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ABSTRACT Human communication entails subtle non-verbal modes of expression, which can be analyzed
quantitatively using computational approaches and thus support human sciences. In this paper we present
huSync, a computational framework and system that utilizes trajectory information extracted using pose
estimation algorithms from video sequences to quantify synchronization between individuals in small
groups. The system is exploited to study interpersonal coordination in musical ensembles. Musicians com-
municate with each other through sounds and gestures, providing nonverbal cues that regulate interpersonal
coordination. huSync was applied to recordings of concert performances by a professional instrumental
ensemble playing two musical pieces. We examined effects of different aspects of musical structure (texture
and phrase position) on interpersonal synchronization, which was quantified by computing phase locking
values of head motion for all possible within-group pairs. Results indicate that interpersonal coupling was
stronger for polyphonic textures (ambiguous leadership) than homophonic textures (clear melodic leader),
and this difference was greater in early portions of phrases than endings (where coordination demands are
highest). Results were cross-validated against an analysis of audio features, showing links between phase
locking values and event density. This research produced a system, huSync, that can quantify synchronization
in small groups and is sensitive to dynamic modulations of interpersonal coupling related to ambiguity in
leadership and coordination demands, in standard video recordings of naturalistic human group interaction.
huSync enabled a better understanding of the relationship between interpersonal coupling and musical
structure, thus enhancing collaborations between human and computer scientists.
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INDEX TERMS Entrainment, interpersonal synchronization, joint actions, pose estimation, musical ensem-
ble performance, social interaction, social signal processing, nonverbal communication.

I. INTRODUCTION21

Machines have undergone major advances in their capabil-22

ity to interact with users. These advances are being further23

propelled with applications in human motion analysis and24

The associate editor coordinating the review of this manuscript and

approving it for publication was Stavros Souravlas .

understanding coordination of human behaviors [1], [2].With 25

a wide range of methods to track human motion today, 26

there is great potential in utilizing them to understand var- 27

ious behavioral aspects and responses of the human body. 28

Humans exhibit phenomenal capabilities in synchronizing 29

joint actions and coordinating at the interpersonal level in a 30

non-verbal manner. This is observed particularly in musical 31
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ensembles where co-performers coordinate their movements32

precisely yet flexibly, and this coordination often seems33

effortless [3]. A natural response to music is to move and34

synchronize to the rhythmic elements, and such spontaneous35

entrainment can be observed when individuals move to music36

being played around them, often without the intention to do37

so [4]. In group settings where multiple individuals interact,38

the mix of musical sounds and corresponding body move-39

ments can trigger social bonding effects reflected in feelings40

of affiliation, trust, and cooperativity [5], [6].41

In musical ensembles, the interaction between perform-42

ers is visual in addition to the audio cues associated with43

musical notes. Co-performers thus communicate with each44

other non-verbally by the motion of their heads and other45

upper- body movements. Such visual communication can46

convey information about initiating a musical piece at a cer-47

tain time, as well as conveying how musical notes should48

be played to produce specific musical effects. This phe-49

nomenon can be observed clearly in musical conductors,50

who traditionally serve as messengers for the composer of51

a musical piece by using gestures that guide the performers52

in recreating the intended emotions and sentiments, allowing53

the group as a whole to reproduce an immersive experi-54

ence [7]. Similarly, among musical performers, conveying55

these messages is often considered to be crucial for the56

co-creation of a meaningful musical performance. Therefore,57

musicians continuallymove during a performance to augment58

the creation of sound, express their artistic intentions, com-59

municate with their fellow groupmembers, and achieve states60

of synchronization [8], [9].61

Analysis on interpersonal coordination in musical ensem-62

bles has implications that go beyond the specific area63

of music. Tal-Shmotkin & Gilboa, for example, show64

how a string quartet resembles working groups in orga-65

nizational units (self- managed teams), i.e., groups of66

interdependent individuals, acting within an organizational67

setting, self-regulating their behavior to perform a joint68

task [10]. Computational approaches have already been used69

to study this communicative phenomenon. Researchers typ-70

ically make use of motion capture (MoCap) technologies71

that can record and extract features from body movements72

exhibited by performers in musical ensembles. Conventional73

setups consist of linked optical cameras to track multiple74

markers that researchers attach to the performers’ bodies75

prior to the recording session. While MoCap has facilitated76

research on joint actions and group behaviors [11], [12], [13],77

this technology bears limitations that preclude widespread78

use, in particular to the extent that it is an intrusive method79

for capturing trajectories of joints and limbs.80

In this paper we introduce huSync (Human Sync), a com-81

putational framework and system that is intended to assist82

with the automated analysis of synchronization in small83

groups from conventional video recordings by making use84

of a multi-person pose estimation algorithm to extract body85

joint coordinates [14]. huSync is designed in recognition of86

the need to study interpersonal coordination within groups in87

ecological settings in order to ensure that findings are rep- 88

resentative of everyday joint action. With this goal in mind, 89

we apply huSync to video recordings of a professional musi- 90

cal ensemble, which enables the investigation of musicians’ 91

movements and interaction in naturalistic contexts. Musical 92

performances serve as an ideal test bed to examine non-verbal 93

communication because they are readily controlled micro- 94

environments where, in many cultural traditions, interactions 95

are scripted in musical scores. Capitalizing on this conven- 96

tion, we analyze and assess how the movements of ensemble 97

performers evolve over the course of structures specified 98

in musical scores, and huSync is used to address research 99

questions about the effects of musical structural features on 100

objective measures of ensemble coordination. 101

This paper is organized as follows: in Section II, we high- 102

light the hypothesis and research questions that are raised, 103

in Section III we present existing computational approaches 104

for the analysis of synchronization and relevant stud- 105

ies that have examined interpersonal synchronization and 106

entrainment in small groups, particularly musical ensembles; 107

Section IV describes the huSync computational framework 108

and system as well as an instance of the framework, with 109

a detailed methodology and calculation routine, explained 110

using a simulated example, to compute dyadic synchroniza- 111

tion; Section V presents the dataset, with a sub-section ded- 112

icated to the implementation of huSync on this dataset and 113

parameters utilized for our use case to perform the analysis; 114

We then present statistical results in Section VI followed by 115

Section VII where we discuss them; We conclude the paper 116

by highlighting limitations and possible future research in 117

Section VIII. 118

II. THE PROBLEM 119

Our first objective is to develop a computational framework 120

and a system, for the automated analysis of interpersonal 121

coordination in small groups, considering cases of clear lead- 122

ership by an individual member as well as cases of egalitarian 123

leadership distributed throughout the group. In our computa- 124

tional approach, we get motor, postural, and acoustic data in 125

a non-intrusive manner, to compute synchronization of motor 126

and postural features by applying consolidated techniques, 127

and to provide outputs which are robust with respect to the 128

different conditions addressed (e.g., either clear or egalitarian 129

leadership). Our second goal is to exploit such computational 130

approach to investigate the effects of musical texture and 131

position within musical phrases, and how it affects interper- 132

sonal coordination in a professional music group performing 133

in two constellations that are common in Western chamber 134

music: a string quartet (consisting of two violins, viola, and 135

cello) and a clarinet quintet (i.e., a string quartet with an added 136

clarinet soloist). This is intended to at the same time pro- 137

vide evidence of the robustness of the proposed framework 138

and system and increase knowledge of the mechanisms that 139

underly interpersonal coordination in small groups. 140

Musical phrases are analogous to phrases or sentences in 141

speech to the extent that they are meaningful organizational 142
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units that would be perceived as coherent or complete if143

presented in isolation. We consider phrases to be sections144

of musical pieces that consist of unified thematic material145

presented in uniform texture. On this view, phrase boundaries146

are marked by changes both in thematic material and texture.147

While this definition can result in longer structural units148

than what are usually designated as phrases in musicological149

analyses, this definition serves our research questions related150

to effects of structural change on interpersonal coordination.151

The strength of interpersonal coupling in body motion was152

expected to be influenced by musical texture and phrase posi-153

tion. Based on previous research [15], [16], [17], coupling154

strength is hypothesized to be stronger for ambiguous textures155

where no leader is implied (polyphonic) versus textures with156

an unambiguous melodic leader (homophonic) due to height-157

ened mutual adaptation, anticipation, and joint attention in158

the former. However, whether coupling would be stronger at159

the beginning and end of phrases than in the middle [18],160

[19] was an open question due to potentially counteracting161

effects of coordination demands and compensatory strategies.162

These demands and strategies could, furthermore, vary as163

a function of texture. Specifically, the presence of a leader164

may be more influential at the beginning and ending of165

phrases than in the middle, in which case we would expect166

a statistical interaction of the two factors. To pave the way167

for naturalistic research conducted in ecological settings,168

we examined these research questions by analyzing public169

concert recordings taken with conventional video using our170

proposed approachwhich utilizes computer vision techniques171

involving pose estimation and quantifying synchronization.172

In addition, video-based coupling measures were correlated173

with audio features of the performances to assess cross-modal174

relations [20], [21]. Some degree of dissociation was antici-175

pated, due to auditory coordination being most pronounced at176

timescales related to the musical beat, whereas visual-based177

coordination of body motion is most pronounced at longer178

timescales [22].179

III. BACKGROUND AND RELATED WORK180

In this Section, we summarize background and related work181

with respect to the two major objectives of this work,182

i.e., (i) existing computational approaches to analysis of183

interpersonal synchronization in small groups as well as184

(ii) theoretical and experimental background on interpersonal185

coordination in musical joint action.186

A. COMPUTATIONAL APPROACHES TO ANALYSIS OF187

SYNCHRONIZATION IN SMALL GROUPS188

Interpersonal synchronization in small groups is of key189

interest since it serves as a useful indicator of dyadic, and190

group-level behavior and coordination. The analysis of syn-191

chronization is complex and requires integrating multimodal192

communicative signals. Many studies in this area are based193

on manual annotations, and the analysis is done by directly194

inspecting and coding the data by trained observers. To avoid195

this tedious process, automated methods can be used to196

process relevant social signals in small groups and thereby 197

measure interpersonal synchrony. 198

Analyzing social dynamics and interpersonal synchro- 199

nization have been studied in many fields. For example, 200

in psychotherapy settings, studies analyzed temporal changes 201

in global body movement using video-based quantification 202

techniques such as motion energy analysis (MEA), a frame 203

differentiating method, to measure synchrony between the 204

patient and counselor during psychotherapeutic sessions [23], 205

[24], [25], [26]. While MEA is a simple approach, a critical 206

issue noted is that since it quantifies frame-differences based 207

on the region of interest (ROI), it is not sensitive to the direc- 208

tion of movement within a ROI. Thus, someone who touches 209

their face often, will exhibit higher head-movement as com- 210

pared to someone who does not [23]. During unidirectional 211

face-to-face communications, Yokozuka and colleagues [27] 212

made use of wireless accelerometers attached to the forehead 213

of the speaker and listener to analyze head motion synchro- 214

nization and empathy, using phase and frequency differences. 215

The use of instruments attached to the body makes partici- 216

pants uncomfortable which impedes naturalistic movements. 217

Among small group ensembles, MoCap systems have been 218

extensively used to study interpersonal coordination with the 219

use of non-linear methods particularly between performers 220

playing music together [28], [29], [30], conductors’ gestures 221

inducing entrainment in a musical ensemble [31] or par- 222

ticipants moving to the beat of the music [32], [33], [34]. 223

In Burger et al., MoCap data was processed to represent 224

whole-body swaying and bouncing motions among partici- 225

pants. Period and phase-locking behavior was observed in 226

full-body music-induced movements by calculating the cir- 227

cular mean of movement phases and beat locations for each 228

participant, with results informing our understanding of how 229

humans entrain to music. While data can be captured with 230

MoCap systems at high frequencies, good accuracy, and 231

low noise, such specialized systems can be expensive, pose 232

methodological issues [35], and restrict movement due to the 233

use of tight-fitting motion-tracking suits. Marker-less meth- 234

ods are emerging as good alternatives to MoCap systems for 235

synchronization studies in small groups, as seen, for example, 236

in a study in Hadjakos et al. [36], who used a Kinect camera 237

to analyze head movements and study synchronization in a 238

violin duet performance. 239

With huSync, we present a system that instead utilizes a 240

pose estimation algorithm on video sequences and computes 241

Phase-Locking Values (PLV) to study the interaction of social 242

signals in small group setups. As compared to the computa- 243

tional approaches discussed above, huSync is a non-intrusive 244

method to study interaction in small groups in naturalistic 245

contexts and eliminates the dependency on any hardware for 246

tracking body movements. PLVs have been used to quantify 247

interpersonal coordination at the level of body motion and 248

brain activity in a wide range of social interaction tasks [37], 249

[38], [39], [40], [41], [42], suggesting that it is a reliable mea- 250

sure for studying cognitively mediated contributions to the 251

synchronization process. Indeed, phase locking is generally 252
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a pervasive concept in computing interactions in non-linear253

and complex systems, and PLV in particular, is a commonly254

used interaction measure in diverse domains [43], [44]. When255

applied to evaluating body movement synchronization, PLV256

has proven to be sufficiently sensitive to detect subtle and257

unintended coordination under a range of manipulations,258

including different leadership conditions [17]. A large body259

of previous work therefore suggests that PLV is appropriate260

for assessing functional level connectivity between perform-261

ers during naturalistic musical ensemble performance to test262

our hypotheses about relations between musical structure and263

ensemble coordination.264

Following Mormann et al. [45], we compute PLVs using265

phase values that are extracted from the spectrum of the266

analyzed motion trajectory signals. These phase values are267

obtained for each frequency by applying a Fast Fourier Trans-268

form (FFT). For the purpose of our study, we utilize relative269

phase values, as in previous research [46] that assessed the270

dyadic synchronization between individuals within pairs of271

co-performers. To this end, we calculated PLVs by computing272

the phase difference between the head motion trajectories of273

two co-performers in each possible pair using the formula274

in 1. In this procedure, the phase difference is represented275

as a complex unit-length vector [43] and the absolute value276

of the mean is then a measure of the magnitude of the vector,277

which indicates the degree of synchrony.278

PLV =

∣∣∣∣∣
∑n

t=1 e
i(21−22 )
n

∣∣∣∣∣ (1)279

Here n is the total number of data points, t represents280

equally distributed discrete time steps, and 21 and 22 are281

the phase angles of the two signals for a specific frequency282

being analyzed. The degree of synchrony as computed here283

is in the range of [0,1], where the highest state of synchrony284

is 1.285

B. INTERPERSONAL COORDINATION AND ENTRAINMENT286

IN MUSICAL JOINT ACTION287

Small groups of musicians provide a valuable domain to288

investigate interpersonal coordination and entrainment from289

multiple perspectives, ranging from bio-mechanical and290

computational to psychological and neuroscientific [47],291

[48], [49]. As a microcosm of social interaction, ensemble292

co-performers coordinate their body movements and sounds293

with high degrees of precision and flexibility to communicate294

musical structure and expressive information among them-295

selves and also with their audience [19], [50], [51], [52].296

Although auditory information is generally primary in music,297

visual information can influence musical communication in298

live and recorded performances. In performance research,299

a distinction is drawn between instrumental movements,300

which are directly related to the production of musical sounds301

(e.g., the bowing of a violinist), and ancillary movements,302

which are not technically required for sound production but303

nevertheless take place during performance (e.g., head nods 304

and swaying of the torso) [53]. 305

Ancillary motion may be the key to understanding social 306

communicative effects of group music making. Results out- 307

side the music domain indicate that greater head motion 308

synchronization occurs during moments of high empathy in 309

face-to-face communication [27]. This finding suggests that 310

the degree of empathy can be assessed by the correlation 311

between phase and frequency of headmotion synchronization 312

in setups where co-actors are in visual contact. Empathy can 313

be considered to be an innate capacity for understanding 314

others thoughts and feelings, and among the core components 315

that enablemusicians to engage sociallywith one another dur- 316

ing performances [54], [55]. Empathy contributes to feelings 317

of social bonding and behavioral contagion among individ- 318

uals in groups, leading to higher states of synchronization 319

in upper-body/head movements [27]. Musical ensembles can 320

therefore be considered to be more than groups of synchro- 321

nized individuals, but instead as systems for social connection 322

in which empathy facilitates the information transfer between 323

performers by enhancing synchronization states. Rhythmic 324

synchronization of upper body movements and particularly 325

the head is pertinent and sometimes inevitable in a musical 326

ensemble - presumably emerging from high degrees of empa- 327

thy, agreement, and shared joint goals. 328

Ancillary body motion also plays a role in regulating 329

an individual’s performance, conveying musical structure, 330

expressive intentions, and underlying musical meaning to 331

others in a group or even the audience [56], [57], [58], 332

[59], [60], [61]. In musical ensembles, ancillary motion pro- 333

vides visual cues that assist co-performers to coordinate their 334

actions, and interpersonal coupling can be therefore observed 335

at the level of body movements as well as sounds [61], [62]. 336

Previous research in small group interactions has demon- 337

strated that the coordination of head motion and body sway 338

is positively correlated with coordination of sound onsets, 339

although the relation is not perfect [4], [28], [63], suggest- 340

ing that visual and auditory information provide parallel 341

channels for musical communication [57]. Additionally, the 342

synchronization of non-verbal elements of expression takes 343

place across multiple temporal scales, with head motion 344

in particular being associated with higher states of con- 345

nectedness [64], [65]. Correspondingly, the head movement 346

synchronization of performers in a group can serve as a 347

good metric to identify whether or not they are perform- 348

ing cohesively. The rate of synchronization can be logged 349

to note the eventual increase or decrease in performance 350

synchronization [66], [67], [68], [69]. 351

Indeed, the coordination of co-performers’ sounds take 352

place at short timescales (millisecond range), while move- 353

ments such as body sway are aligned at longer timescales 354

associated with higher-order units of musical structure (e.g., 355

phrases) [22]. Furthermore, interpersonal coupling in both 356

body motion and sounds is dynamic in the sense that it varies 357

overtime, and this variation is systematic, that is, not entirely 358

random [20], [70], [71]. The present study addresses how 359
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such variation in co-performer coupling relates to two aspects360

of musical structure - texture and phrasing. Musical texture361

refers to the hierarchical arrangement of instrumental parts362

in the ensemble; specifically, how separate parts relate to one363

another in terms of salience (i.e., tendency to capture atten-364

tion) and complexity (e.g., degree to which separate parts365

contain redundant vs unique information) [22], [72]. In some366

musical textures, there is a clear distinction between amelody367

and accompaniment parts, where themelody is relatively high368

in salience (i.e., homophonic textures). It is often assumed369

that in such cases the melody player serves a leadership370

role in the ensemble (even if only temporarily) [11], [12],371

[13]. In other textures, separate parts can each have inde-372

pendent melodic content that proceeds simultaneously (i.e.,373

polyphonic textures). In these cases, the situation is more374

egalitarian in the sense that leadership is distributed or free375

to roam around the ensemble [22], [73], [74], [75].376

It is currently unclear how such textural variations affect377

coordination. Laboratory studies of interpersonal coordi-378

nation suggest that coupling can be stronger without a379

designated leader – when a form of co-leadership charac-380

terized mutual adaptation, anticipation, and joint attention381

emerges [52] – but this work mainly entails improvised (as382

opposed to scripted) performances and participants without383

formal musical training [15], [16], [17]. Naturalistic studies384

of experienced musicians have yielded mixed results with385

regard to whether interpersonal synchronization is influ-386

enced by leadership instructions and the degree of indepen-387

dence between parts in terms of melody and accompaniment388

roles [12], [50], [76]. Overall, these findings suggest that389

the degree to which ensemble coordination is resilient to390

different conditions might vary with task demands and levels391

of expertise [77], and that the method of quantifying coupling392

and the timescale(s) at which it is applied might influence393

results.394

The second structural aspect of interest relates to the seg-395

mentation of musical pieces into phrases and higher-order396

sections. Previous research suggests that phrase entries and397

endings present challenges for interpersonal coordination due398

to heightened uncertainty associated with increased timing399

variability at these points [74]. As a compensatory strategy,400

ensemble co-performers hence increase the use of visual cues,401

including gestures and eye contact, to assist coordination402

at phrase boundaries [3], [9], [12], [51], [78]. Furthermore,403

improvising jazz musicians have been found to become more404

synchronous prior to structural boundaries (i.e., transitions405

where the musical content or style changes), suggesting an406

increase in the intensity of joint attention and communication407

at these points [18].408

IV. COMPUTATIONAL FRAMEWORK, SYSTEM409

ARCHITECTURE AND METHODOLOGY410

To investigate the research questions raised in section II,411

we propose huSync as a computational framework and sys-412

tem for evaluating interpersonal synchronization between413

dyads in small groups. Fig. 1 presents an overview of the414

FIGURE 1. The huSync computational framework for the analysis of
interpersonal synchronization in small-group setups.

FIGURE 2. An instance of the computational framework and the huSync
system architecture.

computational framework adopted for huSync. It includes 415

four blocks and is grounded on a well-established concep- 416

tual framework for the analysis of expressiveness conveyed 417

using body movements and gestures alike [56], [79]. The first 418

block, multi-modal signals (Fig. 1 (A)), consists of informa- 419

tion and data that can be sourced from different modalities 420

(e.g., audio, video, heart-rate, respiration rate, and so on). 421

The second block, feature extraction (Fig. 1 (B)), entails 422

extracting raw data from these multi-modal signals and could 423

include pre-processing steps (e.g., up or down-sampling, 424

interpolation, realignment, and normalization) to make sure 425
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that all signals are compliant with one another when perform-426

ing a detailed analysis. It also involves extraction of essential427

features from the signals that can better describe movements428

exhibited during small-group interactions (e.g., acceleration429

peaks, kinetic energy, and distance computation). The third430

block, measurement of entrainment (Fig. 1 (C)), involves431

examining the overall behavior of participants in a small432

group and how they may adjust and adapt their behavior. The433

fourth block, analysis and validation (Fig. 1 (D)), involves434

performing a statistical procedure on the results obtained435

to ascertain the influence of variables present in our data436

(e.g., one-way ANOVA, two-way ANOVA, and multivariate437

ANOVA) and validating the results to test the sensitivity,438

reliability and practical usefulness of our framework and439

corresponding system.440

The structure and architecture of the huSync system is441

illustrated in Fig. 2 and is represented as an instance of the442

computational framework in Fig. 1. It follows a structured443

funnel of steps beginning with selecting videos of interest444

that satisfy our analysis criteria. The first block (Fig. 2 (A))445

is responsible for reading video and audio signals from stan-446

dard video recordings. The video data are pushed into the447

second block (Fig. 2 (B)), where they are processed with448

multi-person pose estimation algorithms to detect key-points449

on participants’ bodies in each frame of the video being450

analyzed, and it generates a json file in sequential order of451

the people in each frame, and each person is represented with452

an array of key-points. Using this trajectory information, and453

depending on the specific use case, a relevant key-point is454

selected to obtain kinematic information and processing the455

data to extract relevant features. For our system instance,456

we decided to compute the distance between each time step457

traversed by the key-point. As illustrated, we utilize the audio458

signals from the video recordings to extract acoustic features459

such as pulse clarity and event density, and has been explained460

in more detail in section VI-B. The distance data then461

moves into the third block which involves computing inter-462

personal synchronization between participants in the group463

(Fig. 2 (C)). This is followed by performing a statistical anal-464

ysis and validation (Fig. 2 (D)) on the phase-locking value465

results obtained, which additionally helps answer questions466

raised in our hypothesis. To help interpret and validate the467

results which are primarily heterogeneous in nature, a cross-468

modal validation is performed with the acoustic features469

obtained from the feature extraction block (Fig. 2 (B)).470

A. huSync PROCESS PIPELINE AND METHODOLOGY TO471

COMPUTE DYADIC SYNCHRONIZATION472

The process pipeline of huSync entails an 8-step computa-473

tional methodology, as illustrated in Fig. 3, and is a subset474

of blocks B and C in Fig. 2. This pipeline covers the entire475

range of operations performed on the data extracted, from the476

json file available after pre-processing with pose estimation477

algorithms to computing the final dyadic synchronization in478

small-group setups. Thus, before applying the huSync com-479

putational model it is necessary to have the data extracted480

FIGURE 3. An illustration of the process pipeline for computing dyadic
synchronization.

from json files, after selecting the key-point of interest based 481

on the use case and experimental setup. 482

huSync is flexible and allows dyadic synchronization to be 483

computed for the entire duration of a video phrase or over 484

sections, as in the three parts (start, middle, and end) required 485

to address the research questions raised in section II. To pro- 486

vide an intuitive understanding of the process, we explain 487

the 8 steps next, along with an illustration of a simulated 488

example for a dataset with 15 data-points to compute dyadic 489

synchronization between a pair of performers. Fig. 4 covers 490

steps 1 to 6 and Fig. 5 covers steps 7 and 8. 491

1) STEP 1 – COMPUTE DISTANCE, FILTERING, AND SIZE OF 492

THE DATASET 493

The key-point of interest can be a single key-point or a 494

computed feature between multiple key-points. As part of our 495

feature extraction step (Fig. 1 (C)), using the data extracted 496

from the json file, we compute the Euclidean distance with 497

the raw coordinate data available in (x,y) format. When 498

processing videos with pose estimation algorithms, the data 499

can be quite noisy and it is important to check if filtering 500

is required. huSync implements the Savitzky-Golay filter, 501

if needed, since it tends to preserve the phase and essential 502

features of a signal [80], [81]. We then ascertain the size of 503

the dataset to be consumed by the huSync model to analyze 504

changes in synchronization level over the time period of 505

interest. In our specific use case, answering the research ques- 506

tions raised in section II requires analyzing the start, middle, 507

and end of musical phrases, and hence the total number of 508

datapoints should be divisible by 3 and also adaptive to the 509

step-size chosen in the next step to fit all data points that fall 510

within the window width. When this condition is not met, 511

extra rows in the data file can be dealt with by truncating the 512

dataset at the end of the phrase segment. Additionally, if there 513

are fewer line items, they can be dealt with by augmenting 514

the existing data at the extremities using polynomial or linear 515

extrapolation. While it did not happen in our case, if loss of 516

information is observed in between a phrase segment, it can 517

be dealt with by making use of a cubic spline interpolation to 518

fill gaps [82]. 519

2) STEP 2 – WINDOW SIZE DETERMINATION AND 520

EXTRACTION 521

We use a sliding window approach that steps through each 522

portion of the video data so to capture both local and global 523
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FIGURE 4. Simulated Example: This figure covers steps 1 to 6.

trends. In our simulated example we use a window size =524

5 and step-size =2, and thus we have 6 windows.525

3) STEP 3 – SELECT A DYAD COMBINATION526

In our simulated example, we consider a situation with two527

participants, but with huSync we can either select a specific528

dyad for whom we would like to compute synchronization or529

do so in an automated manner for all possible pairs. Since the530

order is not important, the total number of possible pairs can531

be computed using (2).532

C (n, r) =
(
n
r

)
=

n!
(r !(n− r)!)

(2)533

4) STEP 4 – APPLY FFT ON WINDOWED DISTANCE DATA534

We apply the FFT algorithm iteratively on all possible dyadic535

pairs available using the scipy library [81]. On applying536

FFT to the distance data at each time step, we obtain the537

spectrum, and proceed with extracting the real and imaginary538

components.539

5) STEP 5 – OBTAIN PHASE ANGLES540

By applying FFT over the distance data, we obtain complex-541

values, from which the magnitude (modulus) and phase542

values are extracted. For this purpose we utilize the numpy543

library [83]. Data for all participants undergo FFT indi-544

vidually to obtain phase angles at each frequency bin and545

time step of the windowed information for all participants.546

As illustrated in our simulated example, once FFT is applied 547

over the data of Participants 1 and 2, from the complex values 548

we extract the phase angles. 549

6) STEP 6 – COMPUTE RELATIVE PHASE ANGLE 550

BETWEEN DYADS 551

After obtaining the phase angles for each participant, we then 552

proceed with computing relative phase angles (difference 553

between the phase angles) for all possible pairs, and for our 554

simulated example it will be between the two participants – by 555

computing for each time step and frequency bin the difference 556

between phase angles of the participants. 557

7) STEP 7 – PLVs COMPUTED FOR EACH WINDOW 558

The relative phase values are used by our function to compute 559

PLVs. In a window, each element, or phase angle value, is put 560

together with values present in other windows, but with those 561

having the same position. Thus, we receive a set of PLVs 562

equal to length of each window. In our simulated example, 563

each window element is aligned with those having the same 564

position to obtain PLVs. The colored squares, as seen in 565

Fig. 5, indicate values present at the same position, which 566

are used as inputs in our function to compute a PLV. PLV 567

is then computed for each time step and each frequency 568

bin using all relative phase values of the corresponding 569

window. 570

8) STEP 8 – AVERAGED PLVs AND DYADIC 571

SYNCHRONIZATION 572

After we have obtained the PLVs, which as seen in the 573

previous step will result in an array having a length equivalent 574

to the length of a single window, since we have one PLV for 575

each frequency bin. Here, a cut-off frequency can be utilized 576

to discard frequencies beyond a threshold, while excluding 577

the DC component for the computation. As seen in Fig. 5, 578

once the PLVs are calculated, we average them to obtain 579

a single value (avgPLV or averaged PLV), across different 580

frequency bins of interest, and is our final value for dyadic 581

synchronization between a pair. Here, PLV and averagedPLV 582

are computed using (3): 583

PLVj =

∣∣∣∣∣∣∣∣
n∑
i=0

ei θR(ij)

n

∣∣∣∣∣∣∣∣ 584

avgPLV =

k∑
j=0

PLVj

k
(3) 585

where i ∈ {0..n}, j ∈ {0..k} and n are the number 586

of windows, k is the number of relative phase angles in 587

each window, and 2R(ij) represents the relative phase angle 588

present in each window i at position j. The value ranges 589

from 0 to 1 where 1 indicates perfect synchrony and 0 no 590

synchrony. 591
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FIGURE 5. Simulated Example: This figure covers steps 7 and 8, which are
a final synthesis of the computation process.

V. THE TEST DATASET592

A. VIDEO RECORDINGS593

huSync, as a system, is tested on a dataset consisting of594

videos from concert performances by the Omega Ensemble,595

a professional chamber music group from Australia, and596

consent was given for further use of the data. The concerts597

took place at City Recital Hall in Sydney in 2017. The videos598

included musical pieces composed by Alexander Borodin599

and Johannes Brahms. Videos were recorded by a Canon600

1DX camera body and a Canon EF 70-200 1:2.8 L zoom601

lens as QuickTime movies (.MOV) with dimensions 1920 ×602

1080 pixels at 25 frames per second. Audio was recorded603

as 16-bit stereo at 48 kHz. Compression was done with the604

H.264 video codec and the Linear PCM audio codec synced605

via Timecode.606

For the present study, we chose to perform our analyzes607

on videos from a concert featuring the Clarinet Quintet in608

B minor (Op. 115) written in 1891 by Johannes Brahms609

(1833-1897) (‘‘Brahms Clarinet Quintet’’) and String Quartet610

No. 1 in A major written in 1874-79 by Alexander Borodin611

(1833-1887) (‘‘Borodin String Quartet’’). Fig. 6 includes612

screenshots from the video sequences. The Borodin String613

Quartet is scored for violin 1, violin 2, viola, and cello.614

The Brahms Clarinet Quintet uses the same string instru-615

ments plus a clarinet. Both pieces contain four movements616

with contrasting musical characters. The total duration of the617

Borodin String Quartet performance lasted 39 minutes and618

13 seconds while the duration of the Brahms Clarinet Quin-619

tet was 40 minutes and 38 seconds. For our study, specific620

phrases from each concert recording were selected based on621

FIGURE 6. Images from the performance of the Brahms Clarinet Quintet
(Top Left) and the Borodin String Quartet (Bottom Left) along with the
outputs available with tracked key-points using pose estimation
algorithm (Top Right and Bottom Right).

pre-defined parameters, covered in section V-B. In Table 1, 622

we summarise the full dataset and specific phrases selected 623

in terms of phrase duration (min, max, median and average) 624

and count. 625

B. ANNOTATION PROCESS FOR IDENTIFIED SECTIONS 626

OF INTEREST 627

Videos were annotated to segment them for analysis address- 628

ing the hypothesized effects of musical texture and phrase 629

position on interpersonal synchronization among ensemble 630

co-performers, that is, four individuals for the Borodin per- 631

formance and five individuals for the Brahms performance. 632

These annotations were done in accordance with the specific 633

aim of testing how the strength of interpersonal coupling is 634

influenced by two factors: 635

1) Position within the musical phrase (start, middle, and 636

end); and 637

2) Musical texture (polyphonic, where leadership is 638

ambiguous due to the lack of a clear distinction 639

between melody and accompaniment, versus homo- 640

phonic, where there is an unambiguous melodic 641

leader). 642

Each of the videos was annotated using ELAN (an annota- 643

tion tool for multimedia files) [84] in accordance with a musi- 644

cological analysis based on the published score. In order to 645

mitigate noise that can be introduced by personal behavioral 646

aspects of performers before or after a phrase has been played 647

such as shaking the legs, rotating the arms, or readjusting their 648

seating position, the annotations should be made carefully 649

and be aligned as accurately as possible with the start and 650

end of musical phrases. Annotated features included phras- 651

ing, textural classification, number of instruments currently 652

playing, and instrument roles (e.g., melody, counter melody, 653

or harmonic accompaniment), which were indicated in sepa- 654

rate tiers in the ELAN interface. Information from each tier 655

within the annotated ELAN file for each piece was exported 656

to extract video timecodes for each phrase and its textural 657

classification. 658

Phrases were selected based on the following criteria: 659
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TABLE 1. Summary of the complete dataset and selected phrases for our experiments.

1) Duration: Phrases were chosen keeping in mind that660

each one could be split into three equal segments661

with the same duration, thus giving us a start, middle,662

and end for each selected phrase, while ensuring that663

each segment was >5 sec. The segment sizes var-664

ied with phrase length. These time intervals are long665

enough to compute interpersonal synchronization of666

body motion, but not too long so that musical qualities667

could be considered stationary.668

2) Number of instruments: Phrases that met the duration669

criterion set above, were filtered based on the number670

of instruments that were being played. The criterion for671

selection at this stage was that all instruments in the672

ensemble were playing throughout most of the phrase.673

3) Texture: Phrases longer than the duration specified674

above, and with all instruments playing, were then675

filtered based on the musical texture. For our purposes,676

the focus was on the distinction between textures with677

a clear musical leader-follower roles versus textures678

that were less clear in this respect. This resulted in a679

two-level textural classification. We refer to ‘homo-680

phonic’ textures as having rhythmically differenti-681

ated melody and harmonic accompaniment, with the682

melody instrument assumed to serve a leader role and683

the accompanying instruments serving as followers.684

By contrast, ‘polyphonic’ textures have more than one685

melody part, and thus more than one potential leader.686

By our definition, polyphonic textures range from those687

where there are two melodic parts (e.g., a melody688

and countermelody) or interdependent melodic mate-689

rial distributed across multiple instrumental parts.690

4) Instrument roles: For each phrase selected based on691

the above criterions, the instrument that was playing692

a melody line was noted (in the case of homophonic693

textures). Only phrases where the instrument roles were694

consistent throughout passed this criterion.695

Table 1 reports the number of selected phrases and their696

min, max, median, and average duration.697

C. APPLYING huSync TO THE DATASET698

Videos from the dataset are used as a testbed for huSync699

and to investigate the social signals that lead to states700

of heightened interpersonal coordination. We pre-processed701

selected video phrases using AlphaPose (v0.4) and received702

json files with full-body key-points. From this, as motivated703

in section III-B, we are interested in the trajectory of the704

head, and thus extract the nose key-point (key ‘0’). Data705

are arranged as a table with x and y coordinates for each 706

participant in separate columns. We analyze dyadic synchro- 707

nization for all pairs of performers and the total possible dyad 708

combinations is 6 for Borodin (n=4, r=2) and 10 for Brahms 709

(n=5, r=2).We did evaluate the use of a Savitzky-Golay filter 710

for our data, but did not observe any major differences with 711

its use and decided to exclude it during the data processing 712

phase. Using the coordinate information, the Euclidean dis- 713

tance between each time step of the trajectory is computed for 714

every participant and arranged in separate columns. We then 715

proceed with using a sliding window to segregate our data 716

for each participant. Based on previous studies, tests were 717

performed by varying the duration or size of the window to 718

inspect our data across multiple levels of temporal resolution 719

and statistical significance, and decided to proceed with a 720

window size of 30 and step-size of 5 [85]. Based on our 721

window step-size the dataset had to also be divisible by 5 to fit 722

all data points by the window width. We truncate the data in 723

case of extra data-points and extrapolate to fill missing values. 724

For example, if our dataset contains 453 data points, we will 725

truncate it to 450 to arrive to the nearest multiple of 5 and 3, 726

and in case we have 447 data points, we extrapolate 3 data 727

points to arrive to 450. On applying FFT on the windowed 728

distance data, we extract the phase angle and begin to com- 729

pute relative phase angles for all possible pairs. By analyzing 730

the frequency distribution, and using a window size of 30, 731

a 10Hz cut-off indicates excluding all values above the 11th 732

value and excluding the 1st since it is the DC component. PLV 733

is computed for each frequency bin and then averaged across 734

all frequency bins of interest. 735

VI. RESULTS 736

We performed our analyzes on a total of 44 phrases and in 737

Table 1 we share a group summary of the dataset chosen. 738

These phrases met our criteria of a good balance between 739

polyphonic and homophonic textures while also taking into 740

account the duration of each phrase and quality of the data 741

received on pre-processing videos with a pose estimation 742

algorithm. 743

The PLV results are first presented descriptively and 744

then results of analyzes of Variance (ANOVA) are reported. 745

Performances of the Brahms and Borodin pieces were 746

analyzed separately due to the differing number of per- 747

formers in each piece. PLVs for all pairs for each piece 748

were entered into an ANOVA that included Phrase Position 749

(Start, Middle, End) as a within subjects factor and Tex- 750

ture (Homophonic, Polyphonic) and Pair (i.e., each separate 751
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FIGURE 7. Phase locking values, indicating synchronization of
co-performers’ head motion, across phrase positions for polyphonic and
homophonic texture for Position × Texture in the Brahms and Borodin
pieces).

pairing of individuals from the ensemble) as between subjects752

factors. The factor ‘Pair’ was included in the analyzes since753

no two instrumentalists were playing the same part and the754

specific pairing of parts could have systematic effects on755

PLV, although the detailed analysis of such potential effects is756

beyond the scope of our study. In addition to the main factors,757

phrase duration was included as a covariate in the analyzes to758

control for its potential effects on PLV. The ANOVAs were759

run in jamovi [86].760

A. EFFECTS OF TEXTURE AND PHRASE POSITION ON761

INTERPERSONAL COUPLING762

PLV results are graphically represented in Fig. 7 for the three763

phrase positions in the two textures, with data averaged across764

pairs, for Brahms and Borodin performances, respectively.765

From these graphs it is seen that polyphonic textures have766

higher PLVs as compared to homophonic textures, as was767

hypothesized in the research questions raised in section II.768

We also observe how the PLVs begin at a lower value in both769

textures. For the polyphonic texture, values start out relatively770

high, then tend to rise further at the middle of the phrase,771

and finally drop towards the end of a musical phrase. For772

the homophonic texture, values start out lower and remain773

constant until a slight increase at phrase endings.774

In Fig. 8, results are shared as network plots of averaged775

PLVs, across all phrases, for individual instrument pairings776

observed for the Brahms and Borodin performances sepa-777

rately. Here it can be seen that most pairs show a higher level778

of synchronization in polyphonic textures in the start, middle779

and end of each phrase, suggesting that the effect is a general780

and not tied to specific instrument pairings.781

The ANOVA results are illustrated for the Brahms perfor-782

mance in Table 2, and for Borodin in Table 3. Values high-783

lighted in bold indicate statistical significance (p<0.05). For784

Brahms, the ANOVA revealed a statistically significant main785

effect of Texture, F(1, 219) = 16.08, p < 0.001, and a sig-786

nificant two-way interaction between Position and Texture,787

F(2, 438) = 6.098, p = 0.002. For Borodin, there was also a788

statistically significant main effect of Texture, F(1, 107) =789

14.051, p < 0.001, and a significant two-way interaction790

TABLE 2. ANOVA results for between and within subjects effects for the
brahms concert.

TABLE 3. ANOVA results for between and within subjects effects for the
Borodin concert.

between Position and Texture, F(2, 214)= 3.399, p = 0.035. 791

For both Brahms and Borodin, the main effect of position was 792

not statistically significant. 793

Overall, these results indicate that for both pieces, PLVs 794

were reliably higher—hence interpersonal coupling between 795

performers was stronger—for polyphonic than homophonic 796

textures, though this effect of texture varied over the course 797

of musical phrases. Specifically, the effect of texture was 798

reduced at the end of phrases due to decreases in coupling 799

strength in polyphonic textures and increases in coupling 800

strength in homophonic textures. 801

B. ANALYSIS OF AUDIO FEATURES 802

While our main analysis focuses on ensemble coordination 803

of co-performer body motion, we conducted an additional 804

analysis to examine the relationship between the synchroniza- 805

tion of body movements, which provides visual cues, with 806

ensemble sounds. 807

Because we do not have multitrack audio recordings for 808

each instrument on a separate track, we computed indirect 809

measures of global ensemble synchronization from stereo 810

auditory recordings of the full ensemble sound. Based on 811

previous research [20], [21], [47], we included estimates of 812

‘pulse clarity’ and ‘event density’, which were calculated 813

using the ‘mirpulseclarity’ and ‘mireventdensity’ functions 814

from theMIRtoolbox inMATLAB [87]. Pulse clarity is a fea- 815

ture that reflects the strength of rhythmic beats, while event 816

density indicates the average frequency of events (i.e., the 817

92366 VOLUME 10, 2022



S. R. Sabharwal et al.: huSync - A Model and System for the Measure of Synchronization in Small Groups

FIGURE 8. Network plots for ensemble PLV data by instrument for each condition (texture and phrase position) in Brahms and Borodin
pieces. Edge thickness indicates the coupling strength based on phase locking values averaged across all phrases. Each colored node
indicates an instrument played by the performers.

TABLE 4. Mean and standard deviation (SD) of estimates of pulse clarity
and event density as a function of texture (homophonic and polyphonic)
and phrase position (start, middle, and end) for performances of pieces
by Brahms and Borodin.

number of events detected per second). Descriptive statistics818

for these measures are shown in Table 4.819

To assess potential effects related to these audio features,820

we ran a linear mixed effects model analysis using the821

lmer package [88] in R [89] with PLV as the dependent822

variable, pulse clarity, event density, texture, and phrase823

position as predictor fixed effects, and piece as a random824

effect (with intercepts allowed to vary). Pulse clarity val-825

ues were arcsine-transformed and event density values were826

log-transformed prior to analysis. The results revealed a link827

between PLV and event density. Specifically, a likelihood-828

ratio test indicated that a model including event density829

provided a better fit for the data than a model without it830

(χ2 (1) = 7.44, p = 0.006), whereas pulse clarity did not831

contribute significantly to the model (χ2 (1) = 0.03, p =832

0.884). Examination of the output for the full model indi-833

cated that PLV values increased with increasing event density834

(β = 0.031, SE = 0.011, t = 2.767, p = 0.006). These835

results are consistent with a growing body of evidence that836

visual and audio cues are both relevant in assessing interper-837

sonal synchronization in musical ensembles [20], [21], [28],838

[47], [63]. Future work with multitrack audio would allow 839

the relationship between auditory and visual information to 840

be investigated in greater detail, including the assessment 841

of correspondence between leader-follower relations across 842

modalities. 843

VII. DISCUSSION 844

The current study had two prime objectives. The first was to 845

develop and present a computational framework and a system 846

to study small-group interactions involving non-verbal social 847

communicative behaviour. huSync can be implemented on 848

video sequences which permits studies to be performed in 849

a naturalistic context without interference associated with 850

motion capture setups. Second, we wanted to put huSync 851

through a test case scenario addressing research questions 852

concerning the relationship between interpersonal coordi- 853

nation of body movements and musical structure. For this 854

specific use case, huSync appears to be a practical alternative 855

technique for quantifying dyadic synchronization between 856

co-performers in musical ensembles based on the automated 857

analysis of human body movements. The outcomes of this 858

investigation are thusmethodological and empirical in nature, 859

informing technical aspects and conceptual issues relevant 860

to examining real-time human interaction and non-verbal 861

communication in naturalistic settings. 862

On the methodological side, our approach progresses 863

through a structured funnel of steps, where kinematic infor- 864

mation is gathered from standard video recordings in a 865

marker-less and non-intrusive manner. This kinematic infor- 866

mation is then used for quantifying dyadic synchronization 867

between musical performers from within a group ensemble, 868

indexed as phase-locking values, and this routine is done 869

exhaustively for all possible pairs in the group. An advantage 870

of this approach is that it is possible to obtain information 871

about coupling between specific individuals whereas if we 872

take a global measure, we do not necessarily have that level of 873
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specificity. The alternative is complicated and rather difficult874

to interpret when data pertain to natural behavior (in contrast875

to data from controlled experiments where independent vari-876

ables are systematically manipulated).877

As an empirical case study, we applied the above tech-878

niques for body motion analysis to investigate the effects879

of two aspects of musical structure—texture and phrase880

position—on the strength of interpersonal coupling in instru-881

mental ensembles. With regard to texture, coupling strength882

between co-performers was found to be stronger for poly-883

phonic textures than homophonic textures. These textures884

differ in terms of the presence of a clear leader implied by885

the relationship between melody and accompaniment parts886

[32], [33], [34], [35], [36], [37]. Our finding that couplingwas887

stronger for polyphonic textures than homophonic textures888

could be a consequence of coupling being more evenly dis-889

tributed across all performers when leadership is ambiguous890

in polyphonic textures, whereas accompanying performers891

are more strongly coupled to a single performer serving as a892

melodic leader in homophonic textures. This interpretation is893

generally consistent with work on interpersonal coordination894

in controlled laboratory tasks [15], [16], [17]. Based on this895

previous work, distributed leadership in polyphonic textures896

might be associated with greater ensemble synchronization897

due to heightened mutual adaptation, anticipation, and joint898

attention [19], [52], [74].899

Although position in musical phrases did not have a gen-900

eral effect on the strength of interpersonal coupling, phrase901

position modulated the effects of musical texture in a manner902

indicating that the presence of a clear melodic leader was903

more influential in early than late portions of phrases. Specif-904

ically, relatively strong interpersonal coupling for polyphonic905

textures was evident at the start and middle phrase posi-906

tions but not at phrase endings. It might be the case that907

increased coordination demands at phrase endings [74]—that908

is, just prior to the transition to the next phrase and new909

musical material—had differential effects in the case of910

polyphonic and homophonic textures. Specifically, without911

a clear leader in polyphonic textures, interpersonal synchro-912

nization decreased at these challenging coordination points,913

whereas in homophonic textures, synchronization improved914

at these points, possibly due to increased attention from the915

melodic leader. Future work could test this conjecture using916

eye-tracking technology to monitor eye gaze to quantify eye917

contact across phrase positions [12], [51], [90].918

We evaluated huSync as a system to quantify group coor-919

dination by focusing on effects of musical texture and phrase920

position on interpersonal coupling based on visual infor-921

mation related to body motion. However, we also found922

evidence for a relationship between ensemble coordination923

at the level of body motion and sounds in a supplementary924

analysis of audio tracks from the videos. This correspondence925

is generally consistent with the results of previous studies926

of ensemble coordination [4], [28], [63], and more broadly927

contributes to a growing body of work highlighting the mul-928

timodal nature of musical communication [47], [57], [61].929

Additionally, it highlights the relevance of both visual and 930

audio cues when assessing interpersonal synchronization in 931

musical groups. Overall findings suggest that huSync is sensi- 932

tive to modulations of interpersonal coupling related to ambi- 933

guity in leadership and coordination demands in standard 934

video recordings of naturalistic human group interaction. 935

VIII. CONCLUSION 936

The proposed ‘huSync’ framework and system provides 937

a reliable and non-intrusive alternative to current meth- 938

ods for the automated analysis of human body movements 939

and associated qualities such as degrees of interpersonal 940

synchronization. It can help in the study of such niche but 941

ecologically valid aspects of human movement sciences, 942

opening an avenue where marker-less technologies can be 943

utilized extensively. This is evident in the use case of musical 944

ensemble performances, where we evaluated the method, and 945

also has potential to be extended to capturing non-verbal 946

social signals in other domains of group behaviour and 947

human interaction more generally. As a concrete outcome, 948

we provide a well-structured jupyter notebook (link) that 949

includes functions designed and implemented to process the 950

data extracted from pose estimation algorithms by converting 951

them into structured csv files, followed by the calculation 952

routine for computing phase locking values, thus quantifying 953

the dyadic synchronization. An especially promising benefit 954

of the huSync model is that it can be applied to standard 955

videos recorded across a wide range of contexts, opening the 956

door to analyzing vast troves of historical material available 957

in archives and on the Internet. The outcomes of the research 958

will thus potentially have broad impact across diverse disci- 959

plines including computer science, psychology and cognitive 960

neuroscience, and music psychology. The methodological 961

applications of huSync can be leveraged for further empirical 962

discoveries related to human joint action, group behavior and 963

social cognition [10]. 964

A. OBSERVED LIMITATIONS 965

There are several areas to improve upon and overcome in 966

future research. At present, there exists a higher amount 967

of noise in tracking conventional video as compared to 968

marker-based systems. This issue becomes particularly acute 969

when examining at higher-order kinematic variables, such 970

as velocity and acceleration (because computing derivatives 971

via differentiation amplifies noise), which is one reason why 972

we focused on distance data. Pose estimation algorithms 973

provide better results with regard to recognizing, isolating, 974

and predicting the pose of participants in videos where the 975

foreground and background are well-differentiated. This sug- 976

gests that figure-ground differentiation is an important aspect 977

of quality control. 978

Additionally, the seating position and direction of motion 979

trajectories exhibited by participants is an important aspect 980

to take note of, and plays an influential role in quantifying 981

dyadic synchronization. For our use case, the head moves 982

predominantly in a back-and-forth manner during moments 983
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FIGURE 9. Images from a performances of the String Quartet No. 2
composed by Alexander Borodin (Top Left) and a trio for clarinet, viola,
and piano composed by Robert Schumann (Bottom Left) along with
overlayed keypoints on the right.

of interpersonal coordination and heightened synchronized984

states. Thus, orientation of the participants relative to the985

camera view influences the amount of motion information986

that can be detected and extracted. Fig. 9 shows still images,987

along with the implementation of a pose estimation algo-988

rithm, from videos of performances of different musical989

pieces, including a trio and quartet, from a concert in a990

smaller venue than the performances analyzed in the current991

paper. These video recordings are highly challenging for pose992

estimation algorithms to be implemented upon. The seating993

position of the performers makes it unfeasible to track all994

individuals clearly within a single camera view. Also, each995

frame is crowded with many individuals in the audience that996

do not need to be tracked along with multiple occluding997

objects, such as the piano, chairs, an individual serving as998

page tuner, and heads of the audience to name a few. These999

add to the overall visual clutter and complexity that makes1000

it difficult to localize the performers’ bodies and to extract1001

reliable data for analysis.1002

While our focus in this paper remains on small-group1003

setups, problems concerning occlusions and overlaps are evi-1004

dent when analyzing videos of larger groups, in particular1005

those with multi-row ensembles of musicians where occlu-1006

sions can be caused by both instruments and co-performers.1007

This can invite multiple challenges especially with loss of1008

movement related information. A possible technique that1009

could be investigated in future works might involve the use1010

of multiple cameras at different positions, where data can be1011

reconstructed from multiple perspectives using synchronized1012

multi-view video recordings [91], [92]. This is essentially1013

similar in principle to optical MoCap [93] but is still less1014

invasive and more portable.1015

B. FUTURE RESEARCH1016

This study is part of the European Horizon 20201017

FETPROACTIVE EnTimeMent Project, on novel time-1018

adaptive technologies operating at multiple time scales in1019

a multi-layered approach. In the future, this work will1020

be extended in line with the overarching goals of the1021

EnTimeMent Project by exploring various techniques to1022

examine how interpersonal coordination unfolds at multiple1023

timescales, which could involve applying these techniques 1024

in different experimental setups. The candidate techniques 1025

include: 1026

1) Multi-Event Class Synchronization if we have dis- 1027

crete information (landmarks such as points at which 1028

co-performer makes eye contact) to help us mea- 1029

sure synchronization between two relevant events that 1030

belong to different event classes and detected in multi- 1031

ple time series [94]; and 1032

2) Granger Causality to quantify mutual influence / 1033

leadership by studying the directionality of coupling 1034

(which should be more evident when there is a 1035

clear leadership hierarchy, as in homophonic textures), 1036

helping us look at effects of musical structure on 1037

group coordination and communication simultane- 1038

ously, at short timescales related to musical beats 1039

and longer timescales related to expressive body 1040

sway [50], [95], [96]. 1041
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