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ABSTRACT Development and testing of Advanced Driver Assistance Systems (ADAS) is largely based
on models and simulations, but real data are indispensable for many reasons – to determine the relevant
scenarios, to establish a connection between the results of the simulations and the real situation and of course
as elements to set up realistic models. Using data, however, is not trivial, as not all data are informative,
and even extensive data sets are often incomplete. Indeed, data is not automatically information, and the
richness of the data sets is more important than their size. Data should be diverse not only with respect
to different scenarios but also geographically in order to be not biased towards a specific location. In this
paper, we present a new aerial-view dataset ‘‘Drone Over Roads’’ (DORA) of highway exits and entrances.
The data have been collected by the Johannes Kepler University Linz (JKU), Austria and Italy and contain
positions, velocities, and accelerations (in both local and global coordinate systems) of cars, vans, and trucks
for Austria and additionally for motorbikes and buses in Italy. The uniqueness of the dataset consists not only
in the measurements in different countries, but also in the flight height in Austria, where the recordings have
been taken from 300 meters altitude allowing to observe an over 600 meters long section of the road. For
non-commercial use, the dataset is available free of charge at the IEEE DataPort.

INDEX TERMS Dataset, drone data, highway entrances/exits, traffic.

I. INTRODUCTION
Datasets are crucial for developing perception systems for
assisted and autonomous driving as their processing can lead
to conclusions that can be used as a reference to improve
existing systems and validate future approaches. In the last
decade, research on Intelligent Transportation Systems (ITS)
has relied on datasets available from various sources: open,
such as Kaggle [1], and with limited access or closed, such
as the ones collected by research institutions and companies.
However, these data are not always appropriate for investigat-
ing all on-road situations. Although the usefulness of varying
data collections has been demonstrated, a larger amount of
training data is needed to address the needs arising from
current learning and prediction architectures. In addition,
diversification of data is required that pertain to different
geographical locations and environmental conditions. This
data diversification will ensure proximity to the real world.
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The available datasets may be divided into four cate-
gories, each with its own set of features and applications,
as explained below.

A. DATA FROM TEST VEHICLES
A vehicle geared up with cameras, LIght Detection And
Ranging (LIDAR) sensors, Global Positioning System
(GPS), and Inertial Measurement Unit (IMU) is set to record
data while traversing different locations in a naturalistic
way. The dataset from a project of Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago
(KITTI) [2] is arguably one of the most used so far, compris-
ing images and LIDAR scans that are acquired from a sensor
suit located over the rooftop of a vehicle. Over the last years
several research institutions, AI companies, and car makers
such as Berkeley [3], Waymo [4], [5], Ford [6] and Audi [7]
have been recording their own datasets and releasing them to
the public. Some of these datasets are fully annotated with
location, speed, acceleration, size, and type of each one of
the agents present in the recordings or just the segmentation
information at pixel level.
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B. DATA FROM FIXED STATIONS
In this case, the data are acquired by a sensor arrangement
located on street-light poles, custom poles, or by the side
of buildings pointing to public intersections or zones of
interest. The use of a fixed location has the benefit of having
power lines in place that allow long recordings. In addition,
there is no need to track the sensor arrangement location
with additional sensors, and finally, the fixed background
represents an advantage for perception algorithms. However,
these advantages also come with certain drawbacks. Since
the angle of view is oblique to the road surface, there will be
occlusions between the agents and also due to the surrounding
buildings. Furthermore, the possible interactions are limited
to a specific area.

The Next Generation Simulation (NGSIM) [8] is probably
the largest dataset of this type so far. The NGSIM program
collected high-quality traffic videos at four different locations
in the US, including two freeway segments and two arterial
segments, between 2005 and 2006. A less ambitious project,
the Ko-PER intersection dataset [9], depicted data from cam-
eras and laser scanners as well as reference data and object
labels generated in a single public intersection. In another
example, the Urban Tracker project [10] recorded a dataset
fromfixed cameras at several different locations ranging from
a couple of meters above the floor to several floors by the side
of a building.

C. DATA FROM API
With the help of an Application Programming Interface
(API), providers as for example HERE [11], Google [12] or
TomTom [13] make information about current traffic condi-
tions on a route available for use. While Google only returns
the congestion level on a route through coloring a map, the
TomTom API returns current travel time and traffic flow
as well as historical data such as speeds, etc. The HERE
API even returns, among others, real-time traffic information
and traffic prediction on a requested route. The information
of HERE has been used for instance in [14] to develop a
long-term prediction method of macroscopic velocities that
can be used, e.g., for hybrid powertrain energy management.

D. DATA FROM DRONES
With the development of cheaper and more reliable drones,
some institutions started to use them to record data from a
bird’s point of view. This point of view that is (almost) per-
pendicular to the road allows to avoid the occlusions caused
by using an oblique or parallel view as in the previous types of
datasets. As a drawback, there is a limitation in the recording
time due to the battery of the drone and also the number
of sensors is limited by the drone’s payload. One of the
first large-scale datasets of this type was the Stanford Drone
Dataset [15]. It consists of aerial videos (bird’s view) from
multiple classes of targets interacting in complex outdoor
spaces around the Stanford University campus. This dataset
took into account pedestrians, bikers, skaters, cars, and carts,
all interacting between them. A more recent example is

the Semantic Drone Dataset [16] that focuses on semantic
understanding of urban scenes acquired at an altitude of 5 to
30 meters above ground level.

The German company fka GmbH from Aachen has pub-
lished several high-quality drone datasets of different scenar-
ios in Germany [17]. They recorded not only highways [18],
[19], but city scenarios [20], [21] as well.

To contribute to the body of research we present in this
paper a collection of data that has been further processed to be
used in perception algorithms. The data were collected using
two different drones that were equipped with the necessary
navigation gear and a camera. We make this dataset available
to the scientific community to facilitate a common basis for
the development of ITS applications.

Our dataset, called DORA (Drone Over Roads), has been
filmed in two different countries (Austria and Italy) from an
extraordinary (300m) height in Austria, allowing a bigger
scene to be captured, and from a 120m height in Italy. The
main focus has been put on highway entrances; however,
the dataset includes exits as well. Following the requirement
formulated by [20], the DORA dataset
• Reflects the naturalistic behavior of road users
• Has a sufficient size of over 5000 trajectories.
• Has been collected at different locations and times.
• Detects and tracks different types of road users.
• Has a high accuracy.
• Includes the infrastructure.

II. PROPERTY AND LOCATION OF JKU DORA DATA
The acquisition of traffic data with the drone has been per-
formed at different locations in Austria, near Linz, as well
as in Italy, near Naples. The filming occurred at different
times during daylight hours as well as good weather and wind
conditions. The majority of the recorded videos show high-
way scenarios including overtaking and merging maneuvers,
while the remaining videos show scenarios on country roads.
In the following part of this section, details about the Austrian
and Italian videos are given, whereas in the next section,
information about already post-processed data including res-
olution, statistical information, and the processing toolchain
is provided.

A. VIDEOS RECORDED IN AUSTRIA
In total, 36 hours of video material have been recorded at
9 different locations in Austria with a class C/III drone that
is further specified in Section III-C1. The drone was flying
at a height of 150m for 23 hours of video material, whereas
for the remaining 13 hours the drone was flying at a height
of 300m, thus, covering a travel distance of the filmed vehi-
cles of approximately 620m. Two of the nine locations show
traffic scenarios on a country road (CR), whereas seven of the
locations are highways (HW) (four of them with a merging
ramp (HWmr) and three of them without a merging ramp
(HW)). An example location can be seen in Fig. 1. Table 1
gives further details about the filmed videos for the Austrian
dataset.
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FIGURE 1. Recorded road section from Austria with corresponding laneIDs.

TABLE 1. Recorded videos for the Austrian dataset.

B. VIDEOS RECORDED IN ITALY
In Italy, in total 8 hours of video material have been recorded
with the DJI Mini2 (see Section III-C1) at four different loca-
tions near Naples. The recorded videos show around 220m
long scenarios on highways, all of them including a merging
ramp. An example location can be seen in Figure 2. Detailed
information for the Italian videos can be seen in Table 2.

TABLE 2. Recorded videos for the Italian DORA dataset.

III. JKU DORA DATASET
A. PROCESSED FILES
Recordings of two locations have been post-processed: in
Austria at the A7 highway near Engerwitzberg, see Figure 1,
and the road Via Domiziana, Giugliano in Campania NA in
Italy, see Figure 2.
In Austria, the flights were performed at a 300m above

ground level and 40m shifted aside the highway, so that about
620m of the highway were recorded. Each flight took around
12 minutes and in total 8 flights have been post-processed.
The resulting resolution is about 0.15m and 24Hz sample
rate.

In Italy, the drone hovered 120m above ground level
at 120m distance to the highway. Here about 220m of the
highway could be seen, with about 0.1m per pixel resolution.
The sampling rate here is 30Hz.

Concerning object classes, cars, vans, and trucks have been
distinguished for both locations, but for Italy motorbikes and
buses were recognized additionally because of their frequent
appearance in the data. The classification accuracy was esti-
mated at around 95%. In addition to the data provided in.
csv format, the dataset is complemented by a specifically
developed GUI for data visualization.

B. STATISTICAL PROPERTIES
1) AUSTRIAN DORA DATASET
The post-processed Austrian dataset contains 2521 vehicles.
1947 (77.2%) of them are cars, 150 (6.0%) are vans and
424 (16.8%) vehicles belong to the class of trucks. Cars
and vans are driving at a speed of 32.1m/s and 35.1m/s
on average, respectively, whereas trucks are traveling more
slowly at a speed of 23.4m/s on average. The distribution
of vehicles and their mean speeds can be seen in Figure 3.
56.7% of the vehicles are driving on the same lane as long as
they are visible in the video, which means that the remaining
43.3% of the vehicles perform a maneuver. These maneu-
vers are either merging onto the highway (261 vehicles),
exiting the highway (294 vehicles), or overtaking another
vehicle (537).

2) ITALIAN DORA DATASET
The post-processed Italian dataset corresponds to location
HWmr1 from Table 2 and consists of 2783 vehicles. In con-
trast to the Austrian dataset, the vehicles are further separated
into motorcycles and buses. The corresponding amount of
vehicles per type can be seen in Table 3, as well as the average
speed of each vehicle class. The distribution of the average
speed of each vehicle class can be seen in Figure 4. For the
sake of clarity, buses and motorcycles are not included in
Figure 4. In contrast to the Austrian part of the DORAdataset,
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FIGURE 2. Recorded road section from Italy.

FIGURE 3. Distribution of the traffic participants’ mean velocities in the
Austrian part of the DORA dataset.

TABLE 3. Types of vehicles in the Italian DORA dataset.

vehicles are moving at lower speeds. While 58% (1614) of
the vehicles stay in the same lane, 10.35% (288) vehicles are
overtaking another vehicle, 18.47% (514) are merging onto
the highway and 13.19% (367) of the vehicles are exiting the
highway.

C. PROCESSING TOOLCHAIN
The overall pipeline to process videos into data is presented
in Figure 5. In the next subsections, we describe single steps
of the pipeline in more detail.

1) DRONES
For drone recording in Austria a class C/III drone was used.
A special flight permission due to location and flight height

FIGURE 4. Distribution of the traffic participants’ mean velocities in the
Italian part of the DORA dataset.

was needed for legislation in 2019 when the measurement
campaign started. The drone has a maximum take-off weight
of 5kg, a flight time about 15 minutes and carries a profes-
sional 4K:4096×2160/24fps/110◦ field-of-view camera with
active camera gimbal, see Figure 6.

For the measurements in Italy another drone, a DJI Mini2,
was used, equipped with a 4K:3840× 2160/30fps/83◦ field-
of-view camera, see Figure 7.

2) DIGITAL VIDEO STABILIZATION
The filmed videos have a drift over the recording time
mostly caused by the rotation of the drone that is not com-
pensated by the camera gimbal. Finally, a 2-D normalized
cross-correlation for pattern matching [22] with four hand
chosen patterns was used. In this step the optical distortion
was compensated.

3) METRIC TRANSFORMATION
In order to convert the pixel coordinates to metric sys-
tem, four points and their GPS coordinates were deter-
mined and mapped to a Cartesian grid using the Haversine
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FIGURE 5. Data post processing pipeline.

FIGURE 6. The drone used in Austria.

formula for a spherical Earth of radius 6371000 m.
The origin was fixed for each location. With the
pixel-coordinates of these four points in a video frame,
a projective fit geometric transformation to four control point
pairs has been calculated.

4) ROAD DETECTION
The base for the road detection is a ‘‘mean’’ picture of the
view, calculated during digital video stabilization. Overlay-
ing all frames gives an empty street picture. For each lane
marking three starting points are picked by hand on a black
white picture of the road, for each lane marking a line is
calculated optimizing the black white ratio known for the
different marking types.

The lanes’ center lines are defined by their left and right
marking lines. The most right lane’s virtual center line is used
as the reference one for all other lanes of one direction. The
lanes get a unique lane number/laneId: themost left lane starts
with number 1, reference lane 2, acceleration strip 4, feeder

FIGURE 7. The drone used in Italy.

lane 14, deceleration strip 3, and exit lane 13. The direction
is defined by the laneId’s sign, see Figure 1.

5) VEHICLES DETECTION AND TRACKING
For the detection of moving objects, a YOLOv4 network [23]
has been trained and used. This version has no rotating
bounding boxes and therefore the videos have been rotated
making the highway horizontal. In order to accelerate the
post-processing, detection regions of interest were defined
where vehicles can enter the scene and exit regions where
vehicles leave the scene.

Once a vehicle was detected, it is tracked using the Kalman
filtering algorithm [24] including a track prediction for better
performance until it leaves the scene.

6) FURTHER PROCESSING STEPS
After rotating and mapping the raw position data from detec-
tion to the Cartesian coordinate system some data processing
is still needed further.

a: FILTERING WITH A VEHICLE MODEL
For each track, filtering is performed by optimizing inputs
to a vehicle model following the track. The cost function
penalizes high vehicles’ accelerations and high steering angle
deviations. For computing feasibility, a jumping timewindow
strategy has been applied.

b: FLAGGING SUSPICIOUS TRACKS AND CORRECTION
After the previous post processing steps, suspicious tracks
are automatically flagged considering abnormal velocities,
road borders, intersecting tracks, double detection, etc. These
tracks are then reviewed and corrected manually.

c: DATA ENRICHMENT
Several additional signals were calculated:
• the actual laneId for each point
• longitudinal and lateral positions to the reference lane
• longitudinal and lateral velocities and accelerations
• classification of the vehicles into classes: car, van, truck,
(motorbike and bus)
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Note that for lanes with Ids -13, -14, 13 and 14 (outside the
main section of the highway) only the information in image
coordinate system has been provided since the reference line
becomes irrelevant for these lanes.

d: VELOCITY CALIBRATION (AUSTRIAN DATA)
In the velocity behavior of the vehicles in the Austrian data,
a systematic error has been found caused by the use of the
wide angle optical lens, even though it should have been
compensated in the digital stabilization step. The use of a
polynomial transformation with order 4 instead of the projec-
tive transformation from pixel to Cartesian coordinate system
was tested but some problems with the accuracy of the 15+
point pairs still remained. To overcome this drawback, the
tracks data were calibrated using the road information, i.e.
that in Austria the dashed line marking between two lanes
consists of 6m long lines and 12m gaps. This happens in
the road coordinate system s/n, Cartesian coordinates were
recalculated. Accordingly, the road definition was calibrated.

e: DRONE POSITION CORRECTION (ITALIAN DATA)
The YOLOv4 net was trained with bird eye view pictures
from the Austrian location. The Italian scene has a 45◦ view
resulting in a position error and different bounding box sizes.
To compensate this feature the tracks data have been extended
to 3D and a virtual drone position was defined, so that each
data point was shifted using the detected bounding box sizes
and geometric relations.

IV. COMPARISON OF DORA DATASET AND HERE API
As mentioned at the beginning, there are many different
sources of traffic data. Of course, data obtained by an UAV
with a fixed location are not easily compared for instance
with data obtained from devices mounted on a car, but can
be compared e.g. with the averaged data provided by some
developer API. In this cases, we made some comparison with
data derived from the HERE developer API (see Section I-C).
The route requested with the HERE Routing API v7 is iden-
tical to the route that has been filmed with the drone and
data are requested at the same time as the recordings with
the drone have been made. The service of DynamicSpeedIn-
foType was enabled, which means that the estimated speed
along the route with respect to traffic constraints is available
to the user. Thus, the average speed estimated fromHERE can
be compared with the average speed from the post-processed
drone data.

The corresponding speed values for the post-processed
Italian datasets can be seen in Table 4. Most of the time,
the estimated traffic speed from HERE is approximately
the same as the average speed of the vehicles in the
DORA dataset. In addition to the estimated traffic speed,
HERE provides a maximum speed limit (which is in this
location 25m/s). The DORA dataset, however, provides
much more information than the HERE developer, namely
position and speed trajectories of every single vehicle. Thus,
for example relative distances between vehicles and time-to-
collision can be calculated to estimate the level of safety on

the filmed street segment. Of course, if only average speed of
traffic is needed, as for example in [14], information from
HERE is obtained much easier and with less effort than
filming a road segment with the drone and post-processing
the data. In conclusion, depending on the specific use-case
the dataset should be selected accordingly.

TABLE 4. Comparison of average traffic speed from HERE and DORA for
the Italian datasets.

V. COMPARISON WITH OTHER DRONE DATASETS
A. EXISTING DRONE DATASETS
In this part we will briefly describe the existing datasets of
highway entrances/exits filmed from the aerial perspective.

1) HIGHWAY DRONE DATASET (highD)
The highD [18] was, to the best of our knowledge, the first
highway driving dataset of sufficient size (110 500 tracks)
and high accuracy (error less than 10 cm). It was not focused
on highway entrances/exits but contains 3 out of 60 record-
ings where the entrance has been filmed at a frequency
of 25Hz. As a result, only 76 merging maneuvers can be
extracted from the highD data. Moreover, only the end part
of the merging lane can be seen (see Figure 8) and therefore
some early reactions of drivers on the main lane are out of the
detection range.

FIGURE 8. Recording site of a merging scenario in the highD dataset.

2) INTERNATIONAL, ADVERSARIAL AND COOPERATIVE
MOTION DATASET (INTERACTION)
INTERACTION [25] contains one highwaymerging scenario
filmed in China, see Figure 9. During 95 minutes the authors
recorded 10359 vehicles at a sampling frequency of 10Hz
from which 1684 merging vehicles can be extracted. Con-
sidering the above-mentioned statistics, there were over 100
vehicles per minute which corresponds to a quite dense traffic
that is unusual for highways. The latter can be also illustrated
by considering the distribution of the vehicles’ velocities,
see Figure 10. Moreover, similar to highD, only the end
parts of the merging lanes have been recorded. The authors
provide the users only with the image-based coordinates of
the vehicles (no metric coordinates) and no statement about
the accuracy of the data has been made.
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TABLE 5. Comparison between the DORA dataset and existing highway exits and entrances drone datasets.

FIGURE 9. Recording site of a merging scenario in the INTERACTION
dataset.

FIGURE 10. Distribution of the vehicles’ velocities of the INTERACTION
dataset.

3) EXITS AND ENTRIES DRONE DATASET (exiD)
The exiD [19] was introduced by the same research group
as of highD in autumn 2021. At the date of writing this
paper, still no accessible publication was available on the
dataset. 7 locations in Germany have been filmed and in total
52621 cars, 3929 vans, and 12622 trucks were recorded at a
sampling rate of 25Hz.

B. FACE TO FACE COMPARISON
In this part, we compare the existing datasets against each
other and DORA and highlight the strengths and weaknesses
of our data. The summary of the comparison is provided in
Table 5, where the bold features highlight the advantages of
DORA. As one can see from the table, our dataset is the
only one that was recorded in different countries. Moreover,
the uniqueness is the flight height of 300m in Austria and
thus the visibility over 600 meters long section of the road.
Concerning the data format, accuracy, and vehicles’ classes
the DORA dataset is comparable with highD and exiD and
outperforms INTERACTION.

As a weakness of the dataset we can mention its size. Even
though hours of videos have been collected, not all of them
were post-processed. However, whether the size is enough
or not depends on the purpose for which the data are used,

for many applications even the current size of the dataset is
sufficient.

VI. CONCLUSION AND OUTLOOK
In this paper we have presented a new aerial dataset DORA
focused on highway exits and entrances. The dataset has
been post-processed into a format that can be directly and
easily used by the researchers. Moreover, the visualization
tool supports the numerical data.

For some applications, the size of the dataset can be not
sufficient. However, as we mentioned before, much more
videos from more locations have been collected by our team.
In the near future, we expect to process these videos as well
and thus enlarge the DORA dataset.
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