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ABSTRACT This paper proposes an online MMCCS (Multi-MC Cooperative Charging Strategy) for
multipleMobile Chargers (MC), affording static partition and dynamic collaboration. The developed scheme
aims to solve the problem of high energy hole rates in Wireless Rechargeable Sensor Networks (WRSNs) by
suggesting an on-demand charging architecture that minimizes the network’s energy hole rate. Specifically,
our strategy first establishes a dual-partition wireless rechargeable sensor networkmodel to divide the service
partition of the multi-mobile charging equipment and the charging request threshold partition of the Sensor
Node (SN). Then based on this model, dynamic and collaborative multi-MC online charging path planning
is performed to minimize the WRSN energy hole rate. The simulated trials challenge the proposed method
against the NJNP (Nearest-Job-Next with Preemption), HC (Hamiltonian Cycle), and TSCCS (The temporal-
spatial combined charging strategy) strategies, highlighting that the developed scheme reduces the average
charging service distance of an MC, reduces the average waiting time of SN, and minimizes the WRSN’s
energy hole rate. Based on the simulation conditions, the WRSN energy void rate is 5.62%.

13 INDEX TERMS Wireless rechargeable sensor networks, cooperative charging, path planning, energy voids.

I. INTRODUCTION14

A Wireless Rechargeable Sensor Network (WRSN) com-15

prises several rechargeable sensors deployed in a specific16

area for event detection. WRSN has been broadly used17

in many fields, such as Industry 4.0 [1], environmental18

monitoring [2], home intelligence [3], and the Internet of19

Things [4]. Although researchers have extensively studied20

energy conservation in sensor networks [5], [6], [7], [8],21

battery limitations are still a bottleneck affecting the long-22

term operation of WRSNs. Existing research on sensor node23

energy replenishment focuses on three areas: node replace-24

ment [9], [10] energy harvesting [11], [12], [13], andWireless25

Energy Transfer (WET) [14], [15], [16]. Due to the high26

cost of node replacement and the unpredictability of energy27

The associate editor coordinating the review of this manuscript and
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harvesting [17], WET has played a revolutionary role in 28

solving the energy lack in WRSNs. The main idea of WET 29

is to charge the batteries of sensor nodes employing MC 30

moving within the WRSN region [18]. Therefore, avoiding 31

energy voids in the WRSN sensor nodes is crucial, which is 32

achieved by determining the optimal charging path for the 33

MCs. MC charging path planning research can be broadly 34

classified into [19] single-MC and multi-MC. 35

Considering single MC path planning research, 36

He et al. [20] proposed the classic NJNP strategy, which 37

performs path planning based on the distance factor of the 38

requesting charging node. This method has a low MC charg- 39

ing efficiency rate and high WRSN energy hole rate due 40

to limitations in its path planning strategy. Lin et al. [21], 41

[22] suggested a spatio-temporal collaborative path planning 42

architecture addressing the low charging efficiency of MC. 43

This solution created a charging path for MCs by prioritizing 44
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the charging nodes based on temporal and spatial factors.45

This scheme effectively improves theMC’s energy utilization46

but fails to effectively solve the WRSN’s high energy void47

rate problem. In [23], the authors developed the mobile48

energy replenishment scheme ESAOC (Energy Starvation49

Avoidance Online Charging Scheme) to avoid node energy50

holes by calculating the maximum tolerable delay for each51

charging requirement and neglecting node death. Since the52

scalability of a single-MC WRSN system is low, by increas-53

ing theWRSN scale, the charging capacity of a singleMC can54

hardlymeet the network’s energy consumption demand. So in55

large-scale WRSN, multiple MCs are required to charge the56

sensor nodes collaboratively and guarantee WRSN’s stable57

operation.58

Considering multi-MC path planning studies, numerous59

studies exploit a systematic planning strategy to treat path60

planning as a Traveling Salesman Problem (TSP) prob-61

lem [24], [25], [26]. At the same time, the Hamiltonian62

Cycle [24], [25] and Genetic Algorithm (GA) [26] are63

employed to plan the multi-MC charging path, respectively.64

The periodic path planning strategy has a high MC energy65

utilization but ignores the node’s dynamics. Hence, [27] pro-66

posed a partitioning strategy to charge each partition as a67

unit. This strategy disguisedly reduces the network’s com-68

plexity and shortens the MC’s charging travel distance but69

fails to consider the node’s variability within each parti-70

tion. Ying et al. [28] proposed TSCCS, a charging scheduling71

strategy that relies on a K-mean algorithm for partitioning72

and collaborative planning of theMC charging paths based on73

space-time. TSCCS effectively shortens theMC charging ser-74

vice distance and reduces the SN waiting time for charging.75

Nevertheless, all the above studies heuristically set a single76

charging request threshold and ignore the node’s variability77

and dynamics, resulting in poor fairness of the MC charging78

response and an increase in the number of nodes with energy79

voids in the network [29].80

Based on the problems of current literature, this work81

has the following innovative contributions. (1) Establishing82

a WRSN dual partition network model, where an improved83

K-means algorithm divides the multi-MC service partition to84

shorten the MC charging service distance and the SN charg-85

ing waiting time. Furthermore, we develop an SN concentric86

circular charging request threshold partition that sets multi-87

ple charging request thresholds for SNs, improving the MC88

charging efficiency and guaranteeing the fairness of charg-89

ing response. (2) Cooperative allocation based on charging90

suitability and multi-MC charging path planning aiming to91

minimize the energy hole rate of the WRSN.92

II. WRSN NETWORK MODEL AND PROBLEM STATEMENT93

A. WRSN NETWORK MODEL94

This paper establishes the WRSN network model illus-95

trated in Fig. 1, where the model is represented as96

(L,A,D,E,RE,R), with L the side length of the square97

area monitored by WRSN, A = {A1,A2, · · · ,Ai} is the set98

FIGURE 1. WRSN network model diagram.

of nodes in WRSN, and D =
(
Eud

(
Ai,Aj

) ∣∣Ai,Aj ∈ A) 99

denotes the set of Euclidean distances between the nodes, 100

where Eud
(
Ai,Aj

)
is the Euclidean distance between node 101

Ai and node Aj. RE =
(
REAi |Ai ∈ A

)
is the set of the 102

node’s remaining energy and R =
(
RAi |Ai ∈ A

)
denotes the 103

set of the node’s energy consumption. The WRSN system 104

comprises three devices: Sensor Nodes, Base Stations (BS), 105

and Mobile Chargers. 106

All SN in the network are equally equipped and are fixed 107

after deployment, while the SNs have monitoring and com- 108

munication capabilities. Specifically, the SNs send the area 109

monitoring information and their energy announcements to 110

the BS through multi-hop communication at intervals. Addi- 111

tionally, SNs send their charging request information to the 112

base station as energy announcements when their remaining 113

battery power is below the charging request threshold. 114

The node is equipped with a battery and a wireless energy 115

receiver to receive the energy transmitted by the MC. At the 116

center of the squaredWRSN area, the BS has sufficient power 117

and communication capability to receive and forward the 118

charging requests from the SN and assign charging tasks 119

to the MC through long-distance communication. The MC 120

has autonomous mobility, computation, and communication 121

capabilities, providing its energy through the BS. The device 122

is equippedwith a high-capacity battery and awireless energy 123

transfer device that uses electromagnetic effects or magnetic 124

resonance coupling [31] to replenish the energy for the SN. 125

The energy notification model from the sensor node to 126

the base station is <IDi, n,REAi , tsi, urg>, where IDi is the 127

ID number of the sensor node, n is the energy notification 128

sequence label, tsi is the timestamp when sending data, and 129

urg is the node’s energy status. If urg = 0, the node 130

has sufficient energy, i.e., the node’s remaining energy is 131

higher than the charging request threshold. If urg = 1, 132

the remaining energy of the node battery is lower than the 133

charging request threshold and the node requests energy 134

replenishment. Only monitoring information is reported dur- 135

ing the node’s charging period, and no energy notice is sent. 136

When charging completes, the energy notification sequence 137

marker is set to one to notify the base station that charging 138

has completed. 139
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B. PROBLEM STATEMENT140

1) MODEL ASSUMPTIONS141

This paper makes the following assumptions for the WRSN142

network model.143

Assumptions 1: The SN battery has limited capacity and144

needs MC to charge it for service. Suppose MC uses the OO145

(ONE to ONE) charging mode to charge the SN.146

Assumptions 2: The energy consumption of SN to per-147

form monitoring tasks is mainly data transmission consump-148

tion[22], and its energy consumption rate is assumed to be149

influenced only by the data transmission volume.150

Assumptions 3: The MC has a limited battery capacity and151

needs to return to the base station for energy replenishment.152

It is assumed that the time for the MC to return to the base153

station for energy replenishment is only the elapsed time to154

move on the round-trip path[23], ignoring its battery charging155

time.156

Assumptions 4: The energy consumption of MC is com-157

posed of three components: communication, mobile, and158

charging. Since the communication consumption is much159

lower than the mobile and charging consumptions[31], this160

paper assumes that the energy consumption of MC comprises161

mobile consumption and charging consumption.162

Assumptions 5: The WRSN system adopts an unmanned163

operation and maintenance mode, and the MC has to retain164

enough energy to return to the BS for its energy replenishment165

after performing the charging service.166

2) RELATED DEFINITIONS167

In order to facilitate the discussion and analysis of theWRSN168

systems, we define the relevant concepts as follows.169

Definition 1 (SN Energy Consumption Rate RAi ): The170

remaining energy at the n-th energy notice of node Ai is171

REAi(n). The energy consumption rate at the n-th energy172

notice of node RAi(n) is:173 
RAi(n) =

REAi(n−1) − REAi(n)
1

, n ≥ 2

RAi(1) =
E − REAi(1)

1

(1)174

The energy consumption rate RAi of node Ai is always175

the calculated value at the time of the current energy176

announcement.177

Definition 2 (SN Energy Hollow): The energy hole occurs178

when the battery of the SN is depleted and cannot maintain179

the normal operation. At time t , the remaining energy of the180

sensor node is:181

REAi (t) = REAi(n) − (t − tsi)RAi (2)182

If REAi (t) > 0, the node A (i, j) does not have an energy hole183

at the current timestep, and conversely, the node has an energy184

hole.185

Definition 3 (WRSNEnergy Void Rate):TheWRSN energy186

hole rate is defined as the ratio of the number of energy-187

depleted nodes to the number of all nodes in the network.188

When the number of energy hole nodes is large, it is prone 189

to data loss. 190

Definition 4 (Network Lifetime): Energy voids in nodes in 191

WRSNs can produce problems such as data loss, link failure 192

and even network paralysis [29]. In this paper, by quantifying 193

the state metrics of theWRSN, a network with an energy void 194

rate of more than 15% is defined as paralyzed. Therefore, 195

the network lifetime of a WRSN is defined as the operating 196

time until the monitoring performance of the WRSN is not 197

guaranteed[30]. 198

Definition 5 (SN Maximum Survival Time Delayi(t)): 199

Delayi (t) is the time that the remaining energy of the current 200

time sensor can maintain normal operation: 201

DelayAj (t) =
REAj
RAj
+ tsj − t (3) 202

If DelayAj (t) ≤ 0, then the node is currently in the state of 203

energy void. 204

Definition 6 (SN Average Charge Wait Time): We define 205

the sensor node charging wait time as the interval from when 206

a node sends a charging request to when the node is charged. 207

The SN average charging wait time is the average charging 208

wait time of all sensor nodes in the WRSN. If the charging 209

waiting time of a node is too long, it indicates that the node 210

cannot be charged in time after sending a charging request, 211

which leads to the sensor node being prone to the energy hole 212

situation. 213

Definition 7 (MC Average Charging Service Distance): 214

The MC’s average charging service distance is defined as the 215

average distance an MC moves to charge the sensor node. 216

The longer the average distance traveled, the more time and 217

energy the MC spends on the path and the lower the energy 218

utilization of the MC. 219

Definition 8 (Charging Suitability RCA): RCA is the degree 220

of suitability of an MC for charging SN as an essential basis 221

for MCs’ collaborative decision-making. RCA is calculated 222

as follows: 223

RCA =
1+ REMC (t)

P

1+ Eud(Ai,MC)
max(Eud(Ai,Aj))

(4) 224

where REMC (t) is the current remaining power of MC, P 225

is the MC battery capacity, Eud (Ai,MC) is the Euclidean 226

distance between MC and SN, and max
(
Eud

(
Ai,Aj

))
is the 227

farthest Euclidean distance between two nodes in the sensor 228

network. 229

III. DUAL PARTITION NETWORK MODEL 230

A. CHARGING SERVICE DIVISION 231

The network monitoring range is wide in large-scale wire- 232

less rechargeable sensor networks, involving many scattered 233

nodes. In order to charge the nodes in the network in a 234

more efficient and orderly manner, shorten the node charging 235

waiting time, and reduce the number of energy-void nodes, 236

this paper adopts a multi-MC cooperative charging strategy. 237

The proposed solution uses an improved K-means algorithm 238
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to cluster the entire network into K charging service partitions239

[27], thus reducing the MC charging service distance and the240

SN charging waiting time.241

1) DETERMINING THE NUMBER OF MCS242

The energy consumption of the WRSN system is mainly243

the energy consumption of the sensor nodes to carry out244

monitoring tasks. The node energy consumption is closely245

related to each node’s dynamic energy consumption rate and246

the charging path of the MC, so it is difficult to accurately247

calculate the number of MCs required for the WRSN system.248

For these reasons, this paper determines the number of249

MCs that guarantee the proper operation of the network by250

calculating the energy consumption and replenishment of the251

network as a whole [32]. Assuming that the MC charges a252

node at its maximum capacity, i.e., the MC charges a node253

without stopping to continue charging the next node, the254

average service time st of an MC to charge the node is255

the traveling time towards the node and the time to charge256

the node:257 
st =

(N + 1)
2

(
d
v
+
E
η

)
d =

1
N 2

N∑
i=1

N∑
j=1

Eud
(
Ai,Aj

) (5)258

where N is the number of sensor nodes, E is the battery259

capacity of the sensor node, v is the movement speed of MC,260

η is the charging efficiency of MC, and d is the distance261

between any two nodes of the WRSN network. Based on the262

energy consumption and replenishment balance condition of263

the network, the total energy consumption rate of all nodes264

in the network should be less than the maximum charging265

efficiency ofM charging carts:266

N∑
i=1

RAi ≤
1
st
ME (6)267

This paper utilizes a static partitioned charging strategy,268

i.e., the number ofMCs equals the number of partitions. Thus,269

the minimum value of M is 3.764, and in order to improve270

the reliability and redundancy of WRSN, this work considers271

M = K = 4.272

2) IMPROVED K-MEANS ALGORITHM FOR PARTITIONING273

MC SERVICES274

The node locations A = {A1,A2, · · · ,Ai} and the number275

of partitions K are known. The improved K-means algorithm276

divides N nodes into K sets S based on the physical distance277

between nodes and energy consumption rate similarity, such278

that the intra-group sum of squares is minimized [33] based279

on the objective function:280

argmin
S

K∑
j=1

∑
Ai∈Sj

(
RAi − Rµj

) ∥∥Ai − µj∥∥2 (7)281

where µj is the mean value of all points in the cluster 282

Sj and Rµj is the mean value of the energy consumption 283

rate of all nodes in cluster Sj. This paper uses an iterative 284

optimization approach for clustering [35] that initializes K 285

randomly selected mean points
(
m(1)1 , . . . ,m(1)l , . . . ,m(1)K

)
. 286

This strategy considers the following two steps alternately. 287

Step 1. Distribution 288

Each node is assigned to clusters such that the sum of 289

squares within the group is minimized such that the node 290

is assigned to the nearest mean point with the highest sim- 291

ilarity in energy consumption rate. Additionally, each node 292

is assigned to only one defined cluster S(t), according to the 293

distribution: 294

S(t)j =

Ai
∣∣∣∣∣∣∣∣
(
RAi − R

(t)
Sj

) ∥∥∥Ai − m(t)j ∥∥∥2
≤

(
RAi − R

(t)
Sl

) ∥∥∥Ai − m(t)l ∥∥∥2
∀j, 1 ≤ l ≤ K

 (8) 295

Step 2. Update 296

For each cluster obtained in the previous step, the center of 297

mass of the observations in the cluster is used as the new dis- 298

tance mean point, and the average of the energy consumption 299

rates of all nodes in the cluster is used as the new consumption 300

rate mean point, i.e.: 301

m(t+1)j =

∑
Ai∈S

(t)
j

Ai

∣∣∣S(t)j ∣∣∣
R
(t+1)

Sj
=

∑
Ai∈S

(t)
j

RAi∣∣∣S(t)j ∣∣∣
(9) 302

The improvedK-means algorithmmakes it more likely that 303

nodes with similar physical distance and energy consumption 304

rates will cluster into one class, reducing the variability of 305

nodes. The algorithm converges when the allocation for the 306

nodes no longer changes, and the clustering results are output. 307

The improved K-means algorithm simulation yields the MC 308

service partitioning model illustrated in Figure 2. 309

In this paper, the SN is divided into four clusters, i.e., the 310

WRSN is divided into four service areas C1, C2, C3, and 311

C4. Dividing an MC’s charging service area can effectively 312

reduce the system’s computational complexity and the MC 313

mobile energy consumption [34], which is more suitable for 314

large-scale WRSN. 315

B. CHARGE REQUEST THRESHOLD PARTITION 316

If the SN charging request is set too large, i.e., the charging 317

request is sent too early, the MC moves to the sensor node 318

too early and charges the node, resulting in more charging 319

requests per time from the network nodes, increasing further 320

the energy consumption of theMCmotion. If the SN charging 321

request threshold is small, i.e., the charging request is sent 322

too late, the maximum survival time of the sensor nodes 323

is shortened, resulting in many nodes having energy holes 324
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FIGURE 2. MC service division model.

due to lack of timely charging. To address these problems,325

this paper divides the network into concentric circular zones326

and sets different charging request thresholds for the nodes327

in each circular zone based on the node survival rate to328

guarantee the fairness of the MC charging response.329

1) THRESHOLD PARTITIONING MODEL330

We divide the network into three layers of concentric circu-331

lar threshold partitions Bn∈{1,2,3}. A higher charging request332

threshold is set for nodes further away from the base station,333

i.e., the sensor nodes at the edge have a longer maximum334

survival time to enable the MC to charge them in time.335

Accordingly, nodes close to the base station have a lower336

charging request threshold, i.e., the charging request of the337

nodes is delayed, improving MC energy utilization. The par-338

titioning function of the distance clustering process is:339 

B1 =
{
Ai|Eud (BS,Ai) ≤

1
3
max (Eud (BS,Ai))

}

B2 =

Ai
∣∣∣∣∣∣∣
1
3
max (Eud (BS,Ai)) < Eud (BS,Ai)

Eud (BS,Ai) ≤
2
3
max (Eud (BS,Ai))


B3 =

{
Ai|

2
3
max (Eud (BS,Ai)) < Eud (BS,Ai)

}
340

(10)341

where Eud (BS,Ai) is the Euclidean distance between BS342

and node Ai. The simulation results of the threshold partition343

network model are depicted in Figure 3.344

The concentric ring threshold of the sensor nodes within345

the WRSN is set to disperse the node’s charging requests346

to shorten the MC’s average charging service distance and347

reduce the SN’s average waiting time.348

2) CONCENTRIC CIRCLE CHARGE REQUEST THRESHOLD349

(1) Charging request thresholdwith a single node survival rate350

as the target.351

Let node Ai send a charging request, and MC352

moves towards that node without stopping. The shortest353

FIGURE 3. Threshold partitioning model.

delay of the node is t(BS,Ai): 354

t(BS,Ai) =
Eud (BS,Ai)

v
(11) 355

Considering the single node survival rate as the target, the 356

remaining energy of the SN should guarantee that the node 357

operates appropriately within the minimum delay of waiting 358

for charging. 359

Then the charging request threshold E1
thred−Bn of the 360

threshold partition Bn should satisfy the energy consumption 361

of all nodes in this partition, affording the shortest delay time 362

of: 363

E1
thred−Bn > max

(
t(BS,Ai) × RAi ,Ai ∈ Bn

)
(12) 364

(2) Charging request thresholdwith the network node survival 365

rate being the target. 366

The charging waiting time of a node comprises two parts: 367

the charging time of other nodes and the time of the MC path 368

movement. Since the starting position of the MC charging 369

service is located at the base station, the edge nodes have a 370

longer waiting time for charging and a later charging response 371

compared to the central node. Then the average charging 372

waiting time wtn of the nodes located within the concentric 373

ring threshold partition Bn is: 374

wtn =

d
v+

(
2d
v +

E
η

)
+ · · · +


( n∑
M=1

NM

)
d

Mv +

( n∑
M=1

NM−1
)
E

Mη


n∑

M=1
NM

375

(13) 376

where NM is the number of nodes in the charging service area 377

CM . Considering the network node survival rate as the target, 378

the remaining power of the SN should be greater than the 379

average energy consumption of the node during the charging 380

service waiting period. Then the charging request threshold 381

E2
thred−Bn of the threshold partition Bn should satisfy the 382
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energy consumption of all nodes in the partition during the383

average charging waiting time:384

wtn =

d
v+

(
2d
v +

E
η

)
+ · · · +


( n∑
M=1

NM

)
d

Mv +

( n∑
M=1

NM−1
)
E

Mη


n∑

M=1
NM

385

(14)386

In summary, the charging request threshold Ethred-Bn of387

the sensor nodes in the threshold partition Bn should satisfy388

the constraints of the single node survival rate and network389

node survival rate. The charging request threshold Ethred-Bn390

for the thresholding partition Bn obtains the maximum value391

for E1
thred−Bn and E

1
thred−Bn , respectively, as shown in:392

Ethred-Bn = max
(
E1
thred-Bn ,E

2
thred-Bn

)
(15)393

The simulation considers a concentric ring charging394

request threshold of Ethred-B1 = 9.51%E , Ethred-B2 =395

14.33%E , and Ethred-B3 = 16.21%E .396

IV. MULTI-MC COLLABORATIVE CHARGING PATH397

PLANNING398

A. PATH PLANNING ALGORITHM399

This paper adopts the online charging strategy of static400

partitioning combined with a dynamic collaboration based401

on the dual-partition network model. Each charging service402

area is configured with a specific MCM∈{1,2,3,4} and sep-403

arate charging service waiting areas ZM∈{1,2,3,4} are estab-404

lished, affording dynamic charging synergy between the405

MCs. TheMMCCS strategy is based on theWRANminimum406

energy void rate [36] to guide the multi-MC synergy for SN407

replenishment.408

The basic idea of this strategy considers that if ZM is409

non-empty, then MCM determines whether the nodes that410

complete the charging service waiting for the area and do411

not have energy voids need to collaborate. When the nodes412

need to collaborate, BS divides them with the MCs based on413

the highest fitness and collaborative capability by compar-414

ing their charging fitness with other MCs. The MCM after415

completing the cooperative division calculates the number of416

energy voids in the other nodes and the time to complete the417

charging task of the node when the node to be charged is the418

next charging node, respectively. This process always selects419

to charge the node that causes the least energy voids and420

completes the charging service moving the fastest to the next421

node to be charged under the precondition that the charging422

service can be returned to the base station. This strategy aims423

to minimize the number of energy voids in the network. The424

steps of the path planning algorithm for the MMCCS strategy425

are as follows.426

Step1. Initialization. Establish the charging servicewaiting427

area ZM , build the setQ of network death nodes, and establish428

a base station to assist in charging node collection Y .429

Step2. Calculate the remaining power of each node to be 430

charged in the charging service waiting area ZM at the current 431

time, remove the nodes with energy voids from the set ZM and 432

add them to the set Q. 433

Step3. Determine whether all charging tasks in the charg- 434

ing service waiting area ZM must be coordinated when com- 435

pleted. The number of synergizing nodes CEM of MCM is: 436CEM = ∂M − aM

∂M =
REMC (t)− dc

dc+ E

(16) 437

where ∂M is the number of nodes where the MCM ’s current 438

remaining energy can complete the charging service and aM 439

is the number of nodes to be charged in the charging service 440

area ZM . If CEM > 0,MCM current remaining energy can 441

complete the charging task, does not need synergy and has 442

synergy capability. If CEM < 0, MCM needs synergy, and 443

the |CE| nodes with the smallest RCA value are added to set 444

Y when theMCM charging task is fully loaded andCEM = 0. 445

Step4. The base station makes collaborative assignments 446

to the nodes in set Y based on RCA. The nodes that need 447

charging are sequentially assigned to the MCwith the highest 448

charging suitability and synergistic capability. The MC of the 449

assigned collaborative node repeats Step3 for collaborative 450

capability judgment and completes the charging collaborative 451

node division when the following equation is satisfied: 452{
(CEM ≥ 0,∀M) , if (Y = Ø)
(CEM = 0,∀M) , if (Y 6= Ø)

(17) 453

Step5. Select the next charging node.MCM always selects 454

the node that causes the least number of energy voids in the 455

node to be charged and requires the least time to complete 456

charging as the next charging node. The charging priority A 457

of the node to be charged is: 458

Fi = COUNT
(
mwt(i,j) > Delayi (t) ,∀j

)
+

Tch (i)
aM∑
i=1

Tch (i)

mwt(i,j) =
Eud (MC,Ai)

v
+
REAi (t)
η

+
Eud

(
Ai,Aj

)
v

Tch (i) =
Eud (MC,Ai)

v
+
E − REAi (t)

η

459

(18) 460

where mwt(i,j) is the minimum charging waiting time of 461

node Aj when node Ai is the next charging node, and the 462

number of nodes with energy voids in ZM at this time is 463

COUNT
[
mwt(i,j) > Delayi (t) ,∀j

]
. In this paper, the node 464

with the smallest Fi-value is considered the next charging 465

node. 466

Step6. Determine whether the remaining power of MCM 467

is sufficient to complete the charging task of the next 468

node and then return to BS. The MC return energy 469
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condition function is:470 
Erest = REMC (t)− Echarge − Eback
Echarge(Ai) = c× Eud (MC,Ai)+ (E − REi (t))
Eback = c× Eud (MC,BS)

(19)471

where Echarge(Ai) denotes the energy consumption of MC for472

charging services for node Ai. Eback indicates the energy473

consumption of the MC returning to the base station from474

the current position and Eud (MC,BS) denotes the Euclidean475

distance of the node back to the base station. If Erest ≥ 0, then476

the next selected charging node is charged normally, and the477

node is removed from the charging service waiting area when478

charging is completed. If Erest < 0, the MC returns directly479

to the base station to replenish its energy.480

Step7.Determines whether the charging task is completed.481

If ZM 6= Ø, return to Step2. If (ZM = Ø) and (Q 6= Ø),482

select the node in the nearest set Q as the next charging node483

and return to Step6. If (ZM = Ø) and (Q = Ø),MCM returns484

to the base station to replenish energy and terminates the485

charging task.486

The charging path planning code for MMCCS is shown in487

Algorithm 1.488

B. STRATEGY EVALUATION489

TheMMCCS strategy minimizes theWRSN energy void rate490

by shortening the MC charging service distance and reducing491

the average SN charging wait time in five ways.492

(1) The MMCCS strategy divides the charging service493

partition of multi-MC by the K-means algorithm, so that the494

MC can shorten the charging service distance and respond to495

the SN charging request more efficiently and quickly.496

(2) The MMCCS strategy divides the SN charging request497

threshold partition and sets multi-level optimal charging498

request thresholds for sensor nodes, thus improving the fair-499

ness of charging responses.500

(3) Whenever the next charging node is selected,501

MC always chooses the node that makes the smallest energy502

hole rate of WRSN.503

(4) When multiple MCs collaborate, the base station504

assigns collaboration tasks based on the suitability of the SN505

and MC to ensure that the MC can efficiently and quickly506

replenish the SN.507

(5) In the regression mechanism of MC, the nodes that508

already have energy holes are treated as nodes to be charged509

to reduce the number of nodes with energy holes.510

The MMCCS flow chart is shown in Fig. 4.511

V. SIMULATION AND ANALYSIS512

A. SIMULATION PARAMETERS513

Since WRSN is widely used in environmental monitoring514

and its network size ranges from 100m × 100m to 800m ×515

800m [2], we utilize MATLAB-2018a to simulate the sensor516

nodes randomly that spread in a square WRSN network with517

a side length of 400m. The simulated network bandwidth518

is 10Kbps, and the energy consumption per unit amount of519

Algorithm 1 Pseudo-Code of Path Planning Algorithm for
MMCCS Policy
Input: Set of nodes to be charged ZM
Output: Next charging node Am
1. While ZM 6= Ø or Q 6= Ø do
2. {Initialization:Am=null; Q=null; Y=null; M=4; K=0;
3. For m = 1, m ≤ M , m++
4. If ZM 6= Ø, then
5. For i = 1, i ≤ size (ZM ) , i++
6. CalculateREAi (t) according to equation (2);
7. If REAi (t) < 0, then
8. Delete Ai in ZM ; K=K-1;
9. Add Ai to Q;
10. Else K=K+1;
11. End if
12. End for
13. For i = 1, i ≤ K , i++
14. Calculate RCA (i) according to equation (4);
15. Calculate CEM according to equation (16);
16. End for
17. If CEM < 0, then
18. For j = 1, j ≤ |CEM | , j++
19. Delete Aj with the minimum RCA (j);
20. K=K-1;
21. Add Aj to Y;
22. End for
23. Else
24. For i = 1, i ≤ size (Y) , i++
25. Add Ai to ZM with Maximum RCA (i);
26. K=K+1;
27. If CEM = 0, then
28. Break
29. End if
30. End if
31. For i = 1, i ≤ K , i++
32. Calculate Fi according to equation (18);
33. End for
34. Am = Ai with the minimum Fi;
35. Else
36. If (Q 6= Ø), then
37. For i = 1, i ≤ size (Q) , i++
38. Calculate Eud (Ai,MCM );
39. End for
40. Am = Ai with the minimum Eud (Ai,MCM );
41. End if
42. End if
43. Calculate Erest according to equation (19);
44. If Erest ≥ 0, then
45. Charging for the next node;
46. Else
47. MCM return to the base station;
48. End if
49. End for

data received and sent by the sensor nodes is 1mJ and 3mJ, 520

respectively [23]. The generation of monitoring data obeys 521

VOLUME 10, 2022 93737



Y. Jia et al.: Multiple Mobile Charger Charging Strategy Based on Dual Partitioning Model

FIGURE 4. The MMCCS flow chart.

TABLE 1. Simulation default parameters table.

a Poisson distribution with a mean interval of 60s and a522

simulation duration of 60000s. Table 1 reports the default523

simulation parameters.524

To evaluate the performance of MMCCS, the performance525

metrics used in this paper are the average SN waiting time,526

the average MC charging service distance, the WRSN energy527

void rate, and the network lifetime.528

B. CROSS-SECTIONAL ANALYSIS529

The proposed strategy is challenged against NJNP [20],530

HC [24], and TSCCS [28]. The evaluation is cross-sectional531

to analyze and evaluate the MMCCS strategy’s performance532

comprehensively. In the simulation experiments, only the533

NJNP strategy uses a single MC for charging service, while534

TABLE 2. Comparison of strategy simulation results.

the remaining strategies are multi-MC, and the number of 535

MCs is four. 536

Table 2 reports the simulation results of the four strategies, 537

highlighting that the MMCCS strategy has a shorter average 538

MC charging service distance, a reduced average SN waiting 539

time, and a smaller WRSN energy hole rate. Compared with 540

the TSCCS strategy, the proposed strategy can reduce the 541

WRSN energy hole rate by 27.11%. 542

The MC single cycle path planning is illustrated in 543

Figure 5. The NJNP strategy in Fig. 5a provides path plan- 544

ning based on the proximity principle and uses a single MC 545

for charging service. Thus, the number of nodes completing 546

charging in a single cycle is much lower than the number of 547

requested charging nodes in WRSN. Additionally, the aver- 548

age MC charging service distance is significantly lower than 549

the other three strategies. TheHC strategy in Fig. 5b uses peri- 550

odic path planning with MC charging paths for Hamiltonian 551

circuits. Compared with the NJNP strategy in Figure 5a, the 552

HC scheme adopts a multi-MC charging service strategy that 553

significantly improves the system’s charging service capacity 554

and shortens the charging distance of MC. Nevertheless, the 555

HC strategy does not divide the multi-MC service area, and 556

its number of charging service nodes in a single cycle is 557

lower than that of TSCCS andMMCCS. The TSCCS strategy 558

in Fig. 5c carries out online path planning based on spatio- 559

temporal cooperation utilizing a multi-MC charging service 560

strategy. Compared with NJNP and HC, it can effectively 561

reduce theMC charging service distance and the waiting time 562

of SN charging. The MMCCS strategy in Fig. 5d adopts a 563

static partitioning plus dynamic cooperative strategy com- 564

pared with the previous three strategies, and sets a concen- 565

tric circular charging request threshold for the nodes, which 566

makes the MC charging response fairer, the path planning 567

efficient and reasonable, increases the number of MC service 568

nodes in a single cycle, and shortens the MC charging service 569

distance. 570

C. LONGITUDINAL ANALYSIS 571

This paper focuses on a longitudinal multi-level comparative 572

analysis by discussing the impact of four aspects on strategy 573

performance: the number of nodes, the MC capacity, and the 574

charging efficiency of MC to SN, the number of MC. 575

1) IMPACT OF THE NUMBER OF NODES ON PERFORMANCE 576

The following experiments discuss the interplay between 577

the number of nodes and each strategy’s performance. 578
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FIGURE 5. Example diagram of the single-cycle operation of the four strategies. (a) NJNP Strategies; (b) HC
Strategies; (c) TSCCS Strategies; (d) MMCCS Strategies.

We consider that the number of sensor nodes gradually579

increases from 40 to 400 with a 40-node interval, while the580

other parameters are preserved to their default values. The581

performance of each strategy is illustrated in Fig. 6, revealing582

that when the number of nodes is 160-280, the network583

charging response is more equitable, and the number of nodes584

with energy voids is reduced. The comparison results show585

that the MMCCS strategy has excellent applicability and can586

be extended to networkswith a larger number of sensor nodes.587

Fig. 6a indicates that the average SN waiting time for all588

four strategies has an increasing trend as the number of nodes589

increases. This is because, as the number of nodes increases,590

more nodes must be charged in the WRSN, and the time591

delay of the MC movement towards the nodes increases.592

Therefore, the nodes wait longer for charging. The NJNP593

strategy considers single MC charging, while the other three594

strategies exploit multi-MC charging, resulting in the charg-595

ing capability of the NJNP strategy being much lower than596

the other strategies and the average node waiting time being597

significantly higher.598

In Fig. 6b, the average MC charging service distance of599

all four strategies decreases as the node cardinality increases.600

Given that the range of WRSN is fixed and the density601

of the sensor nodes increases when the number of nodes602

increases, the distance between the nodes decreases, and the603

average MC’s charging service distance decreases. Changing604

the sensor node density in the NJNP strategy has a limited 605

impact on the average MC charging service distance com- 606

pared with the other three strategies, resulting in the slow 607

decrease of its average MC charging service distance with 608

the increase of nodes. The HC strategy does not divide the 609

charging service area and uses the Hamiltonian loop algo- 610

rithm to periodically plan the multi-MC charging path of 611

the entire network, resulting in a slightly higher average MC 612

charging service distance than the TSCCS and the MMCCS 613

strategies. 614

Fig. 6c highlights that all four strategies’ WRSN energy 615

hole rate increases as the number of nodes increases. The 616

number of nodes requesting charging in the network increases 617

with the number of nodes. When the number of sensor nodes 618

is small, the number of nodes requesting service does not 619

exceed the service capacity of the MC, and the MC can 620

replenish the energy of the nodes to be charged relatively 621

quickly. Thus, all four strategies’ WRSN energy hole rates 622

are not significant. However, when the number of nodes in 623

the WRSN network gradually increases to 120, the WRSN 624

energy hole rate of the NJNP strategy shows a significant 625

increase, and when the number of nodes gradually increases 626

to 200, the energy hole rate of the other strategies increases 627

significantly. The MMCCS strategy adopts an on-demand 628

charging architecture and selects the next charging node 629

based on the minimum WRSN energy hole rate. Hence, the 630
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FIGURE 6. Impact of the number of nodes on network performance.
(a) SN average waiting time; (b) MC average charging service distance;
(c) WRSN energy void rate;(d) Network lifetime.

MMCCS strategy has a lower WRSN energy hole rate than631

the TSCCS strategy under the same number of MCs.632

Fig. 6d shows that the MMCCS strategy has a more633

extended network lifetime for the same number of sensor634

nodes. As the number of nodes increases, the sensor network 635

has a greater energy demand. Since NJNP uses the charging 636

mode of single MC, its network survival time first appears 637

to be shortened and shows an accelerated decreasing trend. 638

When the number of nodes increases to 280, the network 639

survival time of the HC strategy and TSCCS strategy appear 640

short successively, while the network lifetime of theMMCCS 641

strategy only starts to decline when the number of nodes 642

increases to 360. 643

2) IMPACT OF MC CAPACITY ON PERFORMANCE 644

The subsequent trials discuss the influence of MC capacity 645

on the performance of each strategy. For this trial, the sensor 646

node capacity gradually increases from 1000J to 10000J at 647

an interval of 1000J, while the other parameters are the 648

default. The corresponding performance change per strategy 649

is depicted in Figure 7, highlighting that the proposed charg- 650

ing planning scheme is efficient and reasonable. 651

Fig. 7a reveals that the average SN waiting time of all 652

competitor strategies gradually decreases as the MC energy 653

capacity increases. Moreover, the MC battery capacity grad- 654

ually increases, and the number of nodes to be charged that 655

can complete their charging in a single cycle increases. When 656

theMC capacity exceeds 6000 J, the effect of MC capacity on 657

the charging service capacity of the WRSN system saturates, 658

and the average SN waiting time of all strategies stabilizes 659

with the increase of the MC capacity. 660

Fig. 7b shows that MC’s average charging service distance 661

decreases with the increase of MC capacity and eventually 662

stabilizes. When the MC battery capacity is small, its charg- 663

ing service capacity is not adequate to complete the nodes’ 664

charging service demand and needs to return to the base 665

station to replenish energy and then continue to complete the 666

charging task. This leads to frequent energy replenishment of 667

the MCs to and from the base station, i.e., the average MC 668

charging service distance increases. When the MC battery 669

capacity gradually increases, the MC charging service capac- 670

ity gradually saturates, stabilizing the MC average charging 671

service distance. TheMMCCS strategy is the first to stabilize. 672

Fig. 7c highlights that the node energy hole rate decreases 673

with the increase of MC capacity. Increasing theMC capacity 674

on a single MC setup has a significantly lower impact on the 675

charging service capacity of the WRSN system compared to 676

a multi-MC system. Moreover, the NJNP strategy always has 677

a higher WRSN energy hole rate than the other strategies. 678

The HC strategy uses a fixed charging sequence list, and the 679

charging synergy is poor in real-time, ignoring the charging 680

requests of the nodes during the charging cycle. The node 681

energy hole rate in MMCCS is significantly higher than the 682

TSCCS and MMCCS strategies because MMCCS is a static 683

partitioning and dynamic coordination scheme, effectively 684

improving the MC charging efficiency and reducing the node 685

energy hole rate compared to the other three strategies. 686

Fig. 7d shows that the network lifetime grows parabolically 687

with the increase of MC battery capacity. the MC charging 688

capacity of the NJNP strategy saturates with the increase of 689
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FIGURE 7. Effect of MC capacity on performance. (a) SN average waiting
time; (b) MC average charging service distance; (c) WRSN energy void
rate;(d) Network lifetime.

MC battery capacity, and its network survival time growth690

trend is relatively slow and stops stabilizing when the lifetime691

grows to 52500s. As the MC battery capacity increases to692

5000J, the lifetime of both the TSCCS strategy and MMCCS 693

strategy reaches 60000s, where the MMCCS strategy grows 694

more rapidly, while the HC strategy reaches 60000s when the 695

MC battery capacity is 5000J. 696

3) IMPACT OF CHARGING EFFICIENCY ON THE 697

PERFORMANCE 698

This subsection investigates the effect of MC on the perfor- 699

mance of each strategy considering SN charging efficiency. 700

The ideal value of MC on SN charging efficiency is gradually 701

increased from 50mJ/s to 500mJ/s with a 50mJ/s interval, and 702

the other parameters are the default. The performance change 703

of each strategy is illustrated in Figure 8. When the charging 704

efficiency is between 300mJ/s-500mJ/s, the energy hole rate 705

of WRSN is low, and WRSN maintains a healthy and good 706

operation state, avoiding network paralysis. 707

Fig. 8a illustrates that the average node waiting time 708

decreases for all strategies as the charging efficiency 709

increases. The node average waiting time is limited by the 710

charging time of the other nodes and the MC path move- 711

ment time. Moreover, the charging time decreases due to 712

the increased charging efficiency of MC to SN, leading to a 713

subsequent decrease in the node average waiting time. 714

From Fig. 8b, the average MC charging service distance 715

decreases slowly as the charging efficiency of MC to SN 716

increases. When the charging efficiency is small, the number 717

of charging services performed by MC per unit time is small, 718

and as the charging capacity of MC increases, the number 719

of charging service nodes performed by MC per unit time 720

increases, and more dense nodes are served, i.e., the average 721

charging service distance of MC decreases. The MMCCS 722

strategy considers the network minimum energy void node as 723

the goal for path planning and chooses a relatively far away 724

node as the next charging node. Thus, when the MC speed is 725

higher, the MC average charging service distance is slightly 726

higher than the TSCCS strategy. 727

Fig. 8c highlights that the node energy hole rate of all 728

strategies decreases with the increase of the charging effi- 729

ciency. When the charging efficiency is low, all strategies’ 730

WRSN energy hole rates are relatively large. This is because 731

the MMCCS strategy establishes a concentric circular charg- 732

ing request threshold for theWRSNnetwork, which improves 733

the fairness of MC response to SN charging requests and 734

makes the energy hole rate of the MMCCS strategy consis- 735

tently lower than the other three strategies.When the charging 736

efficiency is 513mJ/s, the WRSN energy hole rate infinitely 737

converges to zero, demonstrating the MMCCS strategy’s 738

superior performance. 739

Fig. 8d shows that each strategy’s network lifetime 740

increases with the charging efficiency. When the charging 741

efficiency increases to 250mJ/s, the network lifetime of the 742

MMCCS strategy is the first to stabilize with 60000s, while 743

both HC and TSCCS strategies reach 60000s at a charg- 744

ing efficiency of 300mJ/s. When the charging efficiency 745

increases to 500mJ/s, the lifetime of the NJNP strategy is 746

52630s, which stabilizes. 747

VOLUME 10, 2022 93741



Y. Jia et al.: Multiple Mobile Charger Charging Strategy Based on Dual Partitioning Model

FIGURE 8. Effect of charging efficiency on the performance. (a) SN
average waiting time; (b) MC average charging service distance; (c) WRSN
energy void rate;(d) Network lifetime.

4) IMPACT OF THE NUMBER OF MC ON PERFORMANCE748

This group of experiments discusses the effect of the number749

of MCs on the performance of each policy. In this paper,750

FIGURE 9. The impact of the number of MCs on performance. (a) SN
average waiting time; (b) MC average charging service distance; (c) WRSN
energy void rate;(d) Network lifetime.

the number of MCs is gradually increased from 1 to 8 at 751

the interval of 1 MC, and the other parameters are kept as 752

default values, and the performance of each policy changes 753
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as shown in Figure 9. When the number of MCs is greater754

than or equal to 4, the performance of WRSN network is755

good. Considering the economic cost and performance of the756

network, the optimal number of MCs is 4.757

In Figure 9a, it is shown that the average waiting time758

of nodes decreases for all four strategies as the number of759

MCs increases. the energy replenishment capacity of WRSN760

increases with the number of MCs, and when the number761

of MCs is small, the average waiting time of SN rapidly762

decreases with the number of MCs. when the number of MCs763

increases to four, the energy replenishment of the network is764

larger than the energy consumption of the network, and the765

demand ofWRSN for MC saturation occurs, then the average766

waiting time tends to stabilize.767

Figure 9b shows that with the increase of the number of768

MCs, the MC average charging service distance of each strat-769

egy has the same trend, and the MC average charging service770

distance first decreases rapidly and then stabilizes gradually.771

The MMCCS strategy and TSCCS strategy both adopt the772

zoning mode, and their MC average charging service distance773

is always smaller than the other two strategies.774

In Figure 9c, it is shown that the node energy hole rate of775

all four strategies decreases with the increase of the number776

of MCs. When the number of MCs is 1, the WRSN energy777

hole rate of all four strategies is relatively large, and when778

the number of MCs increases to 5, the WRSN energy hole779

rate of the MMCCS strategy infinitely tends to 0, showing780

the superior performance of the MMCCS strategy.781

In Figure 9d, it is shown that the network survival time of782

each strategy increases with the increase of the number of783

MCs. When the number of MCs increases to 4, the network784

survival time of MMCCS strategy is the first to stabilize at785

60000s, while both HC and TSCCS strategies reach 60000s786

at a charging efficiency of 5. This reflects the better energy787

utilization of MMCCS strategy.788

VI. CONCLUSION789

This paper studies the problem of multi-MC cooperative790

charging in wireless rechargeable sensor networks and pro-791

poses a static partitioning plus dynamic cooperative online792

charging strategy MMCCS for multiple mobile charging793

devices aiming to reduce the energy hole rate of WRSN. The794

proposed strategy integrates the dynamicity and variability795

of sensor nodes, establishes a dual partitioning model of796

WRSN, and minimizes the number of energy-void nodes by797

online planning of multi-MC cooperative charging paths. The798

MMCCS strategy effectively reduces the energy hole rate799

of the WRSN, thus ensuring the WRSN’s stable operation.800

Moreover, the superior performance and scalability of the801

MMCCS strategy affords extending it to more sensor nodes.802
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