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ABSTRACT During the past decade, social media platforms have been extensively used for information
dissemination by the affected community and humanitarian agencies during a disaster. Although many
studies have been done recently to classify the informative and non-informative messages from social media
posts, most are unimodal, i.e., have independently used textual or visual data to build deep learning models.
In the present study, we integrate the complementary information provided by the text and image messages
about the same event posted by the affected community on the social media platform Twitter and build a
multimodal deep learning model based on the concept of the attention mechanism. The attention mechanism
is a recent breakthrough that has revolutionized the field of deep learning. Just as humans pay more attention
to a specific part of the text or image, ignoring the rest, neural networks can also be trained to concentrate on
more relevant features through the attention mechanism. We propose a novel Cross-Attention Multi-Modal
(CAMM) deep neural network for classifying multimodal disaster data, which uses the attention mask of the
textual modality to highlight the features of the visual modality. We compare CAMMwith unimodal models
and the most popular bilinear multimodal models, MUTAN and BLOCK, generally used for visual question
answering. CAMM achieves an average F1-score of 84.08%, better than the MUTAN and BLOCK methods
by 6.31% and 5.91%, respectively. The proposed cross-attention-based multimodal deep learning method
outperforms the current state-of-the-art fusion methods on the benchmark multimodal disaster dataset by
highlighting more relevant cross-domain features of text and image tweets.
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INDEX TERMS Deep convolutional neural network (DCNN), disaster management, multimodal learning,
attention mechanism, cross-attention, social media, Twitter.

I. INTRODUCTION20

In the past decade, emergency managers and safety organi-21

zations have started using social media platforms to share22

critical information for planning and implementing rescue23

operations during a disaster. The decision-makers utilize24

timely, first-hand, and location-based messages posted by25

eyewitnesses on social media platforms to deploy resources26

and enhance their response efforts. Innovative use of these27

platforms allows humanitarian teams to engage directly with28

the affected public during all phases of disaster manage-29

ment. Among several social media platforms, Twitter is most30

prevalent during natural disasters [1], [2]. Twitter text mes-31

sages, called tweets that consist of up to 280 characters, give32

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao Tan .

first-hand information about the event almost in real time. 33

A massive flood of tweets is generated on Twitter within 34

minutes of striking a disaster [3], [4], [5], [6].With advancing 35

mobile technologies, text tweets are often accompanied by 36

related images or videos, providing complementary infor- 37

mation to understand the disaster site situation better. Ana- 38

lyzing these multimodal posts together for an event allows 39

the government authorities and humanitarian organizations 40

to assess the post-disaster situation from different angles and 41

perspectives to take appropriate action. While these tweets 42

provide crucial information during an emergency, filtering 43

informative and actionable messages from a vast pool of these 44

noisy messages is challenging [7], [8]. 45

Although several artificial intelligence-based tools have 46

been proposed recently to make sense of this enormous crisis 47

data and filter out relevant messages, most of these methods 48
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are based on a single modality. For example, these meth-49

ods have independently used text [9], [10], [11], [12], [13],50

images [14], [15], [16], or videos [17] posted on social media51

platforms but have not fully explored recent multimodal tech-52

niques to exploit the complementary information provided by53

more than one modality.54

In the recent past, deep multimodal learning has gained55

vast popularity. It is being applied to several fields like visual56

question answering [18], [19], sentiment analysis [20], [21],57

neural machine translation [22], cross-modal retrieval [23],58

speech recognition [24] and image captioning. However, very59

few studies have used the concept of deep multimodal learn-60

ing to classify Twitter messages (text, images, and videos)61

posted during an ongoing disaster. The present study proposes62

a cross-attention-based deep multimodal learning method63

that uses text and image modalities of disaster tweets.64

Under the multimodal category, the most common meth-65

ods used by researchers to fuse the features of text and66

image modalities for the classification of disaster-related67

data are early fusion and late fusion [25], [26], [27], [28],68

[29]. Early fusion is also called feature-based fusion, where69

the final decision is based on the common vector obtained70

after concatenating the extracted features of the individual71

modalities. This method takes advantage of learning from72

the low-level interactions of features of all the modalities.73

On the other hand, in the case of late fusion, also known74

as decision fusion, the decision for each modality is made,75

and then these decisions are combined to get the final76

decision [30].77

One recent breakthrough that has revolutionized the field78

of deep learning is the attention mechanism [31]. Just like79

humans pay more attention to a specific part of the text or80

image, ignoring the rest, the neural networks can also be81

trained to concentrate on more relevant features through the82

attention mechanism. Initially, attention was more prevalent83

in Natural Language Processing [32], but recently it is also84

applied to images, videos, and audio modalities. The newly85

introduced attention mechanism focused on some specific86

regions of the feature map achieves better performance. If the87

attention mask from any modality highlights the features88

in the same modality, it is called self-attention. In contrast,89

if the attention mask of one modality is used to highlight90

the features of another modality, it is called cross-attention.91

Cross-attention model not only learns the complementary92

features of the two modalities but is also able to filter the93

noise to give better results. In the present study, we propose94

a cross-attention-based classification method that uses the95

attention mask of text tweets to highlight the image tweet’s96

features.97

The limitation of existing early and late fusion meth-98

ods is that they assign a fixed weight to each modality99

which is overcome by the proposed attention-based method100

that balances the contribution of modalities by dynamically101

assigning weights to the features of different modalities.102

This allows the attention model to choose relevant, more103

prominent, and complimentary features from each modality.104

Our motivation for using the multimodal approach is to 105

explore the relationship between the two media and use them 106

harmoniously to achieve better results. The only constraint of 107

the attention-based method is the additional computation of 108

the attention weights that is outdone by the improved network 109

performance. 110

Based on the above discussion, the main contributions of 111

the present study are: 112

• We propose a deep multimodal network designed to 113

learn the prominent features from the textual and 114

visual modalities using a novel Cross-AttentionMulti- 115

Modal (CAMM) framework for the binary classi- 116

fication of disaster tweets into ‘informative’ and ‘ 117

non_informative’ classes. CAMM is designed to uti- 118

lize the complementary information from the tweets’ 119

textual and imaging modalities. The attention mask of 120

text modality is used to highlight the features of the 121

imaging modality. Our goal is to attenuate the image 122

features by determining the relationship between the 123

words in the tweet and different spatial regions in an 124

image. The multimodal dataset used in this study is 125

CrisisMMD [33], comprising the text and image tweets 126

of seven disasters posted on Twitter during 2017. 127

• To validate the performance of the proposed model 128

CAMM, we perform experiments under the following 129

setups, which serve as baselines: 130

(i) Unimodal classification of text tweets using Bidi- 131

rectional Long Short-Term Memory (Bi-LSTM). 132

(ii) Unimodal classification of image tweets using 133

DCNN. 134

(iii) Multimodal classification using MUTAN [34] 135

fusion method. 136

(iv) Multimodal classification using BLOCK [35] 137

fusion method. 138

• We also compare the results of CAMM with five 139

recent state-of-the-art multimodal disaster-related 140

studies based on CrisisMMD dataset [25], [26], 141

[27], [28], [29]. 142

To the best of our knowledge, a cross-attention-based, 143

multimodal fusion approach has not yet been explored in the 144

context of social media disaster data classification. 145

The rest of the paper is structured as follows: In Section II, 146

we discuss the research work related to unimodal and mul- 147

timodal techniques for disaster management proposed in the 148

recent past. Section III covers the architecture of the proposed 149

deep multimodal neural network CAMM. A brief overview 150

of two baseline multimodal models is given in section IV. 151

The experimental setup in Section V includes the dataset, 152

metrics, hyperparameters, and the baseline methods used for 153

performing the experiments. The implementation details of 154

the experiments performed under various setups are given in 155

section VI.We list and discuss the results obtained after train- 156

ing the networks under five different setups in section VII. 157

Finally, in section VIII, we discuss the limitations and future 158

scope of the work. 159
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II. RELATED WORK160

Recently with the popularity of social media platforms at the161

time of emergency, messages comprising situational infor-162

mation, warnings, sentiments, infrastructural damage, geo-163

graphical information, or medical help are posted on these164

platforms in abundance [36]. These messages may be in the165

form of text, images, or videos. This massive volume of rich166

multimodal data can be converted into useful information167

by scientists and domain experts to help the response team168

in rescue operations and control the impact of the disas-169

ter [37]. Although several unimodal models based on text170

and images have been proposed in the last decade, the work171

on multimodal modalities is relatively recent. This section172

summarizes the research work done in handling social media173

disaster data under three categories: (i) Unimodal methods174

based on text-only modality, (ii) Unimodal methods based on175

image-only modality, and (iii) Multimodal techniques based176

on more than one modality proposed in the recent past.177

A. UNIMODAL: BASED ON TEXT-ONLY MODALITY178

Many Natural Language Processing (NLP) based methods179

have been applied recently to the text messages posted180

on various social media platforms [38]. For example,181

Rudra et al. [12] filtered out the situational awareness mes-182

sages from Twitter by identifying tweets’ low-level fea-183

tures and summarized these real-time streams of tweets.184

Basu et al. [39] worked on the Nepal earthquake tweets to185

match the need-based tweets with the supply-based tweets.186

Similarly, Purohit et al. [9] attempted to prioritize the requests187

made by the affected people to be serviced by the emergency188

responders. In a recent study by Madichetty et al. [40],189

authors filtered ‘Need and Availability Resources (NAR)’190

tweets from the Nepal and Italy earthquakes that happened191

in 2015 and 2016, respectively, using a stacked architecture192

of CNN with traditional classifiers. Their experiments on193

various classifiers confirm that K-Nearest-Neighbor as the194

base classifier, Support Vector Machine as the meta clas-195

sifier, and CNN give the best results. Suwaleih et al. [41]196

emphasized the mention of the location or place in the tweet197

message posted during a disaster. They compared the perfor-198

mance of the ‘LocationMention Recognition (LMR)’ task on199

crisis-related and general datasets consisting of text tweets.200

The authors fine-tuned the pre-trained BERTmodel for train-201

ing on five datasets. Their results confirm that crisis-related202

tweets from locations near the disaster event are most help-203

ful for the first responders. Sufi et al. [42] presented an204

NLP-based system to understand location-oriented senti-205

ments on the most extensive set of languages. Their system206

showed an accuracy of 97% when tested on the live feed207

of 67515 tweets. In another study by Zahera et al. [43]208

on Text REtrieval Conference-Incident Stream (TREC-IS)209

[44] dataset and COVID-19 tweets, the authors classified the210

tweets into multiple categories where each tweet may belong211

to more than one category. They used three models in their212

study, (i) BERT for tweet vectorization, (ii) graph attention213

network (GAT) to understand the relation between the tweets214

and labels, and (iii) proposed a metric to compute the distance 215

between the vectors produced by (i) and (ii). Their model 216

achieved an average F1-score of 59% on TREC-IS and 55% 217

on COVID-19 datasets. Since labeling is a tedious and expen- 218

sive task, self-labeling [45], [46], synthetic labeling [47], 219

and semi-supervised learning [48] methods have also been 220

proposed recently. At the onset of a disaster, the unavailability 221

of labeled data has also encouraged researchers to propose 222

methods based on transfer learning and domain adaptation. 223

Li et al. were among the first few researchers to explore 224

this area. They used an iterative self-training strategy using 225

soft and hard labels to identify relevant tweets and labeled 226

data of earlier disasters to learn the classifier for the current 227

disaster [49], [50]. Imran et al. also proposed very effective 228

models based on convolutional neural networks and domain 229

adaptation for disaster management [13], [51]. 230

B. UNIMODAL: BASED ON IMAGE-ONLY MODALITY 231

In a recent study by Ahadzadeh and Mohammad [52], the 232

machine learning methods Support Vector Machine, and 233

Naïve Bayes are applied to tweet images to assess the 234

damage done due to earthquakes. Studies by Khattar and 235

Quadri compared the simple transfer learning, unsupervised 236

domain adaptation, and semi-supervised domain adaptation 237

approaches applied to the natural and biological disaster 238

image datasets [16], [53]. Robertson et al. [54] fine-tuned 239

pre-trained model VGG-16 on Hurricane Harvey images to 240

classify them on an ‘urgency’ and ‘time-period’ basis. In a 241

similar study, Li et al. [15] applied Domain Adversarial 242

Neural Network (DANN) on four disaster images for binary 243

classification into ‘Damage’ and ‘No-damage’. 244

C. MULTIMODAL: BASED ON BOTH TEXT AND IMAGE 245

MODALITIES 246

Under the multimodal analysis, Gautam et al. [25] proposed 247

a diffusion method for the classification of Twitter data 248

(text and images) of seven disasters of the CrisisMMD 249

dataset [33] into two classes ‘informative’ and ‘non- 250

informative’ and compared their model with the unimodal 251

models based on text-only and image-only modalities. For 252

text-only modality, they applied N-gram, LSTM, BiLSTM, 253

and CNN+Glovemethods, and for image-onlymodality, they 254

used six pre-trained models VGG-16, VGG-19, ResNet50, 255

InceptionV2, Xception, and DenseNet for transfer learning. 256

Finally, they compared the results based on three Logistic 257

Regression Decision policies. Their results confirm that the 258

logistic regression decision policy with bigram for text and 259

ResNet50 for images gives the best results. 260

Authors Ofli et al. [26] emphasized that complementary 261

information from different modalities leads to more robust 262

inference. They worked on the same CrisisMMD [33] dataset 263

as Gautam et al. with filtered records where the text label is 264

the same as the image label. High-level features are extracted 265

from two parallel networks, one for text messages and another 266

for images. They used CNN with five hidden layers for 267

the tweet text messages, and for the images, they used a 268
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pre-trained network VGG-16. The feature vectors from these269

two networks are combined and passed to a dense layer270

followed by SoftMax. This type of feature handling from two271

modalities comes under the category of early fusion. Their272

experiments showed that the multimodal early fusion-based273

model performs better than the unimodal models for data274

classification, first into informative / non-informative and275

then into five humanitarian categories.276

The work of Li et al. [27] is also based on the CrisisMMD277

dataset, and they performed their multimodal experiments278

under two scenarios: (a) text and image labels do not match279

(b) text and image labels match. For the unimodal text model,280

they used RNNs Gated Recurrent Unit (GRU) variant, and281

for images, they used CNN. First, they trained two networks282

for text and images independently and then took the average283

of each network prediction as the final output. In the second284

case, they concatenated the feature vectors of the text and285

image networks and passed the combined vector to the dense286

layer to get the output. They concluded that the cancat+train287

(late fusion) method performs better than the average (early288

fusion) method.289

In a similar study, Madichetty et al. [28] applied the con-290

cept of late fusion by adding the feature vectors of the two291

modality networks to predict the final label. Text tweets are292

trained on ANN, and VGG-16 is used as the pre-trained293

network for the images.294

Kumar et al. [29] applied the majority voting scheme to the295

predicted classes of unimodal models for ‘text’ (LSTM) and296

‘image’ (VGG-16) and multimodal model for ‘text+ image’.297

For the multimodal classification, they used late fusion. The298

final label assigned to the class is the label with two or more299

votes.300

In another study, Pouyanfar et al. [17] classified the videos301

of two hurricanes, Harvey andMaria, using a newmultimodal302

classification deep learning framework. For the audio com-303

ponent, SoundNet, a pre-trained model, was applied. For the304

visual-spatial component InceptionV3 and for the temporal-305

video component, LSTM is followed by a dense layer. For the306

final scores, they proposed to combine the audio and visual307

scores with a Multiple Component Analysis based fusion308

model that showed the effectiveness of the proposed model309

over other existing techniques. Nie et al. [55] used three310

modalities (point cloud, Multiview, and panorama view) to311

represent a 3D shape and proposed two novel loss functions:312

correlation loss and instance loss. They used a weighted313

method to fuse these modalities to build a robust model for314

3D shape recognition.315

From the above discussion, it is clear that researchers have316

shown greater interest recently in exploring the field of deep317

multimodal learning for disaster-related research. Most of318

these studies have applied feature-based (early) and decision-319

based (late) fusion methods to combine the features of mul-320

tiple modalities. However, the recently introduced attention321

mechanism for multimodal learning is not fully explored for322

disaster management, which motivated us to fill this research323

gap.324

III. PROPOSED WORK 325

We propose a novel architecture to build a binary classifier 326

that integrates the information about the same event expressed 327

in two different ways in the form of words and pictures. 328

Fig. 1 shows the complete architecture of the proposed mul- 329

timodal DCNN that uses annotated text and image tweets 330

posted on Twitter during seven disasters. 331

We are given a tweet text T and a tweet image I, and we 332

need to fuse the features of T and I to predict the final class 333

as ‘informative’ or ‘ non_informative’. As commonly done in 334

multimodal architectures, the text T and image I are first con- 335

verted to vector representations. Then these representations 336

are fused to extract the most meaningful interactions between 337

the text and the image to get the predicted class. In this study, 338

we propose a new fusion technique called Cross-Attention 339

Multi-Modal (CAMM) fusion, where the features extracted 340

for each word in a tweet ‘‘attend’’ to different spatial regions 341

of the image features. Our motivation for this approach is 342

that different words in a tweet can accentuate relevant image 343

features that significantly improve the model’s performance. 344

As shown in Fig. 1, we use the pre-trained model VGG-16 345

to extract features from the input image I. The output of 346

convolution layers is passed through the Tanh() activation 347

function to limit the range of features between -1 and 1. For a 348

tweet T with n words, we use a Bi-LSTM with two layers to 349

learn hidden representations of dimension dT for each word. 350

Finally, we represent the image and text features by FI and 351

FT , respectively. 352

In self-attention, a feature vector is generated for eachword 353

in the string, then the three weight matricesWK ,WQ andWV 354

are used on the words to extract the key, query, and value vec- 355

tors for each word. In the proposed cross-attention structure, 356

our goal is to attenuate the image features by determining 357

the relationship between the words in the tweet and different 358

spatial regions in an image. TheWK matrix is used to extract 359

key values for each word in the tweet, and WQ is used on 360

feature vector of an image obtained using a CNN. The key 361

vectors obtained for each word and query vectors obtained for 362

each spatial region in an image are then combined to create 363

the attention given by the following equation, 364

A = softmax

(
WQFI × (WKFT )T

√
dk

)
, (1) 365

where dk represents the dimension of the output of WK FT . 366

This attention map represents the effect of each word in 367

the tweet on different spatial regions in the image. Finally, 368

we generate the value vectors given by, WVFI , which are 369

then multiplied with the attention map A to generate the 370

‘‘attended’’ image features, 371

FCA = A� (WVFI ), (2) 372

where � represents element-wise multiplication. The 373

attended image features are subsequently flattened and 374

passed through the classification layers to predict whether 375

the image-text pair is ‘informative’ or ‘non_informative’. 376
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FIGURE 1. The architecture of the proposed Cross-Attention Multi-Modal (CAMM) model for binary classification of disaster-related tweets.

IV. A BRIEF OVERVIEW OF BASELINE MULTIMODAL377

MODELS378

We train two popular multimodal models, MUTAN [34] and379

BLOCK [35], proposed by Younes et al. on the CrisisMMD380

dataset as baseline models and compare their results with the381

proposed model, CAMM. We briefly discuss these models in382

this section.383

MUTAN is a multimodal fusion method that aims to cap-384

ture the relation between every pair of neurons of text and385

image modalities. The fused features can be represented by386

the relation:387

yk =
dT∑
i=1

dI∑
j=1

MijkF iTF
j
I (3)388

y = M ×1 FT ×2 FI (4)389

where yk is the output at the kth index390

FT is the text vector with dimension dT391

FI is the image vector with dimension dI392

M is the 3D learnable weight matrix393

y is the output394

MUTAN applies Tucker decomposition to reduce the num-395

ber of parameters of the weight matrix, M . M is represented396

as a product ofWT , WI , Wy and a core tensorMc as:397

yout = Wy (Mc ×1 (WTFT )×2 (WIFI )) (5)398

where WT , WI and Wy are the weight matrices to reduce the399

dimension of the text features, image features, and the fused400

vector.401

As explained above, MUTAN compresses the feature vec-402

tors of text (FT ) and image (FI ) to reduce the number of403

parameters in the fused vector. However, this may lead to404

loss of information if the reduced-sized feature vectors do 405

not efficiently capture all the information in the text and 406

image features. Younes et al. [35] proposed the BLOCK 407

fusion model to address this problem. This method divides 408

the feature vectors, FT and FI into blocks and applies Tucker 409

decomposition to each individual block. It finally concate- 410

nates them to obtain the final fused feature vector. 411

V. EXPERIMENTAL SETUP 412

Extensive experiments are conducted on the multimodal 413

dataset of seven disasters for the proposed cross-attention- 414

based multimodal framework. The results are compared with 415

text-only, image-only, and two multimodal baseline models. 416

All experiments are performed three times, and the average 417

is reported. 418

A. DATASET 419

The benchmark multimodal disaster dataset used in the 420

present study is the ‘CrisisMMD’ Twitter dataset released 421

by Imran et al. [33]. This dataset has images and text 422

tweets posted for seven devastating natural disasters held 423

in 2017 worldwide. These disasters were: ‘‘Hurricane Har- 424

vey, Hurricane Irma, Hurricane Maria, Mexico Earthquake, 425

California Wildfires, Iraq-Iran earthquake, and Sri Lanka 426

Floods’’. The tweets are filtered and manually anno- 427

tated into two classes: {‘informative’, ‘non_informative’}. 428

‘informative’ tweets provide actionable information for the 429

humanitarian agencies about dead, injured, or lost people and 430

infrastructural damage. Advice, warnings, and requests for 431

aid also come in this category. For example, Fig. 2 shows 432

a batch of informative images and text tweets posted dur- 433

ing Hurricane Harvey and the Sri Lanka floods. Informative 434
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TABLE 1. CrisisMMD Dataset [33] with matching labels for text and image tweets.

FIGURE 2. Informative image and text tweets posted during Hurricane Harvey and Sri Lanka Floods. These types of messages.

messages are beneficial for humanitarian agencies in rescue435

operations.436

Fig. 3 shows a batch of ‘non_informative’ tweets which437

may include text messages expressing sympathy for the438

affected people or may comprise opinions in general. Images439

of politicians visiting the disaster site, posters, or logos that440

do not provide helpful information in disaster response also441

belong to the ‘non_informative’ category.442

The dataset consists of 16058 text tweets and 18082 image443

tweets, as up to four pictures can be posted alongwith one text444

tweet on Twitter. However, since the text and the correspond-445

ing images are annotated separately, their labels may not be446

aligned. are very helpful for the humanitarian agencies in the 447

rescue operations. 448

We have filtered only those tweets with the same label 449

for the text and the corresponding image for the present 450

study. Table 1 gives the details of the filtered dataset with 451

12762 tweets each for the image and the text modalities, out 452

of which 8463 are informative, and 4299 are non-informative. 453

The filtered dataset is further split into the train, val, and test 454

set in the ratio 80:10:10 for training, validation, and testing 455

purpose. Most disaster-related studies done in the recent past 456

based on multimodal data analysis have used the CrisisMMD 457

dataset. 458
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FIGURE 3. Non_informative image and text tweets posted during Hurricane Harvey and Sri Lanka Floods. These include posters, banners
or other messages that do not provide any useful information.

As our dataset is imbalanced, the accuracy metric is459

unsuitable for evaluating the model’s performance. Instead,460

we compute weighted F1-score and AUC metrics to handle461

this issue. Also, we use weighted cross-entropy loss, where462

the weight assigned for each class is inversely proportional to463

the number of class samples in the training set.464

B. METRICS USED465

To estimate the performance of the trained models and to do466

a comparative analysis we have used the following metrics in467

the present study:468

(a) Accuracy: Ratio of correct predictions made by the469

model and the total samples.470

Accuracy =
True_Positive+ True_Negative

Total
471

(b) Precision: Ratio of correctly predicted positive samples472

and all the predicted positive samples.473

Precision =
True_Positive

True_Positive+ False_Positive
474

(c) Recall: Ratio of correctly predicted positive samples475

and the actual positive samples.476

Recall =
True_Positive

True_Positive+ False_Negative
477

(d) F1-score: The F1-score is computed by taking the 478

Harmonic Mean (HM) of precision and recall. 479

F1− Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

480

(e) ROC-AUC: ROC curve stands for Receiver Operator 481

Characteristic curve drawn between True Positive Rate (TPR) 482

on the y-axis and False Positive Rate (FPR) on the x-axis at 483

various thresholds and is generally used for binary classifi- 484

cation. Area Under the Curve (AUC) summarizes the ROC 485

curve, a higher value of AUC results in a better performing 486

model. 487

C. HYPERPARAMETER SETTING 488

All the experiments are performed under the PyTorch frame- 489

work on Tesla P100 GPU with High-RAM provided by 490

Google Colab Pro. We have applied the Grid Search method 491

to finetune the hyperparameters. We choose various combi- 492

nations of the hyperparameters and compare the model’s per- 493

formance for every combination to select the optimal value. 494

Although this method is relatively slow, it helps find the best 495

values for the network parameters. The parameters selected 496

through grid search for training all the models include: learn- 497

ing rate as 1.00e-03, weight decay as 5.00e-04, momentum 498

as 0.9, loss function as weighted CrossEntrpoyLoss and opti- 499

mizer as Stochastic Gradient Descent (SGD). We performed 500

50 epochs for the baseline models and 100 epochs for the 501
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FIGURE 4. Unimodal classification of text tweets using Bi-LSTM and pre-trained word embedding GloVe.

proposed CAMM model. The learning rate schedular is set502

at [25], [35] for 50 epochs and at [60, 75] for 100 epochs. For503

DCNN, we have taken VGG-16 as the backbone architecture.504

For text, Bi-LSTM uses two layers which are enough to505

capture the complex features of the text tweet. An Abla-506

tion study for the choice of hyperparameters is discussed in507

section VII C, and the results are listed in Tables 2, 3, and 4.508

D. BASELINES509

We compare the proposed model CAMM against four base-510

line models under two categories. Firstly, we compare our511

model with unimodal models, Bi-LSTM for text and DCNN512

for image classification. Secondly, we compare CAMMwith513

the two popular multimodal fusion networks, MUTAN and514

BLOCK. Lastly, CAMM is also compared with other state-515

of-the-art multimodal models proposed in the recent disaster-516

related studies.517

VI. IMPLEMENTATION DETAILS518

In the following subsections, we discuss the implementation519

details of the unimodal and multimodal models for the binary520

classification of text and image tweets.521

A. UNIMODAL CLASSIFICATION OF TEXT TWEETS522

Fig. 4 shows the architecture for the unimodal classification523

of text tweets by the Bi-LSTM model.524

1) PREPROCESSING OF TEXT525

The tweets are preprocessed by removing the stop words and526

URLs embedded in the tweet text. After this, all the special527

(‘@’, ‘#’, ‘$’, ‘%’, ‘&’, ‘∗’, ‘!’) and non_ASCII charac-528

ters and their repeated occurrence are removed. Trailing and529

multiple white spaces in between are also deleted. Lastly, the 530

text is converted into lowercase. 531

2) WORD EMBEDDINGS USING PRE-TRAINED GloVe 532

After the preprocessing step, the words in the tweet need to 533

be represented as real-valued vectors for further processing. 534

We have used pre-trained word embedding GloVe (Global 535

Vectors forWord Representation) [56] to get the word embed- 536

dings. GloVe converts the words into vectors so that sim- 537

ilar words have similar vector representations. To capture 538

complete information from the word, we used the GloVe 539

embedding of dimension 300. 540

3) CLASSIFICATION USING LSTM 541

Once the vector matrix of tweet words is obtained, we use 542

the Bi-LSTM model to extract the features for classification. 543

This study uses two LSTMs, one in the forward and one in 544

the backward direction. LSTM model was first proposed by 545

Hochreiter et al. [57] to handle the shortcomings of Recur- 546

rent Neural Networks, which could not handle the long- 547

term dependencies. LSTMs are designed to remember the 548

information for a longer time through a series of LSTM units. 549

Each unit of the LSTM has a forget gate, input gate, output 550

gate, and cell state. The forget gate consists of a sigmoid 551

function that outputs a number between 0 and 1 depending 552

on the previous and the current state. A ‘0’ represents discard 553

or forget, and a ‘1’ represents keep or remember. The input 554

gate also has a sigmoid function that decides which values to 555

be updated, and the tanh function provides the new updated 556

values resulting in the output for the next hidden state. These 557

gates allow the model to keep only the critical information 558

and forget the rest. We have used two layers of LSTM, which 559
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FIGURE 5. Unimodal classification of image tweets into two classes ‘informative’ and ‘non_informative’ using DCNN with VGG-16 as the
backbone architecture.

are enough to capture the complex features from the tweet560

text.561

B. UNIMODAL CLASSIFICATION OF IMAGE TWEETS562

Fig. 5 shows the architecture of the unimodal classification563

of image tweets using DCNN with pre-trained VGG-16 [58]564

model as the backbone architecture.565

1) PREPROCESSING OF IMAGES566

We first resize the tweet images to (256, 256), and then a567

random patch of (224, 224) is cropped. After this, the pixels568

are scaled between 0 and 1 and then normalized with mean569

and standard deviation values of the ImageNet database [59].570

2) CLASSIFICATION USING DEEP CONVOLUTIONAL NEURAL571

NETWORK (DCNN)572

DCNN is used to classify tweet images using VGG-16 as573

the backbone architecture. VGG-16 is a DCNN designed to574

classify 14 million annotated images of the ImageNet dataset575

into 1000 classes. It consists of a stack of 13 convolutional576

layers with a small filter size of (3×3) divided into five blocks577

of 2, 2, 3, 3, 3 convolution layers where each block is followed578

by amaxpooling of (2× 2) and a stride of 2 which reduces the579

size of the image to half after each block. After the five blocks580

of convolution layers there are three fully connected (FC)581

layers with 4096 parameters for the first two FC layers. The582

last FC has 1000 parameters which are equal to the number583

of classes for the ImageNet dataset.584

Since we have two classes for the CrisisMMD dataset,585

we set the parameters of the last FC to two. In the end,586

a SoftMax function gives the probability of the output classes.587

After each hidden layer, the nonlinearity is introduced by588

adding an activation function ReLU.589

C. MULTIMODAL CLASSIFICATION OF TEXT AND IMAGE 590

TWEETS 591

We follow the same preprocessing technique for CAMM as 592

mentioned in unimodal classification for text and image data. 593

The output of the convolution layers of VGG-16 for an input 594

image is of dimensions (7, 7, 512) which are passed through 595

an additional 1 × 1 convolution and Tanh() activation to 596

increase the number of channels to 1024. Each cell in the 597

7 × 7 matrix represents features for different spatial regions 598

in the input image, which are subsequently reshaped to 599

49 × 1024 which represents FI . 600

Bi-LSTM takes the GloVe embeddings as input for all the 601

words in a tweet to generate features of dimension 1024 for 602

each word represented as FT = (n, 1024) where n is the 603

number of words in a tweet. The two feature vectors FIa nd 604

FT are then used to generate the key, query, and value vectors 605

where WK ,WQ and WV are three separate fully connected 606

layers with input and output size 1024. Next, the key and 607

query vectors are used to generate the attention mapM (refer 608

to 1), which represents the relevance of each word in a tweet 609

against different spatial regions of the image. Finally, this 610

attention map is applied to the value vector to obtain a fused 611

feature vectorFCA (refer to 2). The final fused vector is passed 612

through a linear classifier consisting of three fully connected 613

layers with a ReLU activation in between, and the output of 614

the last layer is passed through a SoftMax function to get the 615

probabilities assigned to each label. 616

VII. RESULTS AND DISCUSSION 617

To validate the performance of the proposed model CAMM, 618

we conduct extensive experiments on the benchmark multi- 619

modal disaster dataset CrisisMMD and compare the results 620

with baseline unimodal and multimodal methods and also 621
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FIGURE 6. Chart (a) shows model wise average F1-score for five models. Chart (b) compares the Area Under the Curve (AUC), taken as the average of all
the disasters for five models.

with recent state-of-the-art multimodal models. In this622

section, we present the results obtained after training the623

network under five setups: (1) Text-only, (2) Image-only,624

(3) MUTAN fusion, (4) BLOCK fusion, and (5) CAMM625

fusion (proposed). Under each setup, we train networks for626

seven disasters resulting in 35 test cases. Table 5 summarizes627

the Accuracy, Precision, Recall, F1-score, and AUC of the628

models trained under these five setups for seven disasters.629

Table 6 compares the results of CAMMwith current state-of-630

the-art models. For comparison, we take the average of the631

F1-scores for all seven disasters for each model.632

A. CAMM VS. BASELINE UNIMODAL AND MULTIMODAL633

MODELS634

Firstly, we discuss the performance of the baseline uni-635

modal and multimodal models trained in this study. The636

image-only DCNN architecture with VGG-16 as the back-637

bone outperforms the text-onlymodel Bi-LSTM. The average638

F1-score for the unimodal text-only model is 62.03% and639

for the image-only model is 76.40%. The performance of640

both the multimodal models MUTAN and BLOCK is bet-641

ter than the two unimodal models. For the MUTAN fusion642

model, we achieve an average F1-score of 77.77%, and for643

the BLOCK fusion model, it is 78.17%. BLOCK fusion644

method’s performance is 0.4% better than MUTAN fusion.645

The proposed CAMMmodel outperforms all four models by646

achieving the average F1-score of 84.08% for all disasters,647

as shown in Fig. 6(a). Thus, we can see a clear progression648

from unimodal to multimodal classifiers, with the best F1-649

score achieved by CAMM.We also compare the five model’s650

AUC metric taken as the average of all disasters. Fig. 6(b)651

confirms the outperformance of CAMM as it has a maximum652

value of 92.47% for AUC. The F1-scores of CAMM for indi-653

vidual disasters are Hurricane Harvey: 85.29%, Hurricane654

Irma:76.40%,HurricaneMaria: 81.01%,Mexico Earthquake:655

TABLE 2. Performance of CAMM for five backbone architectures.

TABLE 3. Performance of CAMM for different learning rates.

TABLE 4. Performance of CAMM for different weight decay values.

82.93%, California Wildfires: 82.36%, Iraq-Iran Earthquake: 656

88.14%, and SriLanka Floods: 92.47%. 657

B. CAMM VS. RECENT STATE-OF-THE-ART MULTIMODAL 658

MODELS 659

We also compare the results of CAMM with recent state-of- 660

the-art multimodal models in Table 6. The multimodal fusion 661
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TABLE 5. Results of two Unimodal Models (1) Bi-LSTM for text tweets and (2) VGG-16 for image tweets and three Multimodal Models (1) MUTAN
(2) BLOCK and the proposed model (3) CAMM on the data of seven disasters of CrisisMMD Dataset.

model with logistic regression proposed by Gautam et al. [25]662

reported only their accuracy results. Their model achieves663

accuracy in the range of 74.14% to 80.20% for the seven664

disasters with an average accuracy of 77.33% compared to665

CAMM, which has an average accuracy of 87.60%, thus666

confirming the advantage of using an attention mechanism.667

Ofli’s early fusion model [26] gives an F1-score of 84.2% for668

the informativeness task, which is close to CAMM. Although669

they worked on the CrisisMMD dataset, one significant dif-670

ference in their training is that they merged the data of all671

seven disasters to get a much bigger dataset which directly672

impacted the performance of their deep learning model. In a673

similar study, models trained by Caragea et al. [27] for late674

fusion with majority voting and early fusion give the average675

F1-score of 75.63% and 78.13%, respectively. Two other676

studies that used the early and late fusion withmajority voting677

show the F1-score of 74.46% by Madichetty et al. [28] and678

82% by Kumar et al. [29] as compared to CAMM’s F1-score679

of 84.08%.680

The above discussion confirms the following:681

1) The performance of multimodal classification mod-682

els is better than unimodal text-only and image-only683

models for all seven disasters of the CrisisMMD684

dataset.685

2) Amongst the three multimodal techniques, the pro-686

posed cross-attention-based model CAMM outper-687

forms the MUTAN and BLOCK models.688

3) CAMM also outperforms current state-of-the-art mul-689

timodal models on the benchmark CrisisMMD dataset,690

confirming the advantage of applying cross-attention691

fusion for text and image modalities. The proposed 692

method is designed to select the prominent features 693

from the two modalities which are more relevant for 694

the task resulting in a better classifier. 695

We have used the following abbreviations for naming the 696

disasters: 697

HH: Hurricane Harvey, HI: Hurricane Irma, 698

HM: Hurricane Maria,ME: Mexico Earthquake, 699

CWF: California Wildfires, IIE: Iraq-Iran Earthquake, 700

SLF: Sri Lanka Floods 701

C. ABLATION STUDY 702

For the proposed CAMM architecture, the hyperparame- 703

ters are fine-tuned using grid search. The results of exper- 704

iments performed for selecting the backbone architecture 705

are shown in Table 2. We trained the network for Hurri- 706

cane Harvey image dataset with EfficientNet-B3, ResNet50, 707

DenseNet201, VGG-16 and VGG-19 as backbone architec- 708

tures. The results confirm that VGG-16 achieves the highest 709

F1-score of 78.19% and hence the best choice for all the 710

experiments performed in this study. 711

The results of fine-tuning the learning rate on Hurricane 712

Harvey image dataset are listed in Table 3. Out of [1.00e-02, 713

1.00e-03, 1.00e-04, 1.00e-05] the best F1-score of 84.33% is 714

achieved with 1.00e-03. 715

Similarly, we trained the network on the Hurricane Harvey 716

image dataset for the values [1.00e-03, 1.00e-04, 5.00e-04] 717

for the selection of weight decay hyperparameter and chose 718

5.00e-04 for all our experiments in this study. The results are 719

listed in Table 4. 720
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TABLE 6. Comparison of CAMM with recent state-of-the-art multimodal models on CrisisMMD Dataset. The symbols used for various disasters are: HH:
Hurricane Harvey, HI: Hurricane Irma, HM: Hurricane Maria, ME: Mexico Earthquake, CWF: California Wildfires, IIE: Iraq-Iran Earthquake, and SLF: Sri
Lanka Floods.
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VIII. CONCLUSION721

In this study, we proposed a novel Cross-Attention Multi-722

Modal (CAMM) framework for the binary classification of723

multimodal data of seven disasters collected from the Twit-724

ter microblogging platform. A series of experiments per-725

formed under five different setups confirm that the proposed726

multimodal classifier that uses the complementary features727

of textual and visual modalities performs better than the728

unimodal text-only and image-only approaches. Also, the729

cross-attention fusion mechanism performs better than730

the previously proposed methods based on early and late731

fusion techniques. As a result, CAMM achieved an average732

F1-score of 84.08%, which is 6.31% better than the F1-score733

of the MUTAN fusion method and 5.91% better than the734

BLOCK fusion method trained in this study. CAMM also735

outperformed recent state-of-the-art models for the bench-736

markmultimodal disaster dataset. In the future, wewould like737

to extend the concept of cross-attention to other modalities738

like audio and video. We would also explore how to use739

the attention mechanism for transfer learning and domain740

adaptation in scenarios where labeled data is unavailable,741

especially at the onset of a new disaster.742
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