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ABSTRACT The world’s elderly population continues to grow at an unprecedented rate, creating a need
to monitor the safety of an aging population. One of the current problems is accurately classifying elderly
physical activities, especially falling down, and delivering prompt assistance to someone in need. Owing
to the advancements in deep learning research, vision based solutions are employed for action recognition.
One such popular approach is human pose estimation based action recognition or fall detection. Nevertheless,
due to a lack of large-scale elderly fall datasets and the continuation of numerous challenges such as varying
camera angles, illumination, and occlusion accurately classifying falls has been a problematic. To address
these problems, this research first carried out a comprehensive study of the AI Hub dataset collected from
real lives of elderly people in order to benchmark the performance of state-of-the-art human pose estimation
methods. Secondly, owing to the limited number of real datasets, augmentation with synthetic data was
applied and performance improvement was validated based on changes in the degree of accuracy. Third, this
study shows that a Transformer network applied to elderly action recognition outperforms LSTM-based
networks by a noticeable margin. Lastly, by observing the quantitative and qualitative performances of
different networks, this paper proposes an efficient solution for elderly activity recognition and fall detection
in the context of surveillance cameras.

16 INDEX TERMS Elderly care, fall detection, pose estimation, synthetic data, video surveillance.

I. INTRODUCTION17

In today’s world, one of the increasing challenges is caring for18

the elderly. By 2050 there will be 1.5 billion people 65 years19

or older, accounting for 16% of the world population [1].20

As a result, monitoring the physical activities of older people,21

especially for fall detection and prevention, is critical to pro-22

viding better elderly care and a longer life expectancy. Fortu-23

nately, with the advent of modern technologies assisted living24

has become more accessible to monitor the behavior of an25

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

aging population. In the last decade, researchers detected falls 26

by wearable devices, environmental sensors, and cameras [2]. 27

Sensors and wearable devices may offer a quick response 28

time and better fall-detection accuracy. Nevertheless, these 29

methods fail when a person forgets to wear the device or falls 30

in an untracked area [3]. Thus, a more efficient approach is 31

to take advantage of the increasing number of surveillance 32

cameras which are easy to set up and that receive consistent 33

data by tracking an entire area. However, the rapid increase 34

of surveillance cameras raises serious concerns about pri- 35

vacy, and discriminatory bias against specific groups of peo- 36

ple [4]. Among many methods, an effective one to avoid the 37
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FIGURE 1. Overview of the Performance Evaluation Methodology. Using the AI Hub dataset, performance of
bottom-up and top-down human pose estimation approaches underwent pose estimation and action recognition
evaluations. Next, after mixing AI Hub and KIST SynADL datasets performance improvement was measured in terms
of model accuracy. Here, T represents the number of frames.

previously mentioned problems is skeleton-based action38

recognition, which offers a high degree of anonymity [5].39

Although human pose estimation achieves desirable results40

for scientific datasets, when encountering real-life chal-41

lenges, such as occlusion, illumination, and steep camera42

angles the recognition accuracy may degrade leading to fail-43

ure of action classifiers. However, the lack of real-world44

elderly activity datasets has limited current fall detection45

research focusing mainly on scientific datasets: [6], [7], [8],46

[9] and [10]. These datasets are collected from laboratory47

surroundings that differ from daily living environments. Fur-48

thermore, most of the fall detection datasets involve young49

people whose speed and actions differ from the elderly [11].50

As a result, when an action recognition model is trained on51

such datasets and tested in real-world settings, these dif-52

ferences may result in unreliable action recognition [12].53

Consequently, it is assumed that these methods do not exhibit54

generalization capabilities for elderly physical action recog-55

nition in real-world environments. To address these problems56

a qualitative and quantitative study was carried out on the AI57

Hub dataset [13], which covers 12 types of falls and daily life58

activities.59

The major contributions of this paper are threefold:60

(i) In this research, the performance of state-of-the-art61

pose estimation methods is evaluated qualitatively and62

quantitatively by using the AI Hub dataset. (ii) This paper63

evaluates the degree of performance improvement from syn-64

thetic data when added to the limited amount of real-life65

data. (iii) After extensive experiments, accurate and efficient66

pose estimation and action recognition models are proposed67

for real-world fall detection and elderly physical activity68

recognition.69

This paper is organized in the following order. Section II 70

outlines a literature review of public fall detection datasets, 71

pose-based human action recognition and fall detection 72

in addition to synthetic data usage. Section III introduces 73

the proposed methodology. Section IV presents implemen- 74

tation details, describing the qualitative and quantitative 75

results. Section V discusses the findings of the research. 76

Finally, section VI draws conclusions from this research. 77

Code and video explanations are publicly available in 78

https://sard0r.github.io/. 79

II. RELATED WORKS 80

A. VISION-BASED FALL DETECTION DATASETS 81

Because deep learning models require a large amount of data, 82

it is crucial to select training and testing datasets to achieve 83

high performance in real-world applications. For this reason, 84

this research compared several vision-based public datasets 85

and a dataset that fulfills the real-world requirements was 86

chosen. Table 1 lists the well-known and public fall detec- 87

tion datasets comparing the year published, the types of fall, 88

the number of subjects, daily activities included, occlusion, 89

places recorded, participant’s ages, dataset size, and number 90

of locations. 91

1) Le2i 92

In 2013, being one of the first, Charfi et al. [6] presented 93

the Le2i fall detection dataset, which was recorded by a 94

single surveillance camera. In total, the dataset consists of 95

191 videos in which 143 contain falls and the other 48 show 96

daily activities. To collect the dataset, nine subjects were 97

involved in performing three types of fall-down actions and 98

six different activities of daily life. Videos were captured 99
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TABLE 1. Vision-based publicly available fall detection datasets.

in four different locations with a resolution of 320 x 240100

at 25 fps.101

2) UNIVERSITY OF RZESZOW102

Later in 2014, Kwolek and Kepski [7] introduced the Univer-103

sity of Rzeszow fall detection (URFD) dataset including both104

RGB and depth data types. It was recorded in a laboratory105

environment by a single subject using two Kinetic cameras.106

Overall, it contains 70 videos in which 2373 frames are falls,107

7452 are non-falls, and the other 1719 are transition frames.108

3) HIGH-QUALITY FALL SIMULATION DATASET109

In order to bridge the gap between simulated datasets and110

realistic falls, Baldewijns et al. [8] presented the High-quality111

Fall Simulation Dataset (HQFSD). This dataset was captured112

using five web cameras using 640 x 480 resolution recorded113

at 12 fps in a nursing home room. Ten subjects were involved114

in 55 fall scenarios. Each of the five cameras recorded115

2:25:54 hrs of fall data.D116

4) FALL DETECTION DATASET117

In 2017, Adhikari et al. [9] presented the Fall Detection118

Dataset (FDD) [12], which was captured using an uncali-119

brated Kinect sensor. Five subjects performed falling-down120

actions. In total, the dataset consists of 22,636 images121

recorded in five different rooms from eight viewing angles.122

Out of five participants, two of them aremale (32 and 50 years123

of age) and three are female (19, 28, and 40).124

5) UP-FALL125

In 2019, the UP-Fall dataset [10] was presented. The dataset126

was captured using three modalities: wearable sensors, ambi-127

ent sensors, and vision sensors. Seventeen subjects between128

ages 18 and 24 staged five falls and six daily life activities.129

6) AI HUB DATASET130

In 2020, the Korean government collected the AI Hub dataset131

for assisted living scenarios. The dataset was captured in both132

indoor and outdoor environments where elderly people aged133

60 years and over performed 12 different actions. The dataset134

contains 2500 untrimmed videos recorded using CCTV at135

3840 x 2160 resolution consisting of the following actions:136

falling down, leaning, sitting, bending, lying down, standing137

up, walking, crawling, picking something up, turning, drink-138

ing, and eating. Actions were recorded at home, in a hospital,139

at a community center, in a parking lot, a park, a market,140

a residential alley, a subway station, on a footbridge, and in 141

front of apartment complexes. 142

This research was carried out using the AI Hub dataset 143

for a number of reasons. First, because it was collected in 144

10 different environments there is great variance in distances 145

and viewing angles from camera to subject. Second, unlike 146

laboratory environments, real-world surveillance cameras 147

stream continuously, day and night. Thus, as the videos were 148

recorded both at night and during the daytime, it represents 149

different levels of complexity. Third, it was collected in places 150

where the elderly usually happen to be in need (for example, 151

hospitals and community centers), enabling us to evaluate the 152

performance of human pose estimationmethods in real-world 153

assisted living scenarios. 154

B. POSE-BASED HUMAN ACTION RECOGNITION AND 155

FALL DETECTION 156

In recent years, pose-based human action recognition has 157

attracted a lot of attention owing to big improvements in 158

human pose estimation. Table 2 outlines related work. There 159

have been many successful attempts to exploit human pose 160

estimation for elderly action recognition. Yang et al. [14] 161

proposed a pose refinement system in a combination of 162

AlphaPose [15], OpenPose [16], and LCRNet++ [17] to 163

extract accurate pose sequences from the Toyota Smarthome 164

dataset [18], including cases of occlusion, truncation, and low 165

resolution, and reporting a 4.4% accuracy increase compared 166

to other multimodal methods. Later, Yang and colleagues 167

[19] introduced a new framework called UNIK for real-world 168

skeleton-based action recognition. Their proposed approach 169

used the Toyota Smarthome dataset, achieving accuracies of 170

64.3% in cross-subject evaluations and 65% in cross-view 171

evaluations. Moreover, Jang et al. [12] presented an RGBD 172

dataset of daily activities by elderly people for care robots 173

and proposed a four-stream adaptive CNN architecture for 174

action recognition. Their work reported 90.10% accuracy by 175

training the model on features obtained using OpenPose. 176

In terms of pose-based fall detection, Hasan et al. [20] 177

built a robust human fall detection system using Long 178

short-term memory (LSTM) and GRU networks based on 179

the OpenPose pose estimator and reported 99% sensitivity 180

using the Le2i, and URFD datasets. Lin et al. [21] approached 181

the problem of fall detection with a similar method, intro- 182

ducing a fall detection framework utilizing OpenPose as 183

a feature extractor and LSTM and GRU for classifica- 184

tion, achieving 98.2% accuracy using the URFD dataset. 185
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TABLE 2. Related works for pose estimation-based human action recognition and fall detection.

Taufeeque et al. [22] introduced real-time, multi-camera,186

multi-person fall detection by using skeleton features from187

OpenPifPaf [23] and LSTM for classification, reporting188

a 92.5% F1-score with the UP-Fall dataset. Furthermore,189

Ramirez et al. [24] exploited the AlphaPose pose estima-190

tion method and performed fall detection with the UP-Fall191

dataset, improving the average accuracy to 99.34% with a192

random forest classifier. More recently, Yadav et al. [25]pre-193

sented an efficient activity recognition and fall detection194

system utilizing OpenPose and a combination of Conv1D195

and GRU networks. This system was trained on the UP-Fall196

dataset showing 96.7% accuracy. Similar to our research,197

Serpa et al. [26] evaluated human pose estimation methods198

such as AlphaPose, OpenPose, and PoseNet [27] as a solution199

to the fall detection problem. Their proposed work compared200

these methods in terms of average precision, frame accuracy,201

and keypoint accuracy, as well as action classification accu-202

racy. To conduct a comparative study, they chose the URFD203

dataset and an MLP model for classification. The findings of204

the research were that AlphaPose outperformed the other two205

pose estimation networks at 94.5% for sensitivity and 99.9%206

for specificity. The shortcomings of this work are threefold.207

One is that the evaluation was performed on limited scientific208

data consisting of only 70 videos. Another shortcoming high-209

lighted by the authors is that low light and occlusions were210

not considered but left for future work. Most importantly,211

performance evaluation was based solely on a quantitative212

comparison, excluding qualitative analysis.213

C. SYNTHETIC DATA USAGE214

While learning behaviors from synthetic data is an under-215

researched area, recently there has been a great deal of interest216

in usage of synthetic data for human action recognition and217

fall detection. Because deep learning models are extremely218

data hungry, to achieve better generalization a number of219

researchers have resorted to exploiting synthetic data to pro-220

vide networks with an abundant amount. Wang et al. [11]221

generated a large-scale synthetic dataset covering 55 elderly222

activities using Unreal Engine platform. The study covered223

the exploitation of synthetic data as an augmentation224

for real data reporting up to 2.41% accuracy improve-225

ment in recognition of elderly physical activities. Similarly,226

Zherdev et al. [28] generated a synthetic dataset to overcome227

the data scarcity problem for elderly fall detection. The aim228

of the study was to evaluate the effectiveness of using only 229

synthetic data in real fall scenarios. It reported a 97.6% fall 230

detection accuracy when the network was trained with solely 231

synthetic data and tested on URFD real dataset. 232

Throughout the literature, the generative adversarial net- 233

work and computer graphics techniques have been popular 234

for obtaining synthetic datasets. Khodabandeh et al. [29] and 235

Wang et al. [30] generated synthetic data using a GAN, while 236

other studies utilized computer graphics and game platforms 237

to simulate human actions [11], [28], [31], [32]. To evaluate 238

performance improvement from using synthetic data, KIST 239

SynADL [11] was utilized for a number of reasons. Firstly, 240

the body shapes and motions of the characters were captured 241

from real actions by elderly people. Secondly, it was designed 242

especially for augmenting realistic elderly datasets for action 243

recognition by smart surveillance and care robots. Finally, 244

it is a large synthetic dataset including 15 characters who 245

performed 55 actions of elderly people in four different envi- 246

ronments. Although the article by Wang et al. [11] is closely 247

related to our research, it only considered synthetic data usage 248

targeting recognition of daily activities from a care robot’s 249

view. Therefore, it utilized realistic datasets [33] and [12] 250

which were captured in laboratory settings from a side view 251

for application by care robots. By contrast, our study focuses 252

on the usage of synthetic data for real-world surveillance 253

applications which is explored for the first time. 254

III. METHODOLOGY 255

In this section, a performance evaluation methodology for 256

human pose estimation methods is introduced as a solution 257

to elderly action recognition and fall detection. The overall 258

process of the proposed methodology is illustrated in Fig. 1. 259

The main aim of this research is to explore the performance 260

of human pose estimation methods for elderly action recog- 261

nition and fall detection in real-world surveillance, and to 262

illustrate the degree of improvement through synthetic data 263

exploitation. To evaluate the potential of pose estimation for 264

fall detection problems, five human pose estimation meth- 265

ods are considered with two prominent action recognition 266

networks. In general, the raw video frames from the chosen 267

real dataset are first fed into the selected pose estimation 268

methods, which output sets of human poses. Next, qualita- 269

tive and quantitative evaluations were performed for each 270

pose estimation method utilizing the extracted human pose 271

94252 VOLUME 10, 2022



S. Juraev et al.: Exploring Human Pose Estimation and the Usage of Synthetic Data for Elderly Fall Detection

TABLE 3. Comparision of the pose estimation methods. FPS values were
computed a using Nvidia GTX 1080Ti.

features. After qualitative and quantitative analysis of the272

selected pose estimation models, the influence of synthetic273

data was observed when mixed with real data.274

A. HUMAN POSE ESTIMATION AND DATA275

PREPROCESSING276

Human pose estimation methods can be categorized277

into top-down and bottom-up approaches. The top-down278

approaches employ a human detector to find human candi-279

dates before doing single-person pose estimation. In contrast,280

the bottom-up approaches first predict the keypoints of a281

person, and later associate the detected keypoints to form full282

poses. There are advantages and disadvantages to both pro-283

posed approaches [34]. For example, bottom-up approaches284

are efficient in inference speed while predicting the keypoints285

irrelative to human candidates in a scene. Nevertheless, they286

may produce disconnected or error-associated parts in trun-287

cation or occlusion scenarios.288

On the other hand, top-down approaches are dependent289

on person detector accuracy in addition to having inference290

speed in accordance with the person count in the image.291

However, the keypoint prediction performance of top-down292

approaches is highly accurate compared to the bottom-up293

approaches. Thus, to find the most accurate and efficient294

pipeline, two top-down and three bottom-up state-of-the-art295

human pose estimation methods were selected. From the296

top-down approaches, AlphaPose and DCPose [35] using297

YOLOv3 [36] as a detector were chosen for evaluation.298

From the bottom-up approaches, OpenPose, OpenPiPaf, and299

MoveNet [37] were selected. Table 3 shows the pose esti-300

mation methods with the chosen trained datasets and their301

respective mAPs and frames per second. All of the methods302

were trained on the COCO [38] dataset except DCPose,303

which was trained on the PoseTrack2017 [39] dataset. For a304

fair comparison, the most accurate models in terms of detec-305

tion quality were chosen for every pose estimation method.306

First, 25 image sequences at 960 x 540 were fed into the307

selected human pose estimation models, which extracted 2D308

poses in a T x K shape, where K is the total number of key-309

points and T is the number of frames. After applying human310

pose estimation, 18 and 17 keypoints were obtained from311

OpenPose and the other models, respectively. Each keypoint312

consists of three values: X and Y (representing human joint313

coordinates) in addition to C , measuring how correctly the314

keypoint was estimated. The keypoints obtained from pose315

estimation models were further normalized from 0 to 1 and316

fed into the action recognition models. For normalization, 317

if X represents the extracted keypoint features: 318

Xnormalized =
X − Xmin

Xmax − Xmin
(1) 319

B. ACTION RECOGNITION MODELS 320

1) TRANSFORMER MODEL 321

Mazzia et al. [40] proposed the Action Transformer archi- 322

tecture for classifying human action recognition in short 323

time steps. The proposed method outperformed many 324

RNN-based networks achieving real-time performance on 325

a CPU. Inspired by their success, the authors applied the 326

Transformer-based architecture to elderly action recognition 327

and fall detection for the first time. Fig. 2 illustrates the 328

classification procedures by Transformer of elderly actions. 329

In this proposed method, pose estimation is initially applied 330

to the input video, after which estimated keypoints are prepro- 331

cessed and projected linearly to the predefined transformer 332

encoder. Following that, keypoint features from pose estima- 333

tionmodels are added to class tokens and positional encoding, 334

forming input embeddings by the Transformer encoder. Then, 335

within the Transformer encoder, the input embeddings are 336

projected onto the multi-head attention layer followed by 337

fully connected layers. The output is then passed to the MLP 338

head, which predicts the action classes. 339

FIGURE 2. Architecture of the Transformer Model.

2) LSTM MODEL 340

Long short-term memory is an evolution of the classic 341

Recurrent Neural Network. Unlike traditional RNNs, LSTM 342

is designed to maintain the information of longer data 343

sequences and to learn variations in time. In the literature, 344

LSTM is popular in the application of action classification 345

achieving state-of-the-art accuracy [20], [21], [22]. Thus, 346

in this research for quantitative comparisons, LSTM was 347

chosen for observation alongside Transformer. An overview 348

of action recognition using LSTM can be seen in Fig. 3. 349

For action classification, the extracted keypoint features of 350

input videos from pose estimation models are passed as input 351

to pre-defined LSTM layers. The output features of the last 352

LSTM layer are then passed through dense layers followed 353

by a softmax layer to predict the probabilities of each class. 354
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FIGURE 3. Architecture of the LSTM Model.

C. EVALUATION METRICS355

1) POSE ESTIMATION METRICS356

The confidence score of each detected keypoint represents357

how likely the pose estimation models have successfully358

detected human joints. Extracted keypoint features from an359

input video having higher average confidence rate produce360

preferable results when used to recognize human actions.361

To calculate the average confidence of keypoints in a video362

(ACV), first average confidence of keypoints in an image363

(IC), is calculated as seen below:364

IC =

∑K−1
i=0 Ci
K

(2)365

ACV =

∑T−1
i=0 ICi
T

(3)366

In equation (2), C is the confidence of each keypoint, K367

denotes the total number of keypoints, and T stands for the368

number of frames.369

Owing to many factors, such as occlusion, dim light, and370

low-resolution pose estimation models fail to detect key-371

points of the human body. The ability of pose estimation372

models to detect keypoints under the above-mentioned condi-373

tions directly impacts the performance of action recognition374

models. Because the number of keypoints for each pose375

estimation is not equal, in this paper for the evaluation of376

pose estimation models the average percentage of missing377

keypoints is calculated. To estimate the average percentage of378

missing keypoints (AMV) from a video, first the percentage379

of missing keypoints (IM) in an image is calculated as seen380

below:381

IM =
n
K
× 100% (4)382

AMV =

∑T−1
i=0 IMi

T
(5)383

In equation (4), n represents the total number of missing 384

keypoints from an image. 385

2) ACTION RECOGNITION METRICS 386

To evaluate the performance of action recognition models, 387

four metrics of a confusion matrix [41], (accuracy, recall, pre- 388

cision, and F1-score) were chosen. Accuracy can be defined 389

as the ratio of the total number of correct predictions to the 390

total number of predictions. For a binary class classification, 391

recall, precision, and F1-score can be defined as follows. Pre- 392

cision is ameasure of correct predictions out of all the positive 393

predictions. Recall (or Sensitivity) is a measure observing the 394

accurately classified cases out of all positive cases. F1-score 395

combines precision and recall into a single metric by taking 396

their harmonic mean. However, because this study classifies 397

four action classes, the evaluation method differs from the 398

binary classification problem. For this study, precision, recall, 399

and F1-score for each action class were calculated separately, 400

after which the weighted average of each evaluation metric 401

from all action classes was calculated. 402

IV. EXPERIMENTS 403

A. IMPLEMENTATION DETAILS 404

1) DATASETS 405

To conduct the experiments four action classes were chosen: 406

falling down, standing up, lying down, and walking. Those 407

four classes exist in both the AI Hub and the Kist SynADL 408

datasets. KIST SynADL dataset was captured only from 409

indoor environments. Therefore, only indoor video samples 410

from the AI Hub dataset were considered for quantitative 411

analysis. Fig. 4 depicts the distribution of real and synthetic 412

videos exploited in our experiments. Sample instances from 413

both datasets are visualized in Fig. 5. In total, 1296 videos 414

were chosen from the AI Hub dataset. Classes such as falling 415

down, standing up, lying down, and walking included 166, 416

280, 350, and 500 samples, respectively. For each action 417

class, 1600 new synthetic video samples were added to the 418

training dataset from KIST SynADL. The amount of avail- 419

able indoor data in realistic scenarios is extremely limited. 420

Hence, one of the aims of this study was to evaluate the 421

FIGURE 4. The number of videos utilized from the AI Hub and KIST
SynADL datasets.
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FIGURE 5. Examples of each Action classes from AI Hub and KIST SynADL datasets.

performance gains obtained from exploiting synthetic data to422

combat data limitations. In other words, synthetic data were423

mixed with real video samples for training the deep learning424

models. For fair evaluation and reproducibility, the AI Hub425

dataset was divided into training and testing sets at a 3:1 ratio.426

Multiple experiments were performed where synthetic data427

used in the training set was increased by 1600, with each428

class given 400 new synthetic samples. The testing accuracy429

of action recognition models such as Transformer and LSTM430

were calculated on the real test dataset.431

2) TRAINING SETTINGS432

Table 4 summarizes the hyperparameters obtained from433

progressively training the two action recognition models.434

In order to obtain optimal hyperparameters for each network,435

the Optuna [42] framework was utilized with Hyperband [43]436

algorithms. Hyperparameters were tuned for the training set,437

excluding the test set. Thus optimal parameters were selected438

for training the Transformer and LSTM models. For a fair439

evaluation, both models were trained for 200 epochs on a440

personal computer with 16 GB RAM, an Intel I9-11900K441

CPU, and the Nvidia GTX 1080Ti GPU. For the LSTM442

model, three LSTM layers were designed with hidden units443

of 32, 64, and 32, after which there were four dense layers444

with dense units of 128, 64, 32, and 16. The Transformer445

model was composed of four Transformer encoder layers446

each consisting of one multi-head self-attention layer. In both447

TABLE 4. Training details of Transformer and LSTM.

of the action recognition models, the Adam [44] optimizer 448

was used with a learning rate of 0.001. Lastly, a dropout rate 449

of 0.3 was applied to both models for regularization. 450

B. EXPERIMENTAL RESULTS 451

1) QUALITATIVE ANALYSIS 452

Human pose estimation is considered a challenging task in 453

real-world applications. These challenges arise under many 454

conditions, such as camera angle, lighting condition, occlu- 455

sions, and camera-to-subject distance [45]. We evaluated the 456

performance of the above-mentioned pose estimation models 457

for elderly physical activity recognition in real-life surveil- 458

lance scenarios. In this regard, a qualitative comparison was 459
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FIGURE 6. Qualitative analysis of state-of-the-art pose estimation models.

conducted on indoor and outdoor image samples from the460

AI Hub dataset. Fig. 6 shows qualitative analysis where each461

row depicts different scenario complications, such as indoor462

bright and dim light, outdoor bright and dim light, occlusions,463

and lying. Each column illustrates the keypoint detection464

result of a given pose estimator. Among pose estimation465

models, AlphaPose achieved the most robust results in all466

cases. One exception was observed in indoor dim light sce-467

narios where it failed to detect occluded parts of the person.468

OpenPifPaf and DCPose demonstrated similar results, fail-469

ing only under indoor dim light. Although OpenPose pre-470

dicted the keypoints of a person in every scenario, it suf-471

fered from false positives in outdoor environments. MoveNet472

performed the worst, failing to detect keypoints accurately473

with respect to body joints in most scenarios. We observed474

that OpenPose andMoveNet detected false positive keypoints475

when a person was far from the camera and when there476

were other non-human objects similar to the shape of a 477

person. 478

2) QUANTITATIVE ANALYSIS 479

a: PERFORMANCE FROM SELECTED PIPELINES 480

To evaluate the robustness of the chosen pose estimation 481

methods quantitative experiments were conducted using 482

the AI Hub dataset. First, performance from the pose- 483

estimation-based action recognition pipelines was compared. 484

Results for accuracy, precision, recall, and F1-score in both 485

action recognition pipelines are shown in Table 5. Both 486

Transformer- and LSTM-based pipelines achieved good per- 487

formance when coupled with AlphaPose. The worst perfor- 488

mance was observed when MoveNet was used as a pose 489

feature extractor in the action recognition pipeline. The best 490

pipelines were AlphaPose for pose features and Transformer 491

for action classification. Pipeline results for accuracy, recall, 492
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TABLE 5. Transformer and LSTM pipeline results for each human pose
estimation model with the AI Hub dataset.

FIGURE 7. Comparisons for average percentage of missing keypoints with
the AI Hub dataset.

precision, and F1-score were 89.22%, 90%, 89%, and 89%,493

respectively. As an action classification model, Transformer494

showed superior performance compared to LSTM when495

paired with any pose estimation method. Performance differ-496

ences ranged up to 2.57%.497

b: POSE ESTIMATION EVALUATION498

Secondly, for quantitative analysis of pose estimationmodels,499

the average percentage of missing keypoints and the aver-500

age confidence for keypoints in T frames were compared.501

The reason was that the AI Hub dataset did not provide502

ground truth keypoints for body joints. Therefore, the mAP503

of the detected keypoints could not be calculated. To solve504

this issue, two metrics were proposed in Sec. III: average505

percentage of missing keypoints and average confidence of506

keypoints. The average percentage of missing keypoints for507

all methods is illustrated using boxplots in Fig. 7. Aver-508

age confidence of keypoints for all methods is explained509

in Fig. 8. We can see that AlphaPose and DCPose showed510

similar percentages of missing keypoints whereas the former511

achieved the best results with mean and median of 9.66% and512

2.26%, respectively. OpenPifPaf demonstrated the highest513

FIGURE 8. Comparisons for average confidence of pose estimation
models with the AI Hub dataset.

percentage of missing keypoints with mean and median of 514

42.12% and 36.51%, respectively. Similarly, from studying 515

the average confidence in keypoints, AlphaPose performed 516

the best with mean and median of 75.29% and 76.15%, 517

respectively, while MoveNet showed the worst result with 518

mean and median of 21.55% and 22.92%, respectively. 519

c: ACTION RECOGNITION MODEL COMPARISON 520

Lastly, for fair evaluation of action recognition in the models’ 521

performance, the important characteristics of Transformer 522

and LSTMwere calculated when trained and tested on the AI 523

Hub data. Table 6 shows the number of parameters, MFLOPs, 524

GPU memory requirements, and inference time of the Trans- 525

former and LSTM models. The table shows that both models 526

had comparable inference speeds. It is also worth mention- 527

ing that the number of parameters was 3.6 times higher in 528

Transformer. 529

TABLE 6. Model Parameters, MFLOPS, GPU Memory Requirements, and
Inference Time.

3) IMPACT OF THE SYNTHETIC DATA 530

a: SYNTH+REAL TRAINING 531

This section reports the impact from increasing the train- 532

ing data by using synthetic video samples. First, the per- 533

formance from action recognition models trained with real- 534

only (Real), synthetic-only (Synthetic), and mixed synthetic 535

and real (Real+Synthetic) data were compared. Correspond- 536

ing data are shown in the second row of Table 7 for both 537

Transformer and LSTM networks. It is interesting to see 538

the degree of generalization when the model was trained on 539

completely synthetic data and evaluated on real data. The 540

table shows that training the action classification models with 541
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TABLE 7. Training jointly on synthetic and real data.

FIGURE 9. Impact of synthetic data on accuracy: LSTM.

only synthetic data can achieve up to 70.19% accuracy with542

a Transformer model that uses AlphaPose keypoints. This543

already demonstrates a promising generalization capability544

with synthetic data. Up to 89.22% accuracy was obtained545

using only real data for training. When adding synthetic546

data to real training data, accuracy increased to 94.35%.547

Similar behavior was observed for other keypoint extractor548

methods.549

b: IMPACT OF SYNTHETIC SAMPLES PER CLASS550

In the above, we saw an increase in performance when adding551

synthetic data. Next, we examined the trend in performance552

improvement by adding synthetic data incrementally. Graphs553

in Fig. 9 and Fig. 10 capture the increased trends when554

adding more synthetic data to the training set of the action555

classification model.556

For each action classification model (i.e., Transformer and557

LSTM), five pipelines were analyzed with each pipeline cor-558

responding to different keypoint extractors. Analysis showed559

that the amount of synthetic data had a direct impact on action560

recognition performance. To capture the trend, we added561

1600 synthetic data in each step (400 samples for each class).562

With each addition of synthetic video samples to the real data563

there was a consistent increase in accuracy from both the564

Transformer and LSTM models. The accuracy improvement565

FIGURE 10. Impact of synthetic data on Accuracy: Transformer.

was noticeable in the early steps, which tended to decrease 566

marginally withmore synthetic data. The highest increase can 567

be attributed to AlphaPose with the Transformer pipeline at 568

a 5.16% improvement, where accuracy went from 89.22% to 569

94.35%. The lowest increase was obtained from OpenPifPaf 570

and LSTM pipelines (an increase in accuracy of 2.46%). 571

The mean increase in accuracy from Transformer and LSTM 572

action recognitionmodels when coupled with all pose estima- 573

tion methods was 3.96% and 3.77%, respectively. It is worth 574

noting that the trend in the performance increase generalized 575

similarly with both Transformer- and LSTM-based action 576

classification models. 577

c: INFLUENCE OF SYNTHETIC DATA ON FALL DETECTION 578

To visualize the performance improvement after adding syn- 579

thetic data, a Transformer pipeline was used. Keypoints were 580

extracted from AlphaPose and given as input to the Trans- 581

former model. Three scenarios were tested with two pipelines 582

where, in all cases, test data were the same three samples of 583

falling down from the AI Hub dataset. In the first pipeline, 584

the Transformer-based action recognition model was trained 585

only on real (AI Hub) data. Next, 6400 synthetic video sam- 586

ples were added to the real data to create a larger training 587

set. Then, on this larger set, the second Transformer-based 588

pipeline was trained. Performance improvements after adding 589

synthetic data are shown in Table 8 for the three cases 590

shown in Fig. 11 where each row represents a single video 591

clip failure with different snapshots. When the pipeline was 592

trained only using real data, all three cases failed with high 593

probabilities of identifying the wrong category. The pipeline 594

that was trained with the additional synthetic dataset cor- 595

rectly predicted the correct class with high probability. One 596

possible explanation is that the nature of falling down is 597

diverse. There is not enough falling down data in the AI Hub 598

dataset to capture such diversity. However, the synthetic Kist 599

SynADL dataset can be used to cover some missing action 600

variations. 601
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FIGURE 11. Improved failure cases after including synthetic data in training. All three scenarios were failing when model is trained only using real
data. Adding synthetic data then retraining the model successfully corrected failure cases.

TABLE 8. Performance Comparison of the Transformer pipeline trained
with and without synthetic data.

V. DISCUSSION602

It is noteworthy that top-down approaches performed better603

than bottom-up approaches. AlphaPose was the most robust604

pose estimator in both qualitative and quantitative analyses.605

In terms of robustness, DCPose was similar to AlphaPose606

but suffered the highest latency. The pose estimation model607

with the lowest latency was MoveNet, but it was the least608

robust in both qualitative and quantitative studies. Overall, for609

top-down pose estimation, we noted that the metrics defined610

in Sec III correlate with action classification model robust-611

ness. However, this conclusion cannot be drawn from bottom-612

up approaches. A possible explanation is that bottom-up pose613

estimation demonstrated false positive results. In other words,614

false positives where non-human objects appear to be a per-615

son to the pose estimator decreased accuracy.616

Also, one of the findings was that the addition of syn-617

thetic data to real data improved the accuracy of the action618

recognition models. This observation holds for all the pose619

estimation models. In order to build highly robust elderly620

care applications, it is crucial, yet challenging, to obtain621

large-scale elderly behavior datasets. A better solution can622

be building synthetic datasets that can be obtained at less cost623

without manual annotation. The current quality of synthetic624

datasets does not show high generalization when used alone625

to build models. However, they can be used to augment a626

real dataset, boosting performance from action classification627

models.628

Another finding of this work is that the Transformer model 629

showed inference speed comparable to the LSTM model. 630

Thus, in real-world applications using AlphaPose in combi- 631

nation with a Transformer model can be assumed to demon- 632

strate high accuracy with lower latency. This approach can be 633

optimized to target real-time applications, especially in mon- 634

itoring elderly people where the problem should be solved 635

instantly to prevent sudden accidents. 636

VI. CONCLUSION 637

Exploiting state-of-the-art human pose estimation methods 638

for pose-based action recognition and fall detection was the 639

main emphasis of this study. Specifically, this paper explored 640

action classification for elderly-care-monitoring applications 641

that include fall detection. As a pose estimation model, 642

we used five methods: AlphaPose, DCPose, OpenPose, 643

OpenPifPaf, and MoveNet. LSTM and Transformer were 644

explored as potential methods to model action sequences. 645

Perhaps most importantly, this study examined the benefits 646

from using synthetic data for pose-based action recognition 647

and fall detection due to the limited amount of real-world 648

data. AlphaPose was found to be the most accurate human 649

pose estimator in surveillance scenarios. Transformer outper- 650

formed LSTM in accuracy, precision, recall, and F1-score. 651

Results show that exploitation of synthetic data improved 652

action recognition performance significantly. A limitation of 653

this research is that quantitative evaluations were performed 654

only on indoor data. As future research, one can extend 655

the present work by considering observations from outdoor 656

elderly human behavior datasets as well. 657
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