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ABSTRACT Additional layers to the U-Net architecture leads to additional parameters and network
complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem
with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning
in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout
layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture
that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation.
VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured
Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and
specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision
and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great
resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity
of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show
that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen’s Kappa
coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the
VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate
that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.

INDEX TERMS Blood vessels, DenseNet, retinal image, segmentation, U-Net, VG-DropDNet.

I. INTRODUCTION

Segmentation is a technique used in image processing that
divides an image into several distinct areas, including the
object being studied and the background. Segmentation is
widely used in a variety of fields, including road detection
using satellite images and disease diagnosis using medical
images [1]. Segmentation of medical images is a critical
processing step because it enables disease diagnosis and
treatment planning [2]. Manual medical image segmentation
performed by humans requires expert knowledge and high
accuracy, while human capabilities are limited and humans
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have laborious factors that can cause the segmentation pro-
cess to take longer [3], [4], [5]. The retina is a standard
medical image that is segmented. Through the retinal blood
vessels, retinal images can be used to diagnose, treat, and
monitor for a variety of eye diseases, including glaucoma,
myopia, and diabetic retinopathy (DR) [6].

Convolutional Neural Networks (CNN) have made sig-
nificant progress in medical image analysis in recent
years [7], [8]. The U-Net architecture is the most frequently
[8], [9] used CNN architecture for segmentation in the medi-
cal field [8], [9]. U-Net consists of encode and decode that
connected by a bridge [8], [9]. All input images must go
through an encode path to capture information in the form
of features and a decode path to return the same size as the
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input in the result [9]. The bridge is used as a connecting
path encode and decode [10]. The U-Net bridge usually
consists of several blocks [9]. U-Net accurately predicts each
pixel in image and is widely used for retinal blood vessels
segmentation [8]. Numerous studies have demonstrated suc-
cessful segmentation on retinal blood vessels [8], [10], [11].
Laibacher et al. obtained an accuracy value of 96.35% and an
F1-score of 80.91% by combining the U-Net and MobileNet
V2 architectures, but they did not calculate the sensitivity,
specificity, or Intersection over Union (IoU) values [11].
Popat et al. used the U-Net architecture in conjunction with
standard genetic algorithms and resulted in 95% for accuracy,
98.5% for specificity, and 80.83% for F1-score but the sen-
sitivity was still low at 75.06% [8]. This study did not cal-
culate performance values based on IoU. Al-masni and Kim
combined U-Net with Inversion Recovery and Contextual
Multi-Scale Multi-Level Network (CMM-NET) and resulted
accuracy of 96.64%, specificity of 98.39%, and F1-score of
80.27%, but the sensitivity and IoU were low at 78.59% and
67.08%, respectively [10].

U-Net architecture is quite slow because the network
must be run separately for each patch. U-Net has a lot
of redundancy due to overlapping patches [12]. However,
deeper networks can be much more efficient in terms of
computation and number of parameters used. In addition,
Deeper Networks are able to create deep representations,
at each layer and are able to explore new, more features [13].
Unfortunately, adding layers to the U-Net architecture intro-
duces additional parameters and increases network complex-
ity [2], [12]. Visual Geometry Group (VGG) is one of the
CNN architectures that has a deeper network [7]. Although
this architecture has a deep network, it has no effect on
network complexity because it uses a small convolution filter
on large amounts of data [14], [15]. Unfortunately, VGG is
not suitable for small datasets as it causes the network to
acquire an excessive number of features [15], [16].

VGG is more commonly used in classification than seg-
mentation [17], [18]. Khan et al. classified DR disease using
VGG architecture and spatial pyramid pooling layers and
obtained high accuracy and specificity of 85% and 91%,
respectively, but the Fl-score was still low at 59.6% [17].
Kaur and Gandhi used 16 layers of VGG layers in brain image
classification. The results of this study obtained 100% for
accuracy, sensitivity, and specificity, however, this study did
not address F1-score or IoU [16]. Mateen et al. combined
the VGG architecture with single decomposition analysis and
principal component analysis in the DR disease classification.
This study yielded a high accuracy of greater than 92%, but
this study did not evaluate other performances [19].

Dense Connected (DenseNet) is an architecture that allevi-
ates the problem of learning redundant features by combining
feature maps from previous layers [17], [20]. The results
of the feature maps from the previous layer are used as
input for the next layer. The outputs of the feature maps
in the next layer have the same number of filters (depth)
as the previous feature maps. It can reduce a total number
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of parameters on the DenseNet architecture. Reusing fea-
ture maps on DenseNet can prevent the network from over-
learning features [12], [17], [20]. DenseNet designs dense
blocks using concatenate operations to reuse feature maps
from previous layers [20], [21]. The dense block consists
of three sequential operations, namely batch normalization,
ReLU activation function and convolution [20]. Wang et al.
used DenseNet for retinal blood vessel segmentation and
obtained high accuracy and specificity values of 96.09%
and 99.04%, respectively, but the sensitivity was still low,
namely 75.39% [20]. Cheng et al. combined DenseNet and
U-Net architectures on retinal blood vessel segmentation and
obtained high accuracy and specificity values of 95.59%
and 98.34%, but it gave low sensitivity [22]. Unfortunately,
these studies did not assess F1-score and IoU performance.

VGG and DenseNet architectures are deep neural networks
that have many parameters [23]. The complex models and
long computational times are the results of an architecture
that has many parameters [24]. This can lead to many new
problems, including overfitting. Overfitting occurs when the
model or method used has a low error in the training data
but a large error in the data that has never been used (testing
data) [25]. The prediction graph on overfitting means that
the model predicts too accurately and memorizes the pattern
in the training data, but fails to predict in the test data due
to high error, thus failing to capture the overall trend of the
connection [25]. To overcome complex models and overfit-
ting problems, the dropout techniques can be used [25], [26].
Dropout is a technique to avoid overfitting while accelerating
the learning process [25]. Dropout is a regularization strategy
for neural networks in which certain neurons are randomly
selected and not used during training [27]. These neurons
can be discarded at any time. This means that the contri-
butions of deleted neurons will be temporarily suspended,
and no new weights will be applied while the neurons are
training [25]. Removing a neuron from an existing network
means deleting it temporarily. Several studies have shown
that adding dropouts to DenseNet can improve performance
in image segmentation. Lee and Lee, used DenseNet Fully
Convolutional (FC) and dropout on semantic segmentation.
The study obtained a high accuracy of 91.5%, although the
IoU value remained low at 66.9% [26]. Wang et al. used the
FC-DenseNet, dropout, and scSE modules for Pneumothorax
(PTX) segmentation and could be able to achieve high accu-
racy, sensitivity, and specificity, and an F1-score greater than
88%, but this study did not discuss the result of IoU [21].
Bui et al. used 3D-skipDenseSeg with dropout on the con-
volution layer for MRI of the infant brain segmentation and
produced a high Fl-score above 90% although it did not
measure any other performance [28].

U-Net architecture is widely used because it is suitable
for image segmentation [9]. However, it has a weakness in
the complexity of the network in adding layers and param-
eters [12]. This study proposes a new architecture, namely
VG-DropDNet which combines the advantages of U-Net,
VGG net and Densenet architectures. VG-DropDNet applied
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different architectures. In the encoded path of VG-DropDNet,
the VGG architecture is used to overcome the complexity
of the network and the large number of parameters. VGG
has deep layers and a large number of parameters. Large
parameters in VGG makes the extracted features more com-
plex, but the computation time is faster because it uses a
small convolution filter. DenseNet is used In the bridge path
of VG-DropDNet because it would reduce the parameters
number of VGG architecture without losing important feature
information. On DenseNet, these features would be combined
by concatenate operation. However, it can cause the model
to be overfitting. To overcome overfitting on DenseNet,
a dropout layer is inserted in each dense block. The decoded
path from VG-DropDNet still uses the U-Net part because it
should return the patch sizes in training to the same original
image size as the input image. The combination architecture
proposed in this study is evaluated using various performance
measures, namely accuracy, sensitivity, specificity, F1-score,
IoU, G-mean, Matthews Correlation Coefficient (MCC), and
Cohen’s Kappa coefficient to see how reliable, robust and
valid the proposed architecture is in blood vessels segmen-
tation on retinal images.

Il. METHODOLOGY

A. DATASETS DRIVE AND STARE

The DRIVE (Digital Retinal Images for Vessel Extrac-
tion) and STARE (Structured Analysis of the Retina)
datasets are used in this study. They are obtained from
the https://drive.grandchallenge.org/ for DRIVE dataset web-
site and http: www.//ces. clemson.edu/ahoover/star/ for
STARE dataset website. The DRIVE dataset contains pub-
licly available fundus camera data from 400 diabetics in
the Netherlands aged 25-90 years [29]. The STARE dataset
is the result of a publicly available digital fundus cam-
era from the University of California, San Diego [29]. The
DRIVE dataset is divided into two parts, namely test data and
training data. Test data and training data DRIVE contained
twenty images with a resolution of 565 pixels x 584 pixels.
The STARE dataset contains twenty images with 700 pix-
els x 605 pixels resolution.

B. ENHANCEMENT OF IMAGE

Prior to beginning the segmentation process, it is necessary to
perform image enhancement. Image enhancement consists of
several stages, including image quality enhancement, image
contrast enhancement, and noise filtering.

1) GAMMA CORRECTION

Gamma correction is used to adjust and control the bright-
ness of individual pixels in an image; otherwise, the image
appeared dark. Gamma correction is determined using the
power-law transformation described in the equation (1) [30].
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where I and O are input and output images, respectively. The
original brightness values I and O are mapped into [0, 1]. y is
the gamma value, if the value y < 1 (encoding gamma) then
the output image will look bright while if y > 1 (decoding
gamma) then the output image will look dark [31].

2) CONTRAST LIMITED ADAPTIVE HISTOGRAM
EQUALIZATION

By utilizing a clip limit that acts as a contrast limiter, Contrast
Limited Adaptive Histogram Equalization (CLAHE) is used
to improve image quality. CLAHE divided the input image
into several local areas called tiles. Clip limit is used to limit
the maximum value of the histogram to a specified value.
The truncated pixels would be redistributed in local regions
throughout the histogram [32]. The number of pixels in each
gray level would be divided equally, as explained in (2) [33]:

Ncr—xp X Ncr—yp
Navg = 2)

Ngray

where, Ny is the average number of pixels. Ngyy is the
number of gray levels in the tile. Ncr_xp is the number of
pixels on the X-axis of the tile. Ncg_yp is the number of pixels
on the Y-axis of the tile. Equation (3) is used to calculate the
clip limit [33].

Ncr = Ncrip — Navg 3)

where N¢g is the clip limit and N¢ygp is the clip limit input
value with a range of O to 1.

3) BOTTOM HAT TRANSFORMATION

The bottom hat transformation combines the operations of
closing and image reduction [34]. By connecting adjacent
pixel fragments and removing small holes in the image’s
center, the closing operation refines objects. This operation
is carried out in two stages, namely dilation, and erosion. The
bottom hat transform is used to eliminate dark objects against
a light background. The equation for this transformation used
equation (4) [34]:

Apor =A B )

where Ap, is the bottom hat transformation’s image. e is
the closing operation. A denotes the initial image. B is a
structuring element in the form of an operator matrix, which
take the shape of lines, disks, or diamonds.

4) IMAGE PATCHING

To overcome the need for large training data on CNN archi-
tectures, this study uses a circular random patching technique.
The goal is to get the blood vessels that are inside the retinal
circle. The circular random patching technique worked by
generating a point P(x;, y;) and calculating the distance from
that point to the center point P(xg, yo) of the retinal circle.
If d is th(ﬁ)liameter of the circle, r is the circle radius, the
resulting OP distance should be smaller than r, so the image
patch generated at point has to contain retinal image blood
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vessels. In P the testing stage, an ordered patching technique
is divided the retinal image into equal sizes according to the
desired size and number sequentially starting from the pixels
at the starting point of the image. The patching technique in
the training stage can be seen in Fig. 1.

FIGURE 1. lllustration of the patching technique in the VG-DropDNet
architecture for blood vessel segmentation in retinal images.

C. SEGMENTATION OF IMAGES

1) CONVOLUTION LAYER

The convolution layer is a feature extraction layer [35].
Numerous parameters are used in the convolution layer,
including the filter, kernel, input depth, number of filters,
stride, and padding [36]. Determination of the size of the
feature map uses equation (5) [37].

nip + 2P — K
Nout = \\%J +1 (5)

where, n,,, is the feature map size. n;;, is the input height. P is
padding. K is the kernel height. S is stride.

It uses equation (6), (7), (8), and (9) to calculate the outputs
of the convolution layer [38], [39]:

Cg = OZ + by (6)
where
0h =4, K, @

where * indicates that a convolution operation has been per-
formed. Equation (7) is used to determine the value of each
matrix entry OZ

n—1 n—1
0ij = Z Zau+l,v+j : ku+1,v+] ()
u=0 v=0
Therefore,
n—1n—1
Cij = <Z Zau+1,v+j : ku+1,v+1) + by )
u=0 v=0

whereu =0,1,2,...,n—1,andv=0,1,2,...,n—1.The
i denotes the row, j denotes the column, n denotes the height
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of the kernel matrix, A denotes the input matrix, a is entry
of input matrix A, k is entry of kernel matrix, b denotes the
kernel bias, O denotes the convolution matrix, C denotes the
convolution matrix,¢g = 1,2,3,...,0,p=0,2,3,...,1,0
is the number of kernels used, / is the number of input matrix.

2) FUNCTION OF ACTIVATION

CNN contains a non-linear component is called the activation
function. CNN’s performance is enhanced through the use of
the activation function. The activation function is a function
used in artificial neurons to determine the output based on
the input. This activation function is used in the hidden layer
and output layer. In the hidden layers, the most widely used
activation function is ReLU [40], [41]. The ReLU is simple
and is able to determine which neurons are active so that not
all neurons are used. it can reduce the number of parameters
too much. Another advantage of ReLU is to reduce the like-
lihood of gradient loss during training. ReLU has a function
to make all negative image pixel values become zero [42].
Equation (10) illustrated the ReL.U activation function.

f(c) = max(c, 0) (10)

where f(c) is the activation function’s result and c is input for
ReLU.

In output layer is used sigmoid activation function. The
sigmoid function is widely used in outputs that has 2 classes
(binary) outputs. the sigmoid function when it returns a value
in the region of negative infinite (—oo) and positive infinity
(400) as in a linear function, it will return the value in the
range (0, 1).The sigmoid activation function occupies only
the range from O to 1 and is asymptomatic in both values. it is
very useful for binary classification with 0 and 1 as output
[39], [43]. Equation (11) illustrates the Sigmoid function [44].

g(z) = (11)

14e7%
where g(z) is the activation function’s result, z is input for
ReLU, g(z) € [0, 1] and z € [—00, 00].

3) BATCH NORMALIZATION

When the CNN network is trained, the input will change on
each layer. The process works in a long training time [45].
This problem can be solved by adding a layer of batch nor-
malization [46]. Batch Normalization uses a mini-batch stack
to normalize the input on each layer [45]. The batch normal-
ization procedure begins by calculating the average of each
mini-batch (u;) using equation (12) [45]:

1 m
Wzagﬁj (12)

Fori = 1,2,3,...,myandj = 1,2,3,...,n. Where x is
entry matrix input, m is the number of mini-batch data (rows),
and n is the number of mini-batch batches (columns). Then,
the variance value is calculated in one mini batch (of) using
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equation (13) [45]:

m

1
of =~ (xij— w)? (13)

i=1
The final normalization is calculated of input in one mini
Batch (fc,; j) using equation (14) [45]:

Xij— MKy
| 2
o; +¢

where, ¢ is a small positive constant to improve numerical
stability.

(14)

Xij =

4) MAX POOLING

Pooling layers has identical stride filter sizes. The benefit of
using the pooling layer is the computations are performed
more quickly. The most frequently used pooling layer method
is max pooling [47]. Max pooling uses the filter’s maximum
input value to generate output with a smaller size [48].

5) DROPOUT

To handle overfitting in this study, it uses dropout. Overfitting
is a frequent occurrence in CNN architecture. During train-
ing, dropout will randomly remove some neurons based on
the dropout rate used [49]. The omitted neuron’s value will
be set to 0. In this study, a dropout layer with a rate of 50% is
used.

6) CONVOLUTIONAL TRANSPOSED

In deep networks, the up-sampling layer is used to increase
the dimension of features. Numerous techniques, including
transposed convolution, can be used as an up-sampling layer
on a CNN. Transposed convolution enlarges the feature map
by returning the convolution input value [50]. The steps of
the transposed convolution process are to filled the position
between each matrix entry with 0, where the number of
positions is the step value minus 1 [51]. All entries of the
input matrix are incremented by 0 according to the padding
rule. The number of increments of 0 is the size of the kernel
matrix minus 1. The first and last rows, as well as the first
and last columns of the input matrix are removed according
to the padding used. Then, the input matrix is carried out with
a convolution operation on the input matrix with the kernel
matrix rotated 180 degrees.

7) CONCATENATE
Concatenate is used to combine two input matrices from two
feature maps into a single larger input matrix [9].

8) BINARY CROSS-ENTROPY

A loss function can be used to maximize and study the net-
work quickly and accurately in CNN. Binary cross-entropy
is a loss function that is frequently used for classification and
segmentation purposes due to its effectiveness [60]. In retinal
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blood vessel segmentation, the loss function is used to deter-
mine the error difference between the segmented image and
the ground truth [53].

D. TRAINING

The purpose of this stage is to produce the best weights that
would be used in the testing stage. The data used are 20 retinal
images from DRIVE dataset and 20 retinal images from the
STARE dataset for training data. The training dta will be
divided to training data and validation data for each dataset.
The process that occured in the training stage can be seen
in Fig.2. Based on Fig.2, the original image is improved by
using gamma correction, CLAHE, and bottom hat transfor-
mation. The circular random patching technique is applied
to reproduce the data. The patching technique divides each
pre-processed image into 10000 small pieces measuring each
64 pixels x 64 pixels, so that a total of 200000 data is obtained
for STARE dataset and DRIVE training data. The total data
is divided into 64% for the training data, 16% for validation
data and 20% for testing data for each dataset.

E. TESTING

The weight results from the training process will be used
in the testing process to see how far the architecture has
succeeded for blood vessel segmentation in retinal image with
new data input from the STARE dataset and the DRIVE test
data. New data is data that has never been used at all in
the training process. For each dataset, 20 images are used.
As illustration of the process carried out in the proposed
method could be seen in Fig.3.

Based on Fig.3, the input image is first performed with
the ordered patching technique and enhancements as in the
training process. After that, the weights from the training
results are used for the testing process. The results of the
testing process are still in the form of images of small pieces
so that reconstruction is carried out. The results of blood
vessel segmentation are compared with ground truth in both
of datasets to measure the performance of the proposed archi-
tecture VG-DropDNet.

F. EVALUATION

In blood vessel segmentation, each pixel is classified into
two categories, namely blood vessels and non-vessels (back-
ground). In the confusion matrix, the following four results
can be found, namely TP, FN, FP and TN. This study eval-
uates the performance of the proposed architecture with
a confusion matrix is included accuracy (Acc), sensitivity
(Se), specificity (Sp), IoU, Fl-score (F1), G-mean, MCC,
and Cohen’s Kappa coefficient (K). These performance are
defined in equations (15), (16), (17), (18), (19), (20), (21),
(22) [54], [55], [56].

TP +TN

Acc = (15)
TP + FP + FN 4+ TN
TP
Se = —— (16)
TP + FN
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FIGURE 2. Illustration of the traning process in the VG-DropDNet architecture for blood vessel segmentation in retinal images.
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FIGURE 3. lllustration of the testing process in VG-DropDNet architecture for blood vessels segmentation in retinal image.

TN

Sp= —— 17
P= INFFP {17)
TP
o = ——— (18)
TP + FP + FN
2TP
Fl= ————— (19)
2TP + FP + FN
G — mean = \/Se x Sp (20)
MCC — (TP x TN) — (FP x FN)
" (TP x FP) (TP x FN) (IN x FP)(TN x FN)
(21)
P, — P
K=-2 "¢ (22)
1—P.

The true positive (TP) is a properly classified blood ves-
sels pixel. The false negative (FN) is a blood vessels pixel
that is incorrectly classified as a background pixel. The true
negative (TN) is a correctly classified background pixel. The
false positive (FP) is a background pixel that are incorrectly
classified as blood vessels. P, is the increase in the number
of possible changes in the number of blood vessels and
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background pixels. P, is the percentage of pixel counts that
are consistent on the segmentation result

The accuracy is used to calculate the accuracy of an
architecture [66]. However, accuracy is not always suitable
for measuring model performance, especially on unbalanced
data. Class imbalance between blood vessel pixels and back-
ground pixels in the dataset requires another performance
measure [56]. Sensitivity assesses performance in predicting
blood vessels pixels [66]. Specificity assesses performance
in predicting background pixels [56]. IoU uses to measure
the similarity between the predicted segmentation image and
the ground truth image [55]. Performance measures that is
suitable for used in unbalanced pixel classes are F1-score,
G-Mean, and Matthews Correlation Coefficient (MCC) [75].
F1-score is assessed performance on unbalanced datasets and
widely used in segmentation [56]. G-Mean is a statistical
measure used to measure the balance between blood ves-
sel pixels with a background [59]. MCC is the correlation
between predicted pixels and ground truth [75]. The Cohen’s
Kappa coefficient measures the intensity of the agreement
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FIGURE 4. Proposed method stages of retinal image blood vessel segmentation used the VG-DropDNet architecture.

between the results of the proposed segmentation architecture
and those manually performed by experts (ground truth) [54].

Ill. RESULT

In this study, there are 2 stages carries out, namely training
and testing. The stages in this research as a whole could be
seen in Fig.4. the training process begins with image quality
enhancement, Circular random patching, training and valida-
tion using VG-DropDNet. For the testing process from Fig.4,
the steps carried out are image quality enhancement, Ordered
Patching Technique, testing using the latest input dataset,
Reconstruction of segmentation results, performance evalua-
tion using Acc, Se, Sp, IoU, F1, G-mean, MCC, and Cohen’s
Kappa coefficient. The stages of Image quality enhancement
consist of RGB, Grayscale, Gamma Correction, and CLAHE.

A. IMAGE ENHANCEMENT
The data used in this study are BGR images from
the DRIVE and STARE datasets which have dimensions
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of 565 pixels x 584 pixels for DRIVE and 700 pix-
els x 605 pixels for STARE. The image enhancement process
can be seen in Fig.5. In Fig.5 it can be seen that the input data
is in the form of a BGR image, therefore it is necessary to
convert it to RGB image. Furthermore, to simplify the image
processing process, it is necessary to convert the image to
grayscale format. After that, the image contrast is improved
so that the retinal blood vessel network looked clearer using
gamma correction and CLAHE. The final image from the
contrast enhancement process still contains noise that can
interfere with segmentation. To overcome this, a bottom hat
transformation operation is used.

B. THE VG-DROPDNET ARCHITECTURE

The VG-DropDNet architecture is proposed to obtain a
new architecture that combined the advantages of VGG,
DenseNet, and dropout architectures to overcome the limi-
tations of U-Net so the proposed architecture is robust and
had stronger performances for blood vessels segmentation in
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FIGURE 6. Model architecture of VG-DropDNet that contained of 3 parts for blood vessels segmentation on retinal image.

by excess features of the concatenate operation. On the
decoder part, it still used the U-Net architecture to make it
easier to restore the image patched size to its original image
size, namely the size used by the input image. A model of
VG-DropDNet architecture can be seen in Fig.6.

In Fig.6, it can be seen that the architecture added a con-
necting line between the encoder line and the decoder line.
The steps in the first layer convolution block for the encoder

retinal images. The basic architecture used in VG-DropDNet
is a modified U-Net. The modifications make the proposed
architecture consisted of 3 parts, namely the encoder, bridge
and decoder parts. On the encoder part, it used the VGG
architecture with the aim of getting more features with deep
networking. On the bridge, it used DenseNet to be able to
call information on the previous layer which is combined
with dropout to overcome overfitting on DenseNet caused
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FIGURE 8. Example of a simple calculation on the dropout layer on the proposed architec-ture VG-DropDNet.

path, namely the pre-processed image is used as input. Then
a convolution operation is performed using a 3 x 3, 1 same
padding, 1 stride and the number of filters used is 64. The
convolution operation is carried out simultaneously with the
ReLU activation function. After that, normalization is carried
out using batch normalization. An example of the result of a
feature map on the first convolution layer block can be seen in
Fig.7. From Fig.7, it can be seen that in the convolution layer
block using input measuring 64 pixels x 64 pixels (n;, = 64),
3 x 3 kernel (K = 3), 1 stride (S = 1), and padding same
(P = 1), the output feature size is 64 pixels x 64 pixels
(nour = 64).

Furthermore, the dimension map of the feature map is
reduced using a max pooling size of 2 x 2 with 2 strides.
In the second to fifth convolution layer blocks, the same steps
are carried out as the first layer convolution block using the
number of filters, namely 128, 256, 512, and 512. The size
of the input image used in the encoder line is 2" because in
the max polling process the features would be divided by 2.
The number of max polls used in this architecture is 5 so that
the input image should have size of 64 pixels x 64 pixels.
64 pixels x 64 pixels image size is used because at each layer
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max poll the image size would be reduced as much as 2"~ 1.
If the 32 pixels x 32 pixels image input size is used, then in
the last layer the feature size would be 0, so the feature could
not be used as input for the connecting line.

The bridge path is based on the DenseNet architecture
using three dense blocks. It hoped more features would be
obtained. However, DenseNet’s concatenate function would
cause model overfitting. To overcome overfitting, it added a
dropout layer on each dense block. In the first dense block
and the second dense block, the convolution operation and
the ReLU activation function are performed twice using
a3 x 3 kernel matrix, the same padding, and 512 filters. After
that, the convoluted feature map would enter the dropout layer
with a drop rate of 0.5 so that 50% of the feature map would
be omitted temporarily by the computer. The value of the
omitted feature map would be set to 0 to avoid overfitting
during training. For the third dense block, inputs from the
first and second dense blocks are used which are combined
using concatenate. An example of a simple calculation on the
dropout layer could be seen in Fig.8.

Based on Fig.8. supposed the weight or kernel in the
dropout layer is 4 x 4. The dropout rate used is 0.5, which
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means it would randomly remove 50% of the weighted entries
from the total weighted entries. From Fig.8, it could be seen
that the total weighted entries are 16 so that 8 weight entries
would be eliminated. The weight entries to be omitted are
marked with a red cross in figure 4. The value of the omitted
weight entries would be filled with a value of 0, so there are
8 entries with a value of 0. Some examples of feature map
results on the bridge path of the VG-DropDNet architecture
can be seen in Fig.9.

FIGURE 9. Example of the result of a feature map on the bridge path of
the VG-Drop Net architecture.

Based on Fig.6 for the decoder path, it still used U-Net
Architecture because it returned the same size as the input
on the output. The steps in the first transposed convolution
block for the decode path, namely the feature map resulting
from the third dense block, are used as input. Then transposed
convolution is performed using a 3 x 3 kernel matrix, the
same padding, 2 stride and 256 filters. The output of the
transposed convolution is substituted into the ReLU activa-
tion function. Some samples of feature map results in the
first transposed convolution block can be seen in Fig.10. The
feature map merging operation of the encode and decode
paths is performed using the concatenate operation. The
next step is to perform a convolution operation again using
a 3 x 3 matrix, the same padding, 1 stride, and 512 filters.
The results of the convolution operation are normalized using
batch normalization. In the second, third, fourth and fifth
transposed convolution layers, the same steps are carried out
as the first block using the number of filters for each block,
namely 256, 128, 64, and 64. The last step in the decode path
is a convolution operation using a 1 x 1 kernel matrix and
substitution with Sigmoid activation function.

C. TRAINING STAGE

In the training stage, it is carried out to produce weights
that would be used in the testing stage. This research used
50 epochs, 8 batch sizes, and 20000 iterations. Small pieces

92076

FIGURE 10. Example of the result on the first transposed convolution
block feature map in the VG-DropDNet architecture.

of the image resulting from the patch technique would be
used as input to the CNN architectural model. In the CNN
architectural model, the first step is to initialize the weight
value of each epoch. For each epoch the loss (error) value
should be calculated. The weight should be saved if the error
value in the validation data is smaller than the previous epoch,
otherwise, the weights should be updated for the next epoch to
produce the best weight. The line graph of the results of the
test data training process and validation for the error (loss)
and accuracy values could be seen in figure 0.

In figure 11(a) it can be seen that the line graph of the
error (loss) value on the VG-DropDNet architecture for train-
ing data and validation data on the DRIVE dataset always
decreases until the 50th epoch with the loss value closed to 0.
The results of the loss graph in Fig.11(a) shows no overfitting
in the DRIVE dataset. Loss values of the training data and
validation data has a similar distribution. It indicates that the
model generated on the DRIVE dataset is able to recognize
other data patterns well even though the data has never been
trained before. On the STARE dataset from figure 11(b) it can
also be seen that the line graph of the error (loss) value on the
VG-DropDNet architecture for training data and validation
data always decreased until the 50" epoch. The training loss
value on STARE is closed to 0.2. Training on the STARE
dataset also did not experience overfitting between training
data and validation data. This indicated that the model used
in the STARE dataset is able to predict well for other image
data. The graph of the results of the test data training process
and validation for the accuracy value could be seen in Fig.12.

Graphs of accuracy on training data and accuracy on vali-
dation data for each DRIVE and STARE dataset can be seen
in Fig.12(a) and Fig.12(b). From Fig.12 it can be seen that
the resulting accuracy increases with the number of epochs
up to the 50th epoch. The accuracy graphs on the DRIVE
and STARE datasets does not experience overfitting because
they have a similar distribution in both accuracy on training
data or accuracy on validation data. The model obtained from
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FIGURE 12. Graph of the results of the training process, the value of training data accuracy and validation using VG-DropDNet on the dataset
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the training process also does not experience a vanishing or
exploded gradient. Based on Fig.12(a) and Fig.12(b), it can
be seen that the proposed architecture has excellent work
because the accuracy values are above 99% for the DRIVE
and STARE datasets. It means that the model obtained from
the VG-DropDNet architecture has excellent level of accu-
racy for blood vessels segmentation in retinal images.

D. TESTING STAGE
At the testing stage, testing is carried out using new data to
see how successful the VG-DropDNet architecture is used for
blood vessels segmentation on retinal image. At this stage,
the weights obtain from the training results are applied to
segment retinal blood vessels in the testing data. The image
from the testing will be compared with the ground truth image
in each dataset. The comparison of the results of the test stage
and ground truth can be seen in Table 1 for DRIVE dataset
and Table 2 for STARE dataset.

Table 1 and Table 2 compared the results on segmentation
of the VG-DropDNet architecture with the available ground
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truth. It can be seen from the proposed that the blood vessel
segmentation in the retinal image is successfully compared
to the ground truth image, but some retinal thin vessels in the
ground truth are not detected in the segmented image as in
files Test_07, Im0324, Test_03, Im0003, and Im0004.

The performance value could be done by comparing
the segmentation results in testing stage with ground truth
image using a confusion matrix table for each data test.
A Cohen’s Kappa coefficient value showed that the seg-
mentation results from the VG-DropDNet architecture are
very suitable and in accordance with the ground truth results
carried out by experts on the STARE dataset. It explains that
the VG-DropDNet architecture has a very good performance
on the STARE dataset compared to the DRIVE dataset.

From the confusion matrix obtained, the performance
of the VG-DropDNet architecture on DRIVE can be mea-
sured based on the values of accuracy, sensitivity, specificity,
F1-score and IoU. The performance results on the DRIVE
dataset are 95.36% for accuracy, 79.94% for sensitivity,
97.61% for specificity, and 68.70% for IoU. The IoU value
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TABLE 1. Example comparison between the images obtained in the
testing stage with the ground truth images on the drive dataset.

Nama File Ground Truth

Segmentation

Test 03

Test_07

Test 17

Test_18

is still low, but the Cohen’s kappa coefficient obtains for the
DRIVE dataset is very good, namely 0.8386.

From the Cohen’s kappa coefficient value obtained, it is
concluded that the results of the VG-DropDNet architecture
had a very strong intensity of agreement with the ground truth
carried out by experts for the DRIVE dataset.

The results of the VG-DropDNet architecture performance
on the STARE dataset are 98.56% for accuracy, 91.24 for
sensitivity, 99.41% for specificity, and 86.90% for IoU. All
performance results on the STARE dataset are surprisingly
excellent compared to the results on the DRIVE dataset.
A Cohen’s Kappa coefficient obtained for the STARE dataset
is also excellent at 0.98. This value is higher than the Cohen’s
Kappa coefficient in the DRIVE dataset. The Cohen’s Kappa
coefficient shows that the segmentation results from the
VG-DropDNet architecture are very suitable and in accor-
dance with the ground truth results carried out by experts
on the STARE dataset. It explains that the VG-DropDNet
architecture had a very good performance on the STARE
dataset compared to the DRIVE dataset.

Another performance is Receiver Operating Characteris-
tics (ROC) Curves. ROC is a probability that summarizes the
performance of the confusion matrix on all threshold values.
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TABLE 2. Example comparison between the images obtained in the
testing stage with the ground truth images on the stare dataset.

Nama File Ground Truth

Segmentation

Im0003

Im0004

Im0082

Im0324

Area Under the Curve (AUC) converts the ROC curve to
numeric to measure performance in binary classification by
taking values between 0 and 1. The closer to one AUC value,
the better the model works. Fig.13 shows the ROC curve and
AUC values for DRIVE and STARE. AUC is calculated by
the ROC. From Fig.13(a) it can be seen that the ROC graph in
the DRIVE dataset is closer to the random classifier diagonal
line than Fig.13(b) in the STARE dataset. This causes the
AUC value in the DRIVE (0.9309) dataset to be smaller than
the STARE (0.9696). The AUC value on STARE is better
than on DRIVE, meaning that the model works better on the
STARE dataset. STARE has a larger image size. the patching
process performed on STARE provides a greater opportunity
to obtain more and clearer features of blood vessel in retinal
images. This can affect the performance of STARE which is
better than on DRIVE. Fig.13(a) describes about the ROC
and AUC on DRIVE dataset by VG-DropDNet. Fig.13(b)
describe about the ROC and AUC on STARE dataset
by G-DropDNet.

IV. DISCUSSION
The VG-DropDNet architecture is used to segment retinal
blood vessels in this work. Confusion matrix can be used to
calculate architectural performance based on accuracy, sen-
sitivity, specificity, and IoU. The comparison of the segmen-
tation results of this study with other studies on the DRIVE
dataset is shown in Table 3.

Table 3 contains some results from the last 5 years
of research using the DRIVE dataset for blood vessels

VOLUME 10, 2022



A. Desiani et al.: VG-DropDNet a Robust Architecture for Blood Vessels Segmentation on Retinal Image

IEEE Access

a
(@) ROC curve
10
— 08
L
o
(-4
206
Z
&
L 04
=t
-4
® o2
ool L7 —— Area Under the Curve (AUC = 0.9309)
00 02 04 06 08 10
FPR (False Positive Rate)

(b) ROC curve
10 =
-
//
-
-~ 08 P
& B
z 7
£ 06 /,/’
: #
-~

v

04 P
E -
5y rd
=4 //
F o2 o

’/
-
00 e —— Area Under the Curve (AUC = 0.9696)
0.0 02 04 06 08 10
FPR (False Positive Rate)

FIGURE 13. Graph of the receiver operating characteristic (ROC) curve obtained during the testing process on VG-DropDNet for the (a) DRIVE

(b) STARE dataset.

segmentation on retinal image. In Table 3 the highest accu-
racy is obtained by Al-masni and Kim [10], but the sen-
sitivity value obtained is still below the sensitivity value
of the VG-DropDNet architecture. The highest specificity
value is obtained on the architecture carried out by Wang
et al. [20], but the study does not measure IoU values.
The architecture proposes by Zhang et al. [60] provided the
highest sensitivity among other studies. Unfortunately, this
study does not measure IoU. The VG-DropDNet architecture
provided the highest IoU, but the IoU value still needed
to be improve. Although the values of accuracy, sensitivity
and specificity are below the results of other studies, the
VG-DropDNet has a good ability to segment blood ves-
sels and other features as background because the accu-
racy, sensitivity and specificity values obtained are above
75%. The comparison of the segmentation results of this
study with other studies on the STARE dataset is shown in
Table 4.

Table 4 is a comparison of the results of the last 4 years
of studies using the STARE dataset for blood vessels seg-
mentation on the retinal image. As shown in Table 4, the
proposed method achieves the highest accuracy. In terms of
sensitivity, and specificity, the proposed method also outper-
forms other researchers by more than 90%. The highest IoU
value is obtained from the researcher Guo et al. [58], but the
IoU of the proposed method has also achieved good results
exceeding 80%.

According to the comparison results in Table 3 and Table 4,
the VG-DropDNet architecture for blood vessels segmenta-
tion on the retinal image has a good performance on DRIVE
dataset. On the STARE dataset, the VG-DropDNet architec-
ture is excellent and robust for blood vessels segmentation
on the retinal images. The ability of VG-DropDNet to detect
the bounding box between blood vessels and background
in DRIVE dataset should be improved because the IoU is
still under 70%. In STARE dataset, the IoU is excellent at
detecting the bounding box indicates by the IoU value greater
than 80%.
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TABLE 3. Performance comparison of VG-dropdnet for blood vessels
segmentation on retinal image in drive.

Acc Se Sp IoU
Method Year %) %) %) (%)
CNN 9 Layers[61] 2019 9490 7827 97.60 67.16
ResNet[62] 2019 9556 7726  98.13 -
U-Net and
MobileNetV2[11] 20199635 - B )

DenseNet and
Patching Techniques 2019 9690 7539  99.04 -

[20]

DenseNet dan U-

Net[22] 2020 95 76.72 95 -
U-Net and Algoritma

Genetika[8] 2020 95 75.06 985 -
DG-Unet[63] 2020 96.04 7641 9837 -
CMM-Net[10] 2021  96.64 7859 9839  67.08
PyramidU-Net[60] 2021 9622 8213 9932 -
Bridge-Net[64] 2022 95.65 785 96.18

VG-DropDNet 2022 9536 79.74  97.61 68.70

TABLE 4. Performance comparison of VG-DropDNet for blood vessels
segmentation on retinal image in STARE.

Acc Se Sp loU
Method Year (%) (%) (%) (%)

Residual Block
Incorporated U-Net [65]
Dilated Multi-Scale

2018 9537 5582 98.62  47.80

2019 97.81 82.49  99.04 73.79

CNNJ[29]

DenseNet and Patching

Techniques [20] 2019 97.04 79.14 9722 -
Modied Residual U-

Net[66] 2019 - 81.01 9793 68.73
SD-U-Net[58] 2019 9850 7541 9899  97.63
IterNet[67] 2020 96.41  77.15 9886 -
BSEResU-Net[68] 2021 9543 7497 9842 -
PCAT-UNet[69] 2022 9796  87.03 99.37 -
Bridge-Net[64] 2022 96.68  80.02 98.64 -
EDLFDPRS Frame

Work[70] 2022 9733 8427 9857 -
VG-DropDNet 2022 9856 9124 9941  86.90

The number of Blood Vessels and non-blood vessels (back-
ground) pixels in the images is not balanced. The statistic
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TABLE 5. Comparison of MCC, G-mean, and F1-score results for the
DRIVE Dataset on The VG-DropDNet architecture with other studies.

Method Year MCC G-mean Fl1
FC-CRF[71] 2017 0.7556  0.8741 0.7857
CRF[72] 2017 0.7556  0.883 0.7942
BTS-DSN[73] 2019 0.7964 0.8795 0.8249
SIDNet[74] 2020 0.7717  0.8807 0.801
Hybrid Unet[75] 2021 0.8685  0.8622 0.8285
Bridge-Net[64] 2022 0.7982 0.8775 0.82
VG-DropDNet 2022 0.7881  0.8836 0.8144

TABLE 6. Comparison of MCC, G-mean, and F1-score results for the
STARE dataset on The VG-DropDNet architecture with other studies.

Method Year MCC G-mean F1
FC-CRF[71] 2017 0.7417  0.8628 0.764
CRF[72] 2017 0.783 0.8859 0.8017
BTS-DSN[73] 2019 0.8221 0.899 0.8421
SIDNet[74] 2020 0.7738  0.88 0.7866
M-Gan[76] 2020 0.8306  0.9095 0.8324
DBFU-Net[77] 2022 0.8332 09198 0.8521
Bridge-Net[64] 2022 0.8147  0.8868 0.8289
VG-DropDNet 2022 0.9222  0.9239 0.9299

performances for unbalanced data are MCC, G-mean and
Fl1-score. MCC is used to measure the correlation between
two classes. Geometric Average (G-mean) is a metric that
measures the balance between majority and minority data.
The F1-Score is used to measure whether the classifica-
tion results have good precision and recall. The results
sought to maximize the accuracy of each class to balance.
The results obtain in the DRIVE dataset are 0.7881 for
MCC, 0.8833 for G-mean and 0.814 for Fl-score. The
results in the STARE dataset are 0.922 for MCC, 0.9239 for
G-mean and 0.9299 for Fl-score. The results of the MCC,
G-mean and Fl-score are all close to 1. To see how well
the results of the MCC, G-mean and F1-score produced by
VG-DropDNet, these results are compared with the results of
other studies as in Table 5 and Table 6.

In table 5, the highest MCC and Fl-score for DRIVE
are obtained by Nagdeote and Prabhu [75]. However, the
highest G-mean is obtained by the VG-DropDNet architec-
ture. The MCC on the VG-DropDNet architecture is higher
than the results of Zhuo et al. [72] and Orlando et al. [71].
Although the MCC is lower than the results of Nagdeote and
Prabhu [75], and Guo et al. [73], the VG-DropDNet archi-
tecture on DRIVE is able to have a good balance for blood
vessels and non-blood vessel (background) segmentation on
retinal images. It is indicated by the results of the MCC,
G-mean, and F1-score which are all close to 1 on DRIVE.
In table 6, the results on the STARE dataset are excellent.
VG-DropDNet give the highest MCC, G-mean, and F1-score
results compared to other research results in table 6. The
VG-DropDNet has good precision and recall in blood vessels
segmentation in retinal images especially on STARE. From
the results on both datasets, it is concluded that the proposed
method, VG-DropDNet is robust, valid and has great balance
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model for blood vessels segmentation on retinal images. The
Vg-DropDNet provides the accurate valid blood vessels on
retinal images.

V. CONCLUSION

Based on the results and discussion it can be concluded
that the VG-DropDNet architecture provides excellent perfor-
mance results for blood vessels segmentation in retinal image,
with the accuracy is more than 90%. VG-DropDNet can be
the recommended architecture for blood vessel segmentation.
The results of the VG-DropDNet architecture performance
on the DRIVE dataset are great even though the IoU value
obtained is still below 70%, but IoU in other studies are
still rarely measured. The comparison of studies results in
Table 3 shows that the IoU on DRIVE is the highest result.
On the STARE dataset, the results of the VG-DropDNet
architecture performance give excellent results. All perfor-
mance results on the STARE dataset are above 86%. The
Cohen’s Kappa coefficient obtained by the VG-DropDNet
architecture on both the DRIVE and STARE datasets has
given great results above 0.8. It explains that the results
of blood vessel segmentation on retina images generated
by the VG-DropDNet architecture has a strong intensity
of agreement with the ground truth images that have been
provided by experts in the DRIVE and STARE datasets.
The VG-DropDNet architecture is also able to provide a
good balance for the segmentation of blood vessels in reti-
nal images seen from the MCC and G-mean values close
to 1. The segmentation image generated by VG-DropDNet
is accurate and valid based on the performance results of
accuracy, sensitivity, specificity, IoU, MCC, G-mean and
Fl-score. The segmented images from Vg-DropDNet are
binary images containing only retinal blood vessels. These
images can be used for the classification of retina disorders
detection that requires examination of abnormalities in the
retinal blood vessels. Image results from Vg-DropDNet can
be used in medical applications to help detect retina disorders
automatically. For future works, there are two focuses. The
first is on improving and merging the VG-DropDNet archi-
tecture with other deep learning architectures and different
stages of pre-processing data to improve performance results
that are not optimal yet. The second is implementing the
segmentation image from VG-DropDNet on the classification
of retina disorders based on blood vessels retinal disorders
so that this research can be applied in real terms in the
medical field. Despite the success of VG-DropDNet in sepa-
rating lesions from blood vessels, there are cases where this
architecture does not perform well. This is especially true
for retinal images with severe diabetic retinopathy with very
large lesions or high vascular tortuosity. To overcome the lim-
itations of VG-DropDNet, the use of morphological operating
parameters can be used instead of predefined transformations
to separate different components of the retinal image at the
post-processing stage. By studying the morphological oper-
ations of the image, complex components of retinal images
can be captured well.
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