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ABSTRACT Traditionally height of end effector of pod pepper harvester is fixed, which induces it hardly
adapt to growth height of clustered peppers. Firstly, aiming at the problems of small size and clustered growth
of pepper fruits during identification task, an improved Faster R-CNN algorithm is proposed. On the one
hand, strategies such as increasing the types and number of high-resolution anchors and using Rol Align
instead of Rol Pooling are employed to improve the detection accuracy for tiny targets. On the other hand,
ResNet+FPN instead of VGG16 and ResNet backbone structure is adopted as the low-level feature extractor,
so extracting capability for small features can be enhanced effectively. Furthermore, to precisely locate the
position of clustered peppers, a height calculation model combining the 2D image recognition results with
its depth information is advanced. Comparative experiments show that the overall accuracy AP and AP5q of
our method reach 75.79% and 87.30%, respectively. Compared with VGG16 feature extraction model, the
two indicators are improved by 8.7% and 1.3%, respectively. The small target detection accuracy APS™! js
increased about 11.4%, with recall rate ARS™! jncreased up to 10.2%. The overall loss rate Loss is reduced
by 4.7%, which manifests greatly improvement compared to YOLOv3 model. The detection time of a single
frame reaches 42ms, which is slightly longer than that of YOLOvV3 network, but it can still meet the real-time
detection requirements of pepper harvester. In 3D location experiment, the average absolute height error of
clustered peppers from the ground is 4.4mm, that accounts to the relative average error of 1.1%, thus suffices
the adjustment error requirement of the end effector.

INDEX TERMS Clustered pop pepper, depth information location, improved faster R-CNN network, object
identification.

I. INTRODUCTION

Traditional clustered pod pepper harvesters equipped with
drum-tooth-type picking heads can only carry out ‘““one size
fits all” operations, which always introduces more manual
operation errors and thus induces substantial mechanical
damage to fruits as well as high loss rate during pepper
harvesting [1].

In recent years, with the continuous development of
machine vision, image recognition technology is being
widely integrated with agricultural machinery, marking a
new application direction in agricultural automation and
intelligence. At present, many scholars have applied image
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recognition technology to the agricultural field and achieved
bountiful of excellent results. Wang [4] employed YOLOv4
based network and channel paper-cutting algorithm to greatly
reduce the amount of calculation during impurity removing
application for potatoes. Its detection accuracy rate was up
t0 91.43%. He et al. [5] combined multi-convolutional neural
network with DXNet model to categorize apple fruits accord-
ing to their external quality, and reached 97.84% classifica-
tion accuracy rate. To identify kiwi fruit in a complex growth
environment, Mu et al. [6] employed an improved AlexNet
network and gained accuracy rate of 96.00%. Wang et al. [7]
marked four varieties of kiwifruit, and adopted transfer learn-
ing method on DensNet121 network. their final recognization
rate went up to 97.79%. In terms of pepper feature detection,
Yang [8] introduced CNN network model to identify and
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FIGURE 1. Flowchart of our method.

classify the defects of millet peppers, which achieved 93.13%
and 98.76% recognition accuracy for both millet peppers with
and without defects, respectively. To detect whether the fruit
was damaged during the process of mechanized pepper-cap
removal, Huynh et al. [9] obtained 95.2% recognition accu-
racy. Loti and Noor [10] comprehensively adopted machine
learning and deep learning methods to analyze diseases and
insect pests of red pepper and bird’s-eye pepper. Their recog-
nition accuracy reached 92.10%. It can be seen that the appli-
cation of machine vision in the agricultural field is gradually
becoming mature.

The clustered pod pepper is a variety of chili pep-
pers. With uneven plant height and maturation period, and
fruits mainly topping on branches, together with character-
istics of small size and dense cluster, fruits of pod pepper
are often difficult to be labelled and identified. In this
paper, an improved Faster R-CNN target detection algorithm
is proposed, in which different low-level feature extrac-
tion backbone networks, including VGG16, ResNet50 and
ResNet504+-FPN, will be compared horizontally, and opti-
mization schemes are employed so that the detection accuracy
of small targets can be obtained. Longitudinal comparison
with YOLOV3 network, backboned DarkNet53, is carried
out so effectiveness of the proposed method can be verified.
Finally, combined with depth image information, spatial posi-
tioning calculation model and experiment are exerted, which
will provide a location reference for automatic adjustment of
the end effector of pepper harvester. The overall process is
shown in Fig.1.

The main contributions of this paper are as follows:

1) Dataset of clustered pod pepper is constructed and
manually annotated. To-tally 328 RGB-D (Red Green
Blue-Depth) images of clustered pepper are acquired,
and 3062 images are generated after expansion.
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FIGURE 2. Sample data (RGB image on the left, Depth image on the right).

2) Improvement of recognition accuracy for small-sized
cluster or individual fruit via hyperparameters and
structure optimizing of Faster R-CNN network.
ResNet504-FPN feature extraction layer, Anchor scale
and quantity adjustment, and Rol Align sampling are
comprehensively used to improve sampling accuracy
and extraction ability of the network for small features.

3) A spatial height localization model is constructed, with
combination of RGB-D depth image information. The
calculated height is the crucial input parameter for auto-
matic height adjustment of the end effector of pepper
harvester.

Il. MATERIALS AND METHODS
Our method will follow the pipeline of Fig.1.

A. DATA ACQUISITION AND PREPROCESSING

So far as we know, there hasn’t one clustered pod pepper
dataset publicly available on the Internet, so we have to
construct the dataset from the beginning. The experimental
images used in this paper were acquired from the pod pep-
per planting base in Baiyi Town, Wudang District, Guiyang,
China. The collection time is 9:00 to 12:00 am on a sunny day
on August 24, 2021 and a cloudy day on October 18, 2021.
A total of 656 images of the clustered pepper were effectively
captured by Intel RealSense D435i depth camera, including
328 color images and 328 depth images. The collected data
samples are shown in Fig.2.

The acquired RGB images are manually labeled using
Labellmg labeling software. During labelling, smallest cir-
cumscribed rectangle method for clustered pepper fruits is
adopted. Annotations are saved in a file of XML format.
All images are made in VOC format. In order to improve
sample diversity for model training, it is necessary to enhance
the collected data. In our experiment, the original data are
processed by rotating, flipping, embossing, adding noise,
color enhancement, and changing the grayscale and contrast
of the picture. Hence the data volume of RGB images is
2406 pieces. Then rotate the original data by 15° and 30°,
and finally we get 3062 RGB images. Depth images are
synchronously processed. The experimental data preprocess-
ing is shown in Fig.3. For model training, the training and
validation data will be randomly allocated in a ratio of 9:1,
that is, 2756 and 306 images in training set and validation set
separately.
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FIGURE 3. Data enhancing. ((a) Original image, (b) Flip up and down,
(c) Flip left and right, (d) Brightness, (e) Grayscale, (f) Contrast,

(g) Gaussian noising, (h) Emboss, (i) Gaussian blur, (j) Mean blur,

(k) Median blur, (I) Rotation).
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FIGURE 4. Schematic diagram of Faster R-CNN network.

B. FASTER R-CNN NETWORK OVERVIEW

The Faster R-CNN network was first proposed by Ren et al.
[11] at the NIPS conference in 2015. The framework consists
of three parts: feature extraction network (Backbone), Region
Proposal Network (RPN) and Region of Interest pooling layer
(Rol pooling). Synthesizing advantages of both R-CNN and
Fast R-CNN, Faster R-CNN framework inserts a region pro-
posal network (RPN) into the original Fast R-CNN network.
Discarding traditional SS (selective search) and other candi-
date selection methods, RPN can greatly reduce the amount
of computation and effectively reduce model training time.
Faster R-CNN framework is shown in Fig.4.

Original images will turn into Feature Maps after passing
through the feature extraction network, which share con-
volutional features with RPN and Rol Pooling layers. The
RPN layer is the main highlights in Faster R-CNN network
(Fig.5). In order to predict objects of different shapes and
sizes during convolution operation, each time the convo-
lution kernel slides, an anchor point will be generated in
the center of the convolution kernel. Finally, the network
model comprehensively corrects information from features,
2k classification and 4k bounding box regression to achieve
the target of accurate object detectation.

Faster R-CNN network includes two loss functions, RPN
loss and Fast R-CNN loss. In the RPN network, its loss
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FIGURE 5. RPN sketch.
function [12] is:

1
L ({pi}, {t:}) =N

1
ZLCIS (pi,p}k)'f-/\N— ZP?Lreg (i.17)
; reg
(1)

where N5 represents the number of all samples in a mini-
batch, Ny represents the number of anchor positions (the
total number of anchors generated on the feature map), A is
the weight factor of the two losses.

L5 denotes multi-class cross entropy loss (SoftMax Cross
Entropy) for classification task, which is defined as:

Leis (piop}) = —log (pi) 2)

where p; represents the probability that the i-th anchor is
predicted to be a true label; p} represents 1 when the sample
is a positive sample, and O otherwise.

For bounding box regression task, its loss function is same
as Fast R-CNN:

L (107) = R (117) ®

where #; represents the predicted bounding box parameter
corresponding to the i-th anchor; 7 represents its related
GT value. R represents the Smoothy 1 loss function, which is
defined as:

0.5x2 x| <1

moothit () {|x|—0.5 other @

C. MODEL OPTIMIZATION

1) BACKBONE NETWORK SUBSTITUTION

The initial feature extraction network of Faster R-CNN model
is VGG16 convolutional neural network. A large number
of experiments have shown that with the deepening of the
number of network layers, convolutional neural network will
not only cause training results to decline, but also lead to the
problem of gradient explosion or gradient vanishing. In this
regard, we introduce ResNet50+FPN network model as the
backbone feature extraction network (Fig.6). ResNet50 is a
residual network that provides an effective solution for gra-
dient vanishing. Traditional Faster R-CNN network contains
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FIGURE 6. ResNet50+FPN network structure (Conv1-Conv5 are five layers
in the Resnet50 network, five Convl x 1 modules were used to adjust the
numbers of channels in different feature layers, “+"” means feature
information fusion by add method, four Conv3 x 3 modules are used for
further feature information extraction).

only one feature layer after 16 times of downsampling, while
FPN combines high-level semantic features of the network
with underlying detail features. FPN has the ability of pre-
dicting candidate frames in multiple feature scope, so it is
easier for the entire network to gather feature information of
the target object and thus enhance the utilization of image
features. In experiments, we choose three layers {layer2,
layer3, layer4} in ResNet50 to participate in network weight
training, and selects VGG16 and ResNet50 network models
for horizontal comparison.

2) ANCHOR RESOLUTION INCREASING

Pod-pepper fruits are small-sized and densely growing.
Implementation of Faster R-CNN without any alteration to
our database can only result in poor detection accuracy, espe-
cially for individual and small clustered pepper fruits [13].
Our solution is to enlarge anchor scales to improve feature
resolutions while keeping its original ratios (1:1, 1:2, 2:1)
unchanged. In our experiment, anchor size is adjusted from
[1282, 256%, 512%] (Marked as Anchor-3) to [322, 642, 1282,
2562, 51221 (Marked as Anchor-5).

3) ROI POOLING SCHEME ALTERATION

After RPN layers, the obtained regression hyper-parameters
are float data. Then Rol Pooling layer is responsible for
mapping candidate proposals to fix-sized Feature Map, after
two quantization operations:

1) When one candidate proposal is mapped to the shared
feature layer, its float coordinates are rounded up.

2) When one boundary area is divided into k x k units
(bins) on average, float coordinates of unit corners are
also rounded into integers.

The two quantization operations have changed the initial
prediction range of the candidate frame, and will bring large
deviations when abstracting small features, thus resulting in
decrease of accuracy on tiny objects.

Rol Align method (Fig.7) proposed in Mask R-CNN [14]
is an effective scheme to avoid data rounding up. Rol Align
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FIGURE 7. Rol Align sampling (Note: the black dots and yellow dots
denotes x and x respectively, the black dot indicates each pixel, the
yellow dot indicates the sampling points evenly divided in the
non-quantized area, and the blue box indicates the non-quantized area).
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FIGURE 8. Bilinear interpolation in one subregion.

utilizes bilinear interpolation in each sub-cell to calculate
output value of each sampling point, and output the maximum
value in sub-region for fixed-sized Rol via Max pooling
method, so it will not round up floating-point coordinates of
candidate proposals and divided units.

Fig.8 details the bilinear interpolation method in one subre-
gion. P is the coordinate point obtained by the model through
the regression parameters. Q11, Q12, 021, and Qy; are the four
points of the cell where P is located, and their coordinate val-
ues and pixel values are all parameters. First, the coordinates
and pixel values of R and R, are obtained by the first inter-
polation method, and then the coordinates and pixel values of
point P are obtained by the second interpolation method. The
calculation method is shown in formula (5)(6)(7).

Ri:f (o) ® Zoof @4 —Lf @) )
X2—X X—X]

Rai f (x,y2) » xz—xlf (Q12)+)Hf(Q22) (6)

Pif (ry) & 22 ey 2 f ) ()
=5 y2—=y1

In the formula above, (x, y1) and (x2, y2) are coordinate

values of Q11 and Qy; respectively, and Q11, Q12, O21, Q22
are pixel values of four points.

D. OBJECT DETECTION - EXPERIMENTAL METHODS

1) COMPUTATIONAL DEVICE

In our experiment, Intel RealSense D435i depth camera was
used for image shooting, which is capable of capturing both
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TABLE 1. Computation server configurations.

Items Info.
Operating system Ubuntu20.04.4 LTS
CPU Intel (R) Core (TM) i9-9900K * 8

NVIDIA GeForce RTX 2080Ti * 4
(GPU: 11G * 4 =44G)

Python3.8

Pytorch1.11.0

Graphics card

Programming language

Deep learning framework

TABLE 2. Hyperparameter settings.

Parameter name Value
Batch size 24
Epochs 200
Input shape [640, 480]
Optimizer SGD
Momentum 0.9
Weight decay 0.0001
NMS 0.3
Confidence threshold 0.5
ToU 0.7
Learning rate 0.001

Gamma 0.1/50epochs

RGB flows and Depth flows, and aligning these two flows
for further image processing. Camera parameters include:
resolution sizes of 640 x 480 for both color and depth map,
frame rate 60 fps/s, and depth range in 0.3m-3m. The experi-
ment was carried out on a computation server, as configured
in Table 1. In order to further exert the computing power
of this server, CUDA11.0 and cuDNNBS.0.5 are installed for
GPU computation. And also, a parallel computing strategy
is implemented to balance memory load of multiple GPU
processors for model-training acceleration.

2) COMPARATIVE MODEL

YOLOvV3 network is a regression based one-stage object
detection network. Compared with the Faster R-CNN, it gen-
erates candidate frames during prediction stage, and directly
performs regression decoding on parameters of predicted
frames, so tasks of object detection and classification could
be satisfied at the same time that overall training cost is saved
enormously. YOLOv3 is known for fast detection speed,
as well as ability on feature extraction, so we choose YOLOV3
as the longitudinal comparison network.

3) HYPERPARAMETERS

The two deep learning networks Faster R-CNN and YOLOv3
used in the experiment run on the same server. In order
to avoid interference of other factors on experimental
results, training hyperparameters of both models are samely
set (Table 2), including batch size, epochs, image size
(input shape), optimizer, momentum, the regularization
weight decay rate (weight decay), non-maximum suppression
(NMS), confidential threshold, IoU, learning rate, and learn-
ing rate adjustment multiplier (gamma).
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4) EVALUATION INDICATORS

COCO evaluation standard is used to performance evaluation,
which includes indicators of Precision, Recall (recall rate),
AP (average precision) and mAP (mean Average Precision):

.. TP
Precision = —— )
TP + FP
TP
Recall = ——— 9)
TP + FN
1
AP = f P (r)dr (10)
0
M
_1 AP (¢)
mAP = Zq—qu (11)

where TP (true positives), FP (false positives) and FN (false
negatives) represent correctly classified positive samples,
falsely classified positive samples and, falsely classified neg-
ative samples; AP refers to curve area covered by all Precision
and Recall points in two-dimensional coordinate system;
mAP is the average of APs of all classes; M denotes the total
number of all categories.

We select AP, APsg, APS™ll and ARS™2!l a5 the exact
indicators, of which the superscript small denotes indicator
for tiny targets. Among them, AP is the mAP average value
calculated from 10 IoU thresholds from 0.50 to 0.95 with
a proportional interval of 0.05, and APsp is the mAP value
when the IoU threshold is 0.5, AP™2!l and ARSM gre aver-
age precision and recall rate on tiny targets.

5) TRANSFER LEARNING

The augmented 3062 image data cannot meet the needs of
weight training from the very beginning, we adopt the idea of
transfer learning. Pre-trained weights exposed by PASCAL
VOC2012 dataset are utilize, to enable faster convergence
during model training.

E. SPATIAL POSITIONING

After one image passes through depth network, a prediction
box of target object will be generated. The midpoint of the
prediction box is marked as its image position, which denotes
the exact locale of the targeted object in the 2D RGB image.
However, in the world coordinate system, 3D coordinate of
the target still needs to be determined through physical quan-
titative methods such as distance or depth measures, which
the stored Depth image captured by depth camera can provide
directly. RGB and Depth images have pixel correspondence.
We can easily convert between pixel coordinates {u, v} and
world coordinates {X,Y,Z} based on mapped RGB and
Depth images. The conversion is expressed by formula (12).

X
u
Z. | v | =K [R,1] (12)
Z
! 1

where K is internal parameter matrix and [R,t] external
parameter matrix of the selected depth camera.
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FIGURE 9. Schematic diagram of depth camera geometry.

In height positioning experiment, depth camera is fixed on
a plane with known height. Let calibrated camera coordinate
system {xc, yc, zc} coincide with world coordinate system
{Xworlds Yworld> Zworld} (Fig.9). When the camera is placed
horizontally (¢ = 0), image plane will coincide with projec-
tion plane, and height value & of the camera optical center
above the ground is equal to h;n, central height of the plane
where the predicted target located. In this case, the calculated
Yworla value is a relative coordinate between the predicted
target point and the image center point along Y axis of the
image plane (Yyorida = Y). When the camera is placed at an
angle to the horizontal plane (o # 0), image plane will incline
an angle « with projection plane of the target in 3D space.
By solving the triangle, we can get formula (13):

_ (h — dxsina) Y yorigxcosa o #= 0

= (13)
hEY\oria a=0

In formula (13), « is angle between central axis of camera
and horizontal plane, d is depth value of the predicted target
point, h is ground clearance height of camera optical center,
and H is the actual ground clearance height of the target
object.

Ill. MATERIALS AND METHODS

A. PEPPER FRUIT DETECTION

We conducted three groups of comparative experiments:
experiments 1 to 3. In experiment 1, we fixed the
value of Anchor and compared the overall impact of
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TABLE 3. ROI pooling contrast.
ROI Backbone AP APs Apsmall Upgrade
VGG16 0.4574 0.7991 0.4291 -
Rol Pool
ResNet50 0.4733 0.7972 0.4063 -
VGG16 0.6552 0.8124 0.5408 +11.17
Rol Align
ResNet50 0.6276 0.7887 0.5061 +9.98

different ROI pooling operations on Faster R-CNN network.
In experiment 2, we compared the influence of different
Anchor values on the whole network. In experiment of 3,
we selected Faster R-CNN and YOLOv3 network to imple-
ment horizontal and vertical experiments, so the network
more suitable for recognizing clustered pod-peppers can be
identified.

1) EXPERIMENT 1: ROI POOLING CONTRAST
In [12], [15], and [16], optimization strategy of Rol Align
instead of Rol Pool is adopted to increase detection accuracy
of small target objects. In [17], this method is claimed to
improve detection ability of for small targets of industrial
aluminum profiles by 17%. In our experiment, anchor size
is fixed to Anchor-3, and Faster R-CNN networks with back-
bone VGG16 and ResNet50 are compared. The experimental
results are shown in Table 3.

It can be seen from Table 3 that Rol Align gains better
performance than Rol Pooling. For small objects, the average
accuracy APS™!! has improved by 11.17% and 9.98% over
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TABLE 4. The overall results of the network after anchor take different values.

Faster R-CNN Results
Backbone AP APs, Apsmal ARsmal! Loss
:; WW@W o 0] o AR || —— VGG16(Anchor-
. m . /& N /& “ WW " |D,\ — \\;Gele'(:nc:or-:
alr ol I gl
VGG16 = |l - “ | il RN
—— VGG16(Anchor-5) o —— VGG16(Anchor-5) i | —— VGG16(Anchor-5) . —— VGG16(Anchor-5)
' / VGG16(Anchor-3) » —— VGG16(Anchor-3) ol —— VGG16(Anchor-3) » if —— VGG16(Anchor-3) v \
o7 e e o T o o R S o) 2| —— ResNet50(Anchor-5)
06 0. 10 —— ResNet50(Anchor-3)
ResNet50 - < - i
. —— ResNet50(Anchor-5) o0z —— ResNet50(Anchor-5) 021 —— ResNet50(Anchor-5) -
. ResNet50(Anchor-3) " ResNet50(Anchor-3) ResNet50(Anchor-3) , ::
; . /{\AK‘MW o —— ResNet50+FPN(Anchor-5)
@ o —— ResNet50+FPN(Anchor-3)
ResNetSO+FPN “ fﬁ»w“\
—— ResNet50+FPN(Anchor-5) —— ResNet50+FPN(Anchor-5) —— ResNet50+FPN(Anchor-5) —— ResNet50+FPN(Anchor-5) o
9 —— ResNet50+FPN(Anchor-3) —— ResNet50+FPN(Anchor-3) —— ResNet50+FPN(Anchor-3) qf J —— ResNet50+FPN(Anchor-3) o &
TABLE 5. Evaluation metrics of different models.
Model Anchor mAP mAR Loss Speed Param.
AP APs, APpsm! ARs™! (s/frame) M)
Faster R-CNN(VGG16) 0.6552 0.8124 0.5408 0.5857 0.0554 0.051 43.95
Faster R-CNN(ResNet50) Anchor-3 0.6276 0.7887 0.5061 0.5475 0.0785 0.029 70.57
Faster R-CNN(ResNet50+FPN) 0.6369 0.8156 0.4601 0.5413 0.0256 0.044 41.33
Faster R-CNN(VGG16) 0.6705 0.8601 0.5213 0.5691 0.0649 0.056 44.02
Faster R-CNN(ResNet50) Anchor-5 0.7204 0.8653 0.5783 0.6144 0.0753 0.029 70.64
Faster R-CNN(ResNet50+FPN) 0.7579 0.8730 0.6351 0.6711 0.0179 0.042 41.40
YOLOV3 - 0.4874 0.8033 0.2953 0.4955 3.8381 0.013 62.57

VGG16 and ResNet50 backbone respectively. Thus, in our
application of clustered pod-peppers detection, Rol Align is
chose for ROI pooling.

2) EXPERIMENT 2: ANCHOR COMPARISON

In order to verify the influence of different Anchor values
on the evaluation parameters of the network. In this experi-
ment, we fixed Rol Align as the pooling layer, and compared
Faster R-CNN network with backbones of VGG16, ResNet50
and ResNet50+ FPN. The experimental results are shown
in Table 4.

In Table 4, the performance of each network on Anchor-5
is better than that of Anchor-3. When backbone network
of VGG16 and ResNet50 is trained to the 50th epoch,
parameter curves fluctuate greatly due to adjustment of learn-
ing rate. Comparatively, our model which is backboned of
ResNet50+4-FPN has lower oscillation amplitude and stronger
robustness.

3) EXPERIMENT 3: HORIZONTAL AND VERTICAL
COMPARISON

In this experiment, we listed the detailed results after
training of each network under different conditions, and ver-
ified the effectiveness of the method in this paper through
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experimental comparison. Based on the maximum AP value,
the evaluation index values corresponding to each network
are shown in Table 5.

In horizontal comparison (Table 5), some evaluation
indexes when taking Anchor-3 are lower than the results of
other networks, but with Anchor-5, overall indexes display
significant improvement. Among the results with Anchor-5,
AP threshold and APsg are increased by 8.7% and 1.3%
respectively, compared with the original VGG16 backbone
network. The indexes for small target APS™!! and ARS™!! gre
increased about 11.4% and 10.2% separately. The overall loss
rate Loss is reduced by 4.7%.

Fig.10 shows the longitudinal comparison results of
Faster R-CNN and YOLOv3 when Faster R-CNN net-
works takes Anchor-5. Fig.10 (a-d) compares evaluation
indicators of AP, APsy, AP™Mal apnd AR™ 1n the
showed epoch scopes (200 epochs), YOLOv3 is still
climbing toward stabilization. By increasing the number
of training epochs in the YOLOvV3 network, YOLOv3
network parameters still have room for improvement.
It obviously suggests that all Faster R-CNN based net-
work models achieve best fitting effect after 75 epochs,
and the ResNet50+-FPN backboned Faster R-CNN converges
faster and is more robust than other networks. Fig.10 (e)
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FIGURE 10. Schematic diagram of depth camera geometry. (a) AP longitudinal comparison chart. (b) AP5q longitudinal comparison chart. (c) Apsmall
longitudinal comparison chart. (d) ARS™all Jongitudinal comparison chart. (e) Loss widthwise comparison chart.

FIGURE 11. Model recognition failure example.

shows change of Loss rate of different feature extraction
networks.

In real-time detection of farmland obstacles, real-time
detection during tractors operating at 2-14 km/h can be satis-
fied when average detection speed of a single image amounts
530ms [18]. In the longitudinal comparison, our method
reaches frame processing speed of 42ms. Compared with
the YOLOV3 network, although the detection time is slightly
longer, it still adapts real-time detection requirements of the
existing pepper harvesters at driving speed of 1.8-8 km/h [1],
which verifies the real-time performance and effectiveness of
our proposed method.

And, we also encounter some failure cases. Fig.11,
presents two typical cases: a missed target on the left
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(the red dotted box), and multiple frames for a single target on
the right (the two green solid boxes). The reason for these two
failure cases is different. For the first one, the targeted pepper-
fruit cluster is blocked into background by a pepper stem.
But for the second case, it is mainly caused by differential
exposure to different branches of one fruit cluster, due to its
scattered growth characteristic.

B. HEIGHT CALCULATION

The shooting range of the D435i depth camera is about
0.3m-3m. The following randomly selects 5 groups of
RGB-D images at different depth detection points for com-
parative experiments, as shown in Table 6. According to
our measurement, when the camera is positioned within
0.5m of the object, depth value in some areas cannot be
recorded, resulting in invalid depth values. When shooting in
the range of 2.5m-3.0m, height estimation error of predicted
objects will be over 2%. Therefore, relatively accurately
shot pixels by D435i are between depth range of 0.5m
and 2.5m.

Thus, we set depth range of 0.5m-2.5m as the filtering con-
dition for predicted proposals. Fig.12 shows the flowchart of
our target filtering process. At the end of prediction network,
multiple prediction boxes will be generated in RGB domain,
then central-point coordinates of prediction boxes are mapped
into their corresponding Depth image, and lastly qualified
prediction boxes are selected according to the depth value
filtering condition.

Among the four experimental groups that falls in the depth
filtering range (Table 6), average absolute error is about
4.4mm, with relative error of 1.1%. [19] states that it is
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TABLE 6. Experiments for spatial height estimation of detected targets.

Depth . Estimated Absolute .
Group Depth range distance Actual height height error Relative error ~ Average error
(/m) (/mm) (/%) (/%)
(/mm) (/mm) (/mm)
944 255 259 +4 157
1 0.5-1.0 945 291 295 +4 1.37 1.48
974 397 391 -6 151
1094 379 376 -3 0.79
2 1.0-1.5 1102 460 455 -5 1.08 0.85
1270 578 574 -4 0.69
1500 417 422 +5 1.20
3 1.5-2.0 1767 418 414 -4 0.96 111
1876 510 494 -6 1.18
2156 530 526 -4 0.75
4 2.0-2.5 2358 411 408 -3 0.73 0.80
2414 439 435 -4 0.91
2646 419 407 -12 2.86
5 2.5-3.0 2754 225 230 +5 2.22 2.48
3000 340 332 -8 2.35

filter

FIGURE 12. Prediction box filtering.

acceptable if height adjusting error for end effector of a
harvester is less than 43mm. So, we are surely to conclude
that our computation model satisfies height error requirement
during adjustment of harvester end effector.

IV. DISCUSSION
There is still room for improvement in our experiments.

In object detection experiments, firstly, volume of images
acquired in our dataset are insufficient due to limitation of
experiment conditions. Data acquisition time and times are
limited for that most clustered pod-peppers have short pluck-
ing period, with one growth season every year. And also, our
training samples are too small, which will make convolutional
neural network unable to completely capture characteristics
and changes of objects [20]. Therefore, appropriate expanded
data set will have better effect on improving the recognition
accuracy of neural network. Secondly, the Intel RealSense
D435i depth camera adopted has low accuracy and low reso-
lution for image shooting on RGB and depth pairs. Although
some blurred, distorted and incomplete original images are
eliminated, the original images with target occlusion are not
removed. The recognition and classification of low-resolution
images has always been a challenging problem [21], but
the detection model trained by high-resolution images usu-
ally cannot recognize or locate objects on low-resolution
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images [22]. Therefore, during network training, optimiz-
ing the target occlusion problem [23] and properly integrat-
ing higher-quality images is conducive to further improving
the recognition accuracy. Finally, our method is three times
slower than YOLOv3 network (Table 6), which is one of the
main differences between one-stage network and two-stage
network. Although our method meets the needs of real-time
detection for pepper harvester, the lightweight network [24]
has characteristics of less training parameters, fast detection
speed, high precision and low demand for portable GPU,
which can reduce the cost of algorithm landing and the com-
plexity of equipment.

For height positioning model, there are systematic and
computational model errors when estimating the height of
clustered pod-peppers combined with depth information In
case of our depth camera D435i, they include calibration
error, 0-2% recording error for depth image, image distortion
due to camera jitter, and estimation error incurred from for-
mula (9). Scholars have attempted multiple high-precision-
camera assisted shooting [26] and high-precision calibration
algorithm [27] to minimize three-dimensional positioning
errors.

Additionally, planting standardization in the data acqui-
sition site is incomplete. Standardized planting method can
not only reduce damage rate of harvested fruits [28], but also
effectively improve the accuracy of target detection network
and height positioning model. It is also possible to inte-
grate detection and positioning of clustered pod-pepper fruits
together. [29] have introduced an end-to-end RGB-D fusion
deep learning network, where both tasks of target recognition
and localization can realize at the same time.

93623



IEEE Access

S. Zhong et al.: Identification and Depth Localization of Clustered Pod Pepper Based on Improved Faster R-CNN

V. CONCLUSION

In order to solve the problems of small target recognition
and spatial localization for automatic height adjustment of
end effector during pod pepper harvesting, which always
characterized small-size, cluster growing and uneven growth,
an improved Faster R-CNN deep learning network and deep
information fusion model based on RGB-D image are pro-
posed, so both tasks of 2D identification and 3D localization
of pepper clusters are realized sequentially. Our main work
includes:

1) Establishment of one experimental dataset on clustered
pod-pepper. A total of 328 RGB and Depth images are
collected, and then augmented into the amount of 3062.
For model training, the dataset is separated into train
and validation subsets according to the ratio of 9:1.

2) Improvement on Faster R-CNN network. By optimiz-
ing anchor resolution of the RPN layer and using ROI
Align sampling, our model is more capable of extract-
ing tiny features and targets. Resnet50+FPN, VGG16
and ResNet50 are selected as Faster R-CNN back-
bones for horizontal comparison, and the one-stage
target detection network YOLOV3 for vertical com-
parison. The results show that AP and AP50 reach
75.79% and 87.30% respectively in our chosen model,
the ResNet50+FPN based network, which takes 42ms
for detectation of one single image. Our model shows
higher recognition accuracy and better comprehensive
performance than other models.

3) Construction of a height positioning model for pro-
posed pepper cluster frame center. The average height
estimation error is 1.1%, which meets error require-
ment for end effector height adjusting during pepper
harvesting.

Above experimental data indicates that our proposed
method meets requirements of real-time identification and
height positioning for clustered pod-pepper harvesting.
It could provide data input for lifting and lowering operations
of harvester end effector, which is a crucial reference for its
intelligent alteration design.
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