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ABSTRACT Measurement of hand kinematics is commonly done using data gloves and optical trackers and
finds application in biomechanics, motor control research, clinical assessment, virtual reality etc. While data
gloves are expensive and restrict the dexterity of the hand, optical trackers are susceptible to the line-of-sight
problem and can be used only in a laboratory setting. Over the last decade, the use of Inertial Measurement
Units (IMUs) to measure kinematics has gained traction due to their affordability and good accuracy. This
paper presents the design and validation of a BNOO55 IMU-based full Hand Kinematics Measurement
System (HKMS). The best features from existing IMU-based devices were identified from the literature
and incorporated. The HKMS streams orientation information of 16 BNO055 IMUs in real-time at 100 Hz
via Wi-Fi or USB. A rigorous static and dynamic validation of the BNOO055 IMU was done against 3D printed
models and the highly accurate Electro Magnetic Tracking System (EMTS). The RMSE errors were found
to be acceptable for the measurement of hand kinematics. Two experiments were conducted to collect hand
kinematic data for various postures and object grasps using the HKMS and EMTS, respectively. Synergy
analysis was done and range of motion of the joints was calculated using the two datasets. The results were
compared to get an idea of the quality of the dataset collected using the HKMS. The results as well as the
overall validation of the sensors indicate that the HKMS may be suitable for usage in a laboratory or clinical
setup.

INDEX TERMS BNOO055, data gloves, hand kinematics, IMU, IMU validation, inertial measurement unit,
joint angles, motion capture, synergy.

I. INTRODUCTION
The human hand is the epitome of dexterity and fine move-

hand or in the design of artificial hands. Accurate measure-
ment of human hand kinematics is essential in biomechan-

ment control. With monosynaptic connections between the
cortico-spinal neurons and the alpha motor neurons supplying
the hand muscles, the dexterity and complexity of movements
of the human hand is unparalleled. While such dexterity
helps us to grasp and manipulate objects with varying shapes
and contours with ease, the presence of a large number of
joints poses a challenge for measuring the kinematics of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Masood Ur-Rehman

ics, motor control research, synergy analysis, sports, hand
animation, virtual reality (VR), ergonomics etc. Apart from
this, physicians also consider parameters like the range of
motion (ROM) and smoothness of movements as reliable
indicators to track the severity of pathology and recovery
rate in patients with neuromotor disorders. Research in these
areas heavily relies on devices such as optical trackers [1],
[2], [3] and flex sensor-based data gloves [4], [5], [6], [7], [8]
to measure full hand kinematics. Optical trackers require an
external setup in terms of cameras and placement of markers
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on the hand and hence cannot be used for quick measurements
outside of a laboratory setup (e.g., in a clinical setup). Addi-
tionally, they are also susceptible to line-of-sight problems.
Since human hand kinematic measurement requires many
markers, line-of-sight problems are inevitable. Commercially
available data gloves are made using multiple flex sensors
whose resistance changes based on the amount of bend in
them. Using appropriate calibration methods, these resistance
values are converted to joint angles [9]. These calibration
methods must be repeated for each participant separately due
to their varying hand sizes. As a result, inaccuracies could
creep into the measurements if the calibration process is not
done correctly. Additionally, a recent study has shown that
the dexterity of movements decreases by 29% while wearing
data gloves due to the obstruction provided by the glove on
the palmar surface of the hand [10]. Moreover, commercially
available data gloves and optical trackers are expensive.

Over the last decade, the use of Inertial Measurement Units
(IMUs) for the measurement of hand kinematics has gained
serious traction due to their affordability, ruggedness, ease of
use, and relatively good accuracy. Many existing IMU-based
data gloves [12], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25] measure rudimentary quantities such as accelera-
tion, tilt rate and magnetic field using the IMUs accelerom-
eter, gyroscope and magnetometer, respectively. These
quantities are then processed using sensor fusion algorithms
that use appropriate filters to obtain the orientation of the
IMU sensor and, in turn, the orientation of the finger phalanx
to which the IMU is attached to. This orientation is obtained
w.r.t the north east down (NED) or east north up (ENU)
reference frame. The orientation data is in turn used to com-
pute joint angles. Of late, a few IMUs such as the BNO055
(by Bosch Sensortec), BNO080/85/86 (co-developed by Hill-
crest Labs and Bosch Sensortec), MPU9250 (by InvenSense)
etc., have gained immense popularity amongst hobbyists and
researchers alike [11], [12]. This is due to the fact that they
have an onboard microcontroller (integrated into the IMUs
System in Package (SiP)) that implements a sensor fusion
algorithm to output orientation data (in the form of quater-
nions and/or Euler angles) in real-time at sampling rates as
high as 100 Hz. (For e.g., the BNO055 IMU has a 32-bit
microcontroller (as part of the IMU chip) which implements
a Kalman filter-based sensor fusion algorithm to output ori-
entation data (as quaternions or Euler angles) at 100 Hz).
This has been a real game-changer as these IMUs are now
accessible to those audiences who might not necessarily have
an intimate knowledge of signal processing techniques and
complex filters required for implementing the sensor fusion
algorithm in real-time.

In this paper, we present the design and validation of a
BNOO055 IMU-based Hand Kinematics Measurement System
(HKMS) with Wi-Fi capability for the measurement of full
hand kinematics (15 joints). The utility of the HKMS in
collecting hand kinematic data for ROM analysis and syn-
ergy analysis is also demonstrated. In the following section,
existing IMU-based data gloves are compared and contrasted
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from the literature and some limitations are identified. Based
on the limitations, the important factors that should go into
the development of the HKMS are highlighted.

Il. RELATED WORK

The last decade has witnessed tremendous growth in the
development of IMU-based devices for tracking human hand
movement. Many of these devices have reported relatively
good accuracy without hindering natural hand movements
and object manipulation. Some of these devices have been
developed to measure full hand kinematics (Refer Table 1),
whereas others have been developed specifically for certain
applications and don’t measure the kinematics of all the finger
joints [13], [14]. In this paper, only the literature pertaining
to IMU-based devices that measure full hand kinematics is
discussed.

A list of IMU-based data gloves/systems for the mea-
surement of full hand kinematics is presented in Table 1.
Some of the crucial aspects of the data gloves, such as the
IMU used, sensor size, data output rate, ability to imple-
ment the sensor fusion algorithm in real time and location
of implementation of the algorithm (i.e., on PC, on micro-
controller or on board the IMU chip itself), validation meth-
ods, and mode of data transfer are compared in Table 1.
From the table, it can be seen that IMUs like MPU9250,
MPU9259, MPU6050, BNOO55 and LSM series are some
of the commonly used sensors for the development of IMU-
based data gloves. Recently, a preliminary study investigated
the static and dynamic accuracy of three consumer-grade
IMUs: MPU9150, X-NUCLEO_IKS01A1, BNOOS5S and one
industrial-grade IMU: MTi-300 [15]. The results showed that
among the consumer-grade IMUs, the BNOOS5S5 had better
static and dynamic accuracy. This was one of the reasons why
we explored the possibility of using the BNOOSS in building
the HKMS.

From the literature (Refer Table 1) the following draw-
backs of existing IMU-based data gloves have been
identified:

1. IMU data gloves that use USB [11], [12], [16], [24]
to output data limit the movement range of the glove to the
length of the USB cable. While there are IMU data gloves that
use Bluetooth (Refer Table 1) for wireless data transmission
(hence overcoming the limitation), using Wi-Fi would give
superior range and data transmission speeds.

2. Many IMU data gloves output orientation data at low
sampling rates, e.g., 20Hz [11], 50 Hz [18], 60 Hz [21] etc.
Some IMU data gloves output raw data at sampling rates of
50 Hz [17], [20], [23], [25], 100 Hz [12], [16], [22] etc., and
process the raw data using sensor fusion algorithms to get
orientation data in real time. However, some of these studies
have not clearly stated what is the orientation data output
rate after processing the raw data. Existing, commercially
available flex-sensor based data gloves output joint angle
information at 100 Hz or greater [8], [26]; hence it would
be desirable to make the HKMS output orientation data at
100 Hz to meet the commercially available standards.
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TABLE 1. Comparison of IMU based full hand kinematic measurement devices.

Study IMU used Numbe | Data Output Sensor Validation Validation device Static Dynamic Wi-Fi
Ref No (Dimensions in r of Rate Fusion RMSE RMSE /BT/USB
(Year) mm) IMU’s (Raw Algorithm /error /error
/Orientation (Implementa
Data) tion location)
[16] ST 16 100 Hz Real time Dynamic Optical tracker - 1.2 cm USB
(2014) LSM330DLC (Raw data) (PO)
(unspecified)
[17] MPU6050 11 50 Hz Real time Dynamic Optical tracker - 3.3° BT
(2017) (unspecified) (Raw data) (PC)
[18] MPU9250 18 50 Hz Real time Static and Robotic arm <1° 2.5° BT
(2017) (10x 15x2.6) (Orientation | (Microcontr dynamic
data) oller)
[11] BNOO055 15 20 Hz Real time Static and 3D printed/ 8° 6° (Max USB
(2017) (6.35x 6.35) (Orientation (On-Board dynamic motorized (Max error)
data) the IMU) platform error)
[19] MPU9150 16 Unspecified Real time Static Wooden cuts and | 5.95° - Wi-Fi
(2017) (unspecified) (PO) optical tracker
[20] LSM9DS0 17 50 Hz Real time Static and LPMS-B IMU 1° 2.3° BT
(2018) (10x 10) (Raw data) (PC) dynamic
[21] Unspecified 17 60 Hz Real time Dynamic 4 d.o.f gimbal - 5.7° BT
(2018) (Unspecitied) (Orientation | (Microcontr
data) oller)
[22] MPU9259 16 100 Hz Real time Dynamic Optical tracker - 2cm BT
(2019) (unspecified) (Raw data) (PC)
[23] Unspecified 16 50 Hz Unspecified Static Protractor tool 2° - BT
(2019) (unspecified) (Raw Data)
[24] Unspecitied 16 Unspecitied Real time Dynamic Custom - 3° USB
(2019) (12x8) (Microcontr motorized
oller) platform
[25] MPU9250 18 50 Hz Real time Dynamic Optical tracker - 5° BT
(2019) (unspecified) (Raw Data) (PC)
[12] MPU9250 12 100 Hz Real time Static and | Goniometer and <2° Not USB
(2021) (unspecified) (Raw data) (PC) dynamic HCM365B reported
compass
This BNO055 16 100 Hz Real time Static and 3D printed Details discussed Wi-Fi
device (10x13) (Orientation | (On-board Dynamic models and in results and
HKMS data) the IMU) EMTS USB

3. Most of the IMU data gloves process the raw data using
sensor fusion algorithms to get orientation data. However,
to reproduce such devices would require advanced knowl-
edge of signal processing techniques and complex filters
(which is required to implement the sensor fusion algo-
rithm). With recent advances in technology, IMU’s such as the
BNOO055 have emerged which directly output orientation data
at 100 Hz. This eliminates the requirement of the end user
to implement a sensor fusion algorithm. Using such an IMU
to develop the HKMS would greatly reduce the complexity,
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the device development time and make the HKMS easier to
reproduce in comparison with existing IMU data gloves.

4. An essential aspect of any IMU-based data glove/system
is the validation process wherein the sensor outputs are
benchmarked against a highly accurate system. Optical
trackers [16], [17], [22], [25], high accuracy laboratory-
grade IMUs [20], and custom-made motorized platforms
[11], [21], [24] are some of the commonly employed devices
for validation. While these validation methods have reported
high accuracy in favor of the IMU-based data gloves, liter-

VOLUME 10, 2022



P. Shenoy et al.: Design and Validation of an IMU Based Full HKMS

IEEE Access

ature reporting a detailed and rigorous static and dynamic
validation (involving the effect of different movement speeds
and continuous repetitive movements on the IMUs accuracy)
is scarce.

5. Finally, studies that have demonstrated an application of
the developed IMU-based data glove [19] in a laboratory or
clinical setup are scarce.

From the discussion in the preceding paragraphs, we have
identified the following important factors that should go into
the development of an IMU-based data glove/system: use
of 16 IMUs to measure full hand kinematics, minimum strap-
ping on the palmar surface of the hand to prevent reduction
in hand dexterity, outputting the orientation data (in the form
of quaternions) of all the 16 IMUs at 100 Hz, using an IMU
that has a microcontroller (onboard the IMU chip) which
implements a sensor fusion algorithm to directly output ori-
entation data in real-time, rigorous static and dynamic valida-
tion of the chosen IMU and wireless data transmission using
Wi-Fi. We have built a BNO055 IMU-based Hand Kinemat-
ics Measurement System (HKMS) that incorporates all these
factors.

Apart from design and validation of the IMUs, as an
application of the HKMS, we test its utility in the mea-
surement of ROMs and analysis of synergies derived from
the measured kinematics. According to human motor control
research, a small number of movement primitives (also called
synergies) are capable of controlling a larger set of joint
movements of the human hand, resulting in simultaneous
activation of multiple joints [4]. Instead of individually con-
trolling each degree of freedom of the hand, the central ner-
vous system (CNS) relies on such synergies or coactivation
patterns to control the complex set of hand movements, hence
reducing its computational load. Dimensionality reduction
using PCA [1], [2], [3], [4], [5], or autoencoders [8], are
usually applied to identify the synergistic kinematic patterns
which could help in disease diagnostics [26] or develop-
ment of prosthetic hands [27], [28]. We conducted an exper-
iment where the HKMS was used to collect kinematic data
(from 5 participants), which in turn was used for synergy
analysis and ROM analysis. The same experiment was con-
ducted again (with the same 5 participants), but instead of
using the HKMS, a highly accurate Electromagnetic Track-
ing System (EMTS) was used for kinematic data collection.
The kinematic synergy patterns and ROM derived from the
HKMS were compared with that obtained from EMTS. This
was done to get a sense of how the HKMS compares to
highly accurate research-grade equipment in terms of the
quality of the data set collected and its use in reproduc-
ing similar results and interpretations. In this paper, we
present:

1. The design of the BNOO055 based HKMS,

2. The static validation of the BNO055 IMUs against 3D
printed models with predefined joint angles,

3. The dynamic validation of the BNO055 IMUs against
the highly accurate EMTS sensors and
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4. The experimental results of synergy analysis and ROM
analysis of two separate data sets collected using the HKMS
and the EMTS, respectively.

Ill. MATERIALS AND METHODS

A. HARDWARE DESIGN

The HKMS consists of 6 microcontrollers and 16 IMU sen-
sors. One microcontroller is a Wi-Fi module which is used
to wirelessly send data from the HKMS to the computer via
Wi-Fi. The remaining 5 microcontrollers are used to collect
orientation data in the form of quaternions from the 16 IMUs.
These 5 microcontrollers are connected in a master slave con-
figuration: 1 master and 4 slaves (See Fig. 1(b)). The master
is connected to 4 IMU’s — 1 placed on the wrist and 3 placed
on the phalanges of the middle finger. Each of the 4 slaves are
connected to 3 IMUs which are placed on the three phalanges
of a finger (See Fig. 1(b)). The data collection is synchronized
by the master in the following way: the master sends an
interrupt (in the form of a rising edge on the interrupt line)
to the 4 slaves every 10ms. Upon detecting the interrupt, the
4 slaves simultaneously start collecting orientation data from
the three IMUs connected to them. Each slave then sends the
collected data serially to the master. Parallelly, the master,
after generating the interrupt, starts collecting orientation data
from the 4 IMUs connected to it following which it waits for
the serial data to arrive from the 4 slaves. Once all the data
has arrived, the master sends the data serially to the Wi-Fi
module which in turn wirelessly sends the data to a computer.
Alternatively, the master can also send the data via USB to
a computer. This entire process of collecting and sending
the orientation data from all the 16 IMUs happens within
10ms before the master sends the next interrupt. This ensures
that the HKMS outputs the orientation data at a frequency
of 100 Hz.

One of the unique design features of the HKMS is the
master-slave configuration explained in the preceding para-
graph. The reason for using such a design is the following:
the IMU being used in the HKMS takes approximately 2-3ms
to send the orientation data to the microcontroller from the
instance at which the IMU was requested for the data. If a
single microcontroller is used, then it would take >32ms to
get data from all the 16 IMUs. This would limit the sampling
frequency of the HKMS to <31.25 Hz. However, as discussed
in the previous section, it was decided that one of the features
of the HKMS should be that it outputs orientation data from
all the 16 IMUs at 100 Hz. To achieve this, the master-slave
configuration was used to enable simultaneous data collection
from multiple IMUs and hence, achieve the desired sampling
rate of 100 Hz. Additionally, the number of IMUs on the
HKMS can be expanded to 20 without decreasing the 100 Hz
sampling rate. These additional sensors can be placed on the
wrist to model the palm arch of the hand or on the arms to
capture their movement kinematics. Another unique design
feature of the HKMS is connecting the IMU sensors in series.
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FIGURE 1. (a) The HKMS is mounted on a human hand. The IMU’s are stuck to the finger phalanges and the Master-Slave receiver board is strapped
to the arm along with a power bank (b) Simplified block diagram of the HKMS showing the connections between the master microcontroller, slave
microcontrollers, BNO055 IMUs and the Wi-Fi module. The serial communication protocol between the master and slaves is UART and between the

BNOO55 IMUs and the microcontrollers is 12C.

This was done to reduce the bulkiness of the device. Instead
of having individual connections to each of the 16 IMUs, the
3 IMUs connected to each slave were connected in series and
the 4 IMUs connected to the master were connected in series
(See Fig. 1). To achieve the series connection, four different
“types” of Printed Circuit Boards (PCBs) were designed
around the IMU chip. The design and implementation details
of these four “types” of PCB’s are provided in Appendix I.

B. HARDWARE IMPLEMENTATION

The HKMS consist of 5 teensy 4.0 microcontrollers used in
the master-slave configuration, an ESP32 based microcon-
troller — TinyPICO —having Wi-Fi capability for wireless data
transmission, 16 BNOO055 IMUs (Bosch Sensortec) for pro-
viding orientation information of the wrist and all the finger
phalanges and a small power bank for powering the HKMS
(See Fig. 1(a)). In order to build a compact system, a custom
PCB — Master-Slave PCB — was designed with appropriate
connections between the master and slaves (See Fig. 1(b)).
This PCB has dimensions of 7.3 cm X 5 cm, consists of
slots for fixing the 5 teensies and has 5 Flat Flexible Cable
(FFC) connectors soldered at the bottom. The Master-Slave
PCB is strapped to the arm along with the power bank using
Velcro straps (See Fig. 1(a)). It is not attached to the wrist so
as to avoid any strapping material on the palmar surface of
the hand which could reduce the hand’s dexterity. The serial
communication between the master, slaves and the TinyPICO
(which is directly soldered on top of the master) happens
using the UART communication protocol and the serial com-
munication between the BNOO0S55s and the teensies happens
using the I2C communication protocol. The FFC connectors
on this PCB are 6 pin 0.5mm pitch connectors. Two pins
of the FFC connector are dedicated for the power lines and
the remaining four pins are dedicated for connections to two
12C channels (shown in Fig. 1(b) as I2C channel 1 and 12C
channel 2) of a single teensy. Each FFC connector on this
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PCB connects one teensy to the three BNOOSS5 sensors on
one finger. The three BNOO55s on each finger are connected
in series using 6 wire FFC cables (0.5 mm pitch). For the
master alone, 4 BNOOSS5s are connected in series (See Fig 1).
To connect the BNOO55 sensors in series and to minimize
its size so that it can be attached on a finger phalanx, four
different “types” of custom PCBs having a dimension of
1.3 cm x 1 cm were designed around the BNOOSS chip.
The design of these four “types” of PCBs and how they are
connected in series is given in Appendix L.

C. QUATERNION PROCESSING AND ANIMATION

OF HAND MODEL

The BNOO55 IMUs were programmed to output orientation
data in the form of quaternions. As a first step in process-
ing the data, the relative quaternions between the adjacent
BNOO055s across all joints were computed using quaternion
conjugate multiplication (1).

qBrelativeA = chonj ® Uh:3 (D

Here, g4 and qp are the raw quaternion data of the two
adjacent hand segments ‘A’ and ‘B’ of a joint and represents
the orientation of these segments w.r.t east north up (ENU)
frame of reference, qf;m] is the conjugate of q4 and g cjarive
is the relative quaternion that represents the orientation of
segment B relative to A. The relative quaternions of each
joint were then hemispherized (i.e., made to lie on the same
side of the hemisphere) due to their antipodal symmetry. The
hemispherized relative quaternions were then used for data
analysis.

In this work, many linear Euclidian operations such
as computing RMSE, performing linear dimensionality
reduction using PCA etc., are performed. However, since
quaternions are defined on a non-linear manifold, the lin-
ear operations just mentioned cannot be directly applied
on them [29], [31]. To perform these linear operations, the
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FIGURE 2. 3D printed models (used for static validation) with slots to mount the BNO055 breakout boards at fixed
angles relative to each other. The local reference frame of each BNO055 sensor is highlighted. (a) and (b) depict the
same 3D printed model having a joint angle of ¢ = 60°. In (a), the sensors are fixed such that sensor 2 is rotated
60° w.r.t the Y axis of sensor 1 i.e., the relative pitch angle is 60°. In (b), the sensors are fixed such that sensor 2 is
rotated 60° w.r.t the X axis of sensor 1 i.e., the relative roll angle is 60°. In (c), the 3D printed model has slots such
that sensor 2 is rotated by 30° w.r.t the Z axis of sensor 1 i.e., the relative yaw angle is 30°.

hemispherized relative quaternions were first linearized using
logarithmic mapping and then the linear operations were
performed on them. Following this step, the linearized orien-
tations were converted back to quaternions using exponential
mapping [31]. For more details on the applicability of quater-
nions for biomechanical analysis, refer to [29], and for more
information on logarithmic and exponential mapping, refer
to [30], [31]. A short primer on logarithmic and exponential
maps is presented in Appendix II.

For the purposes of animation, a hand model was cre-
ated using SOLIDWORKS and imported into MATLAB.
A MATLAB Simulink program was developed to accept
the orientation data from the HKMS via Wi-Fi in real-time.
Relative quaternions were computed using (1) and converted
to Euler angles for the “XZY” intrinsic rotation sequence to
get the roll, yaw and pitch angles of B w.r.t A. The MATLAB
function ‘eulerd’ with ‘point’ as the rotation type was used for
the same. The sensors were aligned on the hand such that the
yaw angle (i.e., second Euler angle in the intrinsic sequence)
of the proximal phalanx of a finger, when computed w.r.t the
wrist sensor gave the abduction/adduction angles of that fin-
ger w.r.t the wrist sensor. The problem of gimbal lock (often
encountered when working with Euler angles) is avoided
in our application as the abduction angle never approaches
£90°. The computed Euler angles were then fed into the hand
model to animate hand postures in real-time.

D. STATIC AND DYNAMIC VALIDATION OF THE

BNOO055 SENSORS

The static and dynamic validation of the BNOO5S5 sensors
was done to determine the accuracy of the BNOO55 for
the calculation of joint angles. This validation was neces-
sary to determine whether the BNOO55 could be used to
collect full hand kinematics data for research purposes. For
the static and dynamic validation, two off-the-shelf BNO055
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breakout boards from DFRobot were used. Additionally, for
the dynamic validation, an electromagnetic tracking system
(EMTS) — Polhemus Liberty™ 240/16 — was used. Two sen-
sors were connected to the EMTS to acquire the orientation
data w.r.t the reference frame of the EMTS source box kept
nearby.

1) STATIC VALIDATION

For the static validation, eight 3D models with slots and holes
to mount two BNOO55 breakout boards were designed using
SOLIDWORKS and 3D printed (Fig. 2 depicts two such 3D
models). These 3D models had slots such that upon fixing
the BNOOSS sensors on them, the relative (pitch, yaw, roll)
Euler angles of sensor 2 w.r.t sensor 1 could be set at the
following 12 options: (30°, 0°, 0°), (60°, 0°,0°), (90°, 0°, 0°),
(120°, 0°, 0°), (0°, 0°, 30°), (0°, 0°, 60°), (0°, 0°, 90°),
(0°, 0°, 120°), (0°, 15°, 0°), (0°, 30°, 0°), (0°, 45°, 0°) and
(0°, 60°, 0°). These angles were chosen keeping in mind
the ROM of the finger joints. The following protocol was
followed for the static validation of the sensors: For each
of the 12 options, 10 trials (10 x 12=120 trials) of sensor
data was collected. Each trial lasted for 10s. A TEENSY 4.0
microcontroller collected the orientation data from the two
BNOO055s in the form of quaternions at 100Hz and sent this
data serially to a computer. The computer had a custom
LabVIEW program running which accepted and stored the
incoming serial data from the microcontroller. Before the start
of each trial, the orientation of the 3D model was changed, but
during the trial itself, the 3D model was stationary. This was
done (i.e., changing orientation before each trial) to assess
the sensor’s accuracy when they were at different orienta-
tions w.r.t the magnetic north and earths gravitational field.
Additionally, it was also ensured that no metallic device was
kept at least 5ft from the 3D model to avoid any magnetic
interference in the magnetometer of the BNO055 IMUs.
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Movable Joint

EMTS
Sensor 1

FIGURE 3. 3D printed model (used for dynamic validation) with slots to attach the BNO055 and EMTS sensors at different orientations. (a) Side
view of the model. The rotation of the movable segment for condition 1 is between A and B and for conditions 2 and 3 is between A and C.

(b) The sensors are fixed such that the BNO055 2 and EMTS sensor 2 will rotate w.r.t the Z axis of BNO055 1 and EMTS sensor 1 respectively
(i.e., change in the relative yaw angle). (c) The sensors are fixed such that the BNO055 2 and EMTS sensor 2 will rotate w.r.t the X axis of
BNOO55 1 and EMTS sensor 1 respectively (i.e., change in the relative roll angle). (d) The sensors are fixed such that the BNO055 2 and EMTS
sensor 2 will rotate w.r.t the Y axis of BNO055 1 and EMTS sensor 1 respectively (i.e., change in the relative pitch angle).

For determining the accuracy of the sensors, the relative
quaternion between the two sensors was computed using (1).
The relative quaternion was then converted to Euler angles,
as mentioned in the previous section. The computed Euler
angles were then compared with the corresponding fixed
angle of the 3D printed model. For each of the 12 options, the
maximum, minimum and average of the three Euler angles
across the 10 trials were computed. The error was then cal-
culated by computing the mod of the difference between the
averaged Euler angles from the expected/set Euler angles
using eq (2).

t average
8y ES* Ey

_ set average
8)’ - Ey - E%ver age (2)
8 ES E;ME

Here, § is the error, E is the Euler angle, the subscripts x,
y and z of E indicate that the Euler angle is pitch, yaw and roll
respectively. While such subtraction and averaging of Euler
angles is not valid in most cases, in this case, the variation of
the Euler angles across samples was very less as the sensors
were fixed in position relative to each other. In such a case, the
Euler angles can be subtracted and averaged with negligible
error [29].

2) DYNAMIC VALIDATION

For the dynamic validation of the BNOOS5S5 sensors, a 3D
model having two segments joined together by a IDOF mov-
able joint (See Fig. 3(a)) was designed using SOLIDWORKS
and 3D printed. This model had slots and holes to mount
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the BNOOS55 breakout boards and EMTS sensors at different
orientations. A part of one segment of the model was firmly
stuck to a 3D printed stand (See Fig. 3(a)) to keep it stationary
while the other segment was being rotated about the joint. For
the dynamic validation, three conditions were tested: 1. Rota-
tion of BNOOS55 2 relative to only the Z-axis of BNOO0S5S5 1
(See Fig. 3(b)), i.e., change in the relative yaw angle only,
2. Rotation of BNOO55 2 relative to only the X-axis of
BNOO055 1 (See Fig. 3(c)), i.e., change in the relative roll
angle only and 3. Rotation of BNOOSS5 2 relative to the Y-axis
of BNOO55 1 (See Fig. 3(d)), i.e., change in the relative pitch
angle only. For all the three conditions, the EMTS sensors
were fixed such that EMTS sensor 2 would rotate relative to
only the Z, X and Y axis of EMTS sensor 1 for conditions 1,
2 and 3, respectively (See Fig. 3). Since the local frames of
the BNOO55 and EMTS sensors were different (See Fig. 3),
appropriate quaternion transformations were used to align
the BNOO55s frame with the EMTS sensors frame during
postprocessing. For each condition, the movable segment
of the model was manually rotated by the experimenter to
the beat of a metronome. For condition 1, the segment was
rotated between A and B (60°) (See Fig. 3(a)), and for con-
ditions 2 and 3, the segment was rotated between A and C
(120°) (See Fig. 3(a)). This range was selected keeping in
mind the ROM of the finger joints. A smaller range was
chosen for yaw rotations since the yaw (abduction/adduction)
range in human fingers is less when compared to the pitch
range of the finger joints and thumb roll movement range
relative to the wrist. The direction of rotation was reversed at
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FIGURE 4. (a) Hand postures and object grasps used in the study. The participants performed 26 hand postures including Bharatanatyam
dance postures (P1-P8), ASL numbers (P9-P18), ASL letters (P19-P26) and 10 object grasps (01-010) covering various grasp taxonomies.
(b) Participant with HKMS attached to hand performing postures displayed on the screen.

the sound of each beat, and the rotation was paced such that at
the time of the beat, the rotating segment was approximately
at one of the following end positions: A or B for condition 1
or A or C for conditions 2 and 3.

For each condition, 40 trials of data were collected
(40 x 3=120 trials total). Each condition was in turn divided
into four sub-conditions of 10 trials each. The interval
between two metronome beats for the four sub-conditions
was different. They were 2s, 1.5s, 1s and 0.5s, respectively.
Therefore, for beat intervals of 2s, 1.5s, 1s and 0.5s, the
angular velocity of the segment rotation was approximately
30°/s, 40°/s, 60°/s, and 120°/s respectively for condition 1,
and 60°/s, 80°/s, 120°/s and 240°/s respectively for condi-
tions 2 and 3. Each trial lasted for 20s. The orientation data
in the form of quaternions for the two EMTS sensors and
the two BNOOS55 IMUs were streamed to a computer by
the Polhemus Liberty EMTS at 240Hz and a TEENSY 4.0
microcontroller at 100Hz, respectively. A custom LabVIEW
code was running on the computer, which simultaneously
accepted the incoming data from both the systems. The
timestamp information of the arrival of each BNOO0SS data
frame (1 frame = one sample from both the BNOO0S55’s)
and arrival of each EMTS sensor data frame was stored by
the program. The two timestamps were then used in post-
processing to match each frame of the BNOOS5 data with
the nearest frame of the EMTS sensor data so that they
could be compared. Additionally, the LabVIEW program also
generated the metronome beat.

For determining the dynamic accuracy of the BNOOSS5 in
calculating the relative orientation of one sensor w.r.t the
other, the relative quaternion between the two BNOO055s and
the two EMTS sensors were first computed using (1). The
RMSE between the two sets of relative quaternions was then
computed using (3) [31]. This particular RMSE is a single
value that represents the error in degrees between the two sets
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of relative quaternions.

(RMSE) = \/ PN (L Yo LR €

Here, Q; and Q, are the relative quaternions of the BNOO055
and EMTS sensors, respectively. ||ln(Q,-"0”j ® Qg)|| gives
angle in degrees. This angle is the smallest angle required
for one quaternion to rotate about an axis to reach the other
quaternion.

3) CALIBRATION OF THE BNOO55 SENSOR

The BNOO55 IMU contains three sensors: a gyroscope,
an accelerometer and a magnetometer. For the BNOO55 to
give accurate readings, these three sensors need to be cali-
brated every time the BNOOQ55 is powered on. Each of these
sensors has a value between 0 and 3 associated with it that
indicates the calibration status of the sensor. If the value is 0,
then the sensor is not calibrated, and if the value is 3, then
it is fully calibrated. The process to calibrate these sensors
are different and are specified in the following resources
[32, p. 51, 35]. The BNOO55 needs to be kept stationary
for a few seconds to calibrate the gyroscope. The BNOO055
needs to be rotated at 45° increments about at least one of its
axes to calibrate the accelerometer. After each 45° increment,
it needs to be kept stationary for a few seconds. This needs
to be done until the calibration status of the accelerometer
becomes 3. The BNOOSS5 needs to be moved in the air for
a few seconds as if drawing the infinity sign to calibrate
the magnetometer. It takes approximately 30s to calibrate all
three sensors.

For the static validation, the BNOQ055s were calibrated at
power on. For each BNOOQSS, the calibration status of the
three sensors was checked between each trial. It was observed
that all the calibration values remained 3 throughout all the
trials. For the dynamic validation, the calibration values for
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each BNOOS55 were monitored between trials and during
the trials as well. It was observed that the magnetometer
calibration value decreased during trials as well as between
the trials. This can be attributed to the magnetic field emitted
by the EMTS source box, which adversely affects the accu-
racy of the magnetometer. Whenever the calibration value of
the magnetometer became O during the dynamic validation,
it was recalibrated before proceeding with further trials.

E. EXPERIMENTAL VALIDATION OF THE HKMS

ON THE HAND

In order to compare the performance of the HKMS with that
of the EMTS for analyzing full hand kinematic data, two
experiments were conducted. In the first experiment, 5 par-
ticipants performed 26 hand postures, and 10 object grasps
(See Fig. 4). 16 EMTS microsensors (different and smaller
than the ones used in the dynamic validation of the BNOO55)
from Polhemus were used to collect full hand kinematic data.
The second experiment was the same as the first one, the
only difference being that the HKMS was used to collect full
hand kinematic data instead of the EMTS. The participants
for both the experiments were the same. Two separate exper-
iments needed to be conducted as both the BNOO55 and the
EMTS sensors could not be simultaneously mounted on the
finger phalanges due to lack of space. Inability to collect data
simultaneously from both the EMTS and HKMS in a single
experiment is a limitation in the validation step of the HKMS.
Details of both the experiments are given in the following
sections.

1) PARTICIPANTS

Five right-handed participants were recruited for the experi-
ments (mean age + SD: 30.2 & 3.4928). The experiment was
approved by the Institute Ethics Committee of IIT Madras
(Approval number: IEC/2020-03/SKM/02/10), and written
consent of participation was taken from each participant
before the start of the experiment. None of the participants
had any history of neuromotor disorders or injuries to the
hand and/or arms.

2) EXPERIMENTAL PROTOCOL

The participants were seated on a wooden chair throughout
the experiment, and the right hand was rested on a wooden
table near the participant. Care was taken to ensure that
minimal metallic objects were in the vicinity of the exper-
imental space to avoid electromagnetic interference in both
the EMTS as well as the HKMS. For experiment 1, 16 EMTS
microsensors were stuck to the right hand of the participants
(15 on the finger phalanges and 1 on the wrist for reference)
using double-sided tape at the sensor’s bottom and surgical
tape on the top. This ensured minimal movement of the sensor
relative to its original position and orientation at the time of
attachment. The EMTS source box was kept close to the right
hand and served as the reference frame w.r.t which the sensors
gave the orientation data.
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The experiment was split into two tasks for each par-
ticipant. In the first task, the participants were required to
perform 26 hand postures derived from the American Sign
Language (ASL) and Bharatanatyam postures (a classical
Indian dance form) (See Fig. 4(a)). In the second task, the
participants were required to grasp and release 10 different
objects (See Fig. 4(a)). For each posture and object grasp,
three trials of data were collected (36 x 3 = 108 trials).
A picture of the posture/object grasp that needed to be per-
formed by the participant for a particular trial was displayed
on a monitor kept in front of the participant. Each trial lasted
for 8 seconds. At the start of each trial, the hand was kept
flat on the table, with the fingers adducted and the palm
facing downwards. This was the home position. At the 1s
mark, the experimenter verbally indicated to the participant
to perform the task as per the image on the screen and main-
tain the posture/object grasp. At the 6s mark, the participant
was verbally indicated to return the hand back to the home
position. The orientation data in the form of quaternions
was collected for each trial from the EMTS sensors at an
update rate of 100 Hz using a customized LabVIEW program.
Experiment 2 was exactly the same as experiment 1, the only
difference being that instead of using the EMTS to collect
full hand kinematics data, the HKMS was used. Similar to
experiment 1, a customized LabVIEW code was written to
collect data from the HKMS at 100 Hz. All data analysis was
performed using MATLAB.

3) CALIBRATION OF THE HKMS

For experiment 2, prior to the start of the experiment, all
16 BNOO55 sensors of the HKMS were calibrated simul-
taneously. To do this, the HKMS was first mounted on the
hand using double-sided tape. Then, the exact movements for
calibrating a single BNOOSS5 sensor were performed by the
hand instead. This resulted in the simultaneous calibration
of all the 16 BNOOSS5 sensors. It should be mentioned that
for the calibration of the gyroscopes, it was observed that
when the participants kept their hand flat on the table and
stiffened the joints in order to keep the hand stationary, the
gyroscope did not get calibrated. Instead, when the hand was
kept loose on the table without any effort to control the joints,
the hand assumed a natural position and became motionless.
In this state, the gyroscope of all the 16 sensors got calibrated
immediately. The process to calibrate all the BNOO55 sensors
of the HKMS takes approximately 90s.

4) SENSOR TO SEGMENT ALIGNMENT

For the first experiment involving the EMTS sensors, the
sensor-to-segment alignment was performed using the bore-
sight function provided in the Polhemus proprietary software
PiMgr. The hand was first aligned with the reference frame
of the EMTS source box, and then the boresight function
was executed. This function aligned all the sensor’s reference
frames via software with the source box’s reference frame.
Since the hand was aligned to the source box reference frame,
the sensor reference frames now accurately represented the
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orientation of the bones to which they were attached to post
boresight. The boresight operation was done in two steps:
1. The four fingers and wrist were aligned to the source
box reference frame, and all the attached sensors were bore-
sighted. 2. The thumb was then aligned to the source box
reference frame, and the thumb sensors were boresighted.

For the second experiment involving the BNOOSS, the
sensor-to-segment alignment was done only for the sensors
on the fingers. For the thumb sensors, the sensor-to-segment
alignment was not required as the sensors were carefully
attached along measured anatomical positions. The sensor-
to-segment alignment for the finger sensors was done in
the following way: for each trial, 50 samples (0.3 sec to
0.8 seconds, i.e., when the hand was at the home position) of
the relative quaternions of each joint were averaged directly
and renormalized. Such averaging produces minimum error
since the data is static [29]. All the relative quaternions in the
trial were then expressed w.r.t the averaged quaternion values
to achieve sensor-to-segment alignment.

5) ROM AND STATIC RMSE COMPARISON

The ROM and RMSE of data from experiment 1 and 2 were
computed and compared. First, the relative quaternions were
computed between two adjacent joint segments for all joints.
For ROM analysis, the relative quaternions were converted to
Euler angles, and a box plot analysis was performed (sepa-
rately for experiments 1 and 2) using data from all the par-
ticipants. The ROM analysis was done to determine whether
the HKMS could measure the maximum and minimum joint
angle movement ranges for dexterous hand movements when
compared to the EMTS sensors. For RMSE analysis, only
data from the static part of the trials was considered for anal-
ysis. The 3.5s-4.5s interval was considered as the static part
of the trial as the participants maintained the posture/object
grasp with minimal changes in the joint angles during this
interval. The RMSE for a posture/object grasp was com-
puted in the following way: the relative quaternions of the
15 joints were averaged from the 3.5s to 4.5s interval to give
15 average quaternion values for a trial. This was done for
all 3 trials of the posture and for all 5 participants, resulting
in 15 x 3x5=225 average quaternion values. These average
quaternion values were computed for experiments 1 and 2,
resulting in two datasets. The RMSE between the two datasets
was calculated using (3) to yield the RMSE of the posture.

6) COMPARISON OF SYNERGIES

Studies in neuroscience through PCA (Principal Component
Analysis) have demonstrated that a few control signals from
the CNS can simultaneously activate a set of joints. This
reduces the burden on the CNS to individually control each
joint. It has been shown through eigenvector (also called
synergy) analysis that the first few synergies explain more
than 80% of the variance in data, and higher-order synergies
reveal finer details of the posture [4]. Many of these studies
were performed either using data gloves or optical trackers
to compute joint angles. Since joint angles lie on a linear
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domain, PCA could be applied to it. However, IMU-based
systems output orientation information in the form of quater-
nions or Euler angles which are defined along a non-linear
manifold. Hence the direct application of PCA, which is a
linear method, is not valid. To overcome this, the quaternions
(from the HKMS and EMTS) were first linearized using
logarithmic mapping and then PCA was applied to them [31].
The following are the steps involved in the analysis:

1. For each participant, hemispherized relative quaternions
were arranged column-wise. Each joint had four data columns
(referred to as a “‘column block™) representing quaternion
data. Since the relative quaternions for 15 joints were cal-
culated, there were 15 x 4=60 columns of quaternion data
(or 15 column blocks). For each participant, there were three
trials for each of the 36 postures/object grasps and for each
trial, data was collected at 100Hz for 8s. Hence, the total
number of quaternion samples collected for a participant was
36 x 3 x 8 x 100=86400. This resulted in a data matrix of the
dimension 86400 x 60.

2. The mean of each column block was computed using
Markley’s algorithm [36].

3. The quaternions in the column block were then calcu-
lated relative to the mean quaternion of that column block
using (4). This step centered the data around zero.

{centered=9mean o &¢sample 4

4. Each of the 15 column blocks was then linearized
using logarithmic mapping using equation (Al) (See
Appendix — II). Such a mapping converts each of the 4 valued
quaternions to 3 valued linear 3D vectors. This resulted in a
data matrix of the dimension 86400 x 45.

5. Standard PCA using eigenvector decomposition was
then applied on the linearized orientations.

The resulting eigenvectors or synergies computed from
both the HKMS and the EMTS were compared using Pear-
son’s correlation coefficient. The linearized eigenvectors
were converted back to quaternions using exponential map-
ping (A2) to visualize the Eigen Postures. The details of the
algorithm are provided in [31].

IV. RESULTS

A. JOINT ANGLE VALIDATION

1) STATIC VALIDATION

The results of the static validation are presented in Table 2.
As can be seen from the table, the errors lie well within 2° for
most of the options except for two options where the relative
yaw angle was set at 45° and 60°. In these two options, the
error was 2.91° and 3.54°, respectively. However, while per-
forming hand postures, the yaw (abduction/adduction) angles
are well within 60° (See Fig. 9); hence yaw errors as high
as 3.54° are unlikely while performing static hand postures.
Considering the entire data set of 120 trials, it was observed
that there were some samples with absolute errors of up to
4° and one sample in which the error was 7.56°. However,
these are outliers since the average values were less than 2°
in most options. From this analysis, we conclude that the
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TABLE 2. Statistics for static validation.

Pitch Yaw Roll Pitch  Yaw Roll Pitch Yaw Roll Pitch Yaw Roll
Design 1- Pitch angles
Actual (Set) 30 0 0 60 0 0 90 0 0 120 0 0
Maximum 3255 1.63 1.26 60.5 1.7 2.9 92.98 0.8 376 | 123.04 3.58 3.86
Minimum 28.1 -1.5 -1.89 57.1 -3.7 -0.75 85.68 -2.0 -0.42 | 118.79 0.13 -2.09
Average 30.2 0.28 -0.11 589  -0.49 0.97 90.55 0.06 1.41 121.03 1.57 0.59
Error 0.2 0.28 0.11 1.1 0.49 0.97 0.55 0.06 1.41 1.03 1.57 0.59
Design 2- Roll angles
Actual (Set) 0 0 30 0 0 60 0 0 90 0 0 120
Maximum 2.24 1.55 30.9 1.27 228 61.8 2.58 -0.05 93.1 3.69 0.23 122.4
Minimum -0.49 -3.84 2831 | -1.65 -2.38 58.34 -1.55 -3.36 89.4 -2.67 -2.87
Average 0.26 -0.47 29.61 0.11  -0.18 59.94 0.75 -1.2 91.3 0.56 -0.96 119.54
Error 0.26 0.47 0.39 0.11 0.18 0.06 0.75 1.2 1.3 0.56 0.96 0.46
Design 3- Yaw angles
Actual (Set) 0 15 0 0 30 0 0 45 0 0 60 0
Maximum 2.23 2.88 2.95 31.2 1.47 3.7 44.22 -0.1 2.35 59.19
Minimum -0.015  14.44 -1.37 047  28.1 -2.45 -0.63 -4.42 -2.63 56.46 -0.77
Average 0.78 17.02 0.8 1.57 29.9 -0.2 1.12 42.09 -1.8 -0.42 57.57 25
Error 0.78 2.02 0.8 1.57 0.1 0.2 1.12 291 1.8 0.42 2.43 2.5

Colour coding used in the table:4° >Error < 6°, Error > 6°. All values in the above table are in degrees. Errors <4° are not highlighted

BNOO55 sensors have good static accuracy for the human
hand movement range.

2) DYNAMIC VALIDATION

The RMSE between the relative quaternions of the BNO055
and the EMTS sensors for the different conditions and rota-
tion speeds are presented in Fig 5.

m 81 — 240 deg/sec
g 120 deg/sec
o 80 deg/sec
T 6 60 deg/sec
w 40 deg/sec
% 30 deg/sec
c 4
2
£
2
5 2
=]

Pitch Roll Yaw

FIGURE 5. Quaternion RMSE computed for various rotation speeds. The
rotation speeds for relative Yaw rotations are 120°/s, 60°/s, 40°/s and
30°/s. The rotation speeds for relative Pitch and Roll rotations are 240°/s,
120°/s, 80°/s and 60°/s.

As can be seen in the figure, except for the case of pitch
rotation at 240°/s where the RMSE is 7.5°, the RMSE in all
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other cases are less than 4°. At the lowest rotation speeds for
each of the three conditions, the RMSE values are around 2°.
While RMSE provides information in the form of an aver-
age error, it is necessary to record the maximum error that
occurred during the validation process. For this purpose, the
angle between the two relative quaternions of the BNOO055
and the EMTS sensors was computed using (5).

0 = |mocme0.| )

Here, Q; and Q, are the relative quaternions of the BNOO055
and EMTS sensors, respectively. This angle is considered as
the error and is the smallest angle required for one quaternion
to rotate about an axis to reach the other quaternion. A box
plot analysis of the error angles is presented in Fig. 6 for
each of the three conditions. As can be seen from the plot,
the median error is less than 4° for all the cases except for
relative pitch rotations at 240°/s. Also, for rotation speeds of
less than 240°/s, the maximum error lies within 10° for all
three conditions. For the case of relative pitch movements at
240°/s, a maximum error of 25° is observed. Additionally, the
number of outliers, in this case, are many.

To further investigate the high number of outliers and high
RMSE error in the case of relative pitch rotation at 240°/s,
a random trial was selected from each of the four-movement
speeds for the relative pitch rotation condition. The relative
pitch Euler angle from the selected trials was plotted for the
BNOO055 and EMTS sensors (See Fig. 7). From the figure,
it can be seen that for rotation speeds of 60°/s, 80°/s and
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FIGURE 6. Box plots of the error angle for Pitch (a), Roll (b) and Yaw (c) rotations at various rotation speeds. The error angle is the angle between

the relative quaternions of the BNO055 sensors and the EMTS sensors.
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FIGURE 7. For relative pitch rotation (i.e., condition 3), the relative pitch Euler angle of the EMTS and BNOO55 sensors
are plotted for rotations speeds of (a) 240°/s, (b) 120°/s, (c) 80°/s and (d) 60°/s.

120°/s, the angles for both the BNOOS55 and EMTS sensors
are almost the same, but for the rotation speed of 240°/s (See
Fig. 7. (a)), the angle of the BNOOSS starts to drift after the
first few changes in the rotation direction. This results in an
accumulation of error with time. The longer the movements
are made continuously, the more is the magnitude of error,
which explains the high number of outliers and the high
RMSE. Furthermore, the error is more evident at the instance
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of change in the direction of rotation (i.e., at the peaks and
valleys) where there is a sudden change in the direction
of acceleration. A possible explanation for errors at high
rotation speeds can be found in the BNOOSS5 datasheet, where
it is mentioned that the BNOOS55s sensor fusion algorithm
was designed for tracking human motion and that at high
accelerations, the gravity vector may be misinterpreted as
the high acceleration [32, p. 28]. If we consider human hand
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FIGURE 8. Images of ten hand postures and object grasps are generated for a randomly selected participant using data from experiment 1
(which was collected using EMTS) and experiment 2 (which was collected using HKMS) for the purpose of visual comparison. The hand
model was created and rendered using SOLIDWORKS.
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FIGURE 9. Box plots of various joint angles for experiments 1 (EMTS) and 2 (HKMS). Here the box plots for the metacarpophalangeal (MCP) joints
and proximal interphalangeal (PIP) joints of the fingers and the MCP and interphalangeal (IP) joint of the thumb are presented for flexion/extension
and abduction/adduction movements. I, L, M, R and T stand for index, middle, ring, little and thumb respectively and A and F stands for

abduction and flexion respectively. I-MCP-A means the box plot is for the index MCP joint for abduction/adduction movements. Similarly, I-MCP-F
means the box plot is for index MCP joint for flexion/extension movements. The top three maximum errors in measuring ROM between the HKMS
and EMTS is highlighted in blue.

movements, repeated continuous rotations about a particular repeated movements. This can be seen in Fig. 7(a), where
joint at high speeds (such as experienced by the BNOO055 the angles start drifting only after the first four cycles of

at the rotation speed of 240°/s) is unlikely. Furthermore, rotation. Hence, isolated high acceleration joint rotations in
accumulation of error happens only for continuous the human hand will not result in a high error. It should also
93824 VOLUME 10, 2022
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FIGURE 10. RMSE between the static postures/object grasps of
experiment 1 (EMTS) and 2 (HKMS) are plotted. The images of some of
the postures/object grasps are also shown in the figure. Maximum error
is seen for postures and objects that involve more movement in the PIP
or DIP joints.

FIGURE 11. For a participant, a trial was randomly selected from
experiment 1 (EMTS) and the static posture was generated. The
corresponding trial from experiment 2 (HKMS) was used to generate
another static posture. Upon visually comparing the two images, it can be
seen that the differences between the two postures are in the finer
details. Also, the flexion of the DIP joints is greater in the experiment 2
trial.

be noted that the data was collected in the presence of a
magnetic field emitted from the EMTS source box. This could
cause distortions in the magnetometer data of the BNOO055
and affect its accuracy. Despite this fact, the RMSE values
were found to be low except for relative pitch rotations at
240°/s. From the above results and discussion, we conclude
that the BNOO55 sensors have acceptable dynamic accuracy
for measuring human hand kinematics.

B. POSTURE VISUALIZATION IN 3D

A participant from experiment 1 and 2 was randomly
selected, and the static hand postures/object grasps for that
participant was generated. A few of these hand postures/
object grasps are presented in Fig. 8. A visual examination
of the images gives the impression that the postures/object
grasps generated using the HKMS and EMTS are compara-
ble. However, some observable differences can be attributed
to the following reasons: 1. Since the images are generated
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FIGURE 12. Scree plot for average percentage explained variance across
participants vs synergies plotted for experiments 1 (EMTS) and 2 (HKMS).

Correlation coefficient

Synergies

FIGURE 13. Pearson’s correlation coefficient computed between the
kinematic synergy patterns of experiment 1 (EMTS) and experiment 2
(HKMS). The height of the bars indicates average correlation coefficient
averaged across participants; the error bars indicate standard error of
mean (SEM).

using two different experiments, there is variability in the
posture/object grasp made by the participant itself. 2. During
movement of the hand, the rigid wires of the EMTS sensors
can cause movement in the sensors. Also, since the EMTS
sensors are small and thin, they are prone to skin artifacts.
In comparison, the BNOO55 sensors have a flat surface and
are less affected by skin artifacts and movements of the FFC
cables. 3. The small EMTS sensor placed on the wrist is
more affected by tendon movements than the flat BNOO055
sensor placed on the wrist. This difference will be reflected
in the overall posture generated using the EMTS and HKMS
as the orientation of the finger’s proximal phalanges and the
thumb’s metacarpal are calculated relative to the wrist sensor.

C. COMPARISON OF ROM AND STATIC RMSE

A box plot analysis of the joint angles from all participants of
experiments 1 (EMTS) and 2 (HKMS) was done separately,
as shown in Fig. 9. This plot was used to compare the ROM
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FIGURE 14. Comparison of the first 4 Eigen postures computed using HKMS and EMTS separately for
2 participants- One for the participant for whom maximum similarity was observed between the EMTS
and HKMS(Left), and the other for the participant who showed minimum similarity.

obtained from the HKMS and EMTS. For brevity, only the
MCP and PIP joints for all the fingers and the MCP and IP
joints of the thumb were compared. This is because the MCP
and PIP joints exhibit higher ROMs and have higher move-
ment velocities when compared to the DIP joint. Hence ana-
lyzing these joints is sufficient as any errors induced due to
higher movement velocities will be seen at these joints. From
Fig. 9, it can be seen that the ROMs computed using HKMS
and EMTS are comparable. A maximum error of 11°, 13°
and 14° was seen for the Index MCP joint flexion, little MCP
joint flexion and middle MCP joint abduction/adduction,
respectively. It should be noted that the maximum errors are
observed at the MCP joints even though the PIP joints have
similar movement ranges and angular velocities. A possible
explanation for this, which is also mentioned in the preceding
section, is that the wrist reference sensor of the EMTS and
HKMS are affected differently by skin artifacts and tendon
movements. This difference is manifested in the joint angles
at the MCP joint, whose orientation is calculated relative to
the wrist sensor. From this analysis and discussion, we con-
clude that the HKMS is reasonably accurate in calculating
the ROM of the hand and could help clinicians to access the
ROM for tracking the severity of pathology and recovery rate
in patients with neuromotor disorders.

Additionally, the RMSE between the static postures/object
grasps of the two experiments was computed. The results
are presented in Fig. 10. The average static RMSE across
all postures and object grasps is 11°, and the maximum
and minimum RMSE values are 15° and 8°, respectively.
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Considering the reasons mentioned in the preceding section
for the differences in the images of the postures/object
grasps generated using the HKMS and EMTS, these RMSE
values represent the worst-case scenario. Additionally, the
EMTS sensors were attached using bigger and stronger
tapes to prevent their movement. This, coupled with the fact
that the EMTS sensor wires are rigid, could perhaps have
restricted the ROM of the hand when compared to the HKMS.
In Fig. 11, it can be seen that the flexion of the DIP joints are
less for the case of experiment 1 (EMTS). Considering all
these points, the average RMSE value can be expected to be
much lesser than 11°.

D. COMPARISON OF SYNERGIES
The synergies obtained by performing PCA on data from
experiments 1 and 2 were tested for similarity using Pearson’s
correlation coefficient. The similarity test was performed
separately for each participant. The scree plot for explained
variance vs synergies is presented in Fig. 12. The figure
shows that the first six synergies account for greater than 85%
variance in the data for both the EMTS and HKMS. These six
synergies were selected for comparison.

The synergies from both experiments were matched using
a simple search and match algorithm. Such a mapping is
necessary while comparing synergies because studies in the
literature that have compared synergies for same postures
from two different data sets have observed that synergies
with large eigen values map one to one whereas synergies
with low eigen values may not map one to one as they could
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be invoked in different orders [3]. This could be due to
differences in the finer details of the postures that prevails
between the two datasets. Hence, methods like the greedy
search algorithm [33] and clustering analysis [5] have been
employed to group similar synergies across datasets.

In this study, a greedy search algorithm was employed,
where the first synergy from experiment 1 for a participant
was compared with all other synergies from experiment 2
for maximum correlation using the absolute value of Pear-
son’s correlation coefficient. Once a matching synergy was
obtained, that pair was removed, and the next synergy from
experiment 1 was matched similarly with one of the remain-
ing synergies of experiment 2. This process was repeated until
all synergy pairs were obtained. The p-values for every com-
puted correlation coefficient were recorded. The p-values for
all individual correlation coefficients showed that the correla-
tions were significant (p<0.001). The correlation coefficients
for each synergy were then averaged across all participants
and the results are presented in Fig. 13. The plot shows that
the first two synergies (which represent gross movements) are
very similar, with an average correlation coefficient of 0.94 +
0.01198 (mean &= SEM) and 0.89 + 0.0243 for the first
and second synergies, respectively. Higher-order synergies
(which represent finer movements) are reasonably similar,
with average correlation coefficients for the 6th synergy
(one with the lowest similarity compared to other synergies)
being 0.72 &£ 0.029. This result aligns with the observations
we made in the preceding sections, where the overall pos-
tures/object grasps between experiments 1 and 2 visually
looked similar, and the differences were observed only in the
finer details.

To visualize the Eigen postures, the synergies were rotated
in either direction from the mean posture to obtain the max-
imum and minimum range of Eigen postures. These Eigen
posture ranges were computed using:

Eigen Posture,,,, = qs; @ qii; 6)
Eigen Posture,,;, = qs;"" ® qu, @)

where gs; is the i synergy, and gp; is the mean posture.

The resulting Eigen postures for experiments 1 and 2 are
depicted in Fig. 14 for two participants- one for whom the
best similarity was observed (participant 3) and the other for
whom the similarity was minimum (participant 4). Visually,
minimal differences can be seen between the postures of
experiments 1 and 2 for the participant whose synergies were
similar. For the other participant, except for the flexion of a
few of the joints in the third and fourth synergy, the other
synergies visually looked to be mostly similar.

V. CONCLUSION

This paper presents the design, validation, and application
of a novel BNOO55 IMU-based full Hand Kinematic Mea-
surement System (HKMS). The HKMS outputs orientation
data from 16 IMU sensors in real-time at 100 Hz. In con-
trast, many of the existing IMU based data gloves output
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data at lower sampling rates (e.g., 20 Hz [11], 50 Hz [17],
[18], [20], [23], [25], 60 Hz [21] etc.,) while some IMU
based data gloves have lesser number of IMU sensors [12],
[17]. Furthermore, the HKMS uses Wi-Fi for wireless data
transmission. Some of the IMU gloves use USB as the mode
of data transmission [11], [12], [16], [24]. This limits the
movement range of the glove to the length of the USB cable.
IMU gloves that use Bluetooth [17], [18], [20], [21], [22],
[23], [25] for wireless data transmission overcome this lim-
itation. The advantage of using Wi-Fi in the HKMS over
Bluetooth is that it provides superior range and data trans-
mission speeds. Another advantage of the HKMS is that the
number of BNOOSS sensors can be increased from 16 to
20 without affecting the 100 Hz data output rate. These addi-
tional sensors can be placed on the wrist to model the palm
arch of the hand or on the arms to capture their movement
kinematics. Furthermore, studies that present an application
[19] of the developed IMU data glove in a laboratory or
clinical setup are scarce. In this paper, as an application of
the HKMS, we have collected hand kinematic data for an
experiment using the HKMS and performed synergy analysis
on the dataset. Finally, the HKMS can be reproduced by those
people who do not necessarily have an intimate knowledge
of signal processing techniques and complex filters which
are required for implementing the sensor fusion algorithm in
real-time. This is because the HKMS uses the BNO055 IMU
which implements its own sensor fusion algorithm (using an
on-board microcontroller as part of the IMU chip) to directly
output orientation data in the form of quaternions and Euler
angles.

A rigorous static and dynamic validation of the BNOO0S55
sensor was done to determine whether it is accurate enough
to collect hand kinematic data in a clinical or laboratory
setting. For the dynamic validation, continuous back and
forth relative rotations between two BNOOSS5s at different
speeds were investigated. IMU based data glove studies in
the literature that have done a similar dynamic validation are
scarce. It was found that the RMSE error was less than 4°
in all cases of static and dynamic validation except for the
dynamic validation case of pitch rotation at 240°/s, where
the RMSE error was 7.5°. Upon further analysis of this case,
it was found that error was not present during the first few
rotation cycles during any trial. As the movements were
made continuously during a trial, the error accumulated and
increased with time. This error can be attributed to the fact
that the BNOOSS5s sensor fusion algorithm was designed for
tracking human movements where continuous high rotation
speeds about a joint are unlikely. Furthermore, isolated high
acceleration joint rotations will not result in an error as
the error is observed only during continuous rotations after
the first few rotation cycles. Keeping these points in mind,
we conclude that the BNOOSS5 can be used to collect hand
kinematic data with reasonable accuracy.

To test the HKMS as a whole, its performance was jux-
taposed with the performance of the highly accurate EMTS.
To do this, two identical experiments were conducted where
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FIGURE 15. Simplified connections of a teensy microcontroller to four different types of custom PCB’s designed around the BNO055 chip. These four
types of PCB’s are named: 29_1, 28_1, 29_2 and 28_2. Two BNOO55 chips are connected to 12C channel 1 (28_1 and 29_1) and the other two are
connected to 12C channel 2 (28_2 and 29_2) of the teensy. The address of the BNOO055 chip is either set to 0x28 or 0x29, depending on the voltage
connected to its address pin (AD). SCL_1 and SDA_1 together form 12C channel 1. Similarly, SCL_2 and SDA_2 form 12C channel 2.

the participants performed hand postures and object grasps.
For one experiment, the EMTS was used to collect hand
kinematic data, whereas the HKMS was used for the other
experiment. The experiment protocol and participants were
the same in both the experiments and the validation was done
by comparing the two datasets. The average RMSE between
the static postures derived from the two data sets was found to
be 11°. The ROMs using the two datasets were calculated, and
the errors were computed. A maximum ROM error of 14° was
observed at one of the joints; all other errors were below this.
The RMSE of the static postures and ROM errors represent
the worst-case scenario, and actual errors can be expected to
be much lesser. This is due to the following facts: 1. There
was variability in the postures generated by the participants
for the two experiments. 2. Skin artifacts and tendon move-
ments affected the EMTS sensors and the BNOO055 IMUs
differently, especially the reference sensor on the wrist. 3.
The rigid wires of the EMTS sensors restricted the ROM
of the hand. Finally, synergy analysis was done on the two
datasets, and it was demonstrated through the strength of
correlation coefficients between the synergies computed from
the two data sets that the HKMS could be successfully used
to conduct synergy-based studies.

The limitation with the approach of validating the HKMS
as a whole was that data from the HKMS and EMTS was
not collected simultaneously from the participants in a single
experiment. This was because the BNO055 IMU’s and the
EMTS microsensors could not be mounted together on the
finger phalanges due to lack of space on the phalanges.
Alternatively, the gold standard stereophotogrammetric sys-
tem can be used for validating the HKMS as a whole. This
is because the small markers used in such systems can be
mounted on top of the IMU sensors [16], [17]. Utility of such
systems for validation of IMU’s have also been demonstrated
in other applications like measurement of body COM [34].
This would enable simultaneous collection of data from both
the systems. Such a validation method is desired and can
be taken up as part of the future work. In conclusion, the
accuracy of two individual BNOO55 sensors in calculating
joint angles yielded good results (both for the static and
dynamic conditions) and the validation of the HKMS as a
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whole yielded promising results despite some limitations in
the validation method. Keeping these points in mind, we are
cautiously optimistic in suggesting the usage of the developed
HKMS device in collecting hand kinematic data in research
and clinical setups.

APPENDIX |

DESIGN FOR CONNECTING THE BNOO055's IN SERIES

To connect the BNOOS5S5 sensors in series, four different
“types” of custom PCBs were designed. Before describing
the design of these four types of PCBs, a brief description
of the I2C communication protocol is presented. The 12C
protocol is used for serial communication with the BNOO055
sensors. This protocol requires two lines for communication —
SCL (Serial Clock) and SDA (Serial Data). The SCL and
SDA lines together form a single 12C channel. Each 12C
compatible device has an address using which it is communi-
cated with. Hence, multiple I2C compatible devices can be
connected on the same 12C channel and can be communi-
cated with using their unique address. The BNOO55 sensors
can be assigned only two addresses for [2C communication:
0x28 and 0x29 (hexadecimal number notation). The
BNOOS55 chip contains an address pin using which one of the
two addresses can be set for the chip. The address is set to
0x29 or 0x28 if the address pin is connected to Vcc (3.3V)
or GND (0V), respectively.

Since only two unique addresses can be assigned to the
BNOO055, only two BNOOS5 sensors can be connected to
a single 12C channel. Our requirement was to connect at
most four sensors in series. To achieve this, two I2C chan-
nels on each teensy were used, and four different types
of custom PCB boards were designed around the BNOO55
chip. These boards were named as: 29_1, 28_1, 29_2 and
28_2 (See Fig. 15). The naming convention is as follows:
“chip address_12C channel”. For e.g., 28_1 means that the
BNOO55 chip’s address is 0x28, and its 12C pins are con-
nected to the I2C channel 1 of the teensy. Each BNOO0S55
PCB has two 6 pin FFC connectors at its two ends (See
Fig. 15) soldered at the bottom of the custom PCB. The 6 pins
of the FFC connector are connected to Vcc, GND and the
two I12C channels (2 pins per channel) of the teensy. The
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pins on both the FFC connectors are connected to each other
(See dotted lines in Fig. 15). This will allow for two FFC
cables to be connected at its two ends hence enabling multiple
sensors to be connected in series. The only difference in the
four PCB types are the connections from the FFC pins to
the SCL, SDA and AD (address) pins of the BNOOSS5 chip.
For 29_1 and 28_1 PCBs, the connections to the BNOO055s
12C pins (SCL and SDA) are from I2C channel 1, and the
connections to the address pin are Vcc and GND, respec-
tively. However, for 29_2 and 28_2 PCBs, the connections
to the BNOO55s 12C pins are from 12C channel 2, and the
connections given to the address pin are Vcc and GND,
respectively (See Fig. 15). Such an arrangement allows for
four BNOO55s to be connected in series (two BNOO055s each
on 12C channels 1 and 2) and eliminates the need to have indi-
vidual FFC cables and connectors connecting each BNO055
sensor to the Master-Slave PCB. This reduces the bulkiness
of the device. The remaining connections and components
on the four types of custom PCB (not discussed or shown
in this paper) are the same and are as per the latest BNOO055
manual [32].

APPENDIX I

LOGARITHMIC MAPS AND EXPONENTIAL MAPS

All formats of joint angle representation like Rotation matrix,
Euler angles and quaternions are defined in the nonlinear
domain and linear operations like averaging, linear dimen-
sionality reduction etc., are not valid [31]. In cases where
linear operations are required, one could linearize the quater-
nions using logarithmic mapping (Al). A quaternion of the
form ¢ = (gw, gv) can be linearized by taking a log of
the quaternion. Such a map, takes the quaternion from a 4D
hypersphere to a 3D plane defined at unity [30]. In equation
Al, since the quaternion is a unit quaternion, /n|q| = 0,
we obtain a 3-element tuple v= [vx, Vy, vz], which encodes
information of both the angle and axis.

1
Ing = (ln lql, ( arccosq—w> qv) (A1)
llgvll gl

The new entity is a 3D vector, and all linear operations are
valid on this vector. After applying linear operations, the
vectors are mapped back to the hypersphere by taking an
exponent of the vector (equation A2). Such a map is called
as an exponential map.

g=¢" = [cos (g) , sin (g) ”—:”] (A2)

where 6 = ||v||

However, such transformations will incur a singularity
which causes a sudden jump in values if the angle between
any 2 vectors approaches 2w radians [30]. Since we deal
with only relative quaternions and relative angles between
any 2 phalanges are very small and never approaches 27
radians, the conversion to and from the exponential map is
free of any singularity. The Matlab function ‘quatlog’ for
logarithmic maps and ‘quatexp’ for exponential maps were
utilized in this study.
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