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ABSTRACT The world’s elderly population continues to grow at an unprecedented rate, creating a need
to monitor the safety of an aging population. One of the current problems is accurately classifying elderly
physical activities, especially falling down, and delivering prompt assistance to someone in need. Owing
to the advancements in deep learning research, vision based solutions are employed for action recognition.
One such popular approach is human pose estimation based action recognition or fall detection. Nevertheless,
due to a lack of large-scale elderly fall datasets and the continuation of numerous challenges such as varying
camera angles, illumination, and occlusion accurately classifying falls has been a problematic. To address
these problems, this research first carried out a comprehensive study of the AI Hub dataset collected from
real lives of elderly people in order to benchmark the performance of state-of-the-art human pose estimation
methods. Secondly, owing to the limited number of real datasets, augmentation with synthetic data was
applied and performance improvement was validated based on changes in the degree of accuracy. Third, this
study shows that a Transformer network applied to elderly action recognition outperforms LSTM-based
networks by a noticeable margin. Lastly, by observing the quantitative and qualitative performances of
different networks, this paper proposes an efficient solution for elderly activity recognition and fall detection
in the context of surveillance cameras.

INDEX TERMS Elderly care, fall detection, pose estimation, synthetic data, video surveillance.

I. INTRODUCTION

In today’s world, one of the increasing challenges is caring for
the elderly. By 2050 there will be 1.5 billion people 65 years
or older, accounting for 16% of the world population [1].
As aresult, monitoring the physical activities of older people,
especially for fall detection and prevention, is critical to pro-
viding better elderly care and a longer life expectancy. Fortu-
nately, with the advent of modern technologies assisted living
has become more accessible to monitor the behavior of an
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aging population. In the last decade, researchers detected falls
by wearable devices, environmental sensors, and cameras [2].
Sensors and wearable devices may offer a quick response
time and better fall-detection accuracy. Nevertheless, these
methods fail when a person forgets to wear the device or falls
in an untracked area [3]. Thus, a more efficient approach is
to take advantage of the increasing number of surveillance
cameras which are easy to set up and that receive consistent
data by tracking an entire area. However, the rapid increase
of surveillance cameras raises serious concerns about pri-
vacy, and discriminatory bias against specific groups of peo-
ple [4]. Among many methods, an effective one to avoid the
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FIGURE 1. Overview of the Performance Evaluation Methodology. Using the Al Hub dataset, performance of
bottom-up and top-down human pose estimation approaches underwent pose estimation and action recognition
evaluations. Next, after mixing Al Hub and KIST SynADL datasets performance improvement was measured in terms

of model accuracy. Here, T represents the number of frames.

previously mentioned problems is skeleton-based action
recognition, which offers a high degree of anonymity [5].
Although human pose estimation achieves desirable results
for scientific datasets, when encountering real-life chal-
lenges, such as occlusion, illumination, and steep camera
angles the recognition accuracy may degrade leading to fail-
ure of action classifiers. However, the lack of real-world
elderly activity datasets has limited current fall detection
research focusing mainly on scientific datasets: [6], [7], [8],
[9] and [10]. These datasets are collected from laboratory
surroundings that differ from daily living environments. Fur-
thermore, most of the fall detection datasets involve young
people whose speed and actions differ from the elderly [11].
As a result, when an action recognition model is trained on
such datasets and tested in real-world settings, these dif-
ferences may result in unreliable action recognition [12].
Consequently, it is assumed that these methods do not exhibit
generalization capabilities for elderly physical action recog-
nition in real-world environments. To address these problems
a qualitative and quantitative study was carried out on the Al
Hub dataset [13], which covers 12 types of falls and daily life
activities.

The major contributions of this paper are threefold:
(1) In this research, the performance of state-of-the-art
pose estimation methods is evaluated qualitatively and
quantitatively by using the Al Hub dataset. (ii) This paper
evaluates the degree of performance improvement from syn-
thetic data when added to the limited amount of real-life
data. (iii) After extensive experiments, accurate and efficient
pose estimation and action recognition models are proposed
for real-world fall detection and elderly physical activity
recognition.
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This paper is organized in the following order. Section II
outlines a literature review of public fall detection datasets,
pose-based human action recognition and fall detection
in addition to synthetic data usage. Section III introduces
the proposed methodology. Section IV presents implemen-
tation details, describing the qualitative and quantitative
results. Section V discusses the findings of the research.
Finally, section VI draws conclusions from this research.
Code and video explanations are publicly available in
https://sardOr.github.io/.

Il. RELATED WORKS

A. VISION-BASED FALL DETECTION DATASETS

Because deep learning models require a large amount of data,
it is crucial to select training and testing datasets to achieve
high performance in real-world applications. For this reason,
this research compared several vision-based public datasets
and a dataset that fulfills the real-world requirements was
chosen. Table 1 lists the well-known and public fall detec-
tion datasets comparing the year published, the types of fall,
the number of subjects, daily activities included, occlusion,
places recorded, participant’s ages, dataset size, and number
of locations.

1) Le2i

In 2013, being one of the first, Charfi et al. [6] presented
the Le2i fall detection dataset, which was recorded by a
single surveillance camera. In total, the dataset consists of
191 videos in which 143 contain falls and the other 48 show
daily activities. To collect the dataset, nine subjects were
involved in performing three types of fall-down actions and
six different activities of daily life. Videos were captured
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TABLE 1. Vision-based publicly available fall detection datasets.

Dataset Year Subjects Number of fall types Daily activities Occlusion Places Participants’ ages Dataset size Number of locations
Le2i FDD [6] 2013 9 3 5 Yes Indoor 191 videos 4
URFD [7] 2014 1 2 4 No Indoor 70 videos
HQFSD [8] 2016 10 24 13 Yes Indoor - - 1
FDD [9] 2017 5 - 5 No Indoor 19-50 22636 images 1
UP-Fall [10] 2019 2 5 6 No Indoor 18-24 - 1
Al Hub [13] 2020 - 12 12 Yes Indoor and Outdoor 60-80 2500 videos 10

in four different locations with a resolution of 320 x 240
at 25 fps.

2) UNIVERSITY OF RZESZOW

Later in 2014, Kwolek and Kepski [7] introduced the Univer-
sity of Rzeszow fall detection (URFD) dataset including both
RGB and depth data types. It was recorded in a laboratory
environment by a single subject using two Kinetic cameras.
Overall, it contains 70 videos in which 2373 frames are falls,
7452 are non-falls, and the other 1719 are transition frames.

3) HIGH-QUALITY FALL SIMULATION DATASET

In order to bridge the gap between simulated datasets and
realistic falls, Baldewijns et al. [8] presented the High-quality
Fall Simulation Dataset (HQFSD). This dataset was captured
using five web cameras using 640 x 480 resolution recorded
at 12 fps in a nursing home room. Ten subjects were involved
in 55 fall scenarios. Each of the five cameras recorded
2:25:54 hrs of fall data.D

4) FALL DETECTION DATASET

In 2017, Adhikari et al. [9] presented the Fall Detection
Dataset (FDD) [12], which was captured using an uncali-
brated Kinect sensor. Five subjects performed falling-down
actions. In total, the dataset consists of 22,636 images
recorded in five different rooms from eight viewing angles.
Out of five participants, two of them are male (32 and 50 years
of age) and three are female (19, 28, and 40).

5) UP-FALL

In 2019, the UP-Fall dataset [10] was presented. The dataset
was captured using three modalities: wearable sensors, ambi-
ent sensors, and vision sensors. Seventeen subjects between
ages 18 and 24 staged five falls and six daily life activities.

6) Al HUB DATASET

In 2020, the Korean government collected the AI Hub dataset
for assisted living scenarios. The dataset was captured in both
indoor and outdoor environments where elderly people aged
60 years and over performed 12 different actions. The dataset
contains 2500 untrimmed videos recorded using CCTV at
3840 x 2160 resolution consisting of the following actions:
falling down, leaning, sitting, bending, lying down, standing
up, walking, crawling, picking something up, turning, drink-
ing, and eating. Actions were recorded at home, in a hospital,
at a community center, in a parking lot, a park, a market,

VOLUME 10, 2022

a residential alley, a subway station, on a footbridge, and in
front of apartment complexes.

This research was carried out using the AI Hub dataset
for a number of reasons. First, because it was collected in
10 different environments there is great variance in distances
and viewing angles from camera to subject. Second, unlike
laboratory environments, real-world surveillance cameras
stream continuously, day and night. Thus, as the videos were
recorded both at night and during the daytime, it represents
different levels of complexity. Third, it was collected in places
where the elderly usually happen to be in need (for example,
hospitals and community centers), enabling us to evaluate the
performance of human pose estimation methods in real-world
assisted living scenarios.

B. POSE-BASED HUMAN ACTION RECOGNITION AND
FALL DETECTION

In recent years, pose-based human action recognition has
attracted a lot of attention owing to big improvements in
human pose estimation. Table 2 outlines related work. There
have been many successful attempts to exploit human pose
estimation for elderly action recognition. Yang et al. [14]
proposed a pose refinement system in a combination of
AlphaPose [15], OpenPose [16], and LCRNet++ [17] to
extract accurate pose sequences from the Toyota Smarthome
dataset [18], including cases of occlusion, truncation, and low
resolution, and reporting a 4.4% accuracy increase compared
to other multimodal methods. Later, Yang and colleagues
[19] introduced a new framework called UNIK for real-world
skeleton-based action recognition. Their proposed approach
used the Toyota Smarthome dataset, achieving accuracies of
64.3% in cross-subject evaluations and 65% in cross-view
evaluations. Moreover, Jang et al. [12] presented an RGBD
dataset of daily activities by elderly people for care robots
and proposed a four-stream adaptive CNN architecture for
action recognition. Their work reported 90.10% accuracy by
training the model on features obtained using OpenPose.

In terms of pose-based fall detection, Hasan et al. [20]
built a robust human fall detection system using Long
short-term memory (LSTM) and GRU networks based on
the OpenPose pose estimator and reported 99% sensitivity
using the Le2i, and URFD datasets. Lin ez al. [21] approached
the problem of fall detection with a similar method, intro-
ducing a fall detection framework utilizing OpenPose as
a feature extractor and LSTM and GRU for classifica-
tion, achieving 98.2% accuracy using the URFD dataset.
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TABLE 2. Related works for pose estimation-based human action recognition and fall detection.

Reference Pose Estimation Dataset Model Result
Yang et al. [14] AlphaPose, OpenPose, LCRNet++ Toyota Smarthome Pose-Refinement System (SSTA-PRS)  Cross Subject 62.1%, Cross View 54%
Yang et al. [19] LCRNet++ Toyota Smarthome UNIK Cross Subject 64.3%, Cross View 65%
Jang et al. [12] OpenPose ETRI-Activity3D FSA-CNN 90.10%
Hasan et al. [20] OpenPose Le2i FDD and URFD LSTM, GRU 99% sensitivity
Lin et al. [21] OpenPose URFD LSTM, GRU 98.2% accuracy
Taufeeque et al. [22] OpenPifPaf UP-Fall dataset LSTM 92.5% F1-score

Ramirez et al. [24] AlphaPose UP-Fall dataset Random forest, SVM, KNN, MLP 99.34% accuracy
Yadav et al. [25] OpenPose UP-Fall dataset ARFDNET 96.7% accuracy
Serpa et al. [26] AlphaPose, OpenPose, PoseNet URFD MLP 94.5% sensitivity, 99.9% specifity

Taufeeque et al. [22] introduced real-time, multi-camera,
multi-person fall detection by using skeleton features from
OpenPifPaf [23] and LSTM for classification, reporting
a 92.5% F1-score with the UP-Fall dataset. Furthermore,
Ramirez et al. [24] exploited the AlphaPose pose estima-
tion method and performed fall detection with the UP-Fall
dataset, improving the average accuracy to 99.34% with a
random forest classifier. More recently, Yadav et al. [25]pre-
sented an efficient activity recognition and fall detection
system utilizing OpenPose and a combination of ConvlD
and GRU networks. This system was trained on the UP-Fall
dataset showing 96.7% accuracy. Similar to our research,
Serpa et al. [26] evaluated human pose estimation methods
such as AlphaPose, OpenPose, and PoseNet [27] as a solution
to the fall detection problem. Their proposed work compared
these methods in terms of average precision, frame accuracy,
and keypoint accuracy, as well as action classification accu-
racy. To conduct a comparative study, they chose the URFD
dataset and an MLP model for classification. The findings of
the research were that AlphaPose outperformed the other two
pose estimation networks at 94.5% for sensitivity and 99.9%
for specificity. The shortcomings of this work are threefold.
One is that the evaluation was performed on limited scientific
data consisting of only 70 videos. Another shortcoming high-
lighted by the authors is that low light and occlusions were
not considered but left for future work. Most importantly,
performance evaluation was based solely on a quantitative
comparison, excluding qualitative analysis.

C. SYNTHETIC DATA USAGE

While learning behaviors from synthetic data is an under-
researched area, recently there has been a great deal of interest
in usage of synthetic data for human action recognition and
fall detection. Because deep learning models are extremely
data hungry, to achieve better generalization a number of
researchers have resorted to exploiting synthetic data to pro-
vide networks with an abundant amount. Wang et al. [11]
generated a large-scale synthetic dataset covering 55 elderly
activities using Unreal Engine platform. The study covered
the exploitation of synthetic data as an augmentation
for real data reporting up to 2.41% accuracy improve-
ment in recognition of elderly physical activities. Similarly,
Zherdev et al. [28] generated a synthetic dataset to overcome
the data scarcity problem for elderly fall detection. The aim
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of the study was to evaluate the effectiveness of using only
synthetic data in real fall scenarios. It reported a 97.6% fall
detection accuracy when the network was trained with solely
synthetic data and tested on URFD real dataset.

Throughout the literature, the generative adversarial net-
work and computer graphics techniques have been popular
for obtaining synthetic datasets. Khodabandeh er al. [29] and
Wang et al. [30] generated synthetic data using a GAN, while
other studies utilized computer graphics and game platforms
to simulate human actions [11], [28], [31], [32]. To evaluate
performance improvement from using synthetic data, KIST
SynADL [11] was utilized for a number of reasons. Firstly,
the body shapes and motions of the characters were captured
from real actions by elderly people. Secondly, it was designed
especially for augmenting realistic elderly datasets for action
recognition by smart surveillance and care robots. Finally,
it is a large synthetic dataset including 15 characters who
performed 55 actions of elderly people in four different envi-
ronments. Although the article by Wang ef al. [11] is closely
related to our research, it only considered synthetic data usage
targeting recognition of daily activities from a care robot’s
view. Therefore, it utilized realistic datasets [33] and [12]
which were captured in laboratory settings from a side view
for application by care robots. By contrast, our study focuses
on the usage of synthetic data for real-world surveillance
applications which is explored for the first time.

lIl. METHODOLOGY

In this section, a performance evaluation methodology for
human pose estimation methods is introduced as a solution
to elderly action recognition and fall detection. The overall
process of the proposed methodology is illustrated in Fig. 1.
The main aim of this research is to explore the performance
of human pose estimation methods for elderly action recog-
nition and fall detection in real-world surveillance, and to
illustrate the degree of improvement through synthetic data
exploitation. To evaluate the potential of pose estimation for
fall detection problems, five human pose estimation meth-
ods are considered with two prominent action recognition
networks. In general, the raw video frames from the chosen
real dataset are first fed into the selected pose estimation
methods, which output sets of human poses. Next, qualita-
tive and quantitative evaluations were performed for each
pose estimation method utilizing the extracted human pose
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TABLE 3. Comparision of the pose estimation methods. FPS values were
computed a using Nvidia GTX 1080Ti.

Model Dataset #KPs mAP FPS

DCPose HRNet-W48 PoseTrack2017 17 79.2  8.09

AlphaPose ResNet152 COCO 17 73.3 13.35
MoveNet Thunder COCO 17 72 87

OpenPifPaf Shufflenetv2k30 COCO 17 71.8 15.67

OpenPose Coco COCO 18 61.8 13.5

features. After qualitative and quantitative analysis of the
selected pose estimation models, the influence of synthetic
data was observed when mixed with real data.

A. HUMAN POSE ESTIMATION AND DATA
PREPROCESSING

Human pose estimation methods can be categorized
into top-down and bottom-up approaches. The top-down
approaches employ a human detector to find human candi-
dates before doing single-person pose estimation. In contrast,
the bottom-up approaches first predict the keypoints of a
person, and later associate the detected keypoints to form full
poses. There are advantages and disadvantages to both pro-
posed approaches [34]. For example, bottom-up approaches
are efficient in inference speed while predicting the keypoints
irrelative to human candidates in a scene. Nevertheless, they
may produce disconnected or error-associated parts in trun-
cation or occlusion scenarios.

On the other hand, top-down approaches are dependent
on person detector accuracy in addition to having inference
speed in accordance with the person count in the image.
However, the keypoint prediction performance of top-down
approaches is highly accurate compared to the bottom-up
approaches. Thus, to find the most accurate and efficient
pipeline, two top-down and three bottom-up state-of-the-art
human pose estimation methods were selected. From the
top-down approaches, AlphaPose and DCPose [35] using
YOLOv3 [36] as a detector were chosen for evaluation.
From the bottom-up approaches, OpenPose, OpenPiPaf, and
MoveNet [37] were selected. Table 3 shows the pose esti-
mation methods with the chosen trained datasets and their
respective mAPs and frames per second. All of the methods
were trained on the COCO [38] dataset except DCPose,
which was trained on the PoseTrack2017 [39] dataset. For a
fair comparison, the most accurate models in terms of detec-
tion quality were chosen for every pose estimation method.
First, 25 image sequences at 960 x 540 were fed into the
selected human pose estimation models, which extracted 2D
poses in a T x K shape, where K is the total number of key-
points and T is the number of frames. After applying human
pose estimation, 18 and 17 keypoints were obtained from
OpenPose and the other models, respectively. Each keypoint
consists of three values: X and Y (representing human joint
coordinates) in addition to C, measuring how correctly the
keypoint was estimated. The keypoints obtained from pose
estimation models were further normalized from O to 1 and
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fed into the action recognition models. For normalization,
if X represents the extracted keypoint features:
X — Xnin

Xnormallzed Xoe — Xouin (D
B. ACTION RECOGNITION MODELS
1) TRANSFORMER MODEL
Mazzia et al. [40] proposed the Action Transformer archi-
tecture for classifying human action recognition in short
time steps. The proposed method outperformed many
RNN-based networks achieving real-time performance on
a CPU. Inspired by their success, the authors applied the
Transformer-based architecture to elderly action recognition
and fall detection for the first time. Fig. 2 illustrates the
classification procedures by Transformer of elderly actions.
In this proposed method, pose estimation is initially applied
to the input video, after which estimated keypoints are prepro-
cessed and projected linearly to the predefined transformer
encoder. Following that, keypoint features from pose estima-
tion models are added to class tokens and positional encoding,
forming input embeddings by the Transformer encoder. Then,
within the Transformer encoder, the input embeddings are
projected onto the multi-head attention layer followed by
fully connected layers. The output is then passed to the MLP
head, which predicts the action classes.
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FIGURE 2. Architecture of the Transformer Model.

2) LSTM MODEL

Long short-term memory is an evolution of the classic
Recurrent Neural Network. Unlike traditional RNNs, LSTM
is designed to maintain the information of longer data
sequences and to learn variations in time. In the literature,
LSTM is popular in the application of action classification
achieving state-of-the-art accuracy [20], [21], [22]. Thus,
in this research for quantitative comparisons, LSTM was
chosen for observation alongside Transformer. An overview
of action recognition using LSTM can be seen in Fig. 3.
For action classification, the extracted keypoint features of
input videos from pose estimation models are passed as input
to pre-defined LSTM layers. The output features of the last
LSTM layer are then passed through dense layers followed
by a softmax layer to predict the probabilities of each class.
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C. EVALUATION METRICS

1) POSE ESTIMATION METRICS

The confidence score of each detected keypoint represents
how likely the pose estimation models have successfully
detected human joints. Extracted keypoint features from an
input video having higher average confidence rate produce
preferable results when used to recognize human actions.
To calculate the average confidence of keypoints in a video
(ACV), first average confidence of keypoints in an image
(IC), is calculated as seen below:

K—1
K-l
IC = —ZZZKO ‘ 2)
T—1
s
ACV = % (3)

In equation (2), C is the confidence of each keypoint, K
denotes the total number of keypoints, and T stands for the
number of frames.

Owing to many factors, such as occlusion, dim light, and
low-resolution pose estimation models fail to detect key-
points of the human body. The ability of pose estimation
models to detect keypoints under the above-mentioned condi-
tions directly impacts the performance of action recognition
models. Because the number of keypoints for each pose
estimation is not equal, in this paper for the evaluation of
pose estimation models the average percentage of missing
keypoints is calculated. To estimate the average percentage of
missing keypoints (AMV) from a video, first the percentage
of missing keypoints (IM) in an image is calculated as seen
below:

M = % x 100% 4)
T—1
1 M,
AMV = % 5)
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In equation (4), n represents the total number of missing
keypoints from an image.

2) ACTION RECOGNITION METRICS

To evaluate the performance of action recognition models,
four metrics of a confusion matrix [41], (accuracy, recall, pre-
cision, and F1-score) were chosen. Accuracy can be defined
as the ratio of the total number of correct predictions to the
total number of predictions. For a binary class classification,
recall, precision, and F1-score can be defined as follows. Pre-
cision is a measure of correct predictions out of all the positive
predictions. Recall (or Sensitivity) is a measure observing the
accurately classified cases out of all positive cases. F1-score
combines precision and recall into a single metric by taking
their harmonic mean. However, because this study classifies
four action classes, the evaluation method differs from the
binary classification problem. For this study, precision, recall,
and F1-score for each action class were calculated separately,
after which the weighted average of each evaluation metric
from all action classes was calculated.

IV. EXPERIMENTS

A. IMPLEMENTATION DETAILS

1) DATASETS

To conduct the experiments four action classes were chosen:
falling down, standing up, lying down, and walking. Those
four classes exist in both the AI Hub and the Kist SynADL
datasets. KIST SynADL dataset was captured only from
indoor environments. Therefore, only indoor video samples
from the Al Hub dataset were considered for quantitative
analysis. Fig. 4 depicts the distribution of real and synthetic
videos exploited in our experiments. Sample instances from
both datasets are visualized in Fig. 5. In total, 1296 videos
were chosen from the AI Hub dataset. Classes such as falling
down, standing up, lying down, and walking included 166,
280, 350, and 500 samples, respectively. For each action
class, 1600 new synthetic video samples were added to the
training dataset from KIST SynADL. The amount of avail-
able indoor data in realistic scenarios is extremely limited.
Hence, one of the aims of this study was to evaluate the

B Real Data ® Synthetic Data
2000

1500
1000

500

Number of Videos

Falling down Standing up Lying down  Walking
Action Classes

FIGURE 4. The number of videos utilized from the Al Hub and KIST
SynADL datasets.
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FIGURE 5. Examples of each Action classes from Al Hub and KIST SynADL datasets.

performance gains obtained from exploiting synthetic data to
combat data limitations. In other words, synthetic data were
mixed with real video samples for training the deep learning
models. For fair evaluation and reproducibility, the Al Hub
dataset was divided into training and testing sets at a 3:1 ratio.
Multiple experiments were performed where synthetic data
used in the training set was increased by 1600, with each
class given 400 new synthetic samples. The testing accuracy
of action recognition models such as Transformer and LSTM
were calculated on the real test dataset.

2) TRAINING SETTINGS

Table 4 summarizes the hyperparameters obtained from
progressively training the two action recognition models.
In order to obtain optimal hyperparameters for each network,
the Optuna [42] framework was utilized with Hyperband [43]
algorithms. Hyperparameters were tuned for the training set,
excluding the test set. Thus optimal parameters were selected
for training the Transformer and LSTM models. For a fair
evaluation, both models were trained for 200 epochs on a
personal computer with 16 GB RAM, an Intel 19-11900K
CPU, and the Nvidia GTX 1080Ti GPU. For the LSTM
model, three LSTM layers were designed with hidden units
of 32, 64, and 32, after which there were four dense layers
with dense units of 128, 64, 32, and 16. The Transformer
model was composed of four Transformer encoder layers
each consisting of one multi-head self-attention layer. In both
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TABLE 4. Training details of Transformer and LSTM.

Transformer LSTM
Training Training
Epochs 200 Epochs 200
Batch size 128 Batch size 128
Transformer encoder layers 4 LSTM layers 3
Multi-Head attention layers 1 Dense layers 4
Optimizer Adam | Optimizer Adam
Regularization Regularization

Learning rate 0.001 | Learningrate  0.001
Dropout 0.3 Dropout 0.3

of the action recognition models, the Adam [44] optimizer
was used with a learning rate of 0.001. Lastly, a dropout rate
of 0.3 was applied to both models for regularization.

B. EXPERIMENTAL RESULTS

1) QUALITATIVE ANALYSIS

Human pose estimation is considered a challenging task in
real-world applications. These challenges arise under many
conditions, such as camera angle, lighting condition, occlu-
sions, and camera-to-subject distance [45]. We evaluated the
performance of the above-mentioned pose estimation models
for elderly physical activity recognition in real-life surveil-
lance scenarios. In this regard, a qualitative comparison was
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FIGURE 6. Qualitative analysis of state-of-the-art pose estimation models.

conducted on indoor and outdoor image samples from the
Al Hub dataset. Fig. 6 shows qualitative analysis where each
row depicts different scenario complications, such as indoor
bright and dim light, outdoor bright and dim light, occlusions,
and lying. Each column illustrates the keypoint detection
result of a given pose estimator. Among pose estimation
models, AlphaPose achieved the most robust results in all
cases. One exception was observed in indoor dim light sce-
narios where it failed to detect occluded parts of the person.
OpenPifPaf and DCPose demonstrated similar results, fail-
ing only under indoor dim light. Although OpenPose pre-
dicted the keypoints of a person in every scenario, it suf-
fered from false positives in outdoor environments. MoveNet
performed the worst, failing to detect keypoints accurately
with respect to body joints in most scenarios. We observed
that OpenPose and MoveNet detected false positive keypoints
when a person was far from the camera and when there
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were other non-human objects similar to the shape of a
person.

2) QUANTITATIVE ANALYSIS

a: PERFORMANCE FROM SELECTED PIPELINES

To evaluate the robustness of the chosen pose estimation
methods quantitative experiments were conducted using
the AI Hub dataset. First, performance from the pose-
estimation-based action recognition pipelines was compared.
Results for accuracy, precision, recall, and F1-score in both
action recognition pipelines are shown in Table 5. Both
Transformer- and LSTM-based pipelines achieved good per-
formance when coupled with AlphaPose. The worst perfor-
mance was observed when MoveNet was used as a pose
feature extractor in the action recognition pipeline. The best
pipelines were AlphaPose for pose features and Transformer
for action classification. Pipeline results for accuracy, recall,
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TABLE 5. Transformer and LSTM pipeline results for each human pose
estimation model with the Al Hub dataset.

Pose Estimation  Accuracy Precision Recall F1-score
LSTM pipeline
AlphaPose 88.29 88 88 87
DCPose 88.13 88 87 87
OpenPifPaf 82.94 82 79 80
OpenPose 81.07 81 81 81
MoveNet 68.92 69 69 69
Transformer pipeline

AlphaPose 89.22 90 89 89
DCPose 88.73 920 88 89
OpenPifPaf 84.11 84 84 84
OpenPose 83.41 83 83 83
MoveNet 71.49 66 66 66

100

80

60

40

Percentage of Missing keypoints

0

DCPose

OpenPose OpenPifPaf MoveNet AlphaPose
Pose Estimation Model

FIGURE 7. Comparisons for average percentage of missing keypoints with
the Al Hub dataset.

precision, and F1-score were 89.22%, 90%, 89%, and 89%,
respectively. As an action classification model, Transformer
showed superior performance compared to LSTM when
paired with any pose estimation method. Performance differ-
ences ranged up to 2.57%.

b: POSE ESTIMATION EVALUATION

Secondly, for quantitative analysis of pose estimation models,
the average percentage of missing keypoints and the aver-
age confidence for keypoints in T frames were compared.
The reason was that the Al Hub dataset did not provide
ground truth keypoints for body joints. Therefore, the mAP
of the detected keypoints could not be calculated. To solve
this issue, two metrics were proposed in Sec. III: average
percentage of missing keypoints and average confidence of
keypoints. The average percentage of missing keypoints for
all methods is illustrated using boxplots in Fig. 7. Aver-
age confidence of keypoints for all methods is explained
in Fig. 8. We can see that AlphaPose and DCPose showed
similar percentages of missing keypoints whereas the former
achieved the best results with mean and median of 9.66% and
2.26%, respectively. OpenPifPaf demonstrated the highest
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FIGURE 8. Comparisons for average confidence of pose estimation
models with the Al Hub dataset.

percentage of missing keypoints with mean and median of
42.12% and 36.51%, respectively. Similarly, from studying
the average confidence in keypoints, AlphaPose performed
the best with mean and median of 75.29% and 76.15%,
respectively, while MoveNet showed the worst result with
mean and median of 21.55% and 22.92%, respectively.

c: ACTION RECOGNITION MODEL COMPARISON

Lastly, for fair evaluation of action recognition in the models’
performance, the important characteristics of Transformer
and LSTM were calculated when trained and tested on the Al
Hub data. Table 6 shows the number of parameters, MFLOPs,
GPU memory requirements, and inference time of the Trans-
former and LSTM models. The table shows that both models
had comparable inference speeds. It is also worth mention-
ing that the number of parameters was 3.6 times higher in
Transformer.

TABLE 6. Model Parameters, MFLOPS, GPU Memory Requirements, and
Inference Time.

Memory requirement Inference

Models # Parameters MFLOPs (GPU) time
Transformer 0.221M 0.0004 232.6KB 0.9671ms
LSTM 0.061M 0.0003 78.6KB 0.9342ms

3) IMPACT OF THE SYNTHETIC DATA

a: SYNTH-+REAL TRAINING

This section reports the impact from increasing the train-
ing data by using synthetic video samples. First, the per-
formance from action recognition models trained with real-
only (Real), synthetic-only (Synthetic), and mixed synthetic
and real (Real+Synthetic) data were compared. Correspond-
ing data are shown in the second row of Table 7 for both
Transformer and LSTM networks. It is interesting to see
the degree of generalization when the model was trained on
completely synthetic data and evaluated on real data. The
table shows that training the action classification models with
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TABLE 7. Training jointly on synthetic and real data.

Transformer
Training data ~ AlphpaPose DCPose OpenPifPaf OpenPose MoveNet
Real 89.22 88.73 84.11 83.41 71.49
Synthetic 70.19 68.96 60.63 59.11 53.21
Real + Synthetic 94.35 93.66 87.14 86.69 74.87
LSTM
Training data ~ AlphpaPose DCPose OpenPifPaf OpenPose MoveNet
Real 88.29 88.13 82.94 81.07 68.92
Synthetic 67.95 66.27 59.73 58.37 52.74
Real + Synthetic 93.20 92.95 85.40 84.32 72.30
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FIGURE 9. Impact of synthetic data on accuracy: LSTM.

only synthetic data can achieve up to 70.19% accuracy with
a Transformer model that uses AlphaPose keypoints. This
already demonstrates a promising generalization capability
with synthetic data. Up to 89.22% accuracy was obtained
using only real data for training. When adding synthetic
data to real training data, accuracy increased to 94.35%.
Similar behavior was observed for other keypoint extractor
methods.

b: IMPACT OF SYNTHETIC SAMPLES PER CLASS

In the above, we saw an increase in performance when adding
synthetic data. Next, we examined the trend in performance
improvement by adding synthetic data incrementally. Graphs
in Fig. 9 and Fig. 10 capture the increased trends when
adding more synthetic data to the training set of the action
classification model.

For each action classification model (i.e., Transformer and
LSTM), five pipelines were analyzed with each pipeline cor-
responding to different keypoint extractors. Analysis showed
that the amount of synthetic data had a direct impact on action
recognition performance. To capture the trend, we added
1600 synthetic data in each step (400 samples for each class).
With each addition of synthetic video samples to the real data
there was a consistent increase in accuracy from both the
Transformer and LSTM models. The accuracy improvement
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was noticeable in the early steps, which tended to decrease
marginally with more synthetic data. The highest increase can
be attributed to AlphaPose with the Transformer pipeline at
a 5.16% improvement, where accuracy went from 89.22% to
94.35%. The lowest increase was obtained from OpenPifPaf
and LSTM pipelines (an increase in accuracy of 2.46%).
The mean increase in accuracy from Transformer and LSTM
action recognition models when coupled with all pose estima-
tion methods was 3.96% and 3.77%, respectively. It is worth
noting that the trend in the performance increase generalized
similarly with both Transformer- and LSTM-based action
classification models.

¢: INFLUENCE OF SYNTHETIC DATA ON FALL DETECTION
To visualize the performance improvement after adding syn-
thetic data, a Transformer pipeline was used. Keypoints were
extracted from AlphaPose and given as input to the Trans-
former model. Three scenarios were tested with two pipelines
where, in all cases, test data were the same three samples of
falling down from the AI Hub dataset. In the first pipeline,
the Transformer-based action recognition model was trained
only on real (Al Hub) data. Next, 6400 synthetic video sam-
ples were added to the real data to create a larger training
set. Then, on this larger set, the second Transformer-based
pipeline was trained. Performance improvements after adding
synthetic data are shown in Table 8 for the three cases
shown in Fig. 11 where each row represents a single video
clip failure with different snapshots. When the pipeline was
trained only using real data, all three cases failed with high
probabilities of identifying the wrong category. The pipeline
that was trained with the additional synthetic dataset cor-
rectly predicted the correct class with high probability. One
possible explanation is that the nature of falling down is
diverse. There is not enough falling down data in the AI Hub
dataset to capture such diversity. However, the synthetic Kist
SynADL dataset can be used to cover some missing action
variations.
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FIGURE 11. Improved failure cases after including synthetic data in training. All three scenarios were failing when model is trained only using real
data. Adding synthetic data then retraining the model successfully corrected failure cases.

TABLE 8. Performance Comparison of the Transformer pipeline trained
with and without synthetic data.

Training Data: Real
#Case Predicted class Probability \ Predicted class Probability

Training Data: Real + Synthetic

1 Lying down 0.961 Falling down 0.999
2 Lying down 0.562 Falling down 0.931
3 Walking 0.552 Falling down 0.985

V. DISCUSSION

It is noteworthy that top-down approaches performed better
than bottom-up approaches. AlphaPose was the most robust
pose estimator in both qualitative and quantitative analyses.
In terms of robustness, DCPose was similar to AlphaPose
but suffered the highest latency. The pose estimation model
with the lowest latency was MoveNet, but it was the least
robust in both qualitative and quantitative studies. Overall, for
top-down pose estimation, we noted that the metrics defined
in Sec III correlate with action classification model robust-
ness. However, this conclusion cannot be drawn from bottom-
up approaches. A possible explanation is that bottom-up pose
estimation demonstrated false positive results. In other words,
false positives where non-human objects appear to be a per-
son to the pose estimator decreased accuracy.

Also, one of the findings was that the addition of syn-
thetic data to real data improved the accuracy of the action
recognition models. This observation holds for all the pose
estimation models. In order to build highly robust elderly
care applications, it is crucial, yet challenging, to obtain
large-scale elderly behavior datasets. A better solution can
be building synthetic datasets that can be obtained at less cost
without manual annotation. The current quality of synthetic
datasets does not show high generalization when used alone
to build models. However, they can be used to augment a
real dataset, boosting performance from action classification
models.

VOLUME 10, 2022

Another finding of this work is that the Transformer model
showed inference speed comparable to the LSTM model.
Thus, in real-world applications using AlphaPose in combi-
nation with a Transformer model can be assumed to demon-
strate high accuracy with lower latency. This approach can be
optimized to target real-time applications, especially in mon-
itoring elderly people where the problem should be solved
instantly to prevent sudden accidents.

VI. CONCLUSION

Exploiting state-of-the-art human pose estimation methods
for pose-based action recognition and fall detection was the
main emphasis of this study. Specifically, this paper explored
action classification for elderly-care-monitoring applications
that include fall detection. As a pose estimation model,
we used five methods: AlphaPose, DCPose, OpenPose,
OpenPifPaf, and MoveNet. LSTM and Transformer were
explored as potential methods to model action sequences.
Perhaps most importantly, this study examined the benefits
from using synthetic data for pose-based action recognition
and fall detection due to the limited amount of real-world
data. AlphaPose was found to be the most accurate human
pose estimator in surveillance scenarios. Transformer outper-
formed LSTM in accuracy, precision, recall, and F1-score.
Results show that exploitation of synthetic data improved
action recognition performance significantly. A limitation of
this research is that quantitative evaluations were performed
only on indoor data. As future research, one can extend
the present work by considering observations from outdoor
elderly human behavior datasets as well.
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