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ABSTRACT Binocular stereo matching, a computer vision task typically using cost volume constructed
from the left and right feature maps to estimate disparity and depth, is widely applied in 3D reconstruction,
autonomous driving and robotics navigation. Though recent study brings an awareness of the convolution
neural networks and the attention algorithms used in this field can make great progress, it is still difficult to
satisfy the demand of high-precision applications due to many reasons. Study finds that the exist methods
usually incline to ignore the intermediate feature map of other scales, pay less attention to the relationship
between left and right feature maps and even just tend to use one type of cost volume to train the model.
In this article, we mainly focus on solving the three rproblems mentioned above. Firstly, we present the
Multi-scale Feature Extraction and Fusion Module (MFEFM) to get the informational feature maps via
fusing all scale feature maps. And then we design the Effective Channel Attention Module (ECAM) applied
to better capture and utilize the channel-wise independencies. Finally, we adopt the Hybrid Cost Volume
Computation Module (HCVCM) to construct and aggregate cost volume. With these solutions, we build an
end-to-end stereo matching network named HCVNet. Comparison with other state-of-the-art models, it can
achieve 0.714 EPE on SceneFlow dataset, descending PSMNet (1.09 EPE) by 37.6%.
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INDEX TERMS Binocular stereo matching, feature map, channel-wise independencies, channel attention,
cost volume.

I. INTRODUCTION17

Binocular stereo matching, which is depth estimation in18

essence, usually towards getting disparity using aggregated19

cost volume computed from the input left and right images.20

According to the formula D = B × f /d , the depth D would21

be calculated from the baseline B, the focal length f and the22

estimated disparity d , where baseline refers to the distance23

between the input left and right images. Moreover, as a clas-24

sical and significant vision task, it lays a solid foundation for25

3D reconstruction [1], autonomous driving [2] and robotics26

navigation [3].27

On the one hand, since the convolution neural networks28

(CNNs) were introduced into the computer vision field, many29

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

vision tasks based on deep learning such as image classifica- 30

tion [4], object detection [5], object recognition [6], etc. have 31

achieved great progress. So is the binocular stereo matching. 32

Just taking PSMNet [7], FADNet [8] and StereoNet [9] as 33

examples, PSMNet is a major breakthrough for integrating 34

global context information to cost volume to address the ill- 35

posed region problems, FADNet is implemented by 2D based 36

correlation layers with the help of multi-scale weight training 37

strategy to maintain faster computing speed, and StereoNet 38

uses low-resolution cost volume to speed up running time and 39

employs the edge sensing up sampling function to retain the 40

details of the edge. They can indeed obtain very competitive 41

outcomes in a certain period of time. 42

On the other hand, some learning-based vision tasks, such 43

as instance segmentation [10], scene segmentation [11] and 44

image super-resolution [12], which depend on the attention 45
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algorithms typically used in natural language processing to46

focus on region of interest also perform better. Binocular47

stereo matching is no exception. MCANet [13] involves it for48

refining disparity, andNLCA-Net [14] exploits global context49

information with the help of it. Both of them can accomplish50

their targets.51

However, to be exact, even though these studies can52

achieve compelling performance, the insufficient use prob-53

lem of the other scale intermediate feature maps and the other54

types of cost volumes, and the less attention problem to the55

channel-wise independencies of the left and right feature map56

hinder them from meeting the requirements of high accuracy57

applications. Hence, in order to mitigate the impact of these58

above problems and gain exceedingly good effects as possi-59

ble, we try to do a lot of work. Firstly, to make model learn60

enough useful feature map information of the original images61

adequately, we present the Multi-scale Feature Extraction62

and Fusion Module (MFEFM) to fuse all scale feature maps.63

Secondly, aiming to better capture and utilize the channel-64

wise independencies between the extracted feature map pairs,65

we design the Effective Channel Attention Module (ECAM).66

Then due to single cost volume computation method is ardu-67

ous to fully employ three kinds of cost volumes, so we adopt68

the Hybrid Cost Volume Computation Module (HCVCM),69

which contains the New Cost Aggregation Module (NCAM)70

and the Cost Volume Construction Module (CVCM) applied71

to build the Hybrid Cost Volume (HCV). At last combining72

these solutions, we set up a competitive end-to-end stereo73

matching network named HCVNet. The contributions are as74

follows:75

• We present the Multi-scale Feature Extraction and76

Fusion Module (MFEFM) to amply avail itself of all77

scale extracted feature maps from the input images.78

• We design the Effective Channel Attention Module79

(ECAM) to sufficiently capture and resort to channel-80

wise independencies of the right extracted feature map81

according to the left extracted feature map.82

• We adopt the Hybrid Cost Volume ComputationModule83

(HCVCM) which comprises the New Cost Aggregation84

Module (NCAM) and the Cost Volume Construction85

Module (CVCM) for plentifully exploiting the Hybrid86

Cost Volume (HCV) and getting better results.87

• We construct an end-to-end stereo matching network88

called HCVNet whose competitiveness can not be89

ignored.90

II. RELATED WORK91

A. LEARNING-BASED MULTI-SCALE FEATURE EXTRACTION92

AND FUSION APPROACH93

The common learning-based multi-scale feature extraction94

and fusion strategies can be divided into the parallel multi95

branch feature extraction and fusion method and the serial96

skip connection structure. Without this module, the model97

would not be able to learn more informative messages.98

1) THE PARALLEL MULTI-BRANCH FEATURE EXTRACTION 99

AND FUSION METHOD 100

Typically, using the dilated convolution, altering the kernel 101

size of convolution or utilizing the pooling operation can 102

influence the size of the receptive field and obtain different 103

feature maps prior to feature fusion. For example, the basic 104

inception module in Inception V1 [15] consists of the stan- 105

dard 1 × 1 convolution, 3 × 3 convolution, 5 × 5 convo- 106

lution, and 3 × 3 max pooling layers, which enable creat- 107

ing feature maps of various information. The SPP (Spatial 108

Pyramid Pooling) structure of the SPPNet [16] can minimize 109

the loss and deformation problem of the image information 110

caused by a series of operations such as crop, warp, flip, 111

and so forth as much as feasible. To gain several receptive 112

fields and multi-scale feature maps, PSPNet [17] resorts to 113

a technique that directly modifies the pooling procedures of 114

different sizes, the Deeplav network [18], [19], [20] depends 115

on the increasingly augmented ASPP (Atrus Spatial Pyramid 116

Pooling) algorithm, and Big-Little Net [21] gets the aid of the 117

presented parallel multi-branch network structure and fusion 118

module. 119

2) THE SERIAL SKIP CONNECTION STRUCTURE 120

It is frequent to realize feature fusion through skipping con- 121

nection. With the aid of it, U-Net [22] can ensure the final 122

recovered feature map incorporates more low-level features 123

of various scales, and FPN [23] can integrate the high-level 124

features with the adjacent low-level features separately for 125

each layer. Based on FPN, Libra R-CNN [24] produces and 126

fuses feature maps of four scales by building a balanced 127

feature pyramid, PAN [25] can also add the low-level fea- 128

tures to the not adjacent higher-level layer using its feature 129

pyramid enhancement module, ThunderNet [26] presents a 130

simple context enhancementmodule to directly fuse the target 131

feature map of three scales at a low computation cost, NAS- 132

FPN [27] constructs a new feature fusionmodule with the net- 133

work structure searching method, and BiFPN [28] gives birth 134

to a feature fusion module layer with self-learning weight. 135

In general, these two kinds of feature extraction and fusion 136

approaches can be appropriately chosen based on the require- 137

ment. However, the usage trend of the serial skip connection 138

structure may rise due to it is more flexible than the parallel 139

multi-branch feature extraction and fusion method. We sup- 140

port the prevailing view that sending the feature map with 141

the local semantic information of each scale to the next task 142

allows the network to pick up more meaningful messages and 143

strengthen the feature representation capacity. 144

B. VOLUMETRIC STEREO MATCHING MODEL 145

Learning-based volumetric binocular stereo matching algo- 146

rithms are generally divided into two categories. One is the 147

4D model generating cost volume with feature channel, can- 148

didate disparity, height and width, another is the 3D model 149

constructing cost volume lacking feature channel under single 150

resolution, where D refers to dimension. 151
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FIGURE 1. Pipeline of the proposed network HCVNet. MFEFM is the multi-scale feature extraction and fusion module. ECAM refers to the effective
channel attention module. HCVCM also call the hybrid cost volume computation module, which contains the cost volume construction module (CVCM),
the hybrid cost volume (HCV) Chcv and the new cost aggregation module (NCAM). ERM is the edge-aware refinement module, WM is the warping
module.

1) 3D MODELS152

DispNetC [29] is undoubtedly a milestone owing to it is the153

first method to build 3D cost volume and directly regress the154

3D cost volume in an end-to-end learning manner. In order155

to reduce the impact of ill-posed region problems, CRL [30]156

refines the initial disparity value with the cross-scale feature157

information, andAANet [31] handles them via the cross-scale158

cost aggregation algorithm. To maintain faster computing159

speed, taking FADNet as backbone, ESNet [32] simplifies the160

original network structure and acquires motion compensation161

with pixel distortion. So as to avoid the intensive calcu-162

lation and memory consumption, SCV stereo [33] utilizes163

sparse cost volume representation to store the optimal k-value164

matching cost of each pixel. Thanks to those creative ideas,165

they are able to yield very competitive outcomes in a certain166

period of time. But for 3D models, the lack of enough infor-167

mation is what prevents them from achieving high-precision168

results.169

2) 4D MODELS WITHOUT ATTENTION170

When faced with the ill-posed region challenges, SSPCV-171

Net [34] extracts details from semantic segmentation sub172

networks, the content-aware inter-scale cost aggregation173

method [35] adaptively aggregates and upsamples cost vol-174

ume for reliable detail recovery, and MSMD-Net [36]175

constructs multi-scale and multi-dimension cost volume.176

Moreover, on the purpose of balancing real-time perfor-177

mance and accuracy, Gwc-Net [37] presents a group-wise178

correlation module that can not only provide similarity mea- 179

surement, but alsomaintain better performance after reducing 180

parameters, BGNet [38] proposes upsampling module based 181

on the learned bilateral grid to get high quality cost volume 182

form the low-resolution feature maps, and the method [39] 183

realizes this goal by mean of the separable convolution. 184

Targeting at earning a high level of accuracy, AcfNet [40] 185

directly constraints the cost volume using true disparities 186

peaked at unimodal distribution and the adaptive filtering cost 187

volume. To a certain extent, these approaches are actually 188

excellent. 189

3) 4D MODELS WITH ATTENTION 190

MA-Net [41] adaptively aggregates multi-scale context infor- 191

mation and recalibrates hierarchical cost volumes obtained 192

from different scales to avoid ill-posed region issues as possi- 193

ble. MAN [42] makes a better balance between accuracy and 194

efficiency by way of the proposed attention module that can 195

effectively select multi-scale information to refine the feature 196

maps. Some experiments were done and proved that they have 197

great development potential in some aspects. 198

Though these 4D models can almost achieve better per- 199

formance, it is still tough to gain more accurate disparities 200

under the influence of the issue that we concentrate on. 201

We suppose that if the intermediate feature map at different 202

scales are concatenated to generate the 4D hybrid cost volume 203

and the feature map channel-wise independencies seized by 204

the attention algorithms are used, their accuracy would be 205

improved to some extent. 206
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FIGURE 2. Block diagram of the MFEFM structure. The rectangles with
1/2, 1/4, 1/8, 1/16 and 1/32 scale levels jointly build the pyramid feature
map extractor. The rectangles in different color and size are the different
generated feature maps. 2D-Convolution Block = 2D-convolution
(3× 3,stride=1) + the batch normalization + the relu activation function
+ 2D-convolution (1× 1,stride=1).

III. METHODOLOGY207

As shown and illustrated in FIGURE 1, our model is mainly208

composed of the MFEFM, the ECAM and the HCVCM.209

In addition, it also encompasses other modules and functions.210

The running process of our model is briefly described as211

follows (as shown in FIGURE 1). After preprocessing, the212

image pairs are first sent to MFEFM (described in detail213

in Section III.A, as shown in FIGURE 2) to generate three214

types of different feature maps respectively. They are the left215

and right feature map pairs at 1/4 scale of different channels,216

which are denoted as fL1 and fR1 , fL2 and fR2 respectively, but217

the channels of the left and right feature maps are the same.218

Another outputs are the left and right feature maps denoted as219

fL3 and fR3 at 1/8 scale of the same channels. Then fL3 and fR3220

are thrown into ECAM (described in detail in Section III.B,221

as shown in FIGURE 3) to produce a new right feature map222

denoted as fR3s . Thirdly, fR3s and fL3 are concatenated to223

create the semantic information s required by the warping224

module (follow [8]). Fourthly, s is transformed into s′′ through225

the operation of the refinement module (follow [9]) and the226

upsample module. Fifthly, s′′ is sent into the warping module227

to warp fR1 and fR2 , then the right feature maps after the228

warping operation are denoted as fR1w and fR2w . Sixthly, fL1229

and fR1w , fL2 and fR2w are respectively transmitted to ECAM to230

originate two new right feature maps at 1/4 scale of different231

channels, which are denoted as fR1ws and fR2ws . Finally, fL1232

and fR1ws , fL2 and fR2ws are respectively fed into the CVCM of233

the HCVCM (described in detail in Section III.C, as shown234

in FIGURE 5) to give rise to the HCV denoted as Chcv and235

then Chcv is forwarded to NCAM to yield the final disparity236

results.237

A. MULTI-SCALE FEATURE EXTRACTION AND238

FUSION MODULE239

Extracting feature map is the first step acting as an important240

role. Without sufficient information provided by the feature241

extraction module, it is difficult to learn something useful 242

for training model. If the feature information is enough but 243

employing them insufficiently, the problem is still sitting 244

there. So we propose the MFEFM for the binocular stereo 245

matching with the purpose of making full use of all interme- 246

diate feature maps at different scales. 247

FIGURE 2 illustrates the MFEFM structure. The MFEFM 248

consists of a special pyramid feature map extractor and a 249

simple fusion module. We choose part of MobileNet V2 [43] 250

as our backbone pyramid feature map extractor owning to its 251

lightweight property. Then we build a simple fusion module 252

using a U-Net style upsampling and downsampling operation 253

with skip connection at each scale level. When feeding the 254

input image which are after preprocessing into the MFEFM, 255

subsequently, three feature maps are gotten. Different from 256

the operation of the original feature extraction module, which 257

generates the different scale feature maps through the general 258

convolution and residual block, and then selects the required 259

feature maps to fuse and produce the final feature maps, 260

MFEFM firstly gives rise to the intermediate feature maps at 261

1/2, 1/4, 1/8, 1/16 and 1/32 scale respectively by the special 262

pyramid feature map extractor, and then fuses all scale feature 263

maps and generates the final three feature maps at 1/4, 1/4 264

and 1/8 scale respectively through the simple fusion module. 265

In term of the running process brief, the final three feature 266

maps can be fL1 , fL2 , fL3 or fR1 , fR2 , fR3 respectively. 267

As displayed in FIGURE 2, different from the operation of 268

the original feature extraction module, which generates the 269

intermediate feature maps through the general convolution 270

and residual block, and then selects the required feature maps 271

to fuse and generate the final feature maps, MFEFM first 272

generates the required feature maps using part of the trained 273

MobileNetV2 network, and then fuses and generates the final 274

feature maps through the fuse module. During extracting fea- 275

ture maps, MFEFM can not generate redundant intermediate 276

feature maps, and make full use of the generated intermediate 277

feature maps. 278

In general, MFEFM can make full use of the generated 279

intermediate feature maps at different scales and enhance the 280

feature map representation ability of the network. Assem- 281

bling it into a stereo matching model is a nice choice. 282

B. EFFECTIVE CHANNEL ATTENTION MODULE 283

In short, the attention module is the method that can redis- 284

tribute the weights of the feature map content information. 285

In other words, it can emphasize useful information and 286

suppress useless information according to required operation. 287

The fact that payingmore attention to the vital aspect can help 288

people understand information easily, and so is the learning- 289

basedmodel, triggers us to design a simple but effective chan- 290

nel attention module named ECAM for the binocular stereo 291

matching to amply capture and take advantage of the channel- 292

wise independencies of the target feature map according to 293

the source feature map. 294

In essence, each channel of the featuremap can be regard as 295

a feature detector [44], the channel attention module mainly 296
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FIGURE 3. Diagram of the ECAM structure. ‘C’, ‘H’, ‘W’ refer to the channel,
the height, the width of the feature map respectively.

focuses on what channel content or channel information is297

meaningful of the given input image. To avoid the heavy298

computation burden brought by the complex attentionmodule299

commonly adopted in learning-based tasks, as displayed in300

FIGURE 3, we build the ECAM with only a max pooling301

function, a 2D convolution, a sigmoid activated function and302

a multiply operation even though these complex attention303

module can make model reach quite good effects. Besides,304

the average pooling function is usually used in common305

attention module, but the thought [45] that the max pool-306

ing function gathers another important clue about distinctive307

object features to infer finer channel-wise attention arouses308

us to select the max pooling function to improve the network309

representation capability. The example in FIGURE 4 shows310

the effect of the ECAM. There is no doubt that ECAMworks.311

It also means that in the light of the source feature map, some312

edge or shape cues of the target feature map can be focused313

on to emphasize.314

The ECAM running process can be defined as:315

ft ′ = ECAM(fs, ft) (1)316

where fs is the source feature map, ft is the target feature map,317

and ft ′ is the new target feature map.318

In the light of the previous short running process descrip-319

tion, we can know fL1 and fR1w , fL2 and fR2w , fL3 and fR3320

are fed into ECAM to yield fR1ws , fR2ws and fR3s respectively.321

In addition, when training HCVNet, we let fL1 , fL2 and fL3 act322

as the source feature map and multiplied factor operated with323

the target feature map fR1w , fR2w and fR3 respectively.324

C. HYBRID COST VOLUME COMPUTATION MODULE325

Generally speaking, the cost volume construction and aggre-326

gation module are tightly-coupled jointly determining the327

accuracy and efficiency of a stereo matching network. Thus328

we adopt the HCVCM which embraces the CVCM applied329

to erect the HCV, and the NCAM utilized to offer a suitable330

platform to adequately exploit the HCV.331

There are three categories of cost volumes typically used332

in 4D stereo matching model, which are the subtract cost333

volume, the group-wise correlation cost volume and the con-334

cat cost volume respectively. The model armed with the335

subtract cost volume can obtain outcomes faster with useful336

FIGURE 4. Effect diagram of the ECAM. The red box circled area indicates
the part with outstanding changes before and after the module operation.

difference information between the input image pairs. 337

Besides, the group-wise correlation cost volume is able to 338

store the average information of the image pairs channel in 339

groups and let the results stabilize within a certain range. 340

When mentioning the concat cost volume, why it enjoys 341

the great popularity is that it offers all image feature map 342

information as possible. Inspired by them, we decide to 343

combine them in concatenating way to sufficiently employ 344

them and absorb their merits. So as displayed in FIGURE 5, 345

the CVCM firstly generates the subtract cost volume, the 346

concat cost volume and group-wise correlation cost volume 347

respectively according to the input feature maps, and then 348

concatenates three varieties of the cost volumes to the HCV 349

denoted as Chcv. 350

Aggregating cost volume is also the most important part 351

in stereo matching network. Just because using previous 352

cost volume aggregation module of backbone model is not 353

suitable to the HCV, so we modify the original cost aggre- 354

gation module to the NCAM to give full play to the HCV. 355

As displayed in FIGURE 5, in our HCVNet model, the 356

cost aggregation architecture not only follows Gwc-Net with 357

three 3D hourglass modules, but also adds a 3D-Convolution 358

Block to reduce the computational cost. When Chcv is fed to 359

the NCAM, the 3D-Convolution Block would diminish the 360

number of channels from 136 to 64, then the first hourglass 361

module would lessen the number of channels from 64 to 32, 362

while other two hourglass modules do not need to execute 363

the operation. During this process, Chcv is iterated for many 364

times for fully filtering and utilizing the information. When 365

training our model, we not only send the final result Chcv3 to 366

the disparity regression module to generate the final disparity 367

result, but also feed the intermediate results Chcv1 and Chcv2 368

into the disparity regression module to produce disparity 369

outputs to avoid wasting useful information. 370

93066 VOLUME 10, 2022



C. Dai et al.: HCVNet: Binocular Stereo Matching via Hybrid Cost Volume Computation Module With Attention

FIGURE 5. Overall architecture of the hybrid cost volume computation module (HCVCM), which includes the cost volume construction
module (CVCM), the hybrid cost volume (HCV) Chcv and the new cost aggregation module (NCAM). HM is the Hourglass Module, DRM
is the Disparity Regression Module. 3D-CB refers to the 3D-Convolution Block. 3D-Convolution Block = 3D-Convolution (3× 3× 3,
stride=1) + batch normalization + the relu activation function.

In line with the running process brief, the whole process of371

aggregating cost volume can be roughly summarized as:372

Chcv3 = NCAM(Chcv) (2)373

where Chcv3 represents the final result and Chcv refers to the374

initial input HCV. And the process of building Chcv can be375

described as:376

Chcv = Csub ‖ Ccon ‖ Cgwc (3)377

where Csub means the subtract cost volume, Cgwc refers to378

the group-wise correlation cost volume, Ccon represents the379

concat cost volume and ‖ is the concatenation operation.380

In addition, according to the running process brief, these381

cost volumes at pixel location (x, y) using the feature maps at382

scale level s = 1/4 are separately computed as:383

Csub(d, x, y, f ) = fL1(x, y)− fR1ws(x − d, y) (4)384

Ccon(d, x, y, f ) = fL1(x, y) ‖ fR1ws(x − d, y) (5)385

Cgwc(d, x, y, g) =
1

Nc/Ng
〈fL2(x, y), fR2ws(x − d, y)〉 (6)386

where d is an integer within the maximum candidate disparity387

search range, i.e., d ∈ (0,Dmax/4] and f is the ordinal388

number meaning the fth channel. fL1 and fL2 represent the389

extracted left feature maps, fR1ws and fR2ws are the extracted390

right feature maps after operating by the warping module and391

the ECAM. Nc refers to the channel number of the extracted392

feature map, and Ng is the number of groups, then each393

feature group therefore has Nc/Ng channels. g is the ordinal394

number meaning the gth feature group which contains the395

gNc/Ng, gNc/Ng+1, . . . , gNc/Ng+ (Nc/Ng − 1)th channels 396

of the input featuremaps. 〈∗, ∗〉 is inner product and ‖ denotes 397

the concatenation operation. 398

D. DISPARITY REGRESS FUNCTION 399

The disparity regression, which is used to predict the con- 400

tinuous disparity maps proposed in [46], is more robust 401

than classification-based regress functions. The equation is 402

defined as: 403

d̂ =
Dmax−1∑
d=0

d × σ(Chcv3) (7) 404

whereDmax is set to 192, which refers to the maximum range. 405

And for each pixel, the softmax operation σ(∗) can calculate 406

the probability of each candidate disparity d from the aggre- 407

gated hybrid cost volume Chcv3. Then the final estimated 408

disparity result d̂ is is the sum of each candidate disparity 409

weighted by its probability. 410

E. LOSS FUNCTION 411

Compared to the L2 loss, the smooth L1 loss [47] is widely 412

used for its robustness and low sensitivity to outliers. So the 413

loss function of our model is defined as: 414

L
(
d, d̂

)
=

1
N

N∑
i=1

smoothL1
(
di − d̂i

)
(8) 415

and smoothL1(∗) is defined as: 416

smoothL1(x) =

{
0.5 x2, if |x| < 1
|x| − 0.5, otherwise

(9) 417
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TABLE 1. Comparison with other state-of-the-arts models. Bold: Best.
Underscore: Second best. ‘−’: Not done. ‘KT12’: KITTI 2012 dataset. ‘KT15’:
KITTI 2015 dataset.

where N is the total number of the labeled image pairs, d is418

the ground-truth disparity, and d̂ is the predicted disparity.419

IV. EXPERIMENTS420

A. DATASETS AND EVALUATION METRICS421

We use three popular and public datasets [2], [29], [48] for422

training and finetuning our model. These datasets are intro-423

duced as follows.424

SceneFlow: The SceneFlow dataset is a large synthetic425

stereo dataset which contains 35,454 training and 4,370 test-426

ing image pairs in 960 × 540 pixels resolution. It is large427

enough for directly training deep learning models with accu-428

rate and high-quality dense ground-truth disparity maps.429

KITTI Stereo 2015: The KITTI Stereo 2015 dataset is real-430

world dataset with street views captured from a driving car.431

It is composed of 200 training and 200 testing image pairs432

of 1242 × 375 pixels resolution with sparse ground truth433

disparities obtained from LiDAR and fitted 3D CADmodels.434

KITTI Stereo 2012: The KITTI Stereo 2012 dataset is435

a real-world dataset with dynamic street and road views.436

It consists of 194 training image pairs with sparse ground437

truth disparities and 195 testing image pairs without ground438

truth. Those image pairs are in 1226× 370 pixels resolution.439

And the metrics that we use to evaluate methods are intro-440

duced as follows.441

EPE: It is also called end-point-error, which refers to the442

mean average disparity error in all pixels.443

D1: It means that the percentage of stereo disparity outliers444

in first frame. In other words, it is the error pixels that exceeds445

3px and exceeds 5% of the truth value.446

D1-all: It is the percentage of stereo disparity outliers447

averaged over all ground truth pixels.448

D1-bg: It is the percentage of stereo disparity outliers449

averaged only over background regions.450

D1-fg: It is the percentage of stereo disparity outliers aver-451

aged only over foreground regions.452

xpx: It is also called xpx-error, which can be regarded as453

the percentage of the error pixels that exceeds xpx. The x is454

usually set to 2, 3, 4 or 5.455

Out-Noc: It is the percentage of the error pixels in non-456

occluded areas.457

Out-All: It is the percentage of the error pixels in all areas.458

Avg-Noc: It also refers to the mean error, and it is the 459

average disparity or end-point error in non-occluded areas. 460

Avg-All: It also refers to the mean error, and it is average 461

disparity or end-point error in all areas. 462

TABLE 2. Comparison with other state-of-the-arts models in
non-occluded areas on KITTI 2012 dataset. Bold: Best. Underscore:
Second best. ‘−’: Not done.

TABLE 3. Comparison with other state-of-the-arts models in all areas on
KITTI 2012 dataset. Bold: Best. Underscore: Second best. ‘−’: Not done.

B. IMPLEMENTATION DETAILS 463

We choose theMobileNetV2 pre-trained on ImageNet [49] as 464

our feature map extractor backbone due to its less parameters 465

and stronger learning ability which can make model converge 466

faster during training. We implement our model by avail of 467

PyTorch and choose Adam optimizer [50] as our optimizer. 468

We randomly crop images to size W = 512, H = 256 for 469

training. 470

On the SceneFlow dataset, we train our network for first 471

6 epochswith a learning rate 1×10−3 and then set the learning 472

rate to 1× 10−4 for last 4 epochs. We also set the batch size 473

to 12 during training. 474

For our experiments on the KITTI dataset, we finetune the 475

model which is pre-trained on the SceneFlow dataset for first 476

200 epochs with an initial learning rate of 1× 10−3 and then 477

decrease learning rate to 1 × 10−4 for last 100 epochs. And 478

we set batch size to 8. 479

C. MODEL PERFORMANCE 480

We show the comparisons of our method and other existing 481

state-of-the-art methods from TABLE 1 to TABLE 4, which 482

can inform us straightforwardly of the fact that HCVNet’s 483

performance is very competitive. And we show the visual 484

results in FIGURE 6, FIGURE 7 and FIGURE 8, which can 485

directly illustrate HCVNet performmuch better than PSMNet 486

according to this visual results. 487

It can be seen more intuitively from TABLE 1 that 488

HCVNet gets great scores on SceneFlow dataset and KITTI 489

2012 dataset indeed. In addition, all the evaluation indicators 490
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FIGURE 6. Qualitative test results on the SceneFlow dataset. From top to bottom, they are left image, ground-truth disparity
map, disparity map generated by PSMNet and disparity map generated by HCVNet. The red box circled area indicates the part
with outstanding changes, meaning that better edges or shapes are produced.

FIGURE 7. Qualitative test results on the KITTI Stereo 2015 dataset. From left to right, they are left image, disparity map, error
map respectively. In the middle and right column, from the first line to the second line, and from the third line to the last line,
they are the results generated by PSMNet and the outputs generated by HCVNet respectively. The blue color tones in error map
means correct estimates, while the red color tones refers to wrong estimates. Dark regions in the error images denote the
occluded pixels which fall outside the image boundaries.

diminish significantly. On SceneFlow dataset, HCVNet is491

more outstanding due to its EPE is 0.714, andGwc-Net whose492

EPE is 0.765 just ranks second. They lessen PSMNet’s EPE493

by 0.376 and 0.325. Besides, on KITTI 2012 dataset, our494

model achieves superior performance owing to 1.31% 3px 495

ranks second in non-occluded areas. Just taking 3px onKITTI 496

2012 dataset as example, HCVNet lets PSMNet decline by 497

0.18% in non-occluded areas and 0.17% in all areas. 498
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TABLE 4. Comparison with other state-of-the-arts models on KITTI
2015 dataset. Bold: Best. Underscore: Second best. ‘−’: Not done.

From TABLE 1 to TABLE 4 especially TABLE 4, we can499

conclude that HCVNet has a lot of room for improvement500

if keeping carry on research in summary. Though our model501

HCVNet is not better than other networks in all in other502

metrics validation, nevertheless, HCVNet has great advance503

over PSMNet.504

All in all, though compared with other models, the avg505

run time of our network still has a room to upgrade, the506

experiments done by us yet can prove that our study is mean-507

ingful and useful because our model’s results own certain508

competitiveness indeed.509

D. ABLATION STUDY510

In order to analyse the performance of our proposed mod-511

ules correctly, we train and test PSMNet again in the same512

environment, which is denoted as PSMNet∗. And we purpose513

to further verify the performance of HCV and NCAM in514

HCVCM, so we separately replace the original cost volume515

and the original cost aggregation module of PSMNet.We also516

separately discard HCV and NCAM of HCVNet for abla-517

tion study. The ablation experiment results are shown from518

TABLE 5 to TABLE 8.519

On the one hand, in all ablation study tables, we can see that520

when PSMNet∗ is armed correspondingly with substituting521

modules, although the evaluation metrics on each dataset is522

not better than that without replacing the original module,523

their overall output nearly tend to be better. On the other524

hand, we can also know that the performance of HCVNet525

would be worse and worse while uninstalling corresponding526

components we adopted.527

In TABLE 5, it can be seen that when PSMNet∗ is equipped528

with HCVCM, the EPE drops from 1.111 to 0.904, while529

training and testing HCVNet without HCVCM, the EPE530

increases from 0.714 to 1.037. And from TABLE 6 and531

TABLE 7, we can know all the values are almost best532

while replacing with the HCVCM and testing on KITTI533

2012 dataset, but when the model running without HCVCM,534

the results would be worse and worse. When mentioning535

HCV or NCAM alone from TABLE 5 to TABLE 8, its effect536

would result in a better degree if HCV and NCAM jointly537

cooperating.538

TABLE 5. Ablation study results comparison. ‘+’: Adopt corresponding
modules. ‘−’: Use original modules. Bold: Best. Underscore: Second best.
‘KT12’: KITTI 2012 dataset. ‘KT15’: KITTI 2015 dataset.

TABLE 6. Ablation study results comparison in non-occluded areas on
KITTI 2012 dataset. ‘+’: Adopt corresponding modules. ‘−’: Use original
modules. Bold: Best. Underscore: Second best.

In addition, we can be aware of that MFEFM can 539

boost performance from all ablation tables. When equipping 540

with MFEFM, PSMNet∗+MFEFM decreases PSMNet∗ to 541

1.048 EPE. When not equipping with MFEFM, HCVNet- 542

MFEFM increases HCVNet’s EPE to 0.886. And taking 543

PSMNet∗ and PSMNet∗+MFEFM in TABLE 8 as examples, 544

not only in all areas D1-fg drops from 5.20% to 4.60% and 545

D1-all decreases from 2.49% to 2.45%, but also in non- 546

occluded areas D1-fg declines from 4.75% to 4.20% and 547

D1-all diminishes from 2.27% to 2.24%. If we take HCVNet 548

and HCVNet-MFEFM as instances, we can know not only 549

in non-occluded areas 3px raises from 1.31% to 1.37% and 550

D1-all grows from 2.00% to 2.15%, but also in all areas 551

3px ascends from 1.72% to 1.79% and D1-all expands from 552

2.19% to 2.35%. 553

Furthermore, when equipping with ECAM on SceneFlow 554

dataset, PSMNet∗+ECAM’s EPE is 1.071 that decreases 555

PSMNet∗ by 0.04 EPE, and HCVNet-ECAM’s EPE is 556

0.895 that increases HCVNet’s EPE by 0.181. Besides, in all 557

areas on KITTI 2012 dataset, 3px and 5px are 1.90% and 558

1.13% respectively, making PSMNet∗ descend by 0.01%. 559

At the same time, from TABLE 5 to TABLE 8, we also can be 560

informed that when not arming with ECAM, in non-occluded 561
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FIGURE 8. Qualitative test results on the KITTI Stereo 2012 dataset. From left to right, they are left image, error map, disparity
map respectively. In the middle and right column, from the first line to the second line, and from the third line to the last line,
they are the results generated by PSMNet and the outputs generated by HCVNet respectively. The error map scales linearly
between 0 (black) and >=5 (white) pixels error. The red color in error map denotes all occluded pixels, falling outside the image
boundaries.

TABLE 7. Ablation study results comparison in all areas on KITTI
2012 dataset. ‘+’: Adopt corresponding modules. ‘−’: Use original
modules. Bold: Best. Underscore: Second best.

areas and all areas on KITTI 2012 dataset, 3px are 1.37%562

and 1.78% respectively, making HCVNet go up to 1.31%563

and 1.72%. And in non-occluded areas and all areas on564

KITTI 2015 dataset, D1-all are 2.08% and 2.28% respec-565

tively, ascending HCVNet by 0.08% and 0.09%. Then we can566

have knowledge of that ECAM are able to improve model567

even if the effect is not obvious.568

We can be informed that HCVCM combines and gives569

full play to the advantages of HCV and NCAM from these570

tables. Just taking PSMNet∗ and PSMNet∗+HCVCM in571

TABLE 6 as instances, in non-occluded areas 2px dwindles572

from 2.50% to 2.26%, 3px declines from 1.48% to 1.37%,573

4px lessens from 1.09% to 1.01%, and 5px diminishes from574

TABLE 8. Ablation study results comparison on KITTI 2015 dataset. ‘+’:
Adopt corresponding modules. ‘−’: Use original modules. Bold: Best.
Underscore: Second best.

0.88% to 0.80%.We also can see that using HCVCM is better 575

than utilizing HCV or NCAM alone. It is also clear that they 576

are closely linked and indispensable. The NCAM provide the 577

most suitable platform for aggregating the HCV, while the 578

HCV is rich in entire kinds of the feature map information. 579

With only one module, the expression and representation 580

ability of the model is limited. So we can see that the perfor- 581

mances of PSMNet∗+HCV and PSMNet∗+NCAM are poor 582

when comparingwith PSMNet∗+HCVCM.Andwe consider 583

that the reason why PSMNet∗+HCVCM performs much 584

better than PSMNet∗ but is worse than PSMNet∗+NCAM is 585
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that NCAM happens to be one of the most suitable platforms586

for the original cost volume built by PSMNet∗ to aggregate587

itself. Meanwhile, HCVNet-HCVCM performs much worse588

than HCVNet-HCV and HCVNet-NCAM, which can be589

explained from the side that comparedwithHCV andNCAM,590

HCVCM has a greater impact on the network, meaning that591

HCVCM can significantly improve the performance of the592

model.593

In brief, the adopted modules can augment the model594

performance.595

V. CONCLUSION596

Our goal is getting more accurate results and mitigating the597

impact of the inadequately use problem of the other scale598

intermediate feature maps and the other types of cost vol-599

umes, and the less attention problem to the channel-wise inde-600

pendencies of the left and right featuremap. Thus, we propose601

theMFEFM and the ECAM for the binocular stereomatching602

and adopt the HCVCM to slove these problem as possible.603

We also construct a model called HCVNet for binocular604

stereo matching, and do some experiments to validate its605

superiority over other state-of-the-art methods in this paper.606

Although compared with them, our model can not do the607

best in all aspects, such as avg run time, its competitive608

performance (0.714 EPE on SceneFlow dataset, 1.31% 3px609

in non-occluded areas on KITTI 2012 dataset and 2.00%610

D1-all in non-occluded areas on KITTI 2015 dataset) in a611

way should not be ignored. After all, the avg run time of612

HCVNet (0.26s) under the running condition (four NVIDIA613

Tesla V100 GPUs) is 0.15s less than the backbone model614

PSMNet (0.41s). It can draw a conclusion that the adopted615

components (MFEFM, ECAM and HCVCM) are effective616

and useful in binocular stereo matching. It is very hopeful617

that the method can be beneficial to various vision tasks.618

Besides, our next ambition is planing to promote efficiency619

and maintain model performance meanwhile as possible.620
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