 113

of significant flaws in the existing methods, which are as 114

follows: 115

One of the major concerns about the existing methods is 116

over dependence on the text size. This is conspicuous that as 117

the performance of the existing state-of-the-art methods line, 118

DB [6] and DB++ [25] fluctuate with the variation in the size 119

of the text in the test images. (refer to table 5). 120

The second concern perpetuates the first one. The existing 121

methods try to curtail the influence of text size by learning for 122

all text sizes. This turns out to be highly infeasible, and hence 123

the reliance on such systems decreases for detecting text of 124

larger sizes. To overcome this, a multi-scale testing approach 125

is employed by these methods. The multi-scale testing pro- 126

duces multiple text instances at different scaled inputs and 127

hence, it is able to detect text of varying sizes. However, this 128

comes with the cost of a decrease in the precision of the over- 129

all system. Another overhead, although nominal, associated 130

withmulti-scale testing is the requirement of post-processing. 131

C. CONTRIBUTIONS OF THE PRESENTED WORK 132

The following are the significant contributions of the pre- 133

sented work: 134
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FIGURE 2. Paper structure.

• A framework that generates consistent performance135

across text instances of varying sizes.136

• A shallow backbone network architecture capable of137

detecting all text instances of smaller sizes.138

• A block within the main network known as GTFGB is139

responsible for feature propagation, and it adapts text140

features to various scales.141

• The combination of the backbone network with GTFGB142

produces a single text segmentation map comprising143

every instance of text in the input image. This lessens144

the burden of post-processing that is required to select145

the best mask for a text instance.146

The rest of the paper is organized as shown in Figure 2.147

II. RELATED WORK148

Text detection is the process of identifying the existence of149

text in the input image. It is an integral part of the text150

analysis and aims to localize every occurrence of the text.151

The text detection methods fall under a sub-category of non-152

exclusive object detection, one of the fundamental problems153

in the computer vision research domain. This section provides154

an overview of the text detection methods related to the155

presented research. Firstly, in subsection II-A, we present the156

methods of text detection falling under the realm of object157

detection. Then we discuss some specific text detection meth-158

ods in subsection II-B159

A. OBJECT DETECTION160

A range of text detection methods [7], [8], [26], [27] have161

been proposed, which are inspired by the object detec-162

tion methods. Remarkable object detection works have been 163

presented with a sequence of evolved advancements. R- 164

CNN [28] used object classification to detect an object in 165

regions generated by the selective search [29]. The classifica- 166

tion is performed on the features generated by a convolutional 167

neural network (CNN) on the cropped image region accord- 168

ing to a selective search. This method produces promising 169

results, but it is slow as it applies the CNN on every cropped 170

image region separately. This limitation is softened in the 171

Fast R-CNN [30] by altering the sequence of crops and CNN. 172

The Fast R-CNN first generates the CNN feature map from 173

the complete image, then extracts features of the proposals 174

by RoIpooling [30]. This allows the CNN feature map to be 175

shared in multiple region proposals as their overlapping area. 176

Consequently, it provides a significant speed-up to R-CNN. 177

The selective search is an external method to the CNN, which 178

impedes the system’s end-to-end learning. 179

Faster R-CNN [31] presented a region proposal network 180

alongside the CNN of Fast R-CNN, which gave the sys- 181

tem end-to-end trainable capabilities. Although the Faster 182

R-CNN has a speed improvement than the R-CNN and Fast 183

R-CNN, cannot produce real-time results (≥25 frames per 184

second). The root cause for this is RoIpooling, as it generates 185

a fixed-size feature map for all valid boxes which require the 186

alignment of features. This alignment is removed in YOLO 187

[32] which achieves real-time performance. The performance 188

of the YOLO is further enhanced by the SSD [33]. SSD uses 189

default boxes to predict the bounding region box at each 190

location. It utilizes the default boxes of different aspect ratios 191

and scales at different stages of the backbone network. Thus, 192

SSD achieves translation, aspect ratio, and scale invariance 193

and enhances the original YOLO’s performance with its real- 194

time computation. Recently, a faster R-CNN-based technique 195

known as OLCN [34] has been developed for detecting small 196

objects in remote sensing images. However, it is still difficult 197

to recognize small objects in remote sensing images due to 198

the fact that very few pixels are available for the targeted 199

small object and the majority of the visible space within the 200

network’s receptive field is occupied by other objects or the 201

background information. 202

B. TEXT DETECTION 203

The availablemethods are broadly categorized into two types, 204

as segmentation based methods [6], [9], [17], [35], [36], [37], 205

and bounding-regions(box regression) based methods [7], 206

[8], [26], [38], [39]. 207

1) SEGMENTATION BASED METHODS 208

A segmentation-based method classifies every cell (a region 209

in input, which size depends on the stride used) as text 210

and non-text or provides some character-ness score. The 211

Character-ness, text segmentation mask, as a mean of text 212

saliency measure, is introduced in [37] and further utilized in 213

many others [6], [9], [17], [35], [36]. These methods are capa- 214

ble of detecting text of any shape, including different orien- 215

tations and curved text. This capability is also utilized in [36] 216
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for multi-oriented text segmentation with a CNN-based fea-217

ture. Further, besides the Text-nonText classes, some more218

classes as the text border elements are utilized in [35] for219

better separation of the text instances. The PSENet [40]220

proposed progressive scale expansion by segmenting the text221

instances with different scale kernels. PixelLink [41] utilizes222

a VGG16 based convolution neural network to generate the223

text-nontext segmentationmask aswell as an 8-neighbor link-224

connections prediction map for each pixel location. Thus,225

using link connections between the pixels of various text226

instances, PixelLink [41] was able to separate texts that were227

close to one another.228

2) BOUNDING-REGIONS BASED METHODS229

With the massive success of RCNN [28] based methods for230

object detection tasks, a range of its derivative-based methods231

are also suggested for text localization. Here, the text cover-232

age region is learned as a regression task with anchor boxes233

of different scales and aspect ratios. The TextBoxes [42] is234

one of the pioneers in exploring the possibilities of SSD [33]235

(a derivative of RCNN) by modifying the convolution kernel236

shape and the aspect ratio of anchor boxes to cover the longer237

word/text. This method has limited capacity to identify ori-238

ented text instances as it used the horizontal rectangle box to239

represent text regions. This limitation was softened by DMP-240

Net [38] and TextBoxes++ [8] with quadrangle/quadrilaterals241

box representation of text region, which improves the local-242

ization and detection of text instances with arbitrary orien-243

tation. The work presented by SSTD [27] incorporated an244

attention mechanism to identify promising text regions at a245

coarse level and further refine it with a hierarchical inception246

module. The works proposed by EAST [7] and DeepReg [43]247

explore the possibilities of direct regression of text region by248

quadrilateral boxes. Their proposed methods are anchor-box-249

free and predict the text instances at each pixel concerning its250

position. RRD [39] disengaged the learning task as classifica-251

tion and regression. It utilized the rotation-dependent feature252

to enhance the performance of the multi-oriented and long253

text instances. The rotation-invariant features are used for254

classification, whereas the rotation-sensitive features facili-255

tate the regression. A dimension-decomposition region pro-256

posal network is proposed in DeRPN [44] to handle the scale257

variation in text instances. The box-regression-based meth-258

ods require simple post-processing, generally non-maximum259

suppression (NMS). However, these methods lack the repre-260

sentation of accurate bounding boxes for curved-shaped text261

instances.262

III. PROPOSED WORK263

This section provides the details of the proposed GMIF264

model. Subsection III-A gives a broad overview of the over-265

all system, and the subsequent subsections( III-B to III-D)266

explain its different components. Subsection III-E is about267

the process of label generation and the ambiguity resolution268

scheme. Finally, subsection III-F deals with the loss function269

used to train the model.270

FIGURE 3. Overview of the proposed GMIF model: The different
downscaled versions (till the smallest size reached below 48 pixels) of
the input image are created and pass through the backbone network,
which creates the local feature LFtd , here d stands for the d th

downscaled input images. The global text feature (GTFtd ) for a scaled
input image is generated by global text feature generation block (GTFGB)
from its LFtd and GTFtd+1 of the low scaled input image. The GTFtd is
also utilized to generate the segmentation map at its corresponding
scale. The detail of different components of the GMIF model is given in
Figure 4, and Figure 5.

A. OVERVIEW/ARCHITECTURE 271

The system architecture of the GMIF model is illustrated 272

in Figure 3, and the detail of its different components is 273

shown in Figure 4. The GMIF model takes the original 274

image and its downscaled version as an input and generates 275

the text-segmentation maps. The backbone network of the 276

GMIF produces the local features (LFt) for a scaled ver- 277

sion of the input image. The global text feature generation 278

block (GTFGB) generates the global text feature (GTFt) for 279

any scaled input image. The GTFGB utilizes the current LFt 280

and GTFt from the lower-resolution input image to develop 281

the GTFt of the current scale. The GTFGB at the lowest reso- 282

lution input image uses a zeros valued map as GTFt of lower- 283

resolution input. The GTFt at any scale is classified by the 284

segmentation-Block and generates GPM (Global Probability 285

Map) and GTM (Global Threshold Map). The GSM (Global 286

Segmentation Map) is calculated from the GPM and GTM 287

with the equation 1. The equation 1 generates the segmenta- 288

tion map with the concept of differentiable binarization (refer 289

DB [6] and DB++ [25]). The layers and blocks used in 290

different scaled inputs have shared parameters (the backbone, 291

GTFGB, and Segmentation-Block are all the same across the 292

input scale). 293

GSMi,j =
1.0

1+ exp−k(GPMi,j − GTMi,j)
(1) 294

where the value of k is set as 50 same as the DB [6]. 295

B. BACKBONE NETWORK OF GMIF 296

The backbone network of the GMIF model is responsible for 297

acquiring the text-nontext feature from the input image. The 298
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backbone is depicted in Figure 4 with its components. The299

proposed backbone does not use any pooling operation for300

featuremap size reduction. Instead, it uses a convolution layer301

of large kernels (256) with a stride of 4 × 4. This operation302

provides detailed information for small regions and does303

not require significant computation. The backbone network304

should capture the input image features for a range of text305

sizes; therefore, we utilize square and non-square kernels306

in convolution as MPB: text inception block. MPBs capac-307

itate the backbone network to cover a large area with fewer308

parameters and computation. MPBs also help to detect text309

instances with curvature. Here, we also aim to maintain the310

real-time performance of the GMIF, so the number of kernels311

at different layers is also restricted. Besides, the backbone’s312

architecture is partially dense connected; before feature map313

reduction, all previous stage features are concatenated and314

followed by a convolution operation with a stride of 2 × 2,315

which provides more robust and detailed features for subse-316

quent stage feature extraction. The segmentation of the text’s317

boundary regions is challenging; therefore, we fuse high-level318

and low-level features to create the local scale-level features,319

termed as LFt.320

C. MPB: MULTI-PATH BLOCK321

The receptive field of the Backbone network after the322

first convolution layer is increased by only multi-path323

block (MPB). TheMPB has kernels of different shapes (1×3,324

3 × 1, and 3 × 3), which is the concept borrowed from325

GoogLeNet [21]. The text segmentation task is equivalent to326

the classification of the center of an image patch. The text327

inside this patch can appear at any location and with any ori-328

entation. Thus the kernels with different shapes help to extract329

the underline information efficiently. The performance of the330

text detection also validates that this behavior decreases if331

only a square (3 × 3) kernel shape is used in MPB (refer to332

ablation studyV-D section). Here we target only a small range333

of text sizes, so we have included only elementary kernel334

shapes such as 1 × 3, 3 × 1, and 3 × 3. The design details335

of MPB are given in the top-right corner of Figure 4.336

D. GTFGB: GLOBAL TEXT FEATURE GENERATION BLOCK337

GTFGB gets LFt of the current scale and GTFt from the338

lower-resolution (higher scale) input image and produces the339

updated and upscaled GTFt for the current scale. The GTFt of340

the lowest resolution input image is generated from its LFt,341

and a zero-valued map as GTFt from the lower resolution.342

The design details of GTFGB are given in the bottom-right343

corner of Figure 4. Here the operation of GTFGB resembles344

the GRU [45] followed by a transpose convolution layer. Here345

the GTFt is equivalent to the hidden state (ht ) and LFt as the346

current input (xt ) of GRU. The primary use of the GTFGB347

is to propagate the valuable information of the previous348

scale’s GTFt and update it according to the current LFt. Thus,349

GTFGB relieves the backbone network from covering the350

whole input image and acquires the more prominent neigh-351

borhood information through feature fusion of LFt and GTFt.352

The smaller text information is weekend at the down-scaled 353

input image, so the GTFt at any scale acquires the small text 354

information from the LFt at that scale. Therefore GTFt at any 355

scale has a lower bound on text size, which it can localize 356

efficiently. LFt encode the information from the image patch 357

under its receptive field only, whereas the GTFt has the 358

information from the whole input image. The approach for 359

updating the GTFGB is bottom-up, where the features from 360

the low-resolution input image are incorporated into the GTFt 361

first. 362

E. LABEL GENERATION AND AMBIGUITY RESOLUTION 363

1) LABEL GENERATION 364

The label generation depends on two properties of a pixel 365

location in an input image.We will refer to these properties as 366

pixel location properties (PLPs) for onward discussion. The 367

PLPs are as follows 368

• The distance of a pixel from the text boundary (we refer 369

to it as DistB) 370

• The corresponding text size at a pixel location (we refer 371

to it as RT). It is represented by the radius of the circle 372

that covers the text height. 373

The DistB and RT of a pixel outside of the text mask are 374

considered ones. The PLPs of a pixel inside a text mask is 375

determined by the algorithm 1. The PLPs are calculated at the 376

original input image resolution(refer to Figure 6). The pixel 377

class for a pixel location is decided by algorithm 2, please 378

refer to Ambiguity Resolution section III-E2). 379

2) AMBIGUITY RESOLUTION 380

We refer d th downscaled image as IMGd , DistB as DistBd , 381

and RT as RTd . The class of a pixel location is decided by 382

algorithm 2. The GMIF model learns the global probability 383

map (GPMd ), the global segmentation map (GSMd ) and 384

the global threshold map (GTMd ) at different scales of the 385

input image. The GPM, GSM, and GTM are responsible 386

for only a small corresponding range of text-size regions 387

segmentation. If a text region occupies this range, then only 388

it is considered TEXT. Besides this, the GTM is a two-valued 389

{0.1, 0.9} map whereas the DB [6] and DBNet++ [25] used 390

a continuous-valued map in the range (0,1). 391

F. OPTIMISATION 392

We adopted the same loss function as the DB++, which is the 393

weighted sum of the loss for the global probability map Lp, 394

the loss for the global segmentation map Ls, and the loss for 395

the global threshold map Lt . 396

L = Lp + α × Ls + β × Lt (2) 397

The weights α and β are selected as 1.0 and 10.0 according 398

to their numeric values in losses Ls and Lt . 399

We have utilized the binary cross-entropy (BCE) loss with 400

hard negative mining for both losses of Lp, Ls. 401

Lp = Ls =
∑
i∈Sl

yilogxi + (1− y)log(1− xi) (3) 402
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FIGURE 4. Different Components of GMIF: The leftmost section provides abbreviation details of the different layers and sub-network blocks used in
GMIF. The right most section depicts the architecture of the global text feature generation block (GTFGB). The mid section provides the detail of the
different block used in GMIF as MPB: mult-path block (mid-bottom), SegB: segmentation block (mid-top).

FIGURE 5. Backbone architecture of GMIF: the architecture detail of the backbone network is presented here. The details of the different layers and
blocked used in backbone are depicted in Figure 4.

where Sl is the sampled set having positive and negative403

samples’s ratio as 1:3. The Sl contain all positive samples404

and then select top-k (based on the absolute error) in negative405

prediction. Here we are using the TEXT pixels location as406

positive and NONTEXT as negative.407

408

The global threshold map loss Lt is computed as the sum409

of L1 distances between the prediction and GTM label.410

Lt =
∑
i∈Rd

| y∗i − x
∗
i | (4)411

where Rd is a set of pixels locations inside the GTM with 412

numeric values (pixel location don’t have DONTCARE 413

class); y∗ is the numeric value {0.1, 0.9} for the threshold 414

map. 415

IV. EXPERIMENTAL SETUP 416

The learning of the GMIF model with different datasets and 417

settings is performed by a shared NVIDIA DGX system hav- 418

ing 8 V100 GPUs each with 32 GB of memory. The learning 419

is done in multiple sessions with 1/2/4 GPUs depending on 420

the availability of GPUs on the system. Besides this, all the 421
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Algorithm 1 Pixel Location Properties (PLPs) Calculation
Input: Text Instances Mask
Output: DistB, RT at each pixel locations.

{EuclidDist is the euclidean distance between two pixel
locations}
Initialisation:

1: TIs← All Text Insances in Text Mask
2: for all TI ∈ TIs do
3: BCs← Boundary pixels of current TI
4: for all pixel ∈ TI do
5: DistBpixel ← min

BCi∈BCs
EuclidDist(pixel,BCi)

6: end for
7: MAXT ← max

pixel∈TI
DistBpixel

8: MAPs← Medial axis locations of current TI
9: for all pixel ∈ TI do

10: for all pixeli ∈ MAPs do
11: ifDistBpixeli+1 ≥ EuclidDist(pixel, pixeli) then
12: RT 1

pixel,pixeli ← DistBpixeli
13: else
14: RT 1

pixel,pixeli ← 1
15: end if
16: end for
17: RTpixel ← max

pixeli∈MAPs
RT 1

pixel,pixeli

{The corner refinement: The corner of text instances
may not have the correct text size in RT. Therefore,
we need to fix them as the boundary of TI.}

18: if DistBpixel ≥ 2 ∧ RTpixel ≤ MAXT
3 then

19: RTpixel ← MAXT
3

20: end if
21: end for
22: end for
23: return DistB, RT

inference computation is done by a separate system having a422

GTX 1080Ti GPU, which is the same as used by DB [6] for423

a fair comparison.424

A. DATASETS425

The performance of the GMIF is evaluated on three publicly426

available benchmarking datasets: ICDAR 2015 (first intro-427

duced in the ICDAR2015Robust ReadingCompetition) [46],428

MSRA-TD500 [47], and the Total-Text [48]. Besides these429

datasets, we have also incorporated two more instances of the430

datasets. Firstly, we have created a text size-specific dataset431

from the test set of the total-text dataset [48] for evalua-432

tion of different methods under text size constraints. Sec-433

ondly, we have incorporated 400 training images fromHUST-434

TR400 [49] as suggested and used by DB [6]. The detail of435

the main three datasets are summarized in the Table 1.436

1) RESIZED TOTAL-TEXT437

We have created a test set that validates the proposed work’s438

superior performance. Here we choose the test set of the439

Algorithm 2 Pixel Location Class Categorization
Input: IMG,DistB, RT
Output: GPM , GSM , GTM

Initialisation:
1: S ← Smaller Side of IMG
2: d ← 0

{We need to downscale the input image so the maximum
text-size becomes less than 48 pixels}

3: while S > 48 do
4: IMGd ← Pooling by Stride 2d × 2d

5: DistBd ← DistB+2d−1
2d

6: RT d ← RT+2d−1
2d

7: for all PixelLocation ∈ IMGd do
8: if RT dPixel < 3 then
9: GPMd

Pixel ← NONTEXT
10: GTMd

Pixel ← DONTCARE
11: else
12: if RT dPixel > 6 then

13: if DistBdPixel >
RT dPixel

3 then
14: GPMd

Pixel ← TEXT

15: if DistBdPixel <
2∗RT dPixel

3 then
16: GTMd

Pixel ← 0.9
17: else
18: GTMd

Pixel ← DONTCARE
19: end if
20: else
21: GPMd

Pixel ← NONTEXT
22: GTMd

Pixel ← 0.1
23: end if
24: else
25: GPMd

Pixel ← DONTCARE
26: GTMd

Pixel ← DONTCARE
27: end if
28: end if
29: end for
30: S ← S+1

2
31: d ← d + 1
32: end while
33: GPM ←

{
GPMd ,∀d

}
34: GTM ←

{
GTMd ,∀d

}
35: GSM ← GPM
36: return GPM , GSM , GTM

Total-Text dataset as it has text instances of different shapes 440

and orientations. First, we identify the average RTavg of every 441

text instance of all test images, then we resized these images 442

such that the RTavg of the targeted text instance in the image 443

becomes according to the desired RTavg. After resizing, if the 444

text instance is not according to the desired size, it is marked 445

as a don’t care instance. Some sample images from this 446

dataset is shown in figure 8. The consistent performance of 447

the proposed GMIF model over this dataset is validated in 448

table 5. 449
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FIGURE 6. Label Generation: The top-left is the original image and its
downscaled versions, and on the top-right, their corresponding text
instances mask. The bottom-left is the Border distance map, and the
bottom-right is the text height map for the input image and its
downscaled versions.

TABLE 1. Summary of datasets used for GMIF evaluation.

B. EVALUATION CRITERIA450

The text detection evaluation relies on the precision (How451

many detected regions are correct) (P) and recall (How many452

regions were retrieved). Generally, a text detection method453

uses some threshold to decide a text region. The precision454

and recall vary with this threshold. Decreasing the threshold455

can improve the recall, but it results in the fall in precision.456

Another measure, f − measure (harmonic mean of P and457

R), is adopted to counter the tradeoff between precision458

and recall and soften the threshold selection effect. The459

f − measure is obtained by equation5, where TP stands460

for true-positive, which is the number of correctly identified461

TABLE 2. Text Detection performance comparison on the ICDAR2015
dataset. The blue and red colors show the best and second-best
performance in the table.

regions, FP stands for false-positive, which is the number 462

of incorrectly identified regions, and FN stands for false- 463

negative, which is the number of regions that are not iden- 464

tified. A predicted region is considered correctly identified 465

if its IOU for the actual region is greater than a predefined 466

threshold (generally 0.5). 467

precision P =
TP

TP+ FP
468

recall R =
TP

TP+ FN
469

f − measure F =
2× P× R
P+ R

(5) 470

C. TRAINING PHASE PROCEDURE 471

The synthetic data is generated with text size in the range of 472

8 to 256 pixel text height (4 to 128 RT). Due to the large text 473

size, large background images are required. The text is fused 474

with the background images by the SynthText [50]. All real 475

and synthetic training images are augmented in three steps, 1) 476

3D rotation (assuming it is in XY plane), 2) Projection (in XY 477

plane), and 3) Scaling. Besides, this training of GMIF is done 478

with a batch size of one. The GMIF is trained in two phases 479

1) Mixed dataset and 2) Targeting dataset. The first phase 480

uses the synthetic data and a training set of different datasets. 481

This phase is trained over 600K iterations. The second phase 482

utilized the training set of the target dataset and trained with 483

200K iterations. Adam [51] is adopted to optimize the GMIF 484
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FIGURE 7. Label Generation: First-row is input image at different resolution, second-row is their corresponding global segmentation map (GSMd ),
third-row is their global threshold map (GTMd ). The color encoding of different regions is as red is NONTEXT, green is TEXT, blue is DONTCARE,
magenta is Threshold = 0.1, and cyan is Threshold = 0.9.

FIGURE 8. Sample images from the resized Total-Text dataset. Here green bounding region is TARGET TEXT instance and the cyan bounding regions are
DONTCARE instances.

model. The hyper-parameters for Adam are α = 0.001, β1 =485

0.9, and β2 = 0.999.486

D. INFERENCE PHASE PROCEDURE487

The original test image and its down-scaled versions are pro-488

cessed through the backbone network, and the resultant LFt489

feature-map is stored in a list. Then, this LTFt feature-map is490

passed to GTFGB for the global text feature GTFt generation.491

The last (the original image) GTFt is further processed with492

segmentation block and yields the final global probability493

map GPM. We use threshold 0.6 to binarize this GPM into 494

the final segmentation map. This segmentation map extracts 495

different connected components as the final text instances. 496

V. RESULTS 497

In this section, we are presenting the different experimen- 498

tal results obtained. This includes the text-properties-based 499

comparison results, the ablation study results, and the study’s 500

results regarding the effect of the text size on the existing 501

state-of-the-art methods. Here H# means that the height of 502
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TABLE 3. Text detection performance comparison of the proposed GMIF
model with existing works on MSRA-TD500 dataset. The blue and red
colors show the best and second-best performance in the table.

the test images is resized as # pixels keeping the aspect ratio503

constant. For instance, H736 means that the test image is504

resized by making the height of the input image 736 pixels505

long.506

A. PROPERTIES BASED COMPARISON507

1) MULTI-ORIENTED TEXT DETECTION508

ICDAR 2015 dataset is used to evaluate the effectiveness of509

the GMIF model in detecting multi-oriented text instances.510

The results obtained by GMIF with other state-of-the-art511

methods are presented in Table 2. Again, the GMIF obtained512

the highest f-measure as 88.0% (for H736 test images)513

and surpassed the DB [6] and DBNet++ [25] (with back-514

bone ResNet50). The GMIF also maintains the computation515

efficiency with 21 FPS, which is twice the second-best516

performer (DBNet++ 87.3%). Some examples of results517

obtained by GMIF are depicted in Figure 9.518

2) MULTI-LANGUAGE TEXT DETECTION519

The MSRA-TD500 dataset is used for this purpose as it has520

text instances from the Chinese and English languages. The521

results obtained by GMIF with other state-of-the-art meth-522

ods are presented in Table 3. The GMIF (85.2% f-measure523

and 80.2% recall) outperform the DB [6] (84.9% f-measure,524

79.2 recall), and lagging DBNet++ [25] (87.2% f-measure,525

83.3% recall) only.526

3) ARBITRARY SHAPE TEXT DETECTION527

The Total-Text dataset consists of text with arbitrary shapes,528

including horizontal, multi-oriented, and curved text, in most529

images. Therefore, we are incorporating this dataset to evalu-530

ate the effectiveness of GMIF in detecting arbitrarily shaped531

text instances. The results obtained by GMIF with other532

state-of-the-art methods are presented in Table 4. The GMIF533

TABLE 4. Text Detection performance comparison on the Total-Text
dataset. The blue and red colors show the best and second-best
performance in the table.

(H800: 87.4%f-measure, 89.1% precision, and 85.8% recall) 534

outperform the DB [6] and DBNet++ [25] in term of all per- 535

formance measure listed. Some examples of obtained results 536

by GMIF are shown in Figure 9. 537

B. COMPARISON WITH DIFFERENTIAL BINARIZATION 538

1) GMIF VS DB/DBNet++ 539

The DB [6] and DBNet++ [25] uses a learnable threshold 540

map to separate text instances. Their approach effectively 541

separates text instances, but small text instances are not 542

captured with the same efficiency. However, DB/DBNet++ 543

utilizes the feature fusion of the output from a different 544

level of their backbone network (ResNet). The feature fusion 545

approach of DB is feature pyramidal addition, whereas the 546

DBNet++ used an adaptive scale fusion approach. The lead- 547

ing cause of losing small text is the low resolution of the 548

feature map after the first convolution (followed by a max 549

pool operation). This feature map has four times lower res- 550

olution than the input image, which puts much stress on the 551

first convolution (size 7× 7) to maintain the information. 552

The GMIF outperforms the text detection performance of 553

DB on all benchmarking datasets under consideration. GMIF 554

does not use pooling operations that lose spatial information. 555

The spatial information is helpful in segmentation. Besides 556

this, GMIF also utilizes a large number of convolution ker- 557

nels (256) at the first convolution, which capacitates it to 558

acquire more information regarding small text instances. 559

GMIF uses partially densely connected blocks to acquire 560

more robust and detailed features. The total number of layers 561

used in the backbone of GMIF is comparatively small than 562

the backbone used in DB. 563

C. TEXT-SIZE INVARIANT PERFORMANCE 564

The Low precision of DB and DBNet++ shows that they 565

are generating more predictions than the valid and don’t- 566

care text instances. The larger number of predictions arises 567

due to the false-positive predictions and splitting a valid text 568
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FIGURE 9. Qualitative results form test samples of datasets under considerations. The first row shows the results from the total-text dataset, second row
shows the results of MSRA-TD500, and the last row shows the qualitative results for the ICDAR 2015 datset.

instance into more predictions. The Recall of the DB is high569

at RTavg = 40 and decreases as going further. This also570

shows that the effective receptive field of their trained model571

is around 160 × 160 pixels ( For a segmentation task, the572

network needs to cover the text instance from the boundary573

of the text, RT is the radius). The Recall of the DBNet++574

is higher than the DB for a range of RTavg which validates575

the effectiveness of the ASF approach for multi-scale feature576

fusion over the FPN of DB.577

D. ABLATION STUDY578

We conducted an ablation study on the Total-Text dataset to579

show the efficacy of the different components of the GMIF580

model: the backbone, the MPB, and the MPB with only581

square kernels, the GFGB. The detailed experimental results582

are shown in Table 6.583

For this ablation study, the proposed GMIF model is com-584

pared with DB [6] and DBNet++ [25]. The DBNet++585

system has been considered as the baseline for this study.586

The DBNet++ system can be considered a two-component587

system. 1) The backbone network of DBNet++ (we are 588

undertaking the resnet-50 as DBNet++ backbone). 2) The 589

adaptive scale fusion approach. 590

Weperformed a fewmodifications to this baselinemodel to 591

convert it to the proposed GMIF Model. These modifications 592

are as follows: 593

• Resnet50 + GTFGB: Here, we are using the Resnet50 as 594

the backbone of the proposed GMIF model. 595

• 3× 3MPB + GTFGB: Here, we are using the proposed 596

backbone network with only square kernels in the MPB. 597

• Backbone with MPB + GTFGB: Here, we are using the 598

proposed backbone network with MPB. 599

VI. DISCUSSION AND ANALYSIS 600

The proposed GMIF model is capable of handling the issues 601

that were discussed in section I-A. Furthermore, the model 602

has been evaluated and compared with the state-of-the-art 603

in STD. The tables 2, 3 and 4 compares our model with 604

existing work for the performance based on precision, recall, 605

F-measure and speed. 606
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TABLE 5. Text Detection performance comparison on the RTavg specific total text dataset. The blue and red color shows the best and second-best
performance in the table.

TABLE 6. Ablation Study with Total-Text Dataset. blue and red colors
show the best and second-best performance in the table.

A. HANDLING CONCERNS MENTIONED IN SECTION I607

1) RECEPTIVE FIELD OF THE NEURAL NETWORK608

The DB [6] and DBNet++ [25] reported their best perfor-609

mance with the resnet50 backbone. The resnet50 has four610

convolution blocks with the stacking of 3,4,6 and 3 convo-611

lution layers. In contrast, the proposed backbone network612

uses only three blocks with 2,3 and 4 layers. The proposed613

backbone concatenates the side features at each convolution614

and uses them as the final feature instead of using only the615

last features from a convolution block. This facilitates the616

proposed GMIF model to acquire detailed information from617

its receptive field.618

2) TextSize619

The proposed model extracts the required features from an620

appropriate down-scaled input image, and then the final621

masking is done at a higher resolution.622

3) OVERLAPPING TEXT REGIONS623

The proposed model primarily classifies any text region as624

a scaled version of it, which is completely covered (only625

text height) by the network(refer to section III for detail).626

The model also uses feature fusion from different scaled627

input images. Consequently, the overlapping of text instances628

is minimized by acquiring their segmentation mask at their629

respective scale. GMIF maintains these low-resolution seg- 630

mentation masks at a higher resolution. 631

4) REAL-TIME PERFORMANCE 632

The proposed model utilizes a comparatively shallow back- 633

bone network with a hybrid architecture of InceptionNet [62] 634

and VGG [20]. The GMIF performs comparatively faster 635

while maintaining the text detection performance. 636

B. COMPARISSION OF GMIF AND EXISTING WORK 637

1) BACKBONE NETWORK AND FEATURE FUSION 638

The current state-of-the-art methods [6], [7], [8] use a con- 639

volution neural network as a backbone network to gener- 640

ate essential features. This backbone covers the entire input 641

image by its receptive field [15]. Therefore these methods 642

need to downscale the input image if a text with a size big- 643

ger than the network’s receptive field appears. Besides this, 644

a large receptive field tends to lose focus on the smaller text; 645

these methods upscale the input image to overcome this issue 646

[6]. The GMIF is also a convolution neural network, but it 647

uses only three pooling operations (the pooling is done using 648

stride) at its backbone network. GMIF has a small receptive 649

field, uses the downscale input image for more extensive 650

coverage, and does not require upscaling to detect a text. The 651

overall architecture of GMIF is depicted in Figure 3. The 652

RefineNet [63]model also use the downscale images and then 653

fuses their local feature to get robust features for the semantic 654

segmentation task. Their approach differs from the GMIF on 655

the backbone network, the feature fusion, and the target task. 656

The RefineNet fused all the features and created a single pre- 657

diction map, whereas the GMIF fuses the feature according 658

to the target text size. Besides this GMIF target a different 659

segmentation map at different downscale image(refer to III). 660

2) TEXT AREA SHRINKING 661

The text instance region is shrunk to reduce the overlapping 662

between nearby text instances. The existing methods [6] use 663
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FIGURE 10. Example images showing the results obtained by proposed
GMIF, DB, and DBNet++ over the resized total-text dataset. For every test
sample the first row shows the results obtained through GMIF, second
row shows the DB results, and the third row shows the results from
DBNet++. Here green is TARGET TEXT, cyan are DONTCARE, and the blue
bounding regions are PREDICTED text instances.

the Vatti clipping algorithm [64] for shrinking the text region664

area. The shrinking is done according to the text region size665

to separate the different words better. This shrinking is a con-666

stant for a given text region. The label generation for GMIF is667

different from these existing methods. The GMIF shrinks the668

text regions according to the text height at that location. This669

shrinking is not fixed for entire text regions but is adaptive to670

the pixel location. A visual sample of this shrinking is shown671

in Figure 7. The detail of the label generation is provided in 672

section III-E. Here, the character mask is already downscaled 673

four times due to the pooling used in the backbone network; 674

therefore, one pixel of the character mask is four pixels in the 675

backbone network’s input data. 676

3) A PIXEL/CELL CATEGORIZATION AND ITS WEIGHTS 677

The Differential Binarization (DB) [6] method uses the 678

supervised learning for the text probability map and the 679

text-threshold map to enhance the learning of boundary pixel 680

segmentation. The method in [35] proposed text border ele- 681

ments for better separation of the text instances. The UNet 682

[65] suggests a loss weighting scheme that assigns a higher 683

weight to the boundary pixels for the object segmentation. 684

TheGMIFmodel categorizes different pixels/cell regions into 685

three categories 1) TEXT, 2) NONTEXT, and 3) DONT- 686

CARE. Besides this, a cell location has a threshold map score 687

depending upon the text height and distance from the text 688

border(refer to sectionIII-E for details). 689

4) EXISTING METHODS UTILIZING TEXT SIZE 690

The SRPN+TextDetector [66] (will be referred to as 691

SRPN+TD) also utilizes the text size as the proposed GMIF 692

for the performance improvement. The SRPN+TD is a two- 693

phase method. It first estimates the text proposal and the 694

size of their texts. The second phase generates the bounding 695

box for text instances on a scaled and cropped input version. 696

This approach follows the coarse to fine methodology, but the 697

performance of the first phase is the bottleneck. It cannot also 698

detect the curved text instances effectively. The GMIF is a 699

single-phase model and target all text shapes and orientation. 700

VII. CONCLUSION AND FUTURE WORK 701

This paper has offered GMIF, a text detection method for 702

text instances of arbitrary shapes, orientations, and scales. 703

The model’s architecture consists of a backbone network that 704

learns the text features for a small range of text sizes, improv- 705

ing its text detection capacity at some down-scaled version 706

of the input image. Concurrently, the architecture’s GTFGB 707

propagates the background information learned from the 708

low-resolution input images to the higher resolution seg- 709

mentation. This helps the GMIF to suppress the background 710

and extract the text correctly. The experimental analysis of 711

the results obtained by GMIF shows its effectiveness for 712

detecting text instances of any scale. GMIF achieves the 713

state-of-the-art performance in detecting text with the arbi- 714

trarily shaped images of the Total-text dataset and ICDAR 715

2015 dataset. Besides this, GMIF also achieves second-best 716

results in F-measure performance overMSRA-TD500 (multi- 717

language script) dataset. The GMIF also sustains real-time 718

performance, and its computation speed can be adjusted by 719

down-scaling the input images accordingly. The proposed 720

GMIF model provides a consistent STD performance over 721

an extensive range of text instance sizes. The GTFGB prop- 722

agates the text features through different scales of the text 723

instances. Similarly, the GTFGB should also propagate the 724
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features regarding the text-character classes, but its behavior725

needs to be explored in the text recognition task.726
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