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ABSTRACT Due to the complexity of interactive environments, dynamic obstacle avoidance path planning
poses a significant challenge to agent mobility. Dynamic path planning is a complex multi-constraint
combinatorial optimization problem. Some existing algorithms easily fall into local optimization when
solving such problems, leading to defects in convergence speed and accuracy. Reinforcement learning has
certain advantages in solving decision sequence problems in complex environments. A Q-learning algorithm
is a reinforcement learning method. In order to improve the value evaluation of the algorithm in solving
practical problems, this paper introduces the priority weight into the Q-learning algorithm. The improved
algorithm is compared with existing algorithms and applied to dynamic obstacle avoidance path planning.
Experiments show that the improved algorithm dramatically improves the convergence speed and accuracy
and increases the value evaluation. The improved algorithm finds the shortest path of 16 units in 27 seconds.

11

12

INDEX TERMS Dynamic obstacle avoidance, sequence problems, reinforcement learning, Q-learning
algorithm.

I. INTRODUCTION13

In recent years, with the development of the IT industry and14

the proposal of a large number of intelligent algorithms, these15

algorithms have been applied to path planning technology and16

are relativelymature. However, path planning still depends on17

manual sites to a great extent. This planning method will be18

affected by subjective factors, resulting in the consumption of19

the workforce, material resources, and working time. There-20

fore, in the era of industry-wide intelligence, it is of great21

significance to apply an intelligent path planning algorithm22

to the field of robot path planning. Compared with the path23

planning of static obstacles, the path planning of dynamic24

obstacles brings new challenges. Because there is no prior25

knowledge of dynamic obstacles, it is inevitable to encounter26

various difficulties in path planning. Therefore, the path plan-27

ning of dynamic obstacles has vital practical significance.28

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Ayyash .

Some scholars have performed much research on route 29

planning. Dong et al. [1] proposed a new dual ant colony 30

algorithm (NDACA) based on dynamic feedback to realize 31

accurate and efficient route planning of ships in complex 32

marine environments. First, the energy consumption model 33

is established by analyzing the ship’s motion, which is used 34

for the pheromone update strategy. Second, according to the 35

energy consumption information of the route, the ant colony 36

is divided into an exploratory ant colony and an optimiza- 37

tion ant colony. The closed-loop feedback strategy is used 38

to continuously adjust the number of ants in each colony 39

to ensure the algorithm’s solution quality and convergence 40

speed. Meng et al. [2] presented a smooth DGWW global 41

planning method based on the beetle antennae search(BAS) 42

algorithm to optimize the grey wolf optimization(GWO) 43

algorithm and solve the problems of local path difference 44

and low convergence speed in complex path planning envi- 45

ronments. This method integrates the method of using the 46

two antennae of the beetle head to optimize the search in 47

the BAS algorithm into the GWO algorithm to avoid local 48
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optimization. Liu et al. [3] proposed a multistep computing49

framework to extract economically safe routes. First, track50

simplification and a density clustering algorithm are used to51

generate a maritime traffic network. Then, the kernel density52

estimation (KDE) method is introduced to generate routes53

related to the traffic count frequency in specific areas. Finally,54

the best route is extracted by the sliding window algorithm55

executed on the transportation road map. Dong et al. [4] used56

the A* algorithm and genetic algorithm (GA) to solve path57

planning. First, the path is obtained through the A* algorithm.58

The improved GA is used to reformulate the connection point59

strategy for the obtained paths to obtain secure and diversified60

paths. In addition, some scholars [5], [6] have combined61

motion characteristics with a swarm intelligence algorithm to62

solve the problem of path planning. Zhang et al. [7] designed63

a path planning method based on the heuristic algorithm. The64

distance and the changing angle as genetic material are used65

to construct the path to avoid the collision. In the experiment,66

a random pattern developer and genetic algorithm (GA) are67

used as optimization methods to verify the feasibility of the68

path planning method. These methods are of great signifi-69

cance to the research of path planning. However, in the case70

of many obstacles, they have considerable time and space71

complexity, and these algorithms are not intelligent in the72

case of new obstacles.73

Under environmental situation awareness and planning74

algorithm selection, the path planning algorithm is a com-75

binatorial optimization problem under complex constraints.76

The acquisition of obstacle information is affected by the77

environment modeling method. The appropriate environment78

modeling method is more conducive to planning the correct79

path. Most methods do not put forward the judgment of envi-80

ronmental modeling methods. Some existing path planning81

algorithms adopt many static strategies, and each strategy82

interacts with an independent environment instance for a83

long time. However, strategy is a function of the state to84

action, a dynamic process. The state and action informa-85

tion of independent individuals can make the search more86

efficient, and the static strategy does not take advantage of87

these contents. A Q-learning algorithm is a method of learn-88

ing in interaction with the environment. It is a model-free89

reinforcement learning method. However, the original90

Q-learning algorithm affects the value evaluation because91

of the choice of actions, so this paper improves the value92

evaluation.93

Q-learning aims to learn strategies that tell agents what94

actions to take under what circumstances. It does not need95

a model of the environment, and it can deal with the prob-96

lems of random transformation and reward. Q-learning finds97

the optimal strategy for any finite Markov decision process98

(FMDP). In this sense, it starts from the current state and99

maximizes the expectation of total return in all consecutive100

steps. Q-learning can determine the optimal action selec-101

tion strategy for any given FMDP, given infinite exploration102

time and partial random strategy. The main advantage of103

Q-learning is that the temporal difference method (TD) can104

be used for offline learning, and the Bellman equation can be 105

used to solve the optimal strategy of the Markov process. 106

The remaining structure of this paper is as follows: the 107

second section describes the related work of the path plan- 108

ning problem. The third section introduces the improved 109

Q-learning algorithm, and the fourth section displays the 110

experiment. The last section gives the conclusion of this 111

paper. 112

II. RELATED WORK 113

Path planning [8] is necessary for objects that need to move 114

independently. In the process of moving, we need to know 115

the surrounding environmental information and the moving 116

method to reach the destination accurately. Therefore, in path 117

planning, whether a ship or a mobile robot, it is necessary 118

to simulate the accurate environmental information into a 119

plane or a three-dimensional model that the path algorithm 120

can process. 121

The path planning method is an essential branch of object 122

motion control. For moving objects, according to their own 123

sensors’ perception of the external environment, they can 124

independently plan a collision-free smooth route from the 125

starting point to the target point. This description is called 126

the path planning of a mobile robot. Path planning is a route 127

without collision and meeting the constraints in a particular 128

environment, such as a global static or dynamic local environ- 129

ment. The steps of path planning are generally divided into 130

two parts: obstacle information description and searching the 131

path according to the algorithm. 132

The robot arm’s path planning to reach the target and avoid 133

obstacles plays an essential role in manufacturing automa- 134

tion. Although many path planning algorithms have been 135

proposed, including rapid exploring random trees(RRT), arti- 136

ficial potential field(APF), probabilistic roadmap(PRM), and 137

reinforcement learning(RL), they have many problems: time- 138

consuming and high computational cost. This article uses 139

Q-learning [9] to find the robot’s action to take optimiza- 140

tion measures. Bonny et al. [10] presented a new method to 141

find the best path for mobile robots in a two-dimensional 142

environment. Use the bees algorithm (BA) and Q-learning 143

algorithm to find the best path. Path planning based on com- 144

puter vision can be crucial in many technology-driven intel- 145

ligent applications. Although various path planning methods 146

have been proposed, there are still limitations. To overcome 147

these limitations, Abdi et al. [11] developed a new path plan- 148

ning method combining computer vision, Q-learning, and 149

neural networks. Sahu et al.[ [12] proposed an innovative 150

method to solve robot pairs’ path planning and synchro- 151

nization in known static and complex environments. This 152

problem solves the robot’s transporting the rod from the 153

predefined starting position to the preset target position. The 154

design of a hybrid algorithm combines the unique advantages 155

of improved Q-learning (IQ) and democratic robot particle 156

swarm optimization (DRPSO). AlphaGo has confirmed the 157

practicability of reinforcement learning, and the research 158

on the application of reinforcement learning in autonomous 159
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driving is being actively promoted. Kim et al. [13] used160

Q-learning, one of the reinforcement learning algorithms,161

to realize path planning. Product assembly is a crucial stage162

of complex product manufacturing. How to intelligently plan163

the assembly process according to the dynamic product and164

environmental information has become an urgent problem to165

be solved. Guo et al. [14] proposed an improved Q-learning166

algorithm to solve the path planning problem in product167

assembly in virtual space.168

However, the above method does not mention how to169

solve the problem of dynamic obstacles in path planning.170

The combination of evolutionary algorithm and Q-learning171

algorithm has advantages in solving other path planning172

problems. However, introducing the evolutionary algorithm173

will increase the complexity of the Q-table, and the original174

Q-learning algorithm and evolutionary algorithm are defi-175

cient in convergence speed and accuracy. This paper over-176

comes the algorithm’s shortcomings from the path planning177

sequence solved by the algorithm.178

A. THE ENVIRONMENT OF DYNAMIC OBSTACLE179

Environmental information is the premise and foundation of180

path planning and a compelling description of the environ-181

ment where the robot is located. The area where the robot182

is located is divided into a feasible area and an infeasible183

area. The treatment of many different forms of obstacles or184

impassable areas is the key. Replacing obstacles with geo-185

metric polygons has been widely used.186

The visibility graph [15] method expresses the obstacles187

in the environment in the form of a geometric polygon, set188

the starting point, target point, and vertices of the robot, and189

connects them. It is stipulated that the connection between the190

vertices and starting points of the polygon, the target points,191

and the vertices of the deformed obstacle itself cannot pass192

through the obstacles. This connection is called ’’visible’’;193

otherwise, it is ’’invisible’’, and the whole connected graph194

is called the visual graph. The disadvantage of the visibility195

graph is that there is no more selectivity in path planning.196

Agents crossing the best path must pass through obstacles,197

significantly increasing the collision risk.198

The link graph method [16] is a modeling method based199

on the free generation of environmental space. First, vari-200

ous polygons must be preset to represent the situation of201

obstacles. According to the shape of polygons, the whole202

environment space is divided into two states: obstacle space203

and free space. The robot can search for the optimal path204

using the path planning algorithm in free space. Due to the205

need to preset obstacles, the link graph may not be able to206

consider additional obstacles in solving dynamic obstacle207

path planning.208

The grid method [17] is one of the most widely used mod-209

elingmethods in path planning research. This method decom-210

poses the robot’s working environment into multiple simple211

grids, simplifies the complex environmental information into212

grid information with a unit nature, and changes the complex213

motion relationship in the environmental space. Based on214

the traveling area and environmental obstacles, the grids can 215

be divided into traffic grids and blocking grids according to 216

their different attributes. In the simulation of the grid method, 217

the different grid sizes and the number of grids will directly 218

affect the algorithm’s performance. The smaller the grid is, 219

the more accurate the environmental information is and the 220

closer it is to the natural navigation environment. However, 221

it will also lead to too much miscellaneous information and 222

slow down the efficiency of the path planning algorithm. 223

In contrast, the larger the grid is, the lower the resolution 224

of environmental information, the greater the error with the 225

proper environment, the faster the algorithm’s efficiency, and 226

the lower the natural effect. 227

Fig 1 shows the path planning environment of this paper. 228

The width and height set by the test simulation are 9 × 9, 229

and the cell is set to 40 pixels. The robot’s position represents 230

the starting point, the green square represents the obstacle, 231

and the flag represents the target point. The agent needs to 232

find a path from the starting point to the target point with 233

the shortest cost, which should avoid obstacles ideally. In this 234

paper, dynamic means that in addition to the starting point, 235

obstacles and the target point are randomly generated in the 236

process of agent travel. 237

FIGURE 1. Environment modeling of path planning.

B. ALGORITHM OF PATH PLANNING 238

Plan planning finds a possible path from the starting point to 239

the endpoint according to the corresponding algorithm based 240

on the known environmental model and meets the constraints 241

to make the predetermined performance function reach the 242

optimal value. In the search process, according to the advan- 243

tages and disadvantages of the algorithm and its adaptability, 244

choosing and using the appropriate planning algorithm has 245

become the research’s key. 246

In the process of robot path planning, we should first 247

establish the global robot navigation environment model and 248

then select the correct path planning algorithm. Different 249
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path planning algorithms have different effects in differ-250

ent environments. Choosing the appropriate algorithm is of251

great significance. The Dijkstra algorithm [18] proposed by252

Dijkstra started scholars’ pursuit of path planning algorithms.253

Currently, with the advent of the intelligent era, a large num-254

ber of scholars have conducted a variety of research inves-255

tigations on path planning algorithms and have developed256

many common intelligent algorithms with strong comput-257

ing power, such as genetic algorithm [19], particle swarm258

optimization [20], artificial neural networks [21], reinforce-259

ment learning [22], [23], [24], [25] and the ant colony algo-260

rithm [26]. Currently, these algorithms have been applied261

in different fields, and different improvement methods have262

been produced according to the use environment and have263

achieved great success. To achieve the goal of the optimal264

path, the reinforcement learning control agent interacts with265

the environment and fully considers the different conditions266

of the natural environment. Dijkstra and genetic algorithms267

adopt static strategies to interact with the environment and268

cannot solve the dynamic programming problem.269

III. THE IMPROVED Q-LEARNING ALGORITHM270

Robot technology is increasingly widely used in production271

and life. One of the main tasks of robot control systems is272

to complete path planning. When facing high-dimensional273

systems and systems with complex constraints, the traditional274

path planning algorithm has shortcomings, such as high time275

complexity and ease of falling into local optimization. The276

Q-learning algorithm [27] is a typical reinforcement learning277

method that does not require complete environmental knowl-278

edge. These algorithms enable the robot to learn appropri-279

ate behavior from the environment and have achieved good280

results in robot path planning. With the advent of the era281

of artificial intelligence, more complex environments put282

forward higher requirements for the rapidity and flexibility of283

path planning algorithms. Research on effectively improving284

the speed of path planning has essential application value and285

practical significance. The history of reinforcement learning286

can be traced back to the 1950s. Its basic idea is to trans-287

form the sequential decision-making problem into a Markov288

model [28]. It establishes the mapping between the environ-289

mental state and the state action value function through the290

interaction between the agent (robot) and the environment.291

It then finds the optimal state-action value function iteratively292

to obtain the optimal action sequence. The reinforcement293

learning method is widely used in robot path planning and294

has achieved good results. In 1995, Beom et al. [29] com-295

bined a fuzzy logic algorithm and reinforcement learning296

algorithm to realize the navigation of a ground mobile robot.297

Ye [30] proposed an incremental mobile robot navigation298

method based on reinforcement learning theory. At the Euro-299

pean Symposium on Artificial Neural Networks in 2013,300

Bischoff et al. [31] proposed a hierarchical reinforcement301

learning method for robot navigation.302

The purpose of Q-learning studies how agents act in the303

environment to maximize cumulative rewards. As shown in304

FIGURE 2. The structure of Q-learning.

Fig 2, the Q-learning framework mainly comprises the agent, 305

environment, state, action, and reward. After the agent acts, 306

the environment will transition to a new state and give a 307

reward signal. Then, the agent executes new actions accord- 308

ing to specific strategies according to the reward of the 309

new state and environmental feedback. Through this learning 310

method, agents can know what actions they should take in a 311

particular state to maximize their reward. Because the inter- 312

action between agents and the environment is similar to that 313

between humans and the environment, Q-learning is regarded 314

as a general learning framework to solve general AI problems. 315

A. THE ORIGINAL Q-LEARNING ALGORITHM 316

The Q-learning algorithm was proposed in 1989 and is one 317

of the methods for solving reinforcement learning tasks. The 318

Q-learning algorithm is based on the theory of the time 319

difference method. The time difference method is a typical 320

model-free reinforcement learning method and the primary 321

method of the reinforcement learning solution. It does not 322

need complete environmental knowledge, so it is widely used. 323

It can be used for reinforcement learning tasks with long 324

experience tracks and for continuous reinforcement learning 325

tasks. In path planning, the Q-learning algorithm can be 326

used to solve the path planning problem based on a grid 327

graph. In 2010, Goswami et al. [32] proposed an extended 328

Q-learning algorithm, which accelerated the Q function’s 329

convergence speed and improved the algorithm’s efficiency 330

by introducing flag variables. Konar et al. [33] improved the 331

traditional Q-learning algorithm and proposed a new deter- 332

ministic algorithm with theoretical knowledge. The algo- 333

rithm updates the entry Q-table at one time and significantly 334

reduces the time complexity. The Q-learning algorithm can 335

also be combined with the sampling-based path planning 336

algorithm to search for an optimal path in the road map 337

quickly. 338

Q-learning aims to learn the optimal action-value func- 339

tion Q∗. The algorithm makes the agent learn a series of 340

trajectories according to the optimal Behrman equation. The 341

optimal Behrman equation is shown in (1). 342

Q∗(st , at ) = Est+1∼p(·|st ,at )[Rt 343

+ γmax
A∈A

Q∗(St+1,A)|St = st ,At = at ] (1) 344
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Both sides of (1) are approximated.Q∗(st , at ) on the left of345

the equation can be approximated as Q̃(st , at ). The estimation346

of Q̃(st , at ) is made at time t . The expectation on the right347

side of the equation is about state St+1 at the next time. Given348

the current state st , the agent executes the action at , and the349

environment will give the reward rt and the new state st+1.350

Using the observed rt and st+1, the expectation is obtained351

by Monte Carlo approximation,as shown in (2).352

rt + γmax
a∈A

Q∗(st+1, a) (2)353

Furthermore, Q∗ in (2) is approximated as Q̃. Equation (3)354

is called the temporary difference. It is the estimation of355

Q∗(st , at ) made by the agent at time t+1. Q̃(st , at ) and ŷt are356

the estimation of the optimal action value Q∗(st , at ). Since357

ŷt contains reward rt partially based on real observations,358

we believe that ŷt is the more reliable estimate, so it is359

encouraged for Q̃(st , at )) to be closer to ŷt . Therefore, (4) is360

used to update Q̃.361

ŷt , rt + γmax
a∈A

Q̃(st+1, a) (3)362

Q̃(st , at ) ← (1− α)Q̃(st , at )+ αŷt (4)363

The process of the Q-learning algorithm is divided into364

two parts: collecting training data and experience replay.365

Q-learning updating Q̃ does not depend on a specific strategy366

in collecting training data. We can use any strategy to control367

the agent, interact with the environment, divide the obtained368

trajectory into (st , at , rt , st+1) and store it in the empirical369

playback array. This strategy for controlling agents is called370

behavior policy. The most commonly used behavior strategy371

is ε − greedy, which is shown as (5). The update logic of372

the value function Q̃(st , a) is shown in Fig 3. In state s, the373

ε- greedy algorithm selects action a, executes action a,374

obtains the immediate reward r , and then transfers it to375

state s′. The Q-learning algorithm uses ε -greedy algorithm376

to selects action a′ in-state s′, that is, selects a that maximizes377

Q(s′, a) to update the value function.378 {
argmaxaQ̃(st , a) 1− ε
Uniform ε

(5)379

FIGURE 3. ε -greedy algorithm update action a.

The process of experience replay is as follows: First, a quad380

is randomly extracted from the experience replay array and381

record it as(sj, aj, rj, sj+1), Q̃now, Q̃new. Second, the element 382

of Q̃now at position (sj, aj) is recorded as (6). Third, the 383

maximum value of line sj+1 of Q̃now is calculated as (7). 384

Fourth, (8) is used to calculate the TD target and TD error; 385

Finally, (9) is adopted to update the element at (sj, aj). 386

q̂j = Q̃now(sj, aj) (6) 387

ˆqj+1 = max
a
Q̃now(sj+1, a) (7) 388

ŷj = rj + γ ˆqj+1, δj = q̂j − ŷj (8) 389

Q̃new(sj, aj) ← (1− α)Q̃now(sj, aj)+ αδj (9) 390

B. Q-LEARNING BASED ON PRIORITIZED WEIGHT 391

One advantage of prioritizedweight is to break the correlation 392

of sequences. Another advantage is to reuse the collected 393

experience instead of discarding it once. It can achieve the 394

same performance with fewer samples. It can not only make 395

the convergence faster but also make the average return 396

higher. In general experience, one sample is obtained by uni- 397

form sampling each time. The prioritized weight gives each 398

sample weight and then makes nonuniform random sampling 399

according to the weight. 400

Due to the different importance of samples, many samples 401

normally travel in path planning, but few encounter obstacles. 402

These few samples will have a great impact on path planning. 403

Therefore, the samples that encounter obstacles should have 404

a higher weight and receive more attention. Normal samples 405

should not be treated equally. In practice, we cannot know 406

which samples are more important. Therefore, this can be 407

judged according to the absolute value of the TD error. If the 408

absolute value of the TD error δj is large, it indicates that the 409

current evaluation of the real value of (sj, aj) is inaccurate; 410

then, a higher weight should be set for (sj, aj, rj, sj+1). 411

In this paper, the sampling method arranges the error val- 412

ues δj in descending order and then calculates the sampling 413

probability, as shown in (10). If we perform nonuniform 414

sampling, we should adjust the learning rate according to the 415

sampling probability α. If a sample has a high probability of 416

being sampled, its learning rate should be relatively low. The 417

learning rate α can be set according to (11). 418

pj ∝
1

rank(j)
(10) 419

aj =
a

(b ∗ pj)β
(11) 420

where b is the total number of samples in the experience 421

replay and β ∈ (0, 1)is a super parameter that needs to be 422

adjusted. 423

The Q-learning algorithm has the problem of overesti- 424

mating the following action. This paper adopts prioritized 425

weight to select the following action to solve this problem. 426

At any position, the agent will choose the action with the 427

most significant reward with probability 1−φ and randomly 428

choose an action with probability φ, called the random occur- 429

rence probability. After each selection, a probability delivery 430

is obtained, which describes the probability of each action 431
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selected. This probability delivery is used as input for the432

following selection, and the process is iterated repeatedly.433

Algorithm 1 Q-Learning Based on Prioritized Weight
Initialize Q table, b, β, γ
for e=1 to episodes

Initialization status S
repeat

Using (4), select action a under state s;
Using (9), obtain reward r and the next status s′;

Using (10), random sampling;
prioritized weight update Q;
s← s′;
until s is terminated;

end for

IV. EXPERIMENT434

A. TEST ENVIRONMENT AND PARAMETERS SETTINGS435

The setting of the test running environment of the paper is436

shown in Table 1. The experiments in this paper are based on437

this equipment.438

TABLE 1. Experimental environment.

In the experiment section, we compare Q-learning439

with the A* algorithm [34], PRM [35], RRT [36], and440

BRRT(bidirectional rapid exploring random trees) [37]. The441

parameters of the comparison algorithm are shown in Table 2.442

TABLE 2. Experimental parameters.

γ = 0 means that the agent only cares about the recent443

rewards, while γ = 1 makes it committed to higher rewards444

in the long term. If the discount factor exceeds 1, the action445

value Q may diverge. In this case, the learning efficiency can446

be improved by gradually increasing the discount factor from447

a lower value to the final value. As the number of iterations448

increases, the value of γ increases from 0.1 to 0.9. The total449

number of samples in the experience replay b=5000 and450

β = 0.3. In the experimental simulation, the actions taken by451

the agent are only up, down, left, and right.452

B. THE COMPARATIVE EXPERIMENT OF ALGORITHMS 453

In the same experimental environment, we verify the perfor- 454

mance of various comparison algorithms from the starting 455

point (0, 0) to the endpoint (240, 240). In the path planning 456

from the beginning to the end, the comparison algorithm 457

needs to find an optimal path with the shortest length and is 458

time-consuming under the price adjustment of obstacles. The 459

experimental results of the comparison algorithm are shown 460

in Fig 4-Fig 9. 461

FIGURE 4. The improved Q-learning algorithm for path planning.

FIGURE 5. The Q-learning algorithm for path planning.

FIGURE 6. The A* algorithm for path planning.

Fig 4 and Fig 5 use the gridmethod to divide the path graph, 462

which intuitively shows the path planning. Due to the defects 463

of the algorithm, although Fig 5 finds the absolute path, 464

additional costs are incurred in the planning process. Fig 6-9 465

do not use the grid method to segment the path map. They 466
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FIGURE 7. The BRRT algorithm for path planning.

FIGURE 8. The PRM algorithm for path planning.

FIGURE 9. The RRT algorithm for path planning.

TABLE 3. The shortest path distance and time.

plan by constantly exploring the surrounding environment in467

path planning so that the formed path will be irregular. Some468

path planning will be close to obstacles, indicating no safety469

distance constraint. The path cost in Fig 6-9 is also relatively470

high. The comparison algorithm’s shortest path distance and471

time cost are shown in Tables 3.472

As seen from Table 3, the path found by the improved 473

Q-learning algorithm is the shortest among all the comparison 474

algorithms, followed by the original Q-learning algorithm. 475

The A* algorithm takes a long time because it needs to spread 476

continuously to find the endpoint in the iterative process 477

of the algorithm. BRRT algorithm takes the shortest time 478

because the algorithm starts from the starting point and the 479

endpoint to find the path until a certain point coincides.PRM 480

algorithm will randomly generate points according to the set 481

value in the iteration process. The algorithm can find the path 482

if the generated points can be connected into a line from the 483

starting point to the endpoint. Therefore, if the environment 484

is complex, the PRM algorithm may not be able to find the 485

path unless more points are generated. Although the time 486

consumption in the path planning process of the improved 487

Q-learning algorithm is not the least, the path is the shortest. 488

Therefore, from this perspective, the improved Q-learning 489

algorithm performs better in path planning. 490

If the agent drives to the end, the reward value is 1. If the 491

agent drives to an obstacle, the reward value is - 1. In other 492

cases, the reward value is 0. The whole episode set in the 493

paper is 1000.With the increase in episodes, the steps and cost 494

are shown in Fig 10 to Fig 13. With the increase in episodes, 495

the steps of Fig 10 based on the improved Q-learning change 496

significantly during the continuous exploration in the early 497

stage. However, after the 400th episode, the steps are stable, 498

and most of them are disturbed at steps 0 to 25. However, 499

Fig 11 stabilizes only in the 920th episode. In the early 500

stage of the test simulation, the reward value of the agent is 501

negative. Similarly, after 400 episodes, the robot using the 502

improved algorithm, finds the path of the target position. 503

It is shown in Fig 12. However, the cumulative return of 504

Fig 13 is lower than that of improved Q-learning due to the 505

unreasonable use of different samples. 506

FIGURE 10. Episode via steps of improved Q-learning.

To further verify the performance of the improved algo- 507

rithm, we dynamically generate obstacles and let the robot 508

plan a reasonable route. The results are shown in Fig 14 509

and Fig 15. The results show that the improved Q-learning 510

algorithm plans a good path. From the steps and costs of each 511

episode, since the obstacles in Fig 14 and Fig 15 are ran- 512

domly generated, the exploration in the process of traveling is 513
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FIGURE 11. Episode via steps of original Q-learning.

FIGURE 12. Episode via cost of improved Q-learning.

FIGURE 13. Episode via cost of original Q-learning.

FIGURE 14. Robot path 1 planning simulation test.

different, and the steps and costs of each episode are different,514

as shown in Fig 16 to Fig 19. Fig 16 and Fig 18 tend to be515

FIGURE 15. Robot path 2 planning simulation test.

FIGURE 16. Episode via step of path 1.

FIGURE 17. Episode via step of path 2.

FIGURE 18. Episode via cost of path 1.

stable when exploring no more than 185 episodes. Fig 17 and 516

Fig 19 are stable around the 100th episode due to the complex 517

environment. The maximum path length explored in Fig 16 is 518

128, which takes more time in the early stage. After planning 519

the shortest path, the improved Q-learning algorithm sets the 520
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FIGURE 19. Episode via cost of path 2.

highest weight in the q-table. The path is planned according to521

the shortest distance in the subsequent iteration process. In the522

reward value shown in Fig 18, the maximum reward value523

obtained by the improvedQ-learning algorithm after reaching524

the stable state is 9, which shows that the improved algorithm525

improves the reward value of the algorithm. Therefore, it can526

be concluded that when the environment is not complex, the527

Q-learning algorithm reaches a steady state in a short time.528

If the environment becomes complex, the algorithm needs529

more exploration of the unknown environment.530

V. CONCLUSION531

This paper applies the improved Q-learning algorithm to532

dynamic obstacle avoidance and path planning and compares533

it with the A* algorithm, PRM, RRT, and BRRT. The results534

show that the priority weight improves the value evaluation of535

Q-learning and the algorithm’s performance. The improved536

Q-learning algorithm has dramatically improved the conver-537

gence speed and accuracy and can find a better path in the538

path planning of dynamic obstacles.539

As the scale of the problem increases, the Q-table in the540

Q-learning algorithm will also expand, increasing the algo-541

rithm’s complexity. Q-learning has the problem of overes-542

timation, which makes it impossible to choose the optimal543

action. The Q-learning algorithm may produce a locally opti-544

mal solution rather than a globally optimal one, resulting in545

the agent not obtaining a higher reward. The solutions to these546

problems are our future research work.547
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