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ABSTRACT Even though machine learning (ML) applications are not novel, they have gained popularity
partly due to the advance in computing processing. This study explores the adoption of ML methods in
marketing applications through a bibliographic review of the period 2008-2022. In this period, the adoption
of ML in marketing has grown significantly. This growth has been quite heterogeneous, varying from the use
of classical methods such as artificial neural networks to hybrid methods that combine different techniques to
improve results. Generally, maturity in the use of ML in marketing and increasing specialization in the type
of problems that are solved were observed. Strikingly, the types of ML methods used to solve marketing
problems vary wildly, including deep learning, supervised learning, reinforcement learning, unsupervised
learning, and hybrid methods. Finally, we found that the main marketing problems solved with machine
learning were related to consumer behavior, recommender systems, forecasting, marketing segmentation,
and text analysis—content analysis.

INDEX TERMS Machine learning, marketing, scientific publications, deep learning, supervised learning,

unsupervised learning.

I. INTRODUCTION

Due to improvements in information technology and the fast
growth of the Internet, the revolution of data in the last
decades has made businesses generate a substantial amount
of useful data; however, we still don’t know how to use it
[1], [2]. The data must be transformed into information and
knowledge that can be turned into tools to help organizations
improve their decision-making [3]. In this regard, machine
learning (ML) allows for generating useful results for com-
panies with less effort and time [4], [5], and it is increas-
ingly being used in marketing research. For example, ML is
employed in market segmentation, tourism, customer lifetime
value, loyalty and client segment, direct market, marketing
campaigns, and other applications [6]. ML techniques pro-
vide computers with the ability to understand and use data and
experiences like a human brain [7]. ML models are applied
to data due to their ability to resolve different problems, from
those that could be solved through conventional statistics and
management of scientific techniques to complex problems
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that require a bigger analysis; in this regard, ML allows
solving problems faster and better than conventional tech-
niques. Therefore, ML-based techniques are used to predict
the results of new data, predictions, and classifications or to
help people in the process of decision-making. Companies
need to learn more and more about their consumers, their
products, how to present them in the media, and how to plan
future activities efficiently, making use of their historical data
[8]. As we will see, ML has been widely used to discover
the most relevant needs of consumers and the relationship
they have with products and their attributes [9], [10], segment
satisfaction, recognition or recommendation, the selection of
anew product or reaction to advertising [11], [12], [13], [14].

Data can come from different sources both structured
and unstructured [15], [16], [17]. Sources include websites,
social media, and blogs (YouTube, Twitter Tweets, Google
Trends, visits to Wikipedia, reviews on IMDB, restaurants,
tourism, hotels, and Huffington Post news) to predict the
consumers’ demand, among others. Other sources include
data from business transactions such as e-commerce [18],
[19], retail scanners, as well as intentional sources of data
creation through user and internet usage (e.g., web cookies),
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location data (GSM, GPS, call center, among others), and
personal data generated from searches [20]. The expectation
is that ML would deliver a consistent and high-quality way to
develop techniques that contribute to rapid innovation where
organizations or entities can manage their boundaries [21].
Using ML, organizations can improve their market planning,
position themselves in new markets, and analyze the changing
market situation, consumer segmentation, retention market-
ing loyalty and their commitment to or renunciation of a
brand or product [22], [23]. All this enables organizations
to improve their services or products and influence decision-
making. However, these techniques also represent a chal-
lenge as their use extends and evolves from memory-based
algorithms models (user-oriented, item-oriented) to mod-
els of latent factors until reaching learning models such
as Item2Vec, Product2Vec, or Doc2Vec and finally, deep-
learning models [24], [25]. Accordingly, organizations must
know what model to use, how to use it, and the advantages or
disadvantages that it provides.

To obtain a clear idea of the most used techniques and
methods of ML in marketing, we searched for scientific
articles published between January 2000 and March 2022.
We employed keywords related to ML in top journals of the
marketing subject category within the Scopus and Journal
Citation Reports (JCR) databases. Thus, after a thorough
review, a total of 320 scientific articles were obtained, allow-
ing us to observe what marketing problems are solved and
the techniques used for this purpose. We did not only per-
form an overview of the methods and how ML influences
this industry; instead, our study goes deeper and focuses on
guiding the reader on how ML techniques could be applied to
solve real marketing problems. In this article, we presented
the advantages and disadvantages of the methods and which
marketing problems are more feasible to solve with specific
algorithms.

Il. METHODOLOGY

ML techniques have gradually become a common election in
marketing research [26]. To provide the reader with a guide
to the techniques used in the marketing scientific literature
and the marketing problems they can solve, we followed
several steps. Figure 1 summarizes the methodology we
followed. In step 1, we identified scientific journals whose
main focus was marketing by searching the ““Scimago Jour-
nal & Country Rank™ (SJR) database for journals in the
“marketing category”. Then, we filtered the search look-
ing for journals of the Q1 quality quartile (SJR). To ensure
that the journals were top-ranked, within the same SJR
database, we additionally filtered the journals indexed in
the Web of Science (WoS-JCR). JCR indexing is gener-
ally considered stricter than SJR, so this filter limits jour-
nals to being SJR QI and those belonging to JCR QlI,
JCR Q2, JCR Q3, or JCR Q4. The final selection with
this filter yielded 42 journals: J. of Marketing, J. of Market-
ing Research, Marketing Science, J. of Consumer Research,
J. of Supply Chain Management, J. of Public Administration
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Research and Theory, Public Administration Review, J. of the
Academy of Marketing Science, J. of Retailing, Interna-
tional J. of Research in Marketing, Quantitative Market-
ing and Economics, Academy of Management Perspectives,
J. of Consumer Psychology, J. of International Marketing,
J. of Interactive Marketing, Industrial Marketing Manage-
ment, Governance, J. of Advertising, American Review of
Public Administration, Sport Management Review, Market-
ing Theory, J. of Travel and Tourism Marketing, J. of World
Business, J. of Purchasing and Supply Management, Inter-
national Business Review, International Marketing Review,
International J. of Advertising, J. of Hospitality Marketing
and Management, Psychology and Marketing, J. of Des-
tination Marketing and Management, Business Horizons,
J. of Public Policy and Marketing, J. of Retailing and
Consumer Services, Electronic Commerce Research and
Applications, Consumption Markets and Culture, J. of Ser-
vices Marketing, Public Relations Review, J. of Marketing
Management, Administration and Society, J. of Advertising
Research, European J. of Marketing J. of Business Research,
Marketing Letters.

In step 2, we searched for individual articles published
by these journals in the Web of Science (WoS) database
between January 2000 and March 2022, which is a range of
almost 22 years. We tried using different keywords regarding
real applications of ML techniques. Our first search yielded
689 published articles, of which only a small number of
articles included what we were looking for. Finally, step 3,
we decided to search for a list of specific ML methods. The
final search is showed in the Figure 1. In the WoS database,
we used ““TS”, meaning search for topic terms in the follow-
ing fields: Title; Abstract; Author Keywords; Keywords Plus.
With this, we obtained 320 journal articles.

In step 4, we reviewed one by one each of the 320 articles
and then performed a filter that would allow us to reach a
final number of articles. These criteria were the following:
the use of ML should be the main technique of the article,
the ML techniques should have been declared by the authors
(papers not showing a learning process were excluded), and
the article must provide enough information concerning the
technique used. Furthermore, the articles must define the
technique as ML and show the application of a case with
real data from verified sources (not experimental or simulated
examples [27], [28]). Some articles that used semi-supervised
learning but did not show a real application were rejected
[29], [30], [31]. Our database ignores articles that are not
in the area of marketing [32] (e.g., financial credit scores).
Ordinary regression (OLS), hierarchical regression, and clas-
sic grouping (clustering) were not included if they did not
exhibit any learning technique. Articles that only exhibited
the use of software but did not provide intermediate results
were not included either [33], [34]. Articles that presented
software but did not exhibit the parameters employed and the
reasoning behind its use were not included [35]. Finally, a
total of 125 articles were included in this review. In step 35,
we searched within these 125 articles for the main groups of
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Step 1:
Www.scimagojr.com, in
Journal ranking,
subject category=Marketing —| Result: 42 journals
Restricted to SIR Q1
&
‘only WoS journal'.

I

%’;OLE cience.com TS=Topic; SO=Publication Titles
Advanced Sez;rch || TS searches for topic terms in the following fields within a
record. Title; Abstract; Author Keywords; Keywords Plus®

SO= 42 journals ) :
TS=Machine Learning 2000-2022 March. Result: 689 articles

l List of the most used 'techniques' of ML in Marketing based
on the review of the 689 articles.
Step 3: Primary review of TS =("machine learning” or “neural network” or genetic
the 689 articles filtering by [ algorithm” or “random forest” or “decision tree” or k-
most used ML techniques means” or “fuzzy c-means” or “support vector” or "lasso” or
“sarsa” or “deep learning” )
l Result: 320 articles

Step 4: Deep review of the
320 articles filtered by the
list of most used ML
techniques

l

Step 5: Selection of more For the 125 articles, the main types of marketing problems
relevant Marketing Problem [—{ they solved were determined.
solved using ML Result: five types of problems

| | Articles must meet the four established criteria.
Result: 125 articles

FIGURE 1. Methodology steps followed in this study.

marketing problems solved with ML, finally determining the
following five: consumer behavior (CB), forecasting (FC),
market segmentation (MS), recommender system (RS), and
text and video or content analysis (TX).

Ill. BRIEF SUMMARY OF THE ARTICLES STUDIED
This section presents a brief descriptive summary of some
characteristics of the reviewed articles, including the number
of articles published per year, their citations, their quality
quartile, the journals in which they were published, the type
of learning they use, and the type of marketing problems they
solve. Figure 2 demonstrates an increase in the number of
published articles using ML in marketing recently (data for
2022 is until March). Furthermore, between 2000 and 2007,
only six articles met our quality criteria (there were no pub-
lications that met the criteria in the years 2001, 2003, 2005,
2006 and 2007), and for this reason, some of the next figures
report only information starting from the year 2008. On the
other hand, as expected, older articles tended to have a higher
number of citations on average, with some fluctuations.
Regarding the distribution of articles each year by JCR-
quartile, Figure 3 shows that there are no articles classified as
Q4 JCR that meet our criteria and that publications in high-
impact Q1 JCR journals tend to exhibit a progressive increase
over the years. Q2 JCR journals did not exhibit a significant
change, except in 2019. Additionally, the presence of Q3
WoS-JCR journals is almost marginal in all the years, and
this is primarily because we tried to maintain the quality of
the articles published, discarding journals of lower quartiles.
Figure 4 shows the annual distribution of the top nine
journals that published articles that met the search criteria.
In total, 22 journals exist in our database. As illustrated in
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FIGURE 2. Number of articles published per year (line) and the average
number of citations in each article (bars) (January 2000 to March 2022).
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FIGURE 3. Number of articles applying ML in marketing published by JCR
quartile every year (2008 to March 2022).

Figure 4, these journals have published at least four arti-
cles applying ML in marketing. The Electronic Commerce
Research and Applications is the journal with the highest
number of publications over the years with 24 articles pub-
lished, followed by the Journal of Business Research and the
Journal of Retailing and Consumer Services with 21. The
Journal of Marketing Science exceeded 10 publications in all
years, and the others on the list have between four and eight
publications in that period. Other journals that do not appear
in this list have published two articles in these years (three
journals) and one article (11 journals).

IV. MACHINE-LEARNING TECHNIQUES USED IN
MARKETING RESEARCH

Regarding the main ML techniques used in our review of
literature on marketing, it is difficult to achieve a systematic
and organized classification widely accepted. Figure 5 shows
a simplified organization of ML types of learning and ML
techniques, indicating that ML can be broadly categorized
into two classes: supervised and unsupervised learning [36].
Supervised learning is used with labeled data in training
and learning. Unsupervised learning is a technique to find
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FIGURE 5. Classification of the most used types of learning and
techniques in marketing research.

some pattern or structure of the data by itself where no
labels are given. In the same way, some techniques do not
belong to any of the categories due to their features that
are not supervised or unsupervised, including deep learning,
reinforcement learning, and hybrid methods.

Figure 6 shows the percentage distribution of articles pub-
lished in the marketing area over time. Here, deep learning
is present in almost all years. Similarly, in recent years,
several techniques have been used simultaneously (multi-
technique) for the purpose of comparison to select the one
that provides the best results. Hybrid learning combining
different techniques has been increasingly applied recently
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FIGURE 6. Distribution of the number of articles according to the type of
ML (2008 to March 2022).

due to the higher speed of computational capability. It is also
noteworthy that supervised and unsupervised learning has
been widely used in recent years, but not as other techniques.

Regarding the specific techniques used in the marketing
articles, within deep learning, as mentioned earlier, Figure 7a
shows that the most used technique is the artificial neural net-
work (ANN), followed by the convolutional neural network
(CNN) and other techniques that change the way neurons are
interconnected or the adaptations of the original model. For
classification techniques (Figure 7b), the decision tree (DT) is
the most used technique, and this could be due to its simplicity
in the implementation and compression of the results. Addi-
tionally, other variations of DT are used, including gradient
boosting (GB) and random forest (RF).

Support vector machine (SVM) or naive Bayes (NB) is
almost equally used. Furthermore, this review ascertained
that regression models (Figure 7c) were rarely used; however,
eXtreme Gradient Boosting (XGB) is the most used. In the
case of unsupervised learning techniques, the ones found
are clustering (Figure 7d), in which K-means is frequently
used for market segmentation and latent Dirichlet allocation
(LDA) for text processing. In hybrid techniques (Figure 7e),
the most used in combination with other ways to improve
prediction are deep learning techniques such as ANN and
CNN, followed by SVM. Some published articles sought to
compare some techniques based on their performance (Fig-
ure 7f); in this case, the most compared technique is DT
and RF, followed by SVM. Numerous techniques are used
in ML; however, we merely provided a brief overview of the
most common ones implemented in marketing applications,
as detailed in this review and Figure 7. The algorithms used
by the papers include individual algorithms or a combination
of them [37].

In the following sections, we will comment on the most
used ML techniques in marketing, organizing them by
type of learning according to Figure 5. We will be refer-
encing the articles that have used each technique as we
go along.

VOLUME 10, 2022
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Legend: LDA: Latent Dirichlet allocation
ANN: Artificial neural network NHC: Non-hierarchical clustering, X-means,
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CNN: Convolutional neural network DSS: Decision support system
LSTM: Long short-term memory recurrent neural GA: Genetic algorithm
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network, and autocontractive map neural network.

FIGURE 7. ML techniques percentage share use in solving marketing
problems.

A. DEEP LEARNING

Deep learning algorithms are a group of powerful techniques
that work through easily obtainable software; in particular,
these models were developed as a generalization of math-
ematical models. It works with a biological brain that is
composed of several interconnected neurons, governed by
algorithms that allow them to learn from mistakes, recognize
patterns, and operate with incomplete information [38]. Some
authors use the restricted Boltzmann machine (RBM) to learn
co-occurrence patterns of items to elaborate on the latent
association of items, and then they use a backpropagation
neural network (BPNN) to predict those items belonging to an
interest search [39], [40]. Other applications are prominent in
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content analysis to solve natural language processing (NPL)
tasks and identify information from words in a review [41],
[42], [43], [44], [45], news events [46], or hierarchical atten-
tion networks (HAN) [47]. CNN is also applied as a con-
tent generator [48], and it is also used for text and image
detection in social networks, brands, and retail [49], [50],
[51], [52]. Moreover, further applications of deep learning
emerge in decision-making processes such as buying, which
uses a multilayer perceptron neural network (MPL-NN) [53],
or ranking products with hierarchical deep learning [47], [54].
Furthermore, the ANN is one of the most used deep learning
algorithms. ANNs can be classified into two dimensions:
supervised or unsupervised; and can be either recursive or
non-recursive [11]. ANN results depend on its architecture.
Usually, ANNs use a standard backpropagation algorithm
to train the network. However, the recurrent neural network
(RNN) is a kind of ANN that is adapted to model sequen-
tial tasks [44], [55]. Moreover, other models or techniques
implement a different kind of backpropagation; for instance,
the Elman neural network is a semi-recursive ANN that
uses the back-propagation-through time learning algorithm
to find patterns in value sequences [56], and the nonlinear
auto-regressive with exogenous ANN (NARX-ANN) is an
important class of discrete-time nonlinear systems. Addition-
ally, large-scale memory storage and retrieval (LAMSTAR)
combines a self-organization map (SOM) [57] and statistical
decision tools [58], and long short-term memory (LSTM) is
a variant of RNNs that aims to process long-term time series
and solve the problem of the vanishing gradient in an RNN
[25], [55], [59]. On another note, wavelet neural networks are
feedforward ANNs with one hidden layer, radial wavelets as
activation functions in the hidden nodes (HUs), and a linear
output layer [60].

B. SUPERVISED LEARNING

Classification techniques are usually computer programs that
learn from the input data given and use this training data to
learn to classify by observing patterns in this data. On the
other hand, supervised learning for regression is a set of
algorithms used to predict continuous values; for example,
randomized logistic regression (RLR) works by splitting
the training data and running a regression on each [61],
[62]. Some examples of supervised learning in marketing
include strategies to communicate decisions, choices [63],
satisfaction [64] and product development [65], churn models
[66], [67], classification of online articles and reviews [68],
[69], demand prediction, or measurement of influencer index.
In ML there are some algorithms that can be used for market-
ing purposes, including the following:

1) SUPPORT VECTOR MACHINE (SVM)

SVM is a classification method that employs the mapping
of the input vector onto a high-dimensional feature space
and then, constructs a linear model that implements nonlin-
ear class boundaries in the original space [70]. The data is
classified through a special kind of linear model, namely,
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the optimal hyperplane, that maximizes the distance between
observations that belong to each category [71]. Support vector
regression (SVR) is also a popular SVM where the hyper-
plane is the actual nonlinear function that should be esti-
mated, and the sign of the residuals represents the two classes
[72]. The capacity of the system is controlled by parameters
that do not depend on the dimensionality of feature space
[73], [74]. Mostly, this technique is used to forecast customer
retention [75], online customer reviews [68], and prices in
supply chains [76].

2) NAIVE BAYES (NB)

Naive Bayes is based on Bayes’ theorem models that assign
class labels to problem instances, represented as vectors of
feature values, where the class labels are drawn from some
finite set. It offers “a competitive classification performance
for text categorization compared with other data-driven clas-
sification methods” [64]. This technique is used to measure
customer satisfaction [64] or predict customer churn [66].

3) K-NEAREST NEIGHBOR (KNN)

KNN is a non-parametric method used for classification and
regression. The algorithm requires the specification of a sim-
ilarity function that produces a similar score between pairs,
a response variable of interest, and the number of nearest
neighbors (k’ nearest neighbors) [73], [77]. The output for
classification is to classify an object by a plurality vote of its
neighbors; in other words, the object is assigned to the class
of that single nearest neighbor. For regression, the output
is the average of the values of the k’ nearest neighbors of
the object. KNN for regression is a popular algorithm that
allows the prediction of the numerical target based on a
similarity measure, which is often any distance function [73].
This technique is used in hybrid techniques or to compare
performance, especially in predicting the influence on social
networks [73], differences in the evaluation of products [77],
and brand personality [78], among others.

4) DECISION TREE (DT)

DT is a method that generates rules for data classification
using a representation of a tree-like structure [79], and regres-
sion trees respond to their predictors by recursive binary splits
[80]. The output is made by a decision node with two or
more branches and a leaf node. This technique is suitable for
describing sequences of interrelated decisions or predicting
future data trends, and it can classify specific entities into
specific classes based on their features. Some variations of
DT include the conditional inference tree (Ctree), which is
a non-parametric class of regression trees embedding tree-
structured regression models into rule-based procedures [81],
and decision trees with cost-sensitive learning methods have
been utilized by academics to solve the problem of class
imbalance in data, especially in churn [79]. This technique
has been used to predict the value of reviews [69], [82], the
choice of a brand based on social networks [81], and sales
[83], [84]. Notably, it is one of the most used supervised
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techniques to be included in recommender systems [63], [85],
[86], [87], [33].

5) LASSO

Lasso is a linear model that estimates sparse coefficients.
It does both parameter shrinkage and variable selection auto-
matically [73].

6) ENSEMBLE METHODS

Ensemble methods are algorithms that construct a set of
classifiers and then classify new data points by taking a
(weighted) vote of their predictions [89]. The fundamental
principle of ensemble learning is to divide a large dataset into
small data chunks [68] (bagging models) or combine multiple
learning algorithms to obtain better performance (boosting
models) [80]. Random forest is the most commonly used
algorithm within bagging models, and it uses a multitude of
decision trees or statistical data structures during training to
best divide and average the labels to create a more balanced
prediction [90]; additionally, it combines several base classi-
fiers into a robust classifier by increasing the overall accuracy
of the aggregated model [79].

The training set is randomly generated. RF is implemented
to reduce the correlation between the random distributions
of the input set and improve the bagging [91], [92]. Some
techniques can improve the RF algorithm; for instance,
non-parametric RF is more robust to outliers compared to
other bagging or boosting algorithms [92]. Boosting models
improve accuracy based on the idea that it is easier to find an
average of many approximate rules of the thumb than to find
a single highly accurate prediction rule [80]. Boosting models
include gradient boosting (GB) that builds a set of weak learn-
ings (commonly used DT) to produce suitable learning by
correcting prior learning [74]. GB adjusts the predictor to the
residual errors made by the previous learning, i.e., increases
the gradient to allow optimization of an arbitrary loss function
[92]. XGBoost (XGB) is a model used for regression or
classification commonly based on decision trees. XGB is an
efficient model for making decisions from a large dataset, and
it is obtained by recursively partitioning the data space and
fitting the prediction model at each partition. The individual
decisions are entirely inaccurate but are better than those
generated randomly [91]. RF combines several decision trees
at the end of the process, whereas gradient boosting combines
decision trees at the beginning of the process [93].

C. REINFORCEMENT LEARNING

Reinforcement learning corresponds to supervised algo-
rithms in which an agent interacts with the environment
and learns to increase the maximum reward [94]. These
algorithms are commonly used as a recommender system
for configuring campaigns, digital advertising, and revenue,
promoting different product categories, and retailing, among
others. The most used method is genetic algorithms (GA).
This method is based on the mechanics of natural evolution
and natural genetics with chromosomes whose values are the
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outcome of Boolean functions as a data structure. They do
not require a starting value. GA learns and tries to maximize
the accumulated reward using a survival-of-the-fittest scheme
with a random organized search to find the best solution to a
problem [95].

D. UNSUPERVISED LEARNING

Unsupervised learning methods are algorithms that identify
patterns in datasets containing data points that are neither
classified nor labeled. Unsupervised learning involves ana-
lyzing data without trying to predict anything [96]. Clustering
is a well-known technique for finding groups in data [97].
There are two kinds of clustering: hierarchical clustering
techniques, and nonhierarchical techniques, more suitable for
segmenting large databases [98]. Unsupervised learning is
commonly used for market segmentation and text analysis
(TA). In market segmentation, it is used for retail segmen-
tation [98], market structuring [99], buyers of certain brands
[100], e-commerce markets [101], and service opportunities
[102]. On the other hand, in TA, it seeks to analyze news,
reviews, and social networks to measure sentiment or veracity
[97], [103], [104], [105], [106], [107].

1) K-MEANS

K-means is one of the most popular clustering algorithms
achieves results using highly efficient approaches [101].
K-means requires a number of seeds that have the same
dimension as the input vector and is equal to the number of
clusters to be create. The learning process adapts the seeds to
conform approximately to the actual distribution vector and
stop when the difference between the new seeds and the old
seeds is smaller than a threshold [102].

2) FUZZY FRAMEWORK (FL)

Fuzzy models involve inference blocks that apply relevant
fuzzy rules for depicting the actual importance level of trust
factors [108]. These rules are also introduced to fuzzy seman-
tic DT-based methods to improve the learning and predic-
tion performance [109]. Fuzzy c-means is another technique
that is used to estimate the probability of each data point
belonging to each cluster. This technique allows data points
to be members of multiple clusters rather than forcing them
to belong to one single cluster [97]. The nature of fuzzy
models is similar to the meaning of “divide and conquer™.
The backgrounds of rules (if condition else action) divide the
input space into a number of local fuzzy regions, while the
consequences describe the behavior within a region through
its constituents. The components of the consequences result
in different kinds of mathematical fuzzy models, but their
backgrounds are essentially the same [60].

3) LATENT DIRICHLET ALLOCATION (LDA)

LDA is a simple and efficient learning model that is used to
recover the parameters for high-dimensional data into a wide
class of topics. K is the number of latent factors (topics) found
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in a more dimensional observation. Typically, it is used to
process natural language or text characteristics [103].

E. HYBRID METHODS

Several published articles used different models to improve
the algorithm’s performance. They integrated neural net-
works with a new architectural design for feedforward ANNs
used in multilevel output choice problems. The ANN is
trained with a genetic algorithm [110], such as fuzzy logic
or other techniques as opposed to the standard backprop-
agation training method. Other methods include ensemble
learning models to measure different features in marketing
segmentation and influencer index while others aimed to get
better accuracy. Additionally, this study demonstrated that
some articles optimized parameter procedures that play an
important role in the predictive models [111].

V. MAIN MARKETING PROBLEMS SOLVED WITH
MACHINE LEARNING

Figure 8 shows the types of learning used to solve different
marketing problems. In this figure, we notice that deep learn-
ing is the most prevalent method across the published articles
and is also most employed to solve marketing problems.

This may be because deep learning techniques are versatile
and employ different ways of solving complex problems.
Unsupervised techniques are primarily used to solve mar-
ket segmentation problems and are not used for forecasting.
Reinforcement learning is only used in recommender sys-
tems. Hybrid techniques can be seen with a greater prepon-
derance in forecasting, requiring a more accurate prediction.
Supervised techniques can be used to solve any marketing
problem. Overall, the important thing to know is the nature
of the data available.

In terms of the specific marketing problems solved in the
published articles, Figure 9 shows that issue of recommender
systems is the most prevalent. Consumer behavior, forecast-
ing, and market segmentation are also important. Notably,
text and video analysis has become more popular recently,
and this is also related to improvements in speed and the
simplicity in the use of ML techniques that allow this process
to be carried out, including deep learning and unsupervised
learning. The following sections will detail each one of these
applications.

A. CONSUMER BEHAVIOR

Consumer behavior refers to the study of how clients, both
individuals and organizations, meet their needs and desires
to choose, purchase, use and get rid of goods, ideas, and
services. In other words, it refers to the decision taken by
clients during the purchasing process and the factors that
can influence this decision [112], [113]. These factors can
be cultural, social, and psychological, among others. Within
the applications of consumer behavior, we can stress char-
acterization of clients, customer retention, trend prediction,
competition, etc.
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The articles correlated purchases in online shopping web-
sites with the clients’ trust based on factors of security
and design [108], number of navigation clicks for daily
offers [114], or usefulness of reviews [82]. Additionally,
the reviewed articles also correlated purchases with the
stores’ facades featured on the Internet [115] and investigated
competitive advantages by identifying dynamic problems of
tourist destinations, including stakeholders (suppliers, cus-
tomers, competitors) [116], personalities of individuals, and
their travel intentions both during and after the pandemic
[117]. In the same way, the articles also examined children’s
classification (rating) behavior toward certain trademarks
based on emotions and loyalty [118], the credibility in the
classification of most popular users on consumer reviews
platforms such as Yelp [119], the prediction of customer
responses to campaigns [120], and the future behaviors of
a panel of customers [55]. Furthermore, the price sensitiv-
ities and the importance of consumer behavior in super-
markets [121] or purchases of ecological buildings [122]
have been studied. Studies also investigated the adoption
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of payment according to the attributes of products coin-
cidences in shopping baskets [123] and the use of peer-
to-peer mobile payment systems and key backgrounds of
clients’ intention [124]. It is possible to extract a hierar-
chy of product attributes based on contextual information
of how attributes are expressed in consumer reviews [12].
In the healthcare/health-related products industry, consumer
satisfaction was studied through posts on a review website
[125]. Additionally, some studies analyzed the impact of film
contracts in movie production and profitability of members of
the channel [126], the consumer’s perception of the attributes
of certain brands in online posts through visual listening
[49], and the customers’ repurchasing behavior of same-
brand smartphones [127]. Some studies estimated the possi-
bility that a consumer performing some actions, such as use
airline services again [128] or willingness to share personal
information according to their interests or social interactions
[84]. Some studies focused on limited player telemetry data to
observe churn from a gamified app [67]. The influence of the
increase in online movie searches and their revenues [129].
Other studies use other models such as the recency, frequency,
and monetary (RFM) model to observe behavior patterns
[130]. They even use data from unsolicited communications
from consumers on Twitter related to shopping malls [131]
or discover how emotional robots can influence the affective
feelings of potential consumers on Instagram [93].

B. RECOMMENDER SYSTEMS

Recommender systems are software tools that can provide
suggestions and/or recommendations regarding products
and/or services to final clients [132], [133]. These systems
seek to replace the old word-of-mouth method with an autom-
atized process [134]. Their objective in marketing is to gen-
erate more sales, diversify the products sold, increase the
satisfaction and loyalty of clients, and provide a better under-
standing of clients’ needs. In this regard, the applications
include training, personalized content, e-commerce, and ser-
vices [135]. The analysis performed in this review ascertained
that recommender systems are employed in market selection
[136] or orientation [137], in models aiming to overcome
difficulties in processing information of potential providers
during the early stages of the selection process [138], or in
the process of diagnosing problems in independent clients
[86]. Recommender systems are used in distribution sys-
tems of vehicles in auctions [139], the probability of mak-
ing a purchase and the amount in different products [140],
classification based on reviews [47], or the use of choice
experiments [63].

In the same way, a study focused on customers, studying
their loyalty and asset management in hotels [85], the incon-
sistencies in their opinions in a cognitive purchase decision-
making process [53], the classification of their elements
directly for predictive recommendation [39], and their experi-
ences using chatbots [23]. Publicity and campaigns have also
used ML techniques to combine means of publicity (televi-
sion and online) [72], estimate when, what, and how much
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to spend on publicity to increase profits [141], efficiently
evaluate online publicity [88], and optimize micro-focalized
techniques of campaigns [142]. Other applications of recom-
mender systems are found in brand management, associated
with personality, identification of associations and potential
collaborations [143], or in the investigation of the moderating
effects of consumer knowledge (expertise) in a beer rec-
ommendation [144]. Some authors focused on social media
reviews for food recommendations in vegetarian restaurants
[145] or recommendations based on sentiment analysis of
data from TripAdvisor [146].

C. FORECASTING

Marketing forecasting is an analysis that projects the trends,
features, and future numbers on its objective market. This
allows having, in advance, these economic variables are
investigated in market research using marketing forecasting
[147]. The forecasting methods range from simple mobile
averages to sophisticated models of supply-product [148],
[149]. The most used methods for forecasting in marketing
are the ones based on probabilistic techniques [92]. However,
these techniques have evolved with the new availability of
several data (Big Data), which has generated a new interest
in these techniques [150].

Most of predictions presented in the articles are related to
the prediction of market prices [76], forecasting of demand or
purchase patterns in business segments [40], [60], [74], [151],
classification or prices of products [65], [152], or difference
in prices in auctions [58], [153]. Furthermore, forecasting
models are also employed to identify the probabilities of
abandonment, retention, or cancellation of clients and their
attributes [66], [75], [79], [111] and the customer lifetime
value for the banking sector [154]. Forecasting models are
also used to draw predictions regarding the success of bank
telemarketing sales of time deposits [83], the volume of call
center arrivals’ calls [56], [92] or sales volume [59]. Studies
also carried out comparisons and predictions regarding the
influence of social networks on social media promoted posts
detection [73], [91], determinants of trust in s-commerce
based on social presence and social support [155], the dis-
crepancy between the evaluation of online and live products
[77]. Other studies focused on predicting satisfaction and
brand recommendation as well as purchase intention [156]
and how natural-look campaigns are associated with the
increase in artificial beauty practices [157].

D. MARKETING SEGMENTATION

Marketing segmentation is one of the main strategies in the
field of marketing [158]. Its objective is to identify and
delimit market segments or ‘“groups of buyers” that will
then transform into objects of the company’s marketing plans
[158], [159]. The advantage of marketing management is
that this technique divides the total demand into relatively
homogeneous segments, which are identified for some com-
mon characteristics. These features are relevant to explaining
and predicting the consumers’ responses—in a determined
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segment—to the marketing stimulus [158], [159], [160]. The
segmentation can be made according to geographic, behav-
ioral, psychological, and demographic criteria [161].

In this field, the articles analyzed presented the market
preferences according to reviews of hotels, tourism, and
hospitality sectors [57], [162], stereotypes [109], number of
sales of smartphones according to types of sellers [137],
market structures or segments according to products or ser-
vices and profits [99], [100], [102], [163], and how to carry
out promotions and the effect on sales [80]. Other authors
segmented customers according to retailer-brand and channel
usage [164], brand equity and engagement in brand-related
social media behavior [81], or consumer sentiments on social
media [165]. Furthermore, some studies looked for patterns
of interest in trade based on clicks [101], including segments
that vary in their donation intentions, political attitudes, and
preferred types of charities [166]. Other works predicted
the characteristics and segments of companies that adopt
the use of workforce-based robotics [167] or determined the
differences in business model attributes of FinTech [168].
Additionally, some works segmented consumers based on
their psychological profiles [169].

E. TEXT ANALYSIS - CONTENT ANALYSIS

TA, or content analysis, aims to extract legible information
through non-structured text machines to allow approaches
based on data for content management. To surpass the ambi-
guity of human language and achieve high precision for a
specific domain, TA requires the development of mining
channels of personalized texts [170], [171]. The analysis of
content allows researchers to examine great volumes of data
with relative ease in a systematic manner [172].

The analysis of text in marketing, according to the bibli-
ographic review, is based on the identification of the influ-
ence of word-of-mouth reviewers [173], chain operation in
the hospitality industry [42], or movie spoilers [106]; addi-
tionally, TA 1is also based on the usefulness and classifica-
tion of the attributes of reviews, opinions, or comments of
online consumers or Twitter users their consumption trends,
satisfaction, or patterns [41], [43], [64], [68], [174], and
YouTube review videos [175]. Furthermore, it also includes
analysis of news [46], review of publicity [69], and genera-
tion, classification, and auto-tagging of content or published
text [90], [103], [176]; additionally, it helps determine the
clients’ needs based on user-generated content (UGC) or
Instagram messages [48], [51]. Recently, an analysis of feel-
ings has been carried out with different purposes, capturing
the feelings, attitudes, and emotions of Indian consumers
towards electric vehicles [177]. It included messages from
Twitter users, obtaining a deeper understanding of the role
of language in consumer behavior [61], and creating positive
emotions for upset customers [44]. Additionally, the analysis
investigated how negative feelings influence the market for
firms [105] and the use and adoption of digital technologies
and platforms for teleworking in the post-pandemic era [107].
In other social networks, the social influence and facilitating
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conditions directly impact the users’ sentiments toward intel-
ligent personal assistants (IPAs) [178], and studies also inves-
tigated estimates of love and loyalty for brands in Facebook
photos [179] or prominent figures [78]. Moreover, other stud-
ies examined brand images on social networks (brand selfies)
and user responses [52], how the media evaluates public
agencies, particularly in low-trust contexts [104], and how
narratives affect the effectiveness of influencers in sponsor-
ship and likes and comments [180]. Components of effective
communication in a digital interaction can be understood by
asking the following: to what extent do what a salesperson
says (auditory cues) and how he or she says it (visual cues)
affect his or her effectiveness in digital sales interactions
(DSIs) [181]. In this regard, some works provide recommen-
dations for project creators and crowdfunding platforms [45].

VIi. SUMMARY OF THE MARKETING PROBLEMS AND
THE TECHNIQUES USED TO SOLVE

In this section, in Table 1, we highlight the marketing prob-
lems that are solved using ML and the most used techniques
for each. Moreover, Table 1 provides a summary of the advan-
tages and disadvantages of each technique. This table can
serve as a basic guide for the use of ML techniques to solve
certain marketing problems.

Regarding the evaluation of the performance of the tech-
niques, the findings of this review study demonstrated that the
statistical parameters differ between techniques. In the case
of the regressions, the coefficient of determination (R2), root
mean square error (RMSE), mean absolute error (MAE), and
mean absolute percentage error (MAPE) [145] are used. Met-
rics such as precision, recall, F1-score, accuracy [42], [128],
and confusion matrix are employed to evaluate classification
performance.

In the articles that we reviewed, the input data came from
social networks [78], [141], such as Twitter [107], [165],
Instagram [51], [182], Facebook [73], [179], online reviews
[47], [156], [173], and videos or comments on YouTube [90],
[175]. To analyze review opinions, the following sources
are considered: film classification data [106], [126], hotel
websites [42], [57], [64], [85], [103], and Yelp [82], [119],
[183]. Datasets or product databases such as telephone num-
bers [137], matching products in the shopping cart [123],
daily sales [114], and online purchases [108], among other
types of data entries, are also used. The results depended
on the approach that the authors adopted in sentiment anal-
ysis, investigating the feelings and emotions found in the
data [184]. In classification or regression, a rating of the best-
selling products or those that would work best for the market,
sales, and demands are obtained. In market segmentation, the
segments of customers, consumers, suppliers, services, and
others are usually obtained. The variety of output depends on
the marketing problem to be solved. Now, based on the arti-
cles analyzed, it was observed that most of the articles pub-
lished after 2018 presented the technique’s accuracy, while
other articles only discussed the output of the technique used.
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TABLE 1. Marketing problems and the techniques used to solve them
from the literature: summary of advantages and disadvantages.

Marketing
CB|RS| F IMS|TX]

Technique Advantages Limitations

The method is sensitive to noise
when observations have
interpretability and comprehensibility
problems, especially with non-
convex optimization problems.

High precision, therefore, the
technique is more likely to correctly
classify observations that have
higher weights.

v v' | Boosting

Very difficult to interpret and
understand. It is difficult to generalize
to data outside the range, and is
sensitive to the presence of a linear
relationship between variables.

It has the possibility of using a non-
Random |linear system and improved

Forest |accuracy, compared to individual
decision trees.

<

The optimal value for 'k' is the most
critical aspect. It is sensible to noisy
and missing data. It does not work
well with high dimensionality, it
already complicates the calculation

It has good accuracy, is easy to
v v/ | K-NN |implement, and does not need a
training period.

of the distances for each dimension.

It is based on the theory of
statistical learning. Minimize the

It is a black box. It is difficult t
upper limit efficiently by handling is a black box. Itis di ©

interpret and inference from variable

JAolv 1y SVM, a.rbn:FarAy non]mearme.s. Excellent weights and. individual impact.
SVR [predictive power. It is casy to Choosing a "e0od" kernel function is
model nonlinear dependencies. It smga g0
. not easy.
'works well even with unstructured
and semi-structured data.
It generates decision values of . . .
ater sensitivity. It is a simpk It often requires more time to train
Decision |&FC4 " 51 - (LS aSIPE e model. Tt is inadequate to predict
vIv v interpretation technique for . X
Tree S R L .. |continuous values, and is susceptible
decision making, which is why it is .
. . to small changes in the data.
popular in business.
It provides multiple optimal It can be difficult to design the object
solutions (parallelism). It requires  |function and to obtain the correct
v Genetic |little information. It can be representation and operators. The

algorithms [optimized with discrete finctions, |implementation of the algorithm is still
multi-objective problems and an art. Genetic algorithms don't scale
continuous finctions. well with complexity.

It allows you to cast options,
change utility functions, compensate |Only linear discriminant functions can

v v g:;;: for class imbalance, and combine  |be learned. It provides a robust f
models. Optimal for a high degree |anointing to estimate probabilities.
of dependencies between variables.

[t provides au.ton.latlc defecuon cff Variables must be distributed
v K-means non-overlapping mt.eractlo.ns ftis normally, and all groups must have
more robust than hierarchical L . .
equal or similar variance-covariance.
methods.
Success depends on the complexity
F It has high ability to predict and number of fuzzy rules provided,
v v|v LE;Z.Z complicated problems, using a and also on the type of membership
small simple number of rules. functions, background variables, and
regressors.
It is easy to implement. Itis a LDA is criticized for the assumption
/| 1pa probabilistic model that can be of interchangeability of documents. It

applied to different topics. It's
pretty intuitive.

is inappropriate when short text is
available.

It requires a pre-processing of the
data, and the determination of the
appropriate structure of the network.
The final network is not properly
understood and interpreted. It
requires a lot of data for acceptable
training.

It has the ability to work with

Deep |incomplete knowledge. It has high
Learning |fault tolerance and high parallel
processing capacity.

We identified the best algorithms used based on the articles
that compared techniques (multi-technique). For classifica-
tion, the use of DT, NB, RF, KNN, SVM, and XGB were
compared in [128], and the findings demonstrated that XGB
offered the best accuracy followed by RF in all the tests
performed.

Another study compared the performance of ANN and RF
[67] with input data from video games, and in the three tests
carried out for both classification and regression, the results
were similar with a similar time window, but when deciding
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and adjusting the RF, the prediction improved. In the case of
text analysis [125] with data from healthcare/health-product
e-commerce firms, linear regression (LR), XGB, RF, and DT
were used. The study concluded that in terms of the RMSE,
XGB and RF displayed the best predictive power, although
LR was almost the same. With input data from reviews to
measure the help they provide [82], DT, RF, GB, bagging
gradient-boosted trees (B-GB), and ANN were compared,
and the regression results reported that B-GB had the best
performance with an increasing volume of data. In the case
of classification, the B-GB model performed classification
the best with an accuracy of over 0.9, while DT displayed
the worst performance is DT. One of the published articles
conducted a comparison for sentimental analysis [177], and
it concluded that CNN was the best model to find sentiment
polarity in Electric Vehicles (EV) data compared to other
deep learning algorithms such as ANN and RNN. The study
compared SVM, Doc2Vec, RNN, and CNN. The accuracy
of CNN reached over 81%. Furthermore, [145] combined
various algorithms to segment and predict customer needs
and preferences. In particular, the study joined LDA, SOM,
and DT for regression and classification (CART), and the best
results corresponded to the union of LDA+SOM+CART
with an MAE of 0.3852, RMSE 0.46, and R2 0.93 as com-
pared to the other unions such as LDA+4-CART, LDA+RF,
LDA+ANN, and LDA+MLR. Moreover, [130] compared
SVM, DT, and MLP, concluding that DT was the best with
over 96% accuracy, followed by MLP. On the other hand,
[169] compared the conventional psychological continuum
model (PCM) segmentation algorithm, K-means clustering,
and Bayesian LPA, and in this case, unsupervised algorithms
were compared, showing that Bayesian LPA presented the
best performance followed by K-means. To predict arrivals
in a call center, [92] compared GB, GBR, SVR, KNN, and
RF based on MAE and ascertained that RF performed the
best, with GB, GBR, and SVR achieving similar results,
while KNN exhibited a bad performance under that parameter
MAE.

Finally, regarding the use of software, few published arti-
cles reported which software they use or apply. However,
some works used Python with ML-specific libraries [61],
[78], [107], [144], [183] or R®[75], [80], [81], [92]. Others
used the free open-source software package called Stanford
CoreNLP [105] or frameworks such as Rapidminer®|[88].

VIi. DISCUSSION AND CONCLUSION

This research aimed to analyze the degree of adoption of ML
in the field of marketing research. For this purpose, we ana-
lyzed journals indexed in the WoS. Of the 42 marketing
journals that we reviewed, only 13 of them published at least
one article that meets our quality criteria. Overall, the most
used ML tool was artificial neural networks, both in hybrid
methods and isolated use. In the classification methods, the
most used technique was decision trees. When comparing the
techniques, the most efficient techniques were the gradient
booster and the extreme gradient booster technique, as they
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demonstrated the best results. Regarding the unsupervised
techniques, KNN is widely used for market segmentation
(40%), and LDA is widely used for TA (31%). According
to the distribution of types of learning with respect to the
marketing application, reinforced learning appears only in
recommender systems.

In brief, our results highlight that a significant and
diverse number of ML techniques are employed in extensive
marketing-based applications. In the field of scientific pro-
duction, the number of publications increased over time, but
this growth was mostly observed in journals with a ranking
Q1 and Q2. In the period of years studied, the most used
technique was deep learning. We also realized that until 2008,
certain techniques were used generically in all marketing
applications; however, their use has expanded to a larger level
by the year 2022. It is noteworthy that several techniques are
widely used in a specific year, displaying a kind of boom
in popularity, followed by a period of decline and stability
in their use. For example, text mining analysis exhibited
disproportional use during some periods (2009-2010), then
no use for seven years, and finally being used again in 2016.

In the foregoing, we can see that in general, ML techniques
have experienced a degree of maturity in the field of market-
ing. This is reflected in a larger diversity of applications and a
larger diversity of ML techniques. This has also accompanied
advances in ML applications, dispensing with the need of
having advanced knowledge of programming. Accordingly,
this allows researchers who are not specialized in computer
science to use the aforementioned techniques in their areas of
expertise (e.g., marketing). Last, digital marketing has pro-
moted the need for better handling of more data with a more
complex analysis, which is provided by ML applications.

Regarding the limitations of this study, we can highlight
the lack of marketing categories in WoS and the use of JCR
as a proxy for this category. However, articles excluded did
not affect the main results of this research.

Regarding future works, research must focus on the appli-
cations of other recent ML techniques in areas of marketing
that have not been presented before. Despite the incipient
maturity, there is also a belief that some ML techniques—
given their simplicity—are not being applied correctly due
to the lack of knowledge surrounding them. Hence, a study
must be conducted to know if these conditions could produce
unexpected results using techniques that allow a larger sim-
plicity or visualization of the results (DT and CA) against
more complex techniques such as ANN or SVM.
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