
Received 23 May 2022, accepted 24 August 2022, date of publication 31 August 2022, date of current version 12 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203051

Achieving the Performance of All-Bank In-DRAM
PIM With Standard Memory Interface:
Memory-Computation Decoupling
YOONAH PAIK , CHANG HYUN KIM , WON JUN LEE ,
AND SEON WOOK KIM , (Senior Member, IEEE)
Department of Electrical Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Seon Wook Kim (seon@korea.ac.kr)

This work was supported by the Samsung Research Funding and Incubation Center of Samsung Electronics
under Project SRFC-IT2002-01.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ABSTRACT Processing-in-Memory (PIM) has been actively studied to overcome the memory bottleneck by
placing computing units near or in memory, especially for efficiently processing low locality data-intensive
applications.We can categorize the in-DRAMPIMs depending on howmany banks perform the PIM compu-
tation by one DRAMcommand: per-bank and all-bank. The per-bank PIM operates only one bank, delivering
low performance but preserving the standard DRAM interface and servicing non-PIM requests during PIM
execution. The all-bank PIM operates all banks, achieving high performance but accompanying design
issues like thermal and power consumption. We introduce the memory-computation decoupling execution
to achieve the ideal all-bank PIM performance while preserving the standard JEDEC DRAM interface,
i.e., performing the per-bank execution, thus easily adapted to commercial platforms. We divide the PIM
execution into two phases: memory and computation phases. At the memory phase, we read the bank-private
operands from a bank and store them in PIM engines’ registers bank-by-bank. At the computation phase,
we decouple the PIM engine from the memory array and broadcast a bank-shared operand using a standard
read/write command tomake all banks perform the computation simultaneously, thus reaching the computing
throughput of the all-bank PIM. For extending the computation phase, i.e., maximizing all-bank execution
opportunity, we introduce a compiler analysis and code generation technique to identify the bank-private
and the bank-shared operands. We compared the performance of Level-2/3 BLAS, multi-batch LSTM-based
Seq2Seq model, and BERT on our decoupled PIMwith commercial computing platforms. In Level-3 BLAS,
we achieved speedups of 75.8×, 1.2×, and 4.7× compared to CPU, GPU, and the per-bank PIM and up to
91.4% of the ideal all-bank PIM performance. Furthermore, our decoupled PIM consumed less energy than
GPU and the per-bank PIM by 72.0% and 78.4%, but 7.4%, a little more than the ideal all-bank PIM.

21

22

INDEX TERMS Memory-computation decoupling, in-memory processing, standard memory interface, all-
bank execution.

I. INTRODUCTION23

Emerging data-intensive applications such as natural lan-24

guage processing deploy Recurrent Neural Networks (RNNs)25

such as Long Short-Term Memory (LSTM) [1] and26

Transformer-based models [2]. Their primary characteris-27

tic is to process a large amount of data with a very28

The associate editor coordinating the review of this manuscript and

approving it for publication was Baker Mohammad .

low locality [3], [4], [5], [6]. For example, Bidirectional 29

Encoder Representations from Transformers (BERT) [7] 30

and Generative Pre-trained Transformer (GPT) [8], [9], the 31

transformer-based models for understanding and generating 32

human-like texts, process 110∼335 million and up to billions 33

of parameters, being used only within one layer. Therefore, 34

the von Neumann architecture suffers from a severe data 35

transfer bottleneck from main memory in these workloads, 36

limiting the system performance [10], [11]. 37

93256 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-8294-1079
https://orcid.org/0000-0001-6224-7074
https://orcid.org/0000-0001-6161-0871
https://orcid.org/0000-0001-6555-1741
https://orcid.org/0000-0002-6063-473X

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 1. Execution flows of the matrix-matrix multiplication. (a) A row
of MatA is shared by the columns of MatB. (b) A column of MatB is
shared by the rows of MatA.

Processing-in-Memory (PIM) has been proposed to alle-38

viate the problem by placing the computing units in the39

memory [3], [4], [5], [6], [12], [13], [14], [15], [16], [17],40

[18], [19], [20], [21]. The in-bank PIM architecture, typically41

based on DRAMs, places the PIM engines in the bank periph-42

erals, but the space for the engine implementation is very con-43

strained [3], [4], [5], [6], [12], [21]. Also, we should carefully44

consider the engine operation’s power consumption since the45

high-temperature results in increased unreliable cells, refresh46

rates, and traffic throttling, leading to performance degrada-47

tion [22], [23]. Therefore, the PIM engine consists of simple48

logic, includingMultiply-Accumulate (MAC) units and a few49

registers. The engine fetches the operands only from its own50

bank; if the operands are unavailable, we need to perform51

explicit data copy from other banks, incurring a significant52

overhead in performance.53

We can easily perform the element-wise computations by54

aligning their operands in the same bank since all the compu-55

tations are independent. On the other hand, for Level-2 Basic56

Linear Algebra Subprograms (BLAS) (i.e., vector-matrix57

(VM) multiplication), we map each column of the matrix to58

a bank (bank-private) and compute with the vector shared in59

all banks (bank-shared).We call an operand used by only one60

bank as a bank-private operand and an operand commonly61

used by all banks as a bank-shared operand. Before the62

computation, we should copy the shared vector to all banks.63

The Level-3 BLAS (i.e., matrix-matrix (MM) multiplication)64

is more complicated than VM: either a multiplicand row is65

shared by multiplier columns or a multiplier column is shared66

by multiplicand rows, as depicted in Figure 1. However,67

most existing in-bank PIMs are designed for Level-2 BLAS,68

so they execute Level-3 BLAS by repeating VM multiplica-69

tions by the number of rows of the multiplicand [3], [4], [5],70

[6], [12], [21].71

The recent in-bank PIM can be categorized by whether72

it targets per-bank execution [4], [21] or all-bank execu-73

tion [3], [5], [6], [12] depending on how many banks one74

DRAM command activates for the PIM execution. The75

per-bank execution triggers only one bank at a time, while 76

the all-bank execution invokes all or multiple banks. The 77

number of the commands required for a PIM kernel directly 78

determines the PIM performance. The memory requests for 79

the per-bank PIM execution are much higher than the all- 80

bank one, thus delivering much lower performance [4], [21]. 81

The all-bank PIM achieves high computation throughput 82

by exploiting the bank-level computation parallelism and 83

using the full internal bandwidth. However, it accompanies 84

the following design difficulties and potential performance 85

degradation: 1) data alignment issue from its computation 86

granularity, 2) synchronization overhead for syncing the bank 87

states before starting the all-bank execution, 3) modifica- 88

tion of memory interface/controller, 4) implementation over- 89

head such as power consumption and thermal dissipation, 90

and 5) PIM mode switching which prevents the non-PIM 91

request service during PIM operations [3], [5], [6], [12], 92

[13]. Even though the per-bank PIM suffers the lower per- 93

formance, it preserves the standard DRAM interface and 94

supports non-PIM request service during the PIM execution 95

as a standard DRAM. Both per-bank and all-bank PIMs suffer 96

from replicating bank-shared operands to all banks, resulting 97

in multiple copies of the same data stored in different memory 98

addresses. Several PIMs provide a global/local buffer to avoid 99

the replication but incur significant overhead in size, much 100

worse, especially in the DRAM fabrication [3], [5], [6], [12]. 101

For taking only advantages from both PIMs, this paper 102

introduces the memory-computation decoupling architecture 103

to achieve the ideal all-bank performance of in-DRAM PIM 104

with standard memory interface, i.e., the per-bank execu- 105

tion. Also, to maximize the decoupled execution performance, 106

we introduce a compiler analysis and code generation tech- 107

nique. 108

The decoupled architecture uses two PIM execution 109

phases: a memory phase for the per-bank memory opera- 110

tion and a computation phase for the all-bank computation. 111

At the memory phase, we read bank-private operands from 112

a memory array and store them to the bank’s PIM registers 113

bank-by-bank. At the computation phase, we decouple each 114

PIM engine datapath from its bank and broadcast bank-shared 115

operands read from one bank or written from a host to all 116

banks’ engines without operating all banks’ memory arrays. 117

It allows us to compute the PIM engine in all banks in 118

parallel with operating only one bank of the memory array 119

and achieve the ideal performance of the all-bank execution 120

while preserving the standard DRAM interface and satisfy- 121

ing the standard power budget. In reality, only half of all 122

banks could perform concurrently due to power and ther- 123

mal issues [5], [6]; thus, our performance would be more 124

attractive to users than the all-bank execution in the real 125

world. Also, since we preserve the standard interface, we can 126

serve non-PIM requests during our computation phase, i.e., 127

while performing the all-bank computation. As we operate 128

only one bank array at both phases and conform to the stan- 129

dard interface, we implement our architecture based on the 130

per-bank PIM [4]. 131

VOLUME 10, 2022 93257

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 2. Ratio of the execution time for the matrix multiplication and
element-wise operations to the total execution in the DNN applications,
LSTM [1] and BERT [7].

Although there have been many studies about broadcasting132

the same data to computing units to reduce memory opera-133

tions [3], [6], [12], [13], [24], [25], [26], we are the first to134

combine the broadcast with the decoupling of datapath from135

a memory array for realizing the all-bank PIM execution. Our136

PIM computation throughput is also decoupled from the inter-137

nal bandwidth: The broadcast has the same effect of using the138

full internal bandwidth on all-bank PIMs to provide operands139

to all their engines at once. Therefore, our decoupled PIM’s140

performance can become closer to the all-bank PIMwhen the141

computation phase lasts longer; thus, to achieve the highest142

computation throughput, we developed a compiler technique143

to identify the bank-private and the bank-shared operands144

and find out a tiling factor for maximizing the bank-private145

operands’ reuse and the Arithmetic Logic Unit (ALU) uti-146

lization.147

There is great potential to apply our decoupled approach to148

recent applications. Figure 2 shows that the Deep Neural Net-149

work (DNN) applicationswith batching spent about 67.1% on150

average of the total execution time for the matrix-matrix mul-151

tiplication to involve bank-private and bank-shared operands152

as shown in Figure 1, giving the significant opportunity153

of the two-phase execution of our decoupled PIM. On the154

other hand, the element-wise operations consist of only155

bank-private operands, disallowing our computation phase.156

However, since its computation ratio was only 4.2% of the157

total execution time on average, the disadvantage has little158

effect on the overall execution time. Compared to our decou-159

pled PIM, the all-bank PIM can achieve the performance160

benefit when all banks compute different data only, i.e.,161

bank-private operands. Interestingly, the opportunity is min-162

imal in the PIM-targeted DNN applications, and therefore,163

wewould conclude that the all-bank PIM spends unnecessary164

computation resources.165

Wedeveloped the PIM-emulated Field ProgrammableGate166

Array (FPGA) platform, evaluated its performance by run-167

ning microbenchmarks of Level-2/3 BLAS, a multi-batch168

LSTM-based Seq2Seq model, and BERT, and compared it to169

AMD Ryzen-5 CPU with OpenBLAS [27] and Nvidia Titan170

Xp GPU with cuBLAS [28]. Compared to CPU and GPU,171

we achieved speedups of 75.8× and 1.2× in Level-3 BLAS, 172

8.4× and 1.5× in LSTM-based Seq2Seq, and 3.1× and 173

15.5× in BERT, respectively. In addition, we outperformed 174

the per-bank PIM by 4.7×, 4.4×, and 1.4× and reached up to 175

91.3%, 97.8%, and 86.6% of the ideal all-bank PIM perfor- 176

mance in Level-3 BLAS, LSTM-based Seq2Seq, and BERT, 177

respectively. The energy consumption of our decoupled PIM 178

was 72.0% and 78.4% lower in Level-3 BLAS, 80.8% and 179

77.0% lower in LSTM-based Seq2Seq, and 98.3% and 33.5% 180

lower in BERT than GPU and the per-bank PIM. Also, our 181

PIM consumed only 7.4%, 0.3%, and 3.1% more energy than 182

the ideal all-bank PIM in the applications. 183

Besides our remarkable performance with the standard 184

memory interface, it should be noted that 1) since we use the 185

standard JEDEC DRAM interface [29], including the power 186

budget, we can easily apply our approach to commercial 187

computing platforms. 2) Our approach allows the memory 188

requests from non-PIM applications to be serviced during 189

even all-bank PIM execution, thus not impacting any of 190

their execution behavior running on a host [4], [21], [30]. 191

3) Finally, when we modeled the ideal all-bank PIM for the 192

performance comparison, we assumed it could simultane- 193

ously compute all banks. In reality, only half of all banks 194

could perform concurrently; thus, our approach would out- 195

perform currently available all-bank PIMs [5], [6]. 196

The rest of the paper is organized as follows: Section II 197

introduces existing in-bank PIMs and our baseline per- 198

bank PIM [4] for this work. Section III proposes the 199

memory-computation architecture and its compiler tech- 200

niques by applying our work to Level-3 BLAS as an exam- 201

ple. Section IV evaluates the performance, and Section V 202

concludes the paper. 203

II. BACKGROUND AND RELATED WORK 204

A. PER-BANK VS. ALL-BANK PIMs 205

The PIM architecture places the computing unit inside mem- 206

ory devices to use the full internal memory bandwidth. The 207

architecture can be classified by where the computation is 208

performed; in-cell, i.e., computing on memory cells, and in- 209

bank, i.e., on bank peripherals. 210

The in-cell PIM architecture utilizes the analog proper- 211

ties of Non-Volatile Memory (NVM) cells such as ReRAM 212

and MRAM to use them as both storage and computing 213

devices [16], [17], [18], [20], [31]. However, the analog-based 214

computation drops accuracy due to the limited precision 215

and the error vulnerability in analog-to-digital conversion. 216

Analog-to-Digital (ADC) and Digital-to-Analog Converter 217

(DAC) also result in a large area overhead [3], [32]. For 218

alleviating such problems, some in-cell PIM architectures 219

proposed arithmetic computation in NVM and DRAM, based 220

on the logic operations implemented upon their analog char- 221

acteristics such as resistance of ReRAM and charge sharing 222

of DRAM [14], [15], [33], [34], [35], [36], [37], [38], [39], 223

[40], [41]. 224

93258 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 3. The per-bank Silent-PIM [4], the baseline architecture for our work. The graded components are added for our decoupled
execution.

This paper focuses on in-bank DRAM-based PIM architec-225

tures that utilize the digital arithmetic computing units placed226

in bank peripherals and can be used as the main memory.227

The existing in-bank PIM architectures can be categorized by228

the execution granularity of a PIM operation: per-bank and229

all-bank PIMs. One DRAM request enables only one bank’s230

PIM engine in the per-bank PIM [4], [21] and all banks’231

engines in the all-bank PIM [3], [5], [6], [12], [13]. Silent-232

PIM [4], a representative work of the per-bank PIM, preserves233

the standard memory behaviors and timing constraints of234

DRAM under the general supply voltage, complying with the235

power budget of a standard DRAM. Each bank is scheduled236

independently using the standard memory request, and the237

memory requests from non-PIM applications can also be238

serviced while executing a PIM kernel [30]. However, one239

DRAM command triggers a PIM operation with one burst240

of data per bank, resulting in a large number of memory241

requests to execute a kernel and lower performance than242

all-bank execution. Also, as only one bank can perform the243

PIM operation at a time, it wastes the opportunity for the244

bank-level computation parallelism.245

The all-bank execution PIM is a compute-centric archi-246

tecture that provides the highest computation throughput by247

leveraging the bank-level computation parallelism and fully248

utilizes the DRAM’s internal bandwidth [3], [5], [6], [12],249

[13]. One DRAM request enables all or multiple banks to250

read source operands from DRAM cells, store the results to251

DRAM, or concurrently perform PIM operations. The bank-252

shared operands must be read from all banks by one read253

request, so the operands should be available and carefully254

aligned in all the banks before the execution [5]. Also, the255

simultaneously enabled bank execution imposes a power bur-256

den, resulting in exceeding the standard power budget and257

worsening the thermal problem [22], [23]. Therefore, the258

existing all-bank architectures support only a part of the banks259

to operate at once, sacrificing the bank-level computation260

parallelism to deal with the problem. For example, in [6]261

and [12], only four banks per channel perform the PIM262

operations concurrently. In [5], the PIM unit is shared among 263

two banks, thus allowing only half of the banks to perform 264

at once. For supporting the lockstep-style behavior of all 265

banks, [3], [6], [12], [13] requires a customized memory con- 266

troller violating the JEDEC standard, and [5], [12] requires 267

the mode switching before and after the PIM operations. 268

Besides, memory requests of non-PIM applications cannot be 269

serviced during PIM operations [3], [5], [6], [12], [30]. 270

B. SILENT-PIM: OUR BASELINE ARCHITECTURE 271

Figure 3 illustrates the architecture of a representative 272

per-bank PIM named Silent-PIM [4], based on which 273

we implemented our memory-computation decoupled 274

architecture. 275

Each bank has its memory cell array and a PIM engine. The 276

memory banks receive Command, Address, and Data sig- 277

nals from standard memory requests as conventional DRAM 278

devices do and accept the PIM signals generated from the 279

PIM Interface Unit (IU). Before executing a PIM kernel, 280

a programmer stores the PIM operands’ start addresses of 281

the uncacheable physical pages and the engine configuration 282

information in the control registers in PIM IU. The PIM 283

Request Identification Unit (RIU) compares the input address 284

with the operand addresses stored in the control registers 285

to determine if the incoming memory request is the PIM 286

command. If the addresses are matched, the PIM valid 287

signal is generated and delivered to a target bank with the 288

other signals for providing data from the bank to its PIM 289

engine. 290

Silent-PIM has the 4-stage pipelined datapath for bfloat16, 291

as shown in Figure 4, performing all the computations with- 292

out violating the DRAM timing of the data burst, i.e., in 293

4 cycles. The first stage fetches the source operands into two 294

vector registers, vecA and vecB. A switch (PimS) lies in 295

between the global data bus and the register file bus interface 296

of the engine. The PIM valid signal enables the switch to 297

connect the global data bus to the source or the destination 298

register for the PIM command or disconnected for typical 299

VOLUME 10, 2022 93259

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 4. PIM engine in Silent-PIM [4]. The shaded OR gate is the only
added component for our decoupled execution.

memory requests from non-PIM applications. That is, if RIU300

recognizes the in-flight read request to be the source of the301

PIM operand, the unit turns on the bank’s PimS switch; thus,302

the data on the global data bus is stored in either vecA or303

vecB. The data is delivered through a 4-cycle burst, and304

vecB stores the whole burst data (i.e., 128-bit × 4) of the305

request. On the other hand, vecA only stores 1-cycle burst306

(i.e., 128-bit × 1) from the whole burst cycle-by-cycle since307

we could implement a small size of vecA due to the available308

space constraint in DRAM for the PIM engine design.309

The second and the third stages consist of 2-stage pipelined310

8-way MAC unit array that performs the PIM arithmetic311

operations - MAC/ADD/SUB/MUL - according to the con-312

figuration information in the control registers of PIM IU.313

The operation is performed whenever data is stored to vecA.314

After executing the operation, the result of the operation is315

stored to vACC. The register vACC consists of 22-bit regis-316

ters for each element, resulting in 176-bit per 1-cycle burst,317

176-bit × 4 for the whole burst data. Saving the result in318

22-bit improves the accuracy by holding more fraction bits.319

In the last stage, the results invACC are stored to the bank by a320

standard write request after the bfloat16 normalization when321

the incoming address matches the address of the destination322

operand in the control registers of PIM IU.323

III. MEMORY-COMPUTATION DECOUPLING324

This section introduces our memory-computation decoupled325

PIM architecture and its compiler analysis and code genera-326

tion technique.327

We perform the PIM execution using two phases: a mem-328

ory phase and a computation phase. At the memory phase,329

we fetch the bank-private operands from memory arrays to330

PIM engines’ registers in a per-bank manner. On the other331

hand, all banks’ PIM engines execute the computation phase332

without accessing their memory array but using the broadcast333

bank-shared operand from one bank or a host. Since both334

phases operate the memory array of only one bank, our335

decoupled PIM preserves the standard DRAM interface, i.e., 336

the standard DRAM power budget, commands, timings, and 337

so on. 338

The decoupled execution outperforms the per-bank PIM in 339

speedup and energy consumption while slightly increasing 340

the power consumption since the PIM engines of all banks 341

operate simultaneously in the computation phase. On the 342

other hand, the proposed decoupled PIM shows less perfor- 343

mance than the all-bank PIM in the memory phase. How- 344

ever, the total power of the decoupled PIM remains within 345

the standard power budget, unlike the all-bank PIM. Conse- 346

quently, the proposed decoupled PIM architecture becomes 347

more attractive and acceptable than the prior all-bank 348

PIMs when there is a higher opportunity for broadcast in 349

applications. 350

A. MODIFYING THE PER-BANK PIM HARDWARE 351

The memory phase execution is the same as the per-bank 352

execution of Silent-PIM, whose memory request turns on/off 353

PimS and DataS switches of only a target bank. How- 354

ever, for supporting the computation phase, i.e., broadcasting 355

bank-shared data to all banks’ engines, we added one attribute 356

to source operands and modified the decoder for the PimS 357

switch from Silent-PIM, marked in grey in Figs. 3 and 4. 358

For the PIM engine to identify bank-shared data during 359

the PIM execution, we added the broadcast attribute (BC) 360

to source operands in the control registers of the PIM IU. 361

A programmer provides the address of the broadcast target 362

(i.e., the bank-shared operand) with setting the associated 363

BC. The matching of the incoming request’s address with 364

the broadcast target while ignoring their bank addresses gen- 365

erates the BC match signal to notify the broadcast to all 366

banks’ engines. Therefore, we modified the decoder for the 367

PimS switch of each bank by ORing PIM valid and BC 368

match signals. We turn on all the PimS switches so that 369

all banks’ engines receive the broadcast (bank-shared) data 370

from the global data bus and store them in registers. The 371

broadcast data can either be read from a bank or provided 372

outside DRAM, such as a host’s write request. A standard 373

memory request performs the data broadcast. 374

Suppose the BC attribute is unset and the address of the 375

incoming request is matched with the source operand address 376

while considering their bank addresses. In that case, the PIM 377

valid signal is generated and delivered to only the target 378

bank, i.e., performing as per-bank. All the memory requests 379

turn on their target banks’ DataS switch for accessing their 380

data array as usual, and the PIMmemory request among them 381

also controls the PimS switches. 382

Figure 5 shows an example of how to control the switches 383

at the decoupled execution phases. We use vecB for 384

bank-private operands and vecA for bank-shared operands. 385

At the memory phase, we turn on the DataS and PimS 386

switches of the target bank to read the bank-private operand 387

from its data array and store the operand to vecB bank-by- 388

bank. On the other hand, we turn on the DataS of only one 389

bank (Bank 0) and all the PimS switches at the computation 390

93260 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 5. Two execution phases of our decoupled PIM. (a) A memory
phase and (b) a computation phase (active components are marked in
grey).

phase and store the broadcast data in vecA’s, thus triggering391

the PIM computation for every cycle within a burst. The392

computation phase adheres to the standard memory power393

as it only operates at most one bank of memory array while394

using the PIM engines of all banks in parallel. We discuss395

the power consumption of memory arrays and PIM engines396

in Section IV-B4. Since vecA only stores a 1-cycle burst of397

a request (i.e., 1
4 of a whole burst), the broadcast data is not398

reused within a bank. However, broadcasting the data has the399

same effect as reusing it across all banks since it initiates400

all-bank PIM execution by accessing only one memory array401

bank.402

B. DETERMINING BANK-PRIVATE AND BANK-SHARED403

OPERANDS404

Determining which operand to be bank-private or bank-405

shared directly impacts the performance. The computation406

phase performs the all-bank execution by broadcasting the407

bank-shared operand, thus taking full advantage of the408

bank-level computational parallelism, i.e., the same as the all-409

bank execution. Thus, the longer the computation phase, the410

higher the performance.411

For maximizing the opportunity of the all-bank execu-412

tion by extending the computation phase, it is essential to413

select a high reusable operand from the code as the bank-414

private. Otherwise, the computation phase cannot continue415

whenever requiring a new bank-private operand. Therefore,416

the bank-private operands stored in vecB should be reused417

as much as the program allows. On the other hand, the418

highly shared and low reusable data should be recognized as419

bank-shared to be broadcast. The reusability degree of the420

broadcast bank-shared operand is the same as the number421

of banks. Our compiler uses the conventional iteration space422

analysis and a code tiling from our cost model for identifying423

the bank-private and the bank-shared operands.424

Consider the Level-3 BLAS code and its dependence table425

in Figure 6(a). The values 0 and 1 in the table represent426

FIGURE 6. Dependence of matrices to loop dimensions. (a) Level-3 BLAS
code and its dependence of matrices to dimensions. (b) Convolution code
and its dependence of matrices to dimensions.

independence and dependence on each dimension of the 427

matrices, respectively. For example, MatA and MatB are 428

independent of the j and the i dimensions, respectively. Each 429

matrix is independent of one of the three dimensions and 430

reused at its lower iteration space. That is, MatA is reused 431

(i.e., shared) within the j dimension, and MatB is shared 432

within the i dimension. We select MatB, which is reused in 433

a larger iteration space, as a bank-private operand since we 434

can reuse the matrix maximally within the i dimension, i.e., 435

repeatedly using K × J elements. Also, we choose MatA, 436

which is reused in a smaller iteration space, as a bank-shared 437

operand by considering the operand reuse across the banks 438

for the j dimension. If the i and j dimensions are interchanged, 439

MatB becomes the bank-shared since the i dimension will be 440

the lower dimension, and MatA turns into the bank-private 441

operand. 442

We can consider a convolution algorithm in Figure 6(b) in 443

the same way and determine inp as bank-shared and wgt as 444

bank-private operands. 445

C. MAKING THE COMPUTATION PHASE LONGER: 446

REGISTER TILING 447

We fetch the bank-private operands and store them into the 448

PIM engine registers at the memory phase in a per-bank 449

manner. The higher the reuse of bank-private operands in the 450

registers, the longer the computation phase, and the higher 451

the performance due to the decoupled all-bank execution. 452

For maximizing the reusability, we apply the loop tiling and 453

develop a cost model to derive a tiling factor for the code 454

generation. Our compiler technique is different from the con- 455

ventional compiler’s approach to employ the tiling for cache 456

hierarchy. Our PIM does not include a cache, so we match 457

the tiling to two PIM resources: registers for maximizing the 458

bank-private operand reuse and an ALU width for maximiz- 459

ing the computation utilization. 460

1) TILING WITH COST MODEL 461

Figure 7 shows a loop tiled code of Level-3 BLAS. The ranges 462

of the dimensions i, j, and k are I, J, and K, and the tiling 463

factors of each dimension are p, r , and q, respectively. As 464

VOLUME 10, 2022 93261

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 7. Loop tiled code of Level-3 BLAS.

Acc[io+ii][jo+ji] is independent of the dimension ko, its tiles465

are loaded and stored in the jo dimension (Lines 5 and 15).466

The tiles of MatB are loaded in the ko dimension (Line 7).467

To reuse MatB and Acc, the tile sizes of MatB and Acc468

should not exceed the register vecB and vAcc, respectively,469

as represented by Equation (1).470

TileSizeMatB = q× r ≤ SizevecB471

TileSizeAcc = p× r ≤ SizevAcc (1)472

From the decision that MatA is to be bank-shared and473

MatB is to be the bank-private, the load/store cost of the tiled474

code is defined by Equations (2), (3), and (4) in a unit of a475

matrix element. Minimizing the total cost, i.e., the sum of476

all the equations, implies maximizing the reusability, thus477

maximizing the all-bank execution opportunity.478

Since broadcasting theMatA has the same effect as reusing479

it for all banks by performing the all-bank PIM execution480

while accessing only one memory array, the cost of the481

bank-shared operandMatA becomes the number of total load482

instructions divided by the number of banks. Since the load483

instruction is executed in the inner-most loop, its total number484

is I × J × K . We can measure the reusability by the cost485

of the bank-private operand MatB, i.e., the number of load486

instructions for the operand divided by the number of reuses487

of an element. Since an element of MatB is reused in the i488

dimension for p times within the intra-tile, the number of489

reuses is p. Each tile of Acc is loaded and stored in the jo490

dimension. Then, the cost is calculated by multiplying the491

tile size and the number of the tile load and stores. From492

Equations (1)∼(4) where SizevecB = SizevAcc = 32 and the493

number of banks is 16, we acquire the optimal tiling factor as494

(p, q, r) = (32, 1, 1), which minimizes the total cost.495

CostMatA =
of LD

of banks
496

=

(
I
p
×
J
r
×
K
q
× p× r × q

)
×

1
of banks

497

=
I × J × K
of banks

(2)498

CostMatB =
of LD

of reuse per elem
499

=

(
I
p
×
J
r
×
K
q
× p× r × q

)
×

1
p

500

=
I × J × K

p
(3) 501

CostAcc = TileSizeAcc × # of tile LD/ST 502

= (p× r)×
(
I
p
×
J
r
× 2

)
503

= I × J × 2 (4) 504

When the i and j dimensions are interchanged, MatA and 505

MatB become the bank-private and the bank-shared, respec- 506

tively. In that case, their costs become CostMatA = I×J×K
r 507

and CostMatB = I×J×K
#ofbanks , resulting in the optimal tiling factor 508

of (p, q, r) = (1, 1, 32). 509

2) ALL-BANK EXECUTION TILE BY TILE 510

We found an optimal tiling factor of (p = 32, q = 1, r = 1) 511

to maximize the all-bank execution opportunity by reusing 512

a bank-private operand as much as possible, i.e., avoiding 513

frequent reloading of the bank-private operand. Therefore, 514

the optimal tiling factor prefers to perform (p×q)×(q×r) = 515

(p× r), i.e., (32× 1)× (1× 1) = (32× 1). 516

Both tile sizes of MatA and Acc are 32 × 1, and that of 517

MatB is 1× 1. However, since the DRAM access granularity 518

is 64B (i.e., 32 elements), we regard 32 elements as a tile for 519

MatB for one bank; thus, the optimal tiling factor becomes 520

(32, 32, 1). Also, we concurrently execute the 16 banks by 521

the broadcast in the j dimension; thus, the optimal tiling 522

factor finally becomes (32, 32, 16). Therefore, we store the 523

interleaved 32 (= q) columns of MatB and Acc across 16 524

(= r) banks and broadcast 32 (= p) elements of MatA to 525

all banks 32 (= q) times.We call this a register-sized window 526

in the rest of the paper. 527

Figure 8(a) illustrates the register-sized window matrix 528

multiplication at bank 0, i.e., (32 × 32) × (32 × 16), and 529

Figure 8(b) shows the timeline of DRAM commands execut- 530

ing the multiplication. For the timeline, we assume that all 531

matrices are stored in the same row of a DRAM so that only 532

one activation is required per bank. Also, standard memory 533

requests perform all reads, writes, and broadcasts with the 534

PIM computation. Each bank i multiplies pairs of (a0:31,0, 535

b0,i), (a0:31,1, b1,i), · · · , (a0:31,31, b31,i) and accumulates the 536

multiplication results one-by-one to calculate c0:31,i. 537

The execution performs the following phases: 538

• Memory phase for fetching bank-private operands: 539

Each bank reads 64-byte (a burst size) columns of the 540

bank-private operand MatB from its memory cell array 541

and stores them to vecB. 542

• Computation phase for all-bank execution: We reuse 543

the MatB elements in vecB and broadcast a column of 544

MatA one-by-one for the all-bank execution. We repeat 545

32 times during Ti where i = 0, 1, . . . , 31 for broad- 546

casting a0:31,i. At T0, the first element of vecB (b0,j 547

where j indicates the bank number) is multiplied with 548

93262 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 8. (a) Matrix multiplication for bank 0 and (b) DRAM command timeline of the (32 × 32) × (32 × 16) Level-3 BLAS, i.e., in one register-sized
window. The timing scales are simplified for a clear explanation.

FIGURE 9. Optimized tiles of the (8 × 32) × (32 × 16) Level-3 BLAS.

a0:31,0 to generate the partial sum of c0:31,j. The DRAM549

burst broadcasts 64-byte a0:31,i and stores its 16 bytes550

per cycle to vecA, i.e., a0:7,i, a8:15,i, a16:23,i, and a24:31,i551

in order. At every cycle, the storing triggers MAC oper-552

ations; 8 ALUs multiply vecA with b0,j and produce553

a partial sum of c0:31,j through 4 cycles; c0:7,j, c8:15,j,554

c16:23,j, and c24:31,j. The element b0,j is reused for the555

multiplication with a0:31,0, i.e., 32 times. After repeating556

the operations from T0 to T31, c0:31,j is available in557

vAcc of each bank. We return to the previous memory558

phase whenever requiring a new bank-private operand559

MatB, i.e., in the case of K > 32.560

• Memory phase for storing the results into a memory:561

Each bank stores a 64-byte vAcc to the memory cell562

array.563

D. MAXIMIZING THE ALU UTILIZATION: ALU-WIDTH564

TILING565

When I of MatA is smaller than 32, ALUs become underuti-566

lized, resulting in a waste of time and power. For example,567

when I = 8, MAC operations only with a0:7,i are performed568

during Ti where i = 0, 1, . . . , 31 of Figure 8(b), thus wasting 569

3 cycles of every burst. Therefore, we further optimize the 570

PIM execution by employing the second-level tiling to fit 571

an ALU width. We tile the matrix multiplication by (32 × 572

32)× (32× 16) in the first step, as described in the previous 573

subsection, and then tile each (32 × 32) tile of MatA by the 574

ALU-width size, 8. 575

Figure 9 depicts the optimized tiles processed in bank 0. 576

Our 8-wayALUs process 8 elements ofMatA simultaneously. 577

Therefore, we provide 8 × 4-sized tiles (a0:7,4×i:4×i+3) of 578

MatA through T0 to T7. Each burst calculates 8 partial sums 579

instead of 32. For example, at T0, b0:3,0 is multiplied with 580

a0:7,0:3 to generate the partial sum of c0:7,0; (a0:7,0, b0,0), 581

(a0:7,1, b1,0), (a0:7,2, b2,0) and (a0:7,3, b3,0) at each cycle. 582

In this way, when I = 8, we read MatA 8 times to finish 583

the task instead of 32 times. 584

E. CORRECTNESS OF THE PIM COMPUTATION 585

To guarantee the correctness of the PIM computation regard- 586

ing Figure 8, the following conditions should be satisfied. 587

1) Each phase should start after the previous phase is finished, 588

and 2) at the computation phase, a PIM engine should cor- 589

rectly determine which element of vecB is multiplied with 590

the in-flight broadcast data. 591

When each phase is not separated, e.g., the computation 592

phase starts before finishing the memory phase, some banks 593

start the PIM computation with its vecB filled with garbage 594

or empty, thus violating the correctness. We prevent such 595

situations by offloading the PIM requests using Direct Mem- 596

ory Access (DMA). Since our PIM architecture conforms to 597

VOLUME 10, 2022 93263

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

the standard DRAM interface, we offload the PIM requests598

using a conventional DMA engine. Each DMA transaction599

invokes each phase, and the DMA engine requests the next600

transaction only after the previous transaction is finished.601

Therefore, we ensure that each phase starts after the earlier602

phase is completed.603

However, the memory requests within a DMA transaction604

can be reordered by the memory controller scheduling. The605

scheduling does not affect the correctness at the memory606

phase since each bank receives only one request to fill vecB607

and filling vecB of a bank is independent of the other608

banks. On the other hand, at the computation phase, a PIM609

engine should correctly determine which element of vecB610

to be multiplied with the in-flight broadcast data despite611

the scheduling. For example in Figure 8(b), when the mem-612

ory controller broadcasts the sixteenth column a0:31,16 at613

T0, each bank should multiply the sixteenth element b16,j614

with the broadcast data, where j indicates the bank number.615

That is, the column number of MatA becomes the vecB616

index.617

Therefore, we determine the vecB index of the ALU618

input by using the physical address of the in-flight broadcast619

data. We assume that the columns of MatA are stored in a620

contiguous address of 2KBwhere SizeMatA = 32×32×2B =621

2KB. As each column size is the DRAM access granularity622

64B (32 elements) occupying the 6-bit LSB of the physical623

address PAMatA[5:0], the column number is determined by624

PAMatA[10:6]. Therefore, we determine the vecB index by625

PAMatA[10:6] of the in-flight broadcast data and extend PIM626

valid to include the information. Consequently, we guar-627

antee the correctness of the PIM computation despite the628

memory controller scheduling.629

F. NON-PIM REQUEST SERVICE DURING THE630

COMPUTATION PHASE631

Our decoupled PIM adopts the standard memory request for632

PIM operations, so a memory controller does not differentiate633

between PIM and non-PIM memory requests and schedules634

them together. As shown in Figure 8(b), we can service635

non-PIM requests from other processes in the middle of the636

computation phase since all the DataS and PimS switches637

are turned off at the end of every RD/WR command.638

The figure shows a situation where a read request for bank639

1 is serviced during the computation phase. Right after T0,640

a memory controller activates the requested row in bank 1.641

For the PIM computation at T1, bank 0’s DataS and all642

banks’ PimS are turned on so that the bank-shared operand is643

delivered to all PIM engines. At the end of T1, all the switches644

associated with the previous PIM request are turned off, and645

only theDataS switch of bank 1 is turned on for the non-PIM646

read. Since all PimS are turned off, any non-PIM memory647

operation does not corrupt the PIM engine states, and the648

engines continue the PIM operation whenever the next PIM649

request arrives. Any requests to other banks, including bank 0,650

can be handled in the same way by a conventional memory651

controller.652

FIGURE 10. Overall architecture of the experimental platform supporting
PIM emulation [4].

IV. PERFORMANCE EVALUATION 653

A. EXPERIMENTAL ENVIRONMENT 654

Figure 10 illustrates our experimental platform for the PIM 655

emulation using an FPGA board (Xilinx Virtex UltraScale 656

boardXCVU190). The platform is developed based on Silent- 657

PIM [4]. We implemented the software layers on the host 658

platform. The FPGA board is connected to the host platform 659

through PCIe. The two DDR4 [29] placed on the host plat- 660

form and the FPGA compose the OS-managed main memory. 661

Since we used the FPGA DDR4 for PIM, we configured 662

it uncacheable. The memory controller (MC) of the FPGA 663

was regarded to be equivalent to the host memory controller. 664

We verified all operations at the system level. 665

Since our PIM architecture complies with the standard 666

DRAM interface, we did not modify the Xilinx DDR4 mem- 667

ory controller IP, and a conventional DMA invoked the PIM 668

requests to the FPGA-based PIM [4]. The number of banks 669

in a PIM device is 16, and each bank has 8-way MAC units. 670

As discussed in Section II, the data is fetched by 128-bit × 671

4 cycles. The proposed architecture can be considered as 672

one die of 3D-stacked memory. When the memory controller 673

captures a PIM request by scanning the requested address, the 674

PIM device module placed between the memory controller 675

and the DRAM emulates the DRAM access, broadcast, and 676

PIM operations while obeying the DDR4 timings mounted on 677

the FPGA. 678

While the host system memory controller operated 679

at 1,200MHz, the Xilinx memory controller operated 680

at 156.25MHz. The DRAM execution time is deter- 681

mined by the timing constraints (e.g., tCL-tRCD-tRP-tRAS: 682

17-17-17-39 tCK). We adjusted the timing constraints of the 683

Xilinxmemory controller equal to the host memory controller 684

in cycles to make the execution time directly proportional 685

to the operating frequency [4]. Therefore, we estimated our 686

FPGA-based PIM’s performance by multiplying the execu- 687

tion time with the frequency difference. 688

Also, to estimate the performance of the ideal all-bank 689

PIM, we modified the Xilinx memory controller to simulate 690

the all-bank execution behavior (i.e., one command operates 691

all banks at once).We assumed that all banks operate by one 692

DRAM command; thus, we named ‘‘ideal’’. 693

We ran microbenchmarks of Level-2/3 BLAS, a multi- 694

batch LSTM-based Seq2Seq model [42], and BERT [7] on 695

93264 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 11. The number of memory requests in PIMs: PIM_PB, PIM_AB,
and our decoupled PIM at (I × 512) × (512 × 2048) Level-2/3 BLAS.

CPU, GPU, and the PIM-emulated FPGA. We used AMD696

Ryzen 7 1700 (3,000MHz) for CPU and NVIDIA TITAN697

Xp (1,582MHz) for GPU. We used OpenBLAS [27] on698

CPU and cuBLAS [28] on GPU for the BLAS algorithms.699

We executed the inference of the LSTM-based Seq2Seq700

model on PyTorch v1.5.0 [43] using de_core_news_sm701

and en_core_web_sm language models from Spacy702

v2.3.0 [44]. We ran the BERT model on ONNX Runtime703

v1.6.0 [45] with MKL [46] and MLAS [47] instead of Open-704

BLAS unsupported by ONNX Runtime. We determined the705

matrix sizes of the BLAS algorithms to (I × 512) × (512 ×706

2048) based on the matrix sizes used in the Seq2Seq model.707

We compared the performance of our decoupled PIM using708

the 8×4 tile forMatA to CPU serial execution (CPU_S), CPU709

parallel execution using OpenMP (CPU_P), GPU, per-bank710

PIM (PIM_PB), and ideal all-bank PIM (PIM_AB). OpenMP711

utilizes 16 logical CPU cores, the same as the number of712

banks of our PIM device. We also analyzed the performance713

impact of the ALU-width tiling on our decoupled PIM in714

Section IV-D.715

Both PIM_PB and PIM_AB require MatA to be copied716

to all banks. The average time for the copy accounted for717

11.2% of the total execution time. However, we excluded718

the overhead and measured only the PIM execution time719

of PIM_PB and PIM_AB since data may be in cache or720

memory in PIM’s execution environment, so including the721

copy overhead could lead the reader to erroneous conclusions.722

That is, we evaluated the performance of our decoupled PIM723

conservatively.724

B. LEVEL-2/3 BLAS725

1) MEMORY REQUESTS726

The number of memory requests in the PIM execution deter-727

mines the execution time because the requests trigger the728

computation and the operand load/store. Therefore, we com-729

pare them using Level-2/3 BLAS, (I × 512)× (512× 2048),730

and Figure 11 shows the result.731

PIM_PB PIM fully reuses MatA, i.e., reads only once, but732

the decoupled PIM reads MatA by J/#ofbanks times; thus,733

the memory requests of RD A of PIM_PB are lower than734

those of our decoupled PIM. Both PIM_PB and PIM_AB 735

repeat the VM multiplications for I times, resulting in the 736

proportional increase in the memory requests of RD B. The 737

decoupled PIM maximizes the reuse of RD B, resulting in 738

the RD B requests much lower than PIM_PB and even lower 739

than PIM_AB. PIM_AB operates 16 banks by one command, 740

and thus the memory requests for RD A and RD B are 1
16 of 741

PIM_PB. 742

Although we applied the ALU-width tiling, we underuti- 743

lize the 8-way ALUs for I < 8, thus the number of memory 744

requests on our PIM for I < 8 is the same as I = 8. Therefore, 745

the memory requests increase at every I multiple of 8. When 746

I is a multiple of 32, the proposed PIM requires only 9.3% of 747

memory requests of PIM_PB due to maximizing the reuse 748

of the bank-private operands and sharing the bank-shared 749

operands by broadcast. 750

The number of RD A requests on our approach is the same 751

as RDB on PIM_ABwhen I is a multiple of 32 since both the 752

requests trigger the all-bank computations and their number 753

of computations are the same. However, as our decoupled 754

PIM uses the memory phase for the bank-private operands 755

(i.e., RD B) by per-bank, it needs 48% more total memory 756

requests than PIM_AB. 757

2) EXECUTION TIME AND SPEEDUP 758

Figure 12 illustrates the execution time in a log scale and 759

the speedup normalized to CPU_S running Level-2/3 BLAS 760

algorithms on each platform by varying I . The performance 761

was measured assuming that all the matrices are stored in 762

main memory, i.e., not yet brought into any cache at the start. 763

The execution time of CPU_S and CPU_P grew slowly 764

when I was small because of the data reuse in a cache, but 765

they became proportional to I as the data size increased. The 766

speedup of CPU_P using 16 logical cores increased slightly 767

from 4.5× at I = 1 to 5.8× at I = 32 and slightly degraded 768

as I increases due to cache misses. GPU spent over 90% 769

of the time for copying the input/output data to/from the 770

device; therefore, its execution time was longer than CPU_P 771

when I < 8. However, the execution time hardly increased 772

thanks to the massive parallelism supported by its numerous 773

streammultiprocessors, and its speedup continuously grew as 774

I increased, up to 65.9×. 775

Since it was observed in [4] that using DMA as 776

the PIM offloading engine and applying both DMA and 777

DRAM-friendly data layout for PIM operands improves 778

performance, we adopted the same approach for PIM_PB, 779

PIM_AB, and our decoupled PIM. Such an approach allowed 780

the performance of all PIM platforms to outperform CPU in 781

all cases despite the relatively high data reuse in batching. 782

PIM_PB and PIM_AB repeat the VM multiplication for I 783

times without exploiting the reuse opportunities, and their 784

number of memory requests determines the execution time, 785

as discussed in the previous section. They demonstrated the 786

highest speedup of 37.1× and 169.1× at I = 1 and an 787

almost constant speedup of 16× and 86× due to CPU_S’s 788

cache effect at larger I ’s. Although PIM_AB demonstrates 789

VOLUME 10, 2022 93265

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 12. (a) The execution time (in a log scale) and (b) the speedup of CPU_P, GPU, PIM_PB, PIM_AB, and our decoupled PIM with respect to
CPU_S running Level-2/3 BLAS.

16× computation parallelism than PIM_PB, they showed less790

speedup difference due to their PIM offloading overhead. The791

reason was that about 10% of PIM_PB’s execution time was792

spent on the DMA interface overhead to offload the PIM793

execution; therefore, only the rest was accelerated by the all-794

bank execution.795

Our decoupled PIM effectively utilizes the highly reusable796

data and broadcasts the shared data across banks through797

memory-computation decoupling and eventually realizes the798

all-bank execution of PIM. As discussed in the previous799

section, we underutilize the 8-way ALUs for I < 8; thus, the800

execution time of I < 8 was the same as I = 8 and increased801

at every I multiple of 8. The speedup at I < 8 increased802

as I grows since the execution time of CPU_S increased but803

showed lower speedup than PIM_PB because of the under-804

utilization. At I = 8 and I = 16, we fully utilized the805

ALUwidth but poorly reused the bank-private operands. At I806

multiple of 32, we reached the highest performance over 75×,807

as we fully utilized the ALUs and reused the bank-private808

operands at best.809

Our PIM performance outperformed PIM_PB by 4.7× and810

reached up to 91.4% of PIM_AB performance. It should be811

noticed that the conventional all-bank PIMs [5], [6], [12]812

would provide about half of the modeled PIM_AB perfor-813

mance since they activate up to half of all banks due to the814

power and thermal issues. In all the cases, GPU performed815

worse than our decoupled PIM since it spent a substantial816

time copying the data to/from the device, whereas ours did817

not require any memory copies.818

FIGURE 13. (a) The breakdown of row buffer hit/miss/conflict ratio and
(b) the breakdown of DRAM commands of PIM_PB, PIM_AB, and our
decoupled PIM executing Level-3 BLAS, (I × 512) × (512 × 2048).

3) DRAM BEHAVIOR 819

Figure 13 illustrates the breakdown of the row buffer 820

hit/miss/conflict and DRAM commands of PIM_PB, 821

PIM_AB, and our decoupled PIM. We implemented the 822

performance counter inside the Xilinx memory controller for 823

profiling the DRAM behaviors. 824

PIM_PB and PIM_AB readMatA once and perform MAC 825

by 32 consecutive RDs forMatB in all 16 banks, resulting in 826

32× 16 = 512 row buffer hits. Their DRAM commands are 827

mainly RDs since they read MatB for I times, i.e., repeating 828

the VMmultiplication. Also, as the RDs rarely encounter row 829

conflicts, the ratio of ACT/PRE is low. 830

At I = 16, with the register-sized window of (16, 32, 16), 831

our decoupled PIM reads 16 tiles of MatB bank-by-bank at 832

the memory phase and then reads 16 tiles ofMatA from banks 833

93266 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

at the computation phase, as described in Section III-D. Since834

the two matrices reside in different DRAM rows, reading835

MatB and MatA always encounter row conflicts, resulting in836

close to 100% row conflicts and a high ACT/PRE ratio as837

illustrated in Figure 13.838

When I is a multiple of 32, the register-sized window839

becomes (32, 32, 16). 16 banks sequentially read a tile of840

MatB at the memory phase and perform MAC by broad-841

casting 32 tiles of MatA at the computation phase; thus,842

encounters the 16 row conflicts for MatB after 32 RDs for843

MatA. As a result, for computing each tile, 16 row conflicts844

occur at the memory phase, and 16 conflicts and 16 row hits845

at the computation phases.846

4) POWER AND ENERGY CONSUMPTION847

We evaluated the average power and energy consumption of848

each platform in Level-2/3 BLAS, (I × 512)× (512× 2048).849

The power of each platform was estimated by aggregating850

the power of the components as follows: CPU (CPUpow851

+ DRAMpow), GPU (GPUpow + CPUpow + DRAMpow),852

and PIM (PIM enginepow + CPUpow + DRAMpow). As we853

assume our PIM architecture is part of the system memory,854

we did not consider the power consumption of the FPGA.855

The CPU power was measured using the Running Average856

Power Limit (RAPL) interface, and the GPU power was mea-857

sured using the Nvidia System Management Interface [48],858

[49]. The DRAM power was estimated using the DRAM-859

Power tool since measuring the DRAM power through RAPL860

on the AMDprocessor was not supported [50]. For measuring861

the DRAM power of CPU and GPU platforms, we assumed862

that the data is read from the main memory only once, and the863

following access always hits in the cache. On the other hand,864

to measure the DRAM power of PIM platforms, we extracted865

the address trace of the actual memory accesses from our PIM866

kernel. Also, we implemented the PIM engine in Verilog with867

65nm PDK under the worst case, which has similar character-868

istics to the current DRAM process [4], [21], [51], [52], [53],869

and estimated the power consumption using the Synopsys870

Design Compiler. The design satisfied the DRAM internal871

frequency of 800MHz and the available space near each bank872

of about 40,000µm2. The power of the PIM engines was at873

0.03W by the logic synthesis, the same as Silent-PIM [4] due874

to little additional logic for this work.875

The total power consumption of CPU_S, CPU_P, and GPU876

was 23.3W, 57.0W, and 83.4W, respectively. The DRAM877

power on those platforms was under 1W. All the PIMs used878

the same CPU, so the same power of 23.4W and the aver-879

age DRAM power on PIM_PB, PIM_AB, and ours were880

3.4W, 4.1W, and 3.6W. The different tile sizes of our decou-881

pled PIM did not affect the power consumption. PIM_AB882

showed the highest power consumption since it performs883

the same amount of operations as PIM_PB in a shorter884

time. Ours consumed about 6% more power than PIM_PB885

since we encounter more row buffer conflicts as discussed886

in Section IV-B3, thus resulting in increased activation and887

precharge power.888

FIGURE 14. The normalized energy consumption of CPU_S, CPU_P, GPU,
PIM_PB, PIM_AB, and our decoupled PIM on Level-3 BLAS,
(I × 512) × (512 × 2048).

We compared the PIM power consumption with the con- 889

ventional DDR4 peak power consumed by back-to-back RDs; 890

5.95W [12]. PIM_PB obeys the standard DRAM constraints 891

as it operates at most one bank. Our PIM also adheres to the 892

standard memory power as it operates in a per-bank manner 893

in the memory phase, and also operates at most one bank of 894

memory array to broadcast the bank-shared operand to the 895

PIM engines of all banks in the computation phase. There- 896

fore, PIM_PB and our PIM’s worst-case peak powers remain 897

close to 5.95W considering 0.03W of the engine power, 898

i.e., 5.98W at the worst case. PIM_AB consumed a peak 899

power of 21.58W when performing RDs for all 16 banks, 900

far exceeding the conventional peak power. Only four banks 901

could perform the computations simultaneously within the 902

conventional peak power [6], [12]. In [5], the authors reduced 903

the power consumption by limiting the concurrently operat- 904

ing banks to half and avoiding the data transfer to external 905

I/O at all-bank PIMmode. Their back-to-back RDs consumed 906

105.4% of the normal HBM2 power [54]. 907

Figure 14 illustrates the energy consumption normalized to 908

CPU_S in a log scale. The normalized energy consumption of 909

CPU_P and PIM_PB did not vary much by the I size. The 910

normalized energy consumption of GPU became less as I 911

increased but always worse than our decoupled PIM. At I = 912

128, the energy consumption of GPU was 94.6% and 33.0% 913

less than CPU_S and PIM_PB, respectively. The energy of 914

our PIM was less consumed than CPU, GPU, and PIM_PB 915

by 98.5%, 72.0%, and 78.4%, respectively. PIM_AB showed 916

the lowest energy consumption among all platforms due to 917

the fastest execution time, and our decoupled PIM consumed 918

only 7.4% higher than PIM_AB. 919

C. APPLICATIONS: MULTI-BATCH LSTM-BASED Seq2Seq 920

AND BERT 921

1) EXECUTION TIME AND SPEEDUP 922

The execution time and the speedup of the multi-batch 923

LSTM-based Seq2Seq model to process 1000 input data on 924

each platform are depicted in Figure 15. The larger batch size 925

implies a lower framework overhead for the python to C++ 926

interface and a higher opportunity for weight reuse since the 927

VOLUME 10, 2022 93267

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 15. (a) The execution time breakdown and (b) the speedup of
CPU_P, GPU, PIM_PB, PIM_AB, and our decoupled PIM with respect to
CPU_S on the multi-batch LSTM-based Seq2Seq model.

batch size indicates I in the matrix operations of the model.928

Therefore, the execution time of CPU_S decreased as the929

batch size increased.930

CPU_P showed higher speedup for larger batch size due931

to the weight reuse and the parallelism exploitation, reaching932

3.6× at batch size 128. The model initialization that consists933

ofmemory copy from systemmemory to the device tookmost934

of the GPU execution time. The speedup was from 6.3× to935

5.5×, and it was highest at batch size 16 due to the lowest936

performance of CPU_S. The execution time of PIM_PB and937

PIM_AB remains unchanged by the batch size since they938

execute Level-3 BLAS by repeating the VM multiplication939

for the input data, i.e., 1000 times, without reusing the weight940

matrices. Thus, their speedup decreased for larger batch sizes941

to 1.9× and 8.8×, respectively, due to the higher performance942

of CPU_S.943

Our PIM finds lower reuse opportunities of the944

bank-private operands at batch size 16, and it fully reuses945

them at batch sizes multiple of 32. Therefore, its execution946

time for batch size 16 was higher than the other batch sizes,947

and the execution time for batch sizes multiple of 32 was948

the same since the input data size was fixed to 1000. The949

speedup was 9.0× at batch size 32 and decreased to 8.4× at950

128. As a result, the PIM_AB and ours at batch size multiple951

of 32 outperformed GPU. Since the execution time ratio of952

the MM multiplication to the total execution on the CPU_S953

ranged 84.2∼85.5% where our PIM took advantage of the954

decoupled execution, our PIM outperformed PIM_PB by955

4.3× and reached 94.3% performance of the PIM_AB.956

Figure 16 shows the execution time breakdown and957

speedup of BERT with sequence lengths 8, 16, and 32 on958

FIGURE 16. (a) The execution time breakdown and (b) the speedup of
CPU_P, GPU, PIM_PB, PIM_AB, and our decoupled PIM with respect to
CPU_S (MKL) on the BERT model.

FIGURE 17. The normalized energy consumption of CPU_P, GPU, PIM_PB,
PIM_AB, and our decoupled PIM to CPU_S on (a) multi-batch LSTM-based
Seq2Seq and (b) BERT.

each platform. The sequence length indicates the I in the 959

matrix operations. The execution time of both CPU_S (MKL, 960

MLAS) increased as the sequence length grew since the 961

93268 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

FIGURE 18. (a) The number of memory requests (b) execution time (c) the speedup (d) breakdown of row buffer hit/miss/conflict ratio and
(e) DRAM command ratio of our decoupled PIM with different tile sizes executing Level-3 BLAS, (I × 512) × (512 × 2048).

longer sequence length implies the larger input size. As in962

the Seq2Seq model mentioned above, CPU_P (MKL) and963

CPU_P (MLAS) performed better by data reuse and parallel964

computation for longer sequence length, reaching 2.2× and965

2.3× speedup, respectively. The session initialization, includ-966

ing the memory copy from the host to GPU, consumed over967

99% of the GPU execution time, thus resulting in under 0.2×968

speedup.969

The execution time ratio of the MM multiplication on970

CPU_S (MKL) was 54.6∼74.7%, which was much less than971

the Seq2Seq model. Therefore, the performance improve-972

ment achieved by the per-bank, all-bank and our PIM was973

less than the Seq2Seq model. The speedup of PIM_PB and974

PIM_AB increased up to 2.2× and 3.6×, respectively. The975

execution time of the MM multiplication on PIM_PB and976

PIM_AB increased in proportion to the sequence length.977

However, since the execution time ratio ofMMmultiplication978

is relatively small, the overhead of repeating VM did not979

significantly affect the overall performance. Therefore, the980

performance of PIM_PB and PIM_AB improved with the981

sequence length.982

The speedup of our PIM was 1.7× at sequence length983

8 and 3.1× at sequence length 32. Our PIM performed a little984

worse than PIM_PB at sequence length 8 and outperformed985

PIm_PB by 1.4× at sequence length 32, reaching up to 86.5%986

of the PIM_AB performance.987

2) ENERGY CONSUMPTION988

Figure 17 illustrates the energy consumption normalized989

CPU_S on both applications on a log scale. On the multi-990

batch LSTM-based Seq2Seq in Figure 17(a), the normalized991

energy consumption of CPU_P decreased by the batch size992

because the higher weight reuse improved the speedup as993

the batch size increased, as shown in Figure 15. The energy994

consumption of GPU increased slightly as its performance995

degraded by the batch size. Since PIM_PB and PIM_AB996

repeat the VM multiplication without reusing weights, the997

batch size increased their normalized energy consumption.998

However, because of the highest speedup of PIM_AB, its999

energy consumption was the lowest in all cases. At the batch 1000

size 128, the normalized energy consumption of GPU was 1001

28.3% less than CPU_S and 20.2% higher than PIM_PB, 1002

respectively. The normalized energy consumption of our PIM 1003

was 86.3%, 80.8%, and 77.0% less than CPU_S, GPU, and 1004

PIM_PB. Compared to PIM_AB, our PIM consumed only 1005

0.3% and 2.7% higher energy at the batch sizes of 64 and 1006

128, respectively. 1007

Figure 17(b) shows that the normalized energy consump- 1008

tion of BERT on all the platforms became lower by the 1009

sequence length since their speedup increased, as shown 1010

in Figure 16. The normalized energy of GPU was sig- 1011

nificantly higher than all platforms because of the exces- 1012

sive initialization overhead. At the sequence length 32, the 1013

energy consumption of CPU_S (MLAS) was 30.3% less than 1014

CPU_S (MKL), and both CPU_P showed similar energy 1015

consumption, which was 43.8% and 48.6% lower than 1016

CPU_S (MKL), respectively. The normalized energy con- 1017

sumption of PIM_PB were 50.6% less than CPU_S (MKL), 1018

and our PIM consumed 40.3%, 98.3%, and 33.5% less 1019

energy than CPU_P (MKL), GPU, and PIM_PB, respectively. 1020

PIM_AB consumed the lowest energy in all cases, and the 1021

energy consumption of our decoupled PIM was 3.1% higher 1022

than PIM_AB. 1023

D. PERFORMANCE IMPACT OF ALU-WIDTH TILING 1024

We also analyzed the performance of our decoupled PIM 1025

using one more tile (32× 1) forMatA to underutilize ALUs. 1026

Figure 18 compares the number of memory requests, execu- 1027

tion time, speedup, and DRAM behavior of Level-3 BLAS, 1028

(I × 512) × (512 × 2048) on our decoupled PIM of two 1029

tile sizes (i.e., 32 × 1 and 8 × 4). At I = 32, both tile 1030

sizes fully utilized the ALUs and exploited the maximum 1031

opportunity for reusing the bank-private operands. Therefore, 1032

the performance of both tile sizes was the same. 1033

The (32× 1) tile operates in the same way for all the cases 1034

I ≤ 32, i.e., underutilizes ALUs for I = 8 and I = 16. 1035

Therefore, the execution time for all the cases was the same. 1036

On the other hand, the (8 × 4) tile fully utilized the ALUs 1037

VOLUME 10, 2022 93269

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

and reduced the number of RD A requests by 75% and 50%,1038

respectively; thus, the (8 × 4) tile showed 18% and 13%1039

speedup over the (32× 1) tile execution.1040

The (32 × 1) tile with a register-sized window of (32, 32,1041

16) reads 16 tiles of MatB at the memory phase and 32 tiles1042

ofMatA at the computation phase, incurring a total of 32 row1043

conflicts and 16 row hits, respectively. At I = 8, the (8 × 4)1044

tile with a register-sized window of (8, 32, 16) reads 16MatB1045

tiles at the first memory phase and then reads 8 tiles ofMatA1046

from 8 banks at the computation phase with 8 row conflicts.1047

At the next memory phase, the (8× 4) tile encounters 8 con-1048

flicts in the banks whose rows were open forMatA and 8 row1049

hits in the other banks. At I = 16, the (8×4) tile results close1050

to 100% in row conflicts, as discussed in Section IV-B3. The1051

power consumption was hardly affected since the different1052

tile sizes changed the number of RD commands, while the1053

number of ACT/PRE remained the same.1054

V. CONCLUSION1055

This paper proposed the memory-computation decoupled1056

PIM architecture to provide the performance comparable1057

to the all-bank PIM while preserving the standard DRAM1058

interface, i.e., DRAM commands, power budget, timing con-1059

straints, etc. For achieving our goal, we introduced two PIM1060

execution phases: memory and computation. The memory1061

phase follows the per-bank PIM execution method. The com-1062

putation phase broadcasts the bank-shared operands to all1063

banks, thus making their PIM engines perform the compu-1064

tation simultaneously without accessing the bank data arrays.1065

Also, we developed the compiler techniques to maximize1066

the decoupled execution opportunity by increasing the bank-1067

private operands’ reusability.1068

We evaluated the performance of Level-2/3 BLAS, a multi-1069

batch LSTM-based Seq2Seq model, and BERT on real1070

machines; CPU, GPU, FPGA-based PIM to provide an accu-1071

rate performance analysis. The performance of the proposed1072

PIM compared to CPU and GPU was 75.8× and 1.2× faster1073

in Level-3 BLAS and 8.4× and 1.5× faster in LSTM-based1074

Seq2Seq and 3.1× and 15.5× in BERT, respectively. We also1075

reached the performance of the ideal all-bank PIM up to1076

91.3%, 97.8%, and 86.6% in the applications, respectively.1077

Compared to GPU and the per-bank PIM, the energy con-1078

sumption of our decoupled PIM was lower by 72.0% and1079

78.4% in Level-3 BLAS, 80.8% and 77.0% in LSTM-based1080

Seq2Seq, and 98.3% and 33.5% in BERT. Also, our PIM1081

consumed only 7.4%, 0.3%, and 3.1% more energy than the1082

ideal all-bank PIM in the applications.1083

ACKNOWLEDGMENT1084

The authors would like to note that this article has1085

been published in the doctoral thesis: Yoonah Paik,1086

‘‘Accelerating DRAM Verification by Test-oriented Com-1087

mand Scheduling and In-DRAM PIM Execution by1088

Memory-computation Decoupling,’’ Ph.D. thesis, Depart-1089

ment of Electrical and Computer Engineering, Korea1090

University, Seoul, Korea, 2022. [Online]. Available: 1091

http://www.dcollection.net/handler/korea/000000269250. 1092

REFERENCES 1093

[1] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural 1094

Comput., vol. 9, no. 8, pp. 1735–1780, 1997. 1095

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, 1096

L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv. 1097

Neural Inf. Process. Syst. (NIPS), Long Beach, CA, USA, Dec. 2017, 1098

pp. 5998–6008. 1099

[3] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and 1100

T. N. Vijaykumar, ‘‘Newton: A DRAM-maker’s accelerator-in-memory 1101

(AiM) architecture for machine learning,’’ in Proc. 53rd Annu. IEEE/ACM 1102

Int. Symp. Microarchitecture (MICRO), Athens, Greece, Oct. 2020, 1103

pp. 372–385. 1104

[4] C. H. Kim, W. J. Lee, Y. Paik, K. Kwon, S. Y. Kim, I. Park, and 1105

S. W. Kim, ‘‘Silent-PIM: Realizing the processing-in-memory computing 1106

with standard memory requests,’’ IEEE Trans. Parallel Distrib. Syst., 1107

vol. 33, no. 2, pp. 251–262, Feb. 2022. 1108

[5] S. Lee, S.-H. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, 1109

H. Shin, and J. Kim, ‘‘Hardware architecture and software stack for PIM 1110

based on commercial DRAM technology: Industrial product,’’ in Proc. 1111

ACM/IEEE 48th Annu. Int. Symp. Comput. Architecture (ISCA), Jun. 2021, 1112

pp. 43–56. 1113

[6] B. Kim, J. Chung, E. Lee, W. Jung, S. Lee, J. Choi, J. Park, M. Wi, 1114

S. Lee, and J. Ho Ahn, ‘‘MViD: Sparse matrix-vector multiplication in 1115

mobile DRAM for accelerating recurrent neural networks,’’ IEEE Trans. 1116

Comput., vol. 69, no. 7, pp. 955–967, Jul. 2020. 1117

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training 1118

of deep bidirectional transformers for language understanding,’’ 2018, 1119

arXiv:1810.04805. 1120

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving 1121

Language Understanding by Generative Pre-Training. Accessed: 1122

Jul. 22, 2021. [Online]. Available: https://s3-us-west-2.amazonaws. 1123

com/openaiassets/researchcovers/language-unsupervised/language_ 1124

understanding_paper.pdf 1125

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, 1126

‘‘Language models are unsupervised multitask learners,’’ OpenAI Blog, 1127

Feb. 2019. 1128

[10] J. von Neumann, ‘‘First draft of a report on the EDVAC,’’ IEEE Ann. Hist. 1129

Comput., vol. 15, no. 4, pp. 27–75, Oct. 1993. 1130

[11] W. Sun, Z. Li, S. Yin, S. Wei, and L. Liu, ‘‘ABC-DIMM: Alleviating the 1131

bottleneck of communication in DIMM-based near-memory processing 1132

with inter-DIMM broadcast,’’ in Proc. ACM/IEEE 48th Annu. Int. Symp. 1133

Comput. Archit. (ISCA), Jun. 2021, pp. 237–250. 1134

[12] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, ‘‘McDRAM: Low 1135

latency and energy-efficient matrix computations in DRAM,’’ IEEE Trans. 1136

Comput. Aided Des. Integr. Circuits Syst., vol. 37, no. 11, pp. 2613–2622, 1137

Oct. 2018. 1138

[13] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo, ‘‘McDRAM v2: In-dynamic 1139

random access memory systolic array accelerator to address the large 1140

model problem in deep neural networks on the edge,’’ IEEE Access, vol. 8, 1141

pp. 135223–135243, 2020. 1142

[14] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, 1143

M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, ‘‘Ambit: In- 1144

memory accelerator for bulk bitwise operations using commodity DRAM 1145

technology,’’ in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture 1146

(MICRO), Boston, MA, USA, Oct. 2017, pp. 273–287. 1147

[15] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, ‘‘DrAcc: A 1148

DRAM based accelerator for accurate CNN inference,’’ in Proc. 55th 1149

ACM/ESDA/IEEE Design Automat. Conf. (DAC), San Francisco, CA, 1150

USA, Jun. 2018, pp. 1–6. 1151

[16] Y. Long, T. Na, and S. Mukhopadhyay, ‘‘ReRAM-based processing-in- 1152

memory architecture for recurrent neural network acceleration,’’ IEEE 1153

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 12, pp. 2781–2794, 1154

Dec. 2018. 1155

[17] D. Fujiki, S. Mahlke, and R. Das, ‘‘In-memory data parallel processor,’’ 1156

in Proc. 23rd Int. Conf. Archit. Support Program. Lang. Oper. Syst., 1157

Williamsburg, VA, USA, Mar. 2018, pp. 1–14. 1158

[18] B. Li, L. Song, F. Chen, X. Qian, Y. Chen, and H. H. Li, ‘‘ReRAM-based 1159

accelerator for deep learning,’’ in Proc. Design, Autom. Test Eur. Conf. 1160

Exhib. (DATE), Dresden, Germany, Mar. 2018, pp. 815–820. 1161

93270 VOLUME 10, 2022

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

[19] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,1162

‘‘PRIME: A novel processing-in-memory architecture for neural network1163

computation in reram-based main memory,’’ in Proc. ACM/IEEE 43rd1164

Annu. Int. Symp. Comput. Archit. (ISCA), Seoul, South Korea, Jun. 2016,1165

pp. 27–39.1166

[20] A. Shafiee, A. Nag, N.Muralimanohar, R. Balasubramonian, J. P. Strachan,1167

M. Hu, R. S. Williams, and V. Srikumar, ‘‘ISAAC: A convolutional neural1168

network accelerator with in-situ analog arithmetic in crossbars,’’ in Proc.1169

ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,1170

pp. 14–26.1171

[21] W. J. Lee, C. H. Kim, Y. Paik, J. Park, I. Park, and S. W. Kim, ‘‘Design1172

of processing-‘inside’-memory optimized for DRAM behaviors,’’ IEEE1173

Access, vol. 7, pp. 82633–82648, 2019.1174

[22] S. Liu, B. Leung, A. Neckar, S. O. Memik, G. Memik, and N. Hardavellas,1175

‘‘Hardware/software techniques for DRAM thermal management,’’ in1176

Proc. 17th Int. Symp. High Perform. Comput. Archit., San Antonio, TX,1177

USA, Feb. 2011, pp. 515–525.1178

[23] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and1179

O. Mutlu, ‘‘Adaptive-latency DRAM: Optimizing DRAM timing for the1180

common-case,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput.1181

Archit. (HPCA), Burlingame, CA, USA, Feb. 2015, pp. 489–501.1182

[24] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ‘‘Eyeriss: An energy-1183

efficient reconfigurable accelerator for deep convolutional neural net-1184

works,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,1185

Jan. 2017.1186

[25] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexi-1187

ble accelerator for emerging deep neural networks on mobile devices,’’1188

IEEE J. Emerging Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308,1189

Jun. 2019.1190

[26] H. Ye, X. Zhang, Z. Huang, G. Chen, and D. Chen, ‘‘HybridDNN:1191

A framework for high-performance hybrid DNN accelerator design and1192

implementation,’’ in Proc. 57th ACM/IEEE Design Automat. Conf. (DAC),1193

Jul. 2020, pp. 1–6.1194

[27] Z. Xianyi. OpenBLAS—An Optimized BLAS Library. Accessed:1195

Nov. 22, 2021. [Online]. Available: https://www.openblas.net/1196

[28] NVIDIA Corporation. CUDA Toolkit Documentation. Accessed:1197

Nov. 22, 2021. [Online]. Available: https://docs.nvidia.com/cud1198

a/cublas/index.html1199

[29] JESD79-4: JEDEC Standard: DDR4 SDRAM, JEDECSolid State Technol.1200

Assoc., Arlington, VA, USA, Sep. 2012.1201

[30] A. Nag and R. Balasubramonian, ‘‘OrderLight: Lightweight memory-1202

ordering primitive for efficient fine-grained PIM computations,’’ in1203

Proc. 54th Annu. IEEE/ACM Int. Symp. Microarchitecture, Oct. 2021,1204

pp. 298–310, doi: 10.1145/3466752.3480103.1205

[31] G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu, X. Qian,1206

M. N. Bojnordi, Y. Wang, and C. Ding, ‘‘FORMS: Fine-grained polarized1207

ReRAM-based in-situ computation for mixed-signal DNN accelerator,’’ in1208

Proc. ACM/IEEE 48th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2021,1209

pp. 237–250.1210

[32] Y. Long, E. Lee, D. Kim, and S. Mukhopadhyay, ‘‘Flex-PIM: A ferro-1211

electric FET based vector matrix multiplication engine with dynamical1212

bitwidth and floating point precision,’’ in Proc. Int. Joint Conf. Neural1213

Netw. (IJCNN), Glasgow, U.K., Jul. 2020, pp. 1–8.1214

[33] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Fried-1215

man, A. Kolodny, and U. C. Weiser, ‘‘MAGIC—Memristor-aided logic,’’1216

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899,1217

Nov. 2014.1218

[34] J.-P. Wang and J. D. Harms, ‘‘General structure for computational random1219

access memory (CRAM),’’ U. S Patent 9 224 447, Dec. 29, 2015.1220

[35] M. Imani, S. Gupta, Y. Kim, and T. Rosing, ‘‘FloatPIM: In-memory1221

acceleration of deep neural network training with high precision,’’ in Proc.1222

ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA), Phoenix, AZ,1223

USA, Jun. 2019, pp. 802–815.1224

[36] M. Imani, S. Pampana, S. Gupta,M. Zhou, Y. Kim, and T. Rosing, ‘‘DUAL:1225

Acceleration of clustering algorithms using digital-based processing in-1226

memory,’’ in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture1227

(MICRO), Athens, Greece, Oct. 2020, pp. 356–371.1228

[37] S. Gupta, M. Imani, and T. Rosing, ‘‘FELIX: Fast and energy-efficient1229

logic in memory,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des.1230

(ICCAD), San Diego, CA, USA, Nov. 2018, pp. 1–7.1231

[38] O. Leitersdorf, R. Ronen, and S. Kvatinsky, ‘‘MultPIM: Fast stateful1232

multiplication for Processing-in-Memory,’’ IEEE Trans. Circuits Syst. II,1233

Exp. Briefs, vol. 69, no. 3, pp. 1647–1651, Mar. 2022.1234

[39] X. Xin, Y. Zhang, and J. Yang, ‘‘ELP2IM: Efficient and low power bitwise 1235

operation processing in DRAM,’’ in Proc. IEEE 26th Int. Symp. High 1236

Perform. Comput. Archit. (HPCA), San Diego, CA, USA, Feb. 2020, 1237

pp. 303–314. 1238

[40] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. A. D. Ferreira, N. M. Ghiasi, 1239

M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O.Mutlu, ‘‘SIMDRAM: 1240

A framework for bit-serial SIMD processing using DRAM,’’ in Proc. 26th 1241

ACM Int. Conf. Architectural Support Program. Lang. Operating Syst. 1242

(ASPLOS), Apr. 2021, pp. 329–345. 1243

[41] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, ‘‘DRISA: 1244

A dram-based reconfigurable In-Situ accelerator,’’ in Proc. 50th Annu. 1245

IEEE/ACM Int. Symp. Microarchitecture (MICRO), Boston, MA, USA, 1246

Oct. 2017, pp. 288–301. 1247

[42] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning 1248

with neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2014, 1249

pp. 3104–3112. 1250

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, 1251

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, 1252

E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, 1253

L. Fang, J. Bai, and S. Chintala, ‘‘PyTorch: An imperative style, high- 1254

performance deep learning library,’’ in Advances in Neural Information 1255

Processing Systems. Red Hook, NY, USA: Curran Associates, 2019, 1256

pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015- 1257

pytorch-an-imperative-style-high-performance-deep-learning-library.pdf 1258

[44] spaCy. spaCy: Industrial-Strength Natural Language Processing in 1259

Python. Accessed: Nov. 22, 2021. [Online]. Available: https://spacy.io 1260

[45] ONNX Runtime Developers. ONNX Runtime. Accessed: Jan. 1, 2022. 1261

[Online]. Available: https://onnxruntime.ai/ 1262

[46] Intel Corporation. Intel OneAPI Math Kernel Library. Accessed: 1263

Nov. 22, 2021. [Online]. Available: https://www.intel.com/content/www/u 1264

s/en/developer/tools/oneapi/onemkl.html 1265

[47] Microsoft. Microsoft Linear Algebra Subprogram. Accessed: 1266

Jan. 1, 2022. [Online]. Available: https://github.com/microsoft/onnxrun 1267

time/tree/master/onnxruntime/core/mlas, 1268

[48] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, 1269

D. Terpstra, and S. Moore, ‘‘Measuring energy and power with PAPI,’’ 1270

in Proc. 41st Int. Conf. Parallel Process. Workshops, Pittsburgh, PA, USA, 1271

Sep. 2012, pp. 262–268. 1272

[49] NVIDIA Corporation. NVIDIA System Management Interface. Accessed: 1273

Nov. 22, 2021. [Online]. Available: https://developer.nvidia.com/nvidia- 1274

system-management-interface 1275

[50] K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and K. Goossens. 1276

DRAMPower: Open-Source DRAM Power & Energy Estimation Tool. 1277

Accessed: Nov. 22, 2021. [Online]. Available: http://www.drampower.info 1278

[51] M. Sung et al., ‘‘Gate-first high-K/metal gate DRAM technology for low 1279

power and high performance products,’’ in IEDM, Washington, DC, USA, 1280

Dec. 2015, p. 26. 1281

[52] M. M. Ghaffar, C. Sudarshan, C. Weis, M. Jung, and N. Wehn, ‘‘A low 1282

power in-DRAM architecture for quantized CNNs using fast Winograd 1283

convolutions,’’ in Proc. Int. Symp. Memory Syst., Washington, DC, USA, 1284

Sep. 2020, pp. 158–168. 1285

[53] C. Sudarshan, T. Soliman, C. De la Parra, C. Weis, L. Ecco, M. Jung, 1286

N. Wehn, and A. Guntoro, ‘‘A novel DRAM-based process-in-memory 1287

architecture and its implementation for CNNs,’’ in Proc. 26th Asia South 1288

Pacific Design Automat. Conf., Tokyo, Japan, Jan. 2021, pp. 35–42. 1289

[54] K. Sohn, W.-J. Yun, R. Oh, C.-S. Oh, S.-Y. Seo, M.-S. Park, D.-H. Shin, 1290

W.-C. Jung, S.-H. Shin, J.-M. Ryu, H.-S. Yu, J.-H. Jung, H. Lee, 1291

S.-Y. Kang, Y.-S. Sohn, J.-H. Choi, Y.-C. Bae, S.-J. Jang, and G. Jin, 1292

‘‘A 1.2 V 20 nm 307 GB/s HBM DRAM with at-speed wafer-level IO test 1293

scheme and adaptive refresh considering temperature distribution,’’ IEEE 1294

J. Solid-State Circuits, vol. 52, no. 1, pp. 250–260, Sep. 2016. 1295

YOONAH PAIK received the B.E. degree in 1296

electrical engineering and the Ph.D. degree in elec- 1297

trical and computer engineering from Korea Uni- 1298

versity, Seoul, South Korea, in 2015 and 2022, 1299

respectively. Currently, she is with the Samsung 1300

Advanced Institute of Technology. Her current 1301

research interests include microarchitecture and 1302

memory system design. 1303

VOLUME 10, 2022 93271

http://dx.doi.org/10.1145/3466752.3480103

Y. Paik et al.: Achieving the Performance of All-Bank In-DRAM PIM

CHANG HYUN KIM received the B.E. degree1304

in electrical engineering from Korea University,1305

Seoul, South Korea, in 2016, and he is currently1306

pursuing the integrated M.S. and Ph.D. degree1307

with the Compiler and Microarchitecture Labo-1308

ratory, Korea University. His research interests1309

include microarchitecture, memory designs, and1310

SoC design.1311

WON JUN LEE received the B.S. degree in elec-1312

trical engineering from Korea University, Jo Chi1313

Won, South Korea, in 2014. He is currently pur-1314

suing the integrated M.S. and Ph.D. degree with1315

the Compiler and Microarchitecture Laboratory,1316

Korea University. His research interests include1317

microarchitecture and memory system designs.1318

SEON WOOK KIM (Senior Member, IEEE) 1319

received the B.S. degree in electronics and com- 1320

puter engineering from Korea University, in 1988, 1321

the M.S. degree in electrical engineering from 1322

Ohio State University, in 1990, and the Ph.D. 1323

degree in electrical and computer engineering 1324

from Purdue University, in 2001. He was a Senior 1325

Researcher at the Agency for Defense Develop- 1326

ment, from 1990 to 1995 and a Staff Software 1327

Engineer at Inter/KSL, from 2001 to 2002. Cur- 1328

rently, he is a Professor with the School of Electrical and Computer Engineer- 1329

ing, Korea University. His research interests include compiler construction, 1330

microarchitecture, system optimization, and SoC design. He is a Senior 1331

Member of ACM. 1332

1333

93272 VOLUME 10, 2022

