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ABSTRACT Real-time frequency analysis is a task commonly implemented in last generation signal
processing devices. Even if the reliability of these systems is widely recognized, detecting the presence of
drifts in the frequency of analog signals is still an open problem. Besides being simple in principle, it needs
a suitably long-term memory in order to determine not only in which direction the frequency drifted but also
along which specific path. In this paper, we propose a novel strategy based on the concept of jump resonance
in nonlinear forced oscillators to determine a digital signal processing paradigm hinged on a lookup table
able to provide reliable and real-time information on complex paths of frequency drifts.

8 INDEX TERMS Frequency drifts, frequency sensors, jump resonance, lookup table.

I. INTRODUCTION9

Real analog signals are often characterized by time-varying10

frequencies, as the result of complex dynamical processes.11

Practical examples of analog signals which are subjected to12

frequency drifts are the power grids mains and the heartbeat13

rate. In power distribution networks, the nominal main fre-14

quency of the carrier is known (50 Hz in Europe, and Asia,15

60 Hz in the Americas) but its drifts, which are known to16

deteriorate the efficiency of the grid [1], and the sequences of17

increments/decrements are not known, even if some statistical18

considerations can be drawn [2]. The stability of the main19

frequency with respect to users interactions is a fundamental20

property to ensure the highest efficiency for the grid. To this21

aim, detecting in real-time frequency drifts would allow for22

suitable control actions, whose efficiency is linked on the drift23

amplitude and direction [3].24

The concept of frequency drift can be further generalized25

by considering either signals with complex spectral properties26

in which one or more frequency components are subjected to27

variations in time, or time-series of different nature charac-28

terized by hidden time-varying periodicity, such as economic29

time-series [4] or pandemic related quantities [5].30

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

The necessity to oversee frequency drifts, however, goes 31

beyond the merely technological field. Let us consider the 32

monitoring of the heartbeat or other biomedical quantities 33

whose frequency is a key indicator to discriminate patho- 34

logical states. As concerns the human heartbeat rate, in fact, 35

a fundamental diagnostic information to prevent diseases is 36

gained monitoring its variability [6], which may also occur 37

through complex paths of increasing/decreasing drifts. 38

Detecting frequency drifts is a non-trivial problem from 39

the computational point of view, since it needs to determine 40

the main component of the frequency spectrum of the input 41

signal and to store a significant number of samples to infer the 42

trend. Modern digital signal processing (DSP) units allows 43

to quickly determine the frequency properties of analog sig- 44

nals [7], but this feature alone is not sufficient to efficiently 45

infer frequency drifts and complex paths of frequency drifts. 46

In order to provide a simple but effective solution to the 47

problem of real-time detection of frequency drifts either 48

increasing or decreasing, a the theoretical concepts adopted 49

to design a device specifically intended to this aim [8] will 50

be coupled to a fast and efficient algorithm based on the 51

construction of a Lookup-Table (LUT). 52

LUTs are a common way to trade computational power 53

with storage space. LUTs are based on replacing runtime 54

computation by a n-dimensional indexing operation [9], [10]. 55
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Values are, therefore, taken by addressing stored data instead56

of running computing-intensive operations. These tables57

reduce system dynamic behavior to a set of precalculated58

points, called breakpoints. Differently from the common59

software-development related interpretation, here the term60

breakpoint represents the input-output mapping of the sys-61

tem.62

From a simple mathematical point of view, LUTs express63

an enforced relationship between two or more variables, rep-64

resented as an array or n-th order storage structure which can65

be implemented as arrays, matrices, or generic n-dimensional66

structures. Main advantage can be appreciated from a com-67

putational point of view, as the LUT cyclomatic complex-68

ity [11] can be considered an O(1) (data-size independent69

complexity). LUTs are generally placed in RAM/ROM and70

can be hardcoded or computed during a specific phase of the71

program, which commonly happens during the startup phase.72

The latter technique, called memoization, is used to shorten73

the runtime of applications by keeping storage result of previ-74

ous executions for future reuse [12]. LUT can be also found75

in specialised hardware, like the FPGAs, often provided as76

building blocks from common vendors. Their size varies77

depending on the hardware technical specifications [13].78

LUTs and their derivations or specialisations can find79

applications in almost all fields, ranging from hardware80

implementations [14] too software algorithms [15]. Their81

employment is common when processing power is limited or82

under energy efficiency constraints [16]. As the processing83

power is only required once at design, compile time or during84

the memoization phase, this reduction plays a key-role in85

energy efficiency [17]. LUTs comprise a large percentage of86

the overall execution of the applications in many automotive87

applications (10%-20%) and represent a consistent part of the88

scientific code. Generally speaking, implementing a LUT is89

a common solution to improve math intensive code.90

Main disadvantage of LUTs is memory usage, which is91

proportional to the number of elements stored. This is due to92

the fact that the table must be fully held in memory, together93

with control structures. Therefore, table breakpoints accuracy94

is determined by a trade-off between the correct choice of the95

distance between pre-calculated points and the problem of96

minimizing the LUT size. This must be performed accounting97

for the error introduced [18]. Moreover, evolution and steady98

state of the context using the LUT may settle into a subset of99

the stored values, leading to a waste of a portion of memory100

for the unused values [19].101

The approach described in this paper aims at proposing a102

novel and efficient strategy to detect and discriminate com-103

plex patterns of frequency drifts, either increasing and/or104

decreasing in a given time-window. The proposed solution105

is based on a peculiar behavior of a class of driven non-106

linear systems, i.e. the so-called jump/multijump resonance107

systems [20], [21]. These circuits and systems, in fact, when108

subjected to an input signal with drifting frequency produce109

an output whose amplitude shows sudden jumps at particular110

frequencies depending also on the direction of the frequency111

FIGURE 1. Lur’e form feedback scheme: the linear part is expressed by
the transfer function G(s), while the polynomial nonlinearity φ(Y ) acts on
the feedback.

drift, thus creating an hysteresis in the frequency response. 112

Moreover, the amplitude of the input signal plays a crucial 113

role, since it must be rescaled to a precise value in order to 114

elicit the jump resonance behavior, otherwise, as observed 115

in [21], chaotic oscillations may arise. 116

The device described in [8] is based on the digital 117

implementation of a discrete-time non-autonomous nonlin- 118

ear system with cubic polynomial nonlinearity, whose fre- 119

quency response displays the jump behavior. It has been 120

shown its efficiency also when the input analog signal con- 121

tains more harmonics, but the device allows to discriminate 122

drifts increasing or decreasing from the nominal value of 123

the frequency. The approach presented here is intended to 124

improve the efficiency of the frequency drift detection, thus 125

discriminating among more complex patterns of increas- 126

ing/decreasing drifts and consists in the implementation of a 127

LUT based on the peculiar behavior of jump resonance sen- 128

sibly reducing both the computational needs and the memory 129

storage. A specifically designed windowed approach allows 130

to detect not only the single frequency drift, but also nested 131

paths of deviations, either increasing or decreasing, thus fully 132

implementing the hysteretic behavior of multijump resonance 133

systems. Moreover, the jump resonance paradigm to design 134

the LUT guarantees the possibility to cope with signals in 135

which direction and amplitude of frequency drifts are not 136

known a-priori. 137

The paper is organized as follows. In Sect. II the basic 138

elements and the design guidelines of jump/multijump res- 139

onance systems are outlined, in Sect. III the windowed 140

approach to design and implement the LUT is presented. The 141

experimental setup obtained implementing the LUT in hard- 142

ware is discussed in Sect. IV, while the experimental cam- 143

paign showing the capabilities of the LUT to detect nested 144

complex path of frequency drifting is presented in Sect. V, 145

together with an applicative example aimed at showing the 146

detection of frequency drifts in the mains frequency of Con- 147

tinental Europe power grid. A comparative analysis which 148

allows to determine the main advantages of the proposed 149

approach with respect to different solutions is reported in 150

Sect. VI. Conclusions are drawn in Sect. VII. 151

II. MULTIJUMP RESONANCE SYSTEMS 152

Let us consider a nonlinear system in which the linear and 153

nonlinear parts can be separated and organized in a feedback 154

scheme, as shown in Fig. 1 where the linear part is represented 155
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FIGURE 2. Multijump resonance in the frequency response of a forced
nonlinear oscillator with linear part as in Eq. (1) and feedback nonlinear
function as in Eq. (2). The curve has been calculated for K = 1, ξ = 0.03,
ω0 = 1 rad/s, Ā = 192

105 , B = − 32
5 , C = 19

4 , and R = 0.2. The points labeled
from 1 to 6 identifies the jump frequencies.

by a transfer function G(s) and the nonlinear block φ(Y ) acts156

only on the feedback loop. This representation of nonlinear157

feedback systems is referred to as Lur’e form [22].158

We focus now on the case in which the linear part is a159

generic second-order transfer function of the type160

G(s) =
K

s2

ω2
0
+

2ξ
ω0
s+ 1

(1)161

characterized by a gainK , a natural frequencyω0 and a damp-162

ing factor ξ . Furthermore, let us consider for the nonlinear163

part a septic odd polynomial nonlinearity of the form164

φ(Y ) = ĀY 7
+ B̄Y 5

+ C̄Y 3 (2)165

where Ā, B̄, C̄ are suitable gains. The system, thus, can be166

considered similar to a Duffing oscillator where a higher167

order odd polynomial nonlinearity has been introduced.168

When subjected to an external sinusoidal driving input169

u(t) = R sin (ω(t)t + ψ) with time-varying frequency ω(t),170

the output of such system is a nonlinear oscillation whose171

amplitude at time t̄ depends not only on the instantaneous172

frequency ω(t̄) but also on the values assumed by ω(t) for173

t < t̄ . An example of multijump frequency response is174

reported in Fig. 2, it can be observed that for a given range175

of ω, the frequency response is a multi-valued function.176

The multijump resonance curve in Fig. 2 contains multiple177

hysteresis windows nested in the frequency interval ω1 <178

ω(t) < ω6, where ω1 and ω6 are the frequencies at which179

the jumps marked with label 1 and 6 occur. In fact, if the180

frequency of the input signal is swept upwards from values181

lower than ω1, the frequency response of the system follows182

the lower branch up to ω(t) = ω4 where a sudden jump up in183

the amplitude occurs. Now two cases can be discriminated: if184

the frequency continues to grow, the response will undergo a185

jump down at ω(t) = ω5, conversely if ω(t) decreases a jump186

up at ω(t) = ω2 can be retrieved in the output amplitude.187

In this latter case, the upmost branch can be visited either188

for increasing values of ω(t), leading to a jump down at189

ω(t) = ω6, or for decreasing values of ω to a jump down at 190

ω1. Finally, if the frequency of the input signal is swept down 191

from a value larger than ω6, a single jump up at ω(t) = ω3 is 192

observed in the output of the system. 193

It appears evident that such kind of resonance, and its 194

hysteretic behavior, allows to discriminate among complex 195

paths of increments/decrements of the frequency of the given 196

input signal by simply inspecting the jumps occurring in the 197

amplitude of the output signal. Our approach is based into 198

transferring such behavior, suitably rescaling the frequency 199

ranges, into a simple and effective LUT. 200

To design the linear and nonlinear parts of the feedback 201

oscillator, so that jumps around a specific value of the 202

frequency, it is useful to adopt an approach based on the 203

describing function method [23]. The method is based on 204

two hypotheses: (i) the system variables can be approxi- 205

mated as the sum of a finite number of sinusoidal terms, 206

and (ii) a low-pass filtering effect occurs in the loop. Pro- 207

vided that these hypotheses are verified, the nonlinear term 208

can be approximated by a function of the amplitude of its 209

input N (U ). Notwithstanding the effective approximation 210

introduced by this method, the describing function approach 211

proved to be effective also in presence of higher harmonics, 212

including chaotic oscillations [24]. 213

Considering the odd nonlinearity φ(Y ) as in Eq.(2), the cor- 214

responding describing function depends only on the ampli- 215

tude U of its input signal [25], as 216

N (U )= Ā
105
192

U6
+B̄

15
24
U4
+C̄

3
4
U2
=AU6

+ BU4
+ CU2

217

(3) 218

in which we have defined A = 105
192 Ā, B =

15
24 B̄, C =

3
4 C̄ . 219

Referring to the feedback scheme reported in Fig. 1, the signal 220

u(t) = R sin (ωt + ψ) is a solution for the closed-loop system 221

if it occurs: 222

N (U )U + G−1(jω)U = Re−jψ (4) 223

Assuming ψ = 0, and indicating with <(ω) and =(ω) the 224

real and imaginary part of G−1(jω), the modulus of Eq. (4) 225

can be written as: 226

(AU7
+ BU5

+ CU3
+<(ω)U )2 + (=(ω)U )2 = R2 (5) 227

and thus rearranging terms 228

A2U14
+ (2AB)U12

+ (B2 + 2AC)U10
229

+ (2BC + 2A<(ω))U8
+ (C2

+ 2B<(ω))U6
230

+ 2C<(ω)U4
+ (=(ω)2 +<(ω)2)U2

− R2 = 0 (6) 231

that, defining now X = U2, it can be written as 232

p(X ) = A2X7
+ (2AB)X6

+ (B2 + 2AC)X5
233

+ (2BC + 2A<(ω))X4
+ (C2

+ 2B<(ω)))X3
234

+ 2C<(ω)X2
+ (=(ω)2 +<(ω)2)X − R2 = 0 (7) 235

Since jump resonance occurs when the frequency response 236

is a multi-valued function of ω, in order to determine the 237

conditions on the parameters to obtain a frequency response 238
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shaped as in Fig. 2, it necessary that for a range of ω Eq. (7)239

admits seven positive real solutions.240

Numerical procedures to determine the values of A, B, C ,241

and R, as well as the suitable G(s), leading to this condition242

can be outlined starting from the principle of polynomial243

identity. We can, thus, fix the seven positive real solutions244

to define the corresponding polynomial and solve a system245

of eight nonlinear equations in six unknowns. A different246

way is to search for the limit conditions where two pairs of247

coincident solutions satisfy Eq. (7), thus imposing that the248

ratios between the polynomial p(X ) in (7) and the second249

order polynomials p1(X ) = X2
− 2aL,1X + a2L,1, p2(X ) =250

X2
−2aL,2X+a2L,2 have a remainder equal to zero. Therefore251

it follows:252

p(X )
p1(X )p2(X )

= q1(X )+ r1(X ) (8)253

where the quotient is a third order polynomial on which the254

Cardano conditions [26] can be applied to guarantee three255

positive real solutions.256

Once retrieved suitable values of the parameters of the257

nonlinear function, <(ω) and =(ω) can be used to deter-258

mine the parameters of the linear part ξ and K , while ω0 is259

fixed according to the nominal frequency of the signal under260

investigation. Without lack of generality, we can adopt the261

following values: K = 1, ξ = 0.03, ω0 = 16 · 104 rad/s,262

A = 1, B = −4, C = 4.25, and R = 0.2, obtaining the263

curve reported in Fig. 3, where the jump frequencies are:264

f1 =
ω1
2π = 25 kHz, f2 =

ω2
2π = 28 kHz, f3 =

ω3
2π = 30 kHz,265

f4 =
ω4
2π = 33 kHz, f5 =

ω5
2π = 37 kHz, f6 =

ω6
2π = 47 kHz.266

The implementation of a frequency drift sensing device267

based on jump resonance can be obtained by discretizing268

the nonlinear system on a suitable digital microcontroller269

unit (MCU), as shown in [8], where a cubic nonlinearity270

has been considered. However, since the purpose here is to271

detect complex paths of frequency drifts, either increasing or272

decreasing or a combination of them, still preserving the effi-273

ciency of the method, the higher order nonlinearity scenario274

outlined above must be implemented following an innovative275

paradigm based on the construction of a LUT based on the276

shaping of the frequency response.277

III. LOOKUP TABLE DESIGN278

In order to implement the LUT and assess its performance279

on a dedicated hardware platform, a first phase of value280

extraction was accomplished. The septic response curve,281

generated using the aforementioned approach has a char-282

acteristic behaviour along the axis. As the assessment is283

implementation-oriented, the septic curve is simplified into284

a set of piecewise linear functions, where steps happen on the285

septic jumps.286

The curve reported in Fig. 4 shows in green, superimposed287

to the septic curve, the four piecewise intervals linearized288

following the original curve values. The choice to linearize289

the intervals was done to keep the whole LUT essence as290

simple as possible and highlight, instead, the jump behaviour291

FIGURE 3. Multijump resonance in the frequency response of a forced
nonlinear oscillator with linear part as in Eq. (1) and feedback nonlinear
function as in Eq. (2). The curve has been calculated for K = 1, ξ = 0.03,
ω0 = 16 · 104 rad/s, A = 1, B = −4, C = 4.3, and R = 0.2. The jump
frequencies are: f1 =

ω1
2π = 25 kHz, f2 =

ω2
2π = 28 kHz, f3 =

ω3
2π = 30 kHz,

f4 =
ω4
2π = 33 kHz, f5 =

ω5
2π = 37 kHz, f6 =

ω6
2π = 47 kHz.

FIGURE 4. Piecewise linearization of the frequency response in Fig. (3)
for the definition of the LUT windows.

modelling. The extraction of the values is simply obtained by 292

using a straight line between two points and stepping them 293

by a reasonable amount in order to minimise MCU memory 294

footprint. However, in the proposed approach, an important 295

concept which is referred afterwards as indexer function can 296

be used to model more complex scenarios, where a large 297

number of steps is required or a more complex pattern has 298

to be implemented, instead of simple memory arrays. 299

Each of the piecewise approximation parts is afterwards 300

referred as frame which has two boundaries, i.e. the maxi- 301

mum and minimum x-coordinates for the segment. 302

Notice that the intervals are not strictly contiguous and 303

there are overlapping parts. This is the key to the jump 304

mechanism implementation and to the hysteresis behavior, 305

that is translated into a current frame pointer. The current 306

frame pointer, which models the state of the LUT, is the dis- 307

criminant for the jump management logic. A query (lookup) 308

to the table is matched on the boundaries first, to discern 309

if a jump is needed. In the occurrence of a jump, the logic 310

is recursively applied to each of the frames, by moving the 311

current frame pointer. Once the queried value falls in between 312

the boundaries, the algorithm falls back to standard LUT 313
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FIGURE 5. Simplified overview of the LUT segmentation.

behaviour. A detailed description of the implementation and314

logic is presented afterwards.315

The proposed LUT is based on awindowed approach.Win-316

dowing essentially means splitting the table which, as previ-317

ously explained, matches the piecewise linearization of the318

table portions. The whole table is split in N frames, each319

one having its characteristic values, indexed with an indexing320

function. Each frame is essentially a LUT by itself, which also321

carries additional data, i.e. the boundaries, and the jump infor-322

mation metadata, which are the pointers to the neighbouring323

tables.324

A simplified overview of the LUT segmentation is shown325

in the Fig. 5. Each i-th frame has its domain (x(i)p and x(i)n )and326

the corresponding values (shown as a function fi(x)). The327

whole lookup is managed by a lookup manager which takes328

the queries to the table, submitting them to the current frame.329

By checking the current frame k against the two boundaries330

(x(k)p and x(k)n ), depending on the value the manager can331

• take the queried value xq from the current frame332

if x(k)p ≤ xq ≤ x
(k)
n ;333

• jump to the previous frame and re-run the query334

if xq < x(k)p ;335

• jump to the next frame and re-run the query336

if xq > x(k)n .337

The query re-run step implicitly means moving the current338

frame pointer. Using this approach, the hysteresis behaviour339

is implemented. When a new frequency has been computed,340

a query is done using the LUT manager entity. The manager341

has a state where the current frame of the LUT is stored342

and the frame has the two boundaries (lower and upper).343

If the queried value is inside the current frame, stored in344

the manager, the value is directly taken as a regular LUT.345

Otherwise, the same query is forwarded to the next frame (if346

the queried value is larger than the upper frame boundary)347

or to the previous (if the queried values is smaller than the348

frame lower boundary). The query is iteratively repeated until349

reaching the frame where the queried value is found. When350

a query is resolved into a value, the manager state is updated351

consequently. The hysteretic behaviour is implemented by the352

action of the manager internal state, as each subsequent query353

is first matched to the current frame boundaries. The fact354

that there is no constraint on the previous/next relationship355

between frames, implements the jump behaviour. The previ-356

ous/next lack of constraints is stressed across the presented357

work, as it also allows the detection of complex paths of358

increasing/decreasing drifts. The schematic representation of359

the algorithm operations is reported in Fig. 6.360

FIGURE 6. Schematic representation of the LUT algorithm operations.

In the following sections the aforementioned terms are 361

explained in depth, in order to clarify the implementation 362

logic and strategy. 363

A. THE FRAME 364

The approach foundation is the frame, which is a LUT with 365

ancillary data. A frame is composed by: 366

• Values, which are the f (x) storage array. There are no 367

constraints on the size of the values array, except for the 368

hardware (memory) limitations. Moreover, each value 369

array can differ in size from others, there is no constrain 370

about array value size for each frame. This approach 371

allows space saving for lookup zones with linear / low- 372

varying situations. Zones which require a higher count 373

of values can instead be rendered inside a higher count 374

lookup array on another frame. 375

• Boundaries, which are the maximum and minimum 376

x-coordinate value for each frame. This represents the 377

domain of the lookup frame of interest. Boundaries are 378

checked at runtime to discern if a jump must be done. 379

• Neighbours, which are pointers to the previous and next 380

frame. Neighbours are bound to boundaries, as the man- 381

ager lookup algorithm use them to move to the specific 382

frame. Previous frame is bounded to the lower boundary 383

while next frame to the upper. Note that there is no 384

enforcement on overlapping frame domains, to allow 385

extremely complex jump behaviour like pits or loops. 386

B. THE MANAGER 387

An entity, called manager handles queries to the LUT while 388

maintaining the last table pointer, which is in turn used to 389

implement hysteresis. Moreover, the manager entity has a 390

pointer to the indexer function. The indexer is the function 391

in charge of finding the index for the value inside a specific 392

frame. The complexity of the indexer allows the implementa- 393

tion of small-count lookup arrays by implementing strategies 394

to obtain intermediate values (e.g., median, linear interpola- 395

tion, etc). 396

Key to the understanding of the whole strategy is the 397

current frame pointer. This pointer is read when the LUT is 398

accessed, to match search item with the frame boundaries, 399

and written when a lookup refers an off-boundary request and 400
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a new frame must be searched into. The search-and-reassign401

strategy is recursively applied across frames, consolidating402

into the last, value-resolving call.403

C. RUNTIME OPERATION404

The lookup strategy needs an initial deployment/405

configuration step where all the frames are filled up with406

values and, subsequently, all the relationships (boundaries,407

previous and next frame pointers) for each frame are set-408

up. As before mentioned, the choice to avoid enforcing the409

frame consequentiality relationship allows complex moves410

inside tables, which in turn allows the creation of hysteresis411

configurations (e.g., pits or loops).412

Once the instantiation process has been fulfilled, the LUT413

can be queried through the manager entity lookup method.414

The manager algorithm can be synthesized into the following415

operating steps:416

1) get the current lookup frame;417

2) check if the index is inside or outside the current418

frame values domain. Boundary detection trespass-419

ing direction is checked (over upper or under lower).420

No assumptions are made on the possible position421

of the searched index inside a specific frame, which422

becomes key in following the hysteresis path inside the423

curve;424

3) the value is searched with the following logic: (a)425

a) If the index is inside the current frame, the indexer426

is called to obtain the array index for the current427

frame value-array428

b) If the index is outside, a recursive search call is429

done on the neighbour frame, determined by the430

trespassing direction.431

4) Once the value is found, the current frame pointer on432

the manager is moved accordingly.433

Note that, considering the recursive nature of the algo-434

rithm, an eyemust be kept on the number of the frames and on435

the input values variability as they are directly affecting the436

stack pressure. However, considering typical scenarios and437

value dynamics, the frame count (or the value frame-distance)438

is typically lower than the manageable stack pressure even on439

limited resources microcontrollers.440

D. FREQUENCY DETECTION441

Going back to the frequency response of the closed-loop442

system with the septic nonlinearity, it becomes clear that an443

additional processing step is needed for its physical imple-444

mentation on a MCU. Aside the analog signal acquisition,445

which is undertaken directly by a common ADC peripheral446

(which may or may not be integrated on the MCU die), a fre-447

quency detection algorithm was implemented. The presented448

choice favours ease and straightforwardness of implemen-449

tation over more performing solution based on intensive or450

DSP offload-able algorithms (i.e., FFT+ peak bin detection).451

The adopted solution is based on a mean value detection plus452

a zero-crossing strategy. The first one ensures that eventual453

FIGURE 7. Experimental setup: a standard PC equipped with a GPIB
interface is used to drive the Agilent 33250A generator imposing a given
frequency drift path; the signal is conditioned using standard OP-AMP
configurations to fit the MCU amplitude input spefications; the LUT
implemented on the STM32F446RET6 microcontroller provides an analog
output indicating the occurrence of jumps which is visualized on an
oscilloscope.

DC components lead to erratic results while the latter simply 454

counts the times the signal crosses the mean value during 455

an interval slice. To enhance the mean-crossing strategy and 456

reject false crossing flags, signal is low-pass filtered inside 457

the same detection loop. 458

IV. EXPERIMENTAL SETUP 459

The previously described system was fully implemented on 460

a hardware platform, to assess its validity and performances, 461

as schematically represented in Fig. 7. A series of choices 462

were done during the implementation transposition, which 463

are discussed below. 464

A. MCU PLATFORM CHOICE 465

The solution was tested on an STM32F446RET6 microcon- 466

troller, hosted on a NUCLEO-F446RE development board. 467

The choice of this development board was dictated by the 468

general availability and price, NUCLEO boards are off-the- 469

shelves products available at low-cost with ADC and DAC. 470

Moreover, such boards are ready to run, have integrated 471

programmer/debugger, expansion connectors, led and but- 472

tons and a free programming environment bundled with the 473

boards. The F4 MCU series has a processing power up to 474

180 MHz frequency (225 DMIPS or 1.25 DMIPS/MHz) 475

and a dedicated DSP instruction set (ARM DSP on ART 476

accelerator). 477

B. ANCILLARY DEVICES AND SOFTWARE 478

To test and evaluate the algorithm implementation correct- 479

ness and integrity, the MCU board was fed using an Agilent 480

33250A function/arbitrary waveform generator, an oscillo- 481

scope was also connected to watch the DAC (output). To drive 482

a frequency sweep to stimulate all the possible hysteresis 483

paths, the 33250A generator was driven using custom devel- 484

oped software (WinForms C] GUI) and GPIB which, in turn 485

used UART debug output from the MCU to watch the current 486

detected frequency and current frame pointer extracted from 487

the running algorithm. 488
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For the system to be able to work on a big frequency489

span, the whole logic runs inside the ISR of the ADC DMA,490

whichmeans that a whole block of samples is processed using491

double buffering strategy to leverage the full power of the492

MCU and leave behind enough processing power for eventual493

other applications.494

C. EVALUATION METHOD495

The complete system was thoroughly tested by using the496

whole toolchain described. Especially, using the specifically497

designed GUI and setup, every frequency path was fed to498

the system, by ensuring the right path on the curve was499

followed. Recorded data was compared with evidence on the500

instruments displays to assess the whole setup validity.501

V. EXPERIMENTAL RESULTS502

Using the previously described setup, a testbench was devel-503

oped to assess and validate the strategy. Essentially, the evalu-504

ation method consists in the ability of the system to track the505

frequency drift along a provided input path. Moreover, the506

LUT approach is validated, checking if the output value and507

current LUT frame is consistent with the expected values.508

A. EXPERIMENTAL VALIDATION OF THE WORKING509

PRINCIPLE510

The experimental validation of the LUT is summarized in511

Fig. 8. We tested the LUT functionality by considering four512

input sinusoidal signals whose frequency varies according513

to a specific path, so that all the frames of the LUT are514

visited. In the left column (Fig. 8(a), Fig. 8(c), Fig. 8(e),and515

Fig. 8(g)) the four input signals considered to test the setup516

are schematically represented. The frequency of each signal,517

thus, varies in time exploring the branches in red of the518

nonlinear response, invoking the LUT frame corresponding519

to the specific green slope. In the right column (Fig. 8(b),520

Fig. 8(d), Fig. 8(f),and Fig. 8(h)) the oscilloscope traces521

representing the corresponding response as generated by the522

LUT are reported. By inspecting the output of the LUT and,523

in particular, the jumps, it is possible to infer the sequence of524

drifts in the frequency of the input signal.525

The first experiment has been performed sweeping from526

100 Hz to 100 kHz. The LUT output results in 2 jumps, which527

are occurring at 33 kHz and 37 kHz. After the first jump,528

the LUT falls into two windows where values are inversely529

related to the frequency increase.530

The second experiment follows a frequency path that high-531

lights the whole LUT traversal. The input signal reverses its532

sweep after the first jump at 33 kHz. Notice the changes533

in slope across the traversal of the second and third LUT534

windows, with a second jump occurring 28 kHz. A further535

increase in the frequency of the input signal allows to follow536

the upper branch up to the jump occurring around 47 kHz.537

Notice also that as per LUT design, the only allowed path to538

reach the uppermost values must follow this path.539

The third experiment follows a path which highlights the540

possibility to form loops by falling from the third window541

back to the first. This happens thanks to the fact that no 542

constraints in the LUT enforce the previous/next window 543

relationships. With a similar mechanism, pits can be created, 544

allowing a state-machine like behaviour. This occurs when 545

the frequency of the input signal increases above the first 546

jump value and then decreases producing a jump up around 547

28 kHz and a further jump down at 25 kHz. 548

The last path shows a reverse path following, from the 549

highest to the lowest frequencies values mapped in the table. 550

The reverse sweep is again highlighting the loose relationship 551

between LUT windows. A single jump occurs in this case 552

around 30 kHz. 553

Clearly, more complex paths of frequency drifts can occur 554

in real cases, however they can be reconstructed simply look- 555

ing at the series of jumps in the output generated by the LUT. 556

B. DETECTION OF POWER GRID MAINS FREQUENCY 557

DRIFT 558

In order to test the LUT approach outlined in this paper, 559

we focused on detecting the occurrence of frequency drifts 560

in an historical dataset reporting the mains frequency of the 561

Continental Europe power grid taken with a sampling time of 562

one minute in the week 9th−15th of September 2012 [27]. 563

The LUT has been realized designing the multivalued fre- 564

quency response so that the nominal value of the power grid 565

frequency, i.e. fn = 50 Hz, lies within the jump resonance 566

range and the jump frequencies are located at: f1 = 49.98 Hz, 567

f2 = 49.99Hz, f3 = 50.01Hz, f4 = 50.02Hz, f5 = 50.04Hz, 568

f6 = 50.06 Hz. This is obtained choosing ω0 = 270 rad/s 569

and ξ = 0.01. However, due to the modularity of the LUT 570

implementation, note that the jump frequencies can be fixed 571

by suitably rescaling the frequency ranges in the previously 572

adopted LUT. 573

The output of the LUT, reported in Fig. 9 together with 574

the trend of the drift of the mains frequency f around the 575

nominal value fn, allows to determine the specific path of 576

frequency drift by inspecting its jumps and the levels among 577

which they occur. The output of the LUT, in fact, shows a 578

series of jumps which unveils specific path of drifts in the 579

mains frequency. In order to clarify this point, let us refer to 580

the zoom reported in Fig. 10where two jumps are highlighted. 581

The first jump occurs between sample 7200 and sample 7201, 582

corresponding to the jump down at f1 from the upper branch 583

of the multivalued frequency response. This indicates a drift 584

from a frequency above the nominal value (f = 50.02 Hz) to 585

a frequency below it (f = 49.98). Moreover, the second jump 586

still indicates that the frequency is decreasing but, as a jump 587

up is observed at f3 this indicates that the frequency remains 588

above the nominal values (drifting from f = 50.02 Hz to 589

f = 50.01 Hz). 590

VI. COMPARATIVE DISCUSSION 591

The dynamic behaviour of the LUT approach described in 592

this paper allows the creation of loops and initial/final states, 593

thus allowing the creation of complex state machines which 594

are based on the input values. 595
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FIGURE 8. Experimental results: Test 1: (a) frequency of the input signal sweeping from 100 Hz to 90 kHz and (b) oscilloscope trace
of the LUT output; Test 2: (c) frequency of the input signal sweeping from 100 Hz to 33 kHz, then from 33 kHz to 28 kHz and then
from 28 kHz to 90 kHz and (d) oscilloscope trace of the LUT output; Test 3: (e) frequency of the input signal sweeping from 100 Hz
to 33 kHz, then from 33 kHz to 100 Hz and (f) oscilloscope trace of the LUT output; Test 4: (g) frequency of the input signal
sweeping from 100 kHz to 100 Hz and (h) oscilloscope trace of the LUT output.

The proposed LUT approach has several advantages596

over other approaches. Leaving out the frequency detec-597

tion portion of the system, which can be implemented598

using several strategies, the hysteresis path behaviour 599

can be obtained using one of the below described 600

algorithms. 601
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FIGURE 9. Detection of frequency drifts in mains frequency of the
Continental Europe power grid. Upper panel: output of the LUT; lower
panel: mains frequency trend sampled at one minute intervals.

FIGURE 10. Detection of frequency drifts in mains frequency of the
Continental Europe power grid, zoom between samples 7000 and 7500.
Upper panel: output of the LUT; lower panel: mains frequency trend
sampled at one minute intervals. The two highlighted jumps occurs at
f1 and f3, thus unveiling two different drift paths.

A. JUMP RESONANCE LUT PARADIGM602

The windowed LUT offers a straightforward way to assess603

complex hysteresis paths on an input signal. The proposed604

solution advantages, summarizing are:605

• Less-than O(n) computational complexity, due to the606

indexing function and direct selection on the window.607

• LUT windows (frames) are easy to generate, as easy as608

standard LUTs.609

• Connections between windows (frames) can also be eas-610

ily automated.611

• Connections may also be reorganized on-the-fly (run-612

time) easily.613

• Opportune windowing may help reducing footprint of614

flat or small-varying table portions.615

As concern the computational cost of the proposed solu-616

tion, as the LUT is evaluated through a single direct memory617

access, the running time is essentially due by the algorithm618

estimating the signal frequency. The proposed mean-crossing619

algorithm is performed within the ADC clock, therefore the620

running time is up to τ1 ≈ 5.5 ms.621

As concerns the bandwidth limits, it should be considered622

that the detection frequency depends both on the settings of623

the ADC onboard the MCU and on the DMA buffer size,624

which is used for the detection. From the ADC point of625

view, the main parameters directly affecting the sampling626

frequency are:627

1) The clock prescaler (frequency divider): tuning 628

prescaler gives the ability to span from (virtually) 629

0 to the maximum ADC frequency (2.4Msps in the 630

STM32F443RE). The implemented system is working 631

on a single ADC channel, thus the sample rate also 632

depends on the number and the operating mode of 633

channels that are acquired (e.g. 7.2 Msps in triple 634

interleaved mode). 635

2) The number of bits of the ADC, which translates in 636

clock cycles to obtain a sample. In the specific setup, 637

the ADC requires 15/13/11/9 cycles for 12/10/8/6 bits, 638

respectively. 639

3) The DMA buffer size, where the frequency detection 640

routine is taking place. Considering that the frequency 641

detection is essentially a threshold passing count to 642

have a reliable detection, a sufficient number of traver- 643

sal points must be found in the buffer. When working 644

at higher ADC sample rates, problems may arise with 645

low frequency signals, as the needed buffer size must 646

be increased to become able to see a sufficient number 647

of traversals. 648

4) The DMA buffer size also directly influences the drift 649

detection speed. Given that the detection algorithm is 650

executed over the whole buffer to compute the fre- 651

quency, an increase in its size directly translates in an 652

increase of the time between two successive frequency 653

computations. 654

The choice of these parameters determines, there- 655

fore, the effective bandwidth. The clock prescaler puts a 656

limit on the maximum detectable frequency: the lower the 657

prescaler, the higher the sample rate and, consequentially, the 658

higher the maximum detectable frequency. However, having 659

a higher sample rate requires a larger DMA buffer size to 660

contain one or more input waveform cycles, in order to 661

properly detect the frequency. This means that with higher 662

sampling rates, the low frequency detection capability is 663

capped by the DMA buffer size. 664

Moreover, the varying the number of ADC bits allow a 665

slight clock cycle improvement, thus an higher sample rate, 666

at the cost of the loss of resolution in the signal. This can be 667

considered a mild issue when only the frequency detection 668

algorithm must be executed on the signal. 669

Summarizing, higher sample rates, obtained by means 670

of lower prescaler values or decreased ADC bits resolu- 671

tion, translate into higher maximum detectable frequency 672

but requires a DMA buffer size increase to allow also low 673

frequency detection; larger DMA buffer sizes allow increased 674

span of detectable frequencies but decreases the detection 675

speed. 676

Carefully tuning both the parameters, the frequency span 677

and resolution can be adjusted, to suit the specific detection 678

needs. In the experimental analysis presented above, we fixed 679

the ADC clock at 11.250 MHz, with a resolution of 12 bits, 680

and DMA buffer size of 4096 samples. This leads to admissi- 681

ble input signals with frequency in the range between 10 Hz 682

and 300 kHz. 683
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B. STRAIGHT COMPUTATION684

Instead of having all the values in a table, each single gen-685

erating function could be implemented on the obtained fre-686

quency instantaneous value and trend. This approach has687

the advantages of a smaller code and memory requirements688

(reduced RAM/FLASH footprint), and easier coding, due689

to simple implementation of the functions, which could690

become code libraries. On the other hand, disadvantages691

of this approach are the heavier computation, which may692

require more power (processing and, in turn, energy), com-693

plex behavioural scenarios cannot always be represented by694

paths described by functions (e.g., pits), dynamics may need695

added state-machine like control, trend computation may696

require other numerical filtering to become stable, eventual697

table adjustment may require full rewriting of equations, gen-698

eration of complex curves may require entire equations and699

jump logic rewrite, and difficult automated generation of on-700

the-fly equation to apply. Adopting a DSP-ARM processor,701

the frequency content is evaluated on the STM32F446RET6702

microcontroller in 1.8 ms, i.e. the time needed to calculate703

the FFT over a dataset of 4096 samples, consistent to the set704

used in our approach, once the buffer has been populated in705

τ1 ≈ 5.5 ms. Even if the FFT can be performed within the706

same clock cycle, in order to determine the drift, a number N707

of complete frequency evaluations are necessary to determine708

the drift, which depends on the drift speed itself. Therefore,709

the running time is about τ2 = Nτ1. The bandwidth is710

therefore reduced with respect to the LUT case.711

C. STATE MACHINES712

State machine approach is similar to the proposed one, which713

means that, instead of describing jumps using an intrinsic714

strategy, the logic is moved into a switch-case condition715

where frequency trend is evaluated constantly together with716

current detected frequency. This approach has a similar mem-717

ory footprint and code complexity of the proposed solution,718

while it may be error-prone as jumps logic must be fully spec-719

ified using a switch case logic, which may result in complex720

state changes to reach wanted states. Moreover, it presents721

difficult tuning, and maintainability and difficult automated722

table generation or on-the-fly changes. The running time is723

also affected by these nested logic, nevertheless maintaining724

the need of τ1 = 5.5 ms to complete the data acquisition.725

Therefore, the time needed by this approach to detect the drift726

is τ3 = τ1 + τL , where τL ≈ 1.8 ms is the average time727

to process the nested logic. Also in this case, the increased728

average time leads to a reduced bandwidth with respect to729

the LUT case.730

VII. CONCLUSION731

Frequency drifts are common in several areas either tech-732

nological or scientific. The reliable and efficient detection733

of frequency drifts, therefore, is a problem with multiple734

application in industrial informatics and in related fields735

and not only focusing on electric and electronic scenarios.736

In fact, it arises also in mechanics and civil engineering,737

where vibrations and their frequency must suitably moni- 738

tored. Moreover, a recently emerging area of interest is also 739

in the context of the pandemic monitoring. As a specula- 740

tive example, in the Covid-19 pandemics, vaccination rate 741

assumed a fundamental role in controlling the dimension of 742

the outbreak. Sensing the variation of the vaccination rate, 743

and the effect that this produces, can be considered as a 744

frequency drift detection problem. By monitoring the vacci- 745

nation rate, it may be possible to qualitatively infer the impact 746

of the outbreak of new SARS-CoV-2 variants. 747

The paradigm introduced in this paper offers an easy and 748

MCU friendly way of implementing a device for frequency 749

drift detection based on a nonlinear dynamical feedback 750

system not designed to exclusively monitor electrical quan- 751

tities. This key feature allows to obtain a device which is 752

highly reconfigurable, as opportunely shaping the frequency 753

response of the nonlinear system, it is possible to implement 754

complex LUTs with hysteresis. Moreover, reconfiguring the 755

nonlinear part of the oscillator, increasing the order of the 756

polynomial nonlinearity easily ensures the possibility to get 757

the desired selectivity for the drift detection, allowing to 758

discriminate over complex paths of increase and decrease 759

of the frequency without the a-priori knowledge of the drift 760

dynamics. It should be noted that the only a-priori knowledge 761

needed to construct the LUT is the nominal frequency of 762

the signal under monitoring. Slightly tuning the parameters 763

of the nonlinear system ensures the capability to adapt the 764

LUT to the specific characteristics of the frequency drifts, 765

thus optimizing its capabilities. 766

The frequency range over which it is possible to design 767

the desired nested detection hysteresis is limited by several 768

factors which, however, make the solution suitable up to 769

3 MHz signals for the considered STM32F446RET6 micro- 770

controller. Its ease in terms of algorithm complexity, renders 771

its implementation immediate even on power-limited devices. 772

The possibility to implement the LUT on low-cost devices is 773

a fundamental advantage of the proposed scenario since puts 774

this new strategy in the class of cheap DSP equipment. 775

REFERENCES 776

[1] G. Filatrella, A. H. Nielsen, and N. F. Pedersen, ‘‘Analysis of a power grid 777

using a Kuramoto-like model,’’ Eur. Phys. J. B, vol. 61, no. 4, pp. 485–491, 778

Mar. 2008. 779

[2] P. T. de Boer. Accuracy and Stability of the 50 Hz Mains Fre- 780

quency. Accessed: Aug. 27, 2022. [Online]. Available: http://wwwhome. 781

cs.utwente.nl/~ptdeboer/misc/mains.html 782

[3] L. V. Gambuzza, A. Buscarino, L. Fortuna, M. Porfiri, and M. Frasca, 783

‘‘Analysis of dynamical robustness to noise in power grids,’’ IEEE 784

J. Emerg. Sel. Topics Circuits Syst., vol. 7, no. 3, pp. 413–421, Sep. 2017. 785

[4] T. Niu, J. Wang, H. Lu, W. Yang, and P. Du, ‘‘A learning system integrating 786

temporal convolution and deep learning for predictive modeling of crude 787

oil price,’’ IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4602–4612, 788

Jul. 2020. 789

[5] T. Odagaki, ‘‘Self-organization of oscillation in an epidemic model 790

for COVID-19,’’ Phys. A, Stat. Mech. Appl., vol. 573, Jul. 2021, 791

Art. no. 125925. 792

[6] G. E. Billman, ‘‘Heart rate variability—Ahistorical perspective,’’Frontiers 793

Physiol., vol. 2, Nov. 2011, Art. no. 86. 794

[7] M. S. Reza andM.M. Hossain, ‘‘Enhanced grid synchronization technique 795

based on frequency detector for three-phase systems,’’ IEEE Trans. Ind. 796

Informat., vol. 18, no. 4, pp. 2180–2191, Apr. 2021. 797

96258 VOLUME 10, 2022



G. Avon et al.: Sensing Frequency Drifts: A Lookup Table Approach

[8] M. Branciforte, L. Fortuna, A. Buscarino, M. Bucolo, and798

F. N. Poruthotage, ‘‘Electronic device, corresponding apparatus, method799

and computer program product,’’ U.S. Patent 1 130 059 6 B2, Oct. 9, 2022.800

[9] R. C. Agarwal, J. W. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman,801

and B. Tuckerman, ‘‘New scalar and vector elementary functions for the802

IBM system/370,’’ IBM J. Res. Develop., vol. 30, no. 2, pp. 126–144,803

Mar. 1986.804

[10] P. T. P. Tang, ‘‘Table-lookup algorithms for elementary functions and their805

error analysis,’’ in Proc. 10th IEEE Symp. Comput. Arithmetic, Jun. 1991,806

pp. 232–236.807

[11] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,808

vol. SE-2, no. 4, pp. 308–320, Dec. 1976.809

[12] A. Suresh, E. Rohou, and A. Seznec, ‘‘Compile-time function memoiza-810

tion,’’ in Proc. 26th Int. Conf. Compiler Construct., Feb. 2017, pp. 45–54.811

[13] A. Pang and P. Membrey, Beginning FPGA: Programming Metal.812

New York, NY, USA: Apress, 2019.813

[14] A. A. Youssef, B. Murmann, and H. Omran, ‘‘Analog IC design using pre-814

computed lookup tables: Challenges and solutions,’’ IEEE Access, vol. 8,815

pp. 134640–134652, 2020.816

[15] V. Boussard, S. Coulombe, F.-X. Coudoux, and P. Corlay, ‘‘CRC-based817

correction of multiple errors using an optimized lookup table,’’ IEEE818

Access, vol. 10, pp. 23931–23947, 2022.819

[16] Q. H. Quadri, S. Nuzzo, M. Rashed, C. Gerada, and M. Galea, ‘‘Modeling820

of classical synchronous generators using size-efficient lookup tables with821

skewing effect,’’ IEEE Access, vol. 7, pp. 174551–174561, 2019.822

[17] J. Cong, M. Ercegovac, M. Huang, S. Li, and B. Xiao, ‘‘Energy-efficient823

computing using adaptive table lookup based on nonvolatile memories,’’824

in Proc. Int. Symp. Low Power Electron. Design (ISLPED), Sep. 2013,825

pp. 280–285.826

[18] H. Magalháes, F. Marques, B. Liu, J. Pombo, P. Flores, J. Ambrósio, and827

S. Bruni, ‘‘An optimization approach to generate accurate and efficient828

lookup tables for engineering applications,’’ inProc. Int. Conf. Eng. Optim.829

Cham, Switzerland: Springer, Sep. 2018, pp. 1446–1457.830

[19] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques831

for High-Performance Graphics and General-Purpose Computation.832

Reading, MA, USA: Addison-Wesley, 2005.833

[20] A. Buscarino, C. Famoso, L. Fortuna, and M. Frasca, ‘‘Multi-jump reso-834

nance systems,’’ Int. J. Control, vol. 93, no. 2, pp. 282–292, Feb. 2020.835

[21] M. Bucolo, A. Buscarino, L. Fortuna, and M. Frasca, ‘‘Multiple hysteresis836

jump resonance in a class of forced nonlinear circuits and systems,’’ Int.837

J. Bifurcation Chaos, vol. 30, no. 15, Dec. 2020, Art. no. 2050258.838

[22] A. Buscarino, L. Fortuna, and M. Frasca, Essentials of Nonlinear Circuit839

Dynamics With MATLAB and Laboratory Experiments. Boca Raton, FL,840

USA: CRC Press, 2017.841

[23] D. P. Atherton, Nonlinear Control Engineering. Wokingham, U.K.:842

Van Nostrand Reinhold, 1982.843

[24] R. Genesio and A. Tesi, ‘‘Harmonic balance methods for the analysis844

of chaotic dynamics in nonlinear systems,’’ Automatica, vol. 28, no. 3,845

pp. 531–548, May 1992.846

[25] P. A. Cook, Nonlinear Dynamical Systems. Upper Saddle River, NJ, USA:847

Prentice-Hall, 1994.848

[26] D. Zwillinger, Ed., CRC Standard Mathematical Tables and Formulae.849

Boca Raton, FL, USA: CRC Press, 2011.850

[27] Dataset. Accessed: Aug. 27, 2022. [Online]. Available: https://www.851

mainsfrequency.com/services.htm852

GIUSEPPE AVON received the M.S. degree in853

automation engineering and control of complex854

systems, in 2020. He is currently pursuing the855

Ph.D. degree in systems, energy, computer and856

telecommunications engineering with the Uni-857

versity of Catania within the framework of the858

ENI-CNR Joint Research Agreement. He is end-859

ing a Traineeship at Fusion for Energy ITER860

Development, CODAC Department, as a C/C++861

Developer for standard and embedded systems,862

specialized in MARTe2 and MARTe2-components real-time application863

framework. He has previous work experiences in the software development864

field, mainly devoted to custom machine supervision and control.865

MAIDE BUCOLO (Senior Member, IEEE) 866

received the M.S. degree in computer science 867

engineering and the Ph.D. degree in electronic 868

and control engineering from the University of 869

Catania, in 1997 and 2001, respectively. During 870

the Ph.D., she worked as a Research Scholar at the 871

University of California at San Diego (UCSD) and 872

after that, often, she has been a Visiting Researcher 873

at the Microhemodynamics Laboratory, Depart- 874

ment of Bioengineering, UCSD. She is currently 875

an Associate Professor of control system at the Department of Electrical, 876

Electronic and Informatics, University of Catania. In 2010, she established 877

and became responsible of the Bio-Microfluidics Laboratory. She has been 878

the co-ordinator of national projects and international exchange programs. 879

She worked as an expert in the technology innovation demand of regional 880

small and medium enterprisers. She has published more than 100 scientific 881

contributions in peer-reviewed international journals and conferences. Her 882

research interests include methodologies and low-cost technologies for bio- 883

microfluidics systems modeling and control. She serves as an Associate 884

Editor for the IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS. She 885

is the President of theMaster’s Course in Automation Engineering at Control 886

of Complex Systems at the University of Catania. 887

ARTURO BUSCARINO (Senior Member, IEEE) 888

received the degree in computer science engi- 889

neering and the Ph.D. degree in electronics and 890

automation engineering from the University of 891

Catania, Italy, in 2004 and 2008, respectively. He is 892

currently an Associate Professor at the University 893

of Catania, he teaches modeling and optimization 894

at the Laura Magistrale in management engineer- 895

ing, automatic control, the Laurea in electronics 896

engineering and nonlinear systems control, and 897

the Laurea Magistrale in automation engineering and control of complex 898

systems, University of Catania. He works on nonlinear circuits, control, 899

and synchronization. He published more than 200 papers on refereed inter- 900

national journals and international conference proceedings. His research 901

interests include nonlinear systems and chaos, complex networks, control 902

systems, cellular nonlinear networks, and plasma engineering. 903

LUIGI FORTUNA (Fellow, IEEE) received the 904

degree (cum laude) in electrical engineering from 905

the University of Catania, Italy, in 1977. He was 906

the Co-ordinator of the courses in electronic engi- 907

neering and the Head of the Dipartimento di 908

Ingegneria Elettrica Elettronica e dei Sistemi. 909

From 2005 to 2012, he was the Dean of the Engi- 910

neering Faculty. He also teaches automatic control 911

and robust control. He is currently a Full Professor 912

of system theory with the University of Catania. 913

He has published more than 500 technical articles and 12 scientific books. 914

His research interests include robust control, nonlinear science and complex- 915

ity, chaos, cellular neural networks, soft computing strategies for control, 916

robotics, micronanosensor and smart devices for control, and nanocellular 917

neural networks modeling. He was the IEEE Circuits and Systems (CAS) 918

Chair of the CNN Technical Committee, the IEEE CAS Distinguished 919

Lecturer, from 2001 to 2002, and the IEEE Chair of the IEEE CAS Chapter 920

Central-South Italy. 921

922

Open Access funding provided by 'Università degli Studi di Catania' within the CRUI CARE Agreement

VOLUME 10, 2022 96259


