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ABSTRACT Due to the complexity of interactive environments, dynamic obstacle avoidance path planning
poses a significant challenge to agent mobility. Dynamic path planning is a complex multi-constraint
combinatorial optimization problem. Some existing algorithms easily fall into local optimization when
solving such problems, leading to defects in convergence speed and accuracy. Reinforcement learning has
certain advantages in solving decision sequence problems in complex environments. A Q-learning algorithm
is a reinforcement learning method. In order to improve the value evaluation of the algorithm in solving
practical problems, this paper introduces the priority weight into the Q-learning algorithm. The improved
algorithm is compared with existing algorithms and applied to dynamic obstacle avoidance path planning.
Experiments show that the improved algorithm dramatically improves the convergence speed and accuracy
and increases the value evaluation. The improved algorithm finds the shortest path of 16 units in 27 seconds.

INDEX TERMS Dynamic obstacle avoidance, sequence problems, reinforcement learning, Q-learning

algorithm.

I. INTRODUCTION

In recent years, with the development of the IT industry and
the proposal of a large number of intelligent algorithms, these
algorithms have been applied to path planning technology and
are relatively mature. However, path planning still depends on
manual sites to a great extent. This planning method will be
affected by subjective factors, resulting in the consumption of
the workforce, material resources, and working time. There-
fore, in the era of industry-wide intelligence, it is of great
significance to apply an intelligent path planning algorithm
to the field of robot path planning. Compared with the path
planning of static obstacles, the path planning of dynamic
obstacles brings new challenges. Because there is no prior
knowledge of dynamic obstacles, it is inevitable to encounter
various difficulties in path planning. Therefore, the path plan-
ning of dynamic obstacles has vital practical significance.
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Some scholars have performed much research on route
planning. Dong et al. [1] proposed a new dual ant colony
algorithm (NDACA) based on dynamic feedback to realize
accurate and efficient route planning of ships in complex
marine environments. First, the energy consumption model
is established by analyzing the ship’s motion, which is used
for the pheromone update strategy. Second, according to the
energy consumption information of the route, the ant colony
is divided into an exploratory ant colony and an optimiza-
tion ant colony. The closed-loop feedback strategy is used
to continuously adjust the number of ants in each colony
to ensure the algorithm’s solution quality and convergence
speed. Meng et al. [2] presented a smooth DGWW global
planning method based on the beetle antennae search(BAS)
algorithm to optimize the grey wolf optimization(GWO)
algorithm and solve the problems of local path difference
and low convergence speed in complex path planning envi-
ronments. This method integrates the method of using the
two antennae of the beetle head to optimize the search in
the BAS algorithm into the GWO algorithm to avoid local
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optimization. Liu et al. [3] proposed a multistep computing
framework to extract economically safe routes. First, track
simplification and a density clustering algorithm are used to
generate a maritime traffic network. Then, the kernel density
estimation (KDE) method is introduced to generate routes
related to the traffic count frequency in specific areas. Finally,
the best route is extracted by the sliding window algorithm
executed on the transportation road map. Dong et al. [4] used
the A* algorithm and genetic algorithm (GA) to solve path
planning. First, the path is obtained through the A* algorithm.
The improved GA is used to reformulate the connection point
strategy for the obtained paths to obtain secure and diversified
paths. In addition, some scholars [5], [6] have combined
motion characteristics with a swarm intelligence algorithm to
solve the problem of path planning. Zhang et al. [7] designed
a path planning method based on the heuristic algorithm. The
distance and the changing angle as genetic material are used
to construct the path to avoid the collision. In the experiment,
a random pattern developer and genetic algorithm (GA) are
used as optimization methods to verify the feasibility of the
path planning method. These methods are of great signifi-
cance to the research of path planning. However, in the case
of many obstacles, they have considerable time and space
complexity, and these algorithms are not intelligent in the
case of new obstacles.

Under environmental situation awareness and planning
algorithm selection, the path planning algorithm is a com-
binatorial optimization problem under complex constraints.
The acquisition of obstacle information is affected by the
environment modeling method. The appropriate environment
modeling method is more conducive to planning the correct
path. Most methods do not put forward the judgment of envi-
ronmental modeling methods. Some existing path planning
algorithms adopt many static strategies, and each strategy
interacts with an independent environment instance for a
long time. However, strategy is a function of the state to
action, a dynamic process. The state and action informa-
tion of independent individuals can make the search more
efficient, and the static strategy does not take advantage of
these contents. A Q-learning algorithm is a method of learn-
ing in interaction with the environment. It is a model-free
reinforcement learning method. However, the original
Q-learning algorithm affects the value evaluation because
of the choice of actions, so this paper improves the value
evaluation.

Q-learning aims to learn strategies that tell agents what
actions to take under what circumstances. It does not need
a model of the environment, and it can deal with the prob-
lems of random transformation and reward. Q-learning finds
the optimal strategy for any finite Markov decision process
(FMDP). In this sense, it starts from the current state and
maximizes the expectation of total return in all consecutive
steps. Q-learning can determine the optimal action selec-
tion strategy for any given FMDP, given infinite exploration
time and partial random strategy. The main advantage of
Q-learning is that the temporal difference method (TD) can
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be used for offline learning, and the Bellman equation can be
used to solve the optimal strategy of the Markov process.
The remaining structure of this paper is as follows: the
second section describes the related work of the path plan-
ning problem. The third section introduces the improved
Q-learning algorithm, and the fourth section displays the
experiment. The last section gives the conclusion of this

paper.

Il. RELATED WORK

Path planning [8] is necessary for objects that need to move
independently. In the process of moving, we need to know
the surrounding environmental information and the moving
method to reach the destination accurately. Therefore, in path
planning, whether a ship or a mobile robot, it is necessary
to simulate the accurate environmental information into a
plane or a three-dimensional model that the path algorithm
can process.

The path planning method is an essential branch of object
motion control. For moving objects, according to their own
sensors’ perception of the external environment, they can
independently plan a collision-free smooth route from the
starting point to the target point. This description is called
the path planning of a mobile robot. Path planning is a route
without collision and meeting the constraints in a particular
environment, such as a global static or dynamic local environ-
ment. The steps of path planning are generally divided into
two parts: obstacle information description and searching the
path according to the algorithm.

The robot arm’s path planning to reach the target and avoid
obstacles plays an essential role in manufacturing automa-
tion. Although many path planning algorithms have been
proposed, including rapid exploring random trees(RRT), arti-
ficial potential field(APF), probabilistic roadmap(PRM), and
reinforcement learning(RL), they have many problems: time-
consuming and high computational cost. This article uses
Q-learning [9] to find the robot’s action to take optimiza-
tion measures. Bonny et al. [10] presented a new method to
find the best path for mobile robots in a two-dimensional
environment. Use the bees algorithm (BA) and Q-learning
algorithm to find the best path. Path planning based on com-
puter vision can be crucial in many technology-driven intel-
ligent applications. Although various path planning methods
have been proposed, there are still limitations. To overcome
these limitations, Abdi et al. [11] developed a new path plan-
ning method combining computer vision, Q-learning, and
neural networks. Sahu ef al.[ [12] proposed an innovative
method to solve robot pairs’ path planning and synchro-
nization in known static and complex environments. This
problem solves the robot’s transporting the rod from the
predefined starting position to the preset target position. The
design of a hybrid algorithm combines the unique advantages
of improved Q-learning (IQ) and democratic robot particle
swarm optimization (DRPSO). AlphaGo has confirmed the
practicability of reinforcement learning, and the research
on the application of reinforcement learning in autonomous

VOLUME 10, 2022



C. Wang et al.: Improved Q-Learning Applied to Dynamic Obstacle Avoidance and Path Planning

IEEE Access

driving is being actively promoted. Kim efal. [13] used
Q-learning, one of the reinforcement learning algorithms,
to realize path planning. Product assembly is a crucial stage
of complex product manufacturing. How to intelligently plan
the assembly process according to the dynamic product and
environmental information has become an urgent problem to
be solved. Guo et al. [14] proposed an improved Q-learning
algorithm to solve the path planning problem in product
assembly in virtual space.

However, the above method does not mention how to
solve the problem of dynamic obstacles in path planning.
The combination of evolutionary algorithm and Q-learning
algorithm has advantages in solving other path planning
problems. However, introducing the evolutionary algorithm
will increase the complexity of the Q-table, and the original
Q-learning algorithm and evolutionary algorithm are defi-
cient in convergence speed and accuracy. This paper over-
comes the algorithm’s shortcomings from the path planning
sequence solved by the algorithm.

A. THE ENVIRONMENT OF DYNAMIC OBSTACLE
Environmental information is the premise and foundation of
path planning and a compelling description of the environ-
ment where the robot is located. The area where the robot
is located is divided into a feasible area and an infeasible
area. The treatment of many different forms of obstacles or
impassable areas is the key. Replacing obstacles with geo-
metric polygons has been widely used.

The visibility graph [15] method expresses the obstacles
in the environment in the form of a geometric polygon, set
the starting point, target point, and vertices of the robot, and
connects them. It is stipulated that the connection between the
vertices and starting points of the polygon, the target points,
and the vertices of the deformed obstacle itself cannot pass
through the obstacles. This connection is called “visible”;
otherwise, it is ”invisible”, and the whole connected graph
is called the visual graph. The disadvantage of the visibility
graph is that there is no more selectivity in path planning.
Agents crossing the best path must pass through obstacles,
significantly increasing the collision risk.

The link graph method [16] is a modeling method based
on the free generation of environmental space. First, vari-
ous polygons must be preset to represent the situation of
obstacles. According to the shape of polygons, the whole
environment space is divided into two states: obstacle space
and free space. The robot can search for the optimal path
using the path planning algorithm in free space. Due to the
need to preset obstacles, the link graph may not be able to
consider additional obstacles in solving dynamic obstacle
path planning.

The grid method [17] is one of the most widely used mod-
eling methods in path planning research. This method decom-
poses the robot’s working environment into multiple simple
grids, simplifies the complex environmental information into
grid information with a unit nature, and changes the complex
motion relationship in the environmental space. Based on
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the traveling area and environmental obstacles, the grids can
be divided into traffic grids and blocking grids according to
their different attributes. In the simulation of the grid method,
the different grid sizes and the number of grids will directly
affect the algorithm’s performance. The smaller the grid is,
the more accurate the environmental information is and the
closer it is to the natural navigation environment. However,
it will also lead to too much miscellaneous information and
slow down the efficiency of the path planning algorithm.
In contrast, the larger the grid is, the lower the resolution
of environmental information, the greater the error with the
proper environment, the faster the algorithm’s efficiency, and
the lower the natural effect.

Fig 1 shows the path planning environment of this paper.
The width and height set by the test simulation are 9 x 9,
and the cell is set to 40 pixels. The robot’s position represents
the starting point, the green square represents the obstacle,
and the flag represents the target point. The agent needs to
find a path from the starting point to the target point with
the shortest cost, which should avoid obstacles ideally. In this
paper, dynamic means that in addition to the starting point,
obstacles and the target point are randomly generated in the

process of agent travel.
‘0 N 0

FIGURE 1. Environment modeling of path planning.

B. ALGORITHM OF PATH PLANNING
Plan planning finds a possible path from the starting point to
the endpoint according to the corresponding algorithm based
on the known environmental model and meets the constraints
to make the predetermined performance function reach the
optimal value. In the search process, according to the advan-
tages and disadvantages of the algorithm and its adaptability,
choosing and using the appropriate planning algorithm has
become the research’s key.

In the process of robot path planning, we should first
establish the global robot navigation environment model and
then select the correct path planning algorithm. Different
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path planning algorithms have different effects in differ-
ent environments. Choosing the appropriate algorithm is of
great significance. The Dijkstra algorithm [18] proposed by
Dijkstra started scholars’ pursuit of path planning algorithms.
Currently, with the advent of the intelligent era, a large num-
ber of scholars have conducted a variety of research inves-
tigations on path planning algorithms and have developed
many common intelligent algorithms with strong comput-
ing power, such as genetic algorithm [19], particle swarm
optimization [20], artificial neural networks [21], reinforce-
ment learning [22], [23], [24], [25] and the ant colony algo-
rithm [26]. Currently, these algorithms have been applied
in different fields, and different improvement methods have
been produced according to the use environment and have
achieved great success. To achieve the goal of the optimal
path, the reinforcement learning control agent interacts with
the environment and fully considers the different conditions
of the natural environment. Dijkstra and genetic algorithms
adopt static strategies to interact with the environment and
cannot solve the dynamic programming problem.

lIl. THE IMPROVED Q-LEARNING ALGORITHM
Robot technology is increasingly widely used in production
and life. One of the main tasks of robot control systems is
to complete path planning. When facing high-dimensional
systems and systems with complex constraints, the traditional
path planning algorithm has shortcomings, such as high time
complexity and ease of falling into local optimization. The
Q-learning algorithm [27] is a typical reinforcement learning
method that does not require complete environmental knowl-
edge. These algorithms enable the robot to learn appropri-
ate behavior from the environment and have achieved good
results in robot path planning. With the advent of the era
of artificial intelligence, more complex environments put
forward higher requirements for the rapidity and flexibility of
path planning algorithms. Research on effectively improving
the speed of path planning has essential application value and
practical significance. The history of reinforcement learning
can be traced back to the 1950s. Its basic idea is to trans-
form the sequential decision-making problem into a Markov
model [28]. It establishes the mapping between the environ-
mental state and the state action value function through the
interaction between the agent (robot) and the environment.
It then finds the optimal state-action value function iteratively
to obtain the optimal action sequence. The reinforcement
learning method is widely used in robot path planning and
has achieved good results. In 1995, Beom et al. [29] com-
bined a fuzzy logic algorithm and reinforcement learning
algorithm to realize the navigation of a ground mobile robot.
Ye [30] proposed an incremental mobile robot navigation
method based on reinforcement learning theory. At the Euro-
pean Symposium on Artificial Neural Networks in 2013,
Bischoff er al. [31] proposed a hierarchical reinforcement
learning method for robot navigation.

The purpose of Q-learning studies how agents act in the
environment to maximize cumulative rewards. As shown in
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FIGURE 2. The structure of Q-learning.

Fig 2, the Q-learning framework mainly comprises the agent,
environment, state, action, and reward. After the agent acts,
the environment will transition to a new state and give a
reward signal. Then, the agent executes new actions accord-
ing to specific strategies according to the reward of the
new state and environmental feedback. Through this learning
method, agents can know what actions they should take in a
particular state to maximize their reward. Because the inter-
action between agents and the environment is similar to that
between humans and the environment, Q-learning is regarded
as a general learning framework to solve general Al problems.

A. THE ORIGINAL Q-LEARNING ALGORITHM

The Q-learning algorithm was proposed in 1989 and is one
of the methods for solving reinforcement learning tasks. The
Q-learning algorithm is based on the theory of the time
difference method. The time difference method is a typical
model-free reinforcement learning method and the primary
method of the reinforcement learning solution. It does not
need complete environmental knowledge, so itis widely used.
It can be used for reinforcement learning tasks with long
experience tracks and for continuous reinforcement learning
tasks. In path planning, the Q-learning algorithm can be
used to solve the path planning problem based on a grid
graph. In 2010, Goswami et al. [32] proposed an extended
Q-learning algorithm, which accelerated the Q function’s
convergence speed and improved the algorithm’s efficiency
by introducing flag variables. Konar et al. [33] improved the
traditional Q-learning algorithm and proposed a new deter-
ministic algorithm with theoretical knowledge. The algo-
rithm updates the entry Q-table at one time and significantly
reduces the time complexity. The Q-learning algorithm can
also be combined with the sampling-based path planning
algorithm to search for an optimal path in the road map
quickly.

Q-learning aims to learn the optimal action-value func-
tion Q.. The algorithm makes the agent learn a series of
trajectories according to the optimal Behrman equation. The
optimal Behrman equation is shown in (1).

Ox(s1, ar) = Es,+1~p(<|.v,,a,)[Rt
+ymaxQ«(Si11, AIS; = 51, Ay =a;] (1)
Ac A
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Both sides of (1) are approximated. Q..(s;, a;) on the left of
the equation can be approximated as O(s¢, a;). The estimation
of Q(s,, ay) is made at time ¢. The expectation on the right
side of the equation is about state S, at the next time. Given
the current state s;, the agent executes the action a,, and the
environment will give the reward r; and the new state s;41.
Using the observed r; and s;1, the expectation is obtained
by Monte Carlo approximation,as shown in (2).

e + ymaxQuy(si+1, a) 2
acA

Furthermore, Q, in (2) is approximated as Q. Equation (3)
is called the temporary difference. It is the estimation of
0. (s¢, a;) made by the agent at time 7 + 1. Q(st, a;) and y, are
the estimation of the optimal action value Q. (s, a;). Since
¥y contains reward r, partially based on real observations,
we believe that y, is the more reliable estimate, so it is
encouraged for Q(st, ay)) to be closer to y;. Therefore, (4) is
used to update Q.

Y &+ VZgCQ(stH, a) (3)
OGst, ar) < (1 —a)Q(st, ar) + )

The process of the Q-learning algorithm is divided into
two parts: collecting training data and experience replay.
Q-learning updating Q does not depend on a specific strategy
in collecting training data. We can use any strategy to control
the agent, interact with the environment, divide the obtained
trajectory into (s;, as, ¢, Sy+1) and store it in the empirical
playback array. This strategy for controlling agents is called
behavior policy. The most commonly used behavior strategy
is & — greedy, which is shown as (5). The update logic of
the value function Q(s;, a) is shown in Fig 3. In state s, the
e- greedy algorithm selects action a, executes action a,
obtains the immediate reward r, and then transfers it to
state s’. The Q-learning algorithm uses ¢ -greedy algorithm
to selects action a’ in-state §', that is, selects a that maximizes
QO(s', a) to update the value function.

{ argmaxaQ(s,, a)

Uniform e

1—¢

®

= ¢

FIGURE 3. ¢ -greedy algorithm update action a.

The process of experience replay is as follows: First, a quad
is randomly extracted from the experience replay array and
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record it as(s, aj, 1j, Sj+1), Q,ww, Qnew. Second, the element
of Opnow at position (sj, a;) is recorded as (6). Third, the
maximum value of line sj;1 of Q,,OW is calculated as (7).
Fourth, (8) is used to calculate the TD target and TD error;
Finally, (9) is adopted to update the element at (s, a;).

éj = Qnow(sjs Clj) (6)

giv1 = maxQnow(Sj+1, @) (7

Vi = rj a8 =4 = ®)
Onew(sj, @) < (1 — a)Onow(sj, aj) + ad; 9

B. Q-LEARNING BASED ON PRIORITIZED WEIGHT

One advantage of prioritized weight is to break the correlation
of sequences. Another advantage is to reuse the collected
experience instead of discarding it once. It can achieve the
same performance with fewer samples. It can not only make
the convergence faster but also make the average return
higher. In general experience, one sample is obtained by uni-
form sampling each time. The prioritized weight gives each
sample weight and then makes nonuniform random sampling
according to the weight.

Due to the different importance of samples, many samples
normally travel in path planning, but few encounter obstacles.
These few samples will have a great impact on path planning.
Therefore, the samples that encounter obstacles should have
a higher weight and receive more attention. Normal samples
should not be treated equally. In practice, we cannot know
which samples are more important. Therefore, this can be
judged according to the absolute value of the TD error. If the
absolute value of the TD error §; is large, it indicates that the
current evaluation of the real value of (s;, g;) is inaccurate;
then, a higher weight should be set for (s, a;, 7}, 5j11).

In this paper, the sampling method arranges the error val-
ues J; in descending order and then calculates the sampling
probability, as shown in (10). If we perform nonuniform
sampling, we should adjust the learning rate according to the
sampling probability «. If a sample has a high probability of
being sampled, its learning rate should be relatively low. The
learning rate o can be set according to (11).

1
P rank (j) (10)
a
= — 11
aj G (11)

where b is the total number of samples in the experience
replay and 8 € (0, 1)is a super parameter that needs to be
adjusted.

The Q-learning algorithm has the problem of overesti-
mating the following action. This paper adopts prioritized
weight to select the following action to solve this problem.
At any position, the agent will choose the action with the
most significant reward with probability 1 — ¢ and randomly
choose an action with probability ¢, called the random occur-
rence probability. After each selection, a probability delivery
is obtained, which describes the probability of each action
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selected. This probability delivery is used as input for the
following selection, and the process is iterated repeatedly.

Algorithm 1 Q-Learning Based on Prioritized Weight
Initialize Q table, b, 8, ¥
for e=1 to episodes
Initialization status S
repeat
Using (4), select action a under state s;
Using (9), obtain reward r and the next status s';

Using (10), random sampling;
prioritized weight update Q;
s <~ s';
until s is terminated;
end for

IV. EXPERIMENT

A. TEST ENVIRONMENT AND PARAMETERS SETTINGS
The setting of the test running environment of the paper is
shown in Table 1. The experiments in this paper are based on
this equipment.

TABLE 1. Experimental environment.

Components Attribute
Operating system CentOS Linux release 7.6.1810 (Core)
Memory 754G
CPU Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHZ
Basic frequency 2.40GHZ
Programing language Python 3.8.3
Graphics card NVIDIA Corporation TU102GL (rev al)

In the experiment section, we compare Q-learning
with the A* algorithm [34], PRM [35], RRT [36], and
BRRT(bidirectional rapid exploring random trees) [37]. The
parameters of the comparison algorithm are shown in Table 2.

TABLE 2. Experimental parameters.

Algorithms parameters
Improved Q-learning b=5000, 3 =0.3,v € [0.1,0.9],e=0.9
Q-learning ~ € [0.1,0.9],e=0.9
A* thelengtho f comeF'rom=1000
PRM k =50
RRT step=20, disTh=20, max Attempts=10000
BRRT step=20, disTh=20, mazx Attempts=10000

y = 0 means that the agent only cares about the recent
rewards, while y = 1 makes it committed to higher rewards
in the long term. If the discount factor exceeds 1, the action
value Q may diverge. In this case, the learning efficiency can
be improved by gradually increasing the discount factor from
a lower value to the final value. As the number of iterations
increases, the value of y increases from 0.1 to 0.9. The total
number of samples in the experience replay »b=5000 and
B = 0.3. In the experimental simulation, the actions taken by
the agent are only up, down, left, and right.
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B. THE COMPARATIVE EXPERIMENT OF ALGORITHMS

In the same experimental environment, we verify the perfor-
mance of various comparison algorithms from the starting
point (0, 0) to the endpoint (240, 240). In the path planning
from the beginning to the end, the comparison algorithm
needs to find an optimal path with the shortest length and is
time-consuming under the price adjustment of obstacles. The
experimental results of the comparison algorithm are shown
in Fig 4-Fig 9.

0 0
= ]
B

..J

FIGURE 4. The improved Q-learning algorithm for path planning.

FIGURE 6. The A* algorithm for path planning.

Fig 4 and Fig 5 use the grid method to divide the path graph,
which intuitively shows the path planning. Due to the defects
of the algorithm, although Fig 5 finds the absolute path,
additional costs are incurred in the planning process. Fig 6-9
do not use the grid method to segment the path map. They
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FIGURE 9. The RRT algorithm for path planning.

TABLE 3. The shortest path distance and time.

Algorithms Distance(cell) Time(s)
Improved Q-learning 16 27
Q-learning 18 36
A* [34] 78 130
PRM [35] 90 31
RRT [36] 102 9.3
BRRT [37] 92 4.7

plan by constantly exploring the surrounding environment in
path planning so that the formed path will be irregular. Some
path planning will be close to obstacles, indicating no safety
distance constraint. The path cost in Fig 6-9 is also relatively
high. The comparison algorithm’s shortest path distance and
time cost are shown in Tables 3.
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As seen from Table 3, the path found by the improved
Q-learning algorithm is the shortest among all the comparison
algorithms, followed by the original Q-learning algorithm.
The A* algorithm takes a long time because it needs to spread
continuously to find the endpoint in the iterative process
of the algorithm. BRRT algorithm takes the shortest time
because the algorithm starts from the starting point and the
endpoint to find the path until a certain point coincides.PRM
algorithm will randomly generate points according to the set
value in the iteration process. The algorithm can find the path
if the generated points can be connected into a line from the
starting point to the endpoint. Therefore, if the environment
is complex, the PRM algorithm may not be able to find the
path unless more points are generated. Although the time
consumption in the path planning process of the improved
Q-learning algorithm is not the least, the path is the shortest.
Therefore, from this perspective, the improved Q-learning
algorithm performs better in path planning.

If the agent drives to the end, the reward value is 1. If the
agent drives to an obstacle, the reward value is - 1. In other
cases, the reward value is 0. The whole episode set in the
paper is 1000. With the increase in episodes, the steps and cost
are shown in Fig 10 to Fig 13. With the increase in episodes,
the steps of Fig 10 based on the improved Q-learning change
significantly during the continuous exploration in the early
stage. However, after the 400th episode, the steps are stable,
and most of them are disturbed at steps 0 to 25. However,
Fig 11 stabilizes only in the 920th episode. In the early
stage of the test simulation, the reward value of the agent is
negative. Similarly, after 400 episodes, the robot using the
improved algorithm, finds the path of the target position.
It is shown in Fig 12. However, the cumulative return of
Fig 13 is lower than that of improved Q-learning due to the
unreasonable use of different samples.

Episode via steps

150

Steps

50 4

T T T T T T
0 200 400 600 800 1000
Episode

FIGURE 10. Episode via steps of improved Q-learning.

To further verify the performance of the improved algo-
rithm, we dynamically generate obstacles and let the robot
plan a reasonable route. The results are shown in Fig 14
and Fig 15. The results show that the improved Q-learning
algorithm plans a good path. From the steps and costs of each
episode, since the obstacles in Fig 14 and Fig 15 are ran-
domly generated, the exploration in the process of traveling is
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Episode via steps

400 600 800

Episode

FIGURE 11. Episode via steps of original Q-learning.

Episode via cost

1000

Episode

FIGURE 12. Episode via cost of improved Q-learning.

Episode via cost

1000

0.24

0.0

—0.21

Cost

—0.6

—0.81

400 600 800

Episode

o
N
4
S

FIGURE 13. Episode via cost of original Q-learning.

.
J

FIGURE 14. Robot path 1 planning simulation test.

different, and the steps and costs of each episode are different,
as shown in Fig 16 to Fig 19. Fig 16 and Fig 18 tend to be
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1000

FIGURE 15. Robot path 2 planning simulation test.
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FIGURE 17. Episode via step of path 2.
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FIGURE 18. Episode via cost of path 1.

stable when exploring no more than 185 episodes. Fig 17 and
Fig 19 are stable around the 100th episode due to the complex
environment. The maximum path length explored in Fig 16 is
128, which takes more time in the early stage. After planning
the shortest path, the improved Q-learning algorithm sets the
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FIGURE 19. Episode via cost of path 2.

highest weight in the g-table. The path is planned according to
the shortest distance in the subsequent iteration process. In the
reward value shown in Fig 18, the maximum reward value
obtained by the improved Q-learning algorithm after reaching
the stable state is 9, which shows that the improved algorithm
improves the reward value of the algorithm. Therefore, it can
be concluded that when the environment is not complex, the
Q-learning algorithm reaches a steady state in a short time.
If the environment becomes complex, the algorithm needs
more exploration of the unknown environment.

V. CONCLUSION

This paper applies the improved Q-learning algorithm to
dynamic obstacle avoidance and path planning and compares
it with the A* algorithm, PRM, RRT, and BRRT. The results
show that the priority weight improves the value evaluation of
Q-learning and the algorithm’s performance. The improved
Q-learning algorithm has dramatically improved the conver-
gence speed and accuracy and can find a better path in the
path planning of dynamic obstacles.

As the scale of the problem increases, the Q-table in the
Q-learning algorithm will also expand, increasing the algo-
rithm’s complexity. Q-learning has the problem of overes-
timation, which makes it impossible to choose the optimal
action. The Q-learning algorithm may produce a locally opti-
mal solution rather than a globally optimal one, resulting in
the agent not obtaining a higher reward. The solutions to these
problems are our future research work.
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