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ABSTRACT Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery
modeling and states estimation. However, the traditional OCV measurement method takes a very long time
to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online
for battery energy storage application. Motived by this, this paper proposes an effective method for fast
OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing
the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied
for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results
confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient
temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly
estimate batteryOCV,which only takes 10minutes ofmeasurement data (more than 2 hours for the traditional
method) and the maximum estimation error is limited to merely 1.8 mV.

12 INDEX TERMS Lithium-ion battery, open circuit voltage, relaxation model.

I. INTRODUCTION13

With the continuously increasing concerns over fossil fuel14

consumption and the resulting environmental pollution crises,15

transportation electrification has become an inevitable trend16

for cutting carbon emissions and protecting the environ-17

ment [1]. The eco-friendly and energy-efficient Electric Vehi-18

cles (EVs) have the chance to replace a great deal of internal19

combustion engine vehicles. However, a fundamental chal-20

lenge is to find a suitable Energy Storage System (ESS)21

that can displace fossil fuel and support the high-mileage22

driving of EVs [2], [3], [4]. Among others, Lithium-ion (Li-23

ion) Batteries have recently been regarded as one of the24

most promising energy storage components because of their25

high energy and power density, high charge and discharge26

efficiency, no memory effect, and polluting-free characteris-27

tics [5], [6], [7], [8].28

The associate editor coordinating the review of this manuscript and

approving it for publication was Guangya Yang .

However, the performance of the Li-ion battery is con- 29

stantly influenced by various factors. A well-designed Bat- 30

tery Management System (BMS) is essential to guaran- 31

tee the cells work within a proper and safe operating 32

area [9], [10], [11], [12], [13]. As the basic indicators, battery 33

State of Charge (SOC), State of Health (SOH), and State of 34

Power (SOP) should be accurately monitored in real-time 35

for the decision-marking of a BMS [14]. In practice, the 36

strong nonlinear characteristics and the measurement noise 37

interference often contaminate the accuracy of the battery 38

status, which leaves the battery states estimation a remaining 39

challenge [15], [16], [17]. 40

Advanced model-based and data-driven methods use algo- 41

rithms such as Kalman Filters [18], [19], [20], [21], H-infinity 42

filters [22], [23], Particle filters [17], [24], [25], support 43

vector machine [18], and deep neural networks [26], [27] to 44

estimate the batteries’ states. It is easy to understand that the 45

model-based methods cannot perform well without a good 46

battery model. In this thread, the Open Circuit Voltage (OCV) 47
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is one of the fundamental characteristics of battery modeling.48

Generally, OCV represents the potential of the charge move-49

ments between the electrodes and is the intrinsic property of50

a battery.51

As an indicator of the essential property of the Li-ion52

battery, the OCV of the Li-ion battery can be also used53

for state estimation besides modeling. For example, OCV is54

commonly applied for establishing an OCV-SOC function55

to estimate the battery SOC in BMS. It’s obvious that the56

SOC estimation accuracy is highly related to a precise OCV57

measurement [28]. In order to reach the equilibrium state58

inside, the battery has to be fully relaxed usually requiring59

several hours or even days [29]. The lengthy relaxation time60

limits the usage of OCV for battery-based applications.61

In this context, fast OCVmeasurement is an urgent demand62

to mitigate the long-time requirement. Dubarry et al. [30]63

and Cui et al. [31] use 1/25 C charging and discharging64

current aiming at obtaining the close-to-equilibrium OCV by65

calculating the average potential between the charging and66

discharging voltages. Chen et al. [32] choose C/2 current67

to charge or discharge the battery with a 10% SOC inter-68

val, and OCV can be measured after 45 min rest period to69

reach an equilibrium condition. The average OCV between70

charging and discharging is used to model the battery. Knap71

and Stroe [33] evaluate four OCV test methods for battery72

SOC estimation including iOCV, qOCV, pOCV, and eOCV.73

The longest test procedure iOCV needs 680 hours to obtain74

the OCV curve. Some works [34] also use a high-order75

polynomial function to represent the OCV-SOC curve by76

measuring the OCVwith 5% SOC resolution. From the above77

descriptions, we realize that the aforementioned OCV tests78

are still quite time-consuming and inconvenient for battery79

applications, especially, for the cases when OCV is expected80

to be obtained within a short time.81

It is noted that EVs are often stopped during a traffic jam82

or traffic light, and the battery current is close to zero when83

the EV stops. There leaves a chance that the OCV could be84

estimated during a short interruption period, which facilitates85

onboard battery OCV acquisition. A straightforward way for86

battery OCV estimation is to utilize the characteristic of the87

voltage responses during relaxation time. Meng et al. [28]88

propose a novel multiple correction approach for battery89

OCV estimation, which has been proven to be feasible on a90

LiFePO4 battery with different SOCs. However, the method91

suffers from a trouble tuning procedure of the parameters,92

which is not convenient for practical usage. Pei et al. [35] also93

develop a voltage relaxation model to estimate the terminal94

voltage of a battery. However, the relaxation voltage has a95

very strong nonlinear characteristic, which complicates the96

curving fitting process.97

As an alternative choice, many researchers focus on esti-98

mating battery OCV using the Equivalent Circuit Models99

(ECMs). The reason is that the ECMs have a simple structure,100

while they can capture themain voltage dynamics of a battery.101

Duong et al. [36] propose a Multiple Adaptive Forgetting102

Factors based RLS (MAFF-RLS) method for identifying the103

parameters of an ECM, which obtains the OCV from a 40 Ah 104

LiFePO4 battery. Yang [37] first estimates the OCV and the 105

RC circuits of an ECM simultaneously using an evolutionary 106

algorithm. Zhou et al. [38] proposed aweighted voltage relax- 107

ation model consisting of two parallel resistor-capacitor (RC) 108

components for fast OCV estimation. By taking a short rest 109

period (less than 30 minutes), the maximum OCV estimation 110

error is limited to 4 mV through all the tests. It can be seen 111

that the estimation accuracy is low due to the limited ECM 112

modeling ability. 113

In this work, a novel voltage relaxation model is proposed 114

for describing the dynamic response of a battery during the 115

rest process. In comparison with the traditional Thevenin 116

model, the proposed relaxation model is more accurate for 117

simulating battery terminal voltage in relaxation time. For 118

obtaining the best results, the Genetic Algorithm (GA) is 119

further carried out for optimizing the model parameters, 120

which shows an excellent performance in dealing with the 121

nonlinear effects. The validity of the proposed method is 122

verified experimentally in terms of accuracy and robustness 123

with two batteries, which also considers both the temperature 124

variations and the battery aging effect. The main contribu- 125

tions of this work are listed as follows: 126

(1). The Li-ion battery OCV can be accurately estimated 127

within 10 minutes by using the proposed voltage relaxation 128

model, whose parameters are adjusted in a GA framework. 129

(2). The validation of the proposed method is proved not 130

only on different SOCs but also with the variation of temper- 131

atures and battery aging status. 132

The remainder of this paper is organized as fol- 133

lows. Section II introduces the proposed relaxation model. 134

Section III elaborates the procedures of parameter optimiza- 135

tion with the GA. Experimental results are carried out in 136

Section IV. The main conclusions are given in Section V. 137

II. BATTERY MODELING IN RELAXATION TIME 138

In this section, the experimental setup for measuring the 139

OCVs of the batteries is introduced first. The voltage relax- 140

ation behavior of a battery is investigated afterward. A novel 141

relaxation model is further carried out to describe the 142

dynamic characteristics of the battery in relaxation time. 143

A. EXPERIMENTAL SETUP 144

The experimental tests are carried out on two LiFePO4 batter- 145

ies with a 3.2 V nominal voltage to validate the performance 146

of the proposed fast battery OCV estimation method. The 147

upper and lower cut-off voltages of the batteries are 3.6 V 148

and 2 V, respectively. The specifications of the batteries are 149

listed in Tab. 1. As shown in Fig. 1, the battery test platform 150

includes a thermal chamber to control the ambient temper- 151

ature, a Chroma 17011 test station to charge and discharge 152

the battery, a host computer to generate the control signal 153

and store the measurement data. In this study, the sampling 154

frequency is set to 1 Hz. 155

In this section, we have tested Cell A to measure the OCV 156

with different SOCs and current rates. The voltage and current 157
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FIGURE 1. Experimental test platform for Li-ion batteries.

FIGURE 2. Voltage profile of battery OCV measurements with 0.5 C
discharging rate under 25 ◦C.

FIGURE 3. Current profile of battery OCV measurements with 0.5 C
discharging rate under 25 ◦C.

profiles of the OCVmeasurements are shown in Figs. 2 and 3,158

where the ambient temperature is set to 25 ◦C. It can be seen159

that the battery is discharged with a 0.5 C rate with a 10%160

SOC resolution, the terminal voltages in 4 hour’s rest period161

are measured as OCVs.162

B. ANALYSIS OF BATTERY VOLTAGE RELAXATION163

BEHAVIOR164

Battery voltage is characterized by the potential difference165

between the two electrodes. Generally, the voltage response166

FIGURE 4. Post-discharging voltage relaxation profile.

FIGURE 5. Post-charging voltage relaxation profile.

consists of instantaneous voltage variation, which is caused 167

by the Ohmic resistance, and the dynamic variation, which is 168

caused by the kinetic effect and ion transfer, etc. For obtaining 169

the OCV of a battery, it has to take a long time (several 170

hours or even days) for reaching the equilibrium state due 171

to the slow process of the internal chemical and physical 172

reaction. Consequently, the cut-off voltage of a battery cannot 173

immediately meet the OCV without a long relaxation time. 174

As shown in Figs. 4 and 5, the relaxation voltage of a 175

battery takes 4 hours for reaching an equilibrium, while the 176

voltage trajectory has a quite strong nonlinear characteristic, 177

where the voltage variation rate significantly decreases with 178

time. Consequently, there remain difficulties in predicting 179

battery OCV within a short relaxation time. 180

C. RELAXATION MODEL 181

In this subsection, a relaxation model is proposed to simulate 182

the terminal voltage variation of a battery during the relax- 183

ation process. 184

The Thevenin model is the most used battery model as 185

it has a simple structure and provides acceptable modeling 186

accuracy under various operating conditions. As shown in 187

Fig. 6, R0 is the Ohmic resistance, which consists of the 188

electrolyte resistance and electrode material resistance, etc. 189

Rp and Cp are the electrochemical polarization capacitance 190
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FIGURE 6. Conventional Thevenin model.

FIGURE 7. Post-discharging time constant profile.

and resistance, respectively. τ is known as the time constant191

of a battery, which equals RpCp in the Thevenin model.192

Despite the simplicity, the conventional Thevenin model193

with fixed parameter values is incompetent for describing194

the dynamic voltage variation through the relaxation pro-195

cess. During the relaxation period, the dynamical response196

of the battery transfers from the charge-transfer region with a197

minor time constant to the diffusion region with the slowest198

time constant. Consequently, the time constant τ gradually199

increases with the increment of the relaxation time.200

Here we define τt as the time constant at the time of t ,201

which is determined by,202

τt = 1/
(
ln
UOC − Ut−1
UOC − Ut

)
(1)203

where Uoc is battery OCV, Ut and Ut−1 are the terminal204

voltages at the time of t and t-1 respectively. Assuming the205

Uoc is known, the time constant profiles at different times can206

be obtained, which are shown in Fig. 7 and Fig. 8.207

It is observed that the τt has an obvious linear relationship208

with the relaxation time. Besides, τt is closely related to bat-209

tery OCV and the terminal voltage in the relaxation process.210

Therefore, instead of using a fixed parameter to describe the211

time constant, a time-varying τt is applied in this work for212

establishing a relaxation model.213

As shown in Fig. 9, the Ohmic resistance is omitted since214

there is no current excitation during the relaxation process.215

FIGURE 8. Post-charging time constant profile.

FIGURE 9. The proposed relaxation battery model.

The proposed relaxation battery model contains an RC net- 216

work. Both the polarization capacitanceCp,t and the polariza- 217

tion resistance Rp,t are designed as time-varying parameters. 218

The governing equation of the proposed relaxation battery 219

model is expressed as, 220{
Ût = UOC −

(
UOC − Ût−1

)
e(−1/τt )

τt = at + b
(2) 221

whereUt andUt−1 are the simulated voltages from the relax- 222

ation battery model at the time of t and t-1. τt is subjected to a 223

linear function, where a and b are the polynomial coefficients 224

of the linear function. 225

It can be seen that a, b, and Uoc are the parameters to 226

be identified. The method for identifying the parameters is 227

discussed in the following section. 228

III. THE PROPOSED OCV ESTIMATION METHOD 229

A. PARAMETER IDENTIFICATION 230

The model parameters can be obtained by fitting the termi- 231

nal voltage measurements with the output voltages from the 232

relaxation battery model. Here we define a parameter vector, 233

which is expressed as θ =
[
a b Uoc

]T . A least-square based 234

estimator is designed for estimating the model parameters, 235

which is expressed as, 236

θ̂ = argmin
θ

tu∑
t=ti

(
Ut − Ût

)2
(3) 237

where θ̂ is the estimated parameter vector,Ut is the measured 238

battery terminal voltage, Ût is the model simulated voltage, 239
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FIGURE 10. Flowchart of the optimization of model parameters with GA.

which is obtained from (2). tl and th are the upper and lower240

limits of the investigated battery relaxation time.241

The fitness function is further presented to compare the242

model output Ût and the measured Ut , which is expressed243

as,244

Fitness =

1−

√
tu∑
t=ti

(
Ut − Ût

)2
√

tu∑
t=ti

(
Ut − Ūt

)2
× 100% (4)245

where Ūt is the average value of Ut over the relaxation time246

period.247

To obtain a reasonable parameter identification result, the248

GA is presented for optimizing the model parameters, which249

is further discussed in the following subsection.250

B. GENETIC ALGORITHM251

In comparisonwith the conventional least square-basedmeth-252

ods that are very sensitive to the initial values of the parame-253

ters, the GA is capable of finding the global optimal solution254

without any initial guesses. Based on Darwin’s theory of255

evolution, various species compete with each other in the256

environment and only the fittest can survive [1], [39], [40].257

The evolutionary process of a population is introduced in258

this work for explaining the GA. The genetic information of259

the population is contained in the chromosomes, while the260

evolution process includes selection, crossover, andmutation.261

The selection refers to some of the existing population is262

selected to generate the offspring. During the crossover pro-263

cess, the chromosomes of the offspring are hybridized from264

the parents. The mutation process makes random changes to265

the chromosomes, which brings new genes into the popula-266

tion.267

FIGURE 11. The experimental results of OCV estimation and the model
fitted voltage in comparison with the measurements (50% SOC).

FIGURE 12. OCV estimation results with 0.5 C current rate.

The flowchart of the GA for optimizing the model parame- 268

ters is shown in Fig. 10. The calculation is executed according 269

to the fitness function. If the fitness value is not satisfied, 270

GA takes the selection, crossover, and mutation for updating 271

the parameters. The repetition terminates when the fitness 272

value is larger than the boundary value and the output values 273

are regarded as the final identified model parameters. 274

IV. EXPERIMENTAL STUDIES 275

Considering a balance between practicability and modeling 276

accuracy, we only take 600 s relaxation voltagemeasurements 277

to establish the relaxation model and optimize the model 278

parameters in this work. The experimental results concerning 279

battery OCV estimation and the fitted terminal voltages are 280

shown in Fig. 11. It can be seen that the simulated voltage 281

plots almost identical curves in comparison with the voltage 282

measurements, which confirms the modeling accuracy of the 283

proposed relaxation model. Meanwhile, the estimated battery 284

OCV is very close to the reference, which proves the accuracy 285

of the proposed method for OCV estimation. 286

To further investigate the proposed fast OCV estimation 287

method under different operating conditions, additional tests 288

concerning different SOCs and current rates are carried out in 289

this work. The experimental results with 0.5 C,1 C, and 2 C 290

current rates are shown in Figs. 12, 14, and 16. It can be seen 291
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FIGURE 13. Absolute errors of OCV estimation with 0.5 C current rate.

FIGURE 14. OCV estimation results with 1 C current rate.

FIGURE 15. Absolute errors of OCV estimation with 1 C current rate.

that battery OCV is rather dependent on battery SOCs instead292

of the current rates. The experimental results suggest that the293

proposedmethod can accurately estimate battery OCV, where294

the estimated OCV values can well track the references all the295

time. The absolute errors of the OCV estimation are shown in296

Figs. 13, 15, and 17, where the maximum error is limited to297

1.8 mV. The validity of the proposed method with different298

SOCs and current rates is proved accordingly.299

A. VALIDATION UNDER DIFFERENT AGING STATUSES AND300

AMBIENT TEMPERATURES301

To investigate the effectiveness of the proposed method under302

different circumstances, we have further verified the pro-303

FIGURE 16. OCV estimation results with 2 C current rate.

TABLE 1. Specifications of the LiFePO4 batteries.

FIGURE 17. Absolute errors of OCV estimation with 2 C current rate.

posed method with different aging statuses and ambient tem- 304

peratures in this work. 305

Batteries’ aging effects are commonly described as capac- 306

ity losses. As shown in Table 1, Cell B has the same specifica- 307

tions as Cell A, while the capacity of Cell B is lower than the 308

initial ones. Meanwhile, the thermal effects are investigated 309

by testing Cell A under the ambient temperature of 40 ◦C. For 310

controlling variables, the current rate is selected as 0.5 C in 311

this subsection. 312

The experimental results concerning battery OCV estima- 313

tion are shown in Figs. 18-21. It can be seen that both the 314

aging and thermal effects only exert a slight influence on 315

battery OCV. Likewise, the proposed method shows superb 316

performance in terms of accuracy and robustness for estimat- 317

ing battery OCV, where the estimated values always track the 318

reference. The feasibility and adaptability of the proposed 319

method with different aging statuses and ambient tempera- 320

tures are proved accordingly. 321
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FIGURE 18. OCV estimation results of Cell B under 25 ◦C.

FIGURE 19. Absolute OCV estimation errors of Cell B under 25 ◦C.

FIGURE 20. OCV estimation results of Cell A under 40 ◦C.

TABLE 2. Comparison of the relaxation time and the maximum errors
using different methods.

The required relaxation time and the maximum OCV322

estimation errors using different methods are compared in323

Table. 2. It can be seen that the maximum errors in [28], [35],324

and [38] are all higher than 3 mV. In contrast, the method325

FIGURE 21. OCV estimation results of Cell A under 40 ◦C.

proposed in this work only takes 10 minutes of the relaxation 326

time, and the maximum estimation error is limited to 1.8 mV. 327

The above results confirm the superiority and practicability 328

of the proposed method. 329

V. CONCLUSION 330

This study proposes an effective method for estimating bat- 331

tery OCV within a short relaxation time period. A novel 332

relaxation model is designed for characterizing the voltage 333

response of a battery during the relaxation process. The pro- 334

posed relaxation model can correctly simulate the terminal 335

voltage in relaxation time, which significantly outperforms 336

the traditional Thevenin model in terms of accuracy. The GA 337

can effectively deal with the nonlinear effect, which is applied 338

for optimizing the model parameters and obtaining the best 339

OCV estimation results. 340

Experimental tests have verified the effectiveness of the 341

proposed method under different SOCs, current rates, aging 342

status, and ambient temperatures. The proposed method 343

shows excellent performance for estimating battery OCV, 344

which takes only 10 minutes of measurement data, and the 345

maximum estimation error is limited to 1.8 mV. 346
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