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ABSTRACT Traditionally height of end effector of pod pepper harvester is fixed, which induces it hardly
adapt to growth height of clustered peppers. Firstly, aiming at the problems of small size and clustered growth
of pepper fruits during identification task, an improved Faster R-CNN algorithm is proposed. On the one
hand, strategies such as increasing the types and number of high-resolution anchors and using RoI Align
instead of RoI Pooling are employed to improve the detection accuracy for tiny targets. On the other hand,
ResNet+FPN instead of VGG16 and ResNet backbone structure is adopted as the low-level feature extractor,
so extracting capability for small features can be enhanced effectively. Furthermore, to precisely locate the
position of clustered peppers, a height calculation model combining the 2D image recognition results with
its depth information is advanced. Comparative experiments show that the overall accuracy AP and AP50 of
our method reach 75.79% and 87.30%, respectively. Compared with VGG16 feature extraction model, the
two indicators are improved by 8.7% and 1.3%, respectively. The small target detection accuracy APsmall is
increased about 11.4%, with recall rate ARsmall increased up to 10.2%. The overall loss rate Loss is reduced
by 4.7%, which manifests greatly improvement compared to YOLOv3 model. The detection time of a single
frame reaches 42ms, which is slightly longer than that of YOLOv3 network, but it can still meet the real-time
detection requirements of pepper harvester. In 3D location experiment, the average absolute height error of
clustered peppers from the ground is 4.4mm, that accounts to the relative average error of 1.1%, thus suffices
the adjustment error requirement of the end effector.
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INDEX TERMS Clustered pop pepper, depth information location, improved faster R-CNN network, object
identification.

I. INTRODUCTION20

Traditional clustered pod pepper harvesters equipped with21

drum-tooth-type picking heads can only carry out ‘‘one size22

fits all’’ operations, which always introduces more manual23

operation errors and thus induces substantial mechanical24

damage to fruits as well as high loss rate during pepper25

harvesting [1].26

In recent years, with the continuous development of27

machine vision, image recognition technology is being28

widely integrated with agricultural machinery, marking a29

new application direction in agricultural automation and30

intelligence. At present, many scholars have applied image31

The associate editor coordinating the review of this manuscript and

approving it for publication was Sabah Mohammed .

recognition technology to the agricultural field and achieved 32

bountiful of excellent results. Wang [4] employed YOLOv4 33

based network and channel paper-cutting algorithm to greatly 34

reduce the amount of calculation during impurity removing 35

application for potatoes. Its detection accuracy rate was up 36

to 91.43%. He et al. [5] combined multi-convolutional neural 37

network with DXNet model to categorize apple fruits accord- 38

ing to their external quality, and reached 97.84% classifica- 39

tion accuracy rate. To identify kiwi fruit in a complex growth 40

environment, Mu et al. [6] employed an improved AlexNet 41

network and gained accuracy rate of 96.00%. Wang et al. [7] 42

marked four varieties of kiwifruit, and adopted transfer learn- 43

ing method on DensNet121 network. their final recognization 44

rate went up to 97.79%. In terms of pepper feature detection, 45

Yang [8] introduced CNN network model to identify and 46
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FIGURE 1. Flowchart of our method.

classify the defects of millet peppers, which achieved 93.13%47

and 98.76% recognition accuracy for bothmillet peppers with48

and without defects, respectively. To detect whether the fruit49

was damaged during the process of mechanized pepper-cap50

removal, Huynh et al. [9] obtained 95.2% recognition accu-51

racy. Loti and Noor [10] comprehensively adopted machine52

learning and deep learning methods to analyze diseases and53

insect pests of red pepper and bird’s-eye pepper. Their recog-54

nition accuracy reached 92.10%. It can be seen that the appli-55

cation of machine vision in the agricultural field is gradually56

becoming mature.57

The clustered pod pepper is a variety of chili pep-58

pers. With uneven plant height and maturation period, and59

fruits mainly topping on branches, together with character-60

istics of small size and dense cluster, fruits of pod pepper61

are often difficult to be labelled and identified. In this62

paper, an improved Faster R-CNN target detection algorithm63

is proposed, in which different low-level feature extrac-64

tion backbone networks, including VGG16, ResNet50 and65

ResNet50+FPN, will be compared horizontally, and opti-66

mization schemes are employed so that the detection accuracy67

of small targets can be obtained. Longitudinal comparison68

with YOLOv3 network, backboned DarkNet53, is carried69

out so effectiveness of the proposed method can be verified.70

Finally, combinedwith depth image information, spatial posi-71

tioning calculation model and experiment are exerted, which72

will provide a location reference for automatic adjustment of73

the end effector of pepper harvester. The overall process is74

shown in Fig.1.75

The main contributions of this paper are as follows:76

1) Dataset of clustered pod pepper is constructed and77

manually annotated. To-tally 328 RGB-D (Red Green78

Blue-Depth) images of clustered pepper are acquired,79

and 3062 images are generated after expansion.80

FIGURE 2. Sample data (RGB image on the left, Depth image on the right).

2) Improvement of recognition accuracy for small-sized 81

cluster or individual fruit via hyperparameters and 82

structure optimizing of Faster R-CNN network. 83

ResNet50+FPN feature extraction layer, Anchor scale 84

and quantity adjustment, and RoI Align sampling are 85

comprehensively used to improve sampling accuracy 86

and extraction ability of the network for small features. 87

3) A spatial height localization model is constructed, with 88

combination of RGB-D depth image information. The 89

calculated height is the crucial input parameter for auto- 90

matic height adjustment of the end effector of pepper 91

harvester. 92

II. MATERIALS AND METHODS 93

Our method will follow the pipeline of Fig.1. 94

A. DATA ACQUISITION AND PREPROCESSING 95

So far as we know, there hasn’t one clustered pod pepper 96

dataset publicly available on the Internet, so we have to 97

construct the dataset from the beginning. The experimental 98

images used in this paper were acquired from the pod pep- 99

per planting base in Baiyi Town, Wudang District, Guiyang, 100

China. The collection time is 9:00 to 12:00 am on a sunny day 101

on August 24, 2021 and a cloudy day on October 18, 2021. 102

A total of 656 images of the clustered pepper were effectively 103

captured by Intel RealSense D435i depth camera, including 104

328 color images and 328 depth images. The collected data 105

samples are shown in Fig.2. 106

The acquired RGB images are manually labeled using 107

LabelImg labeling software. During labelling, smallest cir- 108

cumscribed rectangle method for clustered pepper fruits is 109

adopted. Annotations are saved in a file of XML format. 110

All images are made in VOC format. In order to improve 111

sample diversity for model training, it is necessary to enhance 112

the collected data. In our experiment, the original data are 113

processed by rotating, flipping, embossing, adding noise, 114

color enhancement, and changing the grayscale and contrast 115

of the picture. Hence the data volume of RGB images is 116

2406 pieces. Then rotate the original data by 15◦ and 30◦, 117

and finally we get 3062 RGB images. Depth images are 118

synchronously processed. The experimental data preprocess- 119

ing is shown in Fig.3. For model training, the training and 120

validation data will be randomly allocated in a ratio of 9:1, 121

that is, 2756 and 306 images in training set and validation set 122

separately. 123
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FIGURE 3. Data enhancing. ((a) Original image, (b) Flip up and down,
(c) Flip left and right, (d) Brightness, (e) Grayscale, (f) Contrast,
(g) Gaussian noising, (h) Emboss, (i) Gaussian blur, (j) Mean blur,
(k) Median blur, (l) Rotation).

FIGURE 4. Schematic diagram of Faster R-CNN network.

B. FASTER R-CNN NETWORK OVERVIEW124

The Faster R-CNN network was first proposed by Ren et al.125

[11] at the NIPS conference in 2015. The framework consists126

of three parts: feature extraction network (Backbone), Region127

Proposal Network (RPN) and Region of Interest pooling layer128

(RoI pooling). Synthesizing advantages of both R-CNN and129

Fast R-CNN, Faster R-CNN framework inserts a region pro-130

posal network (RPN) into the original Fast R-CNN network.131

Discarding traditional SS (selective search) and other candi-132

date selection methods, RPN can greatly reduce the amount133

of computation and effectively reduce model training time.134

Faster R-CNN framework is shown in Fig.4.135

Original images will turn into Feature Maps after passing136

through the feature extraction network, which share con-137

volutional features with RPN and RoI Pooling layers. The138

RPN layer is the main highlights in Faster R-CNN network139

(Fig.5). In order to predict objects of different shapes and140

sizes during convolution operation, each time the convo-141

lution kernel slides, an anchor point will be generated in142

the center of the convolution kernel. Finally, the network143

model comprehensively corrects information from features,144

2k classification and 4k bounding box regression to achieve145

the target of accurate object detectation.146

Faster R-CNN network includes two loss functions, RPN147

loss and Fast R-CNN loss. In the RPN network, its loss148

FIGURE 5. RPN sketch.

function [12] is: 149

L ({pi} , {ti})=
1
Ncls

∑
i

Lcls
(
pi,p∗i

)
+λ

1
Nreg

∑
i

p∗i Lreg
(
ti,t∗i

)
150

(1) 151

where Ncls represents the number of all samples in a mini- 152

batch, Nreg represents the number of anchor positions (the 153

total number of anchors generated on the feature map), λ is 154

the weight factor of the two losses. 155

Lcls denotes multi-class cross entropy loss (SoftMax Cross 156

Entropy) for classification task, which is defined as: 157

Lcls
(
pi,p∗i

)
= −log (pi) (2) 158

where pi represents the probability that the i-th anchor is 159

predicted to be a true label; p∗i represents 1 when the sample 160

is a positive sample, and 0 otherwise. 161

For bounding box regression task, its loss function is same 162

as Fast R-CNN: 163

Lreg
(
ti,t∗i

)
= R

(
ti−t∗i

)
(3) 164

where ti represents the predicted bounding box parameter 165

corresponding to the i-th anchor; t∗i represents its related 166

GT value. R represents the SmoothL1 loss function, which is 167

defined as: 168

SmoothL1 (x)=

{
0.5x2 |x|< 1
|x| −0.5 other

(4) 169

C. MODEL OPTIMIZATION 170

1) BACKBONE NETWORK SUBSTITUTION 171

The initial feature extraction network of Faster R-CNNmodel 172

is VGG16 convolutional neural network. A large number 173

of experiments have shown that with the deepening of the 174

number of network layers, convolutional neural network will 175

not only cause training results to decline, but also lead to the 176

problem of gradient explosion or gradient vanishing. In this 177

regard, we introduce ResNet50+FPN network model as the 178

backbone feature extraction network (Fig.6). ResNet50 is a 179

residual network that provides an effective solution for gra- 180

dient vanishing. Traditional Faster R-CNN network contains 181
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FIGURE 6. ResNet50+FPN network structure (Conv1-Conv5 are five layers
in the Resnet50 network, five Conv1× 1 modules were used to adjust the
numbers of channels in different feature layers, ‘‘+’’ means feature
information fusion by add method, four Conv3× 3 modules are used for
further feature information extraction).

only one feature layer after 16 times of downsampling, while182

FPN combines high-level semantic features of the network183

with underlying detail features. FPN has the ability of pre-184

dicting candidate frames in multiple feature scope, so it is185

easier for the entire network to gather feature information of186

the target object and thus enhance the utilization of image187

features. In experiments, we choose three layers {layer2,188

layer3, layer4} in ResNet50 to participate in network weight189

training, and selects VGG16 and ResNet50 network models190

for horizontal comparison.191

2) ANCHOR RESOLUTION INCREASING192

Pod-pepper fruits are small-sized and densely growing.193

Implementation of Faster R-CNN without any alteration to194

our database can only result in poor detection accuracy, espe-195

cially for individual and small clustered pepper fruits [13].196

Our solution is to enlarge anchor scales to improve feature197

resolutions while keeping its original ratios (1:1, 1:2, 2:1)198

unchanged. In our experiment, anchor size is adjusted from199

[1282, 2562, 5122] (Marked as Anchor-3) to [322, 642, 1282,200

2562, 5122] (Marked as Anchor-5).201

3) ROI POOLING SCHEME ALTERATION202

After RPN layers, the obtained regression hyper-parameters203

are float data. Then RoI Pooling layer is responsible for204

mapping candidate proposals to fix-sized Feature Map, after205

two quantization operations:206

1) When one candidate proposal is mapped to the shared207

feature layer, its float coordinates are rounded up.208

2) When one boundary area is divided into k × k units209

(bins) on average, float coordinates of unit corners are210

also rounded into integers.211

The two quantization operations have changed the initial212

prediction range of the candidate frame, and will bring large213

deviations when abstracting small features, thus resulting in214

decrease of accuracy on tiny objects.215

RoI Align method (Fig.7) proposed in Mask R-CNN [14]216

is an effective scheme to avoid data rounding up. RoI Align217

FIGURE 7. RoI Align sampling (Note: the black dots and yellow dots
denotes x and x respectively, the black dot indicates each pixel, the
yellow dot indicates the sampling points evenly divided in the
non-quantized area, and the blue box indicates the non-quantized area).

FIGURE 8. Bilinear interpolation in one subregion.

utilizes bilinear interpolation in each sub-cell to calculate 218

output value of each sampling point, and output themaximum 219

value in sub-region for fixed-sized RoI via Max pooling 220

method, so it will not round up floating-point coordinates of 221

candidate proposals and divided units. 222

Fig.8 details the bilinear interpolationmethod in one subre- 223

gion. P is the coordinate point obtained by the model through 224

the regression parameters.Q11,Q12,Q21, andQ22 are the four 225

points of the cell where P is located, and their coordinate val- 226

ues and pixel values are all parameters. First, the coordinates 227

and pixel values of R1 and R2 are obtained by the first inter- 228

polation method, and then the coordinates and pixel values of 229

point P are obtained by the second interpolation method. The 230

calculation method is shown in formula (5)(6)(7). 231

R1: f (x,y1) ≈
x2−x
x2−x1

f (Q11)+
x−x1
x2−x1

f (Q21) (5) 232

R2: f (x,y2) ≈
x2−x
x2−x1

f (Q12)+
x−x1
x2−x1

f (Q22) (6) 233

P :f (x,y) ≈
y2−y
y2−y1

f (x,y1)+
y−y1
y2−y1

f (x,y2) (7) 234

In the formula above, (x1, y1) and (x2, y2) are coordinate 235

values of Q11 and Q22 respectively, and Q11, Q12, Q21, Q22 236

are pixel values of four points. 237

D. OBJECT DETECTION - EXPERIMENTAL METHODS 238

1) COMPUTATIONAL DEVICE 239

In our experiment, Intel RealSense D435i depth camera was 240

used for image shooting, which is capable of capturing both 241
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TABLE 1. Computation server configurations.

TABLE 2. Hyperparameter settings.

RGB flows and Depth flows, and aligning these two flows242

for further image processing. Camera parameters include:243

resolution sizes of 640 × 480 for both color and depth map,244

frame rate 60 fps/s, and depth range in 0.3m-3m. The experi-245

ment was carried out on a computation server, as configured246

in Table 1. In order to further exert the computing power247

of this server, CUDA11.0 and cuDNN8.0.5 are installed for248

GPU computation. And also, a parallel computing strategy249

is implemented to balance memory load of multiple GPU250

processors for model-training acceleration.251

2) COMPARATIVE MODEL252

YOLOv3 network is a regression based one-stage object253

detection network. Compared with the Faster R-CNN, it gen-254

erates candidate frames during prediction stage, and directly255

performs regression decoding on parameters of predicted256

frames, so tasks of object detection and classification could257

be satisfied at the same time that overall training cost is saved258

enormously. YOLOv3 is known for fast detection speed,259

aswell as ability on feature extraction, sowe chooseYOLOv3260

as the longitudinal comparison network.261

3) HYPERPARAMETERS262

The two deep learning networks Faster R-CNN and YOLOv3263

used in the experiment run on the same server. In order264

to avoid interference of other factors on experimental265

results, training hyperparameters of both models are samely266

set (Table 2), including batch size, epochs, image size267

(input shape), optimizer, momentum, the regularization268

weight decay rate (weight decay), non-maximum suppression269

(NMS), confidential threshold, IoU, learning rate, and learn-270

ing rate adjustment multiplier (gamma).271

4) EVALUATION INDICATORS 272

COCO evaluation standard is used to performance evaluation, 273

which includes indicators of Precision, Recall (recall rate), 274

AP (average precision) and mAP (mean Average Precision): 275

Precision =
TP

TP+ FP
(8) 276

Recall =
TP

TP+ FN
(9) 277

AP =
∫ 1

0
P (r)dr (10) 278

mAP =

∑M
q=1AP (q)

M
(11) 279

where TP (true positives), FP (false positives) and FN (false 280

negatives) represent correctly classified positive samples, 281

falsely classified positive samples and, falsely classified neg- 282

ative samples; AP refers to curve area covered by all Precision 283

and Recall points in two-dimensional coordinate system; 284

mAP is the average of APs of all classes; M denotes the total 285

number of all categories. 286

We select AP, AP50, APsmall, and ARsmall as the exact 287

indicators, of which the superscript small denotes indicator 288

for tiny targets. Among them, AP is the mAP average value 289

calculated from 10 IoU thresholds from 0.50 to 0.95 with 290

a proportional interval of 0.05, and AP50 is the mAP value 291

when the IoU threshold is 0.5, APsmall and ARsmall are aver- 292

age precision and recall rate on tiny targets. 293

5) TRANSFER LEARNING 294

The augmented 3062 image data cannot meet the needs of 295

weight training from the very beginning, we adopt the idea of 296

transfer learning. Pre-trained weights exposed by PASCAL 297

VOC2012 dataset are utilize, to enable faster convergence 298

during model training. 299

E. SPATIAL POSITIONING 300

After one image passes through depth network, a prediction 301

box of target object will be generated. The midpoint of the 302

prediction box is marked as its image position, which denotes 303

the exact locale of the targeted object in the 2D RGB image. 304

However, in the world coordinate system, 3D coordinate of 305

the target still needs to be determined through physical quan- 306

titative methods such as distance or depth measures, which 307

the stored Depth image captured by depth camera can provide 308

directly. RGB and Depth images have pixel correspondence. 309

We can easily convert between pixel coordinates {u, v} and 310

world coordinates {X ,Y ,Z} based on mapped RGB and 311

Depth images. The conversion is expressed by formula (12). 312

Zc

 uv
1

=K [R,t]


X
Y
Z
1

 (12) 313

where K is internal parameter matrix and [R, t] external 314

parameter matrix of the selected depth camera. 315
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FIGURE 9. Schematic diagram of depth camera geometry.

In height positioning experiment, depth camera is fixed on316

a plane with known height. Let calibrated camera coordinate317

system {xc, yc, zc} coincide with world coordinate system318

{Xworld, Yworld, Zworld} (Fig.9). When the camera is placed319

horizontally (α = 0), image plane will coincide with projec-320

tion plane, and height value h of the camera optical center321

above the ground is equal to h
′

m, central height of the plane322

where the predicted target located. In this case, the calculated323

Yworld value is a relative coordinate between the predicted324

target point and the image center point along Y axis of the325

image plane (Yworld = Y ). When the camera is placed at an326

angle to the horizontal plane (α 6= 0), image plane will incline327

an angle α with projection plane of the target in 3D space.328

By solving the triangle, we can get formula (13):329

H =

{
(h− d∗sinα)±Yworld∗ cosα α 6= 0
h±Yworld α = 0

(13)330

In formula (13), α is angle between central axis of camera331

and horizontal plane, d is depth value of the predicted target332

point, h is ground clearance height of camera optical center,333

and H is the actual ground clearance height of the target334

object.335

III. MATERIALS AND METHODS336

A. PEPPER FRUIT DETECTION337

We conducted three groups of comparative experiments:338

experiments 1 to 3. In experiment 1, we fixed the339

value of Anchor and compared the overall impact of340

TABLE 3. ROI pooling contrast.

different ROI pooling operations on Faster R-CNN network. 341

In experiment 2, we compared the influence of different 342

Anchor values on the whole network. In experiment of 3, 343

we selected Faster R-CNN and YOLOv3 network to imple- 344

ment horizontal and vertical experiments, so the network 345

more suitable for recognizing clustered pod-peppers can be 346

identified. 347

1) EXPERIMENT 1: ROI POOLING CONTRAST 348

In [12], [15], and [16], optimization strategy of RoI Align 349

instead of RoI Pool is adopted to increase detection accuracy 350

of small target objects. In [17], this method is claimed to 351

improve detection ability of for small targets of industrial 352

aluminum profiles by 17%. In our experiment, anchor size 353

is fixed to Anchor-3, and Faster R-CNN networks with back- 354

bone VGG16 and ResNet50 are compared. The experimental 355

results are shown in Table 3. 356

It can be seen from Table 3 that RoI Align gains better 357

performance than RoI Pooling. For small objects, the average 358

accuracy APsmall has improved by 11.17% and 9.98% over 359
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TABLE 4. The overall results of the network after anchor take different values.

TABLE 5. Evaluation metrics of different models.

VGG16 and ResNet50 backbone respectively. Thus, in our360

application of clustered pod-peppers detection, RoI Align is361

chose for ROI pooling.362

2) EXPERIMENT 2: ANCHOR COMPARISON363

In order to verify the influence of different Anchor values364

on the evaluation parameters of the network. In this experi-365

ment, we fixed RoI Align as the pooling layer, and compared366

Faster R-CNNnetworkwith backbones of VGG16, ResNet50367

and ResNet50+ FPN. The experimental results are shown368

in Table 4.369

In Table 4, the performance of each network on Anchor-5370

is better than that of Anchor-3. When backbone network371

of VGG16 and ResNet50 is trained to the 50th epoch,372

parameter curves fluctuate greatly due to adjustment of learn-373

ing rate. Comparatively, our model which is backboned of374

ResNet50+FPN has lower oscillation amplitude and stronger375

robustness.376

3) EXPERIMENT 3: HORIZONTAL AND VERTICAL377

COMPARISON378

In this experiment, we listed the detailed results after379

training of each network under different conditions, and ver-380

ified the effectiveness of the method in this paper through381

experimental comparison. Based on the maximum AP value, 382

the evaluation index values corresponding to each network 383

are shown in Table 5. 384

In horizontal comparison (Table 5), some evaluation 385

indexes when taking Anchor-3 are lower than the results of 386

other networks, but with Anchor-5, overall indexes display 387

significant improvement. Among the results with Anchor-5, 388

AP threshold and AP50 are increased by 8.7% and 1.3% 389

respectively, compared with the original VGG16 backbone 390

network. The indexes for small target APsmall and ARsmall are 391

increased about 11.4% and 10.2% separately. The overall loss 392

rate Loss is reduced by 4.7%. 393

Fig.10 shows the longitudinal comparison results of 394

Faster R-CNN and YOLOv3 when Faster R-CNN net- 395

works takes Anchor-5. Fig.10 (a-d) compares evaluation 396

indicators of AP, AP50, APsmall, and ARsmall. In the 397

showed epoch scopes (200 epochs), YOLOv3 is still 398

climbing toward stabilization. By increasing the number 399

of training epochs in the YOLOv3 network, YOLOv3 400

network parameters still have room for improvement. 401

It obviously suggests that all Faster R-CNN based net- 402

work models achieve best fitting effect after 75 epochs, 403

and the ResNet50+FPN backboned Faster R-CNN converges 404

faster and is more robust than other networks. Fig.10 (e) 405
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FIGURE 10. Schematic diagram of depth camera geometry. (a) AP longitudinal comparison chart. (b) AP50 longitudinal comparison chart. (c) APsmall

longitudinal comparison chart. (d) ARsmall longitudinal comparison chart. (e) Loss widthwise comparison chart.

FIGURE 11. Model recognition failure example.

shows change of Loss rate of different feature extraction406

networks.407

In real-time detection of farmland obstacles, real-time408

detection during tractors operating at 2-14 km/h can be satis-409

fied when average detection speed of a single image amounts410

530ms [18]. In the longitudinal comparison, our method411

reaches frame processing speed of 42ms. Compared with412

the YOLOv3 network, although the detection time is slightly413

longer, it still adapts real-time detection requirements of the414

existing pepper harvesters at driving speed of 1.8-8 km/h [1],415

which verifies the real-time performance and effectiveness of416

our proposed method.417

And, we also encounter some failure cases. Fig.11,418

presents two typical cases: a missed target on the left419

(the red dotted box), andmultiple frames for a single target on 420

the right (the two green solid boxes). The reason for these two 421

failure cases is different. For the first one, the targeted pepper- 422

fruit cluster is blocked into background by a pepper stem. 423

But for the second case, it is mainly caused by differential 424

exposure to different branches of one fruit cluster, due to its 425

scattered growth characteristic. 426

B. HEIGHT CALCULATION 427

The shooting range of the D435i depth camera is about 428

0.3m-3m. The following randomly selects 5 groups of 429

RGB-D images at different depth detection points for com- 430

parative experiments, as shown in Table 6. According to 431

our measurement, when the camera is positioned within 432

0.5m of the object, depth value in some areas cannot be 433

recorded, resulting in invalid depth values. When shooting in 434

the range of 2.5m-3.0m, height estimation error of predicted 435

objects will be over 2%. Therefore, relatively accurately 436

shot pixels by D435i are between depth range of 0.5m 437

and 2.5m. 438

Thus, we set depth range of 0.5m-2.5m as the filtering con- 439

dition for predicted proposals. Fig.12 shows the flowchart of 440

our target filtering process. At the end of prediction network, 441

multiple prediction boxes will be generated in RGB domain, 442

then central-point coordinates of prediction boxes aremapped 443

into their corresponding Depth image, and lastly qualified 444

prediction boxes are selected according to the depth value 445

filtering condition. 446

Among the four experimental groups that falls in the depth 447

filtering range (Table 6), average absolute error is about 448

4.4mm, with relative error of 1.1%. [19] states that it is 449
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TABLE 6. Experiments for spatial height estimation of detected targets.

FIGURE 12. Prediction box filtering.

acceptable if height adjusting error for end effector of a450

harvester is less than 43mm. So, we are surely to conclude451

that our computation model satisfies height error requirement452

during adjustment of harvester end effector.453

IV. DISCUSSION454

There is still room for improvement in our experiments.455

In object detection experiments, firstly, volume of images456

acquired in our dataset are insufficient due to limitation of457

experiment conditions. Data acquisition time and times are458

limited for that most clustered pod-peppers have short pluck-459

ing period, with one growth season every year. And also, our460

training samples are too small, whichwill make convolutional461

neural network unable to completely capture characteristics462

and changes of objects [20]. Therefore, appropriate expanded463

data set will have better effect on improving the recognition464

accuracy of neural network. Secondly, the Intel RealSense465

D435i depth camera adopted has low accuracy and low reso-466

lution for image shooting on RGB and depth pairs. Although467

some blurred, distorted and incomplete original images are468

eliminated, the original images with target occlusion are not469

removed. The recognition and classification of low-resolution470

images has always been a challenging problem [21], but471

the detection model trained by high-resolution images usu-472

ally cannot recognize or locate objects on low-resolution473

images [22]. Therefore, during network training, optimiz- 474

ing the target occlusion problem [23] and properly integrat- 475

ing higher-quality images is conducive to further improving 476

the recognition accuracy. Finally, our method is three times 477

slower than YOLOv3 network (Table 6), which is one of the 478

main differences between one-stage network and two-stage 479

network. Although our method meets the needs of real-time 480

detection for pepper harvester, the lightweight network [24] 481

has characteristics of less training parameters, fast detection 482

speed, high precision and low demand for portable GPU, 483

which can reduce the cost of algorithm landing and the com- 484

plexity of equipment. 485

For height positioning model, there are systematic and 486

computational model errors when estimating the height of 487

clustered pod-peppers combined with depth information In 488

case of our depth camera D435i, they include calibration 489

error, 0-2% recording error for depth image, image distortion 490

due to camera jitter, and estimation error incurred from for- 491

mula (9). Scholars have attempted multiple high-precision- 492

camera assisted shooting [26] and high-precision calibration 493

algorithm [27] to minimize three-dimensional positioning 494

errors. 495

Additionally, planting standardization in the data acqui- 496

sition site is incomplete. Standardized planting method can 497

not only reduce damage rate of harvested fruits [28], but also 498

effectively improve the accuracy of target detection network 499

and height positioning model. It is also possible to inte- 500

grate detection and positioning of clustered pod-pepper fruits 501

together. [29] have introduced an end-to-end RGB-D fusion 502

deep learning network, where both tasks of target recognition 503

and localization can realize at the same time. 504
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V. CONCLUSION505

In order to solve the problems of small target recognition506

and spatial localization for automatic height adjustment of507

end effector during pod pepper harvesting, which always508

characterized small-size, cluster growing and uneven growth,509

an improved Faster R-CNN deep learning network and deep510

information fusion model based on RGB-D image are pro-511

posed, so both tasks of 2D identification and 3D localization512

of pepper clusters are realized sequentially. Our main work513

includes:514

1) Establishment of one experimental dataset on clustered515

pod-pepper. A total of 328 RGB and Depth images are516

collected, and then augmented into the amount of 3062.517

For model training, the dataset is separated into train518

and validation subsets according to the ratio of 9:1.519

2) Improvement on Faster R-CNN network. By optimiz-520

ing anchor resolution of the RPN layer and using ROI521

Align sampling, our model is more capable of extract-522

ing tiny features and targets. Resnet50+FPN, VGG16523

and ResNet50 are selected as Faster R-CNN back-524

bones for horizontal comparison, and the one-stage525

target detection network YOLOv3 for vertical com-526

parison. The results show that AP and AP50 reach527

75.79% and 87.30% respectively in our chosen model,528

the ResNet50+FPN based network, which takes 42ms529

for detectation of one single image. Our model shows530

higher recognition accuracy and better comprehensive531

performance than other models.532

3) Construction of a height positioning model for pro-533

posed pepper cluster frame center. The average height534

estimation error is 1.1%, which meets error require-535

ment for end effector height adjusting during pepper536

harvesting.537

Above experimental data indicates that our proposed538

method meets requirements of real-time identification and539

height positioning for clustered pod-pepper harvesting.540

It could provide data input for lifting and lowering operations541

of harvester end effector, which is a crucial reference for its542

intelligent alteration design.543
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