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ABSTRACT Human communication entails subtle non-verbal modes of expression, which can be analyzed
quantitatively using computational approaches and thus support human sciences. In this paper we present
huSync, a computational framework and system that utilizes trajectory information extracted using pose
estimation algorithms from video sequences to quantify synchronization between individuals in small
groups. The system is exploited to study interpersonal coordination in musical ensembles. Musicians com-
municate with each other through sounds and gestures, providing nonverbal cues that regulate interpersonal
coordination. huSync was applied to recordings of concert performances by a professional instrumental
ensemble playing two musical pieces. We examined effects of different aspects of musical structure (texture
and phrase position) on interpersonal synchronization, which was quantified by computing phase locking
values of head motion for all possible within-group pairs. Results indicate that interpersonal coupling was
stronger for polyphonic textures (ambiguous leadership) than homophonic textures (clear melodic leader),
and this difference was greater in early portions of phrases than endings (where coordination demands are
highest). Results were cross-validated against an analysis of audio features, showing links between phase
locking values and event density. This research produced a system, huSync, that can quantify synchronization
in small groups and is sensitive to dynamic modulations of interpersonal coupling related to ambiguity in
leadership and coordination demands, in standard video recordings of naturalistic human group interaction.
huSync enabled a better understanding of the relationship between interpersonal coupling and musical
structure, thus enhancing collaborations between human and computer scientists.

INDEX TERMS Entrainment, interpersonal synchronization, joint actions, pose estimation, musical ensem-
ble performance, social interaction, social signal processing, nonverbal communication.

I. INTRODUCTION

Machines have undergone major advances in their capabil-
ity to interact with users. These advances are being further
propelled with applications in human motion analysis and
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understanding coordination of human behaviors [1], [2]. With
a wide range of methods to track human motion today,
there is great potential in utilizing them to understand var-
ious behavioral aspects and responses of the human body.
Humans exhibit phenomenal capabilities in synchronizing
joint actions and coordinating at the interpersonal level in a
non-verbal manner. This is observed particularly in musical
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ensembles where co-performers coordinate their movements
precisely yet flexibly, and this coordination often seems
effortless [3]. A natural response to music is to move and
synchronize to the rhythmic elements, and such spontaneous
entrainment can be observed when individuals move to music
being played around them, often without the intention to do
so [4]. In group settings where multiple individuals interact,
the mix of musical sounds and corresponding body move-
ments can trigger social bonding effects reflected in feelings
of affiliation, trust, and cooperativity [5], [6].

In musical ensembles, the interaction between perform-
ers is visual in addition to the audio cues associated with
musical notes. Co-performers thus communicate with each
other non-verbally by the motion of their heads and other
upper- body movements. Such visual communication can
convey information about initiating a musical piece at a cer-
tain time, as well as conveying how musical notes should
be played to produce specific musical effects. This phe-
nomenon can be observed clearly in musical conductors,
who traditionally serve as messengers for the composer of
a musical piece by using gestures that guide the performers
in recreating the intended emotions and sentiments, allowing
the group as a whole to reproduce an immersive experi-
ence [7]. Similarly, among musical performers, conveying
these messages is often considered to be crucial for the
co-creation of a meaningful musical performance. Therefore,
musicians continually move during a performance to augment
the creation of sound, express their artistic intentions, com-
municate with their fellow group members, and achieve states
of synchronization [8], [9].

Analysis on interpersonal coordination in musical ensem-
bles has implications that go beyond the specific area
of music. Tal-Shmotkin & Gilboa, for example, show
how a string quartet resembles working groups in orga-
nizational units (self- managed teams), i.e., groups of
interdependent individuals, acting within an organizational
setting, self-regulating their behavior to perform a joint
task [10]. Computational approaches have already been used
to study this communicative phenomenon. Researchers typ-
ically make use of motion capture (MoCap) technologies
that can record and extract features from body movements
exhibited by performers in musical ensembles. Conventional
setups consist of linked optical cameras to track multiple
markers that researchers attach to the performers’ bodies
prior to the recording session. While MoCap has facilitated
research on joint actions and group behaviors [11], [12], [13],
this technology bears limitations that preclude widespread
use, in particular to the extent that it is an intrusive method
for capturing trajectories of joints and limbs.

In this paper we introduce huSync (Human Sync), a com-
putational framework and system that is intended to assist
with the automated analysis of synchronization in small
groups from conventional video recordings by making use
of a multi-person pose estimation algorithm to extract body
joint coordinates [14]. huSync is designed in recognition of
the need to study interpersonal coordination within groups in
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ecological settings in order to ensure that findings are rep-
resentative of everyday joint action. With this goal in mind,
we apply huSync to video recordings of a professional musi-
cal ensemble, which enables the investigation of musicians’
movements and interaction in naturalistic contexts. Musical
performances serve as an ideal test bed to examine non-verbal
communication because they are readily controlled micro-
environments where, in many cultural traditions, interactions
are scripted in musical scores. Capitalizing on this conven-
tion, we analyze and assess how the movements of ensemble
performers evolve over the course of structures specified
in musical scores, and huSync is used to address research
questions about the effects of musical structural features on
objective measures of ensemble coordination.

This paper is organized as follows: in Section II, we high-
light the hypothesis and research questions that are raised,
in Section III we present existing computational approaches
for the analysis of synchronization and relevant stud-
ies that have examined interpersonal synchronization and
entrainment in small groups, particularly musical ensembles;
Section IV describes the huSync computational framework
and system as well as an instance of the framework, with
a detailed methodology and calculation routine, explained
using a simulated example, to compute dyadic synchroniza-
tion; Section V presents the dataset, with a sub-section ded-
icated to the implementation of huSync on this dataset and
parameters utilized for our use case to perform the analysis;
We then present statistical results in Section VI followed by
Section VII where we discuss them; We conclude the paper
by highlighting limitations and possible future research in
Section VIII.

Il. THE PROBLEM
Our first objective is to develop a computational framework
and a system, for the automated analysis of interpersonal
coordination in small groups, considering cases of clear lead-
ership by an individual member as well as cases of egalitarian
leadership distributed throughout the group. In our computa-
tional approach, we get motor, postural, and acoustic data in
a non-intrusive manner, to compute synchronization of motor
and postural features by applying consolidated techniques,
and to provide outputs which are robust with respect to the
different conditions addressed (e.g., either clear or egalitarian
leadership). Our second goal is to exploit such computational
approach to investigate the effects of musical texture and
position within musical phrases, and how it affects interper-
sonal coordination in a professional music group performing
in two constellations that are common in Western chamber
music: a string quartet (consisting of two violins, viola, and
cello) and a clarinet quintet (i.e., a string quartet with an added
clarinet soloist). This is intended to at the same time pro-
vide evidence of the robustness of the proposed framework
and system and increase knowledge of the mechanisms that
underly interpersonal coordination in small groups.

Musical phrases are analogous to phrases or sentences in
speech to the extent that they are meaningful organizational
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units that would be perceived as coherent or complete if
presented in isolation. We consider phrases to be sections
of musical pieces that consist of unified thematic material
presented in uniform texture. On this view, phrase boundaries
are marked by changes both in thematic material and texture.
While this definition can result in longer structural units
than what are usually designated as phrases in musicological
analyses, this definition serves our research questions related
to effects of structural change on interpersonal coordination.
The strength of interpersonal coupling in body motion was
expected to be influenced by musical texture and phrase posi-
tion. Based on previous research [15], [16], [17], coupling
strength is hypothesized to be stronger for ambiguous textures
where no leader is implied (polyphonic) versus textures with
an unambiguous melodic leader (homophonic) due to height-
ened mutual adaptation, anticipation, and joint attention in
the former. However, whether coupling would be stronger at
the beginning and end of phrases than in the middle [18],
[19] was an open question due to potentially counteracting
effects of coordination demands and compensatory strategies.
These demands and strategies could, furthermore, vary as
a function of texture. Specifically, the presence of a leader
may be more influential at the beginning and ending of
phrases than in the middle, in which case we would expect
a statistical interaction of the two factors. To pave the way
for naturalistic research conducted in ecological settings,
we examined these research questions by analyzing public
concert recordings taken with conventional video using our
proposed approach which utilizes computer vision techniques
involving pose estimation and quantifying synchronization.
In addition, video-based coupling measures were correlated
with audio features of the performances to assess cross-modal
relations [20], [21]. Some degree of dissociation was antici-
pated, due to auditory coordination being most pronounced at
timescales related to the musical beat, whereas visual-based
coordination of body motion is most pronounced at longer
timescales [22].

Ill. BACKGROUND AND RELATED WORK

In this Section, we summarize background and related work
with respect to the two major objectives of this work,
i.e., (i) existing computational approaches to analysis of
interpersonal synchronization in small groups as well as
(i1) theoretical and experimental background on interpersonal
coordination in musical joint action.

A. COMPUTATIONAL APPROACHES TO ANALYSIS OF
SYNCHRONIZATION IN SMALL GROUPS

Interpersonal synchronization in small groups is of key
interest since it serves as a useful indicator of dyadic, and
group-level behavior and coordination. The analysis of syn-
chronization is complex and requires integrating multimodal
communicative signals. Many studies in this area are based
on manual annotations, and the analysis is done by directly
inspecting and coding the data by trained observers. To avoid
this tedious process, automated methods can be used to
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process relevant social signals in small groups and thereby
measure interpersonal synchrony.

Analyzing social dynamics and interpersonal synchro-
nization have been studied in many fields. For example,
in psychotherapy settings, studies analyzed temporal changes
in global body movement using video-based quantification
techniques such as motion energy analysis (MEA), a frame
differentiating method, to measure synchrony between the
patient and counselor during psychotherapeutic sessions [23],
[24], [25], [26]. While MEA is a simple approach, a critical
issue noted is that since it quantifies frame-differences based
on the region of interest (ROI), it is not sensitive to the direc-
tion of movement within a ROI. Thus, someone who touches
their face often, will exhibit higher head-movement as com-
pared to someone who does not [23]. During unidirectional
face-to-face communications, Yokozuka and colleagues [27]
made use of wireless accelerometers attached to the forehead
of the speaker and listener to analyze head motion synchro-
nization and empathy, using phase and frequency differences.
The use of instruments attached to the body makes partici-
pants uncomfortable which impedes naturalistic movements.

Among small group ensembles, MoCap systems have been
extensively used to study interpersonal coordination with the
use of non-linear methods particularly between performers
playing music together [28], [29], [30], conductors’ gestures
inducing entrainment in a musical ensemble [31] or par-
ticipants moving to the beat of the music [32], [33], [34].
In Burger et al., MoCap data was processed to represent
whole-body swaying and bouncing motions among partici-
pants. Period and phase-locking behavior was observed in
full-body music-induced movements by calculating the cir-
cular mean of movement phases and beat locations for each
participant, with results informing our understanding of how
humans entrain to music. While data can be captured with
MoCap systems at high frequencies, good accuracy, and
low noise, such specialized systems can be expensive, pose
methodological issues [35], and restrict movement due to the
use of tight-fitting motion-tracking suits. Marker-less meth-
ods are emerging as good alternatives to MoCap systems for
synchronization studies in small groups, as seen, for example,
in a study in Hadjakos ef al. [36], who used a Kinect camera
to analyze head movements and study synchronization in a
violin duet performance.

With huSync, we present a system that instead utilizes a
pose estimation algorithm on video sequences and computes
Phase-Locking Values (PLV) to study the interaction of social
signals in small group setups. As compared to the computa-
tional approaches discussed above, huSync is a non-intrusive
method to study interaction in small groups in naturalistic
contexts and eliminates the dependency on any hardware for
tracking body movements. PLVs have been used to quantify
interpersonal coordination at the level of body motion and
brain activity in a wide range of social interaction tasks [37],
[38], [39], [40], [41], [42], suggesting that it is a reliable mea-
sure for studying cognitively mediated contributions to the
synchronization process. Indeed, phase locking is generally
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a pervasive concept in computing interactions in non-linear
and complex systems, and PLV in particular, is a commonly
used interaction measure in diverse domains [43], [44]. When
applied to evaluating body movement synchronization, PLV
has proven to be sufficiently sensitive to detect subtle and
unintended coordination under a range of manipulations,
including different leadership conditions [17]. A large body
of previous work therefore suggests that PLV is appropriate
for assessing functional level connectivity between perform-
ers during naturalistic musical ensemble performance to test
our hypotheses about relations between musical structure and
ensemble coordination.

Following Mormann et al. [45], we compute PLVs using
phase values that are extracted from the spectrum of the
analyzed motion trajectory signals. These phase values are
obtained for each frequency by applying a Fast Fourier Trans-
form (FFT). For the purpose of our study, we utilize relative
phase values, as in previous research [46] that assessed the
dyadic synchronization between individuals within pairs of
co-performers. To this end, we calculated PLVs by computing
the phase difference between the head motion trajectories of
two co-performers in each possible pair using the formula
in 1. In this procedure, the phase difference is represented
as a complex unit-length vector [43] and the absolute value
of the mean is then a measure of the magnitude of the vector,
which indicates the degree of synchrony.

pry — | 2=t €%

n

ey

Here n is the total number of data points, ¢ represents
equally distributed discrete time steps, and ®; and ®, are
the phase angles of the two signals for a specific frequency
being analyzed. The degree of synchrony as computed here
is in the range of [0,1], where the highest state of synchrony
is 1.

B. INTERPERSONAL COORDINATION AND ENTRAINMENT
IN MUSICAL JOINT ACTION

Small groups of musicians provide a valuable domain to
investigate interpersonal coordination and entrainment from
multiple perspectives, ranging from bio-mechanical and
computational to psychological and neuroscientific [47],
[48], [49]. As a microcosm of social interaction, ensemble
co-performers coordinate their body movements and sounds
with high degrees of precision and flexibility to communicate
musical structure and expressive information among them-
selves and also with their audience [19], [50], [51], [52].
Although auditory information is generally primary in music,
visual information can influence musical communication in
live and recorded performances. In performance research,
a distinction is drawn between instrumental movements,
which are directly related to the production of musical sounds
(e.g., the bowing of a violinist), and ancillary movements,
which are not technically required for sound production but
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nevertheless take place during performance (e.g., head nods
and swaying of the torso) [53].

Ancillary motion may be the key to understanding social
communicative effects of group music making. Results out-
side the music domain indicate that greater head motion
synchronization occurs during moments of high empathy in
face-to-face communication [27]. This finding suggests that
the degree of empathy can be assessed by the correlation
between phase and frequency of head motion synchronization
in setups where co-actors are in visual contact. Empathy can
be considered to be an innate capacity for understanding
others thoughts and feelings, and among the core components
that enable musicians to engage socially with one another dur-
ing performances [54], [55]. Empathy contributes to feelings
of social bonding and behavioral contagion among individ-
uals in groups, leading to higher states of synchronization
in upper-body/head movements [27]. Musical ensembles can
therefore be considered to be more than groups of synchro-
nized individuals, but instead as systems for social connection
in which empathy facilitates the information transfer between
performers by enhancing synchronization states. Rhythmic
synchronization of upper body movements and particularly
the head is pertinent and sometimes inevitable in a musical
ensemble - presumably emerging from high degrees of empa-
thy, agreement, and shared joint goals.

Ancillary body motion also plays a role in regulating
an individual’s performance, conveying musical structure,
expressive intentions, and underlying musical meaning to
others in a group or even the audience [56], [57], [58],
[59], [60], [61]. In musical ensembles, ancillary motion pro-
vides visual cues that assist co-performers to coordinate their
actions, and interpersonal coupling can be therefore observed
at the level of body movements as well as sounds [61], [62].
Previous research in small group interactions has demon-
strated that the coordination of head motion and body sway
is positively correlated with coordination of sound onsets,
although the relation is not perfect [4], [28], [63], suggest-
ing that visual and auditory information provide parallel
channels for musical communication [57]. Additionally, the
synchronization of non-verbal elements of expression takes
place across multiple temporal scales, with head motion
in particular being associated with higher states of con-
nectedness [64], [65]. Correspondingly, the head movement
synchronization of performers in a group can serve as a
good metric to identify whether or not they are perform-
ing cohesively. The rate of synchronization can be logged
to note the eventual increase or decrease in performance
synchronization [66], [67], [68], [69].

Indeed, the coordination of co-performers’ sounds take
place at short timescales (millisecond range), while move-
ments such as body sway are aligned at longer timescales
associated with higher-order units of musical structure (e.g.,
phrases) [22]. Furthermore, interpersonal coupling in both
body motion and sounds is dynamic in the sense that it varies
overtime, and this variation is systematic, that is, not entirely
random [20], [70], [71]. The present study addresses how
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such variation in co-performer coupling relates to two aspects
of musical structure - texture and phrasing. Musical texture
refers to the hierarchical arrangement of instrumental parts
in the ensemble; specifically, how separate parts relate to one
another in terms of salience (i.e., tendency to capture atten-
tion) and complexity (e.g., degree to which separate parts
contain redundant vs unique information) [22], [72]. In some
musical textures, there is a clear distinction between a melody
and accompaniment parts, where the melody is relatively high
in salience (i.e., homophonic textures). It is often assumed
that in such cases the melody player serves a leadership
role in the ensemble (even if only temporarily) [11], [12],
[13]. In other textures, separate parts can each have inde-
pendent melodic content that proceeds simultaneously (i.e.,
polyphonic textures). In these cases, the situation is more
egalitarian in the sense that leadership is distributed or free
to roam around the ensemble [22], [73], [74], [75].

It is currently unclear how such textural variations affect
coordination. Laboratory studies of interpersonal coordi-
nation suggest that coupling can be stronger without a
designated leader — when a form of co-leadership charac-
terized mutual adaptation, anticipation, and joint attention
emerges [52] — but this work mainly entails improvised (as
opposed to scripted) performances and participants without
formal musical training [15], [16], [17]. Naturalistic studies
of experienced musicians have yielded mixed results with
regard to whether interpersonal synchronization is influ-
enced by leadership instructions and the degree of indepen-
dence between parts in terms of melody and accompaniment
roles [12], [50], [76]. Overall, these findings suggest that
the degree to which ensemble coordination is resilient to
different conditions might vary with task demands and levels
of expertise [77], and that the method of quantifying coupling
and the timescale(s) at which it is applied might influence
results.

The second structural aspect of interest relates to the seg-
mentation of musical pieces into phrases and higher-order
sections. Previous research suggests that phrase entries and
endings present challenges for interpersonal coordination due
to heightened uncertainty associated with increased timing
variability at these points [74]. As a compensatory strategy,
ensemble co-performers hence increase the use of visual cues,
including gestures and eye contact, to assist coordination
at phrase boundaries [3], [9], [12], [51], [78]. Furthermore,
improvising jazz musicians have been found to become more
synchronous prior to structural boundaries (i.e., transitions
where the musical content or style changes), suggesting an
increase in the intensity of joint attention and communication
at these points [18].

IV. COMPUTATIONAL FRAMEWORK, SYSTEM
ARCHITECTURE AND METHODOLOGY

To investigate the research questions raised in section II,
we propose huSync as a computational framework and sys-
tem for evaluating interpersonal synchronization between
dyads in small groups. Fig. 1 presents an overview of the
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FIGURE 1. The huSync computational framework for the analysis of
interpersonal synchronization in small-group setups.

A D
Multi-modal Analysis and
signals Validation
Video Audio —» Validation against

audio features
l (Two-way ANOVA)

{

Analyze musical
texture and phrase

Multi-person pose
estimation algorithm and
signal conditioning

position
v (Two-way ANOVA)
Key-point .
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+ + Compute interpersonal
C9mpute Pulse clarity synchronization
distance (PLV)
Feature Measurement
extraction of entrainment
B C

FIGURE 2. An instance of the computational framework and the huSync
system architecture.

computational framework adopted for huSync. It includes
four blocks and is grounded on a well-established concep-
tual framework for the analysis of expressiveness conveyed
using body movements and gestures alike [56], [79]. The first
block, multi-modal signals (Fig. 1 (A)), consists of informa-
tion and data that can be sourced from different modalities
(e.g., audio, video, heart-rate, respiration rate, and so on).
The second block, feature extraction (Fig. 1 (B)), entails
extracting raw data from these multi-modal signals and could
include pre-processing steps (e.g., up or down-sampling,
interpolation, realignment, and normalization) to make sure
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that all signals are compliant with one another when perform-
ing a detailed analysis. It also involves extraction of essential
features from the signals that can better describe movements
exhibited during small-group interactions (e.g., acceleration
peaks, kinetic energy, and distance computation). The third
block, measurement of entrainment (Fig. 1 (C)), involves
examining the overall behavior of participants in a small
group and how they may adjust and adapt their behavior. The
fourth block, analysis and validation (Fig. 1 (D)), involves
performing a statistical procedure on the results obtained
to ascertain the influence of variables present in our data
(e.g., one-way ANOVA, two-way ANOVA, and multivariate
ANOVA) and validating the results to test the sensitivity,
reliability and practical usefulness of our framework and
corresponding system.

The structure and architecture of the huSync system is
illustrated in Fig. 2 and is represented as an instance of the
computational framework in Fig. 1. It follows a structured
funnel of steps beginning with selecting videos of interest
that satisfy our analysis criteria. The first block (Fig. 2 (A))
is responsible for reading video and audio signals from stan-
dard video recordings. The video data are pushed into the
second block (Fig. 2 (B)), where they are processed with
multi-person pose estimation algorithms to detect key-points
on participants’ bodies in each frame of the video being
analyzed, and it generates a json file in sequential order of
the people in each frame, and each person is represented with
an array of key-points. Using this trajectory information, and
depending on the specific use case, a relevant key-point is
selected to obtain kinematic information and processing the
data to extract relevant features. For our system instance,
we decided to compute the distance between each time step
traversed by the key-point. As illustrated, we utilize the audio
signals from the video recordings to extract acoustic features
such as pulse clarity and event density, and has been explained
in more detail in section VI-B. The distance data then
moves into the third block which involves computing inter-
personal synchronization between participants in the group
(Fig. 2 (C)). This is followed by performing a statistical anal-
ysis and validation (Fig. 2 (D)) on the phase-locking value
results obtained, which additionally helps answer questions
raised in our hypothesis. To help interpret and validate the
results which are primarily heterogeneous in nature, a cross-
modal validation is performed with the acoustic features
obtained from the feature extraction block (Fig. 2 (B)).

A. huSync PROCESS PIPELINE AND METHODOLOGY TO
COMPUTE DYADIC SYNCHRONIZATION

The process pipeline of huSync entails an §-step computa-
tional methodology, as illustrated in Fig. 3, and is a subset
of blocks B and C in Fig. 2. This pipeline covers the entire
range of operations performed on the data extracted, from the
json file available after pre-processing with pose estimation
algorithms to computing the final dyadic synchronization in
small-group setups. Thus, before applying the huSync com-
putational model it is necessary to have the data extracted
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FIGURE 3. An illustration of the process pipeline for computing dyadic
synchronization.

from json files, after selecting the key-point of interest based
on the use case and experimental setup.

huSync is flexible and allows dyadic synchronization to be
computed for the entire duration of a video phrase or over
sections, as in the three parts (start, middle, and end) required
to address the research questions raised in section II. To pro-
vide an intuitive understanding of the process, we explain
the 8 steps next, along with an illustration of a simulated
example for a dataset with 15 data-points to compute dyadic
synchronization between a pair of performers. Fig. 4 covers
steps 1 to 6 and Fig. 5 covers steps 7 and 8.

1) STEP 1 — COMPUTE DISTANCE, FILTERING, AND SIZE OF
THE DATASET

The key-point of interest can be a single key-point or a
computed feature between multiple key-points. As part of our
feature extraction step (Fig. 1 (C)), using the data extracted
from the json file, we compute the Euclidean distance with
the raw coordinate data available in (x,y) format. When
processing videos with pose estimation algorithms, the data
can be quite noisy and it is important to check if filtering
is required. huSync implements the Savitzky-Golay filter,
if needed, since it tends to preserve the phase and essential
features of a signal [80], [81]. We then ascertain the size of
the dataset to be consumed by the huSync model to analyze
changes in synchronization level over the time period of
interest. In our specific use case, answering the research ques-
tions raised in section II requires analyzing the start, middle,
and end of musical phrases, and hence the total number of
datapoints should be divisible by 3 and also adaptive to the
step-size chosen in the next step to fit all data points that fall
within the window width. When this condition is not met,
extra rows in the data file can be dealt with by truncating the
dataset at the end of the phrase segment. Additionally, if there
are fewer line items, they can be dealt with by augmenting
the existing data at the extremities using polynomial or linear
extrapolation. While it did not happen in our case, if loss of
information is observed in between a phrase segment, it can
be dealt with by making use of a cubic spline interpolation to
fill gaps [82].

2) STEP 2 — WINDOW SIZE DETERMINATION AND
EXTRACTION

We use a sliding window approach that steps through each
portion of the video data so to capture both local and global
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FIGURE 4. Simulated Example: This figure covers steps 1 to 6.

trends. In our simulated example we use a window size =
5 and step-size =2, and thus we have 6 windows.

3) STEP 3 — SELECT A DYAD COMBINATION

In our simulated example, we consider a situation with two
participants, but with huSync we can either select a specific
dyad for whom we would like to compute synchronization or
do so in an automated manner for all possible pairs. Since the
order is not important, the total number of possible pairs can
be computed using (2).

c _(n\ _ n! )
=)= @

4) STEP 4 — APPLY FFT ON WINDOWED DISTANCE DATA
We apply the FFT algorithm iteratively on all possible dyadic
pairs available using the scipy library [81]. On applying
FFT to the distance data at each time step, we obtain the
spectrum, and proceed with extracting the real and imaginary
components.

5) STEP 5 — OBTAIN PHASE ANGLES

By applying FFT over the distance data, we obtain complex-
values, from which the magnitude (modulus) and phase
values are extracted. For this purpose we utilize the numpy
library [83]. Data for all participants undergo FFT indi-
vidually to obtain phase angles at each frequency bin and
time step of the windowed information for all participants.
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As illustrated in our simulated example, once FFT is applied
over the data of Participants 1 and 2, from the complex values
we extract the phase angles.

6) STEP 6 — COMPUTE RELATIVE PHASE ANGLE

BETWEEN DYADS

After obtaining the phase angles for each participant, we then
proceed with computing relative phase angles (difference
between the phase angles) for all possible pairs, and for our
simulated example it will be between the two participants — by
computing for each time step and frequency bin the difference
between phase angles of the participants.

7) STEP 7 — PLVs COMPUTED FOR EACH WINDOW

The relative phase values are used by our function to compute
PLVs. In a window, each element, or phase angle value, is put
together with values present in other windows, but with those
having the same position. Thus, we receive a set of PLVs
equal to length of each window. In our simulated example,
each window element is aligned with those having the same
position to obtain PLVs. The colored squares, as seen in
Fig. 5, indicate values present at the same position, which
are used as inputs in our function to compute a PLV. PLV
is then computed for each time step and each frequency
bin using all relative phase values of the corresponding
window.

8) STEP 8 — AVERAGED PLVs AND DYADIC
SYNCHRONIZATION

After we have obtained the PLVs, which as seen in the
previous step will result in an array having a length equivalent
to the length of a single window, since we have one PLV for
each frequency bin. Here, a cut-off frequency can be utilized
to discard frequencies beyond a threshold, while excluding
the DC component for the computation. As seen in Fig. 5,
once the PLVs are calculated, we average them to obtain
a single value (avgPLV or averaged PLV), across different
frequency bins of interest, and is our final value for dyadic
synchronization between a pair. Here, PLV and averagedPLV
are computed using (3):

n .
3 el ki
i=0

PLV; =
/ n

k

> PLY;

r

avgPLV = /T 3)

where i € {0.n}, j € {0.k} and n are the number
of windows, k is the number of relative phase angles in
each window, and Og(;j represents the relative phase angle
present in each window i at position j. The value ranges
from O to 1 where 1 indicates perfect synchrony and 0 no
synchrony.
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FIGURE 5. Simulated Example: This figure covers steps 7 and 8, which are
a final synthesis of the computation process.

V. THE TEST DATASET

A. VIDEO RECORDINGS

huSync, as a system, is tested on a dataset consisting of
videos from concert performances by the Omega Ensemble,
a professional chamber music group from Australia, and
consent was given for further use of the data. The concerts
took place at City Recital Hall in Sydney in 2017. The videos
included musical pieces composed by Alexander Borodin
and Johannes Brahms. Videos were recorded by a Canon
1DX camera body and a Canon EF 70-200 1:2.8 L zoom
lens as QuickTime movies (MOV) with dimensions 1920 x
1080 pixels at 25 frames per second. Audio was recorded
as 16-bit stereo at 48 kHz. Compression was done with the
H.264 video codec and the Linear PCM audio codec synced
via Timecode.

For the present study, we chose to perform our analyzes
on videos from a concert featuring the Clarinet Quintet in
B minor (Op. 115) written in 1891 by Johannes Brahms
(1833-1897) (“‘Brahms Clarinet Quintet’’) and String Quartet
No. 1 in A major written in 1874-79 by Alexander Borodin
(1833-1887) (“Borodin String Quartet”). Fig. 6 includes
screenshots from the video sequences. The Borodin String
Quartet is scored for violin 1, violin 2, viola, and cello.
The Brahms Clarinet Quintet uses the same string instru-
ments plus a clarinet. Both pieces contain four movements
with contrasting musical characters. The total duration of the
Borodin String Quartet performance lasted 39 minutes and
13 seconds while the duration of the Brahms Clarinet Quin-
tet was 40 minutes and 38 seconds. For our study, specific
phrases from each concert recording were selected based on
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FIGURE 6. Images from the performance of the Brahms Clarinet Quintet
(Top Left) and the Borodin String Quartet (Bottom Left) along with the
outputs available with tracked key-points using pose estimation
algorithm (Top Right and Bottom Right).

pre-defined parameters, covered in section V-B. In Table 1,
we summarise the full dataset and specific phrases selected
in terms of phrase duration (min, max, median and average)
and count.

B. ANNOTATION PROCESS FOR IDENTIFIED SECTIONS

OF INTEREST

Videos were annotated to segment them for analysis address-
ing the hypothesized effects of musical texture and phrase
position on interpersonal synchronization among ensemble
co-performers, that is, four individuals for the Borodin per-
formance and five individuals for the Brahms performance.
These annotations were done in accordance with the specific
aim of testing how the strength of interpersonal coupling is
influenced by two factors:

1) Position within the musical phrase (start, middle, and
end); and

2) Musical texture (polyphonic, where leadership is
ambiguous due to the lack of a clear distinction
between melody and accompaniment, versus homo-
phonic, where there is an unambiguous melodic
leader).

Each of the videos was annotated using ELAN (an annota-
tion tool for multimedia files) [84] in accordance with a musi-
cological analysis based on the published score. In order to
mitigate noise that can be introduced by personal behavioral
aspects of performers before or after a phrase has been played
such as shaking the legs, rotating the arms, or readjusting their
seating position, the annotations should be made carefully
and be aligned as accurately as possible with the start and
end of musical phrases. Annotated features included phras-
ing, textural classification, number of instruments currently
playing, and instrument roles (e.g., melody, counter melody,
or harmonic accompaniment), which were indicated in sepa-
rate tiers in the ELAN interface. Information from each tier
within the annotated ELAN file for each piece was exported
to extract video timecodes for each phrase and its textural
classification.

Phrases were selected based on the following criteria:

VOLUME 10, 2022



S. R. Sabharwal et al.: huSync - A Model and System for the Measure of Synchronization in Small Groups

IEEE Access

TABLE 1. Summary of the complete dataset and selected phrases for our experiments.

Dataset Selected Phrases
Duration (s) Duration (s)
Concert Texture Minimum  Maximum Median Average  Count Minimum  Maximum Median Average  Count
Brahms ~ Homophonic 15.032 38.199 19.742 21.573 27 16.161 30.433 20.615 21.856 12
Polyphonic 15.488 33.08 23.100 23.528 20 15.488 27.553 20.161 21.105 12
Borodin  Homophonic 15.295 24.973 18.317 19.117 10 15.295 24.973 18.317 19.117 10
Polyphonic 15.142 29.628 21.271 21.013 11 15.142 29.628 20.924 20.800 10

1) Duration: Phrases were chosen keeping in mind that
each one could be split into three equal segments
with the same duration, thus giving us a start, middle,
and end for each selected phrase, while ensuring that
each segment was >5 sec. The segment sizes var-
ied with phrase length. These time intervals are long
enough to compute interpersonal synchronization of
body motion, but not too long so that musical qualities
could be considered stationary.

2) Number of instruments: Phrases that met the duration
criterion set above, were filtered based on the number
of instruments that were being played. The criterion for
selection at this stage was that all instruments in the
ensemble were playing throughout most of the phrase.

3) Texture: Phrases longer than the duration specified
above, and with all instruments playing, were then
filtered based on the musical texture. For our purposes,
the focus was on the distinction between textures with
a clear musical leader-follower roles versus textures
that were less clear in this respect. This resulted in a
two-level textural classification. We refer to ‘homo-
phonic’ textures as having rhythmically differenti-
ated melody and harmonic accompaniment, with the
melody instrument assumed to serve a leader role and
the accompanying instruments serving as followers.
By contrast, ‘polyphonic’ textures have more than one
melody part, and thus more than one potential leader.
By our definition, polyphonic textures range from those
where there are two melodic parts (e.g., a melody
and countermelody) or interdependent melodic mate-
rial distributed across multiple instrumental parts.

4) Instrument roles: For each phrase selected based on
the above criterions, the instrument that was playing
a melody line was noted (in the case of homophonic
textures). Only phrases where the instrument roles were
consistent throughout passed this criterion.

Table 1 reports the number of selected phrases and their
min, max, median, and average duration.

C. APPLYING huSync TO THE DATASET

Videos from the dataset are used as a testbed for huSync
and to investigate the social signals that lead to states
of heightened interpersonal coordination. We pre-processed
selected video phrases using AlphaPose (v0.4) and received
json files with full-body key-points. From this, as motivated
in section III-B, we are interested in the trajectory of the
head, and thus extract the nose key-point (key ‘0’). Data
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are arranged as a table with x and y coordinates for each
participant in separate columns. We analyze dyadic synchro-
nization for all pairs of performers and the total possible dyad
combinations is 6 for Borodin (n=4, r=2) and 10 for Brahms
(n=5, r=2). We did evaluate the use of a Savitzky-Golay filter
for our data, but did not observe any major differences with
its use and decided to exclude it during the data processing
phase. Using the coordinate information, the Euclidean dis-
tance between each time step of the trajectory is computed for
every participant and arranged in separate columns. We then
proceed with using a sliding window to segregate our data
for each participant. Based on previous studies, tests were
performed by varying the duration or size of the window to
inspect our data across multiple levels of temporal resolution
and statistical significance, and decided to proceed with a
window size of 30 and step-size of 5 [85]. Based on our
window step-size the dataset had to also be divisible by 5 to fit
all data points by the window width. We truncate the data in
case of extra data-points and extrapolate to fill missing values.
For example, if our dataset contains 453 data points, we will
truncate it to 450 to arrive to the nearest multiple of 5 and 3,
and in case we have 447 data points, we extrapolate 3 data
points to arrive to 450. On applying FFT on the windowed
distance data, we extract the phase angle and begin to com-
pute relative phase angles for all possible pairs. By analyzing
the frequency distribution, and using a window size of 30,
a 10Hz cut-off indicates excluding all values above the 11th
value and excluding the 1st since it is the DC component. PLV
is computed for each frequency bin and then averaged across
all frequency bins of interest.

VI. RESULTS

We performed our analyzes on a total of 44 phrases and in
Table 1 we share a group summary of the dataset chosen.
These phrases met our criteria of a good balance between
polyphonic and homophonic textures while also taking into
account the duration of each phrase and quality of the data
received on pre-processing videos with a pose estimation
algorithm.

The PLV results are first presented descriptively and
then results of analyzes of Variance (ANOVA) are reported.
Performances of the Brahms and Borodin pieces were
analyzed separately due to the differing number of per-
formers in each piece. PLVs for all pairs for each piece
were entered into an ANOVA that included Phrase Position
(Start, Middle, End) as a within subjects factor and Tex-
ture (Homophonic, Polyphonic) and Pair (i.e., each separate
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Brahms Quintet Borodin Quartet

0.28

Phase Locking Value

TABLE 2. ANOVA results for between and within subjects effects for the
brahms concert.

Between Subjects Effects

Sum of Squares  df = Mean Square F P
Pair 0.0126 9 0.0014 025 0.986
Texture 0.0902 1 0.09024  16.081 <.001
Pair * Texture 0.0583 9 0.00648 1.155  0.326
Duration 0.2595 1 0.25948  46.244  <.001
Residual 1.2289 219 0.00561

Within Subjects Effects
Sum of Squares df Mean Square F P
0.00299 1.003  0.368

Middle End Start Middle End

Phrase Position

FIGURE 7. Phase locking values, indicating synchronization of
co-performers’ head motion, across phrase positions for polyphonic and
homophonic texture for Position x Texture in the Brahms and Borodin
pieces).

pairing of individuals from the ensemble) as between subjects
factors. The factor ‘Pair’ was included in the analyzes since
no two instrumentalists were playing the same part and the
specific pairing of parts could have systematic effects on
PLYV, although the detailed analysis of such potential effects is
beyond the scope of our study. In addition to the main factors,
phrase duration was included as a covariate in the analyzes to
control for its potential effects on PLV. The ANOVAs were
run in jamovi [86].

A. EFFECTS OF TEXTURE AND PHRASE POSITION ON
INTERPERSONAL COUPLING

PLV results are graphically represented in Fig. 7 for the three
phrase positions in the two textures, with data averaged across
pairs, for Brahms and Borodin performances, respectively.
From these graphs it is seen that polyphonic textures have
higher PLVs as compared to homophonic textures, as was
hypothesized in the research questions raised in section II.
We also observe how the PLVs begin at a lower value in both
textures. For the polyphonic texture, values start out relatively
high, then tend to rise further at the middle of the phrase,
and finally drop towards the end of a musical phrase. For
the homophonic texture, values start out lower and remain
constant until a slight increase at phrase endings.

In Fig. 8, results are shared as network plots of averaged
PLVs, across all phrases, for individual instrument pairings
observed for the Brahms and Borodin performances sepa-
rately. Here it can be seen that most pairs show a higher level
of synchronization in polyphonic textures in the start, middle
and end of each phrase, suggesting that the effect is a general
and not tied to specific instrument pairings.

The ANOVA results are illustrated for the Brahms perfor-
mance in Table 2, and for Borodin in Table 3. Values high-
lighted in bold indicate statistical significance (p<0.05). For
Brahms, the ANOVA revealed a statistically significant main
effect of Texture, F(1, 219) = 16.08, p < 0.001, and a sig-
nificant two-way interaction between Position and Texture,
F(2, 438) = 6.098, p = 0.002. For Borodin, there was also a
statistically significant main effect of Texture, F(1, 107) =
14.051, p < 0.001, and a significant two-way interaction
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Position 0.00598 2

Position * Pair 0.08754 18 0.00486 1.632  0.049
Position * Texture 0.03634 2 0.01817 6.098  0.002
Position * Duration 0.00424 2 0.00212 0.711  0.492
Position * Pair * Texture 0.03341 18 0.00186 0.623  0.882
Residual 1.30509 438 0.00298

TABLE 3. ANOVA results for between and within subjects effects for the
Borodin concert.

Between Subjects Effects

Sum of Squares df Mean Square F P
Pair 0.02003 5 0.00401 1.542  0.183
Texture 0.0365 1 0.0365 14.051 <.001
Pair * Texture 0.00412 5 0.000825 0318 0.901
Duration 0.24612 1 0.24612  94.746  <.001
Residual 0.27796 107 0.0026

Within Subjects Effects

Sum of Squares df Mean Square F p
Position 0.01229 2 0.00614 2.849 0.06
Position * Pair 0.01569 10 0.00157 0.727  0.698
Position * Texture 0.01468 2 0.00734 3.403  0.035
Position * Duration 0.00972 2 0.00486 2.253  0.108
Position # Pair * Texture 0.0302 10 0.00302 14 0.182
Residual 046151 214 0.00216

between Position and Texture, F(2, 214) = 3.399, p = 0.035.
For both Brahms and Borodin, the main effect of position was
not statistically significant.

Overall, these results indicate that for both pieces, PLVs
were reliably higher—hence interpersonal coupling between
performers was stronger—for polyphonic than homophonic
textures, though this effect of texture varied over the course
of musical phrases. Specifically, the effect of texture was
reduced at the end of phrases due to decreases in coupling
strength in polyphonic textures and increases in coupling
strength in homophonic textures.

B. ANALYSIS OF AUDIO FEATURES

While our main analysis focuses on ensemble coordination
of co-performer body motion, we conducted an additional
analysis to examine the relationship between the synchroniza-
tion of body movements, which provides visual cues, with
ensemble sounds.

Because we do not have multitrack audio recordings for
each instrument on a separate track, we computed indirect
measures of global ensemble synchronization from stereo
auditory recordings of the full ensemble sound. Based on
previous research [20], [21], [47], we included estimates of
‘pulse clarity’ and ‘event density’, which were calculated
using the ‘mirpulseclarity’ and ‘mireventdensity’ functions
from the MIRtoolbox in MATLAB [87]. Pulse clarity is a fea-
ture that reflects the strength of rhythmic beats, while event
density indicates the average frequency of events (i.e., the
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FIGURE 8. Network plots for ensemble PLV data by instrument for each condition (texture and phrase position) in Brahms and Borodin
pieces. Edge thickness indicates the coupling strength based on phase locking values averaged across all phrases. Each colored node

indicates an instrument played by the performers.

TABLE 4. Mean and standard deviation (SD) of estimates of pulse clarity
and event density as a function of texture (homophonic and polyphonic)
and phrase position (start, middle, and end) for performances of pieces
by Brahms and Borodin.

Texture

Homophonic Polyphonic
Phrase Position

Piece Measure Start  Middle End Start  Middle End
Pulse Clarity
Mean 0.111 0.122 0.167  0.148 0.126 0.135
Brahms SD 0.046 0.057 0.058  0.075 0.047 0.052
Event Density
Mean 1.416 2.098 1.767  1.733 2.105 2.205
SD 0.844 1.484 0.931  0.846 0.819 0.845
Pulse Clarity
Mean 0.153 0.157 0.152  0.16 0.156 0.144
Borodin SD 0.063 0.044 0.083  0.081 0.054 0.058
Event Density
Mean 2.102 2.202 1.631 2.197 2.025 2.033
SD 0.946 0.934 0.799  0.798 0.792 1.25

number of events detected per second). Descriptive statistics
for these measures are shown in Table 4.

To assess potential effects related to these audio features,
we ran a linear mixed effects model analysis using the
Imer package [88] in R [89] with PLV as the dependent
variable, pulse clarity, event density, texture, and phrase
position as predictor fixed effects, and piece as a random
effect (with intercepts allowed to vary). Pulse clarity val-
ues were arcsine-transformed and event density values were
log-transformed prior to analysis. The results revealed a link
between PLV and event density. Specifically, a likelihood-
ratio test indicated that a model including event density
provided a better fit for the data than a model without it
(x2 (1) = 7.44, p = 0.006), whereas pulse clarity did not
contribute significantly to the model (x2 (1) = 0.03, p =
0.884). Examination of the output for the full model indi-
cated that PLV values increased with increasing event density
(B = 0.031, SE = 0.011, t = 2.767, p = 0.006). These
results are consistent with a growing body of evidence that
visual and audio cues are both relevant in assessing interper-
sonal synchronization in musical ensembles [20], [21], [28],
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[47], [63]. Future work with multitrack audio would allow
the relationship between auditory and visual information to
be investigated in greater detail, including the assessment
of correspondence between leader-follower relations across
modalities.

VII. DISCUSSION
The current study had two prime objectives. The first was to

develop and present a computational framework and a system
to study small-group interactions involving non-verbal social
communicative behaviour. huSync can be implemented on
video sequences which permits studies to be performed in
a naturalistic context without interference associated with
motion capture setups. Second, we wanted to put huSync
through a test case scenario addressing research questions
concerning the relationship between interpersonal coordi-
nation of body movements and musical structure. For this
specific use case, huSync appears to be a practical alternative
technique for quantifying dyadic synchronization between
co-performers in musical ensembles based on the automated
analysis of human body movements. The outcomes of this
investigation are thus methodological and empirical in nature,
informing technical aspects and conceptual issues relevant
to examining real-time human interaction and non-verbal
communication in naturalistic settings.

On the methodological side, our approach progresses
through a structured funnel of steps, where kinematic infor-
mation is gathered from standard video recordings in a
marker-less and non-intrusive manner. This kinematic infor-
mation is then used for quantifying dyadic synchronization
between musical performers from within a group ensemble,
indexed as phase-locking values, and this routine is done
exhaustively for all possible pairs in the group. An advantage
of this approach is that it is possible to obtain information
about coupling between specific individuals whereas if we
take a global measure, we do not necessarily have that level of
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specificity. The alternative is complicated and rather difficult
to interpret when data pertain to natural behavior (in contrast
to data from controlled experiments where independent vari-
ables are systematically manipulated).

As an empirical case study, we applied the above tech-
niques for body motion analysis to investigate the effects
of two aspects of musical structure—texture and phrase
position—on the strength of interpersonal coupling in instru-
mental ensembles. With regard to texture, coupling strength
between co-performers was found to be stronger for poly-
phonic textures than homophonic textures. These textures
differ in terms of the presence of a clear leader implied by
the relationship between melody and accompaniment parts
[32],[33], [34], [35], [36], [37]. Our finding that coupling was
stronger for polyphonic textures than homophonic textures
could be a consequence of coupling being more evenly dis-
tributed across all performers when leadership is ambiguous
in polyphonic textures, whereas accompanying performers
are more strongly coupled to a single performer serving as a
melodic leader in homophonic textures. This interpretation is
generally consistent with work on interpersonal coordination
in controlled laboratory tasks [15], [16], [17]. Based on this
previous work, distributed leadership in polyphonic textures
might be associated with greater ensemble synchronization
due to heightened mutual adaptation, anticipation, and joint
attention [19], [52], [74].

Although position in musical phrases did not have a gen-
eral effect on the strength of interpersonal coupling, phrase
position modulated the effects of musical texture in a manner
indicating that the presence of a clear melodic leader was
more influential in early than late portions of phrases. Specif-
ically, relatively strong interpersonal coupling for polyphonic
textures was evident at the start and middle phrase posi-
tions but not at phrase endings. It might be the case that
increased coordination demands at phrase endings [74]—that
is, just prior to the transition to the next phrase and new
musical material—had differential effects in the case of
polyphonic and homophonic textures. Specifically, without
a clear leader in polyphonic textures, interpersonal synchro-
nization decreased at these challenging coordination points,
whereas in homophonic textures, synchronization improved
at these points, possibly due to increased attention from the
melodic leader. Future work could test this conjecture using
eye-tracking technology to monitor eye gaze to quantify eye
contact across phrase positions [12], [51], [90].

We evaluated huSync as a system to quantify group coor-
dination by focusing on effects of musical texture and phrase
position on interpersonal coupling based on visual infor-
mation related to body motion. However, we also found
evidence for a relationship between ensemble coordination
at the level of body motion and sounds in a supplementary
analysis of audio tracks from the videos. This correspondence
is generally consistent with the results of previous studies
of ensemble coordination [4], [28], [63], and more broadly
contributes to a growing body of work highlighting the mul-
timodal nature of musical communication [47], [57], [61].
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Additionally, it highlights the relevance of both visual and
audio cues when assessing interpersonal synchronization in
musical groups. Overall findings suggest that huSync is sensi-
tive to modulations of interpersonal coupling related to ambi-
guity in leadership and coordination demands in standard
video recordings of naturalistic human group interaction.

VIIl. CONCLUSION

The proposed ‘huSync’ framework and system provides
a reliable and non-intrusive alternative to current meth-
ods for the automated analysis of human body movements
and associated qualities such as degrees of interpersonal
synchronization. It can help in the study of such niche but
ecologically valid aspects of human movement sciences,
opening an avenue where marker-less technologies can be
utilized extensively. This is evident in the use case of musical
ensemble performances, where we evaluated the method, and
also has potential to be extended to capturing non-verbal
social signals in other domains of group behaviour and
human interaction more generally. As a concrete outcome,
we provide a well-structured jupyter notebook (link) that
includes functions designed and implemented to process the
data extracted from pose estimation algorithms by converting
them into structured csv files, followed by the calculation
routine for computing phase locking values, thus quantifying
the dyadic synchronization. An especially promising benefit
of the huSync model is that it can be applied to standard
videos recorded across a wide range of contexts, opening the
door to analyzing vast troves of historical material available
in archives and on the Internet. The outcomes of the research
will thus potentially have broad impact across diverse disci-
plines including computer science, psychology and cognitive
neuroscience, and music psychology. The methodological
applications of huSync can be leveraged for further empirical
discoveries related to human joint action, group behavior and
social cognition [10].

A. OBSERVED LIMITATIONS

There are several areas to improve upon and overcome in
future research. At present, there exists a higher amount
of noise in tracking conventional video as compared to
marker-based systems. This issue becomes particularly acute
when examining at higher-order kinematic variables, such
as velocity and acceleration (because computing derivatives
via differentiation amplifies noise), which is one reason why
we focused on distance data. Pose estimation algorithms
provide better results with regard to recognizing, isolating,
and predicting the pose of participants in videos where the
foreground and background are well-differentiated. This sug-
gests that figure-ground differentiation is an important aspect
of quality control.

Additionally, the seating position and direction of motion
trajectories exhibited by participants is an important aspect
to take note of, and plays an influential role in quantifying
dyadic synchronization. For our use case, the head moves
predominantly in a back-and-forth manner during moments

VOLUME 10, 2022


https://github.com/EnTimeMent/huSync-DyadicSynchronization

S. R. Sabharwal et al.: huSync - A Model and System for the Measure of Synchronization in Small Groups

IEEE Access

|
er

""cr

FIGURE 9. Images from a performances of the String Quartet No. 2
composed by Alexander Borodin (Top Left) and a trio for clarinet, viola,
and piano composed by Robert Schumann (Bottom Left) along with
overlayed keypoints on the right.

of interpersonal coordination and heightened synchronized
states. Thus, orientation of the participants relative to the
camera view influences the amount of motion information
that can be detected and extracted. Fig. 9 shows still images,
along with the implementation of a pose estimation algo-
rithm, from videos of performances of different musical
pieces, including a trio and quartet, from a concert in a
smaller venue than the performances analyzed in the current
paper. These video recordings are highly challenging for pose
estimation algorithms to be implemented upon. The seating
position of the performers makes it unfeasible to track all
individuals clearly within a single camera view. Also, each
frame is crowded with many individuals in the audience that
do not need to be tracked along with multiple occluding
objects, such as the piano, chairs, an individual serving as
page tuner, and heads of the audience to name a few. These
add to the overall visual clutter and complexity that makes
it difficult to localize the performers’ bodies and to extract
reliable data for analysis.

While our focus in this paper remains on small-group
setups, problems concerning occlusions and overlaps are evi-
dent when analyzing videos of larger groups, in particular
those with multi-row ensembles of musicians where occlu-
sions can be caused by both instruments and co-performers.
This can invite multiple challenges especially with loss of
movement related information. A possible technique that
could be investigated in future works might involve the use
of multiple cameras at different positions, where data can be
reconstructed from multiple perspectives using synchronized
multi-view video recordings [91], [92]. This is essentially
similar in principle to optical MoCap [93] but is still less
invasive and more portable.

B. FUTURE RESEARCH

This study is part of the European Horizon 2020
FETPROACTIVE EnTimeMent Project, on novel time-
adaptive technologies operating at multiple time scales in
a multi-layered approach. In the future, this work will
be extended in line with the overarching goals of the
EnTimeMent Project by exploring various techniques to
examine how interpersonal coordination unfolds at multiple

VOLUME 10, 2022

timescales, which could involve applying these techniques
in different experimental setups. The candidate techniques
include:

1) Multi-Event Class Synchronization if we have dis-
crete information (landmarks such as points at which
co-performer makes eye contact) to help us mea-
sure synchronization between two relevant events that
belong to different event classes and detected in multi-
ple time series [94]; and

2) Granger Causality to quantify mutual influence /
leadership by studying the directionality of coupling
(which should be more evident when there is a
clear leadership hierarchy, as in homophonic textures),
helping us look at effects of musical structure on
group coordination and communication simultane-
ously, at short timescales related to musical beats
and longer timescales related to expressive body
sway [50], [95], [96].
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