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ABSTRACT Additional layers to the U-Net architecture leads to additional parameters and network
complexity. The Visual Geometry Group (VGG) architecture with 16 backbones can overcome the problem
with small convolutions. Dense Connected (DenseNet) can be used to avoid excessive feature learning
in VGG by directly connecting each layer using input from the previous feature map. Adding a Dropout
layer can protect DenseNet from Overfitting problems. This study proposes a VG-DropDNet architecture
that combines VGG, DenseNet, and U-Net with a dropout layer in blood vessels retinal segmentation.
VG-DropDNet is applied to Digital Retina Image for Vessel Extraction (DRIVE) and Retina Structured
Analysis (STARE) datasets. The results on DRIVE give great accuracy of 95.36%, sensitivity of 79.74% and
specificity of 97.61%. The F1-score on DRIVE of 0.8144 indicates that VG-DropDNet has great precision
and recall. The IoU result is 68.70. It concludes that the resulting image of VG-DropDNet has a great
resemblance to its ground truth. The results on STARE are excellent for accuracy of 98.56%, sensitivity
of 91.24%, specificity of 92.99% and IoU of 86.90%. The results of the VGG-DropDNet on STARE show
that the proposed method is excellent and robust for blood vessels retinal segmentation. The Cohen’s Kappa
coefficient obtained by VG-DropDNet at DRIVe is 0.8386 and at STARE is 0.98, it explains that the
VG-DropDNet results are consistent and precise in both datasets. The results on various datasets indicate
that VG-DropDnet is effective, robust and stable in retinal image blood vessel segmentation.

17 INDEX TERMS Blood vessels, DenseNet, retinal image, segmentation, U-Net, VG-DropDNet.

I. INTRODUCTION18

Segmentation is a technique used in image processing that19

divides an image into several distinct areas, including the20

object being studied and the background. Segmentation is21

widely used in a variety of fields, including road detection22

using satellite images and disease diagnosis using medical23

images [1]. Segmentation of medical images is a critical24

processing step because it enables disease diagnosis and25

treatment planning [2]. Manual medical image segmentation26

performed by humans requires expert knowledge and high27

accuracy, while human capabilities are limited and humans28

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristian A. Linte.

have laborious factors that can cause the segmentation pro- 29

cess to take longer [3], [4], [5]. The retina is a standard 30

medical image that is segmented. Through the retinal blood 31

vessels, retinal images can be used to diagnose, treat, and 32

monitor for a variety of eye diseases, including glaucoma, 33

myopia, and diabetic retinopathy (DR) [6]. 34

Convolutional Neural Networks (CNN) have made sig- 35

nificant progress in medical image analysis in recent 36

years [7], [8]. The U-Net architecture is the most frequently 37

[8], [9] used CNN architecture for segmentation in the medi- 38

cal field [8], [9]. U-Net consists of encode and decode that 39

connected by a bridge [8], [9]. All input images must go 40

through an encode path to capture information in the form 41

of features and a decode path to return the same size as the 42
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input in the result [9]. The bridge is used as a connecting43

path encode and decode [10]. The U-Net bridge usually44

consists of several blocks [9]. U-Net accurately predicts each45

pixel in image and is widely used for retinal blood vessels46

segmentation [8]. Numerous studies have demonstrated suc-47

cessful segmentation on retinal blood vessels [8], [10], [11].48

Laibacher et al. obtained an accuracy value of 96.35% and an49

F1-score of 80.91% by combining the U-Net and MobileNet50

V2 architectures, but they did not calculate the sensitivity,51

specificity, or Intersection over Union (IoU) values [11].52

Popat et al. used the U-Net architecture in conjunction with53

standard genetic algorithms and resulted in 95% for accuracy,54

98.5% for specificity, and 80.83% for F1-score but the sen-55

sitivity was still low at 75.06% [8]. This study did not cal-56

culate performance values based on IoU. Al-masni and Kim57

combined U-Net with Inversion Recovery and Contextual58

Multi-Scale Multi-Level Network (CMM-NET) and resulted59

accuracy of 96.64%, specificity of 98.39%, and F1-score of60

80.27%, but the sensitivity and IoU were low at 78.59% and61

67.08%, respectively [10].62

U-Net architecture is quite slow because the network63

must be run separately for each patch. U-Net has a lot64

of redundancy due to overlapping patches [12]. However,65

deeper networks can be much more efficient in terms of66

computation and number of parameters used. In addition,67

Deeper Networks are able to create deep representations,68

at each layer and are able to explore new, more features [13].69

Unfortunately, adding layers to the U-Net architecture intro-70

duces additional parameters and increases network complex-71

ity [2], [12]. Visual Geometry Group (VGG) is one of the72

CNN architectures that has a deeper network [7]. Although73

this architecture has a deep network, it has no effect on74

network complexity because it uses a small convolution filter75

on large amounts of data [14], [15]. Unfortunately, VGG is76

not suitable for small datasets as it causes the network to77

acquire an excessive number of features [15], [16].78

VGG is more commonly used in classification than seg-79

mentation [17], [18]. Khan et al. classified DR disease using80

VGG architecture and spatial pyramid pooling layers and81

obtained high accuracy and specificity of 85% and 91%,82

respectively, but the F1-score was still low at 59.6% [17].83

Kaur andGandhi used 16 layers of VGG layers in brain image84

classification. The results of this study obtained 100% for85

accuracy, sensitivity, and specificity, however, this study did86

not address F1-score or IoU [16]. Mateen et al. combined87

the VGG architecture with single decomposition analysis and88

principal component analysis in theDR disease classification.89

This study yielded a high accuracy of greater than 92%, but90

this study did not evaluate other performances [19].91

Dense Connected (DenseNet) is an architecture that allevi-92

ates the problem of learning redundant features by combining93

feature maps from previous layers [17], [20]. The results94

of the feature maps from the previous layer are used as95

input for the next layer. The outputs of the feature maps96

in the next layer have the same number of filters (depth)97

as the previous feature maps. It can reduce a total number98

of parameters on the DenseNet architecture. Reusing fea- 99

ture maps on DenseNet can prevent the network from over- 100

learning features [12], [17], [20]. DenseNet designs dense 101

blocks using concatenate operations to reuse feature maps 102

from previous layers [20], [21]. The dense block consists 103

of three sequential operations, namely batch normalization, 104

ReLU activation function and convolution [20]. Wang et al. 105

used DenseNet for retinal blood vessel segmentation and 106

obtained high accuracy and specificity values of 96.09% 107

and 99.04%, respectively, but the sensitivity was still low, 108

namely 75.39% [20]. Cheng et al. combined DenseNet and 109

U-Net architectures on retinal blood vessel segmentation and 110

obtained high accuracy and specificity values of 95.59% 111

and 98.34%, but it gave low sensitivity [22]. Unfortunately, 112

these studies did not assess F1-score and IoU performance. 113

VGG andDenseNet architectures are deep neural networks 114

that have many parameters [23]. The complex models and 115

long computational times are the results of an architecture 116

that has many parameters [24]. This can lead to many new 117

problems, including overfitting. Overfitting occurs when the 118

model or method used has a low error in the training data 119

but a large error in the data that has never been used (testing 120

data) [25]. The prediction graph on overfitting means that 121

the model predicts too accurately and memorizes the pattern 122

in the training data, but fails to predict in the test data due 123

to high error, thus failing to capture the overall trend of the 124

connection [25]. To overcome complex models and overfit- 125

ting problems, the dropout techniques can be used [25], [26]. 126

Dropout is a technique to avoid overfitting while accelerating 127

the learning process [25]. Dropout is a regularization strategy 128

for neural networks in which certain neurons are randomly 129

selected and not used during training [27]. These neurons 130

can be discarded at any time. This means that the contri- 131

butions of deleted neurons will be temporarily suspended, 132

and no new weights will be applied while the neurons are 133

training [25]. Removing a neuron from an existing network 134

means deleting it temporarily. Several studies have shown 135

that adding dropouts to DenseNet can improve performance 136

in image segmentation. Lee and Lee, used DenseNet Fully 137

Convolutional (FC) and dropout on semantic segmentation. 138

The study obtained a high accuracy of 91.5%, although the 139

IoU value remained low at 66.9% [26]. Wang et al. used the 140

FC-DenseNet, dropout, and scSE modules for Pneumothorax 141

(PTX) segmentation and could be able to achieve high accu- 142

racy, sensitivity, and specificity, and an F1-score greater than 143

88%, but this study did not discuss the result of IoU [21]. 144

Bui et al. used 3D-skipDenseSeg with dropout on the con- 145

volution layer for MRI of the infant brain segmentation and 146

produced a high F1-score above 90% although it did not 147

measure any other performance [28]. 148

U-Net architecture is widely used because it is suitable 149

for image segmentation [9]. However, it has a weakness in 150

the complexity of the network in adding layers and param- 151

eters [12]. This study proposes a new architecture, namely 152

VG-DropDNet which combines the advantages of U-Net, 153

VGG net and Densenet architectures. VG-DropDNet applied 154
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different architectures. In the encoded path of VG-DropDNet,155

the VGG architecture is used to overcome the complexity156

of the network and the large number of parameters. VGG157

has deep layers and a large number of parameters. Large158

parameters in VGG makes the extracted features more com-159

plex, but the computation time is faster because it uses a160

small convolution filter. DenseNet is used In the bridge path161

of VG-DropDNet because it would reduce the parameters162

number of VGG architecture without losing important feature163

information. OnDenseNet, these features would be combined164

by concatenate operation. However, it can cause the model165

to be overfitting. To overcome overfitting on DenseNet,166

a dropout layer is inserted in each dense block. The decoded167

path from VG-DropDNet still uses the U-Net part because it168

should return the patch sizes in training to the same original169

image size as the input image. The combination architecture170

proposed in this study is evaluated using various performance171

measures, namely accuracy, sensitivity, specificity, F1-score,172

IoU, G-mean, Matthews Correlation Coefficient (MCC), and173

Cohen’s Kappa coefficient to see how reliable, robust and174

valid the proposed architecture is in blood vessels segmen-175

tation on retinal images.176

II. METHODOLOGY177

A. DATASETS DRIVE AND STARE178

The DRIVE (Digital Retinal Images for Vessel Extrac-179

tion) and STARE (Structured Analysis of the Retina)180

datasets are used in this study. They are obtained from181

the https://drive.grandchallenge.org/ for DRIVE dataset web-182

site and http: www.//ces. clemson.edu/ahoover/star/ for183

STARE dataset website. The DRIVE dataset contains pub-184

licly available fundus camera data from 400 diabetics in185

the Netherlands aged 25–90 years [29]. The STARE dataset186

is the result of a publicly available digital fundus cam-187

era from the University of California, San Diego [29]. The188

DRIVE dataset is divided into two parts, namely test data and189

training data. Test data and training data DRIVE contained190

twenty images with a resolution of 565 pixels × 584 pixels.191

The STARE dataset contains twenty images with 700 pix-192

els × 605 pixels resolution.193

B. ENHANCEMENT OF IMAGE194

Prior to beginning the segmentation process, it is necessary to195

perform image enhancement. Image enhancement consists of196

several stages, including image quality enhancement, image197

contrast enhancement, and noise filtering.198

1) GAMMA CORRECTION199

Gamma correction is used to adjust and control the bright-200

ness of individual pixels in an image; otherwise, the image201

appeared dark. Gamma correction is determined using the202

power-law transformation described in the equation (1) [30].203

O =
(

I
255

)γ
(1)204

where I and O are input and output images, respectively. The 205

original brightness values I andO are mapped into [0, 1]. γ is 206

the gamma value, if the value γ < 1 (encoding gamma) then 207

the output image will look bright while if γ > 1 (decoding 208

gamma) then the output image will look dark [31]. 209

2) CONTRAST LIMITED ADAPTIVE HISTOGRAM 210

EQUALIZATION 211

By utilizing a clip limit that acts as a contrast limiter, Contrast 212

Limited Adaptive Histogram Equalization (CLAHE) is used 213

to improve image quality. CLAHE divided the input image 214

into several local areas called tiles. Clip limit is used to limit 215

the maximum value of the histogram to a specified value. 216

The truncated pixels would be redistributed in local regions 217

throughout the histogram [32]. The number of pixels in each 218

gray level would be divided equally, as explained in (2) [33]: 219

Navg =
NCR−XP × NCR−YP

Ngray
(2) 220

where, Navg is the average number of pixels. Ngray is the 221

number of gray levels in the tile. NCR−XP is the number of 222

pixels on theX-axis of the tile.NCR−YP is the number of pixels 223

on the Y-axis of the tile. Equation (3) is used to calculate the 224

clip limit [33]. 225

NCL = NCLIP − Navg (3) 226

where NCL is the clip limit and NCLIP is the clip limit input 227

value with a range of 0 to 1. 228

3) BOTTOM HAT TRANSFORMATION 229

The bottom hat transformation combines the operations of 230

closing and image reduction [34]. By connecting adjacent 231

pixel fragments and removing small holes in the image’s 232

center, the closing operation refines objects. This operation 233

is carried out in two stages, namely dilation, and erosion. The 234

bottom hat transform is used to eliminate dark objects against 235

a light background. The equation for this transformation used 236

equation (4) [34]: 237

Abot = A • B (4) 238

where Abot is the bottom hat transformation’s image. • is 239

the closing operation. A denotes the initial image. B is a 240

structuring element in the form of an operator matrix, which 241

take the shape of lines, disks, or diamonds. 242

4) IMAGE PATCHING 243

To overcome the need for large training data on CNN archi- 244

tectures, this study uses a circular random patching technique. 245

The goal is to get the blood vessels that are inside the retinal 246

circle. The circular random patching technique worked by 247

generating a point P(xi, yj) and calculating the distance from 248

that point to the center point P(x0, y0) of the retinal circle. 249

If d is the diameter of the circle, r is the circle radius, the 250

resulting
−→
OP distance should be smaller than r , so the image 251

patch generated at point has to contain retinal image blood 252
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vessels. In P the testing stage, an ordered patching technique253

is divided the retinal image into equal sizes according to the254

desired size and number sequentially starting from the pixels255

at the starting point of the image. The patching technique in256

the training stage can be seen in Fig. 1.257

FIGURE 1. Illustration of the patching technique in the VG-DropDNet
architecture for blood vessel segmentation in retinal images.

C. SEGMENTATION OF IMAGES258

1) CONVOLUTION LAYER259

The convolution layer is a feature extraction layer [35].260

Numerous parameters are used in the convolution layer,261

including the filter, kernel, input depth, number of filters,262

stride, and padding [36]. Determination of the size of the263

feature map uses equation (5) [37].264

nout =
⌊
nin + 2P− K

S

⌋
+ 1 (5)265

where, nout is the feature map size. nin is the input height. P is266

padding. K is the kernel height. S is stride.267

It uses equation (6), (7), (8), and (9) to calculate the outputs268

of the convolution layer [38], [39]:269

Cp
q = Opq + bq (6)270

where271

Opq = Ap ∗ Kq (7)272

where ∗ indicates that a convolution operation has been per-273

formed. Equation (7) is used to determine the value of each274

matrix entry Opq.275

oi,j =
n−1∑
u=0

n−1∑
v=0

au+1,v+j · ku+1,v+1 (8)276

Therefore,277

ci,j =

(
n−1∑
u=0

n−1∑
v=0

au+1,v+j · ku+1,v+1

)
+ bq (9)278

where u = 0, 1, 2, . . . , n−1, and v = 0, 1, 2, . . . , n−1. The279

i denotes the row, j denotes the column, n denotes the height280

of the kernel matrix, A denotes the input matrix, a is entry 281

of input matrix A, k is entry of kernel matrix, b denotes the 282

kernel bias, O denotes the convolution matrix, C denotes the 283

convolution matrix, q = 1, 2, 3, . . . ,Q, p = 0, 2, 3, . . . , I , Q 284

is the number of kernels used, I is the number of input matrix. 285

2) FUNCTION OF ACTIVATION 286

CNN contains a non-linear component is called the activation 287

function. CNN’s performance is enhanced through the use of 288

the activation function. The activation function is a function 289

used in artificial neurons to determine the output based on 290

the input. This activation function is used in the hidden layer 291

and output layer. In the hidden layers, the most widely used 292

activation function is ReLU [40], [41]. The ReLU is simple 293

and is able to determine which neurons are active so that not 294

all neurons are used. it can reduce the number of parameters 295

too much. Another advantage of ReLU is to reduce the like- 296

lihood of gradient loss during training. ReLU has a function 297

to make all negative image pixel values become zero [42]. 298

Equation (10) illustrated the ReLU activation function. 299

f(c) = max(c, 0) (10) 300

where f(c) is the activation function’s result and c is input for 301

ReLU. 302

In output layer is used sigmoid activation function. The 303

sigmoid function is widely used in outputs that has 2 classes 304

(binary) outputs. the sigmoid function when it returns a value 305

in the region of negative infinite (−∞) and positive infinity 306

(+∞) as in a linear function, it will return the value in the 307

range (0, 1).The sigmoid activation function occupies only 308

the range from 0 to 1 and is asymptomatic in both values. it is 309

very useful for binary classification with 0 and 1 as output 310

[39], [43]. Equation (11) illustrates the Sigmoid function [44]. 311

g(z) =
1

1+ e−z
(11) 312

where g(z) is the activation function’s result, z is input for 313

ReLU, g(z) ∈ [0, 1] and z ∈ [−∞,∞]. 314

3) BATCH NORMALIZATION 315

When the CNN network is trained, the input will change on 316

each layer. The process works in a long training time [45]. 317

This problem can be solved by adding a layer of batch nor- 318

malization [46]. Batch Normalization uses a mini-batch stack 319

to normalize the input on each layer [45]. The batch normal- 320

ization procedure begins by calculating the average of each 321

mini-batch (µj) using equation (12) [45]: 322

µj =
1
m

m∑
i=1

xi,j (12) 323

For i = 1, 2, 3, . . . ,m, and j = 1, 2, 3, . . . , n. Where x is 324

entry matrix input,m is the number of mini-batch data (rows), 325

and n is the number of mini-batch batches (columns). Then, 326

the variance value is calculated in one mini batch
(
σ 2
j

)
using 327
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equation (13) [45]:328

σ 2
j =

1
m

m∑
i=1

(
xi,j − µj

)2 (13)329

The final normalization is calculated of input in one mini330

Batch
(
x̂i,j
)
using equation (14) [45]:331

x̂i,j =
xi,j − µj√
σ 2
j + ε

(14)332

where, ε is a small positive constant to improve numerical333

stability.334

4) MAX POOLING335

Pooling layers has identical stride filter sizes. The benefit of336

using the pooling layer is the computations are performed337

more quickly. Themost frequently used pooling layer method338

is max pooling [47]. Max pooling uses the filter’s maximum339

input value to generate output with a smaller size [48].340

5) DROPOUT341

To handle overfitting in this study, it uses dropout. Overfitting342

is a frequent occurrence in CNN architecture. During train-343

ing, dropout will randomly remove some neurons based on344

the dropout rate used [49]. The omitted neuron’s value will345

be set to 0. In this study, a dropout layer with a rate of 50% is346

used.347

6) CONVOLUTIONAL TRANSPOSED348

In deep networks, the up-sampling layer is used to increase349

the dimension of features. Numerous techniques, including350

transposed convolution, can be used as an up-sampling layer351

on a CNN. Transposed convolution enlarges the feature map352

by returning the convolution input value [50]. The steps of353

the transposed convolution process are to filled the position354

between each matrix entry with 0, where the number of355

positions is the step value minus 1 [51]. All entries of the356

input matrix are incremented by 0 according to the padding357

rule. The number of increments of 0 is the size of the kernel358

matrix minus 1. The first and last rows, as well as the first359

and last columns of the input matrix are removed according360

to the padding used. Then, the input matrix is carried out with361

a convolution operation on the input matrix with the kernel362

matrix rotated 180 degrees.363

7) CONCATENATE364

Concatenate is used to combine two input matrices from two365

feature maps into a single larger input matrix [9].366

8) BINARY CROSS-ENTROPY367

A loss function can be used to maximize and study the net-368

work quickly and accurately in CNN. Binary cross-entropy369

is a loss function that is frequently used for classification and370

segmentation purposes due to its effectiveness [60]. In retinal371

blood vessel segmentation, the loss function is used to deter- 372

mine the error difference between the segmented image and 373

the ground truth [53]. 374

D. TRAINING 375

The purpose of this stage is to produce the best weights that 376

would be used in the testing stage. The data used are 20 retinal 377

images from DRIVE dataset and 20 retinal images from the 378

STARE dataset for training data. The training dta will be 379

divided to training data and validation data for each dataset. 380

The process that occured in the training stage can be seen 381

in Fig.2. Based on Fig.2, the original image is improved by 382

using gamma correction, CLAHE, and bottom hat transfor- 383

mation. The circular random patching technique is applied 384

to reproduce the data. The patching technique divides each 385

pre-processed image into 10000 small pieces measuring each 386

64 pixels× 64 pixels, so that a total of 200000 data is obtained 387

for STARE dataset and DRIVE training data. The total data 388

is divided into 64% for the training data, 16% for validation 389

data and 20% for testing data for each dataset. 390

E. TESTING 391

The weight results from the training process will be used 392

in the testing process to see how far the architecture has 393

succeeded for blood vessel segmentation in retinal imagewith 394

new data input from the STARE dataset and the DRIVE test 395

data. New data is data that has never been used at all in 396

the training process. For each dataset, 20 images are used. 397

As illustration of the process carried out in the proposed 398

method could be seen in Fig.3. 399

Based on Fig.3, the input image is first performed with 400

the ordered patching technique and enhancements as in the 401

training process. After that, the weights from the training 402

results are used for the testing process. The results of the 403

testing process are still in the form of images of small pieces 404

so that reconstruction is carried out. The results of blood 405

vessel segmentation are compared with ground truth in both 406

of datasets to measure the performance of the proposed archi- 407

tecture VG-DropDNet. 408

F. EVALUATION 409

In blood vessel segmentation, each pixel is classified into 410

two categories, namely blood vessels and non-vessels (back- 411

ground). In the confusion matrix, the following four results 412

can be found, namely TP, FN, FP and TN. This study eval- 413

uates the performance of the proposed architecture with 414

a confusion matrix is included accuracy (Acc), sensitivity 415

(Se), specificity (Sp), IoU, F1-score (F1), G-mean, MCC, 416

and Cohen’s Kappa coefficient (K). These performance are 417

defined in equations (15), (16), (17), (18), (19), (20), (21), 418

(22) [54], [55], [56]. 419

Acc =
TP+ TN

TP+ FP+ FN+ TN
(15) 420

Se =
TP

TP+ FN
(16) 421
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FIGURE 2. Illustration of the traning process in the VG-DropDNet architecture for blood vessel segmentation in retinal images.

FIGURE 3. Illustration of the testing process in VG-DropDNet architecture for blood vessels segmentation in retinal image.

Sp =
TN

TN+ FP
(17)422

IoU =
TP

TP+ FP+ FN
(18)423

F1 =
2TP

2TP+ FP+ FN
(19)424

G− mean =
√
Se× Sp (20)425

MCC =
(TP× TN )− (FP× FN )

(TP× FP) (TP× FN ) (TN × FP)(TN × FN)
426

(21)427

K =
Po − Pc
1− Pc

(22)428

The true positive (TP) is a properly classified blood ves-429

sels pixel. The false negative (FN) is a blood vessels pixel430

that is incorrectly classified as a background pixel. The true431

negative (TN) is a correctly classified background pixel. The432

false positive (FP) is a background pixel that are incorrectly433

classified as blood vessels. Pc is the increase in the number434

of possible changes in the number of blood vessels and435

background pixels. Po is the percentage of pixel counts that 436

are consistent on the segmentation result 437

The accuracy is used to calculate the accuracy of an 438

architecture [66]. However, accuracy is not always suitable 439

for measuring model performance, especially on unbalanced 440

data. Class imbalance between blood vessel pixels and back- 441

ground pixels in the dataset requires another performance 442

measure [56]. Sensitivity assesses performance in predicting 443

blood vessels pixels [66]. Specificity assesses performance 444

in predicting background pixels [56]. IoU uses to measure 445

the similarity between the predicted segmentation image and 446

the ground truth image [55]. Performance measures that is 447

suitable for used in unbalanced pixel classes are F1-score, 448

G-Mean, and Matthews Correlation Coefficient (MCC) [75]. 449

F1-score is assessed performance on unbalanced datasets and 450

widely used in segmentation [56]. G-Mean is a statistical 451

measure used to measure the balance between blood ves- 452

sel pixels with a background [59]. MCC is the correlation 453

between predicted pixels and ground truth [75]. The Cohen’s 454

Kappa coefficient measures the intensity of the agreement 455
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FIGURE 4. Proposed method stages of retinal image blood vessel segmentation used the VG-DropDNet architecture.

between the results of the proposed segmentation architecture456

and those manually performed by experts (ground truth) [54].457

III. RESULT458

In this study, there are 2 stages carries out, namely training459

and testing. The stages in this research as a whole could be460

seen in Fig.4. the training process begins with image quality461

enhancement, Circular random patching, training and valida-462

tion using VG-DropDNet. For the testing process from Fig.4,463

the steps carried out are image quality enhancement, Ordered464

Patching Technique, testing using the latest input dataset,465

Reconstruction of segmentation results, performance evalua-466

tion using Acc, Se, Sp, IoU, F1, G-mean, MCC, and Cohen’s467

Kappa coefficient. The stages of Image quality enhancement468

consist of RGB, Grayscale, Gamma Correction, and CLAHE.469

A. IMAGE ENHANCEMENT470

The data used in this study are BGR images from471

the DRIVE and STARE datasets which have dimensions472

of 565 pixels × 584 pixels for DRIVE and 700 pix- 473

els× 605 pixels for STARE. The image enhancement process 474

can be seen in Fig.5. In Fig.5 it can be seen that the input data 475

is in the form of a BGR image, therefore it is necessary to 476

convert it to RGB image. Furthermore, to simplify the image 477

processing process, it is necessary to convert the image to 478

grayscale format. After that, the image contrast is improved 479

so that the retinal blood vessel network looked clearer using 480

gamma correction and CLAHE. The final image from the 481

contrast enhancement process still contains noise that can 482

interfere with segmentation. To overcome this, a bottom hat 483

transformation operation is used. 484

B. THE VG-DROPDNET ARCHITECTURE 485

The VG-DropDNet architecture is proposed to obtain a 486

new architecture that combined the advantages of VGG, 487

DenseNet, and dropout architectures to overcome the limi- 488

tations of U-Net so the proposed architecture is robust and 489

had stronger performances for blood vessels segmentation in 490
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FIGURE 5. Stages of retinal image enhancement quality for the input image on the VG-DropDNet architecture.

FIGURE 6. Model architecture of VG-DropDNet that contained of 3 parts for blood vessels segmentation on retinal image.

retinal images. The basic architecture used in VG-DropDNet491

is a modified U-Net. The modifications make the proposed492

architecture consisted of 3 parts, namely the encoder, bridge493

and decoder parts. On the encoder part, it used the VGG494

architecture with the aim of getting more features with deep495

networking. On the bridge, it used DenseNet to be able to496

call information on the previous layer which is combined497

with dropout to overcome overfitting on DenseNet caused498

by excess features of the concatenate operation. On the 499

decoder part, it still used the U-Net architecture to make it 500

easier to restore the image patched size to its original image 501

size, namely the size used by the input image. A model of 502

VG-DropDNet architecture can be seen in Fig.6. 503

In Fig.6, it can be seen that the architecture added a con- 504

necting line between the encoder line and the decoder line. 505

The steps in the first layer convolution block for the encoder 506
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FIGURE 7. Sample of some data in the first convolution layer with 3 × 3 of kernel size and 64 × 64 of a feature map.

FIGURE 8. Example of a simple calculation on the dropout layer on the proposed architec-ture VG-DropDNet.

path, namely the pre-processed image is used as input. Then507

a convolution operation is performed using a 3 × 3, 1 same508

padding, 1 stride and the number of filters used is 64. The509

convolution operation is carried out simultaneously with the510

ReLU activation function. After that, normalization is carried511

out using batch normalization. An example of the result of a512

feature map on the first convolution layer block can be seen in513

Fig.7. From Fig.7, it can be seen that in the convolution layer514

block using input measuring 64 pixels× 64 pixels (nin = 64),515

3 × 3 kernel (K = 3), 1 stride (S = 1), and padding same516

(P = 1), the output feature size is 64 pixels × 64 pixels517

(nout = 64).518

Furthermore, the dimension map of the feature map is519

reduced using a max pooling size of 2 × 2 with 2 strides.520

In the second to fifth convolution layer blocks, the same steps521

are carried out as the first layer convolution block using the522

number of filters, namely 128, 256, 512, and 512. The size523

of the input image used in the encoder line is 2n because in524

the max polling process the features would be divided by 2.525

The number of max polls used in this architecture is 5 so that526

the input image should have size of 64 pixels × 64 pixels.527

64 pixels× 64 pixels image size is used because at each layer528

max poll the image size would be reduced as much as 2n−1. 529

If the 32 pixels × 32 pixels image input size is used, then in 530

the last layer the feature size would be 0, so the feature could 531

not be used as input for the connecting line. 532

The bridge path is based on the DenseNet architecture 533

using three dense blocks. It hoped more features would be 534

obtained. However, DenseNet’s concatenate function would 535

cause model overfitting. To overcome overfitting, it added a 536

dropout layer on each dense block. In the first dense block 537

and the second dense block, the convolution operation and 538

the ReLU activation function are performed twice using 539

a 3× 3 kernel matrix, the same padding, and 512 filters. After 540

that, the convoluted featuremapwould enter the dropout layer 541

with a drop rate of 0.5 so that 50% of the feature map would 542

be omitted temporarily by the computer. The value of the 543

omitted feature map would be set to 0 to avoid overfitting 544

during training. For the third dense block, inputs from the 545

first and second dense blocks are used which are combined 546

using concatenate. An example of a simple calculation on the 547

dropout layer could be seen in Fig.8. 548

Based on Fig.8. supposed the weight or kernel in the 549

dropout layer is 4 × 4. The dropout rate used is 0.5, which 550
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means it would randomly remove 50% of the weighted entries551

from the total weighted entries. From Fig.8, it could be seen552

that the total weighted entries are 16 so that 8 weight entries553

would be eliminated. The weight entries to be omitted are554

marked with a red cross in figure 4. The value of the omitted555

weight entries would be filled with a value of 0, so there are556

8 entries with a value of 0. Some examples of feature map557

results on the bridge path of the VG-DropDNet architecture558

can be seen in Fig.9.559

FIGURE 9. Example of the result of a feature map on the bridge path of
the VG-Drop Net architecture.

Based on Fig.6 for the decoder path, it still used U-Net560

Architecture because it returned the same size as the input561

on the output. The steps in the first transposed convolution562

block for the decode path, namely the feature map resulting563

from the third dense block, are used as input. Then transposed564

convolution is performed using a 3 × 3 kernel matrix, the565

same padding, 2 stride and 256 filters. The output of the566

transposed convolution is substituted into the ReLU activa-567

tion function. Some samples of feature map results in the568

first transposed convolution block can be seen in Fig.10. The569

feature map merging operation of the encode and decode570

paths is performed using the concatenate operation. The571

next step is to perform a convolution operation again using572

a 3 × 3 matrix, the same padding, 1 stride, and 512 filters.573

The results of the convolution operation are normalized using574

batch normalization. In the second, third, fourth and fifth575

transposed convolution layers, the same steps are carried out576

as the first block using the number of filters for each block,577

namely 256, 128, 64, and 64. The last step in the decode path578

is a convolution operation using a 1 × 1 kernel matrix and579

substitution with Sigmoid activation function.580

C. TRAINING STAGE581

In the training stage, it is carried out to produce weights582

that would be used in the testing stage. This research used583

50 epochs, 8 batch sizes, and 20000 iterations. Small pieces584

FIGURE 10. Example of the result on the first transposed convolution
block feature map in the VG-DropDNet architecture.

of the image resulting from the patch technique would be 585

used as input to the CNN architectural model. In the CNN 586

architectural model, the first step is to initialize the weight 587

value of each epoch. For each epoch the loss (error) value 588

should be calculated. The weight should be saved if the error 589

value in the validation data is smaller than the previous epoch, 590

otherwise, theweights should be updated for the next epoch to 591

produce the best weight. The line graph of the results of the 592

test data training process and validation for the error (loss) 593

and accuracy values could be seen in figure 0. 594

In figure 11(a) it can be seen that the line graph of the 595

error (loss) value on the VG-DropDNet architecture for train- 596

ing data and validation data on the DRIVE dataset always 597

decreases until the 50th epoch with the loss value closed to 0. 598

The results of the loss graph in Fig.11(a) shows no overfitting 599

in the DRIVE dataset. Loss values of the training data and 600

validation data has a similar distribution. It indicates that the 601

model generated on the DRIVE dataset is able to recognize 602

other data patterns well even though the data has never been 603

trained before. On the STARE dataset from figure 11(b) it can 604

also be seen that the line graph of the error (loss) value on the 605

VG-DropDNet architecture for training data and validation 606

data always decreased until the 50th epoch. The training loss 607

value on STARE is closed to 0.2. Training on the STARE 608

dataset also did not experience overfitting between training 609

data and validation data. This indicated that the model used 610

in the STARE dataset is able to predict well for other image 611

data. The graph of the results of the test data training process 612

and validation for the accuracy value could be seen in Fig.12. 613

Graphs of accuracy on training data and accuracy on vali- 614

dation data for each DRIVE and STARE dataset can be seen 615

in Fig.12(a) and Fig.12(b). From Fig.12 it can be seen that 616

the resulting accuracy increases with the number of epochs 617

up to the 50th epoch. The accuracy graphs on the DRIVE 618

and STARE datasets does not experience overfitting because 619

they have a similar distribution in both accuracy on training 620

data or accuracy on validation data. The model obtained from 621
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FIGURE 11. Graph of the results of the training process error value (loss) of training data and validation using VG-DropDNet on the dataset (a) DRIVE
(b) STARE.

FIGURE 12. Graph of the results of the training process, the value of training data accuracy and validation using VG-DropDNet on the dataset
(a) DRIVE (b) STARE.

the training process also does not experience a vanishing or622

exploded gradient. Based on Fig.12(a) and Fig.12(b), it can623

be seen that the proposed architecture has excellent work624

because the accuracy values are above 99% for the DRIVE625

and STARE datasets. It means that the model obtained from626

the VG-DropDNet architecture has excellent level of accu-627

racy for blood vessels segmentation in retinal images.628

D. TESTING STAGE629

At the testing stage, testing is carried out using new data to630

see how successful the VG-DropDNet architecture is used for631

blood vessels segmentation on retinal image. At this stage,632

the weights obtain from the training results are applied to633

segment retinal blood vessels in the testing data. The image634

from the testing will be comparedwith the ground truth image635

in each dataset. The comparison of the results of the test stage636

and ground truth can be seen in Table 1 for DRIVE dataset637

and Table 2 for STARE dataset.638

Table 1 and Table 2 compared the results on segmentation639

of the VG-DropDNet architecture with the available ground640

truth. It can be seen from the proposed that the blood vessel 641

segmentation in the retinal image is successfully compared 642

to the ground truth image, but some retinal thin vessels in the 643

ground truth are not detected in the segmented image as in 644

files Test_07, Im0324, Test_03, Im0003, and Im0004. 645

The performance value could be done by comparing 646

the segmentation results in testing stage with ground truth 647

image using a confusion matrix table for each data test. 648

A Cohen’s Kappa coefficient value showed that the seg- 649

mentation results from the VG-DropDNet architecture are 650

very suitable and in accordance with the ground truth results 651

carried out by experts on the STARE dataset. It explains that 652

the VG-DropDNet architecture has a very good performance 653

on the STARE dataset compared to the DRIVE dataset. 654

From the confusion matrix obtained, the performance 655

of the VG-DropDNet architecture on DRIVE can be mea- 656

sured based on the values of accuracy, sensitivity, specificity, 657

F1-score and IoU. The performance results on the DRIVE 658

dataset are 95.36% for accuracy, 79.94% for sensitivity, 659

97.61% for specificity, and 68.70% for IoU. The IoU value 660
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TABLE 1. Example comparison between the images obtained in the
testing stage with the ground truth images on the drive dataset.

is still low, but the Cohen’s kappa coefficient obtains for the661

DRIVE dataset is very good, namely 0.8386.662

From the Cohen’s kappa coefficient value obtained, it is663

concluded that the results of the VG-DropDNet architecture664

had a very strong intensity of agreement with the ground truth665

carried out by experts for the DRIVE dataset.666

The results of the VG-DropDNet architecture performance667

on the STARE dataset are 98.56% for accuracy, 91.24 for668

sensitivity, 99.41% for specificity, and 86.90% for IoU. All669

performance results on the STARE dataset are surprisingly670

excellent compared to the results on the DRIVE dataset.671

ACohen’s Kappa coefficient obtained for the STARE dataset672

is also excellent at 0.98. This value is higher than the Cohen’s673

Kappa coefficient in the DRIVE dataset. The Cohen’s Kappa674

coefficient shows that the segmentation results from the675

VG-DropDNet architecture are very suitable and in accor-676

dance with the ground truth results carried out by experts677

on the STARE dataset. It explains that the VG-DropDNet678

architecture had a very good performance on the STARE679

dataset compared to the DRIVE dataset.680

Another performance is Receiver Operating Characteris-681

tics (ROC) Curves. ROC is a probability that summarizes the682

performance of the confusion matrix on all threshold values.683

TABLE 2. Example comparison between the images obtained in the
testing stage with the ground truth images on the stare dataset.

Area Under the Curve (AUC) converts the ROC curve to 684

numeric to measure performance in binary classification by 685

taking values between 0 and 1. The closer to one AUC value, 686

the better the model works. Fig.13 shows the ROC curve and 687

AUC values for DRIVE and STARE. AUC is calculated by 688

the ROC. From Fig.13(a) it can be seen that the ROC graph in 689

the DRIVE dataset is closer to the random classifier diagonal 690

line than Fig.13(b) in the STARE dataset. This causes the 691

AUC value in the DRIVE (0.9309) dataset to be smaller than 692

the STARE (0.9696). The AUC value on STARE is better 693

than on DRIVE, meaning that the model works better on the 694

STARE dataset. STARE has a larger image size. the patching 695

process performed on STARE provides a greater opportunity 696

to obtain more and clearer features of blood vessel in retinal 697

images. This can affect the performance of STARE which is 698

better than on DRIVE. Fig.13(a) describes about the ROC 699

and AUC on DRIVE dataset by VG-DropDNet. Fig.13(b) 700

describe about the ROC and AUC on STARE dataset 701

by G-DropDNet. 702

IV. DISCUSSION 703

The VG-DropDNet architecture is used to segment retinal 704

blood vessels in this work. Confusion matrix can be used to 705

calculate architectural performance based on accuracy, sen- 706

sitivity, specificity, and IoU. The comparison of the segmen- 707

tation results of this study with other studies on the DRIVE 708

dataset is shown in Table 3. 709

Table 3 contains some results from the last 5 years 710

of research using the DRIVE dataset for blood vessels 711
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FIGURE 13. Graph of the receiver operating characteristic (ROC) curve obtained during the testing process on VG-DropDNet for the (a) DRIVE
(b) STARE dataset.

segmentation on retinal image. In Table 3 the highest accu-712

racy is obtained by Al-masni and Kim [10], but the sen-713

sitivity value obtained is still below the sensitivity value714

of the VG-DropDNet architecture. The highest specificity715

value is obtained on the architecture carried out by Wang716

et al. [20], but the study does not measure IoU values.717

The architecture proposes by Zhang et al. [60] provided the718

highest sensitivity among other studies. Unfortunately, this719

study does not measure IoU. The VG-DropDNet architecture720

provided the highest IoU, but the IoU value still needed721

to be improve. Although the values of accuracy, sensitivity722

and specificity are below the results of other studies, the723

VG-DropDNet has a good ability to segment blood ves-724

sels and other features as background because the accu-725

racy, sensitivity and specificity values obtained are above726

75%. The comparison of the segmentation results of this727

study with other studies on the STARE dataset is shown in728

Table 4.729

Table 4 is a comparison of the results of the last 4 years730

of studies using the STARE dataset for blood vessels seg-731

mentation on the retinal image. As shown in Table 4, the732

proposed method achieves the highest accuracy. In terms of733

sensitivity, and specificity, the proposed method also outper-734

forms other researchers by more than 90%. The highest IoU735

value is obtained from the researcher Guo et al. [58], but the736

IoU of the proposed method has also achieved good results737

exceeding 80%.738

According to the comparison results in Table 3 and Table 4,739

the VG-DropDNet architecture for blood vessels segmenta-740

tion on the retinal image has a good performance on DRIVE741

dataset. On the STARE dataset, the VG-DropDNet architec-742

ture is excellent and robust for blood vessels segmentation743

on the retinal images. The ability of VG-DropDNet to detect744

the bounding box between blood vessels and background745

in DRIVE dataset should be improved because the IoU is746

still under 70%. In STARE dataset, the IoU is excellent at747

detecting the bounding box indicates by the IoU value greater748

than 80%.749

TABLE 3. Performance comparison of VG-dropdnet for blood vessels
segmentation on retinal image in drive.

TABLE 4. Performance comparison of VG-DropDNet for blood vessels
segmentation on retinal image in STARE.

The number of BloodVessels and non-blood vessels (back- 750

ground) pixels in the images is not balanced. The statistic 751
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TABLE 5. Comparison of MCC, G-mean, and F1-score results for the
DRIVE Dataset on The VG-DropDNet architecture with other studies.

TABLE 6. Comparison of MCC, G-mean, and F1-score results for the
STARE dataset on The VG-DropDNet architecture with other studies.

performances for unbalanced data are MCC, G-mean and752

F1-score. MCC is used to measure the correlation between753

two classes. Geometric Average (G-mean) is a metric that754

measures the balance between majority and minority data.755

The F1-Score is used to measure whether the classifica-756

tion results have good precision and recall. The results757

sought to maximize the accuracy of each class to balance.758

The results obtain in the DRIVE dataset are 0.7881 for759

MCC, 0.8833 for G-mean and 0.814 for F1-score. The760

results in the STARE dataset are 0.922 for MCC, 0.9239 for761

G-mean and 0.9299 for F1-score. The results of the MCC,762

G-mean and F1-score are all close to 1. To see how well763

the results of the MCC, G-mean and F1-score produced by764

VG-DropDNet, these results are compared with the results of765

other studies as in Table 5 and Table 6.766

In table 5, the highest MCC and F1-score for DRIVE767

are obtained by Nagdeote and Prabhu [75]. However, the768

highest G-mean is obtained by the VG-DropDNet architec-769

ture. The MCC on the VG-DropDNet architecture is higher770

than the results of Zhuo et al. [72] and Orlando et al. [71].771

Although the MCC is lower than the results of Nagdeote and772

Prabhu [75], and Guo et al. [73], the VG-DropDNet archi-773

tecture on DRIVE is able to have a good balance for blood774

vessels and non-blood vessel (background) segmentation on775

retinal images. It is indicated by the results of the MCC,776

G-mean, and F1-score which are all close to 1 on DRIVE.777

In table 6, the results on the STARE dataset are excellent.778

VG-DropDNet give the highest MCC, G-mean, and F1-score779

results compared to other research results in table 6. The780

VG-DropDNet has good precision and recall in blood vessels781

segmentation in retinal images especially on STARE. From782

the results on both datasets, it is concluded that the proposed783

method, VG-DropDNet is robust, valid and has great balance784

model for blood vessels segmentation on retinal images. The 785

Vg-DropDNet provides the accurate valid blood vessels on 786

retinal images. 787

V. CONCLUSION 788

Based on the results and discussion it can be concluded 789

that theVG-DropDNet architecture provides excellent perfor- 790

mance results for blood vessels segmentation in retinal image, 791

with the accuracy is more than 90%. VG-DropDNet can be 792

the recommended architecture for blood vessel segmentation. 793

The results of the VG-DropDNet architecture performance 794

on the DRIVE dataset are great even though the IoU value 795

obtained is still below 70%, but IoU in other studies are 796

still rarely measured. The comparison of studies results in 797

Table 3 shows that the IoU on DRIVE is the highest result. 798

On the STARE dataset, the results of the VG-DropDNet 799

architecture performance give excellent results. All perfor- 800

mance results on the STARE dataset are above 86%. The 801

Cohen’s Kappa coefficient obtained by the VG-DropDNet 802

architecture on both the DRIVE and STARE datasets has 803

given great results above 0.8. It explains that the results 804

of blood vessel segmentation on retina images generated 805

by the VG-DropDNet architecture has a strong intensity 806

of agreement with the ground truth images that have been 807

provided by experts in the DRIVE and STARE datasets. 808

The VG-DropDNet architecture is also able to provide a 809

good balance for the segmentation of blood vessels in reti- 810

nal images seen from the MCC and G-mean values close 811

to 1. The segmentation image generated by VG-DropDNet 812

is accurate and valid based on the performance results of 813

accuracy, sensitivity, specificity, IoU, MCC, G-mean and 814

F1-score. The segmented images from Vg-DropDNet are 815

binary images containing only retinal blood vessels. These 816

images can be used for the classification of retina disorders 817

detection that requires examination of abnormalities in the 818

retinal blood vessels. Image results from Vg-DropDNet can 819

be used in medical applications to help detect retina disorders 820

automatically. For future works, there are two focuses. The 821

first is on improving and merging the VG-DropDNet archi- 822

tecture with other deep learning architectures and different 823

stages of pre-processing data to improve performance results 824

that are not optimal yet. The second is implementing the 825

segmentation image fromVG-DropDNet on the classification 826

of retina disorders based on blood vessels retinal disorders 827

so that this research can be applied in real terms in the 828

medical field. Despite the success of VG-DropDNet in sepa- 829

rating lesions from blood vessels, there are cases where this 830

architecture does not perform well. This is especially true 831

for retinal images with severe diabetic retinopathy with very 832

large lesions or high vascular tortuosity. To overcome the lim- 833

itations of VG-DropDNet, the use ofmorphological operating 834

parameters can be used instead of predefined transformations 835

to separate different components of the retinal image at the 836

post-processing stage. By studying the morphological oper- 837

ations of the image, complex components of retinal images 838

can be captured well. 839
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