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ABSTRACT Processing-in-Memory (PIM) has been actively studied to overcome the memory bottleneck by
placing computing units near or in memory, especially for efficiently processing low locality data-intensive
applications. We can categorize the in-DRAM PIMs depending on how many banks perform the PIM compu-
tation by one DRAM command: per-bank and all-bank. The per-bank PIM operates only one bank, delivering
low performance but preserving the standard DRAM interface and servicing non-PIM requests during PIM
execution. The all-bank PIM operates all banks, achieving high performance but accompanying design
issues like thermal and power consumption. We introduce the memory-computation decoupling execution
to achieve the ideal all-bank PIM performance while preserving the standard JEDEC DRAM interface,
i.e., performing the per-bank execution, thus easily adapted to commercial platforms. We divide the PIM
execution into two phases: memory and computation phases. At the memory phase, we read the bank-private
operands from a bank and store them in PIM engines’ registers bank-by-bank. At the computation phase,
we decouple the PIM engine from the memory array and broadcast a bank-shared operand using a standard
read/write command to make all banks perform the computation simultaneously, thus reaching the computing
throughput of the all-bank PIM. For extending the computation phase, i.e., maximizing all-bank execution
opportunity, we introduce a compiler analysis and code generation technique to identify the bank-private
and the bank-shared operands. We compared the performance of Level-2/3 BLAS, multi-batch LSTM-based
Seq2Seq model, and BERT on our decoupled PIM with commercial computing platforms. In Level-3 BLAS,
we achieved speedups of 75.8x, 1.2x, and 4.7 x compared to CPU, GPU, and the per-bank PIM and up to
91.4% of the ideal all-bank PIM performance. Furthermore, our decoupled PIM consumed less energy than
GPU and the per-bank PIM by 72.0% and 78.4%, but 7.4%, a little more than the ideal all-bank PIM.

INDEX TERMS Memory-computation decoupling, in-memory processing, standard memory interface, all-
bank execution.

I. INTRODUCTION

Emerging data-intensive applications such as natural lan-
guage processing deploy Recurrent Neural Networks (RNNs)
such as Long Short-Term Memory (LSTM) [1] and
Transformer-based models [2]. Their primary characteris-
tic is to process a large amount of data with a very
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low locality [3], [4], [5], [6]. For example, Bidirectional
Encoder Representations from Transformers (BERT) [7]
and Generative Pre-trained Transformer (GPT) [8], [9], the
transformer-based models for understanding and generating
human-like texts, process 110~335 million and up to billions
of parameters, being used only within one layer. Therefore,
the von Neumann architecture suffers from a severe data
transfer bottleneck from main memory in these workloads,
limiting the system performance [10], [11].
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FIGURE 1. Execution flows of the matrix-matrix multiplication. (a) A row
of MatA is shared by the columns of MatB. (b) A column of MatB is
shared by the rows of MatA.

Processing-in-Memory (PIM) has been proposed to alle-
viate the problem by placing the computing units in the
memory [3], [4], [5], [6], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21]. The in-bank PIM architecture, typically
based on DRAMs, places the PIM engines in the bank periph-
erals, but the space for the engine implementation is very con-
strained [3], [4], [5], [6], [12], [21]. Also, we should carefully
consider the engine operation’s power consumption since the
high-temperature results in increased unreliable cells, refresh
rates, and traffic throttling, leading to performance degrada-
tion [22], [23]. Therefore, the PIM engine consists of simple
logic, including Multiply-Accumulate (MAC) units and a few
registers. The engine fetches the operands only from its own
bank; if the operands are unavailable, we need to perform
explicit data copy from other banks, incurring a significant
overhead in performance.

We can easily perform the element-wise computations by
aligning their operands in the same bank since all the compu-
tations are independent. On the other hand, for Level-2 Basic
Linear Algebra Subprograms (BLAS) (i.e., vector-matrix
(VM) multiplication), we map each column of the matrix to
a bank (bank-private) and compute with the vector shared in
all banks (bank-shared). We call an operand used by only one
bank as a bank-private operand and an operand commonly
used by all banks as a bank-shared operand. Before the
computation, we should copy the shared vector to all banks.
The Level-3 BLAS (i.e., matrix-matrix (MM) multiplication)
is more complicated than VM: either a multiplicand row is
shared by multiplier columns or a multiplier column is shared
by multiplicand rows, as depicted in Figure 1. However,
most existing in-bank PIMs are designed for Level-2 BLAS,
so they execute Level-3 BLAS by repeating VM multiplica-
tions by the number of rows of the multiplicand [3], [4], [5],
(61, [12], [21].

The recent in-bank PIM can be categorized by whether
it targets per-bank execution [4], [21] or all-bank execu-
tion [3], [5], [6], [12] depending on how many banks one
DRAM command activates for the PIM execution. The
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per-bank execution triggers only one bank at a time, while
the all-bank execution invokes all or multiple banks. The
number of the commands required for a PIM kernel directly
determines the PIM performance. The memory requests for
the per-bank PIM execution are much higher than the all-
bank one, thus delivering much lower performance [4], [21].
The all-bank PIM achieves high computation throughput
by exploiting the bank-level computation parallelism and
using the full internal bandwidth. However, it accompanies
the following design difficulties and potential performance
degradation: 1) data alignment issue from its computation
granularity, 2) synchronization overhead for syncing the bank
states before starting the all-bank execution, 3) modifica-
tion of memory interface/controller, 4) implementation over-
head such as power consumption and thermal dissipation,
and 5) PIM mode switching which prevents the non-PIM
request service during PIM operations [3], [5], [6], [12],
[13]. Even though the per-bank PIM suffers the lower per-
formance, it preserves the standard DRAM interface and
supports non-PIM request service during the PIM execution
as a standard DRAM. Both per-bank and all-bank PIMs suffer
from replicating bank-shared operands to all banks, resulting
in multiple copies of the same data stored in different memory
addresses. Several PIMs provide a global/local buffer to avoid
the replication but incur significant overhead in size, much
worse, especially in the DRAM fabrication [3], [5], [6], [12].

For taking only advantages from both PIMs, this paper
introduces the memory-computation decoupling architecture
to achieve the ideal all-bank performance of in-DRAM PIM
with standard memory interface, i.e., the per-bank execu-
tion. Also, to maximize the decoupled execution performance,
we introduce a compiler analysis and code generation tech-
nique.

The decoupled architecture uses two PIM execution
phases: a memory phase for the per-bank memory opera-
tion and a computation phase for the all-bank computation.
At the memory phase, we read bank-private operands from
a memory array and store them to the bank’s PIM registers
bank-by-bank. At the computation phase, we decouple each
PIM engine datapath from its bank and broadcast bank-shared
operands read from one bank or written from a host to all
banks’ engines without operating all banks” memory arrays.
It allows us to compute the PIM engine in all banks in
parallel with operating only one bank of the memory array
and achieve the ideal performance of the all-bank execution
while preserving the standard DRAM interface and satisfy-
ing the standard power budget. In reality, only half of all
banks could perform concurrently due to power and ther-
mal issues [5], [6]; thus, our performance would be more
attractive to users than the all-bank execution in the real
world. Also, since we preserve the standard interface, we can
serve non-PIM requests during our computation phase, i.e.,
while performing the all-bank computation. As we operate
only one bank array at both phases and conform to the stan-
dard interface, we implement our architecture based on the
per-bank PIM [4].
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FIGURE 2. Ratio of the execution time for the matrix multiplication and
element-wise operations to the total execution in the DNN applications,
LSTM [1] and BERT [7].

Although there have been many studies about broadcasting
the same data to computing units to reduce memory opera-
tions [3], [6], [12], [13], [24], [25], [26], we are the first to
combine the broadcast with the decoupling of datapath from
amemory array for realizing the all-bank PIM execution. Our
PIM computation throughput is also decoupled from the inter-
nal bandwidth: The broadcast has the same effect of using the
full internal bandwidth on all-bank PIMs to provide operands
to all their engines at once. Therefore, our decoupled PIM’s
performance can become closer to the all-bank PIM when the
computation phase lasts longer; thus, to achieve the highest
computation throughput, we developed a compiler technique
to identify the bank-private and the bank-shared operands
and find out a tiling factor for maximizing the bank-private
operands’ reuse and the Arithmetic Logic Unit (ALU) uti-
lization.

There is great potential to apply our decoupled approach to
recent applications. Figure 2 shows that the Deep Neural Net-
work (DNN) applications with batching spent about 67.1% on
average of the total execution time for the matrix-matrix mul-
tiplication to involve bank-private and bank-shared operands
as shown in Figure 1, giving the significant opportunity
of the two-phase execution of our decoupled PIM. On the
other hand, the element-wise operations consist of only
bank-private operands, disallowing our computation phase.
However, since its computation ratio was only 4.2% of the
total execution time on average, the disadvantage has little
effect on the overall execution time. Compared to our decou-
pled PIM, the all-bank PIM can achieve the performance
benefit when all banks compute different data only, i.e.,
bank-private operands. Interestingly, the opportunity is min-
imal in the PIM-targeted DNN applications, and therefore,
we would conclude that the all-bank PIM spends unnecessary
computation resources.

We developed the PIM-emulated Field Programmable Gate
Array (FPGA) platform, evaluated its performance by run-
ning microbenchmarks of Level-2/3 BLAS, a multi-batch
LSTM-based Seq2Seq model, and BERT, and compared it to
AMD Ryzen-5 CPU with OpenBLAS [27] and Nvidia Titan
Xp GPU with cuBLAS [28]. Compared to CPU and GPU,

93258

we achieved speedups of 75.8x and 1.2x in Level-3 BLAS,
8.4x and 1.5x in LSTM-based Seq2Seq, and 3.1x and
15.5x in BERT, respectively. In addition, we outperformed
the per-bank PIM by 4.7, 4.4, and 1.4 x and reached up to
91.3%, 97.8%, and 86.6% of the ideal all-bank PIM perfor-
mance in Level-3 BLAS, LSTM-based Seq2Seq, and BERT,
respectively. The energy consumption of our decoupled PIM
was 72.0% and 78.4% lower in Level-3 BLAS, 80.8% and
77.0% lower in LSTM-based Seq2Seq, and 98.3% and 33.5%
lower in BERT than GPU and the per-bank PIM. Also, our
PIM consumed only 7.4%, 0.3%, and 3.1% more energy than
the ideal all-bank PIM in the applications.

Besides our remarkable performance with the standard
memory interface, it should be noted that 1) since we use the
standard JEDEC DRAM interface [29], including the power
budget, we can easily apply our approach to commercial
computing platforms. 2) Our approach allows the memory
requests from non-PIM applications to be serviced during
even all-bank PIM execution, thus not impacting any of
their execution behavior running on a host [4], [21], [30].
3) Finally, when we modeled the ideal all-bank PIM for the
performance comparison, we assumed it could simultane-
ously compute all banks. In reality, only half of all banks
could perform concurrently; thus, our approach would out-
perform currently available all-bank PIMs [5], [6].

The rest of the paper is organized as follows: Section II
introduces existing in-bank PIMs and our baseline per-
bank PIM [4] for this work. Section III proposes the
memory-computation architecture and its compiler tech-
niques by applying our work to Level-3 BLAS as an exam-
ple. Section IV evaluates the performance, and Section V
concludes the paper.

Il. BACKGROUND AND RELATED WORK

A. PER-BANK VS. ALL-BANK PIMs

The PIM architecture places the computing unit inside mem-
ory devices to use the full internal memory bandwidth. The
architecture can be classified by where the computation is
performed; in-cell, i.e., computing on memory cells, and in-
bank, i.e., on bank peripherals.

The in-cell PIM architecture utilizes the analog proper-
ties of Non-Volatile Memory (NVM) cells such as ReRAM
and MRAM to use them as both storage and computing
devices [16], [17],[18], [20], [31]. However, the analog-based
computation drops accuracy due to the limited precision
and the error vulnerability in analog-to-digital conversion.
Analog-to-Digital (ADC) and Digital-to-Analog Converter
(DAC) also result in a large area overhead [3], [32]. For
alleviating such problems, some in-cell PIM architectures
proposed arithmetic computation in NVM and DRAM, based
on the logic operations implemented upon their analog char-
acteristics such as resistance of ReRAM and charge sharing
of DRAM [14], [15], [33], [34], [35], [36], [37], [38], [39],
[40], [41].
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FIGURE 3. The per-bank Silent-PIM [4], the baseline architecture for our work. The graded components are added for our decoupled

execution.

This paper focuses on in-bank DRAM-based PIM architec-
tures that utilize the digital arithmetic computing units placed
in bank peripherals and can be used as the main memory.
The existing in-bank PIM architectures can be categorized by
the execution granularity of a PIM operation: per-bank and
all-bank PIMs. One DRAM request enables only one bank’s
PIM engine in the per-bank PIM [4], [21] and all banks’
engines in the all-bank PIM [3], [5], [6], [12], [13]. Silent-
PIM [4], a representative work of the per-bank PIM, preserves
the standard memory behaviors and timing constraints of
DRAM under the general supply voltage, complying with the
power budget of a standard DRAM. Each bank is scheduled
independently using the standard memory request, and the
memory requests from non-PIM applications can also be
serviced while executing a PIM kernel [30]. However, one
DRAM command triggers a PIM operation with one burst
of data per bank, resulting in a large number of memory
requests to execute a kernel and lower performance than
all-bank execution. Also, as only one bank can perform the
PIM operation at a time, it wastes the opportunity for the
bank-level computation parallelism.

The all-bank execution PIM is a compute-centric archi-
tecture that provides the highest computation throughput by
leveraging the bank-level computation parallelism and fully
utilizes the DRAM’s internal bandwidth [3], [5], [6], [12],
[13]. One DRAM request enables all or multiple banks to
read source operands from DRAM cells, store the results to
DRAM, or concurrently perform PIM operations. The bank-
shared operands must be read from all banks by one read
request, so the operands should be available and carefully
aligned in all the banks before the execution [5]. Also, the
simultaneously enabled bank execution imposes a power bur-
den, resulting in exceeding the standard power budget and
worsening the thermal problem [22], [23]. Therefore, the
existing all-bank architectures support only a part of the banks
to operate at once, sacrificing the bank-level computation
parallelism to deal with the problem. For example, in [6]
and [12], only four banks per channel perform the PIM
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operations concurrently. In [5], the PIM unit is shared among
two banks, thus allowing only half of the banks to perform
at once. For supporting the lockstep-style behavior of all
banks, [3], [6], [12], [13] requires a customized memory con-
troller violating the JEDEC standard, and [5], [12] requires
the mode switching before and after the PIM operations.
Besides, memory requests of non-PIM applications cannot be
serviced during PIM operations [3], [5], [6], [12], [30].

B. SILENT-PIM: OUR BASELINE ARCHITECTURE

Figure 3 illustrates the architecture of a representative
per-bank PIM named Silent-PIM [4], based on which
we implemented our memory-computation decoupled
architecture.

Each bank has its memory cell array and a PIM engine. The
memory banks receive Command, Address, and Data sig-
nals from standard memory requests as conventional DRAM
devices do and accept the PIM signals generated from the
PIM Interface Unit (IU). Before executing a PIM kernel,
a programmer stores the PIM operands’ start addresses of
the uncacheable physical pages and the engine configuration
information in the control registers in PIM IU. The PIM
Request Identification Unit (RIU) compares the input address
with the operand addresses stored in the control registers
to determine if the incoming memory request is the PIM
command. If the addresses are matched, the PIM valid
signal is generated and delivered to a target bank with the
other signals for providing data from the bank to its PIM
engine.

Silent-PIM has the 4-stage pipelined datapath for bfloat16,
as shown in Figure 4, performing all the computations with-
out violating the DRAM timing of the data burst, i.e., in
4 cycles. The first stage fetches the source operands into two
vector registers, vecA and vecB. A switch (PimS) lies in
between the global data bus and the register file bus interface
of the engine. The PIM valid signal enables the switch to
connect the global data bus to the source or the destination
register for the PIM command or disconnected for typical
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memory requests from non-PIM applications. That is, if RIU
recognizes the in-flight read request to be the source of the
PIM operand, the unit turns on the bank’s P imS switch; thus,
the data on the global data bus is stored in either vecA or
vecB. The data is delivered through a 4-cycle burst, and
vecB stores the whole burst data (i.e., 128-bit x 4) of the
request. On the other hand, vecA only stores 1-cycle burst
(i.e., 128-bit x 1) from the whole burst cycle-by-cycle since
we could implement a small size of vecA due to the available
space constraint in DRAM for the PIM engine design.

The second and the third stages consist of 2-stage pipelined
8-way MAC unit array that performs the PIM arithmetic
operations - MAC/ADD/SUB/MUL - according to the con-
figuration information in the control registers of PIM IU.
The operation is performed whenever data is stored to vecA.
After executing the operation, the result of the operation is
stored to vACC. The register vACC consists of 22-bit regis-
ters for each element, resulting in 176-bit per 1-cycle burst,
176-bit x 4 for the whole burst data. Saving the result in
22-bit improves the accuracy by holding more fraction bits.
In the last stage, the results in vACC are stored to the bank by a
standard write request after the bfloat16 normalization when
the incoming address matches the address of the destination
operand in the control registers of PIM IU.

Ill. MEMORY-COMPUTATION DECOUPLING

This section introduces our memory-computation decoupled
PIM architecture and its compiler analysis and code genera-
tion technique.

We perform the PIM execution using two phases: a mem-
ory phase and a computation phase. At the memory phase,
we fetch the bank-private operands from memory arrays to
PIM engines’ registers in a per-bank manner. On the other
hand, all banks’ PIM engines execute the computation phase
without accessing their memory array but using the broadcast
bank-shared operand from one bank or a host. Since both
phases operate the memory array of only one bank, our
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decoupled PIM preserves the standard DRAM interface, i.e.,
the standard DRAM power budget, commands, timings, and
SO on.

The decoupled execution outperforms the per-bank PIM in
speedup and energy consumption while slightly increasing
the power consumption since the PIM engines of all banks
operate simultaneously in the computation phase. On the
other hand, the proposed decoupled PIM shows less perfor-
mance than the all-bank PIM in the memory phase. How-
ever, the total power of the decoupled PIM remains within
the standard power budget, unlike the all-bank PIM. Conse-
quently, the proposed decoupled PIM architecture becomes
more attractive and acceptable than the prior all-bank
PIMs when there is a higher opportunity for broadcast in
applications.

A. MODIFYING THE PER-BANK PIM HARDWARE

The memory phase execution is the same as the per-bank
execution of Silent-PIM, whose memory request turns on/off
PimS and DataS switches of only a target bank. How-
ever, for supporting the computation phase, i.e., broadcasting
bank-shared data to all banks’ engines, we added one attribute
to source operands and modified the decoder for the PimS
switch from Silent-PIM, marked in grey in Figs. 3 and 4.

For the PIM engine to identify bank-shared data during
the PIM execution, we added the broadcast attribute (BC)
to source operands in the control registers of the PIM IU.
A programmer provides the address of the broadcast target
(i.e., the bank-shared operand) with setting the associated
BC. The matching of the incoming request’s address with
the broadcast target while ignoring their bank addresses gen-
erates the BC match signal to notify the broadcast to all
banks’ engines. Therefore, we modified the decoder for the
PimS switch of each bank by ORing PIM valid and BC
match signals. We turn on all the PimS switches so that
all banks’ engines receive the broadcast (bank-shared) data
from the global data bus and store them in registers. The
broadcast data can either be read from a bank or provided
outside DRAM, such as a host’s write request. A standard
memory request performs the data broadcast.

Suppose the BC attribute is unset and the address of the
incoming request is matched with the source operand address
while considering their bank addresses. In that case, the PIM
valid signal is generated and delivered to only the target
bank, i.e., performing as per-bank. All the memory requests
turn on their target banks’ DatasS switch for accessing their
data array as usual, and the PIM memory request among them
also controls the P imS switches.

Figure 5 shows an example of how to control the switches
at the decoupled execution phases. We use vecB for
bank-private operands and vecA for bank-shared operands.
At the memory phase, we turn on the DataS and PimS
switches of the target bank to read the bank-private operand
from its data array and store the operand to vecB bank-by-
bank. On the other hand, we turn on the Datas of only one
bank (Bank 0) and all the PimS switches at the computation
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phase and store the broadcast data in vecA’s, thus triggering
the PIM computation for every cycle within a burst. The
computation phase adheres to the standard memory power
as it only operates at most one bank of memory array while
using the PIM engines of all banks in parallel. We discuss
the power consumption of memory arrays and PIM engines
in Section IV-B4. Since vecA only stores a 1-cycle burst of
a request (i.e., }T of a whole burst), the broadcast data is not
reused within a bank. However, broadcasting the data has the
same effect as reusing it across all banks since it initiates
all-bank PIM execution by accessing only one memory array
bank.

B. DETERMINING BANK-PRIVATE AND BANK-SHARED
OPERANDS

Determining which operand to be bank-private or bank-
shared directly impacts the performance. The computation
phase performs the all-bank execution by broadcasting the
bank-shared operand, thus taking full advantage of the
bank-level computational parallelism, i.e., the same as the all-
bank execution. Thus, the longer the computation phase, the
higher the performance.

For maximizing the opportunity of the all-bank execu-
tion by extending the computation phase, it is essential to
select a high reusable operand from the code as the bank-
private. Otherwise, the computation phase cannot continue
whenever requiring a new bank-private operand. Therefore,
the bank-private operands stored in vecB should be reused
as much as the program allows. On the other hand, the
highly shared and low reusable data should be recognized as
bank-shared to be broadcast. The reusability degree of the
broadcast bank-shared operand is the same as the number
of banks. Our compiler uses the conventional iteration space
analysis and a code tiling from our cost model for identifying
the bank-private and the bank-shared operands.

Consider the Level-3 BLAS code and its dependence table
in Figure 6(a). The values 0 and 1 in the table represent
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FIGURE 6. Dependence of matrices to loop dimensions. (a) Level-3 BLAS
code and its dependence of matrices to dimensions. (b) Convolution code
and its dependence of matrices to dimensions.

independence and dependence on each dimension of the
matrices, respectively. For example, MatA and MatB are
independent of the j and the i dimensions, respectively. Each
matrix is independent of one of the three dimensions and
reused at its lower iteration space. That is, MatA is reused
(i.e., shared) within the j dimension, and MarB is shared
within the i dimension. We select MatB, which is reused in
a larger iteration space, as a bank-private operand since we
can reuse the matrix maximally within the i dimension, i.e.,
repeatedly using K x J elements. Also, we choose MatA,
which is reused in a smaller iteration space, as a bank-shared
operand by considering the operand reuse across the banks
for the j dimension. If the i and j dimensions are interchanged,
MatB becomes the bank-shared since the i dimension will be
the lower dimension, and MatA turns into the bank-private
operand.

We can consider a convolution algorithm in Figure 6(b) in
the same way and determine inp as bank-shared and wgt as
bank-private operands.

C. MAKING THE COMPUTATION PHASE LONGER:
REGISTER TILING

We fetch the bank-private operands and store them into the
PIM engine registers at the memory phase in a per-bank
manner. The higher the reuse of bank-private operands in the
registers, the longer the computation phase, and the higher
the performance due to the decoupled all-bank execution.
For maximizing the reusability, we apply the loop tiling and
develop a cost model to derive a tiling factor for the code
generation. Our compiler technique is different from the con-
ventional compiler’s approach to employ the tiling for cache
hierarchy. Our PIM does not include a cache, so we match
the tiling to two PIM resources: registers for maximizing the
bank-private operand reuse and an ALU width for maximiz-
ing the computation utilization.

1) TILING WITH COST MODEL

Figure 7 shows a loop tiled code of Level-3 BLAS. The ranges
of the dimensions i, j, and k are I, J, and K, and the tiling
factors of each dimension are p, r, and ¢, respectively. As
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1 bfloatl6 MatA[I][K], MatB[K][J], Acc[I][T];
2

3 for(int io = 0; io < I; io += p)

4 for(int jo = 0; jo < J; jo 4= r){

5 Load_tile_Acc();

6 for(int ko = 0; ko < K; ko += q){

7 Load_tile_MatB () ;

8 for(int ii = 0; ii < p; i1 += 1){

9 for(int ji = 0; ji < r; ji += 1)
10 for(int ki = 0; ki < q; ki += 1)
11 Acclio+ii][jo+ji] +=

12 MatA[io+ii J[ko+ki] =

13 MatB [ko+ki J[ jo+ji ];
14 }

15 }

16 Store_tile_Acc () ;

17 }

FIGURE 7. Loop tiled code of Level-3 BLAS.

Acclio+ii][jo+ji] is independent of the dimension ko, its tiles
are loaded and stored in the jo dimension (Lines 5 and 15).
The tiles of MatB are loaded in the ko dimension (Line 7).
To reuse MatB and Acc, the tile sizes of MatB and Acc
should not exceed the register vecB and vAcc, respectively,
as represented by Equation (1).

TileSizepap = q X v < Sizeyecn

TileSizeace = p X ¥ < Sizeyace (H

From the decision that MatA is to be bank-shared and
MatB is to be the bank-private, the load/store cost of the tiled
code is defined by Equations (2), (3), and (4) in a unit of a
matrix element. Minimizing the total cost, i.e., the sum of
all the equations, implies maximizing the reusability, thus
maximizing the all-bank execution opportunity.

Since broadcasting the MatA has the same effect as reusing
it for all banks by performing the all-bank PIM execution
while accessing only one memory array, the cost of the
bank-shared operand MatA becomes the number of total load
instructions divided by the number of banks. Since the load
instruction is executed in the inner-most loop, its total number
is I x J x K. We can measure the reusability by the cost
of the bank-private operand MatB, i.e., the number of load
instructions for the operand divided by the number of reuses
of an element. Since an element of MatB is reused in the i
dimension for p times within the intra-tile, the number of
reuses is p. Each tile of Acc is loaded and stored in the jo
dimension. Then, the cost is calculated by multiplying the
tile size and the number of the tile load and stores. From
Equations (1)~(4) where Sizeyecp = Sizeyace = 32 and the
number of banks is 16, we acquire the optimal tiling factor as
®,q,r) = (32,1, 1), which minimizes the total cost.

#of LD

# of banks
I J K 1
— X=X —XPpXFX{qg|X———
p r q # of banks
I xJxK

- 2
# of banks @

Costyaa =

93262
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1 J
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=1IxJx2 4

When the i and j dimensions are interchanged, MatA and
MatB become the bank-private and the bank-shared, respec-
tively. In that case, their costs become Costyya = MTXK
and Costyag = %, resulting in the optimal tiling factor

of (p,q,r)=(1,1,32).

2) ALL-BANK EXECUTION TILE BY TILE

We found an optimal tiling factorof (p =32,g=1,r = 1)
to maximize the all-bank execution opportunity by reusing
a bank-private operand as much as possible, i.e., avoiding
frequent reloading of the bank-private operand. Therefore,
the optimal tiling factor prefers to perform (p x g) x (g xr) =
(Ppxr)ie,32x1)x(1x1)=32x1).

Both tile sizes of MatA and Acc are 32 x 1, and that of
MatB is 1 x 1. However, since the DRAM access granularity
is 64B (i.e., 32 elements), we regard 32 elements as a tile for
MatB for one bank; thus, the optimal tiling factor becomes
(32, 32, 1). Also, we concurrently execute the 16 banks by
the broadcast in the j dimension; thus, the optimal tiling
factor finally becomes (32, 32, 16). Therefore, we store the
interleaved 32 (= ¢) columns of MatB and Acc across 16
(= r) banks and broadcast 32 (= p) elements of MatA to
all banks 32 (= g) times. We call this a register-sized window
in the rest of the paper.

Figure 8(a) illustrates the register-sized window matrix
multiplication at bank 0, i.e., (32 x 32) x (32 x 16), and
Figure 8(b) shows the timeline of DRAM commands execut-
ing the multiplication. For the timeline, we assume that all
matrices are stored in the same row of a DRAM so that only
one activation is required per bank. Also, standard memory
requests perform all reads, writes, and broadcasts with the
PIM computation. Each bank i multiplies pairs of (ao:31,0,
bo.i), (ao:31,1, b1,), - - -, (@0:31,31, b31,;) and accumulates the
multiplication results one-by-one to calculate cg:31 ;-

The execution performs the following phases:

e Memory phase for fetching bank-private operands:
Each bank reads 64-byte (a burst size) columns of the
bank-private operand MatB from its memory cell array
and stores them to vecB.

o Computation phase for all-bank execution: We reuse
the MatB elements in vecB and broadcast a column of
MatA one-by-one for the all-bank execution. We repeat
32 times during 7i where i = 0, 1, ..., 31 for broad-
casting ao:31,;. At T0, the first element of vecB (b
where j indicates the bank number) is multiplied with
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FIGURE 8. (a) Matrix multiplication for bank 0 and (b) DRAM command timeline of the (32 x 32) x (32 x 16) Level-3 BLAS, i.e., in one register-sized

window. The timing scales are simplified for a clear explanation.
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FIGURE 9. Optimized tiles of the (8 x 32) x (32 x 16) Level-3 BLAS.

ap:31,0 to generate the partial sum of co.31,;. The DRAM
burst broadcasts 64-byte ap:31,; and stores its 16 bytes
per cycle to veca, i.e., a:7,i» as:15,i» @16:23,i> and a24:31,;
in order. At every cycle, the storing triggers MAC oper-
ations; 8 ALUs multiply vecA with by ; and produce
a partial sum of cq.31,; through 4 cycles; co.7,, 815,
€16:23,j> and c24:31,j. The element by ; is reused for the
multiplication with ap.31,0, 1.., 32 times. After repeating
the operations from 70 to 731, cp:31,; is available in
vAcc of each bank. We return to the previous memory
phase whenever requiring a new bank-private operand
MatB, i.e., in the case of K > 32.

o Memory phase for storing the results into a memory:
Each bank stores a 64-byte vAcc to the memory cell
array.

D. MAXIMIZING THE ALU UTILIZATION: ALU-WIDTH
TILING

When I of MatA is smaller than 32, ALUs become underuti-
lized, resulting in a waste of time and power. For example,
when I = 8, MAC operations only with ao.7 ; are performed
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during 7i where i = 0, 1, ..., 31 of Figure 8(b), thus wasting
3 cycles of every burst. Therefore, we further optimize the
PIM execution by employing the second-level tiling to fit
an ALU width. We tile the matrix multiplication by (32 x
32) x (32 x 16) in the first step, as described in the previous
subsection, and then tile each (32 x 32) tile of MatA by the
ALU-width size, 8.

Figure 9 depicts the optimized tiles processed in bank O.
Our 8-way ALUs process 8 elements of MatA simultaneously.
Therefore, we provide 8 x 4-sized tiles (ao.7,4xi:4xi+3) of
MatA through T0 to T7. Each burst calculates 8 partial sums
instead of 32. For example, at 70, b3, is multiplied with
ap:7,03 to generate the partial sum of cp.7,0; (20.7,0, b0.0),
(a0:7,1, b1,0), (ao:7,2, b2,0) and (ao7,3, b3,0) at each cycle.
In this way, when I = 8, we read MarA 8 times to finish
the task instead of 32 times.

E. CORRECTNESS OF THE PIM COMPUTATION

To guarantee the correctness of the PIM computation regard-
ing Figure 8, the following conditions should be satisfied.
1) Each phase should start after the previous phase is finished,
and 2) at the computation phase, a PIM engine should cor-
rectly determine which element of vecB is multiplied with
the in-flight broadcast data.

When each phase is not separated, e.g., the computation
phase starts before finishing the memory phase, some banks
start the PIM computation with its vecB filled with garbage
or empty, thus violating the correctness. We prevent such
situations by offloading the PIM requests using Direct Mem-
ory Access (DMA). Since our PIM architecture conforms to
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the standard DRAM interface, we offload the PIM requests
using a conventional DMA engine. Each DMA transaction
invokes each phase, and the DMA engine requests the next
transaction only after the previous transaction is finished.
Therefore, we ensure that each phase starts after the earlier
phase is completed.

However, the memory requests within a DMA transaction
can be reordered by the memory controller scheduling. The
scheduling does not affect the correctness at the memory
phase since each bank receives only one request to fill vecB
and filling vecB of a bank is independent of the other
banks. On the other hand, at the computation phase, a PIM
engine should correctly determine which element of vecB
to be multiplied with the in-flight broadcast data despite
the scheduling. For example in Figure 8(b), when the mem-
ory controller broadcasts the sixteenth column ag.3;1,16 at
T0, each bank should multiply the sixteenth element b ;
with the broadcast data, where j indicates the bank number.
That is, the column number of MatA becomes the vecB
index.

Therefore, we determine the vecB index of the ALU
input by using the physical address of the in-flight broadcast
data. We assume that the columns of MatA are stored in a
contiguous address of 2KB where Sizeprga = 32 x32%x2B =
2KB. As each column size is the DRAM access granularity
64B (32 elements) occupying the 6-bit LSB of the physical
address PApz44[5:0], the column number is determined by
PApa:4[10:6]. Therefore, we determine the vecB index by
PAp4:4[10:6] of the in-flight broadcast data and extend P IM
valid to include the information. Consequently, we guar-
antee the correctness of the PIM computation despite the
memory controller scheduling.

F. NON-PIM REQUEST SERVICE DURING THE
COMPUTATION PHASE
Our decoupled PIM adopts the standard memory request for
PIM operations, so a memory controller does not differentiate
between PIM and non-PIM memory requests and schedules
them together. As shown in Figure 8(b), we can service
non-PIM requests from other processes in the middle of the
computation phase since all the DatasS and PimS switches
are turned off at the end of every RD/WR command.

The figure shows a situation where a read request for bank
1 is serviced during the computation phase. Right after 70,
a memory controller activates the requested row in bank 1.
For the PIM computation at 7’1, bank 0’s Data$S and all
banks’ PimS are turned on so that the bank-shared operand is
delivered to all PIM engines. At the end of T'1, all the switches
associated with the previous PIM request are turned off, and
only the Dat aS switch of bank 1 is turned on for the non-PIM
read. Since all PimS are turned off, any non-PIM memory
operation does not corrupt the PIM engine states, and the
engines continue the PIM operation whenever the next PIM
request arrives. Any requests to other banks, including bank 0,
can be handled in the same way by a conventional memory
controller.
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FIGURE 10. Overall architecture of the experimental platform supporting
PIM emulation [4].

IV. PERFORMANCE EVALUATION

A. EXPERIMENTAL ENVIRONMENT

Figure 10 illustrates our experimental platform for the PIM
emulation using an FPGA board (Xilinx Virtex UltraScale
board XCVU190). The platform is developed based on Silent-
PIM [4]. We implemented the software layers on the host
platform. The FPGA board is connected to the host platform
through PCle. The two DDR4 [29] placed on the host plat-
form and the FPGA compose the OS-managed main memory.
Since we used the FPGA DDR4 for PIM, we configured
it uncacheable. The memory controller (MC) of the FPGA
was regarded to be equivalent to the host memory controller.
We verified all operations at the system level.

Since our PIM architecture complies with the standard
DRAM interface, we did not modify the Xilinx DDR4 mem-
ory controller IP, and a conventional DMA invoked the PIM
requests to the FPGA-based PIM [4]. The number of banks
in a PIM device is 16, and each bank has 8-way MAC units.
As discussed in Section II, the data is fetched by 128-bit x
4 cycles. The proposed architecture can be considered as
one die of 3D-stacked memory. When the memory controller
captures a PIM request by scanning the requested address, the
PIM device module placed between the memory controller
and the DRAM emulates the DRAM access, broadcast, and
PIM operations while obeying the DDR4 timings mounted on
the FPGA.

While the host system memory controller operated
at 1,200MHz, the Xilinx memory controller operated
at 156.25MHz. The DRAM execution time is deter-
mined by the timing constraints (e.g., tCL-tRCD-tRP-tRAS:
17-17-17-39 tCK). We adjusted the timing constraints of the
Xilinx memory controller equal to the host memory controller
in cycles to make the execution time directly proportional
to the operating frequency [4]. Therefore, we estimated our
FPGA-based PIM’s performance by multiplying the execu-
tion time with the frequency difference.

Also, to estimate the performance of the ideal all-bank
PIM, we modified the Xilinx memory controller to simulate
the all-bank execution behavior (i.e., one command operates
all banks at once). We assumed that all banks operate by one
DRAM command; thus, we named “ideal”.

We ran microbenchmarks of Level-2/3 BLAS, a multi-
batch LSTM-based Seq2Seq model [42], and BERT [7] on
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FIGURE 11. The number of memory requests in PIMs: PIM_PB, PIM_AB,
and our decoupled PIM at (/ x 512) x (512 x 2048) Level-2/3 BLAS.

CPU, GPU, and the PIM-emulated FPGA. We used AMD
Ryzen 7 1700 (3,000MHz) for CPU and NVIDIA TITAN
Xp (1,582MHz) for GPU. We used OpenBLAS [27] on
CPU and cuBLAS [28] on GPU for the BLAS algorithms.
We executed the inference of the LSTM-based Seq2Seq
model on PyTorch v1.5.0 [43] using de_core_news_sm
and en_core_web_sm language models from Spacy
v2.3.0 [44]. We ran the BERT model on ONNX Runtime
v1.6.0 [45] with MKL [46] and MLAS [47] instead of Open-
BLAS unsupported by ONNX Runtime. We determined the
matrix sizes of the BLAS algorithms to (I x 512) x (512 x
2048) based on the matrix sizes used in the Seq2Seq model.

We compared the performance of our decoupled PIM using
the 8 x 4 tile for MatA to CPU serial execution (CPU_S), CPU
parallel execution using OpenMP (CPU_P), GPU, per-bank
PIM (PIM_PB), and ideal all-bank PIM (PIM_AB). OpenMP
utilizes 16 logical CPU cores, the same as the number of
banks of our PIM device. We also analyzed the performance
impact of the ALU-width tiling on our decoupled PIM in
Section IV-D.

Both PIM_PB and PIM_AB require MatA to be copied
to all banks. The average time for the copy accounted for
11.2% of the total execution time. However, we excluded
the overhead and measured only the PIM execution time
of PIM_PB and PIM_AB since data may be in cache or
memory in PIM’s execution environment, so including the
copy overhead could lead the reader to erroneous conclusions.
That is, we evaluated the performance of our decoupled PIM
conservatively.

B. LEVEL-2/3 BLAS
1) MEMORY REQUESTS
The number of memory requests in the PIM execution deter-
mines the execution time because the requests trigger the
computation and the operand load/store. Therefore, we com-
pare them using Level-2/3 BLAS, (I x 512) x (512 x 2048),
and Figure 11 shows the result.

PIM_PB PIM fully reuses MatA, i.e., reads only once, but
the decoupled PIM reads MatA by J /#ofbanks times; thus,
the memory requests of RD A of PIM_PB are lower than
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those of our decoupled PIM. Both PIM_PB and PIM_AB
repeat the VM multiplications for / times, resulting in the
proportional increase in the memory requests of RD B. The
decoupled PIM maximizes the reuse of RD B, resulting in
the RD B requests much lower than PIM_PB and even lower
than PIM_AB. PIM_AB operates 16 banks by one command,
and thus the memory requests for RD A and RD B are 1]—6 of
PIM_PB.

Although we applied the ALU-width tiling, we underuti-
lize the 8-way ALUs for I < 8§, thus the number of memory
requests on our PIM for/ < 8isthe same as/ = 8. Therefore,
the memory requests increase at every I multiple of 8. When
I is a multiple of 32, the proposed PIM requires only 9.3% of
memory requests of PIM_PB due to maximizing the reuse
of the bank-private operands and sharing the bank-shared
operands by broadcast.

The number of RD A requests on our approach is the same
as RD B on PIM_AB when 7 is a multiple of 32 since both the
requests trigger the all-bank computations and their number
of computations are the same. However, as our decoupled
PIM uses the memory phase for the bank-private operands
(i.e., RD B) by per-bank, it needs 48% more total memory
requests than PIM_AB.

2) EXECUTION TIME AND SPEEDUP

Figure 12 illustrates the execution time in a log scale and
the speedup normalized to CPU_S running Level-2/3 BLAS
algorithms on each platform by varying /. The performance
was measured assuming that all the matrices are stored in
main memory, i.e., not yet brought into any cache at the start.

The execution time of CPU_S and CPU_P grew slowly
when I was small because of the data reuse in a cache, but
they became proportional to [ as the data size increased. The
speedup of CPU_P using 16 logical cores increased slightly
from4.5x at] =1 to 5.8 x at ] = 32 and slightly degraded
as I increases due to cache misses. GPU spent over 90%
of the time for copying the input/output data to/from the
device; therefore, its execution time was longer than CPU_P
when I < 8. However, the execution time hardly increased
thanks to the massive parallelism supported by its numerous
stream multiprocessors, and its speedup continuously grew as
I increased, up to 65.9x.

Since it was observed in [4] that using DMA as
the PIM offloading engine and applying both DMA and
DRAM-friendly data layout for PIM operands improves
performance, we adopted the same approach for PIM_PB,
PIM_AB, and our decoupled PIM. Such an approach allowed
the performance of all PIM platforms to outperform CPU in
all cases despite the relatively high data reuse in batching.
PIM_PB and PIM_AB repeat the VM multiplication for /
times without exploiting the reuse opportunities, and their
number of memory requests determines the execution time,
as discussed in the previous section. They demonstrated the
highest speedup of 37.1x and 169.1x at I = 1 and an
almost constant speedup of 16x and 86x due to CPU_S’s
cache effect at larger I’s. Although PIM_AB demonstrates
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CPU_S running Level-2/3 BLAS.

16 x computation parallelism than PIM_PB, they showed less
speedup difference due to their PIM offloading overhead. The
reason was that about 10% of PIM_PB’s execution time was
spent on the DMA interface overhead to offload the PIM
execution; therefore, only the rest was accelerated by the all-
bank execution.

Our decoupled PIM effectively utilizes the highly reusable
data and broadcasts the shared data across banks through
memory-computation decoupling and eventually realizes the
all-bank execution of PIM. As discussed in the previous
section, we underutilize the 8-way ALUs for I < 8; thus, the
execution time of / < 8 was the same as / = 8 and increased
at every I multiple of 8. The speedup at I/ < 8 increased
as I grows since the execution time of CPU_S increased but
showed lower speedup than PIM_PB because of the under-
utilization. At [ 8 and / 16, we fully utilized the
ALU width but poorly reused the bank-private operands. At [
multiple of 32, we reached the highest performance over 75 x,
as we fully utilized the ALUs and reused the bank-private
operands at best.

Our PIM performance outperformed PIM_PB by 4.7 x and
reached up to 91.4% of PIM_AB performance. It should be
noticed that the conventional all-bank PIMs [5], [6], [12]
would provide about half of the modeled PIM_AB perfor-
mance since they activate up to half of all banks due to the
power and thermal issues. In all the cases, GPU performed
worse than our decoupled PIM since it spent a substantial
time copying the data to/from the device, whereas ours did
not require any memory copies.
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FIGURE 12. (a) The execution time (in a log scale) and (b) the speedup of CPU_P, GPU, PIM_PB, PIM_AB, and our decoupled PIM with respect to

100%
80%
60%
40%
20%

0%

100%
80%
60%
40%
20%

0%

AAA LY

PMPB ————m
PIM AB —————
Ours I
PMPB ——m
PIM AB ————m
Ours T I
PMPB ——m
PIM AB ————m
Ours — T
Ours — T
Eiuvuuu L LY

Ours xRy
PIM_PB IRSRRRIRRNRY
Ours IR RRERY
PIM PB ISISSARRRRRRY
PIM AB IRISSIINNRNNNRNN]
Ours T IS RN
PIM PB ISR SRRNRRNNRY
PIM AB IRIIRIRNRRRNNRN
Ours —— TERRRRNR]

m
A
g
~

PIM AB ———————m
PIM_PB TASIIIRRNRNN]

o) m
< <
1 1 17 17 I I I I
= 2z
[ [
=16 1=32 =64 I=128 =16 1=32 I=64 I=128
OHit ®MMiss BConflict OACT BPRE GRD mWR OREF
(@) (b)
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decoupled PIM executing Level-3 BLAS, (I x 512) x (512 x 2048).

3) DRAM BEHAVIOR

Figure 13 illustrates the breakdown of the row buffer
hit/miss/conflict and DRAM commands of PIM_PB,
PIM_AB, and our decoupled PIM. We implemented the
performance counter inside the Xilinx memory controller for
profiling the DRAM behaviors.

PIM_PB and PIM_AB read MatA once and perform MAC
by 32 consecutive RDs for MatB in all 16 banks, resulting in
32 x 16 = 512 row buffer hits. Their DRAM commands are
mainly RDs since they read MatB for I times, i.e., repeating
the VM multiplication. Also, as the RDs rarely encounter row
conflicts, the ratio of ACT/PRE is low.

At I = 16, with the register-sized window of (16, 32, 16),
our decoupled PIM reads 16 tiles of MatB bank-by-bank at
the memory phase and then reads 16 tiles of MatA from banks
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at the computation phase, as described in Section III-D. Since
the two matrices reside in different DRAM rows, reading
MatB and MatA always encounter row conflicts, resulting in
close to 100% row conflicts and a high ACT/PRE ratio as
illustrated in Figure 13.

When [ is a multiple of 32, the register-sized window
becomes (32, 32, 16). 16 banks sequentially read a tile of
MatB at the memory phase and perform MAC by broad-
casting 32 tiles of MatA at the computation phase; thus,
encounters the 16 row conflicts for MatB after 32 RDs for
MatA. As a result, for computing each tile, 16 row conflicts
occur at the memory phase, and 16 conflicts and 16 row hits
at the computation phases.

4) POWER AND ENERGY CONSUMPTION

We evaluated the average power and energy consumption of
each platform in Level-2/3 BLAS, (I x 512) x (512 x 2048).
The power of each platform was estimated by aggregating
the power of the components as follows: CPU (CPUp,,,
+ DRAM,,,), GPU (GPUpy, + CPUy,,, + DRAM,,,),
and PIM (PIM engine,,,, + CPUpy, + DRAM,,,,). As we
assume our PIM architecture is part of the system memory,
we did not consider the power consumption of the FPGA.

The CPU power was measured using the Running Average
Power Limit (RAPL) interface, and the GPU power was mea-
sured using the Nvidia System Management Interface [48],
[49]. The DRAM power was estimated using the DRAM-
Power tool since measuring the DRAM power through RAPL
on the AMD processor was not supported [50]. For measuring
the DRAM power of CPU and GPU platforms, we assumed
that the data is read from the main memory only once, and the
following access always hits in the cache. On the other hand,
to measure the DRAM power of PIM platforms, we extracted
the address trace of the actual memory accesses from our PIM
kernel. Also, we implemented the PIM engine in Verilog with
65nm PDK under the worst case, which has similar character-
istics to the current DRAM process [4], [21], [51], [52], [53],
and estimated the power consumption using the Synopsys
Design Compiler. The design satisfied the DRAM internal
frequency of 800MHz and the available space near each bank
of about 40,000.4m>. The power of the PIM engines was at
0.03W by the logic synthesis, the same as Silent-PIM [4] due
to little additional logic for this work.

The total power consumption of CPU_S, CPU_P, and GPU
was 23.3W, 57.0W, and 83.4W, respectively. The DRAM
power on those platforms was under 1W. All the PIMs used
the same CPU, so the same power of 23.4W and the aver-
age DRAM power on PIM_PB, PIM_AB, and ours were
3.4W, 4.1W, and 3.6W. The different tile sizes of our decou-
pled PIM did not affect the power consumption. PIM_AB
showed the highest power consumption since it performs
the same amount of operations as PIM_PB in a shorter
time. Ours consumed about 6% more power than PIM_PB
since we encounter more row buffer conflicts as discussed
in Section IV-B3, thus resulting in increased activation and
precharge power.
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FIGURE 14. The normalized energy consumption of CPU_S, CPU_P, GPU,
PIM_PB, PIM_AB, and our decoupled PIM on Level-3 BLAS,
(I x 512) x (512 x 2048).

We compared the PIM power consumption with the con-
ventional DDR4 peak power consumed by back-to-back RDs;
5.95W [12]. PIM_PB obeys the standard DRAM constraints
as it operates at most one bank. Our PIM also adheres to the
standard memory power as it operates in a per-bank manner
in the memory phase, and also operates at most one bank of
memory array to broadcast the bank-shared operand to the
PIM engines of all banks in the computation phase. There-
fore, PIM_PB and our PIM’s worst-case peak powers remain
close to 5.95W considering 0.03W of the engine power,
ie., 5.98W at the worst case. PIM_AB consumed a peak
power of 21.58W when performing RDs for all 16 banks,
far exceeding the conventional peak power. Only four banks
could perform the computations simultaneously within the
conventional peak power [6], [12]. In [5], the authors reduced
the power consumption by limiting the concurrently operat-
ing banks to half and avoiding the data transfer to external
I/O at all-bank PIM mode. Their back-to-back RDs consumed
105.4% of the normal HBM2 power [54].

Figure 14 illustrates the energy consumption normalized to
CPU_S in alog scale. The normalized energy consumption of
CPU_P and PIM_PB did not vary much by the I size. The
normalized energy consumption of GPU became less as I
increased but always worse than our decoupled PIM. At =
128, the energy consumption of GPU was 94.6% and 33.0%
less than CPU_S and PIM_PB, respectively. The energy of
our PIM was less consumed than CPU, GPU, and PIM_PB
by 98.5%, 72.0%, and 78.4%, respectively. PIM_AB showed
the lowest energy consumption among all platforms due to
the fastest execution time, and our decoupled PIM consumed
only 7.4% higher than PIM_AB.

C. APPLICATIONS: MULTI-BATCH LSTM-BASED Seq2Seq
AND BERT

1) EXECUTION TIME AND SPEEDUP

The execution time and the speedup of the multi-batch
LSTM-based Seq2Seq model to process 1000 input data on
each platform are depicted in Figure 15. The larger batch size
implies a lower framework overhead for the python to C++
interface and a higher opportunity for weight reuse since the
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FIGURE 15. (a) The execution time breakdown and (b) the speedup of
CPU_P, GPU, PIM_PB, PIM_AB, and our decoupled PIM with respect to
CPU_S on the multi-batch LSTM-based Seq2Seq model.

batch size indicates / in the matrix operations of the model.
Therefore, the execution time of CPU_S decreased as the
batch size increased.

CPU_P showed higher speedup for larger batch size due
to the weight reuse and the parallelism exploitation, reaching
3.6 at batch size 128. The model initialization that consists
of memory copy from system memory to the device took most
of the GPU execution time. The speedup was from 6.3x to
5.5x%, and it was highest at batch size 16 due to the lowest
performance of CPU_S. The execution time of PIM_PB and
PIM_AB remains unchanged by the batch size since they
execute Level-3 BLAS by repeating the VM multiplication
for the input data, i.e., 1000 times, without reusing the weight
matrices. Thus, their speedup decreased for larger batch sizes
to 1.9x and 8.8 x, respectively, due to the higher performance
of CPU_S.

Our PIM finds lower reuse opportunities of the
bank-private operands at batch size 16, and it fully reuses
them at batch sizes multiple of 32. Therefore, its execution
time for batch size 16 was higher than the other batch sizes,
and the execution time for batch sizes multiple of 32 was
the same since the input data size was fixed to 1000. The
speedup was 9.0x at batch size 32 and decreased to 8.4x at
128. As a result, the PIM_AB and ours at batch size multiple
of 32 outperformed GPU. Since the execution time ratio of
the MM multiplication to the total execution on the CPU_S
ranged 84.2~85.5% where our PIM took advantage of the
decoupled execution, our PIM outperformed PIM_PB by
4.3 x and reached 94.3% performance of the PIM_AB.

Figure 16 shows the execution time breakdown and
speedup of BERT with sequence lengths 8, 16, and 32 on
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FIGURE 17. The normalized energy consumption of CPU_P, GPU, PIM_PB,
PIM_AB, and our decoupled PIM to CPU_S on (a) multi-batch LSTM-based
Seq2Seq and (b) BERT.

each platform. The sequence length indicates the / in the
matrix operations. The execution time of both CPU_S (MKL,
MLAS) increased as the sequence length grew since the
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FIGURE 18. (a) The number of memory requests (b) execution time (c) the speedup (d) breakdown of row buffer hit/miss/conflict ratio and
(e) DRAM command ratio of our decoupled PIM with different tile sizes executing Level-3 BLAS, (/ x 512) x (512 x 2048).

longer sequence length implies the larger input size. As in
the Seq2Seq model mentioned above, CPU_P (MKL) and
CPU_P (MLAS) performed better by data reuse and parallel
computation for longer sequence length, reaching 2.2x and
2.3 x speedup, respectively. The session initialization, includ-
ing the memory copy from the host to GPU, consumed over
99% of the GPU execution time, thus resulting in under 0.2 x
speedup.

The execution time ratio of the MM multiplication on
CPU_S (MKL) was 54.6~74.7%, which was much less than
the Seq2Seq model. Therefore, the performance improve-
ment achieved by the per-bank, all-bank and our PIM was
less than the Seq2Seq model. The speedup of PIM_PB and
PIM_AB increased up to 2.2x and 3.6x, respectively. The
execution time of the MM multiplication on PIM_PB and
PIM_AB increased in proportion to the sequence length.
However, since the execution time ratio of MM multiplication
is relatively small, the overhead of repeating VM did not
significantly affect the overall performance. Therefore, the
performance of PIM_PB and PIM_AB improved with the
sequence length.

The speedup of our PIM was 1.7x at sequence length
8 and 3.1 x at sequence length 32. Our PIM performed a little
worse than PIM_PB at sequence length 8 and outperformed
PIm_PB by 1.4 at sequence length 32, reaching up to 86.5%
of the PIM_AB performance.

2) ENERGY CONSUMPTION

Figure 17 illustrates the energy consumption normalized
CPU_S on both applications on a log scale. On the multi-
batch LSTM-based Seq2Seq in Figure 17(a), the normalized
energy consumption of CPU_P decreased by the batch size
because the higher weight reuse improved the speedup as
the batch size increased, as shown in Figure 15. The energy
consumption of GPU increased slightly as its performance
degraded by the batch size. Since PIM_PB and PIM_AB
repeat the VM multiplication without reusing weights, the
batch size increased their normalized energy consumption.
However, because of the highest speedup of PIM_AB, its
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energy consumption was the lowest in all cases. At the batch
size 128, the normalized energy consumption of GPU was
28.3% less than CPU_S and 20.2% higher than PIM_PB,
respectively. The normalized energy consumption of our PIM
was 86.3%, 80.8%, and 77.0% less than CPU_S, GPU, and
PIM_PB. Compared to PIM_AB, our PIM consumed only
0.3% and 2.7% higher energy at the batch sizes of 64 and
128, respectively.

Figure 17(b) shows that the normalized energy consump-
tion of BERT on all the platforms became lower by the
sequence length since their speedup increased, as shown
in Figure 16. The normalized energy of GPU was sig-
nificantly higher than all platforms because of the exces-
sive initialization overhead. At the sequence length 32, the
energy consumption of CPU_S (MLAS) was 30.3% less than
CPU_S (MKL), and both CPU_P showed similar energy
consumption, which was 43.8% and 48.6% lower than
CPU_S (MKL), respectively. The normalized energy con-
sumption of PIM_PB were 50.6% less than CPU_S (MKL),
and our PIM consumed 40.3%, 98.3%, and 33.5% less
energy than CPU_P (MKL), GPU, and PIM_PB, respectively.
PIM_AB consumed the lowest energy in all cases, and the
energy consumption of our decoupled PIM was 3.1% higher
than PIM_AB.

D. PERFORMANCE IMPACT OF ALU-WIDTH TILING
We also analyzed the performance of our decoupled PIM
using one more tile (32 x 1) for MatA to underutilize ALUs.
Figure 18 compares the number of memory requests, execu-
tion time, speedup, and DRAM behavior of Level-3 BLAS,
(I x 512) x (512 x 2048) on our decoupled PIM of two
tile sizes (i.e., 32 x 1 and 8 x 4). At I = 32, both tile
sizes fully utilized the ALUs and exploited the maximum
opportunity for reusing the bank-private operands. Therefore,
the performance of both tile sizes was the same.

The (32 x 1) tile operates in the same way for all the cases
I < 32, i.e., underutilizes ALUs for I = 8 and I = 16.
Therefore, the execution time for all the cases was the same.
On the other hand, the (8 x 4) tile fully utilized the ALUs
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and reduced the number of RD A requests by 75% and 50%,
respectively; thus, the (8 x 4) tile showed 18% and 13%
speedup over the (32 x 1) tile execution.

The (32 x 1) tile with a register-sized window of (32, 32,
16) reads 16 tiles of MatB at the memory phase and 32 tiles
of MatA at the computation phase, incurring a total of 32 row
conflicts and 16 row hits, respectively. At I = 8§, the (8 x 4)
tile with a register-sized window of (8, 32, 16) reads 16 MatB
tiles at the first memory phase and then reads 8 tiles of MatA
from 8 banks at the computation phase with 8 row conflicts.
At the next memory phase, the (8 x 4) tile encounters 8 con-
flicts in the banks whose rows were open for MatA and 8 row
hits in the other banks. At = 16, the (8 x 4) tile results close
to 100% in row conflicts, as discussed in Section IV-B3. The
power consumption was hardly affected since the different
tile sizes changed the number of RD commands, while the
number of ACT/PRE remained the same.

V. CONCLUSION

This paper proposed the memory-computation decoupled
PIM architecture to provide the performance comparable
to the all-bank PIM while preserving the standard DRAM
interface, i.e., DRAM commands, power budget, timing con-
straints, etc. For achieving our goal, we introduced two PIM
execution phases: memory and computation. The memory
phase follows the per-bank PIM execution method. The com-
putation phase broadcasts the bank-shared operands to all
banks, thus making their PIM engines perform the compu-
tation simultaneously without accessing the bank data arrays.
Also, we developed the compiler techniques to maximize
the decoupled execution opportunity by increasing the bank-
private operands’ reusability.

We evaluated the performance of Level-2/3 BLAS, a multi-
batch LSTM-based Seq2Seq model, and BERT on real
machines; CPU, GPU, FPGA-based PIM to provide an accu-
rate performance analysis. The performance of the proposed
PIM compared to CPU and GPU was 75.8x and 1.2x faster
in Level-3 BLAS and 8.4x and 1.5x faster in LSTM-based
Seq2Seq and 3.1x and 15.5x in BERT, respectively. We also
reached the performance of the ideal all-bank PIM up to
91.3%, 97.8%, and 86.6% in the applications, respectively.
Compared to GPU and the per-bank PIM, the energy con-
sumption of our decoupled PIM was lower by 72.0% and
78.4% in Level-3 BLAS, 80.8% and 77.0% in LSTM-based
Seq2Seq, and 98.3% and 33.5% in BERT. Also, our PIM
consumed only 7.4%, 0.3%, and 3.1% more energy than the
ideal all-bank PIM in the applications.
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