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ABSTRACT Battery Open Circuit Voltage (OCV) is of fundamental characteristic for enabling battery
modeling and states estimation. However, the traditional OCV measurement method takes a very long time
to make the battery reaches its equilibrium, which is rather inconvenient and cannot be performed online
for battery energy storage application. Motived by this, this paper proposes an effective method for fast
OCV estimation in the relaxation process. In this work, a novel relaxation model is designed for capturing
the voltage response of a battery during relaxation time and the Genetic Algorithm (GA) is further applied
for optimizing the model parameters and acquiring accurate OCV estimation results. Experimental results
confirm the validity of the proposed method under different State of Charges (SOCs), current rates, ambient
temperatures, and aging conditions. The results suggest that the proposed method can accurately and quickly
estimate battery OCV, which only takes 10 minutes of measurement data (more than 2 hours for the traditional
method) and the maximum estimation error is limited to merely 1.8 mV.

INDEX TERMS Lithium-ion battery, open circuit voltage, relaxation model.

I. INTRODUCTION

With the continuously increasing concerns over fossil fuel
consumption and the resulting environmental pollution crises,
transportation electrification has become an inevitable trend
for cutting carbon emissions and protecting the environ-
ment [1]. The eco-friendly and energy-efficient Electric Vehi-
cles (EVs) have the chance to replace a great deal of internal
combustion engine vehicles. However, a fundamental chal-
lenge is to find a suitable Energy Storage System (ESS)
that can displace fossil fuel and support the high-mileage
driving of EVs [2], [3], [4]. Among others, Lithium-ion (Li-
ion) Batteries have recently been regarded as one of the
most promising energy storage components because of their
high energy and power density, high charge and discharge
efficiency, no memory effect, and polluting-free characteris-
tics [5], [6], [7], [8].
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However, the performance of the Li-ion battery is con-
stantly influenced by various factors. A well-designed Bat-
tery Management System (BMS) is essential to guaran-
tee the cells work within a proper and safe operating
area [9], [10], [11], [12], [13]. As the basic indicators, battery
State of Charge (SOC), State of Health (SOH), and State of
Power (SOP) should be accurately monitored in real-time
for the decision-marking of a BMS [14]. In practice, the
strong nonlinear characteristics and the measurement noise
interference often contaminate the accuracy of the battery
status, which leaves the battery states estimation a remaining
challenge [15], [16], [17].

Advanced model-based and data-driven methods use algo-
rithms such as Kalman Filters [18], [19], [20], [21], H-infinity
filters [22], [23], Particle filters [17], [24], [25], support
vector machine [18], and deep neural networks [26], [27] to
estimate the batteries’ states. It is easy to understand that the
model-based methods cannot perform well without a good
battery model. In this thread, the Open Circuit Voltage (OCV)
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is one of the fundamental characteristics of battery modeling.
Generally, OCV represents the potential of the charge move-
ments between the electrodes and is the intrinsic property of
a battery.

As an indicator of the essential property of the Li-ion
battery, the OCV of the Li-ion battery can be also used
for state estimation besides modeling. For example, OCV is
commonly applied for establishing an OCV-SOC function
to estimate the battery SOC in BMS. It’s obvious that the
SOC estimation accuracy is highly related to a precise OCV
measurement [28]. In order to reach the equilibrium state
inside, the battery has to be fully relaxed usually requiring
several hours or even days [29]. The lengthy relaxation time
limits the usage of OCV for battery-based applications.

In this context, fast OCV measurement is an urgent demand
to mitigate the long-time requirement. Dubarry er al. [30]
and Cui et al. [31] use 1/25 C charging and discharging
current aiming at obtaining the close-to-equilibrium OCV by
calculating the average potential between the charging and
discharging voltages. Chen et al. [32] choose C/2 current
to charge or discharge the battery with a 10% SOC inter-
val, and OCV can be measured after 45 min rest period to
reach an equilibrium condition. The average OCV between
charging and discharging is used to model the battery. Knap
and Stroe [33] evaluate four OCV test methods for battery
SOC estimation including iOCV, gOCV, pOCYV, and eOCV.
The longest test procedure iOCV needs 680 hours to obtain
the OCV curve. Some works [34] also use a high-order
polynomial function to represent the OCV-SOC curve by
measuring the OCV with 5% SOC resolution. From the above
descriptions, we realize that the aforementioned OCV tests
are still quite time-consuming and inconvenient for battery
applications, especially, for the cases when OCV is expected
to be obtained within a short time.

It is noted that EVs are often stopped during a traffic jam
or traffic light, and the battery current is close to zero when
the EV stops. There leaves a chance that the OCV could be
estimated during a short interruption period, which facilitates
onboard battery OCV acquisition. A straightforward way for
battery OCV estimation is to utilize the characteristic of the
voltage responses during relaxation time. Meng et al. [28]
propose a novel multiple correction approach for battery
OCYV estimation, which has been proven to be feasible on a
LiFePO4 battery with different SOCs. However, the method
suffers from a trouble tuning procedure of the parameters,
which is not convenient for practical usage. Pei et al. [35] also
develop a voltage relaxation model to estimate the terminal
voltage of a battery. However, the relaxation voltage has a
very strong nonlinear characteristic, which complicates the
curving fitting process.

As an alternative choice, many researchers focus on esti-
mating battery OCV using the Equivalent Circuit Models
(ECMs). The reason is that the ECMs have a simple structure,
while they can capture the main voltage dynamics of a battery.
Duong et al. [36] propose a Multiple Adaptive Forgetting
Factors based RLS (MAFF-RLS) method for identifying the

96644

parameters of an ECM, which obtains the OCV from a 40 Ah
LiFePOy4 battery. Yang [37] first estimates the OCV and the
RC circuits of an ECM simultaneously using an evolutionary
algorithm. Zhou et al. [38] proposed a weighted voltage relax-
ation model consisting of two parallel resistor-capacitor (RC)
components for fast OCV estimation. By taking a short rest
period (less than 30 minutes), the maximum OCV estimation
error is limited to 4 mV through all the tests. It can be seen
that the estimation accuracy is low due to the limited ECM
modeling ability.

In this work, a novel voltage relaxation model is proposed
for describing the dynamic response of a battery during the
rest process. In comparison with the traditional Thevenin
model, the proposed relaxation model is more accurate for
simulating battery terminal voltage in relaxation time. For
obtaining the best results, the Genetic Algorithm (GA) is
further carried out for optimizing the model parameters,
which shows an excellent performance in dealing with the
nonlinear effects. The validity of the proposed method is
verified experimentally in terms of accuracy and robustness
with two batteries, which also considers both the temperature
variations and the battery aging effect. The main contribu-
tions of this work are listed as follows:

(1). The Li-ion battery OCV can be accurately estimated
within 10 minutes by using the proposed voltage relaxation
model, whose parameters are adjusted in a GA framework.

(2). The validation of the proposed method is proved not
only on different SOCs but also with the variation of temper-
atures and battery aging status.

The remainder of this paper is organized as fol-
lows. Section II introduces the proposed relaxation model.
Section III elaborates the procedures of parameter optimiza-
tion with the GA. Experimental results are carried out in
Section IV. The main conclusions are given in Section V.

Il. BATTERY MODELING IN RELAXATION TIME

In this section, the experimental setup for measuring the
OCVs of the batteries is introduced first. The voltage relax-
ation behavior of a battery is investigated afterward. A novel
relaxation model is further carried out to describe the
dynamic characteristics of the battery in relaxation time.

A. EXPERIMENTAL SETUP
The experimental tests are carried out on two LiFePOy4 batter-
ies with a 3.2 V nominal voltage to validate the performance
of the proposed fast battery OCV estimation method. The
upper and lower cut-off voltages of the batteries are 3.6 V
and 2 'V, respectively. The specifications of the batteries are
listed in Tab. 1. As shown in Fig. 1, the battery test platform
includes a thermal chamber to control the ambient temper-
ature, a Chroma 17011 test station to charge and discharge
the battery, a host computer to generate the control signal
and store the measurement data. In this study, the sampling
frequency is set to 1 Hz.

In this section, we have tested Cell A to measure the OCV
with different SOCs and current rates. The voltage and current
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FIGURE 1. Experimental test platform for Li-ion batteries.
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FIGURE 2. Voltage profile of battery OCV measurements with 0.5 C
discharging rate under 25 °C.
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FIGURE 3. Current profile of battery OCV measurements with 0.5 C
discharging rate under 25 °C.

profiles of the OCV measurements are shown in Figs. 2 and 3,
where the ambient temperature is set to 25 °C. It can be seen
that the battery is discharged with a 0.5 C rate with a 10%
SOC resolution, the terminal voltages in 4 hour’s rest period
are measured as OCVs.

B. ANALYSIS OF BATTERY VOLTAGE RELAXATION
BEHAVIOR

Battery voltage is characterized by the potential difference
between the two electrodes. Generally, the voltage response
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FIGURE 5. Post-charging voltage relaxation profile.

consists of instantaneous voltage variation, which is caused
by the Ohmic resistance, and the dynamic variation, which is
caused by the kinetic effect and ion transfer, efc. For obtaining
the OCV of a battery, it has to take a long time (several
hours or even days) for reaching the equilibrium state due
to the slow process of the internal chemical and physical
reaction. Consequently, the cut-off voltage of a battery cannot
immediately meet the OCV without a long relaxation time.

As shown in Figs. 4 and 5, the relaxation voltage of a
battery takes 4 hours for reaching an equilibrium, while the
voltage trajectory has a quite strong nonlinear characteristic,
where the voltage variation rate significantly decreases with
time. Consequently, there remain difficulties in predicting
battery OCV within a short relaxation time.

C. RELAXATION MODEL

In this subsection, a relaxation model is proposed to simulate
the terminal voltage variation of a battery during the relax-
ation process.

The Thevenin model is the most used battery model as
it has a simple structure and provides acceptable modeling
accuracy under various operating conditions. As shown in
Fig. 6, Ro is the Ohmic resistance, which consists of the
electrolyte resistance and electrode material resistance, efc.
R, and C,, are the electrochemical polarization capacitance

96645



IEEE Access

Y. Qian et al.: Fast OCV Estimation of Lithium-lon Batteries Using a Relaxation Model and Genetic Algorithm

r= I]iZ’CP
]
AN C,
R, L AAA— +
R!’
_— U U

FIGURE 6. Conventional Thevenin model.

1000
800 - Linear fitted 7
4 Measured 1

- 600
~ A
L

400 r

200

50 100 150 200 250 300 350 400 450
Time (s)

FIGURE 7. Post-discharging time constant profile.

and resistance, respectively. T is known as the time constant
of a battery, which equals R, C,, in the Thevenin model.

Despite the simplicity, the conventional Thevenin model
with fixed parameter values is incompetent for describing
the dynamic voltage variation through the relaxation pro-
cess. During the relaxation period, the dynamical response
of the battery transfers from the charge-transfer region with a
minor time constant to the diffusion region with the slowest
time constant. Consequently, the time constant T gradually
increases with the increment of the relaxation time.

Here we define 7; as the time constant at the time of ¢,
which is determined by,

Uoc — Us_
=1/l =1 (1
Uoc — U;

where U, is battery OCV, U; and U;_; are the terminal
voltages at the time of ¢ and ¢-1 respectively. Assuming the
U, is known, the time constant profiles at different times can
be obtained, which are shown in Fig. 7 and Fig. 8.

It is observed that the t; has an obvious linear relationship
with the relaxation time. Besides, ; is closely related to bat-
tery OCV and the terminal voltage in the relaxation process.
Therefore, instead of using a fixed parameter to describe the
time constant, a time-varying t; is applied in this work for
establishing a relaxation model.

As shown in Fig. 9, the Ohmic resistance is omitted since
there is no current excitation during the relaxation process.
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FIGURE 9. The proposed relaxation battery model.

The proposed relaxation battery model contains an RC net-
work. Both the polarization capacitance C, ; and the polariza-
tion resistance R), ; are designed as time-varying parameters.
The governing equation of the proposed relaxation battery
model is expressed as,

U, = Uoc — (Uoc - [A]tfl) el
T = at + b

@

where U; and U;_ are the simulated voltages from the relax-
ation battery model at the time of # and ¢-1. 7 is subjected to a
linear function, where a and b are the polynomial coefficients
of the linear function.

It can be seen that a, b, and U, are the parameters to
be identified. The method for identifying the parameters is
discussed in the following section.

Ill. THE PROPOSED OCV ESTIMATION METHOD

A. PARAMETER IDENTIFICATION

The model parameters can be obtained by fitting the termi-
nal voltage measurements with the output voltages from the
relaxation battery model. Here we define a parameter vector,
which is expressedas 6 = [a b U ]T . A least-square based
estimator is designed for estimating the model parameters,
which is expressed as,

6 = arg mein Z (U, - U,>2 3)

where 6 is the estimated parameter vector, U; is the measured
battery terminal voltage, U; is the model simulated voltage,
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FIGURE 10. Flowchart of the optimization of model parameters with GA.

which is obtained from (2). #; and #;, are the upper and lower
limits of the investigated battery relaxation time.

The fitness function is further presented to compare the
model output U, and the measured U,, which is expressed
as,

Fitness = | 1 — x 100% @

where U, is the average value of U; over the relaxation time
period.

To obtain a reasonable parameter identification result, the
GA is presented for optimizing the model parameters, which
is further discussed in the following subsection.

B. GENETIC ALGORITHM
In comparison with the conventional least square-based meth-
ods that are very sensitive to the initial values of the parame-
ters, the GA is capable of finding the global optimal solution
without any initial guesses. Based on Darwin’s theory of
evolution, various species compete with each other in the
environment and only the fittest can survive [1], [39], [40].
The evolutionary process of a population is introduced in
this work for explaining the GA. The genetic information of
the population is contained in the chromosomes, while the
evolution process includes selection, crossover, and mutation.
The selection refers to some of the existing population is
selected to generate the offspring. During the crossover pro-
cess, the chromosomes of the offspring are hybridized from
the parents. The mutation process makes random changes to
the chromosomes, which brings new genes into the popula-
tion.
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FIGURE 12. OCV estimation results with 0.5 C current rate.

The flowchart of the GA for optimizing the model parame-
ters is shown in Fig. 10. The calculation is executed according
to the fitness function. If the fitness value is not satisfied,
GA takes the selection, crossover, and mutation for updating
the parameters. The repetition terminates when the fitness
value is larger than the boundary value and the output values
are regarded as the final identified model parameters.

IV. EXPERIMENTAL STUDIES

Considering a balance between practicability and modeling
accuracy, we only take 600 s relaxation voltage measurements
to establish the relaxation model and optimize the model
parameters in this work. The experimental results concerning
battery OCV estimation and the fitted terminal voltages are
shown in Fig. 11. It can be seen that the simulated voltage
plots almost identical curves in comparison with the voltage
measurements, which confirms the modeling accuracy of the
proposed relaxation model. Meanwhile, the estimated battery
OCV is very close to the reference, which proves the accuracy
of the proposed method for OCV estimation.

To further investigate the proposed fast OCV estimation
method under different operating conditions, additional tests
concerning different SOCs and current rates are carried out in
this work. The experimental results with 0.5 C,1 C, and 2 C
current rates are shown in Figs. 12, 14, and 16. It can be seen
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FIGURE 13. Absolute errors of OCV estimation with 0.5 C current rate.
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FIGURE 15. Absolute errors of OCV estimation with 1 C current rate.

that battery OCV is rather dependent on battery SOCs instead
of the current rates. The experimental results suggest that the
proposed method can accurately estimate battery OCV, where
the estimated OCV values can well track the references all the
time. The absolute errors of the OCV estimation are shown in
Figs. 13, 15, and 17, where the maximum error is limited to
1.8 mV. The validity of the proposed method with different
SOCs and current rates is proved accordingly.

A. VALIDATION UNDER DIFFERENT AGING STATUSES AND
AMBIENT TEMPERATURES

To investigate the effectiveness of the proposed method under
different circumstances, we have further verified the pro-
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TABLE 1. Specifications of the LiFePO4 batteries.

MODEL Initial Capacity Present Capacity
Cell A ANR26650 2.55 Ah 2.55 Ah
Cell B ANR26650 2.55 Ah 2.34 Ah
3 T T T T T T T T
2.5F 1

Absolute error (mV)
wn

10 20 30 40 50 60 70 80 90
SOC (%)

FIGURE 17. Absolute errors of OCV estimation with 2 C current rate.

posed method with different aging statuses and ambient tem-
peratures in this work.

Batteries’ aging effects are commonly described as capac-
ity losses. As shown in Table 1, Cell B has the same specifica-
tions as Cell A, while the capacity of Cell B is lower than the
initial ones. Meanwhile, the thermal effects are investigated
by testing Cell A under the ambient temperature of 40 °C. For
controlling variables, the current rate is selected as 0.5 C in
this subsection.

The experimental results concerning battery OCV estima-
tion are shown in Figs. 18-21. It can be seen that both the
aging and thermal effects only exert a slight influence on
battery OCV. Likewise, the proposed method shows superb
performance in terms of accuracy and robustness for estimat-
ing battery OCV, where the estimated values always track the
reference. The feasibility and adaptability of the proposed
method with different aging statuses and ambient tempera-
tures are proved accordingly.
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TABLE 2. Comparison of the relaxation time and the maximum errors
using different methods.

Method Relaxation time Maximum error
Ref. [28] 15 minutes 3.97 mV
Ref. [35] 20 minutes 3.00 mV
Ref. [38] 30 minutes 4.00 mV
Proposed 10 minutes 1.80 mV

The required relaxation time and the maximum OCV
estimation errors using different methods are compared in
Table. 2. It can be seen that the maximum errors in [28], [35],
and [38] are all higher than 3 mV. In contrast, the method
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FIGURE 21. OCV estimation results of Cell A under 40 °C.

proposed in this work only takes 10 minutes of the relaxation
time, and the maximum estimation error is limited to 1.8 mV.
The above results confirm the superiority and practicability
of the proposed method.

V. CONCLUSION

This study proposes an effective method for estimating bat-
tery OCV within a short relaxation time period. A novel
relaxation model is designed for characterizing the voltage
response of a battery during the relaxation process. The pro-
posed relaxation model can correctly simulate the terminal
voltage in relaxation time, which significantly outperforms
the traditional Thevenin model in terms of accuracy. The GA
can effectively deal with the nonlinear effect, which is applied
for optimizing the model parameters and obtaining the best
OCYV estimation results.

Experimental tests have verified the effectiveness of the
proposed method under different SOCs, current rates, aging
status, and ambient temperatures. The proposed method
shows excellent performance for estimating battery OCYV,
which takes only 10 minutes of measurement data, and the
maximum estimation error is limited to 1.8 mV.
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