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ABSTRACT During the past decade, social media platforms have been extensively used for information
dissemination by the affected community and humanitarian agencies during a disaster. Although many
studies have been done recently to classify the informative and non-informative messages from social media
posts, most are unimodal, i.e., have independently used textual or visual data to build deep learning models.
In the present study, we integrate the complementary information provided by the text and image messages
about the same event posted by the affected community on the social media platform Twitter and build a
multimodal deep learning model based on the concept of the attention mechanism. The attention mechanism
is a recent breakthrough that has revolutionized the field of deep learning. Just as humans pay more attention
to a specific part of the text or image, ignoring the rest, neural networks can also be trained to concentrate on
more relevant features through the attention mechanism. We propose a novel Cross-Attention Multi-Modal
(CAMM) deep neural network for classifying multimodal disaster data, which uses the attention mask of the
textual modality to highlight the features of the visual modality. We compare CAMM with unimodal models
and the most popular bilinear multimodal models, MUTAN and BLOCK, generally used for visual question
answering. CAMM achieves an average F1-score of 84.08%, better than the MUTAN and BLOCK methods
by 6.31% and 5.91%, respectively. The proposed cross-attention-based multimodal deep learning method
outperforms the current state-of-the-art fusion methods on the benchmark multimodal disaster dataset by
highlighting more relevant cross-domain features of text and image tweets.

INDEX TERMS Deep convolutional neural network (DCNN), disaster management, multimodal learning,
attention mechanism, cross-attention, social media, Twitter.

I. INTRODUCTION

In the past decade, emergency managers and safety organi-
zations have started using social media platforms to share
critical information for planning and implementing rescue
operations during a disaster. The decision-makers utilize
timely, first-hand, and location-based messages posted by
eyewitnesses on social media platforms to deploy resources
and enhance their response efforts. Innovative use of these
platforms allows humanitarian teams to engage directly with
the affected public during all phases of disaster manage-
ment. Among several social media platforms, Twitter is most
prevalent during natural disasters [1], [2]. Twitter text mes-
sages, called tweets that consist of up to 280 characters, give
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first-hand information about the event almost in real time.
A massive flood of tweets is generated on Twitter within
minutes of striking a disaster [3], [4], [5], [6]. With advancing
mobile technologies, text tweets are often accompanied by
related images or videos, providing complementary infor-
mation to understand the disaster site situation better. Ana-
lyzing these multimodal posts together for an event allows
the government authorities and humanitarian organizations
to assess the post-disaster situation from different angles and
perspectives to take appropriate action. While these tweets
provide crucial information during an emergency, filtering
informative and actionable messages from a vast pool of these
noisy messages is challenging [7], [8].

Although several artificial intelligence-based tools have
been proposed recently to make sense of this enormous crisis
data and filter out relevant messages, most of these methods
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are based on a single modality. For example, these meth-
ods have independently used text [9], [10], [11], [12], [13],
images [14], [15], [16], or videos [17] posted on social media
platforms but have not fully explored recent multimodal tech-
niques to exploit the complementary information provided by
more than one modality.

In the recent past, deep multimodal learning has gained
vast popularity. It is being applied to several fields like visual
question answering [18], [19], sentiment analysis [20], [21],
neural machine translation [22], cross-modal retrieval [23],
speech recognition [24] and image captioning. However, very
few studies have used the concept of deep multimodal learn-
ing to classify Twitter messages (text, images, and videos)
posted during an ongoing disaster. The present study proposes
a cross-attention-based deep multimodal learning method
that uses text and image modalities of disaster tweets.

Under the multimodal category, the most common meth-
ods used by researchers to fuse the features of text and
image modalities for the classification of disaster-related
data are early fusion and late fusion [25], [26], [27], [28],
[29]. Early fusion is also called feature-based fusion, where
the final decision is based on the common vector obtained
after concatenating the extracted features of the individual
modalities. This method takes advantage of learning from
the low-level interactions of features of all the modalities.
On the other hand, in the case of late fusion, also known
as decision fusion, the decision for each modality is made,
and then these decisions are combined to get the final
decision [30].

One recent breakthrough that has revolutionized the field
of deep learning is the attention mechanism [31]. Just like
humans pay more attention to a specific part of the text or
image, ignoring the rest, the neural networks can also be
trained to concentrate on more relevant features through the
attention mechanism. Initially, attention was more prevalent
in Natural Language Processing [32], but recently it is also
applied to images, videos, and audio modalities. The newly
introduced attention mechanism focused on some specific
regions of the feature map achieves better performance. If the
attention mask from any modality highlights the features
in the same modality, it is called self-attention. In contrast,
if the attention mask of one modality is used to highlight
the features of another modality, it is called cross-attention.
Cross-attention model not only learns the complementary
features of the two modalities but is also able to filter the
noise to give better results. In the present study, we propose
a cross-attention-based classification method that uses the
attention mask of text tweets to highlight the image tweet’s
features.

The limitation of existing early and late fusion meth-
ods is that they assign a fixed weight to each modality
which is overcome by the proposed attention-based method
that balances the contribution of modalities by dynamically
assigning weights to the features of different modalities.
This allows the attention model to choose relevant, more
prominent, and complimentary features from each modality.
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Our motivation for using the multimodal approach is to
explore the relationship between the two media and use them
harmoniously to achieve better results. The only constraint of
the attention-based method is the additional computation of
the attention weights that is outdone by the improved network
performance.

Based on the above discussion, the main contributions of
the present study are:

e We propose a deep multimodal network designed to
learn the prominent features from the textual and
visual modalities using a novel Cross-Attention Multi-
Modal (CAMM) framework for the binary classi-
fication of disaster tweets into ‘informative’ and °
non_informative’ classes. CAMM is designed to uti-
lize the complementary information from the tweets’
textual and imaging modalities. The attention mask of
text modality is used to highlight the features of the
imaging modality. Our goal is to attenuate the image
features by determining the relationship between the
words in the tweet and different spatial regions in an
image. The multimodal dataset used in this study is
CrisisMMD [33], comprising the text and image tweets
of seven disasters posted on Twitter during 2017.

e To validate the performance of the proposed model
CAMM, we perform experiments under the following
setups, which serve as baselines:

(i) Unimodal classification of text tweets using Bidi-
rectional Long Short-Term Memory (Bi-LSTM).
(i) Unimodal classification of image tweets using
DCNN.
(iii) Multimodal classification using MUTAN [34]
fusion method.
(iv) Multimodal classification using BLOCK [35]
fusion method.

e We also compare the results of CAMM with five
recent state-of-the-art multimodal disaster-related
studies based on CrisisMMD dataset [25], [26],
[27], [28], [29].

To the best of our knowledge, a cross-attention-based,
multimodal fusion approach has not yet been explored in the
context of social media disaster data classification.

The rest of the paper is structured as follows: In Section II,
we discuss the research work related to unimodal and mul-
timodal techniques for disaster management proposed in the
recent past. Section III covers the architecture of the proposed
deep multimodal neural network CAMM. A brief overview
of two baseline multimodal models is given in section IV.
The experimental setup in Section V includes the dataset,
metrics, hyperparameters, and the baseline methods used for
performing the experiments. The implementation details of
the experiments performed under various setups are given in
section VI. We list and discuss the results obtained after train-
ing the networks under five different setups in section VII.
Finally, in section VIII, we discuss the limitations and future
scope of the work.
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Il. RELATED WORK

Recently with the popularity of social media platforms at the
time of emergency, messages comprising situational infor-
mation, warnings, sentiments, infrastructural damage, geo-
graphical information, or medical help are posted on these
platforms in abundance [36]. These messages may be in the
form of text, images, or videos. This massive volume of rich
multimodal data can be converted into useful information
by scientists and domain experts to help the response team
in rescue operations and control the impact of the disas-
ter [37]. Although several unimodal models based on text
and images have been proposed in the last decade, the work
on multimodal modalities is relatively recent. This section
summarizes the research work done in handling social media
disaster data under three categories: (i) Unimodal methods
based on text-only modality, (ii) Unimodal methods based on
image-only modality, and (iii) Multimodal techniques based
on more than one modality proposed in the recent past.

A. UNIMODAL: BASED ON TEXT-ONLY MODALITY

Many Natural Language Processing (NLP) based methods
have been applied recently to the text messages posted
on various social media platforms [38]. For example,
Rudra er al. [12] filtered out the situational awareness mes-
sages from Twitter by identifying tweets’ low-level fea-
tures and summarized these real-time streams of tweets.
Basu er al. [39] worked on the Nepal earthquake tweets to
match the need-based tweets with the supply-based tweets.
Similarly, Purohit et al. [9] attempted to prioritize the requests
made by the affected people to be serviced by the emergency
responders. In a recent study by Madichetty er al. [40],
authors filtered ‘Need and Availability Resources (NAR)’
tweets from the Nepal and Italy earthquakes that happened
in 2015 and 2016, respectively, using a stacked architecture
of CNN with traditional classifiers. Their experiments on
various classifiers confirm that K-Nearest-Neighbor as the
base classifier, Support Vector Machine as the meta clas-
sifier, and CNN give the best results. Suwaleih et al. [41]
emphasized the mention of the location or place in the tweet
message posted during a disaster. They compared the perfor-
mance of the ‘Location Mention Recognition (LMR)’ task on
crisis-related and general datasets consisting of text tweets.
The authors fine-tuned the pre-trained BERT model for train-
ing on five datasets. Their results confirm that crisis-related
tweets from locations near the disaster event are most help-
ful for the first responders. Sufi er al. [42] presented an
NLP-based system to understand location-oriented senti-
ments on the most extensive set of languages. Their system
showed an accuracy of 97% when tested on the live feed
of 67515 tweets. In another study by Zahera et al. [43]
on Text REtrieval Conference-Incident Stream (TREC-IS)
[44] dataset and COVID-19 tweets, the authors classified the
tweets into multiple categories where each tweet may belong
to more than one category. They used three models in their
study, (i) BERT for tweet vectorization, (ii) graph attention
network (GAT) to understand the relation between the tweets
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and labels, and (iii) proposed a metric to compute the distance
between the vectors produced by (i) and (ii). Their model
achieved an average F1-score of 59% on TREC-IS and 55%
on COVID-19 datasets. Since labeling is a tedious and expen-
sive task, self-labeling [45], [46], synthetic labeling [47],
and semi-supervised learning [48] methods have also been
proposed recently. At the onset of a disaster, the unavailability
of labeled data has also encouraged researchers to propose
methods based on transfer learning and domain adaptation.
Li et al. were among the first few researchers to explore
this area. They used an iterative self-training strategy using
soft and hard labels to identify relevant tweets and labeled
data of earlier disasters to learn the classifier for the current
disaster [49], [50]. Imran et al. also proposed very effective
models based on convolutional neural networks and domain
adaptation for disaster management [13], [51].

B. UNIMODAL: BASED ON IMAGE-ONLY MODALITY

In a recent study by Ahadzadeh and Mohammad [52], the
machine learning methods Support Vector Machine, and
Naive Bayes are applied to tweet images to assess the
damage done due to earthquakes. Studies by Khattar and
Quadri compared the simple transfer learning, unsupervised
domain adaptation, and semi-supervised domain adaptation
approaches applied to the natural and biological disaster
image datasets [16], [53]. Robertson et al. [54] fine-tuned
pre-trained model VGG-16 on Hurricane Harvey images to
classify them on an ‘urgency’ and ‘time-period’ basis. In a
similar study, Li ef al. [15] applied Domain Adversarial
Neural Network (DANN) on four disaster images for binary
classification into ‘Damage’ and ‘No-damage’.

C. MULTIMODAL: BASED ON BOTH TEXT AND IMAGE
MODALITIES

Under the multimodal analysis, Gautam et al. [25] proposed
a diffusion method for the classification of Twitter data
(text and images) of seven disasters of the CrisisMMD
dataset [33] into two classes ‘informative’ and ‘non-
informative’ and compared their model with the unimodal
models based on text-only and image-only modalities. For
text-only modality, they applied N-gram, LSTM, BiLSTM,
and CNN+Glove methods, and for image-only modality, they
used six pre-trained models VGG-16, VGG-19, ResNet50,
InceptionV2, Xception, and DenseNet for transfer learning.
Finally, they compared the results based on three Logistic
Regression Decision policies. Their results confirm that the
logistic regression decision policy with bigram for text and
ResNet50 for images gives the best results.

Authors Ofli et al. [26] emphasized that complementary
information from different modalities leads to more robust
inference. They worked on the same CrisisMMD [33] dataset
as Gautam et al. with filtered records where the text label is
the same as the image label. High-level features are extracted
from two parallel networks, one for text messages and another
for images. They used CNN with five hidden layers for
the tweet text messages, and for the images, they used a
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pre-trained network VGG-16. The feature vectors from these
two networks are combined and passed to a dense layer
followed by SoftMax. This type of feature handling from two
modalities comes under the category of early fusion. Their
experiments showed that the multimodal early fusion-based
model performs better than the unimodal models for data
classification, first into informative / non-informative and
then into five humanitarian categories.

The work of Li et al. [27] is also based on the CrisisMMD
dataset, and they performed their multimodal experiments
under two scenarios: (a) text and image labels do not match
(b) text and image labels match. For the unimodal text model,
they used RNNs Gated Recurrent Unit (GRU) variant, and
for images, they used CNN. First, they trained two networks
for text and images independently and then took the average
of each network prediction as the final output. In the second
case, they concatenated the feature vectors of the text and
image networks and passed the combined vector to the dense
layer to get the output. They concluded that the cancat+train
(late fusion) method performs better than the average (early
fusion) method.

In a similar study, Madichetty et al. [28] applied the con-
cept of late fusion by adding the feature vectors of the two
modality networks to predict the final label. Text tweets are
trained on ANN, and VGG-16 is used as the pre-trained
network for the images.

Kumar et al. [29] applied the majority voting scheme to the
predicted classes of unimodal models for ‘text” (LSTM) and
‘image’ (VGG-16) and multimodal model for ‘text 4+ image’.
For the multimodal classification, they used late fusion. The
final label assigned to the class is the label with two or more
votes.

In another study, Pouyanfar et al. [17] classified the videos
of two hurricanes, Harvey and Maria, using a new multimodal
classification deep learning framework. For the audio com-
ponent, SoundNet, a pre-trained model, was applied. For the
visual-spatial component InceptionV3 and for the temporal-
video component, LSTM is followed by a dense layer. For the
final scores, they proposed to combine the audio and visual
scores with a Multiple Component Analysis based fusion
model that showed the effectiveness of the proposed model
over other existing techniques. Nie et al. [55] used three
modalities (point cloud, Multiview, and panorama view) to
represent a 3D shape and proposed two novel loss functions:
correlation loss and instance loss. They used a weighted
method to fuse these modalities to build a robust model for
3D shape recognition.

From the above discussion, it is clear that researchers have
shown greater interest recently in exploring the field of deep
multimodal learning for disaster-related research. Most of
these studies have applied feature-based (early) and decision-
based (late) fusion methods to combine the features of mul-
tiple modalities. However, the recently introduced attention
mechanism for multimodal learning is not fully explored for
disaster management, which motivated us to fill this research

gap.
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IIl. PROPOSED WORK

We propose a novel architecture to build a binary classifier
that integrates the information about the same event expressed
in two different ways in the form of words and pictures.
Fig. 1 shows the complete architecture of the proposed mul-
timodal DCNN that uses annotated text and image tweets
posted on Twitter during seven disasters.

We are given a tweet text T and a tweet image I, and we
need to fuse the features of T and I to predict the final class
as ‘informative’ or ‘ non_informative’. As commonly done in
multimodal architectures, the text 7' and image I are first con-
verted to vector representations. Then these representations
are fused to extract the most meaningful interactions between
the text and the image to get the predicted class. In this study,
we propose a new fusion technique called Cross-Attention
Multi-Modal (CAMM) fusion, where the features extracted
for each word in a tweet “attend” to different spatial regions
of the image features. Our motivation for this approach is
that different words in a tweet can accentuate relevant image
features that significantly improve the model’s performance.

As shown in Fig. 1, we use the pre-trained model VGG-16
to extract features from the input image I. The output of
convolution layers is passed through the Tanh() activation
function to limit the range of features between -1 and 1. For a
tweet T with n words, we use a Bi-LSTM with two layers to
learn hidden representations of dimension dr for each word.
Finally, we represent the image and text features by F; and
Fr, respectively.

In self-attention, a feature vector is generated for each word
in the string, then the three weight matrices Wi, Wp and Wy
are used on the words to extract the key, query, and value vec-
tors for each word. In the proposed cross-attention structure,
our goal is to attenuate the image features by determining
the relationship between the words in the tweet and different
spatial regions in an image. The Wx matrix is used to extract
key values for each word in the tweet, and Wy is used on
feature vector of an image obtained using a CNN. The key
vectors obtained for each word and query vectors obtained for
each spatial region in an image are then combined to create
the attention given by the following equation,

ey

WoF; x (WgFr)T
A:softmax( oft x (WxFr) ),

Vi

where dj represents the dimension of the output of Wx Fr.
This attention map represents the effect of each word in
the tweet on different spatial regions in the image. Finally,
we generate the value vectors given by, Wy Fy, which are
then multiplied with the attention map A to generate the
“attended’’ image features,

Fca =A O (WyFy), ()

where (O represents element-wise multiplication. The
attended image features are subsequently flattened and
passed through the classification layers to predict whether
the image-text pair is ‘informative’ or ‘non_informative’.
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FIGURE 1. The architecture of the proposed Cross-Attention Multi-Modal (CAMM) model for binary classification of disaster-related tweets.

IV. A BRIEF OVERVIEW OF BASELINE MULTIMODAL
MODELS

We train two popular multimodal models, MUTAN [34] and
BLOCK [35], proposed by Younes ef al. on the CrisisMMD
dataset as baseline models and compare their results with the
proposed model, CAMM. We briefly discuss these models in
this section.

MUTAN is a multimodal fusion method that aims to cap-
ture the relation between every pair of neurons of text and
image modalities. The fused features can be represented by
the relation:

dr dj

Y =) Y MyFiF 3)
i=1 j=1

y=M x| Fr x5 F] “4)

where yy is the output at the k™ index

Fr is the text vector with dimension dr

F7 is the image vector with dimension dj

M is the 3D learnable weight matrix

y is the output

MUTAN applies Tucker decomposition to reduce the num-
ber of parameters of the weight matrix, M. M is represented
as a product of Wr, Wy, W, and a core tensor M, as:

Your = Wy (M x1 (WrFr) x2 (W[ F})) )

where Wr, W and W, are the weight matrices to reduce the
dimension of the text features, image features, and the fused
vector.

As explained above, MUTAN compresses the feature vec-
tors of text (Fr) and image (Fj) to reduce the number of
parameters in the fused vector. However, this may lead to
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loss of information if the reduced-sized feature vectors do
not efficiently capture all the information in the text and
image features. Younes et al. [35] proposed the BLOCK
fusion model to address this problem. This method divides
the feature vectors, F'r and Fy into blocks and applies Tucker
decomposition to each individual block. It finally concate-
nates them to obtain the final fused feature vector.

V. EXPERIMENTAL SETUP

Extensive experiments are conducted on the multimodal
dataset of seven disasters for the proposed cross-attention-
based multimodal framework. The results are compared with
text-only, image-only, and two multimodal baseline models.
All experiments are performed three times, and the average
is reported.

A. DATASET

The benchmark multimodal disaster dataset used in the
present study is the ‘CrisisMMD’ Twitter dataset released
by Imran er al. [33]. This dataset has images and text
tweets posted for seven devastating natural disasters held
in 2017 worldwide. These disasters were: ‘“‘Hurricane Har-
vey, Hurricane Irma, Hurricane Maria, Mexico Earthquake,
California Wildfires, Irag-Iran earthquake, and Sri Lanka
Floods”. The tweets are filtered and manually anno-
tated into two classes: {‘informative’, ‘non_informative’}.
‘informative’ tweets provide actionable information for the
humanitarian agencies about dead, injured, or lost people and
infrastructural damage. Advice, warnings, and requests for
aid also come in this category. For example, Fig. 2 shows
a batch of informative images and text tweets posted dur-
ing Hurricane Harvey and the Sri Lanka floods. Informative
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TABLE 1. CrisisMMD Dataset [33] with matching labels for text and image tweets.

Disaster Duration of tweet collection Total Informa | Non_infor Train | Val Set | Test Set
Tweets | tive mative Set
Hurricane Harvey 26-Aug-17 to 20-Sep-17 3168 2262 906 2027 507 634
Hurricane Irma 06-Sep-17 to 21-Sep-17 2799 2032 767 1791 448 560
Hurricane Maria 20-Sep-17 to 13-Nov-17 3108 1813 1295 1988 498 622
Mexico Earthquake 20-Sep-17 to 06-Oct-17 1121 806 315 716 180 225
California Wildfires 10-Oct-17 to 27-Oct-17 1205 923 282 771 193 241
Iraq Iran Earthquake 13-Nov-17 to 19-Nov-17 500 398 102 320 80 100
Sri Lanka Floods 31-May17 to 03-Jul-17 861 229 632 550 138 173
% RT @EmilyLo011: Currently stuck on Monroe.... R.I.P my truck... e informalive
#HurricaneHarvey https://t.co/9f2UmEN1cg
RT @BBCJamesCook: The little town of Rockport has suffered —informative
severe damage from #HurricaneHarvey. https://t.co/fBZFMABaKZ
RT @IndiaToday: Death toll from Sri Lanka's worst flood since
| 2003 rises to 151 https://t.co/vLI9JK5Vn2e — Informative

@kala_cw Try to reach out to Indra Trucks #FloodSL Can also
check our map https://t.co/dsOj1y1RLS https://t.co/lvUatBXn7Ah

~Informative

FIGURE 2. Informative image and text tweets posted during Hurricane Harvey and Sri Lanka Floods. These types of messages.

messages are beneficial for humanitarian agencies in rescue
operations.

Fig. 3 shows a batch of ‘non_informative’ tweets which
may include text messages expressing sympathy for the
affected people or may comprise opinions in general. Images
of politicians visiting the disaster site, posters, or logos that
do not provide helpful information in disaster response also
belong to the ‘non_informative’ category.

The dataset consists of 16058 text tweets and 18082 image
tweets, as up to four pictures can be posted along with one text
tweet on Twitter. However, since the text and the correspond-
ing images are annotated separately, their labels may not be
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aligned. are very helpful for the humanitarian agencies in the
rescue operations.

We have filtered only those tweets with the same label
for the text and the corresponding image for the present
study. Table 1 gives the details of the filtered dataset with
12762 tweets each for the image and the text modalities, out
of which 8463 are informative, and 4299 are non-informative.
The filtered dataset is further split into the train, val, and test
set in the ratio 80:10:10 for training, validation, and testing
purpose. Most disaster-related studies done in the recent past
based on multimodal data analysis have used the CrisisMMD
dataset.
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Yet Again! FLOTUS Melania Trump Wears Heels to Meet with
#HurricaneHarvey Victims| Photos - https://t.co/CpJb4oDELZ

| &gt;Sees flooding outside &gt;Hmm | wonder if Whataburger is
-y still open &gt;a€}Y'all are ridiculous #HurricaneHarvey

v:,'g <«/‘\ %
:-‘3 It's a clear competition among electronic #media which prefer
P

> = |more profit.. #FloodS| #lka https://t.co/AMHsZiVKWU

Mathews hopes win over India brought smiles to flood-hit Sri
Lanka https://t.co/idbTbUhfeM https://t.co/STGeGxuuRU

—non_informative

—non_informative

—non_informative

—non_informative

FIGURE 3. Non_informative image and text tweets posted during Hurricane Harvey and Sri Lanka Floods. These include posters, banners

or other messages that do not provide any useful information.

As our dataset is imbalanced, the accuracy metric is
unsuitable for evaluating the model’s performance. Instead,
we compute weighted F1-score and AUC metrics to handle
this issue. Also, we use weighted cross-entropy loss, where
the weight assigned for each class is inversely proportional to
the number of class samples in the training set.

B. METRICS USED
To estimate the performance of the trained models and to do
a comparative analysis we have used the following metrics in
the present study:

(a) Accuracy: Ratio of correct predictions made by the
model and the total samples.

True_Positive + True_Negative
Total

Accuracy =

(b) Precision: Ratio of correctly predicted positive samples
and all the predicted positive samples.

o True_Positive
Precision =

True_Positive + False Positive

(c) Recall: Ratio of correctly predicted positive samples
and the actual positive samples.

True_Positive

Recall = — -
True_Positive + False_Negative
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(d) Fl-score: The Fl-score is computed by taking the
Harmonic Mean (HM) of precision and recall.

F1 — Score — 2 Precision * Recall

Precision + Recall

(e) ROC-AUC: ROC curve stands for Receiver Operator
Characteristic curve drawn between True Positive Rate (TPR)
on the y-axis and False Positive Rate (FPR) on the x-axis at
various thresholds and is generally used for binary classifi-
cation. Area Under the Curve (AUC) summarizes the ROC
curve, a higher value of AUC results in a better performing
model.

C. HYPERPARAMETER SETTING

All the experiments are performed under the PyTorch frame-
work on Tesla P100 GPU with High-RAM provided by
Google Colab Pro. We have applied the Grid Search method
to finetune the hyperparameters. We choose various combi-
nations of the hyperparameters and compare the model’s per-
formance for every combination to select the optimal value.
Although this method is relatively slow, it helps find the best
values for the network parameters. The parameters selected
through grid search for training all the models include: learn-
ing rate as 1.00e-03, weight decay as 5.00e-04, momentum
as 0.9, loss function as weighted CrossEntrpoyLoss and opti-
mizer as Stochastic Gradient Descent (SGD). We performed
50 epochs for the baseline models and 100 epochs for the
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FIGURE 4. Unimodal classification of text tweets using Bi-LSTM and pre-trained word embedding GloVe.

proposed CAMM model. The learning rate schedular is set
at [25], [35] for 50 epochs and at [60, 75] for 100 epochs. For
DCNN, we have taken VGG-16 as the backbone architecture.
For text, Bi-LSTM uses two layers which are enough to
capture the complex features of the text tweet. An Abla-
tion study for the choice of hyperparameters is discussed in
section VII C, and the results are listed in Tables 2, 3, and 4.

D. BASELINES

We compare the proposed model CAMM against four base-
line models under two categories. Firstly, we compare our
model with unimodal models, Bi-LSTM for text and DCNN
for image classification. Secondly, we compare CAMM with
the two popular multimodal fusion networks, MUTAN and
BLOCK. Lastly, CAMM is also compared with other state-
of-the-art multimodal models proposed in the recent disaster-
related studies.

VI. IMPLEMENTATION DETAILS

In the following subsections, we discuss the implementation
details of the unimodal and multimodal models for the binary
classification of text and image tweets.

A. UNIMODAL CLASSIFICATION OF TEXT TWEETS
Fig. 4 shows the architecture for the unimodal classification
of text tweets by the Bi-LSTM model.

1) PREPROCESSING OF TEXT

The tweets are preprocessed by removing the stop words and
URLSs embedded in the tweet text. After this, all the special
‘@, ‘#, Y, ‘@D, ‘&, *, I’) and non_ASCII charac-
ters and their repeated occurrence are removed. Trailing and
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multiple white spaces in between are also deleted. Lastly, the
text is converted into lowercase.

2) WORD EMBEDDINGS USING PRE-TRAINED GloVe

After the preprocessing step, the words in the tweet need to
be represented as real-valued vectors for further processing.
We have used pre-trained word embedding GloVe (Global
Vectors for Word Representation) [56] to get the word embed-
dings. GloVe converts the words into vectors so that sim-
ilar words have similar vector representations. To capture
complete information from the word, we used the GloVe
embedding of dimension 300.

3) CLASSIFICATION USING LSTM

Once the vector matrix of tweet words is obtained, we use
the Bi-LSTM model to extract the features for classification.
This study uses two LSTMs, one in the forward and one in
the backward direction. LSTM model was first proposed by
Hochreiter et al. [57] to handle the shortcomings of Recur-
rent Neural Networks, which could not handle the long-
term dependencies. LSTMs are designed to remember the
information for a longer time through a series of LSTM units.
Each unit of the LSTM has a forget gate, input gate, output
gate, and cell state. The forget gate consists of a sigmoid
function that outputs a number between O and 1 depending
on the previous and the current state. A ‘0’ represents discard
or forget, and a ‘1’ represents keep or remember. The input
gate also has a sigmoid function that decides which values to
be updated, and the tanh function provides the new updated
values resulting in the output for the next hidden state. These
gates allow the model to keep only the critical information
and forget the rest. We have used two layers of LSTM, which
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FIGURE 5. Unimodal classification of image tweets into two classes ‘informative’ and ‘non_informative’ using DCNN with VGG-16 as the

backbone architecture.

are enough to capture the complex features from the tweet
text.

B. UNIMODAL CLASSIFICATION OF IMAGE TWEETS

Fig. 5 shows the architecture of the unimodal classification
of image tweets using DCNN with pre-trained VGG-16 [58]
model as the backbone architecture.

1) PREPROCESSING OF IMAGES

We first resize the tweet images to (256, 256), and then a
random patch of (224, 224) is cropped. After this, the pixels
are scaled between 0 and 1 and then normalized with mean
and standard deviation values of the ImageNet database [59].

2) CLASSIFICATION USING DEEP CONVOLUTIONAL NEURAL
NETWORK (DCNN)

DCNN is used to classify tweet images using VGG-16 as
the backbone architecture. VGG-16 is a DCNN designed to
classify 14 million annotated images of the ImageNet dataset
into 1000 classes. It consists of a stack of 13 convolutional
layers with a small filter size of (3 x 3) divided into five blocks
of2,2,3, 3,3 convolution layers where each block is followed
by a maxpooling of (2 x 2) and a stride of 2 which reduces the
size of the image to half after each block. After the five blocks
of convolution layers there are three fully connected (FC)
layers with 4096 parameters for the first two FC layers. The
last FC has 1000 parameters which are equal to the number
of classes for the ImageNet dataset.

Since we have two classes for the CrisisMMD dataset,
we set the parameters of the last FC to two. In the end,
a SoftMax function gives the probability of the output classes.
After each hidden layer, the nonlinearity is introduced by
adding an activation function ReL.U.
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C. MULTIMODAL CLASSIFICATION OF TEXT AND IMAGE
TWEETS

We follow the same preprocessing technique for CAMM as
mentioned in unimodal classification for text and image data.
The output of the convolution layers of VGG-16 for an input
image is of dimensions (7, 7, 512) which are passed through
an additional 1 x 1 convolution and Tanh() activation to
increase the number of channels to 1024. Each cell in the
7 x 7 matrix represents features for different spatial regions
in the input image, which are subsequently reshaped to
49 x 1024 which represents Fj.

Bi-LSTM takes the GloVe embeddings as input for all the
words in a tweet to generate features of dimension 1024 for
each word represented as Fr = (n, 1024) where n is the
number of words in a tweet. The two feature vectors Fya nd
Fr are then used to generate the key, query, and value vectors
where Wy, Wp and Wy are three separate fully connected
layers with input and output size 1024. Next, the key and
query vectors are used to generate the attention map M (refer
to 1), which represents the relevance of each word in a tweet
against different spatial regions of the image. Finally, this
attention map is applied to the value vector to obtain a fused
feature vector Fcy (refer to 2). The final fused vector is passed
through a linear classifier consisting of three fully connected
layers with a ReLLU activation in between, and the output of
the last layer is passed through a SoftMax function to get the
probabilities assigned to each label.

VII. RESULTS AND DISCUSSION

To validate the performance of the proposed model CAMM,
we conduct extensive experiments on the benchmark multi-
modal disaster dataset CrisisMMD and compare the results
with baseline unimodal and multimodal methods and also
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FIGURE 6. Chart (a) shows model wise average F1-score for five models. Chart (b) compares the Area Under the Curve (AUC), taken as the average of all

the disasters for five models.

with recent state-of-the-art multimodal models. In this
section, we present the results obtained after training the
network under five setups: (1) Text-only, (2) Image-only,
(3) MUTAN fusion, (4) BLOCK fusion, and (5) CAMM
fusion (proposed). Under each setup, we train networks for
seven disasters resulting in 35 test cases. Table 5 summarizes
the Accuracy, Precision, Recall, Fl-score, and AUC of the
models trained under these five setups for seven disasters.
Table 6 compares the results of CAMM with current state-of-
the-art models. For comparison, we take the average of the
F1-scores for all seven disasters for each model.

A. CAMM VS. BASELINE UNIMODAL AND MULTIMODAL
MODELS

Firstly, we discuss the performance of the baseline uni-
modal and multimodal models trained in this study. The
image-only DCNN architecture with VGG-16 as the back-
bone outperforms the text-only model Bi-LSTM. The average
Fl-score for the unimodal text-only model is 62.03% and
for the image-only model is 76.40%. The performance of
both the multimodal models MUTAN and BLOCK is bet-
ter than the two unimodal models. For the MUTAN fusion
model, we achieve an average Fl-score of 77.77%, and for
the BLOCK fusion model, it is 78.17%. BLOCK fusion
method’s performance is 0.4% better than MUTAN fusion.
The proposed CAMM model outperforms all four models by
achieving the average F1-score of 84.08% for all disasters,
as shown in Fig. 6(a). Thus, we can see a clear progression
from unimodal to multimodal classifiers, with the best F1-
score achieved by CAMM. We also compare the five model’s
AUC metric taken as the average of all disasters. Fig. 6(b)
confirms the outperformance of CAMM as it has a maximum
value of 92.47% for AUC. The F1-scores of CAMM for indi-
vidual disasters are Hurricane Harvey: 85.29%, Hurricane
Irma:76.40%, Hurricane Maria: 81.01%, Mexico Earthquake:
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TABLE 2. Performance of CAMM for five backbone architectures.

Backbone -

Architecture Accuracy | Precision | Recall F1-Score
EfficientNet-B3 80.76 71.73 77.50 77.33
ResNet50 79.63 77.61 77.39 77.28
DenseNet201 79.19 80.22 71.63 75.49
VGG-16 77.53 78.28 78.19 78.19
VGG-19 71.37 77.43 70.62 73.67

TABLE 3. Performance of CAMM for different learning rates.

Learning Rate | Accuracy | Precision Recall F1-Score
1.00e-02 86.59 84.12 83.12 83.60
1.00e-03 87.70 86.80 82.65 84.33
1.00e-04 85.49 83.27 80.77 81.85
1.00e-05 77.66 35.33 50.00 41.40

TABLE 4. Performance of CAMM for different weight decay values.

Weight Decay Accuracy | Precision Recall F1-Score
1.00e-03 70.66 35.33 50.00 41.40
1.00e-04 86.91 85.06 82.56 83.65
5.00e-04 87.85 86.18 83.86 84.89

82.93%, California Wildfires: 82.36%, Irag-Iran Earthquake:
88.14%, and SrilLanka Floods: 92.47%.

B. CAMM VS. RECENT STATE-OF-THE-ART MULTIMODAL
MODELS

We also compare the results of CAMM with recent state-of-
the-art multimodal models in Table 6. The multimodal fusion
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TABLE 5. Results of two Unimodal Models (1) Bi-LSTM for text tweets and (2) VGG-16 for image tweets and three Multimodal Models (1) MUTAN
(2) BLOCK and the proposed model (3) CAMM on the data of seven disasters of CrisisMMD Dataset.

. .
Unimodal Models Multimodal Models
Disasters Bi-LSTM(Text) VGG-16(Images) MUTAN BLOCK CAMM (Proposed)
Ace. P R Fl- AUC | Acc. P R Fl-  AUC | Acc. R Fl- AUC | Ace. P R Fl-  AUC | Ace. P R Fl-  AUC
score score score score score
Hurricane
H 7737 7284 69.84 7093 77.94 | 81.94 7854 7724 77.77 8732 | 8478 8245 79.80 8091 89.06 | 84.55 8226 79.24 80.49 89.34 | 8833 87.23 83.88 8529 91.84
arvey
Hurricane
I 70.89 60.55 5698 57.17 6471 | 7849 7334 7378 73.43 8328 | 7947 7513 70.17 7179 8150 | 8027 76.14 71.62 7321 83.11 | 83.04 81.04 74.14 7640 88.65
rma
Hurricane
Mari 7090 70.14 6926 69.51 76.07 | 75.00 7523 7278 7324 8412 | 76.61 76.79 74.60 75.11 8397 | 76.13 7634 74.02 7453 8527 | 8224 8341 80.24 81.01 89.69
aria
Mexico
63.56 52.87 5221 51.83 52.62 | 81.33 7856 75.58 76.69 89.82 | 82.00 78.92 77.52 78.14 8921 | 82.89 80.02 78.57 79.21 88.66 | 86.23 8533 81.59 8293 92.03
Earthquake
California
" 69.71 5280 51.13 48.81 4821 | 84.24 81.57 7635 7829 87.74 | 84.03 8140 7596 77.97 9028 | 82.37 79.64 72.65 7490 8844 | 87.16 84.89 80.62 8236  92.19
Wildfires
Iraq Iran
78.00 63.12 63.82 6343 73.07 | 87.00 78.01 80.15 78.90 9122 | 88.50 80.01 8540 8222 9241 | 89.00 80.80 84.62 82.48 92.02 | 92.00 84.69 94.04 88.14 9593
Earthquake
Sri Lanka
Flood 79.19 7375 7171 72.57 7891 8208 77.89 7569 7647 87.92 | 81.50 77.02 80.63 78.24 86.60 | 8555 81.55 83.75 8239 89.92 | 9422 9436 91.03 9247 9699
oods
Average 7280 63.72 6213 6203 67.36 | 81.44 77.59 7594 7640 8734 | 82.41 7881 77.72 77.77 87.57 | 8296 79.53 77.78 78.17 88.11 | 87.60 85.85 83.65 84.08 92.47

model with logistic regression proposed by Gautam et al. [25]
reported only their accuracy results. Their model achieves
accuracy in the range of 74.14% to 80.20% for the seven
disasters with an average accuracy of 77.33% compared to
CAMM, which has an average accuracy of 87.60%, thus
confirming the advantage of using an attention mechanism.
Ofli’s early fusion model [26] gives an F1-score of 84.2% for
the informativeness task, which is close to CAMM. Although
they worked on the CrisisMMD dataset, one significant dif-
ference in their training is that they merged the data of all
seven disasters to get a much bigger dataset which directly
impacted the performance of their deep learning model. In a
similar study, models trained by Caragea et al. [27] for late
fusion with majority voting and early fusion give the average
Fl-score of 75.63% and 78.13%, respectively. Two other
studies that used the early and late fusion with majority voting
show the Fl-score of 74.46% by Madichetty et al. [28] and
82% by Kumar et al. [29] as compared to CAMM’s F1-score
of 84.08%.
The above discussion confirms the following:

1) The performance of multimodal classification mod-
els is better than unimodal text-only and image-only
models for all seven disasters of the CrisisMMD
dataset.

2) Amongst the three multimodal techniques, the pro-
posed cross-attention-based model CAMM outper-
forms the MUTAN and BLOCK models.

3) CAMM also outperforms current state-of-the-art mul-
timodal models on the benchmark CrisisMMD dataset,
confirming the advantage of applying cross-attention
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fusion for text and image modalities. The proposed
method is designed to select the prominent features
from the two modalities which are more relevant for
the task resulting in a better classifier.

We have used the following abbreviations for naming the
disasters:

HH: Hurricane Harvey, HI: Hurricane Irma,

HM: Hurricane Maria, ME: Mexico Earthquake,

CWEF: California Wildfires, IIE: Iraq-Iran Earthquake,
SLF: Sri Lanka Floods

C. ABLATION STUDY

For the proposed CAMM architecture, the hyperparame-
ters are fine-tuned using grid search. The results of exper-
iments performed for selecting the backbone architecture
are shown in Table 2. We trained the network for Hurri-
cane Harvey image dataset with EfficientNet-B3, ResNet50,
DenseNet201, VGG-16 and VGG-19 as backbone architec-
tures. The results confirm that VGG-16 achieves the highest
Fl-score of 78.19% and hence the best choice for all the
experiments performed in this study.

The results of fine-tuning the learning rate on Hurricane
Harvey image dataset are listed in Table 3. Out of [1.00e-02,
1.00e-03, 1.00e-04, 1.00e-05] the best F1-score of 84.33% is
achieved with 1.00e-03.

Similarly, we trained the network on the Hurricane Harvey
image dataset for the values [1.00e-03, 1.00e-04, 5.00e-04]
for the selection of weight decay hyperparameter and chose
5.00e-04 for all our experiments in this study. The results are
listed in Table 4.
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TABLE 6. Comparison of CAMM with recent state-of-the-art multimodal models on CrisisMMD Dataset. The symbols used for various disasters are: HH:
Hurricane Harvey, HI: Hurricane Irma, HM: Hurricane Maria, ME: Mexico Earthquake, CWF: California Wildfires, IIE: Irag-Iran Earthquake, and SLF: Sri
Lanka Floods.

Ref. Approach IDataset & Classes Disaster Accuracy |Precision Recall F1-score
ILogistic Regression based decision [CrisisMMD [33] HH 79.20 _ R R
policy for multimodal analysis with HI 80.20
ILSTM for text and ResNet50 for | informative/ HM 79.40
[25] limages. non-informative ME 77.90
(Late or decision Fusion) CWF 75.30
1IE 75.20
SLF 74.14
AVERAGE 77.33
Two parallel networks are trained, for [CrisisMMD [33] Combined datasets of
text CNN with 5 hidden layers and for (i) informative / Seven Disasters: Q44 341 34.0 Q42
[26] images, VGG-16 is used. The two | non-informative HH, HI, HM, ME, ’ ) ’ ’
feature vectors are combined and passed |(ii) Humanitarian CWF, IIE, SLF
to a dense layer and then a SoftMax [Categories 78.4 78.5 78.0 783
layer.  (Early Fusion)
The output of two independent [CrisisMMD [33] HH 79.32,79.78 78.17,79.20
networks RNN(GRU) for text and CNN HI 74.98,79.91 - - 72.26,79.07
for images are combined in two ways: informative / HM 74.23,76.67 73.89,76.59
(1) Average of the probabilities of the [non-informative ME 76.27,73.62 - - 73.27,72.92
[27] predictions of two networks (Late Fusion) CWF 78.50,75.45 76.04,73.20
(2) Concatenate the outputs of the last layers 1IE 76.15,75.06 71.89,74.13
of two networks and feed to the dense layer to SLF 84.60,91.59 83.90,91.85
make the final prediction AVERAGE 77.72,78.87 75.63,78.13
(Early Fusion) ’ ’
Text tweets are passed to CNN and [CrisisMMD [33] HH 77.70 78.00 78.00 77.60
limage tweets are trained using VGG-16. HI 73.82 74.00 74.00 73.55
The proba'bility Vf:ctor of these Vtyvo informative / HM 72.96 73.00 73.00 72.84
(28] networks is combined using additive |, n informative ME 74.29 74.50 74.00 74.25
ffusion. The final class label is CWF 65.00 65.50 64.50 64.00
determined by majority voting. IIE 68.18 71.00 68.00 67.00
(Late Fusion + majority voting) SLF 91.78 92.00 91.50 92.00
AVERAGE 74.81 75.42 74.71 74.46
[For text tweets LSTM and for image (CrisisMMD [33] HH - 84.00 84.00 84.00
tweets VGG-16 is used. For the | informative/ HI - 82.00 82.00 82.00
multimodal training the features of text [non-informative HM - 84.00 84.00 84.00
[29] land image modalities are concatenated. ME - 75.00 74.00 74.00
[Final label is assigned based on the CWF - 75.00 74.00 74.00
majority voting of text, image and 1IE - 84.00 83.00 83.00
multimodal labels. (Early Fusion + SLF - 93.00 93.00 93.00
ajority voting) AVERAGE 82.42 82.00 82.00
IMUTAN fusion ICrisisMMD [33] HH 84.78 82.45 79.80 80.91
(multimodal) HI 79.47 75.13 70.17 71.79
informative / HM 76.61 76.79 74.60 75.11
Baseline non-informative ME 82.00 78.92 77.52 78.14
Model CWF 84.03 81.40 75.96 77.97
1IE 88.50 80.01 85.40 82.22
SLF 81.50 77.02 80.63 78.24
AVERAGE 82.41 78.81 77.72 77.77
IBLOCK fusion CrisisMMD [33] HH 84.55 82.26 79.24 80.49
(multimodal) HI 80.27 76.14 71.62 73.21
informative / HM 76.13 76.34 74.01 74.53
Baseline non-informative ME 82.89 80.02 78.57 79.21
Model CWF 82.37 79.64 72.65 74.90
1IIE 89.00 80.80 84.62 82.48
SLF 85.55 81.55 83.75 82.39
AVERAGE 82.96 79.53 77.78 78.17
IA novel Cross-Attention Multi Modal ~ [CrisisMMD [33] HH 88.33 87.23 83.88 85.29
CAMM) fusion model informative / HI 83.04 81.04 74.14 76.40
(Cross-Attention Fusion) non-informative HM 82.24 83.41 80.24 81.01
IProposed ME 86.23 85.33 81.59 82.93
Model CWF 87.16 84.89 80.62 82.36
1E 92.00 84.69 94.04 88.14
SLF 94.22 94.36 91.03 92.47
AVERAGE 87.60 85.85 83.65 84.08
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VIil. CONCLUSION

In this study, we proposed a novel Cross-Attention Multi-
Modal (CAMM) framework for the binary classification of
multimodal data of seven disasters collected from the Twit-
ter microblogging platform. A series of experiments per-
formed under five different setups confirm that the proposed
multimodal classifier that uses the complementary features
of textual and visual modalities performs better than the
unimodal text-only and image-only approaches. Also, the
cross-attention fusion mechanism performs better than
the previously proposed methods based on early and late
fusion techniques. As a result, CAMM achieved an average
F1-score of 84.08%, which is 6.31% better than the F1-score
of the MUTAN fusion method and 5.91% better than the
BLOCK fusion method trained in this study. CAMM also
outperformed recent state-of-the-art models for the bench-
mark multimodal disaster dataset. In the future, we would like
to extend the concept of cross-attention to other modalities
like audio and video. We would also explore how to use
the attention mechanism for transfer learning and domain
adaptation in scenarios where labeled data is unavailable,
especially at the onset of a new disaster.
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