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ABSTRACT The feature fusion of the multi-scale features plays a significant role in localizing text instances
of different sizes in the scene text detection (STD) paradigm. The existing approaches are not sufficient to
tackle the issues of multi-scale text; consequently, their performance also varies with the text size. Here,
we propose a gated multi-scale input feature fusion (GMIF) approach to overcome this issue in STD.
The GMIF generates the local features from down-scaled input images and propagates these features from
low resolution to the higher resolution global features through a gated recurrent unit-like mechanism. The
consistent performance of the GMIF is validated with different text instance sizes of the test-set of the Total-
text dataset. The GMIF obtained the performance in range (Precision 88.554-89.106, Recall 85.452-85.790,
and f-measures 87.072 - 87.417) with marginal deviation, whereas the current state-of-the-art method,
DBNet++, acquired in range (Precision 73.005-82.666, Recall 80.912-87.274, and f-measures 76.755 -
84.183) with significant deviation. Besides this, GMIF also achieved the best performance (f-measures) over
ICDAR 2015 (as 88.0), Total-Text (as 87.4), and the second-best over the MSRA-TD500 (as 85.2) dataset.
We have conducted an ablation study to show the impact of different components of the GMIF on the STD
tasks, which shows the effectiveness of the overall GMIF approach.

INDEX TERMS Scene text detection, multi-scale text, multi-scale feature, feature-fusion, deep neural

networks.
I. INTRODUCTION The current state-of-the-art text detection methods can be
Many different pieces of information are present in an image, categorized into:
but the text contains a wide range of valuable information. 1) The bounding box regression methods
Text appears in our day-to-day life as part of the road signs, 2) The segmentation-based methods

shops, buildings, vehicle license plates, product packaging,
and information media (online and offline). The advent of
deep learning provides a wide range of possibilities for text
analysis in practical applications like image/video under-
standing, visual search, instant translation, automatic driving,
blind assistance, scene understanding, and geolocation [1],
[21, [3], [4], [5]. The detection and localization of all text
instances in the natural images are the prerequisites for text
understanding, also known as STD.

The bounding box regression methods generate the bound-
ing box’s representation, including the target text instance
from the input image. This representation includes horizontal
rectangles, oriented rectangles, quadrilateral boxes, and poly-
gons from the contour of the text instances. One of the draw-
backs of the bounding box regression method is its inability
to constitute curved text instances. Even for a polygon, the
number of points is changeable for all types of text instances,
and predicting these points through regression-based methods
is challenging.

The associate editor coordinating the review of this manuscript and The segmentation-based methods, on the contrary, repre-
approving it for publication was Donato Impedovo . sent the text instance by text region masking. The advantage
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FIGURE 1. Background Ambiguity: Some examples of ambiguity present
in real world images. The examples are selected from different dataset
under consideration. The green color box represents the text regions, and
the red color box represent some background region containing text
similarity.

of these methods is that they can handle all types of text
shapes and orientations but require post-processing to get the
localization information of the text instances.

A. CHALLENGES IN STD

Significant progress has been effectuated in STD by the
techniques based on deep learning [6], [7], [8], [9], [10],
[11], [12], [13]; nevertheless, the SDT continues to pose a
challenge. The major obstacles for STD in natural images
range from arbitrary orientations, scale, aspect ratio, and
shapes to foreground, background, and texture interference.
These impediments are discussed below.

1) RECEPTIVE FIELD OF THE NEURAL NETWORK

A deep neural network (DNN) provides promising results for
STD, but it has a fixed receptive field that can provide text
detection for the corresponding text size range. A multi-scale
testing (MST) approach can extend this range and improve
the recall of the text detection system as it can process a text
with multiple scales. However, the MST approach decreases
the system’s precision by producing multiple results for the
same text instance.

2) TextSize

The size of the receptive field of the DNN regulates the
recognition of text of varying sizes. If the effective recep-
tive field of the DNN is large, the existing text localization
methods are hindered from recognizing small text. Rescaling
the input image can possibly resolve this issue. This method
of flushing the input image to fit the text instances into
the network effective receptive field is called multi-scale
testing. References [6], [14] attained a better performance
by increasing the size of the input image, indicating that
the effective receptive field of the trained network [15] was
quite large. The up-scaling of the input image to make text
instances larger is not the desired solution as the existing
resizing methods lack textual information, and generated
image needs more computations. Besides this, the up-scaling
also requires a solution from another research area named
image super-resolution [16]. The down-scaling of the input
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image, on the contrary, is relatively easy and produces quite
good results [8], [17].

3) OVERLAPPING TEXT REGIONS

Despite the small text size issues, the segmentation-based
text detection methods also suffer from overlapping text
instance masks. This overlapping complicates the text region
extraction task; therefore, these methods require a few
post-processing steps to separate these masks. The bounding
box regression-based methods generate multiple boxes for the
same text instances and need non-max suppression [18] to get
the best representation.

4) REAL-TIME PERFORMANCE

A conventional approach to increase the receptive field of
the output neurons of a DNN is to apply a pooling opera-
tion followed by a sequence of convolution operations. This
approach facilitates covering a larger text region [19], [20],
[21], [22], [23]. Since most of the computation done by a
DNN is dense at the initial layers, the number of convolu-
tional kernels used at these layers is kept relatively low. How-
ever, these layers provide the core feature for text understand-
ing. So increasing the capacity of these layers might help in
decision making, but real-time performance is compromised.
Besides this, the vanishing gradient [24] and dying ReLu
issue make learning these kernels obstinate.

B. MOTIVATION

The techniques discussed in the previous sections are capable
of detecting text that is contingent on the size of the text. This
limitation is exposed further when the real world presents
an untold variation of text, and it becomes very challenging
to detect these variations. These limitations carved the way
for the presented work. The authors have identified a couple
of significant flaws in the existing methods, which are as
follows:

One of the major concerns about the existing methods is
over dependence on the text size. This is conspicuous that as
the performance of the existing state-of-the-art methods line,
DB [6] and DB++ [25] fluctuate with the variation in the size
of the text in the test images. (refer to table 5).

The second concern perpetuates the first one. The existing
methods try to curtail the influence of text size by learning for
all text sizes. This turns out to be highly infeasible, and hence
the reliance on such systems decreases for detecting text of
larger sizes. To overcome this, a multi-scale testing approach
is employed by these methods. The multi-scale testing pro-
duces multiple text instances at different scaled inputs and
hence, it is able to detect text of varying sizes. However, this
comes with the cost of a decrease in the precision of the over-
all system. Another overhead, although nominal, associated
with multi-scale testing is the requirement of post-processing.

C. CONTRIBUTIONS OF THE PRESENTED WORK
The following are the significant contributions of the pre-
sented work:
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FIGURE 2. Paper structure.

o A framework that generates consistent performance
across text instances of varying sizes.

o A shallow backbone network architecture capable of
detecting all text instances of smaller sizes.

o A block within the main network known as GTFGB is
responsible for feature propagation, and it adapts text
features to various scales.

o The combination of the backbone network with GTFGB
produces a single text segmentation map comprising
every instance of text in the input image. This lessens
the burden of post-processing that is required to select
the best mask for a text instance.

The rest of the paper is organized as shown in Figure 2.

Il. RELATED WORK

Text detection is the process of identifying the existence of
text in the input image. It is an integral part of the text
analysis and aims to localize every occurrence of the text.
The text detection methods fall under a sub-category of non-
exclusive object detection, one of the fundamental problems
in the computer vision research domain. This section provides
an overview of the text detection methods related to the
presented research. Firstly, in subsection II-A, we present the
methods of text detection falling under the realm of object
detection. Then we discuss some specific text detection meth-
ods in subsection II-B

A. OBJECT DETECTION
A range of text detection methods [7], [8], [26], [27] have
been proposed, which are inspired by the object detec-
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tion methods. Remarkable object detection works have been
presented with a sequence of evolved advancements. R-
CNN [28] used object classification to detect an object in
regions generated by the selective search [29]. The classifica-
tion is performed on the features generated by a convolutional
neural network (CNN) on the cropped image region accord-
ing to a selective search. This method produces promising
results, but it is slow as it applies the CNN on every cropped
image region separately. This limitation is softened in the
Fast R-CNN [30] by altering the sequence of crops and CNN.
The Fast R-CNN first generates the CNN feature map from
the complete image, then extracts features of the proposals
by Rolpooling [30]. This allows the CNN feature map to be
shared in multiple region proposals as their overlapping area.
Consequently, it provides a significant speed-up to R-CNN.
The selective search is an external method to the CNN, which
impedes the system’s end-to-end learning.

Faster R-CNN [31] presented a region proposal network
alongside the CNN of Fast R-CNN, which gave the sys-
tem end-to-end trainable capabilities. Although the Faster
R-CNN has a speed improvement than the R-CNN and Fast
R-CNN, cannot produce real-time results (>25 frames per
second). The root cause for this is Rolpooling, as it generates
a fixed-size feature map for all valid boxes which require the
alignment of features. This alignment is removed in YOLO
[32] which achieves real-time performance. The performance
of the YOLO is further enhanced by the SSD [33]. SSD uses
default boxes to predict the bounding region box at each
location. It utilizes the default boxes of different aspect ratios
and scales at different stages of the backbone network. Thus,
SSD achieves translation, aspect ratio, and scale invariance
and enhances the original YOLO’s performance with its real-
time computation. Recently, a faster R-CNN-based technique
known as OLCN [34] has been developed for detecting small
objects in remote sensing images. However, it is still difficult
to recognize small objects in remote sensing images due to
the fact that very few pixels are available for the targeted
small object and the majority of the visible space within the
network’s receptive field is occupied by other objects or the
background information.

B. TEXT DETECTION

The available methods are broadly categorized into two types,
as segmentation based methods [6], [9], [17], [35], [36], [37],
and bounding-regions(box regression) based methods [7],
[81, [26], [38], [39].

1) SEGMENTATION BASED METHODS

A segmentation-based method classifies every cell (a region
in input, which size depends on the stride used) as text
and non-text or provides some character-ness score. The
Character-ness, text segmentation mask, as a mean of text
saliency measure, is introduced in [37] and further utilized in
many others [6], [9], [17], [35], [36]. These methods are capa-
ble of detecting text of any shape, including different orien-
tations and curved text. This capability is also utilized in [36]

VOLUME 10, 2022



T. Ali et al.: GMIF: A Gated Multiscale Input Feature Fusion Scheme for Scene Text Detection

IEEE Access

for multi-oriented text segmentation with a CNN-based fea-
ture. Further, besides the Text-nonText classes, some more
classes as the text border elements are utilized in [35] for
better separation of the text instances. The PSENet [40]
proposed progressive scale expansion by segmenting the text
instances with different scale kernels. PixelLink [41] utilizes
a VGG16 based convolution neural network to generate the
text-nontext segmentation mask as well as an 8-neighbor link-
connections prediction map for each pixel location. Thus,
using link connections between the pixels of various text
instances, PixelLink [41] was able to separate texts that were
close to one another.

2) BOUNDING-REGIONS BASED METHODS

With the massive success of RCNN [28] based methods for
object detection tasks, a range of its derivative-based methods
are also suggested for text localization. Here, the text cover-
age region is learned as a regression task with anchor boxes
of different scales and aspect ratios. The TextBoxes [42] is
one of the pioneers in exploring the possibilities of SSD [33]
(a derivative of RCNN) by modifying the convolution kernel
shape and the aspect ratio of anchor boxes to cover the longer
word/text. This method has limited capacity to identify ori-
ented text instances as it used the horizontal rectangle box to
represent text regions. This limitation was softened by DMP-
Net [38] and TextBoxes++ [8] with quadrangle/quadrilaterals
box representation of text region, which improves the local-
ization and detection of text instances with arbitrary orien-
tation. The work presented by SSTD [27] incorporated an
attention mechanism to identify promising text regions at a
coarse level and further refine it with a hierarchical inception
module. The works proposed by EAST [7] and DeepReg [43]
explore the possibilities of direct regression of text region by
quadrilateral boxes. Their proposed methods are anchor-box-
free and predict the text instances at each pixel concerning its
position. RRD [39] disengaged the learning task as classifica-
tion and regression. It utilized the rotation-dependent feature
to enhance the performance of the multi-oriented and long
text instances. The rotation-invariant features are used for
classification, whereas the rotation-sensitive features facili-
tate the regression. A dimension-decomposition region pro-
posal network is proposed in DeRPN [44] to handle the scale
variation in text instances. The box-regression-based meth-
ods require simple post-processing, generally non-maximum
suppression (NMS). However, these methods lack the repre-
sentation of accurate bounding boxes for curved-shaped text
instances.

IlIl. PROPOSED WORK

This section provides the details of the proposed GMIF
model. Subsection III-A gives a broad overview of the over-
all system, and the subsequent subsections( III-B to III-D)
explain its different components. Subsection III-E is about
the process of label generation and the ambiguity resolution
scheme. Finally, subsection III-F deals with the loss function
used to train the model.

VOLUME 10, 2022

GSM: Global Segmentation Map

g e 12 == ¢ 0 0 0 @

: L4

GPM: Global Probability Map
GTM: Global Threshold Map

Repeat till image
size is greater than 48

Backbone Network
LFtd! LFtd

GTFd!

GPM! GTM%!| GPM¢*!

1.0
1 + e—*k(GPM?-GTM?)

GSMd'll GSMdl Gstﬂl

FIGURE 3. Overview of the proposed GMIF model: The different
downscaled versions (till the smallest size reached below 48 pixels) of
the input image are created and pass through the backbone network,
which creates the local feature LFt9, here d stands for the dt
downscaled input images. The global text feature (GTFt9) for a scaled
input image is generated by global text feature generation block (GTFGB)
from its LFt? and GTFtd+1 of the low scaled input image. The GTFt? is
also utilized to generate the segmentation map at its corresponding
scale. The detail of different components of the GMIF model is given in
Figure 4, and Figure 5.

A. OVERVIEW/ARCHITECTURE

The system architecture of the GMIF model is illustrated
in Figure 3, and the detail of its different components is
shown in Figure 4. The GMIF model takes the original
image and its downscaled version as an input and generates
the text-segmentation maps. The backbone network of the
GMIF produces the local features (LFt) for a scaled ver-
sion of the input image. The global text feature generation
block (GTFGB) generates the global text feature (GTFt) for
any scaled input image. The GTFGB utilizes the current LFt
and GTFt from the lower-resolution input image to develop
the GTFt of the current scale. The GTFGB at the lowest reso-
lution input image uses a zeros valued map as GTFt of lower-
resolution input. The GTFt at any scale is classified by the
segmentation-Block and generates GPM (Global Probability
Map) and GTM (Global Threshold Map). The GSM (Global
Segmentation Map) is calculated from the GPM and GTM
with the equation 1. The equation 1 generates the segmenta-
tion map with the concept of differentiable binarization (refer
DB [6] and DB++ [25]). The layers and blocks used in
different scaled inputs have shared parameters (the backbone,
GTFGB, and Segmentation-Block are all the same across the
input scale).

1.0

GSM;; = 8))
1+ exXp —k(GPMi)j — GTM,"J')

where the value of k is set as 50 same as the DB [6].

B. BACKBONE NETWORK OF GMIF
The backbone network of the GMIF model is responsible for
acquiring the text-nontext feature from the input image. The
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backbone is depicted in Figure 4 with its components. The
proposed backbone does not use any pooling operation for
feature map size reduction. Instead, it uses a convolution layer
of large kernels (256) with a stride of 4 x 4. This operation
provides detailed information for small regions and does
not require significant computation. The backbone network
should capture the input image features for a range of text
sizes; therefore, we utilize square and non-square kernels
in convolution as MPB: text inception block. MPBs capac-
itate the backbone network to cover a large area with fewer
parameters and computation. MPBs also help to detect text
instances with curvature. Here, we also aim to maintain the
real-time performance of the GMIF, so the number of kernels
at different layers is also restricted. Besides, the backbone’s
architecture is partially dense connected; before feature map
reduction, all previous stage features are concatenated and
followed by a convolution operation with a stride of 2 x 2,
which provides more robust and detailed features for subse-
quent stage feature extraction. The segmentation of the text’s
boundary regions is challenging; therefore, we fuse high-level
and low-level features to create the local scale-level features,
termed as LFt.

C. MPB: MULTI-PATH BLOCK

The receptive field of the Backbone network after the
first convolution layer is increased by only multi-path
block (MPB). The MPB has kernels of different shapes (1 x 3,
3 x 1, and 3 x 3), which is the concept borrowed from
GoogLeNet [21]. The text segmentation task is equivalent to
the classification of the center of an image patch. The text
inside this patch can appear at any location and with any ori-
entation. Thus the kernels with different shapes help to extract
the underline information efficiently. The performance of the
text detection also validates that this behavior decreases if
only a square (3 x 3) kernel shape is used in MPB (refer to
ablation study V-D section). Here we target only a small range
of text sizes, so we have included only elementary kernel
shapes such as 1 x 3,3 x 1, and 3 x 3. The design details
of MPB are given in the top-right corner of Figure 4.

D. GTFGB: GLOBAL TEXT FEATURE GENERATION BLOCK

GTFGB gets LFt of the current scale and GTFt from the
lower-resolution (higher scale) input image and produces the
updated and upscaled GTFt for the current scale. The GTFt of
the lowest resolution input image is generated from its LFt,
and a zero-valued map as GTFt from the lower resolution.
The design details of GTFGB are given in the bottom-right
corner of Figure 4. Here the operation of GTFGB resembles
the GRU [45] followed by a transpose convolution layer. Here
the GTFt is equivalent to the hidden state (4;) and LFt as the
current input (x;) of GRU. The primary use of the GTFGB
is to propagate the valuable information of the previous
scale’s GTFt and update it according to the current LFt. Thus,
GTFGB relieves the backbone network from covering the
whole input image and acquires the more prominent neigh-
borhood information through feature fusion of LFt and GTFt.
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The smaller text information is weekend at the down-scaled
input image, so the GTFt at any scale acquires the small text
information from the LFt at that scale. Therefore GTFt at any
scale has a lower bound on text size, which it can localize
efficiently. LFt encode the information from the image patch
under its receptive field only, whereas the GTFt has the
information from the whole input image. The approach for
updating the GTFGB is bottom-up, where the features from
the low-resolution input image are incorporated into the GTFt
first.

E. LABEL GENERATION AND AMBIGUITY RESOLUTION

1) LABEL GENERATION

The label generation depends on two properties of a pixel
location in an input image. We will refer to these properties as
pixel location properties (PLPs) for onward discussion. The
PLPs are as follows

o The distance of a pixel from the text boundary (we refer
to it as DistB)

o The corresponding text size at a pixel location (we refer
to it as RT). It is represented by the radius of the circle
that covers the text height.

The DistB and RT of a pixel outside of the text mask are
considered ones. The PLPs of a pixel inside a text mask is
determined by the algorithm 1. The PLPs are calculated at the
original input image resolution(refer to Figure 6). The pixel
class for a pixel location is decided by algorithm 2, please
refer to Ambiguity Resolution section III-E2).

2) AMBIGUITY RESOLUTION

We refer d* downscaled image as IMG¢, DistB as DistBY,
and RT as RT¢. The class of a pixel location is decided by
algorithm 2. The GMIF model learns the global probability
map (GPM?), the global segmentation map (GSM“) and
the global threshold map (GTM¢) at different scales of the
input image. The GPM, GSM, and GTM are responsible
for only a small corresponding range of text-size regions
segmentation. If a text region occupies this range, then only
it is considered TEXT. Besides this, the GTM is a two-valued
{0.1, 0.9} map whereas the DB [6] and DBNet++ [25] used
a continuous-valued map in the range (0,1).

F. OPTIMISATION

We adopted the same loss function as the DB++, which is the
weighted sum of the loss for the global probability map L,
the loss for the global segmentation map L, and the loss for
the global threshold map ;.

L=L,+axLi+ B xL, 2)

The weights o and 8 are selected as 1.0 and 10.0 according
to their numeric values in losses Lg and L.

We have utilized the binary cross-entropy (BCE) loss with
hard negative mining for both losses of L,, L.

Ly=L;=Y yiogxi+ (1 —ylogl —x) (3
ieSl
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FIGURE 4. Different Components of GMIF: The leftmost section provides abbreviation details of the different layers and sub-network blocks used in
GMIF. The right most section depicts the architecture of the global text feature generation block (GTFGB). The mid section provides the detail of the
different block used in GMIF as MPB: mult-path block (mid-bottom), SegB: segmentation block (mid-top).
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FIGURE 5. Backbone architecture of GMIF: the architecture detail of the backbone network is presented here. The details of the different layers and
blocked used in backbone are depicted in Figure 4.

where Sl is the sampled set having positive and negative
samples’s ratio as 1:3. The Sl contain all positive samples
and then select top-k (based on the absolute error) in negative
prediction. Here we are using the TEXT pixels location as
positive and NONTEXT as negative.

The global threshold map loss L; is computed as the sum
of L1 distances between the prediction and GTM label.

Li=Y |y —xf|

i€ERy

“
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where R; is a set of pixels locations inside the GTM with
numeric values (pixel location don’t have DONTCARE
class); y* is the numeric value {0.1, 0.9} for the threshold

map.

IV. EXPERIMENTAL SETUP

The learning of the GMIF model with different datasets and
settings is performed by a shared NVIDIA DGX system hav-
ing 8 V100 GPUs each with 32 GB of memory. The learning
is done in multiple sessions with 1/2/4 GPUs depending on
the availability of GPUs on the system. Besides this, all the
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Algorithm 1 Pixel Location Properties (PLPs) Calculation

Algorithm 2 Pixel Location Class Categorization

Input: Text Instances Mask
Output: DistB, RT at each pixel locations.
{EuclidDist is the euclidean distance between two pixel

locations }

Initialisation:
1: Tls < All Text Insances in Text Mask
2: for all TI € TIs do
3:  BCs < Boundary pixels of current TI
4. for all pixel € TI do
5: DistByize1 < min EuclidDist(pixel, BC;

pixel BC,eBCs (P z)
6: end for
7. MAXT < max_DistBpixei
pixeleTI
8:  MAPs < Medial axis locations of current TI
9:  for all pixel € TI do
10: for all pixel; € MAPs do
11: if DiSlepixeli +1 > EuclidDist(pixel, pixel;) then
12: RTpixel,pixel,- < DistBpixel,
13: else
1

14: RTpixel,pixeli <1
15: end if
16: end for
17: RTpier < max  RT) 100

pixel;€MAPs p
{The corner refinement: The corner of text instances

may not have the correct text size in RT. Therefore,
we need to fix them as the boundary of TI.}

18: if DistBpivel > 2 A RTpixe; < Y2 then
19: RTpixel <~ MA3XT

20: end if

21:  end for

22: end for

23: return DistB, RT

inference computation is done by a separate system having a
GTX 1080Ti GPU, which is the same as used by DB [6] for
a fair comparison.

A. DATASETS

The performance of the GMIF is evaluated on three publicly
available benchmarking datasets: ICDAR 2015 (first intro-
duced in the ICDAR 2015 Robust Reading Competition) [46],
MSRA-TD500 [47], and the Total-Text [48]. Besides these
datasets, we have also incorporated two more instances of the
datasets. Firstly, we have created a text size-specific dataset
from the test set of the total-text dataset [48] for evalua-
tion of different methods under text size constraints. Sec-
ondly, we have incorporated 400 training images from HUST-
TR400 [49] as suggested and used by DB [6]. The detail of
the main three datasets are summarized in the Table 1.

1) RESIZED TOTAL-TEXT
We have created a test set that validates the proposed work’s
superior performance. Here we choose the test set of the
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Input: IMG, DistB, RT
Output: GPM, GSM, GTM
Initialisation:
1: § < Smaller Side of IMG
2:d <0
{ We need to downscale the input image so the maximum
text-size becomes less than 48 pixels}
3: while S > 48 do
4. IMG? <« Pooling by Stride 2¢ x 24
5. DistB? « DistB+27 -1 "S'B;izdfl
6 RTY « RI£20-1
7. for all Pixelrocaion € IMG? do
8 ifRT;f. ; < 3 then
9

xe

GPM§, , < NONTEXT

10: GTMY, ,, < DONTCARE

11: else

12: ifRT;fixel > 6 then )

13 if DistBY, , > XLl then

14: GPM§, ,, < TEXT

Is: if DistBY, , < 2Xlfue then
Pixel 3

16: GTMg, ,;, < 0.9

17: else

18: GTMY, ., < DONTCARE

19: end if

20: else

21: GPM§, , < NONTEXT

22: GTMY, ,, < 0.1

23: end if

24: else

25: GPM§. ., < DONTCARE

26: GTMY, ,, < DONTCARE

27: end if

28: end if

29:  end for

3. S«

3: d<«—d+1

32: end while

33: GPM < |{GPM“,Vd)

34: GTM < {GTM? vd]

35: GSM < GPM

36: return GPM, GSM, GTM

Total-Text dataset as it has text instances of different shapes
and orientations. First, we identify the average RT,,, of every
text instance of all test images, then we resized these images
such that the RT,,, of the targeted text instance in the image
becomes according to the desired RT,,¢. After resizing, if the
text instance is not according to the desired size, it is marked
as a don’t care instance. Some sample images from this
dataset is shown in figure 8. The consistent performance of
the proposed GMIF model over this dataset is validated in
table 5.

VOLUME 10, 2022



T. Ali et al.: GMIF: A Gated Multiscale Input Feature Fusion Scheme for Scene Text Detection

IEEE Access

=

WELCOME TO

DRESSER

=

FIGURE 6. Label Generation: The top-left is the original image and its
downscaled versions, and on the top-right, their corresponding text
instances mask. The bottom-left is the Border distance map, and the
bottom-right is the text height map for the input image and its
downscaled versions.

TABLE 1. Summary of datasets used for GMIF evaluation.

Dataset | # Images IR A AO| CI
ICDAR | Total:1500 | 720 X | Word-level Yes| No
2015 Train:1000 | 1280 (oriented
[46] Test:500 rectangles as
bounding box)

MSRA- | Total:500 1296 X | Text-line level | Yes| No
TD500 | Train:300 864 & (enclosing  text
[47] Test:200 1920 X | polygons)

1280
Total- Total:1555 | Variable | Word-level Yes| Yes
Text Train:1255 (enclosing  text
dataset | Test:300 polygons)
[48]

Legend:IR:Image Resolution, A:Annotation, AO:Arbitrary Orientation, CI:Curved In-
stances

B. EVALUATION CRITERIA

The text detection evaluation relies on the precision (How
many detected regions are correct) (P) and recall (How many
regions were retrieved). Generally, a text detection method
uses some threshold to decide a text region. The precision
and recall vary with this threshold. Decreasing the threshold
can improve the recall, but it results in the fall in precision.
Another measure, f — measure (harmonic mean of P and
R), is adopted to counter the tradeoff between precision
and recall and soften the threshold selection effect. The
f — measure is obtained by equation5, where TP stands
for true-positive, which is the number of correctly identified
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TABLE 2. Text Detection performance comparison on the ICDAR2015
dataset. The blue and red colors show the best and second-best
performance in the table.

Method Performance

Precision | Recall | F-measure | FPS
CTPN [52] 74.0 52.0 61.0 -
DeepReg [43] 82.0 80.0 81.0 -
SegLink [53] 73.1 76.8 75.0 -
EAST* [7] 83.6 73.5 78.2 13.2
SSTD [27] 80.0 73.0 77.0 -
Pixellink [41] 85.5 82.0 83.7 3.0
WordSup [54] 79.3 77.0 78.2 -
TextCorner* [55] 89.5 79.7 84.3 1
TextBoxes++* [8] 87.8 78.5 82.9 2.3
PSENet-1s-Ext [40] 84.0 78.0 80.9 3.9
RRD* [39] 88.0 80 83.8 -
MSR [56] 86.6 78.4 82.3 4.3
LOMO* [57] 87.8 87.6 87.7 -
TextSnake [58] 84.9 80.4 82.6 1.1
SPCNet [59] 88.7 85.8 87.2 -
CRAFT [14] 89.8 84.3 86.9 8.6
SAE(L1760) [60] 88.3 85.0 86.6 -
DB [6]
ResNet18(H736) 86.8 78.4 82.3 48
ResNet50(H736) 88.2 82.7 85.4 26
ResNet5S0(H1152) 91.8 83.2 87.3 12
DBNet++ [25]
ResNet18(H736) 90.1 77.2 83.1 44
ResNet50(H1152) 90.9 83.9 87.3 10
Proposed GMIF
(H736) 92.1 84.4 88.0 21

regions, FP stands for false-positive, which is the number
of incorrectly identified regions, and FN stands for false-
negative, which is the number of regions that are not iden-
tified. A predicted region is considered correctly identified
if its IOU for the actual region is greater than a predefined
threshold (generally 0.5).

. TP
precision P = ———
TP + FP
TP
recal R= ——
TP + FN
7 F 2xPxR 5)
— measure = —
P+R

C. TRAINING PHASE PROCEDURE

The synthetic data is generated with text size in the range of
8 t0 256 pixel text height (4 to 128 RT). Due to the large text
size, large background images are required. The text is fused
with the background images by the SynthText [50]. All real
and synthetic training images are augmented in three steps, 1)
3D rotation (assuming it is in XY plane), 2) Projection (in XY
plane), and 3) Scaling. Besides, this training of GMIF is done
with a batch size of one. The GMIF is trained in two phases
1) Mixed dataset and 2) Targeting dataset. The first phase
uses the synthetic data and a training set of different datasets.
This phase is trained over 600K iterations. The second phase
utilized the training set of the target dataset and trained with
200K iterations. Adam [51] is adopted to optimize the GMIF
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FIGURE 7. Label Generation: First-row is input image at different resolution, second-row is their corresponding global segmentation map (Gsmd),
third-row is their global threshold map (GTM?). The color encoding of different regions is as red is NONTEXT, green is TEXT, blue is DONTCARE,

magenta is Threshold = 0.1, and cyan is Threshold = 0.9.

T B D

DONTCARE instances.

model. The hyper-parameters for Adam are « = 0.001, g =
0.9, and B2 = 0.999.

D. INFERENCE PHASE PROCEDURE

The original test image and its down-scaled versions are pro-
cessed through the backbone network, and the resultant LFt
feature-map is stored in a list. Then, this LTFt feature-map is
passed to GTFGB for the global text feature GTFt generation.
The last (the original image) GTFt is further processed with
segmentation block and yields the final global probability
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FIGURE 8. Sample images from the resized Total-Text dataset. Here green bounding region is TARGET TEXT instance and the cyan bounding regions are

-

map GPM. We use threshold 0.6 to binarize this GPM into
the final segmentation map. This segmentation map extracts
different connected components as the final text instances.

V. RESULTS

In this section, we are presenting the different experimen-
tal results obtained. This includes the text-properties-based
comparison results, the ablation study results, and the study’s
results regarding the effect of the text size on the existing
state-of-the-art methods. Here H# means that the height of
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TABLE 3. Text detection performance comparison of the proposed GMIF
model with existing works on MSRA-TD500 dataset. The blue and red
colors show the best and second-best performance in the table.

TABLE 4. Text Detection performance comparison on the Total-Text
dataset. The blue and red colors show the best and second-best
performance in the table.

the test images is resized as # pixels keeping the aspect ratio
constant. For instance, H736 means that the test image is
resized by making the height of the input image 736 pixels
long.

A. PROPERTIES BASED COMPARISON

1) MULTI-ORIENTED TEXT DETECTION

ICDAR 2015 dataset is used to evaluate the effectiveness of
the GMIF model in detecting multi-oriented text instances.
The results obtained by GMIF with other state-of-the-art
methods are presented in Table 2. Again, the GMIF obtained
the highest f-measure as 88.0% (for H736 test images)
and surpassed the DB [6] and DBNet++ [25] (with back-
bone ResNet50). The GMIF also maintains the computation
efficiency with 21 FPS, which is twice the second-best
performer (DBNet++ 87.3%). Some examples of results
obtained by GMIF are depicted in Figure 9.

2) MULTI-LANGUAGE TEXT DETECTION

The MSRA-TD500 dataset is used for this purpose as it has
text instances from the Chinese and English languages. The
results obtained by GMIF with other state-of-the-art meth-
ods are presented in Table 3. The GMIF (85.2% f-measure
and 80.2% recall) outperform the DB [6] (84.9% f-measure,
79.2 recall), and lagging DBNet++ [25] (87.2% f-measure,
83.3% recall) only.

3) ARBITRARY SHAPE TEXT DETECTION

The Total-Text dataset consists of text with arbitrary shapes,
including horizontal, multi-oriented, and curved text, in most
images. Therefore, we are incorporating this dataset to evalu-
ate the effectiveness of GMIF in detecting arbitrarily shaped
text instances. The results obtained by GMIF with other
state-of-the-art methods are presented in Table 4. The GMIF
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Method Performance Method Performance

Precision | Recall | F-measure | FPS Precision | Recall | F-measure | FPS
DeepReg [43] 77.0 70.0 74.0 - PSENet-1s-Ext [40] 84.0 78.0 80.9 39
CRAFT [14] 88.2 78.2 82.9 8.6 SPCNet [59] 83.0 82.8 82.9 -
SAE [60] 84.2 81.7 82.9 - CRAFT [14] 87.6 79.9 83.6 -
SegLink [53] 86 70 77 8.9 MSR [56] 83.8 74.8 79.0 -
MSR [56] 87.4 76.7 81.7 - TextSnake [58] 82.7 74.5 78.4 -
ATRR [61] 85.2 82.1 83.6 - LOMO* [57] 87.6 79.3 83.3 -
TextSnake [58] 83.2 73.9 78.3 1.1 ATRR [61] 80.9 76.2 78.5 -
TextCorner [55] 87.6 76.2 81.5 5.7 DB [6]
PixleLink [41] 83 73.2 77.8 - ResNet18(H800) 88.3 77.9 82.8 50
DB [6] ResNet50(H800) 87.1 82.5 84.7 32
ResNet18(H512) 85.7 73.2 79.0 82 DBNet++ [25]
ResNet18(H736) 90.4 76.3 82.8 62 ResNet18(H800) 874 79.6 83.3 48
ResNet50(H736) 91.5 79.2 84.9 32 ResNet50(H800) 88.9 83.2 86.0 28
DBNet++ [25] Proposed GMIF
ResNet18(H512) 89.7 76.5 82.6 80 H800 89.1 85.8 87.4 26
ResNet18(H736) 87.9 82.5 85.1 55
ResNet50(H736) 91.5 83.3 87.2 29 o
Proposed GMIF (H800: 87.4%f-measure, 89.1% precision, and 85.8% recall)
H736 90.8 80.2 85.2 26 outperform the DB [6] and DBNet++ [25] in term of all per-

formance measure listed. Some examples of obtained results
by GMIF are shown in Figure 9.

B. COMPARISON WITH DIFFERENTIAL BINARIZATION
1) GMIF VS DB/DBNet++
The DB [6] and DBNet++ [25] uses a learnable threshold
map to separate text instances. Their approach effectively
separates text instances, but small text instances are not
captured with the same efficiency. However, DB/DBNet++
utilizes the feature fusion of the output from a different
level of their backbone network (ResNet). The feature fusion
approach of DB is feature pyramidal addition, whereas the
DBNet++ used an adaptive scale fusion approach. The lead-
ing cause of losing small text is the low resolution of the
feature map after the first convolution (followed by a max
pool operation). This feature map has four times lower res-
olution than the input image, which puts much stress on the
first convolution (size 7 x 7) to maintain the information.
The GMIF outperforms the text detection performance of
DB on all benchmarking datasets under consideration. GMIF
does not use pooling operations that lose spatial information.
The spatial information is helpful in segmentation. Besides
this, GMIF also utilizes a large number of convolution ker-
nels (256) at the first convolution, which capacitates it to
acquire more information regarding small text instances.
GMIF uses partially densely connected blocks to acquire
more robust and detailed features. The total number of layers
used in the backbone of GMIF is comparatively small than
the backbone used in DB.

C. TEXT-SIZE INVARIANT PERFORMANCE

The Low precision of DB and DBNet++ shows that they
are generating more predictions than the valid and don’t-
care text instances. The larger number of predictions arises
due to the false-positive predictions and splitting a valid text
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TANGZHO0

FIGURE 9. Qualitative results form test samples of datasets under considerations. The first row shows the results from the total-text dataset, second row
shows the results of MSRA-TD500, and the last row shows the qualitative results for the ICDAR 2015 datset.

instance into more predictions. The Recall of the DB is high
at RT,,; = 40 and decreases as going further. This also
shows that the effective receptive field of their trained model
is around 160 x 160 pixels ( For a segmentation task, the
network needs to cover the text instance from the boundary
of the text, RT is the radius). The Recall of the DBNet++
is higher than the DB for a range of RT,,, which validates
the effectiveness of the ASF approach for multi-scale feature
fusion over the FPN of DB.

D. ABLATION STUDY
We conducted an ablation study on the Total-Text dataset to
show the efficacy of the different components of the GMIF
model: the backbone, the MPB, and the MPB with only
square kernels, the GFGB. The detailed experimental results
are shown in Table 6.

For this ablation study, the proposed GMIF model is com-
pared with DB [6] and DBNet++ [25]. The DBNet++
system has been considered as the baseline for this study.
The DBNet++ system can be considered a two-component
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system. 1) The backbone network of DBNet++ (we are
undertaking the resnet-50 as DBNet++ backbone). 2) The
adaptive scale fusion approach.

We performed a few modifications to this baseline model to
convert it to the proposed GMIF Model. These modifications
are as follows:

o Resnet50 + GTFGB: Here, we are using the Resnet50 as

the backbone of the proposed GMIF model.

e 3 x 3MPB + GTFGB: Here, we are using the proposed

backbone network with only square kernels in the MPB.

o Backbone with MPB + GTFGB: Here, we are using the

proposed backbone network with MPB.

VI. DISCUSSION AND ANALYSIS

The proposed GMIF model is capable of handling the issues
that were discussed in section I-A. Furthermore, the model
has been evaluated and compared with the state-of-the-art
in STD. The tables 2, 3 and 4 compares our model with
existing work for the performance based on precision, recall,
F-measure and speed.
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TABLE 5. Text Detection performance comparison on the RTqyg specific total text dataset. The blue and red color shows the best and second-best

performance in the table.

Method Performance RT,,,=20 pixels Performance RT,,,=30 pixels Performance RT,,,=40 pixels
Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure

DB [6]

ResNet50 81.467 85.695 83.528 80.471 86.282 83.275 78.418 85.424 81.771

DBNet++ [25]

ResNet50 82.666 84.792 83.716 81.698 86.823 84.183 80.819 87.274 83.923

Proposed GMIF | 89.106 85.790 87.417 88.956 85.645 87.269 88.855 85.548 87.171

Method Performance RT,,4=60 pixels Performance R7T,,,=80 pixels Performance RT,,,=100 pixels
Precision | Recall | F-measure | Precision | Recall | F-measure | Precision | Recall | F-measure

DB [6]

ResNet50 76.866 83.664 80.121 74.494 81.318 77.756 70.980 | 76.490 73.632

DBNet++ [25]

ResNet50 79.833 86.462 83.016 76.678 84.567 80.429 73.005 80.912 76.755

Proposed GMIF | 88.554 85.548 87.171 88.755 85.452 87.072 89.106 85.790 87.417

TABLE 6. Ablation Study with Total-Text Dataset. blue and red colors
show the best and second-best performance in the table.

Method Performance

Precision | Recall | F-measure | FPS
baseline
ResNet50 DB 87.1 82.5 84.7 32
ResNet50 DBNet++ 88.9 83.2 86.0 28
GMIF
Resnet50 + GTFGB 89.7 84.4 87.0 17
3x3MPB + GTFGB 86.3 83.9 85.1 34
Proposed GMIF 89.1 85.8 87.4 26

A. HANDLING CONCERNS MENTIONED IN SECTION I

1) RECEPTIVE FIELD OF THE NEURAL NETWORK

The DB [6] and DBNet++ [25] reported their best perfor-
mance with the resnet50 backbone. The resnet50 has four
convolution blocks with the stacking of 3,4,6 and 3 convo-
lution layers. In contrast, the proposed backbone network
uses only three blocks with 2,3 and 4 layers. The proposed
backbone concatenates the side features at each convolution
and uses them as the final feature instead of using only the
last features from a convolution block. This facilitates the
proposed GMIF model to acquire detailed information from
its receptive field.

2) TextSize

The proposed model extracts the required features from an
appropriate down-scaled input image, and then the final
masking is done at a higher resolution.

3) OVERLAPPING TEXT REGIONS

The proposed model primarily classifies any text region as
a scaled version of it, which is completely covered (only
text height) by the network(refer to section III for detail).
The model also uses feature fusion from different scaled
input images. Consequently, the overlapping of text instances
is minimized by acquiring their segmentation mask at their
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respective scale. GMIF maintains these low-resolution seg-
mentation masks at a higher resolution.

4) REAL-TIME PERFORMANCE

The proposed model utilizes a comparatively shallow back-
bone network with a hybrid architecture of InceptionNet [62]
and VGG [20]. The GMIF performs comparatively faster
while maintaining the text detection performance.

B. COMPARISSION OF GMIF AND EXISTING WORK

1) BACKBONE NETWORK AND FEATURE FUSION

The current state-of-the-art methods [6], [7], [8] use a con-
volution neural network as a backbone network to gener-
ate essential features. This backbone covers the entire input
image by its receptive field [15]. Therefore these methods
need to downscale the input image if a text with a size big-
ger than the network’s receptive field appears. Besides this,
a large receptive field tends to lose focus on the smaller text;
these methods upscale the input image to overcome this issue
[6]. The GMIF is also a convolution neural network, but it
uses only three pooling operations (the pooling is done using
stride) at its backbone network. GMIF has a small receptive
field, uses the downscale input image for more extensive
coverage, and does not require upscaling to detect a text. The
overall architecture of GMIF is depicted in Figure 3. The
RefineNet [63] model also use the downscale images and then
fuses their local feature to get robust features for the semantic
segmentation task. Their approach differs from the GMIF on
the backbone network, the feature fusion, and the target task.
The RefineNet fused all the features and created a single pre-
diction map, whereas the GMIF fuses the feature according
to the target text size. Besides this GMIF target a different
segmentation map at different downscale image(refer to III).

2) TEXT AREA SHRINKING
The text instance region is shrunk to reduce the overlapping
between nearby text instances. The existing methods [6] use
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FIGURE 10. Example images showing the results obtained by proposed
GMIF, DB, and DBNet++ over the resized total-text dataset. For every test
sample the first row shows the results obtained through GMIF, second
row shows the DB results, and the third row shows the results from
DBNet++. Here green is TARGET TEXT, cyan are DONTCARE, and the blue
bounding regions are PREDICTED text instances.

the Vatti clipping algorithm [64] for shrinking the text region
area. The shrinking is done according to the text region size
to separate the different words better. This shrinking is a con-
stant for a given text region. The label generation for GMIF is
different from these existing methods. The GMIF shrinks the
text regions according to the text height at that location. This
shrinking is not fixed for entire text regions but is adaptive to
the pixel location. A visual sample of this shrinking is shown
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in Figure 7. The detail of the label generation is provided in
section III-E. Here, the character mask is already downscaled
four times due to the pooling used in the backbone network;
therefore, one pixel of the character mask is four pixels in the
backbone network’s input data.

3) A PIXEL/CELL CATEGORIZATION AND ITS WEIGHTS

The Differential Binarization (DB) [6] method uses the
supervised learning for the text probability map and the
text-threshold map to enhance the learning of boundary pixel
segmentation. The method in [35] proposed text border ele-
ments for better separation of the text instances. The UNet
[65] suggests a loss weighting scheme that assigns a higher
weight to the boundary pixels for the object segmentation.
The GMIF model categorizes different pixels/cell regions into
three categories 1) TEXT, 2) NONTEXT, and 3) DONT-
CARE. Besides this, a cell location has a threshold map score
depending upon the text height and distance from the text
border(refer to sectionllI-E for details).

4) EXISTING METHODS UTILIZING TEXT SIZE

The SRPN+TextDetector [66] (will be referred to as
SRPN+TD) also utilizes the text size as the proposed GMIF
for the performance improvement. The SRPN+TD is a two-
phase method. It first estimates the text proposal and the
size of their texts. The second phase generates the bounding
box for text instances on a scaled and cropped input version.
This approach follows the coarse to fine methodology, but the
performance of the first phase is the bottleneck. It cannot also
detect the curved text instances effectively. The GMIF is a
single-phase model and target all text shapes and orientation.

VII. CONCLUSION AND FUTURE WORK

This paper has offered GMIF, a text detection method for
text instances of arbitrary shapes, orientations, and scales.
The model’s architecture consists of a backbone network that
learns the text features for a small range of text sizes, improv-
ing its text detection capacity at some down-scaled version
of the input image. Concurrently, the architecture’s GTFGB
propagates the background information learned from the
low-resolution input images to the higher resolution seg-
mentation. This helps the GMIF to suppress the background
and extract the text correctly. The experimental analysis of
the results obtained by GMIF shows its effectiveness for
detecting text instances of any scale. GMIF achieves the
state-of-the-art performance in detecting text with the arbi-
trarily shaped images of the Total-text dataset and ICDAR
2015 dataset. Besides this, GMIF also achieves second-best
results in F-measure performance over MSRA-TD500 (multi-
language script) dataset. The GMIF also sustains real-time
performance, and its computation speed can be adjusted by
down-scaling the input images accordingly. The proposed
GMIF model provides a consistent STD performance over
an extensive range of text instance sizes. The GTFGB prop-
agates the text features through different scales of the text
instances. Similarly, the GTFGB should also propagate the

VOLUME 10, 2022



T. Ali et al.: GMIF: A Gated Multiscale Input Feature Fusion Scheme for Scene Text Detection

IEEE Access

features regarding the text-character classes, but its behavior
needs to be explored in the text recognition task.
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