IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

Received 19 August 2022, accepted 26 August 2022, date of publication 31 August 2022, date of current version 12 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3203175

== RESEARCH ARTICLE

HCVNet: Binocular Stereo Matching via Hybrid
Cost Volume Computation Module
With Attention

CHENGLIN DAI'2, QINGLING CHANG 12, TIAN QIU', XINGLIN LIU”12, AND YAN CUI'-23

Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
2China-Germany Artificial Intelligence Institute (Jiangmen), Wuyi University, Jiangmen 529000, China
3Zhuhai 4Dage Network Technology, Zhuhai 519000, China

Corresponding author: Yan Cui (acuiyan@wyu.edu.cn)

This work was supported in part by the School Research Projects of Wuyi University under Grant 2020KZDZX1204.

ABSTRACT Binocular stereo matching, a computer vision task typically using cost volume constructed
from the left and right feature maps to estimate disparity and depth, is widely applied in 3D reconstruction,
autonomous driving and robotics navigation. Though recent study brings an awareness of the convolution
neural networks and the attention algorithms used in this field can make great progress, it is still difficult to
satisfy the demand of high-precision applications due to many reasons. Study finds that the exist methods
usually incline to ignore the intermediate feature map of other scales, pay less attention to the relationship
between left and right feature maps and even just tend to use one type of cost volume to train the model.
In this article, we mainly focus on solving the three rproblems mentioned above. Firstly, we present the
Multi-scale Feature Extraction and Fusion Module (MFEFM) to get the informational feature maps via
fusing all scale feature maps. And then we design the Effective Channel Attention Module (ECAM) applied
to better capture and utilize the channel-wise independencies. Finally, we adopt the Hybrid Cost Volume
Computation Module (HCVCM) to construct and aggregate cost volume. With these solutions, we build an
end-to-end stereo matching network named HCVNet. Comparison with other state-of-the-art models, it can
achieve 0.714 EPE on SceneFlow dataset, descending PSMNet (1.09 EPE) by 37.6%.

INDEX TERMS Binocular stereo matching, feature map, channel-wise independencies, channel attention,
cost volume.

I. INTRODUCTION vision tasks based on deep learning such as image classifica-

Binocular stereo matching, which is depth estimation in
essence, usually towards getting disparity using aggregated
cost volume computed from the input left and right images.
According to the formula D = B x f/d, the depth D would
be calculated from the baseline B, the focal length f and the
estimated disparity d, where baseline refers to the distance
between the input left and right images. Moreover, as a clas-
sical and significant vision task, it lays a solid foundation for
3D reconstruction [1], autonomous driving [2] and robotics
navigation [3].

On the one hand, since the convolution neural networks
(CNNs) were introduced into the computer vision field, many
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tion [4], object detection [5], object recognition [6], etc. have
achieved great progress. So is the binocular stereo matching.
Just taking PSMNet [7], FADNet [8] and StereoNet [9] as
examples, PSMNet is a major breakthrough for integrating
global context information to cost volume to address the ill-
posed region problems, FADNet is implemented by 2D based
correlation layers with the help of multi-scale weight training
strategy to maintain faster computing speed, and StereoNet
uses low-resolution cost volume to speed up running time and
employs the edge sensing up sampling function to retain the
details of the edge. They can indeed obtain very competitive
outcomes in a certain period of time.

On the other hand, some learning-based vision tasks, such
as instance segmentation [10], scene segmentation [11] and
image super-resolution [12], which depend on the attention
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algorithms typically used in natural language processing to
focus on region of interest also perform better. Binocular
stereo matching is no exception. MCANet [13] involves it for
refining disparity, and NLCA-Net [ 14] exploits global context
information with the help of it. Both of them can accomplish
their targets.

However, to be exact, even though these studies can
achieve compelling performance, the insufficient use prob-
lem of the other scale intermediate feature maps and the other
types of cost volumes, and the less attention problem to the
channel-wise independencies of the left and right feature map
hinder them from meeting the requirements of high accuracy
applications. Hence, in order to mitigate the impact of these
above problems and gain exceedingly good effects as possi-
ble, we try to do a lot of work. Firstly, to make model learn
enough useful feature map information of the original images
adequately, we present the Multi-scale Feature Extraction
and Fusion Module (MFEFM) to fuse all scale feature maps.
Secondly, aiming to better capture and utilize the channel-
wise independencies between the extracted feature map pairs,
we design the Effective Channel Attention Module (ECAM).
Then due to single cost volume computation method is ardu-
ous to fully employ three kinds of cost volumes, so we adopt
the Hybrid Cost Volume Computation Module (HCVCM),
which contains the New Cost Aggregation Module (NCAM)
and the Cost Volume Construction Module (CVCM) applied
to build the Hybrid Cost Volume (HCV). At last combining
these solutions, we set up a competitive end-to-end stereo
matching network named HCVNet. The contributions are as
follows:

« We present the Multi-scale Feature Extraction and
Fusion Module (MFEFM) to amply avail itself of all
scale extracted feature maps from the input images.

o We design the Effective Channel Attention Module
(ECAM) to sufficiently capture and resort to channel-
wise independencies of the right extracted feature map
according to the left extracted feature map.

o We adopt the Hybrid Cost Volume Computation Module
(HCVCM) which comprises the New Cost Aggregation
Module (NCAM) and the Cost Volume Construction
Module (CVCM) for plentifully exploiting the Hybrid
Cost Volume (HCV) and getting better results.

o We construct an end-to-end stereo matching network
called HCVNet whose competitiveness can not be
ignored.

Il. RELATED WORK

A. LEARNING-BASED MULTI-SCALE FEATURE EXTRACTION
AND FUSION APPROACH

The common learning-based multi-scale feature extraction
and fusion strategies can be divided into the parallel multi
branch feature extraction and fusion method and the serial
skip connection structure. Without this module, the model
would not be able to learn more informative messages.
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1) THE PARALLEL MULTI-BRANCH FEATURE EXTRACTION
AND FUSION METHOD

Typically, using the dilated convolution, altering the kernel
size of convolution or utilizing the pooling operation can
influence the size of the receptive field and obtain different
feature maps prior to feature fusion. For example, the basic
inception module in Inception V1 [15] consists of the stan-
dard 1 x 1 convolution, 3 x 3 convolution, 5 x 5 convo-
lution, and 3 x 3 max pooling layers, which enable creat-
ing feature maps of various information. The SPP (Spatial
Pyramid Pooling) structure of the SPPNet [16] can minimize
the loss and deformation problem of the image information
caused by a series of operations such as crop, warp, flip,
and so forth as much as feasible. To gain several receptive
fields and multi-scale feature maps, PSPNet [17] resorts to
a technique that directly modifies the pooling procedures of
different sizes, the Deeplav network [18], [19], [20] depends
on the increasingly augmented ASPP (Atrus Spatial Pyramid
Pooling) algorithm, and Big-Little Net [21] gets the aid of the
presented parallel multi-branch network structure and fusion
module.

2) THE SERIAL SKIP CONNECTION STRUCTURE
It is frequent to realize feature fusion through skipping con-
nection. With the aid of it, U-Net [22] can ensure the final
recovered feature map incorporates more low-level features
of various scales, and FPN [23] can integrate the high-level
features with the adjacent low-level features separately for
each layer. Based on FPN, Libra R-CNN [24] produces and
fuses feature maps of four scales by building a balanced
feature pyramid, PAN [25] can also add the low-level fea-
tures to the not adjacent higher-level layer using its feature
pyramid enhancement module, ThunderNet [26] presents a
simple context enhancement module to directly fuse the target
feature map of three scales at a low computation cost, NAS-
FPN [27] constructs a new feature fusion module with the net-
work structure searching method, and BiFPN [28] gives birth
to a feature fusion module layer with self-learning weight.
In general, these two kinds of feature extraction and fusion
approaches can be appropriately chosen based on the require-
ment. However, the usage trend of the serial skip connection
structure may rise due to it is more flexible than the parallel
multi-branch feature extraction and fusion method. We sup-
port the prevailing view that sending the feature map with
the local semantic information of each scale to the next task
allows the network to pick up more meaningful messages and
strengthen the feature representation capacity.

B. VOLUMETRIC STEREO MATCHING MODEL
Learning-based volumetric binocular stereo matching algo-
rithms are generally divided into two categories. One is the
4D model generating cost volume with feature channel, can-
didate disparity, height and width, another is the 3D model
constructing cost volume lacking feature channel under single
resolution, where D refers to dimension.
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FIGURE 1. Pipeline of the proposed network HCVNet. MFEFM is the multi-scale feature extraction and fusion module. ECAM refers to the effective
channel attention module. HCVCM also call the hybrid cost volume computation module, which contains the cost volume construction module (CVCM),
the hybrid cost volume (HCV) Cj., and the new cost aggregation module (NCAM). ERM is the edge-aware refinement module, WM is the warping

module.

1) 3D MODELS

DispNetC [29] is undoubtedly a milestone owing to it is the
first method to build 3D cost volume and directly regress the
3D cost volume in an end-to-end learning manner. In order
to reduce the impact of ill-posed region problems, CRL [30]
refines the initial disparity value with the cross-scale feature
information, and AANet [31] handles them via the cross-scale
cost aggregation algorithm. To maintain faster computing
speed, taking FADNet as backbone, ESNet [32] simplifies the
original network structure and acquires motion compensation
with pixel distortion. So as to avoid the intensive calcu-
lation and memory consumption, SCV stereo [33] utilizes
sparse cost volume representation to store the optimal k-value
matching cost of each pixel. Thanks to those creative ideas,
they are able to yield very competitive outcomes in a certain
period of time. But for 3D models, the lack of enough infor-
mation is what prevents them from achieving high-precision
results.

2) 4D MODELS WITHOUT ATTENTION

When faced with the ill-posed region challenges, SSPCV-
Net [34] extracts details from semantic segmentation sub
networks, the content-aware inter-scale cost aggregation
method [35] adaptively aggregates and upsamples cost vol-
ume for reliable detail recovery, and MSMD-Net [36]
constructs multi-scale and multi-dimension cost volume.
Moreover, on the purpose of balancing real-time perfor-
mance and accuracy, Gwc-Net [37] presents a group-wise
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correlation module that can not only provide similarity mea-
surement, but also maintain better performance after reducing
parameters, BGNet [38] proposes upsampling module based
on the learned bilateral grid to get high quality cost volume
form the low-resolution feature maps, and the method [39]
realizes this goal by mean of the separable convolution.
Targeting at earning a high level of accuracy, AcfNet [40]
directly constraints the cost volume using true disparities
peaked at unimodal distribution and the adaptive filtering cost
volume. To a certain extent, these approaches are actually
excellent.

3) 4D MODELS WITH ATTENTION

MA-Net [41] adaptively aggregates multi-scale context infor-
mation and recalibrates hierarchical cost volumes obtained
from different scales to avoid ill-posed region issues as possi-
ble. MAN [42] makes a better balance between accuracy and
efficiency by way of the proposed attention module that can
effectively select multi-scale information to refine the feature
maps. Some experiments were done and proved that they have
great development potential in some aspects.

Though these 4D models can almost achieve better per-
formance, it is still tough to gain more accurate disparities
under the influence of the issue that we concentrate on.
We suppose that if the intermediate feature map at different
scales are concatenated to generate the 4D hybrid cost volume
and the feature map channel-wise independencies seized by
the attention algorithms are used, their accuracy would be
improved to some extent.
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FIGURE 2. Block diagram of the MFEFM structure. The rectangles with
1/2,1/4,1/8, 1/16 and 1/32 scale levels jointly build the pyramid feature
map extractor. The rectangles in different color and size are the different
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lll. METHODOLOGY

As shown and illustrated in FIGURE 1, our model is mainly
composed of the MFEFM, the ECAM and the HCVCM.
In addition, it also encompasses other modules and functions.
The running process of our model is briefly described as
follows (as shown in FIGURE 1). After preprocessing, the
image pairs are first sent to MFEFM (described in detail
in Section III.A, as shown in FIGURE 2) to generate three
types of different feature maps respectively. They are the left
and right feature map pairs at 1/4 scale of different channels,
which are denoted as f7, and fg,, fi, and fg, respectively, but
the channels of the left and right feature maps are the same.
Another outputs are the left and right feature maps denoted as
fi1, and fg, at 1/8 scale of the same channels. Then f;, and fg,
are thrown into ECAM (described in detail in Section I1I.B,
as shown in FIGURE 3) to produce a new right feature map
denoted as fg,,. Thirdly, fg,, and f;, are concatenated to
create the semantic information s required by the warping
module (follow [8]). Fourthly, s is transformed into s” through
the operation of the refinement module (follow [9]) and the
upsample module. Fifthly, s” is sent into the warping module
to warp fg, and fg,, then the right feature maps after the
warping operation are denoted as fg,, and fg, . Sixthly, fi,
andfg,, , f1, and fg,, are respectively transmitted to ECAM to
originate two new right feature maps at 1/4 scale of different
channels, which are denoted as fg,,. and fg,, . Finally, f7,
and fg, .., fi, and fg,, are respectively fed into the CVCM of
the HCVCM (described in detail in Section II1.C, as shown
in FIGURE 5) to give rise to the HCV denoted as Cj, and
then Cj,, is forwarded to NCAM to yield the final disparity
results.

A. MULTI-SCALE FEATURE EXTRACTION AND

FUSION MODULE

Extracting feature map is the first step acting as an important
role. Without sufficient information provided by the feature
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extraction module, it is difficult to learn something useful
for training model. If the feature information is enough but
employing them insufficiently, the problem is still sitting
there. So we propose the MFEFM for the binocular stereo
matching with the purpose of making full use of all interme-
diate feature maps at different scales.

FIGURE 2 illustrates the MFEFM structure. The MFEFM
consists of a special pyramid feature map extractor and a
simple fusion module. We choose part of MobileNet V2 [43]
as our backbone pyramid feature map extractor owning to its
lightweight property. Then we build a simple fusion module
using a U-Net style upsampling and downsampling operation
with skip connection at each scale level. When feeding the
input image which are after preprocessing into the MFEFM,
subsequently, three feature maps are gotten. Different from
the operation of the original feature extraction module, which
generates the different scale feature maps through the general
convolution and residual block, and then selects the required
feature maps to fuse and produce the final feature maps,
MFEFM firstly gives rise to the intermediate feature maps at
1/2, 1/4, 1/8, 1/16 and 1/32 scale respectively by the special
pyramid feature map extractor, and then fuses all scale feature
maps and generates the final three feature maps at 1/4, 1/4
and 1/8 scale respectively through the simple fusion module.
In term of the running process brief, the final three feature
maps can be f7,, f1,, fi; Ot fr,, fr,» fr; respectively.

As displayed in FIGURE 2, different from the operation of
the original feature extraction module, which generates the
intermediate feature maps through the general convolution
and residual block, and then selects the required feature maps
to fuse and generate the final feature maps, MFEFM first
generates the required feature maps using part of the trained
MobileNetV2 network, and then fuses and generates the final
feature maps through the fuse module. During extracting fea-
ture maps, MFEFM can not generate redundant intermediate
feature maps, and make full use of the generated intermediate
feature maps.

In general, MFEFM can make full use of the generated
intermediate feature maps at different scales and enhance the
feature map representation ability of the network. Assem-
bling it into a stereo matching model is a nice choice.

B. EFFECTIVE CHANNEL ATTENTION MODULE
In short, the attention module is the method that can redis-
tribute the weights of the feature map content information.
In other words, it can emphasize useful information and
suppress useless information according to required operation.
The fact that paying more attention to the vital aspect can help
people understand information easily, and so is the learning-
based model, triggers us to design a simple but effective chan-
nel attention module named ECAM for the binocular stereo
matching to amply capture and take advantage of the channel-
wise independencies of the target feature map according to
the source feature map.

In essence, each channel of the feature map can be regard as
a feature detector [44], the channel attention module mainly
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FIGURE 3. Diagram of the ECAM structure. ‘C; ‘H’, ‘W’ refer to the channel,
the height, the width of the feature map respectively.

focuses on what channel content or channel information is
meaningful of the given input image. To avoid the heavy
computation burden brought by the complex attention module
commonly adopted in learning-based tasks, as displayed in
FIGURE 3, we build the ECAM with only a max pooling
function, a 2D convolution, a sigmoid activated function and
a multiply operation even though these complex attention
module can make model reach quite good effects. Besides,
the average pooling function is usually used in common
attention module, but the thought [45] that the max pool-
ing function gathers another important clue about distinctive
object features to infer finer channel-wise attention arouses
us to select the max pooling function to improve the network
representation capability. The example in FIGURE 4 shows
the effect of the ECAM. There is no doubt that ECAM works.
It also means that in the light of the source feature map, some
edge or shape cues of the target feature map can be focused
on to emphasize.
The ECAM running process can be defined as:

Jir = ECAM (5. fo) (D

where f; is the source feature map, f; is the target feature map,
and fy is the new target feature map.

In the light of the previous short running process descrip-
tion, we can know f7, and fg,, fi, and fg,,, fi; and fg,
are fed into ECAM to yield fg,,., fr,,, and fg,, respectively.
In addition, when training HCVNet, we let f7,, f1, and f;, act
as the source feature map and multiplied factor operated with
the target feature map fg,,,, fr,, and fg, respectively.

C. HYBRID COST VOLUME COMPUTATION MODULE
Generally speaking, the cost volume construction and aggre-
gation module are tightly-coupled jointly determining the
accuracy and efficiency of a stereo matching network. Thus
we adopt the HCVCM which embraces the CVCM applied
to erect the HCV, and the NCAM utilized to offer a suitable
platform to adequately exploit the HCV.

There are three categories of cost volumes typically used
in 4D stereo matching model, which are the subtract cost
volume, the group-wise correlation cost volume and the con-
cat cost volume respectively. The model armed with the
subtract cost volume can obtain outcomes faster with useful
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difference information between the input image pairs.
Besides, the group-wise correlation cost volume is able to
store the average information of the image pairs channel in
groups and let the results stabilize within a certain range.
When mentioning the concat cost volume, why it enjoys
the great popularity is that it offers all image feature map
information as possible. Inspired by them, we decide to
combine them in concatenating way to sufficiently employ
them and absorb their merits. So as displayed in FIGURE 5,
the CVCM firstly generates the subtract cost volume, the
concat cost volume and group-wise correlation cost volume
respectively according to the input feature maps, and then
concatenates three varieties of the cost volumes to the HCV
denoted as Cp,.

Aggregating cost volume is also the most important part
in stereo matching network. Just because using previous
cost volume aggregation module of backbone model is not
suitable to the HCV, so we modify the original cost aggre-
gation module to the NCAM to give full play to the HCV.
As displayed in FIGURE 5, in our HCVNet model, the
cost aggregation architecture not only follows Gwc-Net with
three 3D hourglass modules, but also adds a 3D-Convolution
Block to reduce the computational cost. When Cj,, is fed to
the NCAM, the 3D-Convolution Block would diminish the
number of channels from 136 to 64, then the first hourglass
module would lessen the number of channels from 64 to 32,
while other two hourglass modules do not need to execute
the operation. During this process, Cj, is iterated for many
times for fully filtering and utilizing the information. When
training our model, we not only send the final result Cj,3 to
the disparity regression module to generate the final disparity
result, but also feed the intermediate results Cpe,1 and Chen
into the disparity regression module to produce disparity
outputs to avoid wasting useful information.
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stride=1) + batch normalization + the relu activation function.

In line with the running process brief, the whole process of
aggregating cost volume can be roughly summarized as:

Chevs = NCAM(Chcv) (2)

where Cp,3 represents the final result and Cp,, refers to the
initial input HCV. And the process of building Cp, can be
described as:

Chev = Csub || Ceon | ngc 3)

where Cy,, means the subtract cost volume, Cgy, refers to
the group-wise correlation cost volume, C,, represents the
concat cost volume and || is the concatenation operation.

In addition, according to the running process brief, these
cost volumes at pixel location (x, y) using the feature maps at
scale level s = 1/4 are separately computed as:

Csub(dy X, yvf) =fL1 (x7 )’) _lews(x - ds )’) (4)

CCOn(dv'x7 ny) :le (xa y) ”fR]WS(x - da y) (5)
1

ngc(d’x’y’ g) = m(fla(x’ y)7fR2ws(X—d,y)> (6)

where d is an integer within the maximum candidate disparity
search range, i.e., d € (0, Dygy/4] and f is the ordinal
number meaning the f; channel. f;, and f;, represent the
extracted left feature maps, fg,,, and fg,,, are the extracted
right feature maps after operating by the warping module and
the ECAM. N, refers to the channel number of the extracted
feature map, and N, is the number of groups, then each
feature group therefore has N./N, channels. g is the ordinal
number meaning the gy feature group which contains the
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8gN¢/Ng, gN:/Ng+1,...,8N:/Ng+ (Ne/Ng — 1)y, channels
of the input feature maps. (*, *) is inner product and || denotes
the concatenation operation.

D. DISPARITY REGRESS FUNCTION
The disparity regression, which is used to predict the con-
tinuous disparity maps proposed in [46], is more robust
than classification-based regress functions. The equation is
defined as:
Dipax—1
d= > dx0o(Cha3) (7
d=0

where D,y 1s set to 192, which refers to the maximum range.
And for each pixel, the softmax operation o (*) can calculate
the probability of each candidate disparity d from the aggre-
gated hybrid cost volume Cp3. Then the final estimated
disparity result d is is the sum of each candidate disparity
weighted by its probability.

E. LOSS FUNCTION

Compared to the L2 loss, the smooth L1 loss [47] is widely
used for its robustness and low sensitivity to outliers. So the
loss function of our model is defined as:

N
~ 1 ~
L(d,d) =+ > smoothy, (d; — d;) (8)
i=1
and smoothy, (x) is defined as:
0.5 x2, if Ix] <1
smoothy, (x) = 9
L (%) x| — 0.5, otherwise ©)
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TABLE 1. Comparison with other state-of-the-arts models. Bold: Best.
Underscore: Second best. ‘—": Not done. ‘KT12": KITTI 2012 dataset. ‘KT15":
KITTI 2015 dataset.

KT12 3px(%)). KTI15 Dl-all(%).

SceneFlow avg run
Method EPE |, Noc  All  Noc Al  time(s))
PSMNet 1.09 149 189 214 232 0.41
StereoNet 1.101 - - — 483 0015
Gwe—Net 0.765 132 170 192 2.1 032
FADNet 0.83 - — 259 282 0048
AcfNet 0.87 117 154 172 189 -
BGNet+ 1.17 162 203 — 219 0032
HCVNet 0.714 131 172 200 219 0.26

where N is the total number of the labeled image pairs, d is
the ground-truth disparity, and d is the predicted disparity.

IV. EXPERIMENTS

A. DATASETS AND EVALUATION METRICS

We use three popular and public datasets [2], [29], [48] for
training and finetuning our model. These datasets are intro-
duced as follows.

SceneFlow: The SceneFlow dataset is a large synthetic
stereo dataset which contains 35,454 training and 4,370 test-
ing image pairs in 960 x 540 pixels resolution. It is large
enough for directly training deep learning models with accu-
rate and high-quality dense ground-truth disparity maps.

KITTI Stereo 2015: The KITTI Stereo 2015 dataset is real-
world dataset with street views captured from a driving car.
It is composed of 200 training and 200 testing image pairs
of 1242 x 375 pixels resolution with sparse ground truth
disparities obtained from LiDAR and fitted 3D CAD models.

KITTI Stereo 2012: The KITTI Stereo 2012 dataset is
a real-world dataset with dynamic street and road views.
It consists of 194 training image pairs with sparse ground
truth disparities and 195 testing image pairs without ground
truth. Those image pairs are in 1226 x 370 pixels resolution.

And the metrics that we use to evaluate methods are intro-
duced as follows.

EPE: 1t is also called end-point-error, which refers to the
mean average disparity error in all pixels.

D1: Tt means that the percentage of stereo disparity outliers
in first frame. In other words, it is the error pixels that exceeds
3px and exceeds 5% of the truth value.

DI-all: Tt is the percentage of stereo disparity outliers
averaged over all ground truth pixels.

DI-bg: 1t is the percentage of stereo disparity outliers
averaged only over background regions.

DI-fg: It is the percentage of stereo disparity outliers aver-
aged only over foreground regions.

xpx: It is also called xpx-error, which can be regarded as
the percentage of the error pixels that exceeds xpx. The x is
usually set to 2, 3,4 or 5.

Out-Noc: 1t is the percentage of the error pixels in non-
occluded areas.

Out-All: Tt is the percentage of the error pixels in all areas.
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Avg-Noc: Tt also refers to the mean error, and it is the
average disparity or end-point error in non-occluded areas.

Avg-All: Tt also refers to the mean error, and it is average
disparity or end-point error in all areas.

TABLE 2. Comparison with other state-of-the-arts models in
non-occluded areas on KITTI 2012 dataset. Bold: Best. Underscore:
Second best. ‘~’: Not done.

Method 2px(%)| 3px(%)d Spx(%)d mean error(px)J.
PSMNet 2.44 1.49 0.90 0.5
StereoNet 491 — — 0.8
Gwc—Net 2.16 1.32 0.80 0.5
AcfNet 1.83 1.17 0.77 —
BGNet+ 2.78 1.62 — 0.5
HCVNet 2.16 1.31 0.79 0.5

TABLE 3. Comparison with other state-of-the-arts models in all areas on
KITTI 2012 dataset. Bold: Best. Underscore: Second best. ‘—": Not done.

Method 2px(%)d, 3px(%)d S5px(%)d mean error(px)J
PSMNet 3.01 1.89 1.15 0.6
StereoNet 6.02 — — 0.9
Gwc—Net 2.71 1.70 1.03 0.5
AcfNet 2.35 1.54 1.01 —
BGNet+ 3.35 2.03 — 0.6
HCVNet 2.75 1.72 1.05 0.5

B. IMPLEMENTATION DETAILS

We choose the MobileNetV?2 pre-trained on ImageNet [49] as
our feature map extractor backbone due to its less parameters
and stronger learning ability which can make model converge
faster during training. We implement our model by avail of
PyTorch and choose Adam optimizer [50] as our optimizer.
We randomly crop images to size W = 512, H = 256 for
training.

On the SceneFlow dataset, we train our network for first
6 epochs with a learning rate 1x 10~ and then set the learning
rate to 1 x 10~ for last 4 epochs. We also set the batch size
to 12 during training.

For our experiments on the KITTI dataset, we finetune the
model which is pre-trained on the SceneFlow dataset for first
200 epochs with an initial learning rate of 1 x 1073 and then
decrease learning rate to 1 x 10~ for last 100 epochs. And
we set batch size to 8.

C. MODEL PERFORMANCE
We show the comparisons of our method and other existing
state-of-the-art methods from TABLE 1 to TABLE 4, which
can inform us straightforwardly of the fact that HCVNet’s
performance is very competitive. And we show the visual
results in FIGURE 6, FIGURE 7 and FIGURE 8, which can
directly illustrate HCVNet perform much better than PSMNet
according to this visual results.

It can be seen more intuitively from TABLE 1 that
HCVNet gets great scores on SceneFlow dataset and KITTI
2012 dataset indeed. In addition, all the evaluation indicators
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FIGURE 6. Qualitative test results on the SceneFlow dataset. From top to bottom, they are left image, ground-truth disparity
map, disparity map generated by PSMNet and disparity map generated by HCVNet. The red box circled area indicates the part
with outstanding changes, meaning that better edges or shapes are produced.

FIGURE 7. Qualitative test results on the KITTI Stereo 2015 dataset. From left to right, they are left image, disparity map, error
map respectively. In the middle and right column, from the first line to the second line, and from the third line to the last line,
they are the results generated by PSMNet and the outputs generated by HCVNet respectively. The blue color tones in error map
means correct estimates, while the red color tones refers to wrong estimates. Dark regions in the error images denote the
occluded pixels which fall outside the image boundaries.

diminish significantly. On SceneFlow dataset, HCVNet is
more outstanding due to its EPE is 0.714, and Gwc-Net whose
EPE is 0.765 just ranks second. They lessen PSMNet’s EPE
by 0.376 and 0.325. Besides, on KITTI 2012 dataset, our
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model achieves superior performance owing to 1.31% 3px
ranks second in non-occluded areas. Just taking 3px on KITTI
2012 dataset as example, HCVNet lets PSMNet decline by
0.18% in non-occluded areas and 0.17% in all areas.
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TABLE 4. Comparison with other state-of-the-arts models on KITTI
2015 dataset. Bold: Best. Underscore: Second best. ‘—": Not done.

All(%) Noc(%)
Method = ol Di-fe) Di-all, Dibg, Di-fel Di-all
PSMNet 186 462 232 1.71 431 2.14

StereoNet 4.30 7.45 4.83 - — —
Gwc—Net 1.74 3.93 2.11 1.61 3.49 1.92
FADNet 2.68 3.50 2.82 2.49 3.07 2.59
AcfNet — — 1.89 — — 1.72
BGNet+ 1.81 4.09 2.19 - — —

HCVNet 1.81 4.07 2.19 1.68 3.65 2.00

From TABLE 1 to TABLE 4 especially TABLE 4, we can
conclude that HCVNet has a lot of room for improvement
if keeping carry on research in summary. Though our model
HCVNet is not better than other networks in all in other
metrics validation, nevertheless, HCVNet has great advance
over PSMNet.

All in all, though compared with other models, the avg
run time of our network still has a room to upgrade, the
experiments done by us yet can prove that our study is mean-
ingful and useful because our model’s results own certain
competitiveness indeed.

D. ABLATION STUDY

In order to analyse the performance of our proposed mod-
ules correctly, we train and test PSMNet again in the same
environment, which is denoted as PSMNet:x. And we purpose
to further verify the performance of HCV and NCAM in
HCVCM, so we separately replace the original cost volume
and the original cost aggregation module of PSMNet. We also
separately discard HCV and NCAM of HCVNet for abla-
tion study. The ablation experiment results are shown from
TABLE 5 to TABLE 8.

On the one hand, in all ablation study tables, we can see that
when PSMNetx is armed correspondingly with substituting
modules, although the evaluation metrics on each dataset is
not better than that without replacing the original module,
their overall output nearly tend to be better. On the other
hand, we can also know that the performance of HCVNet
would be worse and worse while uninstalling corresponding
components we adopted.

In TABLE 5, it can be seen that when PSMNet is equipped
with HCVCM, the EPE drops from 1.111 to 0.904, while
training and testing HCVNet without HCVCM, the EPE
increases from 0.714 to 1.037. And from TABLE 6 and
TABLE 7, we can know all the values are almost best
while replacing with the HCVCM and testing on KITTI
2012 dataset, but when the model running without HCVCM,
the results would be worse and worse. When mentioning
HCV or NCAM alone from TABLE 5 to TABLE 8, its effect
would result in a better degree if HCV and NCAM jointly
cooperating.
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TABLE 5. Ablation study results comparison. ‘+': Adopt corresponding
modules. ‘-’ Use original modules. Bold: Best. Underscore: Second best.
‘KT12": KITTI 2012 dataset. ‘KT15': KITTI 2015 dataset.

Method ScencFlow KT12 3px(%))  KT15 D1-all(%)]
EPE | Noc All Noc All
PSMNetx 1111 1.48 1.91 2.27 2.49
+MFEFM 1.048 1.54 1.93 2.24 2.45
+ECAM 1.071 1.50 1.90 2.32 2.52
+HCV 1.06 1.41 1.79 2.14 2.37
+NCAM 091 1.40 1.80 2.02 2.23
+HCVCM 0.904 1.37 1.78 2.15 2.36
HCVNet 0.714 1.31 1.72 2.00 2.19
-MFEFM 0.886 1.37 1.79 2.15 2.35
-ECAM 0.895 1.37 1.78 2.08 2.28
-HCV 0.909 1.53 1.95 223 2.43
-NCAM 1.014 1.55 1.96 2.26 2.51
-HCVCM 1.037 1.61 2.04 2.47 2.69

TABLE 6. Ablation study results comparison in non-occluded areas on
KITTI 2012 dataset. ‘+": Adopt corresponding modules. ‘—': Use original
modules. Bold: Best. Underscore: Second best.

Method 2px(%)d  3px(%)| 4px(%)] Spx(%)) mean error(px)|
PSMNetx 2.50 1.48 1.09 0.88 0.5
+MFEFM 2.62 1.54 1.13 0.91 0.5
+ECAM 2.53 1.50 1.11 0.88 0.5
+HCV 2.38 1.41 1.04 0.83 0.5
+NCAM 2.28 1.40 1.04 0.84 0.5
+HCVCM 2.26 1.37 1.01 0.80 0.5
HCVNet 2.16 1.31 0.98 0.79 0.5
-MFEFM 2.26 1.37 1.03 0.83 0.5
-ECAM 2.28 1.37 1.02 0.82 0.5
-HCV 2.54 1.53 1.13 0.91 0.5
-NCAM 2.63 1.55 1.14 0.90 0.5
-HCVCM 2.70 1.61 1.18 0.94 0.5

In addition, we can be aware of that MFEFM can
boost performance from all ablation tables. When equipping
with MFEFM, PSMNet++MFEFM decreases PSMNet# to
1.048 EPE. When not equipping with MFEFM, HCVNet-
MFEFM increases HCVNet’s EPE to 0.886. And taking
PSMNetx and PSMNetx+MFEFM in TABLE 8 as examples,
not only in all areas D1-fg drops from 5.20% to 4.60% and
D1-all decreases from 2.49% to 2.45%, but also in non-
occluded areas D1-fg declines from 4.75% to 4.20% and
D1-all diminishes from 2.27% to 2.24%. If we take HCVNet
and HCVNet-MFEFM as instances, we can know not only
in non-occluded areas 3px raises from 1.31% to 1.37% and
DI1-all grows from 2.00% to 2.15%, but also in all areas
3px ascends from 1.72% to 1.79% and D1-all expands from
2.19% t0 2.35%.

Furthermore, when equipping with ECAM on SceneFlow
dataset, PSMNetx+ECAM’s EPE is 1.071 that decreases
PSMNet+ by 0.04 EPE, and HCVNet-ECAM’s EPE is
0.895 that increases HCVNet’s EPE by 0.181. Besides, in all
areas on KITTI 2012 dataset, 3px and Spx are 1.90% and
1.13% respectively, making PSMNetx descend by 0.01%.
At the same time, from TABLE 5 to TABLE 8, we also can be
informed that when not arming with ECAM, in non-occluded
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FIGURE 8. Qualitative test results on the KITTI Stereo 2012 dataset. From left to right, they are left image, error map, disparity
map respectively. In the middle and right column, from the first line to the second line, and from the third line to the last line,
they are the results generated by PSMNet and the outputs generated by HCVNet respectively. The error map scales linearly
between 0 (black) and >=5 (white) pixels error. The red color in error map denotes all occluded pixels, falling outside the image
boundaries.

TABLE 7. Ablation study results comparison in all areas on KITTI
2012 dataset. ‘+": Adopt corresponding modules. ‘—’: Use original
modules. Bold: Best. Underscore: Second best.

TABLE 8. Ablation study results comparison on KITTI 2015 dataset. ‘+":
Adopt corresponding modules. ‘~": Use original modules. Bold: Best.
Underscore: Second best.

Method 2px(%)d  3px(%)]  4px(%)] Spx(%)) mean error(px)|
PSMNet* 3.10 191 1.42 1.14 0.6
+MFEFM 3.20 1.93 143 1.16 0.6
+ECAM 3.11 1.90 1.41 1.13 0.6
+HCV 2.93 1.79 1.32 1.07 0.5
+NCAM 2.87 1.80 1.34 1.08 0.5
+HCVCM 2.84 1.78 1.31 1.04 0.5
HCVNet 2.75 1.72 1.29 1.05 0.5
-MFEFM 2.86 1.79 1.34 1.08 0.5
-ECAM 2.86 178 1.34 1.08 0.6
-HCV 3.14 1.95 1.45 1.17 0.6
-NCAM 322 1.96 1.45 1.15 0.6
-HCVCM 3.32 2.04 1.50 1.19 0.6

areas and all areas on KITTI 2012 dataset, 3px are 1.37%
and 1.78% respectively, making HCVNet go up to 1.31%
and 1.72%. And in non-occluded areas and all areas on
KITTI 2015 dataset, D1-all are 2.08% and 2.28% respec-
tively, ascending HCVNet by 0.08% and 0.09%. Then we can
have knowledge of that ECAM are able to improve model
even if the effect is not obvious.

We can be informed that HCVCM combines and gives
full play to the advantages of HCV and NCAM from these
tables. Just taking PSMNetx and PSMNetx+HCVCM in
TABLE 6 as instances, in non-occluded areas 2px dwindles
from 2.50% to 2.26%, 3px declines from 1.48% to 1.37%,
4px lessens from 1.09% to 1.01%, and 5px diminishes from
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All(%) Noc(%)
Dl-bg] DI-fgl Dl-alll DI-bgl DI-fg| Dl-all]

PSMNetx* 1.95 5.20 2.49 1.78 4.75 2.27
+MFEFM 2.02 4.60 2.45 1.86 4.20 2.24

Method

+ECAM 1.99 5.20 2.52 1.83 4.82 2.32
+HCV 1.93 4.57 2.37 L.77 4.03 2.14
+NCAM 1.85 4.11 2.23 1.69 3.72 2.02
+HCVCM 191 4.64 2.36 1.75 4.20 2.15

HCVNet 1.81 4.07 2.19 1.68 3.65 2.00
-MFEFM 1.92 4.52 2.35 1.77 4.08 2.15

-ECAM 1.85 4.40 2.28 1.69 4.04 2.08
-HCV 2.03 4.45 243 1.87 4.08 2.23
-NCAM 2.05 4.84 2.51 1.89 4.14 2.26

-HCVCM 2.13 5.52 2.69 1.95 5.08 2.47

0.88% to0 0.80%. We also can see that using HCVCM is better
than utilizing HCV or NCAM alone. It is also clear that they
are closely linked and indispensable. The NCAM provide the
most suitable platform for aggregating the HCV, while the
HCV is rich in entire kinds of the feature map information.
With only one module, the expression and representation
ability of the model is limited. So we can see that the perfor-
mances of PSMNetx+HCV and PSMNet«+NCAM are poor
when comparing with PSMNet«+HCVCM. And we consider
that the reason why PSMNetx+HCVCM performs much
better than PSMNet: but is worse than PSMNet«+NCAM is
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that NCAM happens to be one of the most suitable platforms
for the original cost volume built by PSMNetx to aggregate
itself. Meanwhile, HCVNet-HCVCM performs much worse
than HCVNet-HCV and HCVNet-NCAM, which can be
explained from the side that compared with HCV and NCAM,
HCVCM has a greater impact on the network, meaning that
HCVCM can significantly improve the performance of the
model.

In brief, the adopted modules can augment the model
performance.

V. CONCLUSION

Our goal is getting more accurate results and mitigating the
impact of the inadequately use problem of the other scale
intermediate feature maps and the other types of cost vol-
umes, and the less attention problem to the channel-wise inde-
pendencies of the left and right feature map. Thus, we propose
the MFEFM and the ECAM for the binocular stereo matching
and adopt the HCVCM to slove these problem as possible.
We also construct a model called HCVNet for binocular
stereo matching, and do some experiments to validate its
superiority over other state-of-the-art methods in this paper.
Although compared with them, our model can not do the
best in all aspects, such as avg run time, its competitive
performance (0.714 EPE on SceneFlow dataset, 1.31% 3px
in non-occluded areas on KITTI 2012 dataset and 2.00%
D1-all in non-occluded areas on KITTI 2015 dataset) in a
way should not be ignored. After all, the avg run time of
HCVNet (0.26s) under the running condition (four NVIDIA
Tesla V100 GPUs) is 0.15s less than the backbone model
PSMNet (0.41s). It can draw a conclusion that the adopted
components (MFEFM, ECAM and HCVCM) are effective
and useful in binocular stereo matching. It is very hopeful
that the method can be beneficial to various vision tasks.
Besides, our next ambition is planing to promote efficiency
and maintain model performance meanwhile as possible.

REFERENCES

[1] Z. Gao, E. Li, Z. Wang, G. Yang, J. Lu, B. Ouyang, D. Xu, and Z. Liang,
“Object reconstruction based on attentive recurrent network from single
and multiple images,” Neural Process. Lett., vol. 53, no. 1, pp. 653-670,
Feb. 2021.

[2] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 3061-3070.

[3] C. Luo, L. Yu, E. Yang, H. Zhou, and P. Ren, “A benchmark image
dataset for industrial tools,” Pattern Recognit. Lett., vol. 125, pp. 341-348,
Jul. 2019.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), vol. 25, Dec. 2012, pp. 1097-1105.

[5] H. Zheng, J. Chen, L. Chen, Y. Li, and Z. Yan, “Feature enhancement
for multi-scale object detection,” Neural Process. Lett., vol. 51, no. 2,
pp. 1907-1919, Apr. 2020.

[6] C. Yu, B. Xiao, C. Gao, L. Yuan, L. Zhang, N. Sang, and J. Wang, ‘‘Lite-
HRNet: A lightweight high-resolution network,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 10440-10450.

[7]1 J.-R. Chang and Y.-S. Chen, “Pyramid stereo matching network,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 5410-5418.

93072

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

Q. Wang, S. Shi, S. Zheng, K. Zhao, and X. Chu, “FADNet: A fast and
accurate network for disparity estimation,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2020, pp. 101-107.

S. Khamis, S. Fanello, C. Rhemann, A. Kowdle, J. Valentin, and S. Izadi,
“StereoNet: Guided hierarchical refinement for real-time edge-aware
depth prediction,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 573-590.

Y. Lee and J. Park, “CenterMask: Real-time anchor-free instance segmen-
tation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 13906-13915.

J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 3146-3154.

L. Wang, Y. Wang, Z. Liang, Z. Lin, J. Yang, W. An, and Y. Guo,
“Learning parallax attention for stereo image super-resolution,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12250-12259.

H. Sang, Q. Wang, and Y. Zhao, “Multi-scale context attention network
for stereo matching,” IEEE Access, vol. 7, pp. 15152-15161, 2019.
Z.Rao, M. He, Y. Dai, Z. Zhu, B. Li, and R. He, “NLCA-Net: A non-local
context attention network for stereo matching,” APSIPA Trans. Signal Inf.
Process., vol. 9, no. 1, pp. 1-13, 2020.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and
D. Erhan, “Vincent Vanhoucke, Andrew Rabinovich,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 9, pp. 1904-1916, Sep. 2014.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2881-2890.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834-848, Apr. 2017.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.
L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 801-818.

C.-F. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. Feris, “Big-little Net:
An efficient multi-scale feature representation for visual and speech recog-
nition,” 2018, arXiv:1807.03848.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent, 2015, pp. 234-241.

T. Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2117-2125.

J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra R-CNN:
Towards balanced learning for object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 821-830.

W. Wang, E. Xie, X. Song, Y. Zang, W. Wang, T. Lu, G. Yu, and C. Shen,
“Efficient and accurate arbitrary-shaped text detection with pixel aggre-
gation network,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 8440-8449.

Z.Qin, Z. Li, Z. Zhang, Y. Bao, G. Yu, Y. Peng, and J. Sun, “ThunderNet:
Towards real-time generic object detection on mobile devices,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6718-6727.

G. Ghiasi, T.-Y. Lin, and Q. V. Le, “NAS-FPN: Learning scalable feature
pyramid architecture for object detection,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 7036-7045.

M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient
object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10781-10790.

N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4040—4048.

J. Pang, W. Sun, J. S. Ren, C. Yang, and Q. Yan, “Cascade residual
learning: A two-stage convolutional neural network for stereo matching,”
in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2017,
pp. 887-895.

VOLUME 10, 2022



C. Dai et al.: HCVNet: Binocular Stereo Matching via Hybrid Cost Volume Computation Module With Attention

IEEE Access

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

H. Xu and J. Zhang, “AANet: Adaptive aggregation network for efficient
stereo matching,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 1959-1968.

Z.Huang, T. B. Norris, and P. Wang, ““ES-Net: An efficient stereo matching
network,” 2021, arXiv:2103.03922.

H. Wang, R. Fan, and M. Liu, “SCV-Stereo: Learning stereo matching
from a sparse cost volume,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2021, pp. 3203-3207.

Z. Wu, X. Wu, X. Zhang, S. Wang, and L. Ju, “Semantic stereo matching
with pyramid cost volumes,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 7484-7493.

C. Yao, Y. Jia, H. Di, Y. Wu, and L. Yu, “Content-aware inter-scale cost
aggregation for stereo matching,” 2020, arXiv:2006.03209.

Z. Shen, Y. Dai, and Z. Rao, “MSMD-Net: Deep stereo matching with
multi-scale and multi-dimension cost volume,” 2020, arXiv:2006.12797.

X. Guo, K. Yang, W. Yang, X. Wang, and H. Li, “Group-wise correlation
stereo network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 3273-3282.

B. Xu, Y. Xu, X. Yang, W. Jia, and Y. Guo, “Bilateral grid learning for
stereo matching networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 12497-12506.

R. Rahim, F. Shamsafar, and A. Zell, “Separable convolutions for optimiz-
ing 3D stereo networks,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2021, pp. 3208-3212.

Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li, and K. Yang, “Adaptive
unimodal cost volume filtering for deep stereo matching,” in Proc. AAAI
Conf. Artif. Intell., 2020, vol. 34, no. 7, pp. 12926-12934.

L. Guo, H. Duan, and W. Zhou, “Multiple attention networks for stereo
matching,” Multimedia Tools Appl., vol. 80, no. 18, pp. 28583-28601,
2021.

X. Yang, L. He, Y. Zhao, H. Sang, Z. L. Yang, and X. J. Cheng,
“Multi-attention network for stereo matching,” IEEE Access, vol. 8,
pp. 113371-113382, 2020.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510-4520.

D. M. Zeiler and R. Fergus, ““Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818-833.
S. Woo, J. Park, J.-Y. Lee, and A. I. S. Kweon, “CBAM: Convolutional
block attention module,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 3-19.

A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and context
for deep stereo regression,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 66-75.

R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1440-1448.

A. Geiger, P. Lenz, and R. Urtasun, ‘““Are we ready for autonomous driving?
The KITTI vision benchmark suite,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3354-3361.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

CHENGLIN DAI received the B.S. degree in com-
puter science and technology (software engineer-
ing) from Lingnan Normal University, in 2020.
He is currently pursuing the master’s degree in
electronic information from Wuyi University. His
research interests include stereo matching and
deep learning.

VOLUME 10, 2022

QINGLING CHANG received the Ph.D. degree
from the Institute of Computing Technology,
Chinese Academy of Sciences, in 2015. She is cur-
rently a Master Supervisor and an Associate Pro-
fessor with Wuyi University and the Subdecanal of
the China-German Artificial Intelligence Institute.
She has published more than ten papers, included
in SCI/EL In this paper, she is mainly responsible
for the overall framework design. Her research
interests include artificial intelligence, computer
vision, and knowledge graph.

TIAN QIU received the B.Eng. degree in mea-
surement and instrumentation and the M.Sc. and
Ph. D. degrees in circuits and systems from the
University of Science and Technology of China,
in 2000, 2003 and 2006, respectively. He worked
as an Engineer and a Senior Engineer with Sam-
sung Electronics, South Korea, from 2006 to 2009;
a Research Associate with the University of Kent,
U.K., from 2009 to 2012; and a Leading Engineer
and a Research Engineer with Imagination Tech-

nologies, U.K., from 2012 to 2016. He is currently a Contract Professor of
image processing with the School of Intelligent Manufacture, Wuyi Univer-
sity. His research interests include image processing, image analysis, and

computer vision.

«n

XINGLIN LIU received the Master of Computer
Technology degree from the School of Computer,
Chongqing University, in December 2005, and the
Ph.D. degree in applied computer technology from
the School of Computer Science and Engineering,
South China University of Technology, in June
2012. He is currently an Associate Professor with
the School of Innovation and Entrepreneurship,
Wuyi University. His current research interests
include intelligence computing, text knowledge

acquisition, big data, and intelligent recommendation.

YAN CUI is currently a Professor with the Faculty
of Computer Science, Wuyi University. He is also
the Dean of the School of Intelligent Manufactur-
ing, Wuyi University and the China-Germany Arti-
ficial Intelligence Institute. His research interests
include computer vision and computer graphic.

93073



