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ABSTRACT Measurement of hand kinematics is commonly done using data gloves and optical trackers and
finds application in biomechanics, motor control research, clinical assessment, virtual reality etc. While data
gloves are expensive and restrict the dexterity of the hand, optical trackers are susceptible to the line-of-sight
problem and can be used only in a laboratory setting. Over the last decade, the use of Inertial Measurement
Units (IMUs) to measure kinematics has gained traction due to their affordability and good accuracy. This
paper presents the design and validation of a BNO055 IMU-based full Hand Kinematics Measurement
System (HKMS). The best features from existing IMU-based devices were identified from the literature
and incorporated. The HKMS streams orientation information of 16 BNO055 IMUs in real-time at 100 Hz
viaWi-Fi or USB. A rigorous static and dynamic validation of the BNO055 IMUwas done against 3D printed
models and the highly accurate Electro Magnetic Tracking System (EMTS). The RMSE errors were found
to be acceptable for the measurement of hand kinematics. Two experiments were conducted to collect hand
kinematic data for various postures and object grasps using the HKMS and EMTS, respectively. Synergy
analysis was done and range of motion of the joints was calculated using the two datasets. The results were
compared to get an idea of the quality of the dataset collected using the HKMS. The results as well as the
overall validation of the sensors indicate that the HKMS may be suitable for usage in a laboratory or clinical
setup.
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INDEX TERMS BNO055, data gloves, hand kinematics, IMU, IMU validation, inertial measurement unit,
joint angles, motion capture, synergy.

I. INTRODUCTION19

The human hand is the epitome of dexterity and fine move-20

ment control. With monosynaptic connections between the21

cortico-spinal neurons and the alphamotor neurons supplying22

the handmuscles, the dexterity and complexity of movements23

of the human hand is unparalleled. While such dexterity24

helps us to grasp and manipulate objects with varying shapes25

and contours with ease, the presence of a large number of26

joints poses a challenge for measuring the kinematics of the27

The associate editor coordinating the review of this manuscript and

approving it for publication was Masood Ur-Rehman .

hand or in the design of artificial hands. Accurate measure- 28

ment of human hand kinematics is essential in biomechan- 29

ics, motor control research, synergy analysis, sports, hand 30

animation, virtual reality (VR), ergonomics etc. Apart from 31

this, physicians also consider parameters like the range of 32

motion (ROM) and smoothness of movements as reliable 33

indicators to track the severity of pathology and recovery 34

rate in patients with neuromotor disorders. Research in these 35

areas heavily relies on devices such as optical trackers [1], 36

[2], [3] and flex sensor-based data gloves [4], [5], [6], [7], [8] 37

to measure full hand kinematics. Optical trackers require an 38

external setup in terms of cameras and placement of markers 39
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on the hand and hence cannot be used for quickmeasurements40

outside of a laboratory setup (e.g., in a clinical setup). Addi-41

tionally, they are also susceptible to line-of-sight problems.42

Since human hand kinematic measurement requires many43

markers, line-of-sight problems are inevitable. Commercially44

available data gloves are made using multiple flex sensors45

whose resistance changes based on the amount of bend in46

them. Using appropriate calibrationmethods, these resistance47

values are converted to joint angles [9]. These calibration48

methods must be repeated for each participant separately due49

to their varying hand sizes. As a result, inaccuracies could50

creep into the measurements if the calibration process is not51

done correctly. Additionally, a recent study has shown that52

the dexterity of movements decreases by 29% while wearing53

data gloves due to the obstruction provided by the glove on54

the palmar surface of the hand [10]. Moreover, commercially55

available data gloves and optical trackers are expensive.56

Over the last decade, the use of Inertial Measurement Units57

(IMUs) for the measurement of hand kinematics has gained58

serious traction due to their affordability, ruggedness, ease of59

use, and relatively good accuracy. Many existing IMU-based60

data gloves [12], [16], [17], [18], [19], [20], [21], [22], [23],61

[24], [25] measure rudimentary quantities such as accelera-62

tion, tilt rate and magnetic field using the IMUs accelerom-63

eter, gyroscope and magnetometer, respectively. These64

quantities are then processed using sensor fusion algorithms65

that use appropriate filters to obtain the orientation of the66

IMU sensor and, in turn, the orientation of the finger phalanx67

to which the IMU is attached to. This orientation is obtained68

w.r.t the north east down (NED) or east north up (ENU)69

reference frame. The orientation data is in turn used to com-70

pute joint angles. Of late, a few IMUs such as the BNO05571

(by Bosch Sensortec), BNO080/85/86 (co-developed by Hill-72

crest Labs and Bosch Sensortec), MPU9250 (by InvenSense)73

etc., have gained immense popularity amongst hobbyists and74

researchers alike [11], [12]. This is due to the fact that they75

have an onboard microcontroller (integrated into the IMUs76

System in Package (SiP)) that implements a sensor fusion77

algorithm to output orientation data (in the form of quater-78

nions and/or Euler angles) in real-time at sampling rates as79

high as 100 Hz. (For e.g., the BNO055 IMU has a 32-bit80

microcontroller (as part of the IMU chip) which implements81

a Kalman filter-based sensor fusion algorithm to output ori-82

entation data (as quaternions or Euler angles) at 100 Hz).83

This has been a real game-changer as these IMUs are now84

accessible to those audiences who might not necessarily have85

an intimate knowledge of signal processing techniques and86

complex filters required for implementing the sensor fusion87

algorithm in real-time.88

In this paper, we present the design and validation of a89

BNO055 IMU-based Hand KinematicsMeasurement System90

(HKMS) with Wi-Fi capability for the measurement of full91

hand kinematics (15 joints). The utility of the HKMS in92

collecting hand kinematic data for ROM analysis and syn-93

ergy analysis is also demonstrated. In the following section,94

existing IMU-based data gloves are compared and contrasted95

from the literature and some limitations are identified. Based 96

on the limitations, the important factors that should go into 97

the development of the HKMS are highlighted. 98

II. RELATED WORK 99

The last decade has witnessed tremendous growth in the 100

development of IMU-based devices for tracking human hand 101

movement. Many of these devices have reported relatively 102

good accuracy without hindering natural hand movements 103

and object manipulation. Some of these devices have been 104

developed to measure full hand kinematics (Refer Table 1), 105

whereas others have been developed specifically for certain 106

applications and don’tmeasure the kinematics of all the finger 107

joints [13], [14]. In this paper, only the literature pertaining 108

to IMU-based devices that measure full hand kinematics is 109

discussed. 110

A list of IMU-based data gloves/systems for the mea- 111

surement of full hand kinematics is presented in Table 1. 112

Some of the crucial aspects of the data gloves, such as the 113

IMU used, sensor size, data output rate, ability to imple- 114

ment the sensor fusion algorithm in real time and location 115

of implementation of the algorithm (i.e., on PC, on micro- 116

controller or on board the IMU chip itself), validation meth- 117

ods, and mode of data transfer are compared in Table 1. 118

From the table, it can be seen that IMUs like MPU9250, 119

MPU9259, MPU6050, BNO055 and LSM series are some 120

of the commonly used sensors for the development of IMU- 121

based data gloves. Recently, a preliminary study investigated 122

the static and dynamic accuracy of three consumer-grade 123

IMUs: MPU9150, X-NUCLEO_IKS01A1, BNO055 and one 124

industrial-grade IMU: MTi-300 [15]. The results showed that 125

among the consumer-grade IMUs, the BNO055 had better 126

static and dynamic accuracy. This was one of the reasons why 127

we explored the possibility of using the BNO055 in building 128

the HKMS. 129

From the literature (Refer Table 1) the following draw- 130

backs of existing IMU-based data gloves have been 131

identified: 132

1. IMU data gloves that use USB [11], [12], [16], [24] 133

to output data limit the movement range of the glove to the 134

length of the USB cable.While there are IMU data gloves that 135

use Bluetooth (Refer Table 1) for wireless data transmission 136

(hence overcoming the limitation), using Wi-Fi would give 137

superior range and data transmission speeds. 138

2. Many IMU data gloves output orientation data at low 139

sampling rates, e.g., 20Hz [11], 50 Hz [18], 60 Hz [21] etc. 140

Some IMU data gloves output raw data at sampling rates of 141

50 Hz [17], [20], [23], [25], 100 Hz [12], [16], [22] etc., and 142

process the raw data using sensor fusion algorithms to get 143

orientation data in real time. However, some of these studies 144

have not clearly stated what is the orientation data output 145

rate after processing the raw data. Existing, commercially 146

available flex-sensor based data gloves output joint angle 147

information at 100 Hz or greater [8], [26]; hence it would 148

be desirable to make the HKMS output orientation data at 149

100 Hz to meet the commercially available standards. 150
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TABLE 1. Comparison of IMU based full hand kinematic measurement devices.

3.Most of the IMU data gloves process the raw data using151

sensor fusion algorithms to get orientation data. However,152

to reproduce such devices would require advanced knowl-153

edge of signal processing techniques and complex filters154

(which is required to implement the sensor fusion algo-155

rithm).With recent advances in technology, IMU’s such as the156

BNO055 have emergedwhich directly output orientation data157

at 100 Hz. This eliminates the requirement of the end user158

to implement a sensor fusion algorithm. Using such an IMU159

to develop the HKMS would greatly reduce the complexity,160

the device development time and make the HKMS easier to 161

reproduce in comparison with existing IMU data gloves. 162

4.An essential aspect of any IMU-based data glove/system 163

is the validation process wherein the sensor outputs are 164

benchmarked against a highly accurate system. Optical 165

trackers [16], [17], [22], [25], high accuracy laboratory- 166

grade IMUs [20], and custom-made motorized platforms 167

[11], [21], [24] are some of the commonly employed devices 168

for validation. While these validation methods have reported 169

high accuracy in favor of the IMU-based data gloves, liter- 170
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ature reporting a detailed and rigorous static and dynamic171

validation (involving the effect of different movement speeds172

and continuous repetitive movements on the IMUs accuracy)173

is scarce.174

5. Finally, studies that have demonstrated an application of175

the developed IMU-based data glove [19] in a laboratory or176

clinical setup are scarce.177

From the discussion in the preceding paragraphs, we have178

identified the following important factors that should go into179

the development of an IMU-based data glove/system: use180

of 16 IMUs to measure full hand kinematics, minimum strap-181

ping on the palmar surface of the hand to prevent reduction182

in hand dexterity, outputting the orientation data (in the form183

of quaternions) of all the 16 IMUs at 100 Hz, using an IMU184

that has a microcontroller (onboard the IMU chip) which185

implements a sensor fusion algorithm to directly output ori-186

entation data in real-time, rigorous static and dynamic valida-187

tion of the chosen IMU and wireless data transmission using188

Wi-Fi. We have built a BNO055 IMU-based Hand Kinemat-189

ics Measurement System (HKMS) that incorporates all these190

factors.191

Apart from design and validation of the IMUs, as an192

application of the HKMS, we test its utility in the mea-193

surement of ROMs and analysis of synergies derived from194

the measured kinematics. According to human motor control195

research, a small number of movement primitives (also called196

synergies) are capable of controlling a larger set of joint197

movements of the human hand, resulting in simultaneous198

activation of multiple joints [4]. Instead of individually con-199

trolling each degree of freedom of the hand, the central ner-200

vous system (CNS) relies on such synergies or coactivation201

patterns to control the complex set of hand movements, hence202

reducing its computational load. Dimensionality reduction203

using PCA [1], [2], [3], [4], [5], or autoencoders [8], are204

usually applied to identify the synergistic kinematic patterns205

which could help in disease diagnostics [26] or develop-206

ment of prosthetic hands [27], [28]. We conducted an exper-207

iment where the HKMS was used to collect kinematic data208

(from 5 participants), which in turn was used for synergy209

analysis and ROM analysis. The same experiment was con-210

ducted again (with the same 5 participants), but instead of211

using the HKMS, a highly accurate Electromagnetic Track-212

ing System (EMTS) was used for kinematic data collection.213

The kinematic synergy patterns and ROM derived from the214

HKMS were compared with that obtained from EMTS. This215

was done to get a sense of how the HKMS compares to216

highly accurate research-grade equipment in terms of the217

quality of the data set collected and its use in reproduc-218

ing similar results and interpretations. In this paper, we219

present:220

1. The design of the BNO055 based HKMS,221

2. The static validation of the BNO055 IMUs against 3D222

printed models with predefined joint angles,223

3. The dynamic validation of the BNO055 IMUs against224

the highly accurate EMTS sensors and225

4. The experimental results of synergy analysis and ROM 226

analysis of two separate data sets collected using the HKMS 227

and the EMTS, respectively. 228

III. MATERIALS AND METHODS 229

A. HARDWARE DESIGN 230

The HKMS consists of 6 microcontrollers and 16 IMU sen- 231

sors. One microcontroller is a Wi-Fi module which is used 232

to wirelessly send data from the HKMS to the computer via 233

Wi-Fi. The remaining 5 microcontrollers are used to collect 234

orientation data in the form of quaternions from the 16 IMUs. 235

These 5 microcontrollers are connected in a master slave con- 236

figuration: 1 master and 4 slaves (See Fig. 1(b)). The master 237

is connected to 4 IMU’s – 1 placed on the wrist and 3 placed 238

on the phalanges of the middle finger. Each of the 4 slaves are 239

connected to 3 IMUs which are placed on the three phalanges 240

of a finger (See Fig. 1(b)). The data collection is synchronized 241

by the master in the following way: the master sends an 242

interrupt (in the form of a rising edge on the interrupt line) 243

to the 4 slaves every 10ms. Upon detecting the interrupt, the 244

4 slaves simultaneously start collecting orientation data from 245

the three IMUs connected to them. Each slave then sends the 246

collected data serially to the master. Parallelly, the master, 247

after generating the interrupt, starts collecting orientation data 248

from the 4 IMUs connected to it following which it waits for 249

the serial data to arrive from the 4 slaves. Once all the data 250

has arrived, the master sends the data serially to the Wi-Fi 251

module which in turn wirelessly sends the data to a computer. 252

Alternatively, the master can also send the data via USB to 253

a computer. This entire process of collecting and sending 254

the orientation data from all the 16 IMUs happens within 255

10ms before the master sends the next interrupt. This ensures 256

that the HKMS outputs the orientation data at a frequency 257

of 100 Hz. 258

One of the unique design features of the HKMS is the 259

master-slave configuration explained in the preceding para- 260

graph. The reason for using such a design is the following: 261

the IMU being used in the HKMS takes approximately 2-3ms 262

to send the orientation data to the microcontroller from the 263

instance at which the IMU was requested for the data. If a 264

single microcontroller is used, then it would take ≥32ms to 265

get data from all the 16 IMUs. This would limit the sampling 266

frequency of the HKMS to≤31.25 Hz. However, as discussed 267

in the previous section, it was decided that one of the features 268

of the HKMS should be that it outputs orientation data from 269

all the 16 IMUs at 100 Hz. To achieve this, the master-slave 270

configurationwas used to enable simultaneous data collection 271

from multiple IMUs and hence, achieve the desired sampling 272

rate of 100 Hz. Additionally, the number of IMUs on the 273

HKMS can be expanded to 20 without decreasing the 100 Hz 274

sampling rate. These additional sensors can be placed on the 275

wrist to model the palm arch of the hand or on the arms to 276

capture their movement kinematics. Another unique design 277

feature of the HKMS is connecting the IMU sensors in series. 278
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FIGURE 1. (a) The HKMS is mounted on a human hand. The IMU’s are stuck to the finger phalanges and the Master-Slave receiver board is strapped
to the arm along with a power bank (b) Simplified block diagram of the HKMS showing the connections between the master microcontroller, slave
microcontrollers, BNO055 IMUs and the Wi-Fi module. The serial communication protocol between the master and slaves is UART and between the
BNO055 IMUs and the microcontrollers is I2C.

This was done to reduce the bulkiness of the device. Instead279

of having individual connections to each of the 16 IMUs, the280

3 IMUs connected to each slave were connected in series and281

the 4 IMUs connected to the master were connected in series282

(See Fig. 1). To achieve the series connection, four different283

‘‘types’’ of Printed Circuit Boards (PCBs) were designed284

around the IMU chip. The design and implementation details285

of these four ‘‘types’’ of PCB’s are provided in Appendix I.286

B. HARDWARE IMPLEMENTATION287

The HKMS consist of 5 teensy 4.0 microcontrollers used in288

the master-slave configuration, an ESP32 based microcon-289

troller – TinyPICO– havingWi-Fi capability for wireless data290

transmission, 16 BNO055 IMUs (Bosch Sensortec) for pro-291

viding orientation information of the wrist and all the finger292

phalanges and a small power bank for powering the HKMS293

(See Fig. 1(a)). In order to build a compact system, a custom294

PCB – Master-Slave PCB – was designed with appropriate295

connections between the master and slaves (See Fig. 1(b)).296

This PCB has dimensions of 7.3 cm x 5 cm, consists of297

slots for fixing the 5 teensies and has 5 Flat Flexible Cable298

(FFC) connectors soldered at the bottom. The Master-Slave299

PCB is strapped to the arm along with the power bank using300

Velcro straps (See Fig. 1(a)). It is not attached to the wrist so301

as to avoid any strapping material on the palmar surface of302

the hand which could reduce the hand’s dexterity. The serial303

communication between the master, slaves and the TinyPICO304

(which is directly soldered on top of the master) happens305

using the UART communication protocol and the serial com-306

munication between the BNO055s and the teensies happens307

using the I2C communication protocol. The FFC connectors308

on this PCB are 6 pin 0.5mm pitch connectors. Two pins309

of the FFC connector are dedicated for the power lines and310

the remaining four pins are dedicated for connections to two311

I2C channels (shown in Fig. 1(b) as I2C channel 1 and 12C312

channel 2) of a single teensy. Each FFC connector on this313

PCB connects one teensy to the three BNO055 sensors on 314

one finger. The three BNO055s on each finger are connected 315

in series using 6 wire FFC cables (0.5 mm pitch). For the 316

master alone, 4 BNO055s are connected in series (See Fig 1). 317

To connect the BNO055 sensors in series and to minimize 318

its size so that it can be attached on a finger phalanx, four 319

different ‘‘types’’ of custom PCBs having a dimension of 320

1.3 cm x 1 cm were designed around the BNO055 chip. 321

The design of these four ‘‘types’’ of PCBs and how they are 322

connected in series is given in Appendix I. 323

C. QUATERNION PROCESSING AND ANIMATION 324

OF HAND MODEL 325

The BNO055 IMUs were programmed to output orientation 326

data in the form of quaternions. As a first step in process- 327

ing the data, the relative quaternions between the adjacent 328

BNO055s across all joints were computed using quaternion 329

conjugate multiplication (1). 330

qBrelativeA = qAconj ⊗ qB (1) 331

Here, qA and qB are the raw quaternion data of the two 332

adjacent hand segments ‘A’ and ‘B’ of a joint and represents 333

the orientation of these segments w.r.t east north up (ENU) 334

frame of reference, qconjA is the conjugate of qA and qBrelativeA 335

is the relative quaternion that represents the orientation of 336

segment B relative to A. The relative quaternions of each 337

joint were then hemispherized (i.e., made to lie on the same 338

side of the hemisphere) due to their antipodal symmetry. The 339

hemispherized relative quaternions were then used for data 340

analysis. 341

In this work, many linear Euclidian operations such 342

as computing RMSE, performing linear dimensionality 343

reduction using PCA etc., are performed. However, since 344

quaternions are defined on a non-linear manifold, the lin- 345

ear operations just mentioned cannot be directly applied 346

on them [29], [31]. To perform these linear operations, the 347
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FIGURE 2. 3D printed models (used for static validation) with slots to mount the BNO055 breakout boards at fixed
angles relative to each other. The local reference frame of each BNO055 sensor is highlighted. (a) and (b) depict the
same 3D printed model having a joint angle of θ = 60◦. In (a), the sensors are fixed such that sensor 2 is rotated
60◦ w.r.t the Y axis of sensor 1 i.e., the relative pitch angle is 60◦. In (b), the sensors are fixed such that sensor 2 is
rotated 60◦ w.r.t the X axis of sensor 1 i.e., the relative roll angle is 60◦. In (c), the 3D printed model has slots such
that sensor 2 is rotated by 30◦ w.r.t the Z axis of sensor 1 i.e., the relative yaw angle is 30◦.

hemispherized relative quaternions were first linearized using348

logarithmic mapping and then the linear operations were349

performed on them. Following this step, the linearized orien-350

tations were converted back to quaternions using exponential351

mapping [31]. For more details on the applicability of quater-352

nions for biomechanical analysis, refer to [29], and for more353

information on logarithmic and exponential mapping, refer354

to [30], [31]. A short primer on logarithmic and exponential355

maps is presented in Appendix II.356

For the purposes of animation, a hand model was cre-357

ated using SOLIDWORKS and imported into MATLAB.358

A MATLAB Simulink program was developed to accept359

the orientation data from the HKMS via Wi-Fi in real-time.360

Relative quaternions were computed using (1) and converted361

to Euler angles for the ‘‘XZY’’ intrinsic rotation sequence to362

get the roll, yaw and pitch angles of B w.r.t A. The MATLAB363

function ‘eulerd’ with ‘point’ as the rotation type was used for364

the same. The sensors were aligned on the hand such that the365

yaw angle (i.e., second Euler angle in the intrinsic sequence)366

of the proximal phalanx of a finger, when computed w.r.t the367

wrist sensor gave the abduction/adduction angles of that fin-368

ger w.r.t the wrist sensor. The problem of gimbal lock (often369

encountered when working with Euler angles) is avoided370

in our application as the abduction angle never approaches371

±90◦. The computed Euler angles were then fed into the hand372

model to animate hand postures in real-time.373

D. STATIC AND DYNAMIC VALIDATION OF THE374

BNO055 SENSORS375

The static and dynamic validation of the BNO055 sensors376

was done to determine the accuracy of the BNO055 for377

the calculation of joint angles. This validation was neces-378

sary to determine whether the BNO055 could be used to379

collect full hand kinematics data for research purposes. For380

the static and dynamic validation, two off-the-shelf BNO055381

breakout boards from DFRobot were used. Additionally, for 382

the dynamic validation, an electromagnetic tracking system 383

(EMTS) – Polhemus LibertyTM 240/16 – was used. Two sen- 384

sors were connected to the EMTS to acquire the orientation 385

data w.r.t the reference frame of the EMTS source box kept 386

nearby. 387

1) STATIC VALIDATION 388

For the static validation, eight 3Dmodels with slots and holes 389

to mount two BNO055 breakout boards were designed using 390

SOLIDWORKS and 3D printed (Fig. 2 depicts two such 3D 391

models). These 3D models had slots such that upon fixing 392

the BNO055 sensors on them, the relative (pitch, yaw, roll) 393

Euler angles of sensor 2 w.r.t sensor 1 could be set at the 394

following 12 options: (30◦, 0◦, 0◦), (60◦, 0◦, 0◦), (90◦, 0◦, 0◦), 395

(120◦, 0◦, 0◦), (0◦, 0◦, 30◦), (0◦, 0◦, 60◦), (0◦, 0◦, 90◦), 396

(0◦, 0◦, 120◦), (0◦, 15◦, 0◦), (0◦, 30◦, 0◦), (0◦, 45◦, 0◦) and 397

(0◦, 60◦, 0◦). These angles were chosen keeping in mind 398

the ROM of the finger joints. The following protocol was 399

followed for the static validation of the sensors: For each 400

of the 12 options, 10 trials (10 × 12=120 trials) of sensor 401

data was collected. Each trial lasted for 10s. A TEENSY 4.0 402

microcontroller collected the orientation data from the two 403

BNO055s in the form of quaternions at 100Hz and sent this 404

data serially to a computer. The computer had a custom 405

LabVIEW program running which accepted and stored the 406

incoming serial data from themicrocontroller. Before the start 407

of each trial, the orientation of the 3Dmodel was changed, but 408

during the trial itself, the 3D model was stationary. This was 409

done (i.e., changing orientation before each trial) to assess 410

the sensor’s accuracy when they were at different orienta- 411

tions w.r.t the magnetic north and earths gravitational field. 412

Additionally, it was also ensured that no metallic device was 413

kept at least 5ft from the 3D model to avoid any magnetic 414

interference in the magnetometer of the BNO055 IMUs. 415
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FIGURE 3. 3D printed model (used for dynamic validation) with slots to attach the BNO055 and EMTS sensors at different orientations. (a) Side
view of the model. The rotation of the movable segment for condition 1 is between A and B and for conditions 2 and 3 is between A and C.
(b) The sensors are fixed such that the BNO055 2 and EMTS sensor 2 will rotate w.r.t the Z axis of BNO055 1 and EMTS sensor 1 respectively
(i.e., change in the relative yaw angle). (c) The sensors are fixed such that the BNO055 2 and EMTS sensor 2 will rotate w.r.t the X axis of
BNO055 1 and EMTS sensor 1 respectively (i.e., change in the relative roll angle). (d) The sensors are fixed such that the BNO055 2 and EMTS
sensor 2 will rotate w.r.t the Y axis of BNO055 1 and EMTS sensor 1 respectively (i.e., change in the relative pitch angle).

For determining the accuracy of the sensors, the relative416

quaternion between the two sensors was computed using (1).417

The relative quaternion was then converted to Euler angles,418

as mentioned in the previous section. The computed Euler419

angles were then compared with the corresponding fixed420

angle of the 3D printed model. For each of the 12 options, the421

maximum, minimum and average of the three Euler angles422

across the 10 trials were computed. The error was then cal-423

culated by computing the mod of the difference between the424

averaged Euler angles from the expected/set Euler angles425

using eq (2).426  δxδy
δz

 =
∣∣∣∣∣∣
Esetx
Esety
Esetz

−
Eaveragex
Eaveragey
Eaveragez

∣∣∣∣∣∣ (2)427

Here, δ is the error, E is the Euler angle, the subscripts x,428

y and z of E indicate that the Euler angle is pitch, yaw and roll429

respectively. While such subtraction and averaging of Euler430

angles is not valid in most cases, in this case, the variation of431

the Euler angles across samples was very less as the sensors432

were fixed in position relative to each other. In such a case, the433

Euler angles can be subtracted and averaged with negligible434

error [29].435

2) DYNAMIC VALIDATION436

For the dynamic validation of the BNO055 sensors, a 3D437

model having two segments joined together by a 1DOF mov-438

able joint (See Fig. 3(a)) was designed using SOLIDWORKS439

and 3D printed. This model had slots and holes to mount440

the BNO055 breakout boards and EMTS sensors at different 441

orientations. A part of one segment of the model was firmly 442

stuck to a 3D printed stand (See Fig. 3(a)) to keep it stationary 443

while the other segment was being rotated about the joint. For 444

the dynamic validation, three conditions were tested: 1. Rota- 445

tion of BNO055 2 relative to only the Z-axis of BNO055 1 446

(See Fig. 3(b)), i.e., change in the relative yaw angle only, 447

2. Rotation of BNO055 2 relative to only the X-axis of 448

BNO055 1 (See Fig. 3(c)), i.e., change in the relative roll 449

angle only and 3. Rotation of BNO055 2 relative to the Y-axis 450

of BNO055 1 (See Fig. 3(d)), i.e., change in the relative pitch 451

angle only. For all the three conditions, the EMTS sensors 452

were fixed such that EMTS sensor 2 would rotate relative to 453

only the Z, X and Y axis of EMTS sensor 1 for conditions 1, 454

2 and 3, respectively (See Fig. 3). Since the local frames of 455

the BNO055 and EMTS sensors were different (See Fig. 3), 456

appropriate quaternion transformations were used to align 457

the BNO055s frame with the EMTS sensors frame during 458

postprocessing. For each condition, the movable segment 459

of the model was manually rotated by the experimenter to 460

the beat of a metronome. For condition 1, the segment was 461

rotated between A and B (60◦) (See Fig. 3(a)), and for con- 462

ditions 2 and 3, the segment was rotated between A and C 463

(120◦) (See Fig. 3(a)). This range was selected keeping in 464

mind the ROM of the finger joints. A smaller range was 465

chosen for yaw rotations since the yaw (abduction/adduction) 466

range in human fingers is less when compared to the pitch 467

range of the finger joints and thumb roll movement range 468

relative to the wrist. The direction of rotation was reversed at 469
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FIGURE 4. (a) Hand postures and object grasps used in the study. The participants performed 26 hand postures including Bharatanatyam
dance postures (P1-P8), ASL numbers (P9-P18), ASL letters (P19-P26) and 10 object grasps (O1-O10) covering various grasp taxonomies.
(b) Participant with HKMS attached to hand performing postures displayed on the screen.

the sound of each beat, and the rotation was paced such that at470

the time of the beat, the rotating segment was approximately471

at one of the following end positions: A or B for condition 1472

or A or C for conditions 2 and 3.473

For each condition, 40 trials of data were collected474

(40× 3=120 trials total). Each condition was in turn divided475

into four sub-conditions of 10 trials each. The interval476

between two metronome beats for the four sub-conditions477

was different. They were 2s, 1.5s, 1s and 0.5s, respectively.478

Therefore, for beat intervals of 2s, 1.5s, 1s and 0.5s, the479

angular velocity of the segment rotation was approximately480

30◦/s, 40◦/s, 60◦/s, and 120◦/s respectively for condition 1,481

and 60◦/s, 80◦/s, 120◦/s and 240◦/s respectively for condi-482

tions 2 and 3. Each trial lasted for 20s. The orientation data483

in the form of quaternions for the two EMTS sensors and484

the two BNO055 IMUs were streamed to a computer by485

the Polhemus Liberty EMTS at 240Hz and a TEENSY 4.0486

microcontroller at 100Hz, respectively. A custom LabVIEW487

code was running on the computer, which simultaneously488

accepted the incoming data from both the systems. The489

timestamp information of the arrival of each BNO055 data490

frame (1 frame = one sample from both the BNO055’s)491

and arrival of each EMTS sensor data frame was stored by492

the program. The two timestamps were then used in post-493

processing to match each frame of the BNO055 data with494

the nearest frame of the EMTS sensor data so that they495

could be compared. Additionally, the LabVIEWprogram also496

generated the metronome beat.497

For determining the dynamic accuracy of the BNO055 in498

calculating the relative orientation of one sensor w.r.t the499

other, the relative quaternion between the two BNO055s and500

the two EMTS sensors were first computed using (1). The501

RMSE between the two sets of relative quaternions was then502

computed using (3) [31]. This particular RMSE is a single503

value that represents the error in degrees between the two sets504

of relative quaternions. 505

(RMSE) =

√∑n

i=1

1
n
‖ln(Qiconj ⊗ Qe)‖2 (3) 506

Here, Qi and Qe are the relative quaternions of the BNO055 507

and EMTS sensors, respectively.
∥∥ln(Qiconj ⊗ Qe)∥∥ gives 508

angle in degrees. This angle is the smallest angle required 509

for one quaternion to rotate about an axis to reach the other 510

quaternion. 511

3) CALIBRATION OF THE BNO055 SENSOR 512

The BNO055 IMU contains three sensors: a gyroscope, 513

an accelerometer and a magnetometer. For the BNO055 to 514

give accurate readings, these three sensors need to be cali- 515

brated every time the BNO055 is powered on. Each of these 516

sensors has a value between 0 and 3 associated with it that 517

indicates the calibration status of the sensor. If the value is 0, 518

then the sensor is not calibrated, and if the value is 3, then 519

it is fully calibrated. The process to calibrate these sensors 520

are different and are specified in the following resources 521

[32, p. 51, 35]. The BNO055 needs to be kept stationary 522

for a few seconds to calibrate the gyroscope. The BNO055 523

needs to be rotated at 45◦ increments about at least one of its 524

axes to calibrate the accelerometer. After each 45◦ increment, 525

it needs to be kept stationary for a few seconds. This needs 526

to be done until the calibration status of the accelerometer 527

becomes 3. The BNO055 needs to be moved in the air for 528

a few seconds as if drawing the infinity sign to calibrate 529

the magnetometer. It takes approximately 30s to calibrate all 530

three sensors. 531

For the static validation, the BNO055s were calibrated at 532

power on. For each BNO055, the calibration status of the 533

three sensors was checked between each trial. It was observed 534

that all the calibration values remained 3 throughout all the 535

trials. For the dynamic validation, the calibration values for 536
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each BNO055 were monitored between trials and during537

the trials as well. It was observed that the magnetometer538

calibration value decreased during trials as well as between539

the trials. This can be attributed to the magnetic field emitted540

by the EMTS source box, which adversely affects the accu-541

racy of the magnetometer. Whenever the calibration value of542

the magnetometer became 0 during the dynamic validation,543

it was recalibrated before proceeding with further trials.544

E. EXPERIMENTAL VALIDATION OF THE HKMS545

ON THE HAND546

In order to compare the performance of the HKMS with that547

of the EMTS for analyzing full hand kinematic data, two548

experiments were conducted. In the first experiment, 5 par-549

ticipants performed 26 hand postures, and 10 object grasps550

(See Fig. 4). 16 EMTS microsensors (different and smaller551

than the ones used in the dynamic validation of the BNO055)552

from Polhemus were used to collect full hand kinematic data.553

The second experiment was the same as the first one, the554

only difference being that the HKMS was used to collect full555

hand kinematic data instead of the EMTS. The participants556

for both the experiments were the same. Two separate exper-557

iments needed to be conducted as both the BNO055 and the558

EMTS sensors could not be simultaneously mounted on the559

finger phalanges due to lack of space. Inability to collect data560

simultaneously from both the EMTS and HKMS in a single561

experiment is a limitation in the validation step of the HKMS.562

Details of both the experiments are given in the following563

sections.564

1) PARTICIPANTS565

Five right-handed participants were recruited for the experi-566

ments (mean age± SD: 30.2± 3.4928). The experiment was567

approved by the Institute Ethics Committee of IIT Madras568

(Approval number: IEC/2020-03/SKM/02/10), and written569

consent of participation was taken from each participant570

before the start of the experiment. None of the participants571

had any history of neuromotor disorders or injuries to the572

hand and/or arms.573

2) EXPERIMENTAL PROTOCOL574

The participants were seated on a wooden chair throughout575

the experiment, and the right hand was rested on a wooden576

table near the participant. Care was taken to ensure that577

minimal metallic objects were in the vicinity of the exper-578

imental space to avoid electromagnetic interference in both579

the EMTS as well as the HKMS. For experiment 1, 16 EMTS580

microsensors were stuck to the right hand of the participants581

(15 on the finger phalanges and 1 on the wrist for reference)582

using double-sided tape at the sensor’s bottom and surgical583

tape on the top. This ensuredminimal movement of the sensor584

relative to its original position and orientation at the time of585

attachment. The EMTS source box was kept close to the right586

hand and served as the reference framew.r.t which the sensors587

gave the orientation data.588

The experiment was split into two tasks for each par- 589

ticipant. In the first task, the participants were required to 590

perform 26 hand postures derived from the American Sign 591

Language (ASL) and Bharatanatyam postures (a classical 592

Indian dance form) (See Fig. 4(a)). In the second task, the 593

participants were required to grasp and release 10 different 594

objects (See Fig. 4(a)). For each posture and object grasp, 595

three trials of data were collected (36 × 3 = 108 trials). 596

A picture of the posture/object grasp that needed to be per- 597

formed by the participant for a particular trial was displayed 598

on a monitor kept in front of the participant. Each trial lasted 599

for 8 seconds. At the start of each trial, the hand was kept 600

flat on the table, with the fingers adducted and the palm 601

facing downwards. This was the home position. At the 1s 602

mark, the experimenter verbally indicated to the participant 603

to perform the task as per the image on the screen and main- 604

tain the posture/object grasp. At the 6s mark, the participant 605

was verbally indicated to return the hand back to the home 606

position. The orientation data in the form of quaternions 607

was collected for each trial from the EMTS sensors at an 608

update rate of 100Hz using a customized LabVIEWprogram. 609

Experiment 2 was exactly the same as experiment 1, the only 610

difference being that instead of using the EMTS to collect 611

full hand kinematics data, the HKMS was used. Similar to 612

experiment 1, a customized LabVIEW code was written to 613

collect data from the HKMS at 100 Hz. All data analysis was 614

performed using MATLAB. 615

3) CALIBRATION OF THE HKMS 616

For experiment 2, prior to the start of the experiment, all 617

16 BNO055 sensors of the HKMS were calibrated simul- 618

taneously. To do this, the HKMS was first mounted on the 619

hand using double-sided tape. Then, the exact movements for 620

calibrating a single BNO055 sensor were performed by the 621

hand instead. This resulted in the simultaneous calibration 622

of all the 16 BNO055 sensors. It should be mentioned that 623

for the calibration of the gyroscopes, it was observed that 624

when the participants kept their hand flat on the table and 625

stiffened the joints in order to keep the hand stationary, the 626

gyroscope did not get calibrated. Instead, when the hand was 627

kept loose on the table without any effort to control the joints, 628

the hand assumed a natural position and became motionless. 629

In this state, the gyroscope of all the 16 sensors got calibrated 630

immediately. The process to calibrate all the BNO055 sensors 631

of the HKMS takes approximately 90s. 632

4) SENSOR TO SEGMENT ALIGNMENT 633

For the first experiment involving the EMTS sensors, the 634

sensor-to-segment alignment was performed using the bore- 635

sight function provided in the Polhemus proprietary software 636

PiMgr. The hand was first aligned with the reference frame 637

of the EMTS source box, and then the boresight function 638

was executed. This function aligned all the sensor’s reference 639

frames via software with the source box’s reference frame. 640

Since the hand was aligned to the source box reference frame, 641

the sensor reference frames now accurately represented the 642
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orientation of the bones to which they were attached to post643

boresight. The boresight operation was done in two steps:644

1. The four fingers and wrist were aligned to the source645

box reference frame, and all the attached sensors were bore-646

sighted. 2. The thumb was then aligned to the source box647

reference frame, and the thumb sensors were boresighted.648

For the second experiment involving the BNO055, the649

sensor-to-segment alignment was done only for the sensors650

on the fingers. For the thumb sensors, the sensor-to-segment651

alignment was not required as the sensors were carefully652

attached along measured anatomical positions. The sensor-653

to-segment alignment for the finger sensors was done in654

the following way: for each trial, 50 samples (0.3 sec to655

0.8 seconds, i.e., when the hand was at the home position) of656

the relative quaternions of each joint were averaged directly657

and renormalized. Such averaging produces minimum error658

since the data is static [29]. All the relative quaternions in the659

trial were then expressed w.r.t the averaged quaternion values660

to achieve sensor-to-segment alignment.661

5) ROM AND STATIC RMSE COMPARISON662

The ROM and RMSE of data from experiment 1 and 2 were663

computed and compared. First, the relative quaternions were664

computed between two adjacent joint segments for all joints.665

For ROM analysis, the relative quaternions were converted to666

Euler angles, and a box plot analysis was performed (sepa-667

rately for experiments 1 and 2) using data from all the par-668

ticipants. The ROM analysis was done to determine whether669

the HKMS could measure the maximum and minimum joint670

angle movement ranges for dexterous hand movements when671

compared to the EMTS sensors. For RMSE analysis, only672

data from the static part of the trials was considered for anal-673

ysis. The 3.5s-4.5s interval was considered as the static part674

of the trial as the participants maintained the posture/object675

grasp with minimal changes in the joint angles during this676

interval. The RMSE for a posture/object grasp was com-677

puted in the following way: the relative quaternions of the678

15 joints were averaged from the 3.5s to 4.5s interval to give679

15 average quaternion values for a trial. This was done for680

all 3 trials of the posture and for all 5 participants, resulting681

in 15× 3×5=225 average quaternion values. These average682

quaternion values were computed for experiments 1 and 2,683

resulting in two datasets. The RMSE between the two datasets684

was calculated using (3) to yield the RMSE of the posture.685

6) COMPARISON OF SYNERGIES686

Studies in neuroscience through PCA (Principal Component687

Analysis) have demonstrated that a few control signals from688

the CNS can simultaneously activate a set of joints. This689

reduces the burden on the CNS to individually control each690

joint. It has been shown through eigenvector (also called691

synergy) analysis that the first few synergies explain more692

than 80% of the variance in data, and higher-order synergies693

reveal finer details of the posture [4]. Many of these studies694

were performed either using data gloves or optical trackers695

to compute joint angles. Since joint angles lie on a linear696

domain, PCA could be applied to it. However, IMU-based 697

systems output orientation information in the form of quater- 698

nions or Euler angles which are defined along a non-linear 699

manifold. Hence the direct application of PCA, which is a 700

linear method, is not valid. To overcome this, the quaternions 701

(from the HKMS and EMTS) were first linearized using 702

logarithmic mapping and then PCAwas applied to them [31]. 703

The following are the steps involved in the analysis: 704

1. For each participant, hemispherized relative quaternions 705

were arranged column-wise. Each joint had four data columns 706

(referred to as a ‘‘column block’’) representing quaternion 707

data. Since the relative quaternions for 15 joints were cal- 708

culated, there were 15 × 4=60 columns of quaternion data 709

(or 15 column blocks). For each participant, there were three 710

trials for each of the 36 postures/object grasps and for each 711

trial, data was collected at 100Hz for 8s. Hence, the total 712

number of quaternion samples collected for a participant was 713

36 x 3 x 8 x 100=86400. This resulted in a data matrix of the 714

dimension 86400 x 60. 715

2. The mean of each column block was computed using 716

Markley’s algorithm [36]. 717

3. The quaternions in the column block were then calcu- 718

lated relative to the mean quaternion of that column block 719

using (4). This step centered the data around zero. 720

qcentered=qmean
conj
⊗qsample (4) 721

4. Each of the 15 column blocks was then linearized 722

using logarithmic mapping using equation (A1) (See 723

Appendix – II). Such a mapping converts each of the 4 valued 724

quaternions to 3 valued linear 3D vectors. This resulted in a 725

data matrix of the dimension 86400 × 45. 726

5. Standard PCA using eigenvector decomposition was 727

then applied on the linearized orientations. 728

The resulting eigenvectors or synergies computed from 729

both the HKMS and the EMTS were compared using Pear- 730

son’s correlation coefficient. The linearized eigenvectors 731

were converted back to quaternions using exponential map- 732

ping (A2) to visualize the Eigen Postures. The details of the 733

algorithm are provided in [31]. 734

IV. RESULTS 735

A. JOINT ANGLE VALIDATION 736

1) STATIC VALIDATION 737

The results of the static validation are presented in Table 2. 738

As can be seen from the table, the errors lie well within 2◦ for 739

most of the options except for two options where the relative 740

yaw angle was set at 45◦ and 60◦. In these two options, the 741

error was 2.91◦ and 3.54◦, respectively. However, while per- 742

forming hand postures, the yaw (abduction/adduction) angles 743

are well within 60◦ (See Fig. 9); hence yaw errors as high 744

as 3.54◦ are unlikely while performing static hand postures. 745

Considering the entire data set of 120 trials, it was observed 746

that there were some samples with absolute errors of up to 747

4◦ and one sample in which the error was 7.56◦. However, 748

these are outliers since the average values were less than 2◦ 749

in most options. From this analysis, we conclude that the 750
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TABLE 2. Statistics for static validation.

BNO055 sensors have good static accuracy for the human751

hand movement range.752

2) DYNAMIC VALIDATION753

The RMSE between the relative quaternions of the BNO055754

and the EMTS sensors for the different conditions and rota-755

tion speeds are presented in Fig 5.756

FIGURE 5. Quaternion RMSE computed for various rotation speeds. The
rotation speeds for relative Yaw rotations are 120◦/s, 60◦/s, 40◦/s and
30◦/s. The rotation speeds for relative Pitch and Roll rotations are 240◦/s,
120◦/s, 80◦/s and 60◦/s.

As can be seen in the figure, except for the case of pitch757

rotation at 240◦/s where the RMSE is 7.5◦, the RMSE in all758

other cases are less than 4◦. At the lowest rotation speeds for 759

each of the three conditions, the RMSE values are around 2◦. 760

While RMSE provides information in the form of an aver- 761

age error, it is necessary to record the maximum error that 762

occurred during the validation process. For this purpose, the 763

angle between the two relative quaternions of the BNO055 764

and the EMTS sensors was computed using (5). 765

θ =

∥∥∥ln(Qiconj⊗Qe)∥∥∥ (5) 766

Here, Qi and Qe are the relative quaternions of the BNO055 767

and EMTS sensors, respectively. This angle is considered as 768

the error and is the smallest angle required for one quaternion 769

to rotate about an axis to reach the other quaternion. A box 770

plot analysis of the error angles is presented in Fig. 6 for 771

each of the three conditions. As can be seen from the plot, 772

the median error is less than 4◦ for all the cases except for 773

relative pitch rotations at 240◦/s. Also, for rotation speeds of 774

less than 240◦/s, the maximum error lies within 10◦ for all 775

three conditions. For the case of relative pitch movements at 776

240◦/s, a maximum error of 25◦ is observed. Additionally, the 777

number of outliers, in this case, are many. 778

To further investigate the high number of outliers and high 779

RMSE error in the case of relative pitch rotation at 240◦/s, 780

a random trial was selected from each of the four-movement 781

speeds for the relative pitch rotation condition. The relative 782

pitch Euler angle from the selected trials was plotted for the 783

BNO055 and EMTS sensors (See Fig. 7). From the figure, 784

it can be seen that for rotation speeds of 60◦/s, 80◦/s and 785
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FIGURE 6. Box plots of the error angle for Pitch (a), Roll (b) and Yaw (c) rotations at various rotation speeds. The error angle is the angle between
the relative quaternions of the BNO055 sensors and the EMTS sensors.

FIGURE 7. For relative pitch rotation (i.e., condition 3), the relative pitch Euler angle of the EMTS and BNO055 sensors
are plotted for rotations speeds of (a) 240◦/s, (b) 120◦/s, (c) 80◦/s and (d) 60◦/s.

120◦/s, the angles for both the BNO055 and EMTS sensors786

are almost the same, but for the rotation speed of 240◦/s (See787

Fig. 7. (a)), the angle of the BNO055 starts to drift after the788

first few changes in the rotation direction. This results in an789

accumulation of error with time. The longer the movements790

are made continuously, the more is the magnitude of error,791

which explains the high number of outliers and the high792

RMSE. Furthermore, the error is more evident at the instance793

of change in the direction of rotation (i.e., at the peaks and 794

valleys) where there is a sudden change in the direction 795

of acceleration. A possible explanation for errors at high 796

rotation speeds can be found in the BNO055 datasheet, where 797

it is mentioned that the BNO055s sensor fusion algorithm 798

was designed for tracking human motion and that at high 799

accelerations, the gravity vector may be misinterpreted as 800

the high acceleration [32, p. 28]. If we consider human hand 801
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FIGURE 8. Images of ten hand postures and object grasps are generated for a randomly selected participant using data from experiment 1
(which was collected using EMTS) and experiment 2 (which was collected using HKMS) for the purpose of visual comparison. The hand
model was created and rendered using SOLIDWORKS.

FIGURE 9. Box plots of various joint angles for experiments 1 (EMTS) and 2 (HKMS). Here the box plots for the metacarpophalangeal (MCP) joints
and proximal interphalangeal (PIP) joints of the fingers and the MCP and interphalangeal (IP) joint of the thumb are presented for flexion/extension
and abduction/adduction movements. I, L, M, R and T stand for index, middle, ring, little and thumb respectively and A and F stands for
abduction and flexion respectively. I-MCP-A means the box plot is for the index MCP joint for abduction/adduction movements. Similarly, I-MCP-F
means the box plot is for index MCP joint for flexion/extension movements. The top three maximum errors in measuring ROM between the HKMS
and EMTS is highlighted in blue.

movements, repeated continuous rotations about a particular802

joint at high speeds (such as experienced by the BNO055803

at the rotation speed of 240◦/s) is unlikely. Furthermore,804

accumulation of error happens only for continuous805

repeated movements. This can be seen in Fig. 7(a), where 806

the angles start drifting only after the first four cycles of 807

rotation. Hence, isolated high acceleration joint rotations in 808

the human hand will not result in a high error. It should also 809
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FIGURE 10. RMSE between the static postures/object grasps of
experiment 1 (EMTS) and 2 (HKMS) are plotted. The images of some of
the postures/object grasps are also shown in the figure. Maximum error
is seen for postures and objects that involve more movement in the PIP
or DIP joints.

FIGURE 11. For a participant, a trial was randomly selected from
experiment 1 (EMTS) and the static posture was generated. The
corresponding trial from experiment 2 (HKMS) was used to generate
another static posture. Upon visually comparing the two images, it can be
seen that the differences between the two postures are in the finer
details. Also, the flexion of the DIP joints is greater in the experiment 2
trial.

be noted that the data was collected in the presence of a810

magnetic field emitted from the EMTS source box. This could811

cause distortions in the magnetometer data of the BNO055812

and affect its accuracy. Despite this fact, the RMSE values813

were found to be low except for relative pitch rotations at814

240◦/s. From the above results and discussion, we conclude815

that the BNO055 sensors have acceptable dynamic accuracy816

for measuring human hand kinematics.817

B. POSTURE VISUALIZATION IN 3D818

A participant from experiment 1 and 2 was randomly819

selected, and the static hand postures/object grasps for that820

participant was generated. A few of these hand postures/821

object grasps are presented in Fig. 8. A visual examination822

of the images gives the impression that the postures/object823

grasps generated using the HKMS and EMTS are compara-824

ble. However, some observable differences can be attributed825

to the following reasons: 1. Since the images are generated826

FIGURE 12. Scree plot for average percentage explained variance across
participants vs synergies plotted for experiments 1 (EMTS) and 2 (HKMS).

FIGURE 13. Pearson’s correlation coefficient computed between the
kinematic synergy patterns of experiment 1 (EMTS) and experiment 2
(HKMS). The height of the bars indicates average correlation coefficient
averaged across participants; the error bars indicate standard error of
mean (SEM).

using two different experiments, there is variability in the 827

posture/object grasp made by the participant itself. 2. During 828

movement of the hand, the rigid wires of the EMTS sensors 829

can cause movement in the sensors. Also, since the EMTS 830

sensors are small and thin, they are prone to skin artifacts. 831

In comparison, the BNO055 sensors have a flat surface and 832

are less affected by skin artifacts and movements of the FFC 833

cables. 3. The small EMTS sensor placed on the wrist is 834

more affected by tendon movements than the flat BNO055 835

sensor placed on the wrist. This difference will be reflected 836

in the overall posture generated using the EMTS and HKMS 837

as the orientation of the finger’s proximal phalanges and the 838

thumb’s metacarpal are calculated relative to the wrist sensor. 839

C. COMPARISON OF ROM AND STATIC RMSE 840

A box plot analysis of the joint angles from all participants of 841

experiments 1 (EMTS) and 2 (HKMS) was done separately, 842

as shown in Fig. 9. This plot was used to compare the ROM 843
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FIGURE 14. Comparison of the first 4 Eigen postures computed using HKMS and EMTS separately for
2 participants- One for the participant for whom maximum similarity was observed between the EMTS
and HKMS(Left), and the other for the participant who showed minimum similarity.

obtained from the HKMS and EMTS. For brevity, only the844

MCP and PIP joints for all the fingers and the MCP and IP845

joints of the thumb were compared. This is because the MCP846

and PIP joints exhibit higher ROMs and have higher move-847

ment velocities when compared to the DIP joint. Hence ana-848

lyzing these joints is sufficient as any errors induced due to849

higher movement velocities will be seen at these joints. From850

Fig. 9, it can be seen that the ROMs computed using HKMS851

and EMTS are comparable. A maximum error of 11◦, 13◦852

and 14◦ was seen for the Index MCP joint flexion, little MCP853

joint flexion and middle MCP joint abduction/adduction,854

respectively. It should be noted that the maximum errors are855

observed at the MCP joints even though the PIP joints have856

similar movement ranges and angular velocities. A possible857

explanation for this, which is also mentioned in the preceding858

section, is that the wrist reference sensor of the EMTS and859

HKMS are affected differently by skin artifacts and tendon860

movements. This difference is manifested in the joint angles861

at the MCP joint, whose orientation is calculated relative to862

the wrist sensor. From this analysis and discussion, we con-863

clude that the HKMS is reasonably accurate in calculating864

the ROM of the hand and could help clinicians to access the865

ROM for tracking the severity of pathology and recovery rate866

in patients with neuromotor disorders.867

Additionally, the RMSE between the static postures/object868

grasps of the two experiments was computed. The results869

are presented in Fig. 10. The average static RMSE across870

all postures and object grasps is 11◦, and the maximum871

and minimum RMSE values are 15◦ and 8◦, respectively.872

Considering the reasons mentioned in the preceding section 873

for the differences in the images of the postures/object 874

grasps generated using the HKMS and EMTS, these RMSE 875

values represent the worst-case scenario. Additionally, the 876

EMTS sensors were attached using bigger and stronger 877

tapes to prevent their movement. This, coupled with the fact 878

that the EMTS sensor wires are rigid, could perhaps have 879

restricted the ROMof the handwhen compared to the HKMS. 880

In Fig. 11, it can be seen that the flexion of the DIP joints are 881

less for the case of experiment 1 (EMTS). Considering all 882

these points, the average RMSE value can be expected to be 883

much lesser than 11◦. 884

D. COMPARISON OF SYNERGIES 885

The synergies obtained by performing PCA on data from 886

experiments 1 and 2were tested for similarity using Pearson’s 887

correlation coefficient. The similarity test was performed 888

separately for each participant. The scree plot for explained 889

variance vs synergies is presented in Fig. 12. The figure 890

shows that the first six synergies account for greater than 85% 891

variance in the data for both the EMTS and HKMS. These six 892

synergies were selected for comparison. 893

The synergies from both experiments were matched using 894

a simple search and match algorithm. Such a mapping is 895

necessary while comparing synergies because studies in the 896

literature that have compared synergies for same postures 897

from two different data sets have observed that synergies 898

with large eigen values map one to one whereas synergies 899

with low eigen values may not map one to one as they could 900
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be invoked in different orders [3]. This could be due to901

differences in the finer details of the postures that prevails902

between the two datasets. Hence, methods like the greedy903

search algorithm [33] and clustering analysis [5] have been904

employed to group similar synergies across datasets.905

In this study, a greedy search algorithm was employed,906

where the first synergy from experiment 1 for a participant907

was compared with all other synergies from experiment 2908

for maximum correlation using the absolute value of Pear-909

son’s correlation coefficient. Once a matching synergy was910

obtained, that pair was removed, and the next synergy from911

experiment 1 was matched similarly with one of the remain-912

ing synergies of experiment 2. This process was repeated until913

all synergy pairs were obtained. The p-values for every com-914

puted correlation coefficient were recorded. The p-values for915

all individual correlation coefficients showed that the correla-916

tions were significant (p<0.001). The correlation coefficients917

for each synergy were then averaged across all participants918

and the results are presented in Fig. 13. The plot shows that919

the first two synergies (which represent gross movements) are920

very similar, with an average correlation coefficient of 0.94 ±921

0.01198 (mean ± SEM) and 0.89 ± 0.0243 for the first922

and second synergies, respectively. Higher-order synergies923

(which represent finer movements) are reasonably similar,924

with average correlation coefficients for the 6th synergy925

(one with the lowest similarity compared to other synergies)926

being 0.72 ± 0.029. This result aligns with the observations927

we made in the preceding sections, where the overall pos-928

tures/object grasps between experiments 1 and 2 visually929

looked similar, and the differences were observed only in the930

finer details.931

To visualize the Eigen postures, the synergies were rotated932

in either direction from the mean posture to obtain the max-933

imum and minimum range of Eigen postures. These Eigen934

posture ranges were computed using:935

Eigen Posturemax = qsi ⊗ qµi (6)936

Eigen Posturemin = qsi
conj
⊗ qµi (7)937

where qsi is the i
th synergy, and qµi is the mean posture.938

The resulting Eigen postures for experiments 1 and 2 are939

depicted in Fig. 14 for two participants- one for whom the940

best similarity was observed (participant 3) and the other for941

whom the similarity was minimum (participant 4). Visually,942

minimal differences can be seen between the postures of943

experiments 1 and 2 for the participant whose synergies were944

similar. For the other participant, except for the flexion of a945

few of the joints in the third and fourth synergy, the other946

synergies visually looked to be mostly similar.947

V. CONCLUSION948

This paper presents the design, validation, and application949

of a novel BNO055 IMU-based full Hand Kinematic Mea-950

surement System (HKMS). The HKMS outputs orientation951

data from 16 IMU sensors in real-time at 100 Hz. In con-952

trast, many of the existing IMU based data gloves output953

data at lower sampling rates (e.g., 20 Hz [11], 50 Hz [17], 954

[18], [20], [23], [25], 60 Hz [21] etc.,) while some IMU 955

based data gloves have lesser number of IMU sensors [12], 956

[17]. Furthermore, the HKMS uses Wi-Fi for wireless data 957

transmission. Some of the IMU gloves use USB as the mode 958

of data transmission [11], [12], [16], [24]. This limits the 959

movement range of the glove to the length of the USB cable. 960

IMU gloves that use Bluetooth [17], [18], [20], [21], [22], 961

[23], [25] for wireless data transmission overcome this lim- 962

itation. The advantage of using Wi-Fi in the HKMS over 963

Bluetooth is that it provides superior range and data trans- 964

mission speeds. Another advantage of the HKMS is that the 965

number of BNO055 sensors can be increased from 16 to 966

20 without affecting the 100 Hz data output rate. These addi- 967

tional sensors can be placed on the wrist to model the palm 968

arch of the hand or on the arms to capture their movement 969

kinematics. Furthermore, studies that present an application 970

[19] of the developed IMU data glove in a laboratory or 971

clinical setup are scarce. In this paper, as an application of 972

the HKMS, we have collected hand kinematic data for an 973

experiment using the HKMS and performed synergy analysis 974

on the dataset. Finally, the HKMS can be reproduced by those 975

people who do not necessarily have an intimate knowledge 976

of signal processing techniques and complex filters which 977

are required for implementing the sensor fusion algorithm in 978

real-time. This is because the HKMS uses the BNO055 IMU 979

which implements its own sensor fusion algorithm (using an 980

on-board microcontroller as part of the IMU chip) to directly 981

output orientation data in the form of quaternions and Euler 982

angles. 983

A rigorous static and dynamic validation of the BNO055 984

sensor was done to determine whether it is accurate enough 985

to collect hand kinematic data in a clinical or laboratory 986

setting. For the dynamic validation, continuous back and 987

forth relative rotations between two BNO055s at different 988

speeds were investigated. IMU based data glove studies in 989

the literature that have done a similar dynamic validation are 990

scarce. It was found that the RMSE error was less than 4◦ 991

in all cases of static and dynamic validation except for the 992

dynamic validation case of pitch rotation at 240◦/s, where 993

the RMSE error was 7.5◦. Upon further analysis of this case, 994

it was found that error was not present during the first few 995

rotation cycles during any trial. As the movements were 996

made continuously during a trial, the error accumulated and 997

increased with time. This error can be attributed to the fact 998

that the BNO055s sensor fusion algorithm was designed for 999

tracking human movements where continuous high rotation 1000

speeds about a joint are unlikely. Furthermore, isolated high 1001

acceleration joint rotations will not result in an error as 1002

the error is observed only during continuous rotations after 1003

the first few rotation cycles. Keeping these points in mind, 1004

we conclude that the BNO055 can be used to collect hand 1005

kinematic data with reasonable accuracy. 1006

To test the HKMS as a whole, its performance was jux- 1007

taposed with the performance of the highly accurate EMTS. 1008

To do this, two identical experiments were conducted where 1009
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FIGURE 15. Simplified connections of a teensy microcontroller to four different types of custom PCB’s designed around the BNO055 chip. These four
types of PCB’s are named: 29_1, 28_1, 29_2 and 28_2. Two BNO055 chips are connected to 12C channel 1 (28_1 and 29_1) and the other two are
connected to 12C channel 2 (28_2 and 29_2) of the teensy. The address of the BNO055 chip is either set to 0×28 or 0×29, depending on the voltage
connected to its address pin (AD). SCL_1 and SDA_1 together form I2C channel 1. Similarly, SCL_2 and SDA_2 form I2C channel 2.

the participants performed hand postures and object grasps.1010

For one experiment, the EMTS was used to collect hand1011

kinematic data, whereas the HKMS was used for the other1012

experiment. The experiment protocol and participants were1013

the same in both the experiments and the validation was done1014

by comparing the two datasets. The average RMSE between1015

the static postures derived from the two data sets was found to1016

be 11◦. TheROMs using the two datasets were calculated, and1017

the errors were computed. AmaximumROMerror of 14◦ was1018

observed at one of the joints; all other errors were below this.1019

The RMSE of the static postures and ROM errors represent1020

the worst-case scenario, and actual errors can be expected to1021

be much lesser. This is due to the following facts: 1. There1022

was variability in the postures generated by the participants1023

for the two experiments. 2. Skin artifacts and tendon move-1024

ments affected the EMTS sensors and the BNO055 IMUs1025

differently, especially the reference sensor on the wrist. 3.1026

The rigid wires of the EMTS sensors restricted the ROM1027

of the hand. Finally, synergy analysis was done on the two1028

datasets, and it was demonstrated through the strength of1029

correlation coefficients between the synergies computed from1030

the two data sets that the HKMS could be successfully used1031

to conduct synergy-based studies.1032

The limitation with the approach of validating the HKMS1033

as a whole was that data from the HKMS and EMTS was1034

not collected simultaneously from the participants in a single1035

experiment. This was because the BNO055 IMU’s and the1036

EMTS microsensors could not be mounted together on the1037

finger phalanges due to lack of space on the phalanges.1038

Alternatively, the gold standard stereophotogrammetric sys-1039

tem can be used for validating the HKMS as a whole. This1040

is because the small markers used in such systems can be1041

mounted on top of the IMU sensors [16], [17]. Utility of such1042

systems for validation of IMU’s have also been demonstrated1043

in other applications like measurement of body COM [34].1044

This would enable simultaneous collection of data from both1045

the systems. Such a validation method is desired and can1046

be taken up as part of the future work. In conclusion, the1047

accuracy of two individual BNO055 sensors in calculating1048

joint angles yielded good results (both for the static and1049

dynamic conditions) and the validation of the HKMS as a1050

whole yielded promising results despite some limitations in 1051

the validation method. Keeping these points in mind, we are 1052

cautiously optimistic in suggesting the usage of the developed 1053

HKMS device in collecting hand kinematic data in research 1054

and clinical setups. 1055

APPENDIX I 1056

DESIGN FOR CONNECTING THE BNO055’s IN SERIES 1057

To connect the BNO055 sensors in series, four different 1058

‘‘types’’ of custom PCBs were designed. Before describing 1059

the design of these four types of PCBs, a brief description 1060

of the I2C communication protocol is presented. The I2C 1061

protocol is used for serial communication with the BNO055 1062

sensors. This protocol requires two lines for communication – 1063

SCL (Serial Clock) and SDA (Serial Data). The SCL and 1064

SDA lines together form a single I2C channel. Each I2C 1065

compatible device has an address using which it is communi- 1066

cated with. Hence, multiple I2C compatible devices can be 1067

connected on the same I2C channel and can be communi- 1068

cated with using their unique address. The BNO055 sensors 1069

can be assigned only two addresses for I2C communication: 1070

0×28 and 0×29 (hexadecimal number notation). The 1071

BNO055 chip contains an address pin using which one of the 1072

two addresses can be set for the chip. The address is set to 1073

0×29 or 0×28 if the address pin is connected to Vcc (3.3V) 1074

or GND (0V), respectively. 1075

Since only two unique addresses can be assigned to the 1076

BNO055, only two BNO055 sensors can be connected to 1077

a single I2C channel. Our requirement was to connect at 1078

most four sensors in series. To achieve this, two I2C chan- 1079

nels on each teensy were used, and four different types 1080

of custom PCB boards were designed around the BNO055 1081

chip. These boards were named as: 29_1, 28_1, 29_2 and 1082

28_2 (See Fig. 15). The naming convention is as follows: 1083

‘‘chip address_12C channel’’. For e.g., 28_1 means that the 1084

BNO055 chip’s address is 0×28, and its 12C pins are con- 1085

nected to the I2C channel 1 of the teensy. Each BNO055 1086

PCB has two 6 pin FFC connectors at its two ends (See 1087

Fig. 15) soldered at the bottom of the custom PCB. The 6 pins 1088

of the FFC connector are connected to Vcc, GND and the 1089

two I2C channels (2 pins per channel) of the teensy. The 1090
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pins on both the FFC connectors are connected to each other1091

(See dotted lines in Fig. 15). This will allow for two FFC1092

cables to be connected at its two ends hence enablingmultiple1093

sensors to be connected in series. The only difference in the1094

four PCB types are the connections from the FFC pins to1095

the SCL, SDA and AD (address) pins of the BNO055 chip.1096

For 29_1 and 28_1 PCBs, the connections to the BNO055s1097

I2C pins (SCL and SDA) are from I2C channel 1, and the1098

connections to the address pin are Vcc and GND, respec-1099

tively. However, for 29_2 and 28_2 PCBs, the connections1100

to the BNO055s I2C pins are from I2C channel 2, and the1101

connections given to the address pin are Vcc and GND,1102

respectively (See Fig. 15). Such an arrangement allows for1103

four BNO055s to be connected in series (two BNO055s each1104

on 12C channels 1 and 2) and eliminates the need to have indi-1105

vidual FFC cables and connectors connecting each BNO0551106

sensor to the Master-Slave PCB. This reduces the bulkiness1107

of the device. The remaining connections and components1108

on the four types of custom PCB (not discussed or shown1109

in this paper) are the same and are as per the latest BNO0551110

manual [32].1111

APPENDIX II1112

LOGARITHMIC MAPS AND EXPONENTIAL MAPS1113

All formats of joint angle representation like Rotation matrix,1114

Euler angles and quaternions are defined in the nonlinear1115

domain and linear operations like averaging, linear dimen-1116

sionality reduction etc., are not valid [31]. In cases where1117

linear operations are required, one could linearize the quater-1118

nions using logarithmic mapping (A1). A quaternion of the1119

form q = (qw, qv) can be linearized by taking a log of1120

the quaternion. Such a map, takes the quaternion from a 4D1121

hypersphere to a 3D plane defined at unity [30]. In equation1122

A1, since the quaternion is a unit quaternion, ln |q| = 0,1123

we obtain a 3-element tuple v=
[
vx , vy, vz

]
, which encodes1124

information of both the angle and axis.1125

ln q =
(
ln |q| ,

(
1
‖qv‖

arccos
qw
|q|

)
qv

)
(A1)1126

The new entity is a 3D vector, and all linear operations are1127

valid on this vector. After applying linear operations, the1128

vectors are mapped back to the hypersphere by taking an1129

exponent of the vector (equation A2). Such a map is called1130

as an exponential map.1131

q = ev =
[
cos

(
θ

2

)
, sin

(
θ

2

)
v
‖v‖

]
(A2)1132

where θ = ‖v‖1133

However, such transformations will incur a singularity1134

which causes a sudden jump in values if the angle between1135

any 2 vectors approaches 2π radians [30]. Since we deal1136

with only relative quaternions and relative angles between1137

any 2 phalanges are very small and never approaches 2π1138

radians, the conversion to and from the exponential map is1139

free of any singularity. The Matlab function ‘quatlog’ for1140

logarithmic maps and ‘quatexp’ for exponential maps were1141

utilized in this study.1142
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