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ABSTRACT Electric Power Systems (EPSs) are among the most critical infrastructures of any society, since
they significantly impact other infrastructures. Recently, there has been a trend toward implementing modern
technologies, such as Industrial Internet of Things (IIoT), in EPSs to enhance their real-time monitoring,
control, situational awareness, and intelligence. This movement, however, has exposed EPSs to various cyber
intrusions that originate from the IIoT ecosystem. Statistics show that 38% of reported attacks have been
against power and water infrastructure, and so far at least 91% of power utilities have experienced a cyber-
attack. The cyber-security problem is evenmore severe for IIoT applications in EPSs due to the vulnerabilities
and resource limitations of such applications. Thus, based on the above statistics, it is necessary to investigate
the vulnerabilities of IIoT-based applications in EPSs, identify probable attacks and their consequences, and
develop intrusion prevention and detection approaches to secure IIoT systems. On this basis, this paper
first elaborates on the applications of IIoT-based systems in EPSs, and evaluates their security challenges.
Afterwards, it comprehensively reviews various cyber-attacks against IIoT-assisted EPSs, with a particular
focus on attack entry points and adversarial methods. Finally, efforts to prevent cyber-intrusions against IIoT
systems in EPSs are explained, and different attack detection techniques are discussed.
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INDEX TERMS Cyber-attacks, cyber-security, electric power systems, industrial internet of things, intrusion
detection systems.

I. TRANSFORMATION OF IoT TO IIoT17

The concept of Internet of Things (IoT), which was intro-18

duced by Kevin Ashton in 1999, aims to connect anything19

at anytime in anyplace [1]. IoT is a novel paradigm shift in20

Information Technology (IT), in which billions of physical21

objects are connected to the internet and can share real-time22

data without needing human interference. Additionally, inno-23

vations affected by IoT, such as sophisticated automation and24

manufacturing technologies, exchange and administration of25

information, and smart and automatic processes and systems26

are becoming increasingly popular for businesses and organi-27

zations [2]. By 2020, IoT connected 12.4 billion things, and it28

is predicted that this number grows to 26.4 billion by 2026 [3].29

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhouyang Ren .

The most important differences between conventional and 30

IoT-based networks, in terms of their security, are as follows: 31

• The first and foremost distinction between traditional 32

and IoT networks is related to the resourcefulness of 33

end devices [4]. IoT networks often includes embedded 34

devices, such as Radio-Frequency Identification (RFID) 35

and sensor nodes, with resource constraints. They are 36

often equipped with little memory, low computational 37

power, little disc space, and minimal power consump- 38

tion. Thus, IoT systems require lightweight safeguards 39

to balance security with available resources [5]. How- 40

ever, the conventional networks consist of a variety of 41

computers, servers, and devices. Thus, sophisticated and 42

multi-factor security methods may support conventional 43

networks without considering any resource limitations. 44

• In terms of security architecture, conventional networks 45

use a combination of firewalls, Intrusion Detection 46
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Systems (IDSs), Intrusion Prevention Systems (IPSs),47

and static network perimeter protection to secure the48

network. Additionally, end devices are protected by49

host-based security techniques, such as anti-virus and50

security/software patches. In contrast, host-based secu-51

rity strategies cannot be applied to IoT devices with52

resource restrictions [6]. In fact, IoT devices have53

numerous vulnerabilities, and the conventional defense54

methods are not able to protect these devices.55

• The majority of IoT devices are connected to the net-56

work or gateway devices through slow and less-secure57

connections, such as 802.15.4, 802.11a/b/g/n/p, Long-58

Range Radio (LoRa), ZigBee, NB-IoT, and SigFox.59

As a result, IoT devices are susceptible to data leakage60

and other privacy concerns. For the conventional net-61

works, however, end devices interact over secure and62

more rapid wired/wireless channels, such as fibre optics,63

DSL/ADSL, WiFi, 4G and LTE [5].64

• Conventional-network devices utilize almost the same65

operating system and data format. However, there are66

diverse data contents and formats in IoT networks, due67

to the application-specific capabilities of devices and the68

absence of an operating system. Due to this diversity,69

development of a default security protocol that suits all70

sorts of IoT systems and devices is yet challenging [5].71

Recently, IoT protocols and technology have been incor-72

porated into industrial processes as well to address their ever-73

increasing complexity, and make them robust against service74

disruptions [7]. Industrial IoT (IIoT) is a term coined to75

describe the integration of intelligent electronics into manu-76

facturing processes throughout a product’s life cycle [8]. The77

IIoT, which provides industrial systems with connectivity and78

intelligence via sensing devices and actuators with ubiquitous79

networking and computing capabilities, is a key component80

of future industrial systems. For a faultless system, IIoT not81

only connects machines, but also has a human interface unit.82

It is expected that IIoT takes over the routine tasks of quality83

control, assembly, and administration in the near future [9].84

The advantages of IIoT, however, have been achieved at85

the expense of exposing industrial processes to cyber-attacks,86

since the increased number of interconnected networks87

and devices provide cyber-attackers with more number of88

access points. For this reason, IIoT providers have prior-89

itized cyber-security as a top concern for IIoT adoption90

[2], [10]. Given that IIoT is a natural transition from IoT,91

it inherits some of the IoT’s security problems. Additionally,92

IIoT applications have some other security needs that are93

unique when compared to IoT applications. These unique94

concerns mostly stem from the absence of human interactions95

and autonomous machine/device activities in IIoT applica-96

tions. Major differences between IIoT and IoT can be cate-97

gorized as follows:98

• Market focus: IoT covers a variety of sectors, such as99

enterprises, healthcare, and the public sector. Thus, it tends to100

concentrate more on universal applications. In contrast, IIoT101

systems are focused on a smaller market, as they are only102

applied to industrial settings, such as power plants, oil and 103

gas refineries, and manufacturing facilities [11]. 104

• Objectives: IoT is usually deployed to improve pro- 105

ductivity, health, and safety. IIoT, however, is usually less 106

user-centric and concentrates more on increasing security 107

and efficiency. Thus, in contrast to IoT, IIoT is an industrial 108

process that is not utilized by general consumers in their 109

individual lives [11]. 110

• End devices: IoT and IIoT systems usually use differ- 111

ent devices as they both have different focuses and objec- 112

tives. IIoT devices are built to provide their users with data 113

on equipment, and these devices are integrated with the 114

existing equipment, instead of working alone. In contrast, 115

IoT devices—such as smartphones, smartwatches, and smart 116

thermostats—are often employed in the daily life, and can be 117

used independently [12]. 118

• Risk of failure: The risk of failure in IoT devices is 119

relatively low as these devices are only applied on a small 120

scale. Typically, IoT devices are not utilized for restorative 121

practices that pose a threat when they fail. In contrast, failure 122

of IIoT devices is more hazardous, since IIoT is linked to an 123

industrial system [13]. 124

• Development needs: IoT manufacturers aim to develop 125

technologies to suit the user’s daily life. Hence, IoT devel- 126

opment concentrates more on improving the comfort of its 127

users. In contrast, IIoT development usually emphasizes on 128

creating new devices that efficiently improve the operation 129

of its consumers [14]. 130

• Compatibility with legacy systems: IoT devices don’t 131

have to be compatible with legacy systems. These devices are 132

not designed with backward compatibility as they often work 133

independently. In contrast, IIoT devices should be compatible 134

with the legacy systems and equipment in manufacturing 135

plants, since most IIoT devices assist the legacy systems in 136

offering digital information and receiving IT system com- 137

mands [14]. 138

• Environmental requirements: IoT devices are usually 139

designed to function in normal environments with a standard 140

temperature and ecological pressure. IIoT devices, however, 141

are made more durable and reliable, since they are primarily 142

used in harsher environments, like factories, energy plants, 143

and oil refineries. Thus, manufacturers of IIoT devices usu- 144

ally craft their products to tolerate extreme temperatures, 145

humidity, and radio interference to ensure they provide reli- 146

able services [15]. 147

• Ecosystem architecture: An IoT system consists of a 148

public cloud, which is manageable by an operator. When 149

an inquiry is received, it is examined and directed through 150

a particular route that needs proprietary data unavailable 151

for the inviting entity. Once the cloud-based IoT process 152

ends, the outcomes are conveyed to the user through specific 153

devices, such as smartphones [16]. In contrast, the archi- 154

tecture of the IIoT network is entirely different. An IIoT 155

process is completed in a private cloud operated by a service 156

provider. The data collected through an IIoT network is used 157

to make an efficient decision, which is transmitted to the 158
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Industrial Control System (ICS) via the organization’s IT159

network [16].160

• Operation safety: For the majority of IoT systems, the161

safety of operation is not a concern, as these systems do not162

usually handle industrialized processes. In IIoT ecosystem,163

however, situation is entirely different, since an inappropriate164

action of the IIoT system can render a process unstable or165

unsafe, and can endanger people’s lives [17].166

• Operation reliability: In an IoT system, operation relia-167

bility is essential, since people’s decisions entirely depend on168

the result of IoT processes. Thus, an IoT system should be169

capable of identifying and detecting deliberate or incorrect170

acts by an approved individual. Additionally, an IoT net-171

work should be equipped with measures to detect any data172

manipulation and cyber-attacks [17]. In IIoT systems, this173

requirement is even more serious, since IIoT systems are174

often the components of ICSs in critical infrastructure [17].175

Additionally, IIoT devices also need to last for a longer time,176

since industrial plants and equipment are built for larger time177

horizons. Therefore, IIoT devices need to function reliably178

for a longer time than typical IoT devices [17].179

• Communication media: The architecture of an IoT180

ecosystem should match its communication media and pro-181

tocols. As operations are consumer-oriented, the major-182

ity of IoT ecosystems utilize communication media such183

as Bluetooth, WI-FI, and cellular networks, as well as184

standard IT protocols. As a part of ICSs, an IIoT net-185

work offers wireless and wired communication links among186

the ICS servers, sensors, and Programmable Logic Con-187

trollers (PLCs) using ICS-oriented protocols. Communica-188

tion latency in IIoT ecosystems is an important concern, since189

in such systems sensitive information must be shared almost190

simultaneously [12].191

• Cyber-security defense: In both IoT and IIoT systems,192

cyber-risks are of significant concern, since the majority of193

endpoint devices in both systems can serve as attack entry194

points. As an IoT ecosystem deals with consumer-oriented195

end devices, their cyber-security is a fundamental problem,196

since this technology comes with cost limitations that pre-197

vent deployment of cyber-security measures. For an IIoT198

ecosystem, cyber-security risks are even higher, although199

investment resources for retrofitting and upgrading are easier200

to obtain. Thus, extra security measures are essential for IIoT201

systems [12].202

One of the major applications of IIoT networks is in203

EPSs, since these systems are undergoing a revolution to204

increase their efficiency, dependability, security, cost effi-205

ciency, resiliency, and sustainability [18]. IIoT systems can206

benefit the three main domains of EPSs—i.e., power gen-207

eration, transmission, and distribution—by providing them208

with real-time feedback, and allowing them to better serve209

their consumers via more-advanced monitoring and control210

capabilities. Additionally, IIoT systems can facilitate faster211

adoption of renewable and sustainable energy solutions by212

dynamically controlling the demand and synchronizing it213

with the supply [19]. Thus, integration of IIoT systems in214

EPSs can bring about potential economic, social, and envi- 215

ronmental benefits. 216

Cyber-security, however, is a growing challenge for EPSs, 217

since it directly impacts their reliability and overall cost. 218

Statistics reveals that, so far, (i) 91% of power generating 219

companies have been the victims of cyber-attacks; (ii) cyber- 220

attacks against electricity and water suppliers account for 221

38% of all identified threats; and (iii) 61% of oil and gas 222

suppliers, which provide power generation companies with 223

their required fuel, are not able to detect sophisticated cyber- 224

attacks [20]. As these statistics demonstrate, EPSs are highly 225

vulnerable to cyber attacks, and are attractive targets for 226

adversaries. On the other hand, integration of IIoT in EPSs 227

can intensify this problem due to the inherent vulnerabilities 228

and resource limitations of IIoT systems. Therefore, it is 229

crucial to investigate the cyber-security challenges of IIoT- 230

based applications in EPSs, and take necessary measures to 231

secure such systems. 232

The remainder of this paper is organized as follows: 233

Section II elaborates on integration and applications of IIoT 234

systems in EPSs; Section III explains major IIoT architec- 235

tures for EPSs; cyber-security challenges and requirements of 236

IIoT-based applications in EPSs are discussed in section IV; 237

Section V reviews cyber-attacks against different layers of 238

IIoT systems in EPSs; security enhancement measures for 239

IIoT-aided applications are described in section VI; and the 240

paper is concluded in Section VII. 241

II. IIoT SYSTEMS IN EPSs 242

IIoT networks in EPSs use smart devices to collect data from 243

the grid through a cyber layer. This data is then used to operate 244

the grid more efficiently, and to serve the customers better. 245

Thus, connectivity and interoperability are two important 246

features of IIoT networks, which lead to higher standard 247

procedures and services. The following subsections elaborate 248

onmajor applications of IIoT systems in EPSs, which are also 249

shown in Fig. 1. 250

A. ELECTRIC POWER GENERATION 251

IIoT systems—which are a combination of cloud-based ana- 252

lytics, IT, and Operational Technology (OT) technologies— 253

can be implemented for different applications in the power 254

generation process to improve the operator’s situational 255

awareness using the real-time data coming from power plants. 256

This enhanced situational awareness can improve the oper- 257

ation of power plants, facilitate integration of renewable 258

energy, and enhance the timely/predictive maintenance of 259

generating units. Some of the applications of IIoT systems 260

in electric power generation are as follows. 261

1) OPTIMIZING FUEL MIX 262

The first application of IIoT systems is to optimize the fuel 263

mix of different types of generating units. This task is of high 264

importance, since there is a wide range of generating units 265

in a power network, which are becoming increasingly diver- 266

sified [21]. Thus, integration of IIoT systems in EPSs can 267
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FIGURE 1. IIoT systems in EPSs.

maximize the efficiency of power generation by balancing the268

fuel mix. As a result, it is critical that operators have real-time269

data about all the assets in the network to analyze the supply270

and demand, and their reaction to the energy price [18].271

On the other hand, energy providers are required to update272

and adjust their business models to take advantage of new273

IIoT applications’ capabilities [22]. For instance, it is critical274

to use the insights gained by big data analytics to balance the275

fuel mix.276

2) EMISSION MONITORING OF POWER PLANTS277

IIoT-based embedded systems can be used for monitoring278

harmful gas emissions from thermal power plants by measur-279

ing the Carbon Monoxide (CO) and Particulate Matter (PM)280

concentrations emitted by them [23]. Additionally, IIoT sys-281

tems can control the condition of combustion and minimize282

the emission of Sulphur Dioxide (SO2) in power plants using283

combustion images [24]. In fact, it is critical to monitor the284

gases generated by thermal power plants in order to reduce285

their negative effects on the environment and diminish their286

health threats [25]. Such IIoT-based systems utilize a variety287

of sensors to determine the concentration levels of the gases in288

the atmosphere, and send the sensed information to the cloud289

computation center. If the measured data exceeds the emis-290

sion requirements, the operator is notified to take appropriate291

actions and minimize hazardous emissions.292

3) DIGITIZING POWER MARKETS293

The power market is another important application for IIoT294

systems. So far, the volumetric tariffs have been used as a295

revenue model in conventional EPSs. In this model, people296

are the source of information, skills, and knowledge for the297

power market. This invaluable resource becomes inacces-298

sible if current employees retire. In order to preserve the299

wisdom and expertise of senior employees, digital advance-300

ments must be made. For instance, new income streams must301

be developed for future EPSs to accurately evaluate and302

distribute investment costs and other activities [18]. Addition- 303

ally, small-scale energy resources are not taken into account 304

for market participation in the national or regional levels. 305

Furthermore, conventional markets are unable to cope with 306

renewable energy resources in real-time due to their stochas- 307

tic nature [26]. Thus, a new IIoT-based information-driven 308

infrastructure is needed to boost the productivity of power 309

markets by considering new components, such as local energy 310

generation units [27]. 311

4) CONTROL OF RENEWABLE ENERGY RESOURCES 312

It is imperative to increase the penetration level of renewable 313

energy resources in future EPSs. These sources of energy, 314

however, are intermittent in nature, and are highly dependent 315

on environmental factors; for instance, the speed and direc- 316

tion of the wind affect the generation of wind power plants, 317

and solar irradiation impacts the output power of photovoltaic 318

cells. To improve the efficiency of such resources and the 319

reliability of the entire grid, IIoT systems can be used to 320

ensure a constant supply of safe, economical, and reliable 321

energy [28], [29], [30]. In fact, IIoT systems can use sensor 322

measurements, a cloud computing platform, and enhanced 323

load and weather models to accurately and efficiently control 324

renewable energy resources [22]. 325

5) DIGITIZING POWER GENERATION 326

To intelligently operate EPSs and effectively balance the 327

demand and supply, it is crucial to collect real-time data from 328

both transmission and distribution networks. To this aim, 329

IIoT systems can be implemented, and the required data can 330

be collected using smart meters, intelligent feeders, Phasor 331

Measurement Units (PMUs), and micro PMUs [31]. This 332

data can be processed for forecasting the load, estimating the 333

states of the system, and controlling the EPS in a distributed 334

manner. For instance, Digital Twin, built by General Electric, 335

is an ensemble of physics-based methods and advanced data 336

analytics that employs IIoT systems tomodel the present state 337

of every asset in a digital power plant [18]. 338
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B. POWER TRANSMISSION339

Existing transmission systems are facedwith challenges, such340

as slow reaction to outages, high power losses, data theft, and341

poor monitoring of transmission lines and other components.342

Such challenges can be addressed by implementing IIoT sys-343

tems for real-time monitoring of transmission networks [32].344

As an example, an IIoT-based monitoring platform has345

been developed for substations in [33], and has been practi-346

cally implemented in a petrochemical facility’s local power347

substation in Texas, USA [33]. This platform monitors348

all critical parameters of substations, including voltage,349

frequency, power, circuit breaker status, and transformer tem-350

peratures, in steady-state and during transients. In this plat-351

form, high-resolution time-stamping and synchronization are352

provided using industrial-standard GPS, and high-speed and353

reliable data acquisition and processing are achieved using354

FPGA-embedded controllers. The controllers are equipped355

with predefined event triggering mechanisms with recording356

functions. When such events occur, the controller records357

the information and sends it to a control center through the358

IIoT platform. This data can be used to prevent future similar359

incidents.360

Additionally, IIoT-aided systems have been used to pre-361

vent physical damages to transmission towers, e.g., caused362

by theft, natural catastrophes, hazardous constructions, and363

the growth of tree limbs beneath the wires. To monitor and364

prevent such damages, IIoT-enabled transmission towers use365

various sensors to detect early signs of potential risks, and366

prompt an immediate and appropriate action. Anti-theft fas-367

teners, lean sensors, cameras, and vibration sensors are some368

components that can be used for this purpose. Every time a369

risk is detected by these components, a signal is sent to the370

control center to make appropriate decisions [34].371

C. POWER DISTRIBUTION372

Similar to transmission systems, distribution networks are373

faced with a number of challenges, including power outages,374

ineffective demand response, electricity theft, and inefficient375

integration of distributed energy resources. These challenges376

can be addressed by employing IIoT systems in different377

domains of distribution systems, as discussed below.378

1) SMART GRIDS379

Smart grids enjoy a bi-directional flow of information380

between consumers and suppliers, which can be used for381

system optimization and efficient energy distribution [35].382

In smart grids, IoT/IIoT-related systems can be used for383

different purposes in energy generation, smart homes, trans-384

portation systems, and smart industry [35]. For example,385

consumers’ energy demand patterns can be extracted by386

collecting data via an IoT platform. Another application of387

IIoT-based systems in smart grids is controlling and monitor-388

ing of battery-powered devices, thus distributing the energy389

more efficiently [36].390

Additionally, IIoT-enabled loads, storage devices, and 391

renewable generating units have enabled customers to gen- 392

erate a part or the entire of their required energy locally, and 393

even to trade the surplus energy with the network. In this con- 394

text, intelligent loads share their data—such as their demand, 395

power consumption, and the time of use—to optimize their 396

power consumption and cost. Energy storage devices, such 397

as batteries and electric vehicles, are also used to deal with 398

uncertainties and the intermittent nature of generating units, 399

as well as to participate in demand response programs [22]. 400

Moreover, in an IIoT-enabled smart grid, all assets con- 401

nected to the grid can interact with each other to ensure that 402

the distribution of energy is perfectly managed whenever and 403

wherever it is required. In such a smart grid, the operator is 404

notified before any acute problem occurs, thus an appropriate 405

corrective or preventive action can be taken in advance. For 406

example, exceeding the demand over the grid’s capacity can 407

be detected by real-time monitoring of loads and generating 408

units. Thus, the energy consumption of flexible loads can 409

be rescheduled to a time when demand is expected to be 410

lower. Additionally, dynamic pricing models can be used to 411

decrease the consumption or increase the generation during 412

peak hours [37]. 413

2) SMART LOAD MANAGEMENT 414

In general, electric energy consumption can be divided into 415

four categories: residential, commercial, industrial, and trans- 416

portation. The following discusses how IoT/IIoT can be used 417

to manage the energy consumption in residential and indus- 418

trial loads. 419

Residential loads include, but are not limited to, lighting, 420

appliances, and water heaters, as well as Heating, Ventilation, 421

and Air Conditioning (HVAC) systems. IoT systems can be 422

used to manage energy consumption of the appliances and 423

lighting systems. For instance, IoT/IIoT systems can notify 424

customers when their energy consumption exceeds the stan- 425

dard level. Additionally, IoT/IIoT-based home energy man- 426

agement systems can monitor the energy usage to schedule 427

and run some flexible loads, e.g. some appliances, during 428

low-demand hours. This contributes significantly to the effi- 429

cient use of electrical energy and reducing greenhouse gas 430

emissions [36].Moreover, given that HVAC energy consump- 431

tion accounts for half of the total energy consumption in most 432

buildings, IoT/IIoT-based HVAC management systems are 433

critical for managing electric energy and its cost in buildings. 434

For instance, such systems can determine unoccupied spaces 435

in buildings, and manage the operation of the HVAC system 436

in these spaces. 437

Industrial loads can be also managed by using IIoT-based 438

systems. For instance, by monitoring each component and its 439

consumption, the components that consumemore energy than 440

expected can be detected. Additionally, quality control can be 441

performed by using an agile and flexible IIoT system that rec- 442

ognizes failures in real-time. These IIoT systems lead to a bet- 443

ter management of components, detecting and fixing faults, 444

92394 VOLUME 10, 2022



H. Sarjan et al.: Cyber-Security of Industrial Internet of Things in Electric Power Systems

FIGURE 2. Common IIoT architectures for EPSs: a) basic three-layer, b) four-layer, and c) five-layer.

optimizing each component’s consumption, and ultimately to445

the reduction of energy losses in smart factories [38].446

III. ARCHITECTURE OF IIoT NETWORKS447

IIoT architectures comprise several layers, each includes IIoT448

networking platforms, protocols, and standards. These layers449

are configured based on each application’s requirements, e.g.,450

scalability, flexibility, and interoperability, and allow multi-451

ple technologies to interact with each other. The disparate452

requirements of applications, result in diverse structures for453

IIoT systems, and barricades development of a standard454

design for all applications. The following subsections elab-455

orate on various IIoT architectures in EPSs, which are shown456

in Fig. 2.457

A. THREE-LAYER IIoT ARCHITECTURE458

A typical IIoT architecture includes at least three layers: per-459

ception, network, and application layers, which are illustrated460

in Fig. 2-(a). Generally, the top layer of a three-layer IIoT461

architecture is associated with applications, the middle layer462

corresponds to the network requirements and communication463

process, and the lowest layer is for hardware and physical464

devices. This architecture is the most basic one, which gives465

insights into the essential layers to make the system work.466

In fact, other more-complicated architectures can be also sim-467

plified to a three-layer architecture. The three-layer design for468

IIoT-assisted EPSs has been suggested in [39], [40], and [32].469

The perception layer senses and collects data by installing470

and networking various sensors in EPSs. This layer com-471

prises IIoT devices—e.g., remote terminal units, information472

gathering devices, smart meters, and intelligent electronic473

equipment—deployed in different domains of EPSs. This474

layer receives information from IIoT devices and transfers475

it to the network layer. The perception layer is divided into476

two sub-layers: (i) perception control and (ii) communication477

extension. The former controls the physical layer by acquir-478

ing data and analyzing IIoT devices, whereas the latter links479

IIoT devices with the network layer through a communication480

module [41].481

The network layer embraces the communication system— 482

which is assisted by numerous telecommunication networks 483

as well as the Internet—to transfer the information acquired 484

by IIoT devices at the perception layer to the application 485

layer via the telecommunication networks. The core network, 486

which can be the Internet, oversees the routing, information 487

transmission, and control functions. The IIoT management 488

and information centers are also in this layer [41]. 489

The application layer is a combination of IIoT technologies 490

and industrial practices/expertise to enable a wide range of 491

IIoT-assisted EPS applications. This layer is responsible for 492

processing information that is received from the network 493

layer and using it for real-time monitoring, controlling, and 494

debugging of IIoT devices. Information sharing and security 495

are two important services in the application layer [41]. 496

B. FOUR-LAYER IIoT ARCHITECTURE 497

A four-layer architecture for IIoT-aided applications in EPSs 498

consists of terminal, field network, communication, and mas- 499

ter station system layers, as shown in Fig. 2-(b). The ter- 500

minal and field network layers in this architecture form the 501

perception layer of the three-layer IIoT structure; the remote 502

communication layer corresponds to the network layer; and 503

the master station system layer is equivalent to the appli- 504

cation layer. This architecture is the most common one for 505

EPSs, which can be used for various applications, such as 506

(i) power plant operation (e.g., for monitoring of pollutant 507

and gas discharge, and controlling generation equipment), 508

(ii) state monitoring for transmission lines (e.g., ambient 509

condition, ice covering, temperature, sag), (iii) substation 510

equipment operation and control (e.g., state monitoring of 511

substation equipment and environment safety), (iv) power 512

distribution automation, and (v) consumption manage- 513

ment (e.g., in advanced metering infrastructure and smart 514

homes) [42]. 515

C. FIVE-LAYER IIoT ARCHITECTURES 516

A five-layer architecture (Fig. 2-(c)), which consists of user, 517

energy management, market, communication, and regulatory 518

layers, is proposed in [43] for Transactive Energy Systems 519
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(TESs). The user layer consists of applications that benefit520

from the IIoT structure. The energy management layer opti-521

mizes the system operation to control congestions, improve522

the reliability, reduce system failures, and minimize fre-523

quency and voltage deviations. This layer also ensures main-524

taining a dynamic balance between supply and demand in525

EPSs. Information related to the energy demand is collected526

and stored in the market layer, which leverages either local527

or cloud infrastructure to facilitate energy transactions. The528

communication layer is used to transfer the data from themar-529

ket layer to the regulatory layer through wired and/or wire-530

less communication media. The highest layer is responsible531

for regulatory and governance processes, in which the rules532

and procedures required for transparent and smooth energy533

transactions are determined. In this architecture, user, energy534

management, and regulatory layers together are equivalent535

to the application layer of the three-layer architecture. Simi-536

larly, the communication and market layers correspond to the537

network and perception layers of the three-layer architecture,538

respectively.539

IV. CYBER-SECURITY OF IIoT SYSTEMS540

The purpose of cyber-security is to protect IIoT assets and541

privacy, and to reduce security risks that emanate from the542

cyber layer. New cyber-security technologies are constantly543

emerging tomake systemsmore secure. However, developing544

cyber-security techniques for IIoT-based applications in EPSs545

is challenging, since (i) a variety of devices, applications,546

communication media, and protocols are used in IIoT net-547

works, and (ii) the physical capabilities of devices and the548

volume of information shared by them are limited. The major549

security requirements of IIoT-based systems are as follows.550

A. DEVICE SECURITY551

The term device security refers to preventing a device (e.g.,552

a PMU or an actuator in EPSs) from being maliciously553

used to conduct attacks, e.g., from participating in Denial554

of Service (DoS) attacks, eavesdropping on network traffic,555

or compromising other devices on the same network. This556

type of security is applicable to all IIoT devices in EPSs.557

One of the most important effects of security problems, such558

as DoS attacks against IIoT devices, is negatively affecting559

the availability of the network. Term availability in IIoT560

networks refers to both hardware and software. Hardware561

availability means the existence of all devices all the time,562

whereas software availability is the ability to provide service563

anywhere and anytime [44]. To secure an IIoT system and564

prevent unwanted malicious actions, a main step is to ensure565

that all devices are secure and trustworthy [45]. Trust man-566

agement techniques are divided into two main categories:567

deterministic and non-deterministic trust. Deterministic trust568

encompasses policy- and certificate-based mechanisms,569

whereas non-deterministic trust includes recommendation-,570

and prediction-based ones [46]. Policy-based mechanisms571

use a set of policies to identify trust. In certificate-based572

approaches, trust is determined by using public or private573

keys and digital signatures. Recommendation-based systems 574

utilize prior information to define trust. However, if there 575

is no prior information, prediction-based methods can be 576

used [46]. 577

B. DATA SECURITY 578

Data security means protecting the confidentiality, integrity, 579

and/or availability of IIoT data. This type of security is 580

applicable to all devices, no matter if they send, receive or 581

store data. IIoT devices in EPSs monitor the physical envi- 582

ronments and transmit the collected data through the network. 583

However, this transmitted data is exposed to different security 584

threats like eavesdropping and altering. To secure data in the 585

context of IIoT, the confidentiality and integrity of the data 586

must be preserved [45]. Data confidentiality is the process of 587

hiding private information from unauthorized objects. Stan- 588

dard encryption mechanisms cannot be implemented directly 589

for improving the confidentiality of data in IIoT systems, 590

since some IIoT devices have limited resources [47]. Data 591

integrity ensures that the received data has not been altered or 592

modified during transmission. Integrity involves maintaining 593

the consistency, accuracy, and trustworthiness of data. Several 594

cryptographic hash algorithms (e.g. MD5 [48] and SH1 [49]) 595

are used to ensure data integrity. However, most of these 596

mechanisms cannot be implemented in IIoT systems, since 597

IIoT devices are inherently resource-constrained [50]. Avail- 598

ability means that the data remains available to authorized 599

users at all times. If an attacker compromises the availabil- 600

ity of data, the users are prevented from accessing crucial 601

information, or the system is brought to a halt. The most 602

important intrusion that can target the availability of data is a 603

DoS attack. 604

C. COMMUNICATION SECURITY 605

Connectivity is a critical component of any IIoT network. 606

To address this need, several different protocols (e.g., Blue- 607

tooth, WiFi, Zigbee, Z-Wave) may be utilized within a single 608

IIoT system to account for environmental limitations and 609

increase the reliability of IIoT communications. Choosing 610

the right communication protocol and medium depends on 611

(i) the configuration of the physical system, e.g., a high 612

distance between devices obliges using long-range commu- 613

nication protocols; (ii) IIoT tasks, e.g., real-time applications 614

require higher connectivity capabilities; and (iii) computing 615

resources of devices, e.g., power-constrained devices may 616

require low-power communication protocols such as Blue- 617

tooth Low Energy (BLE), ZigBee and LTE-M. In order 618

to address the communication needs of IIoT systems in 619

EPSs, standardization groups such as the IEEE and the 620

Internet Engineering Task Force (IETF) have developed 621

IoT/IIoT-specific communication protocols, such as IEEE 622

802.15.4e, 6LoWPAN, and LoRa [51], [52]. On the other 623

hand, to establish a secure communication between IIoT 624

devices, an authentication process is required to authorize 625

only the legitimate devices to access the systems or their 626

information. Access control is a security feature that verifies 627
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the permission granted to users and systems to perform oper-628

ations on other systems and resources [53]. Authentication629

is the process of validating a user’s identity using login630

and other information—such as password, PIN and digital631

certificates [46]—and is required to secure the communica-632

tion between two or group of parties. Authentication ensures633

that only authorized users access IIoT devices and achieves634

non-repudiation in communications. When a new device is635

connected to the network, it should authenticate itself before636

exchanging data. The authentication can be verified using637

lightweight cryptographic algorithms, physical primitives,638

or biometric identification [53].639

D. INDIVIDUALS’ PRIVACY640

Privacy includes the concealment of personal information641

and the ability to control what can be done with this type642

of information [54]. Data privacy must be addressed during643

data collection, transmission, and storage. Several practical644

solutions—such as anonymization, pseudo-random number645

generators, block ciphers, and stream ciphers [46]—have646

been proposed to deal with individuals’ privacy, which is647

important in some of IIoT applications, such as power mar-648

kets. Privacy preservation preferences impact expansion of649

IIoT systems in the future, since concerns about privacy650

and potential hazards of data leakages might slow down the651

adoption of IIoT technologies.652

V. TAXONOMY OF CYBER-ATTACKS AGAINST IIoT653

SYSTEMS IN EPSs654

Generally, attacks can exploit the vulnerabilities of IIoT sys-655

tems in EPSs for modification, interception, or interruption656

of data. These vulnerabilities are mainly due to the lack of657

physical security, inadequate authentication, improper data658

protection, insufficient access control, weak programming659

practices, and insufficient audit mechanisms [55], [56]. The660

vulnerabilities of IIoT systems stem from various layers661

(i.e., perception, application, and network layers), and result662

in different types of attacks against each layer (Fig. 3). The663

following subsections enumerate themajor families of attacks664

against IIoT systems in EPSs.665

A. ATTACKS AGAINST THE PERCEPTION/PHYSICAL LAYER666

Edge nodes—such as sensors and smart controllers—are667

parts of the perception layer, which interact with the physical668

environment. In most IIoT applications of EPSs, edge nodes669

are easy to reach, as they are mostly unattended and some of670

them run on a limited battery [57]. Operation of IIoT devices671

in insecure areas makes them attractive targets for cyber-672

attackers. Additionally, IoT-based authentication procedures673

may be challenging for some IIoT devices, which makes674

them vulnerable to cyber-attacks. Moreover, there is a lack675

of standardized privacy policies for proper access control676

management [58], and users sometimes ignore to update677

the default credentials following the initial installation [55].678

Therefore, access control protocols used for IIoT devices679

are vulnerable [59]. Furthermore, there is a lack of standard680

FIGURE 3. Taxonomy of cyber-attacks against layers of IIoT-aided EPSs.

programming practices for IIoT systems due to the abundance 681

and variety of devices. Firmware with known vulnerabilities 682

is an example of weak programming practices in the per- 683

ception layer [55]. Hence, the aforementioned vulnerabili- 684

ties can be exploited by adversaries to attack the hardware, 685

firmware, and communication links of devices in the physi- 686

cal/perception layer. The following attacks can be launched 687

against various components of this layer. 688

1) PHYSICAL DAMAGE 689

Unattended IIoT devices and nodes are subject to physical 690

damages, such as storage removal, firmware manipulation, 691

tampering attacks, or information extraction using open com- 692

munication ports [60]. IIoT devices are often able to com- 693

municate and change settings through the communication 694

systems, as well as through the physical layer. An attacker 695

with access to the input/output ports of an IIoT object can 696

change the parameters of devices and cause unwanted oper- 697

ations. Moreover, using these ports, cyber-attacks can take 698

the control of devices, manipulate their firmware, and inject 699

codes that cause them to act maliciously or even to be 700

destroyed [61]. The change of firmware might also include a 701

downgrade to previous versions, where known vulnerabilities 702

exist. In such a condition, an adversary can benefit from the 703

known vulnerabilities and take the control of devices. Attack- 704

ers can also learn the specification and sensitive information 705

of an IIoT system using unattended devices. For instance, 706

attackers can remove the storage of a device to extract its 707

data and also learn about the connections of devices in the 708

network to plan for the next stages of an attack, or gather 709

information about other devices that communicate with the 710

targeted device. 711

2) FIRMWARE MODIFICATION ATTACKS 712

IN PERCEPTION LAYER 713

With physical access to a device, an attacker can replace the 714

default firmware of the device with a malicious one [55]. 715

This intrusion gives attackers the full control of the device, 716
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if they are present physically close to it or remotely through717

the communication system. In the latter case, the attack can718

be categorized as a threat to the network layer.719

3) DEVICE CAPTURE/NODE REPLICATION ATTACKS720

An attacker can perform a device capture/node replication721

attack, in which a malicious node is added to an existing722

network by adapting the ID number of a legitimate node in723

the system [62]. With the malicious node camouflaged, the724

attacker can performmalicious activities, such as rerouting or725

dumping packets. Hence, this type of attack can compromise726

the functionality of the entire IIoT-based system [58]. Due727

to the lack of sufficient auditing, this type of attack would728

not be identified easily and the operators will not notice that729

a legitimate node has been removed in the first place, since730

the power consumption remains almost unchanged. It should731

be mentioned that even though the malicious node has the732

identity of a benign node, there would be a slight imbalance733

in energy consumption, which can be detected if there is con-734

tinuous audit of power consumption throughout the system.735

4) DoS ATTACKS IN PHYSICAL LAYER736

DoS attacks can occur in the form of firmware, physical,737

or network damages. In the case of firmware damage, the738

attack can be categorized as a threat against the application739

layer, whereas a loss of communication results in an attack740

on the network layer. DoS attacks negatively impact service741

availability, and occur by disabling the IIoT system from per-742

forming its duties. It typically happens because of (i) a flood743

of requests over the service host, resulting in a full buffer744

in the ports of devices (i.e., routers, or servers); (ii) physical745

removal of a device; and (iii) interrupting the communication746

between devices when data transfer is required. DoS attacks747

are categorized as either temporary or permanent. Devices748

with low/no security update mechanisms may be vulnerable749

to malicious firmware updates, and can be used as a bot for750

sending floods of requests to the network to clog services.751

A destructive update can also disable nodes or result in their752

malfunction, possibly when the update targets specific parts753

of thememory [63]. ADistributed DoS (DDoS) is an attack in754

which many nodes participate in sending clogging requests,755

whereas a DoS is initiated from a single device within the756

network.757

5) BATTERY DRAINING ATTACKS758

One of the most important factors for designing an IIoT759

device is its battery size, which directly impacts the size,760

portability, and cost-effectiveness of the device. Reliance of761

some IIoT devices on batteries makes them vulnerable to762

battery draining attacks. In this type of attack, an adversary763

sends a large number of packets to the target device to make it764

run its authenticationmechanism, so resulting in the depletion765

of its battery [57]. As a result, the life of the node ends, and766

the system does not perform correctly. In another type of767

battery draining attack, the hostile node sends only as many768

queries to the victim node as are required to keep the target769

node awake and drain its battery. In this attack, however, 770

the energy consumption of the victim device is not increased 771

significantly in order to keep the attack stealthy [64]. 772

6) NODE JAMMING ATTACKS 773

This attack happens when an adversary obscures network 774

connection by interfering signals, such as jamming radio 775

frequency signals. This type of attack disrupts the availability 776

of IIoT systems, since target nodes and devices can no longer 777

be reached or controlled [65]. Additionally, node jamming 778

attacks make time-critical data unavailable [66]. This type of 779

attack can be also performed to disrupt the communication 780

system by decreasing the Signal-to-Interference-plus-Noise 781

ratio (SINR), which is often greater than one in normal sit- 782

uations. To perform such an attack, the adversary must have 783

knowledge about the frequency and the modulation technique 784

used by the target device. 785

7) FALSE DATA INJECTION ATTACKS (FDIAs) 786

IN PHYSICAL LAYER 787

Compromising the integrity of data by deliberate injection 788

of false information is categorized as an FDIA. Generally 789

speaking, in an FDIA, the data that is gathered by IIoT devices 790

is manipulated to portray a fake condition in the underlying 791

system or hide an event. In this attack, an adversary can 792

also take advantage of the limited error rate tolerance of the 793

system, and gradually raise the effect of false data such that 794

the attack remains unnoticed. FDIAs in cyber-controlled net- 795

works have a significant effect on the system’s performance, 796

and can result in a system failure [67]. In FDIAs, even a small 797

portion of false data can disrupt the entire IIoT system. Thus, 798

adversaries can optimize their attacks to reach the intended 799

goal with the minimum adversarial efforts, so keeping the 800

attack stealthy [66]. In the physical layer, this type of attack 801

can be launched by manipulating sensors physically. 802

8) EAVESDROPPING 803

In this type of attack, secret information is collected from 804

communication nodes and devices. Corrupted devices in an 805

IIoT system, including compromised nodes, may leak the sys- 806

tems’ traffic and expose confidential information [68]. Addi- 807

tionally, network eavesdropping—which is often referred 808

to as network snooping or sniffing—occurs when attackers 809

exploit insecure or vulnerable networks to access the data 810

transmitted between two devices. This attack is among the 811

most common ones in wireless communication. 812

9) SIDE-CHANNEL ATTACKS 813

This type of attack aims to extract private information, such as 814

encryption keys, by recording and analyzing the Side-channel 815

activities of IIoT devices, such as timing, power consumption, 816

and electromagnetic radiations [69]. Secret keys, for example, 817

can be retrieved by the statistical analysis of the timing or 818

power consumption of cryptographic algorithm executions, 819

or the consequences of incorrect executions. The data pro- 820

tected in encrypted packets can be exposed by analyzing their 821
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length and processing time. A side-channel attack is fatal822

when the information is extracted while a system is operating.823

For instance, PMU communication infrastructure is vulnera-824

ble to timing side-channel attacks, in which the Hash-based825

Message Authentication Code (H-MAC) algorithm can be826

compromised by monitoring its execution time. This attack827

can model some security features of the stored key, e.g., its828

length and processing time, to decrypt the data [70].829

B. APPLICATION LAYER ATTACKS830

The application layer consists of a variety of software pack-831

ages without standardized privacy policies for proper access832

control management [58]. This motivates adversaries to tar-833

get the application layer by attacks, such as code injection834

and FDIAs. Additionally, in an IIoT-based EPS, attackers835

can compromise the data—consisting of private information836

about users, processes, and devices—to gain information837

about the entire system and its control/protection strategies.838

The diversity of devices and their wide range of activities,839

on the other hand, undermine the reliability of anomaly detec-840

tion mechanisms in IIoT systems, and result in high false-841

positive and/or false-negative alarm rates [71]. In addition,842

existence of a huge number of devices in the IIoT systems843

barricades implementation of strong audit mechanisms, thus844

increasing the possibility of intrusions. These vulnerabilities,845

among others, make the application layer an interesting target846

to achieve malicious goals. The following subsections elabo-847

rate on attacks that can target this layer.848

1) DICTIONARY/BRUTE-FORCE ATTACKS849

A dictionary attack is a brute-force technique, in which850

attackers bombard a device/software with a set of known851

credentials to guess passwords [72]. This attack is possible852

when authentication mechanisms are weak, and becomes853

easier when factory-set credentials are still in place and854

not updated [55]. Therefore, not updating the users’ creden-855

tials [59] and utilizing weak privacy policies [58] can enable856

an adversary to gain high-level access to the system and con-857

trol it after performing a dictionary attack. Additionally, this858

attack is effective when log in attempts and user credentials859

are not logged, or when there are devices with the same860

credentials.861

2) SYBIL ATTACKS862

Sybil nodes are edge nodes with fake identities in IIoT net-863

works. When attackers decide to perform a sybil attack, they864

add and use sybil nodes in the system. As discussed before,865

edge nodes are easy to capture—and thus are good candidates866

for sybil nodes—since they often left unattended. In such867

a case, an attacker can simply replace the legitimate node868

with a sybil node. Since other legitimate nodes have often869

simple authentication protocols, they are unable to verify the870

authenticity of the node and let a malicious request from the871

sybil node pass, whereby corrupting the legitimate nodes.872

In this attack, the adversary can even gain access to many873

other nodes using a sybil one [73].874

3) CODE INJECTION 875

Similar to poor/malicious updates for the perception layer, 876

malign updates to applications and servers may trigger secu- 877

rity problems, such as data leakage, data loss, and unwanted 878

control. It is worth mentioning that this attack can also target 879

the physical layer when the adversary physically inserts some 880

malicious codes into an IIoT device. This can happen, for 881

instance, by attaching a malicious gadget to the target node 882

and, on occasion, rewriting the target’s operating system. 883

Structured Query Language (SQL) injection is a type of code 884

injection attack to acquire administrator access to databases 885

by exploiting vulnerabilities in the victim’s network 886

infrastructure. 887

4) ATTACKS AGAINST CLOUD SERVICES 888

Cloud services have inherent security problems, which are 889

manifest in IIoT systems as well [66]. Since IIoT devices 890

rely on service providers to keep their data safe, the most 891

difficult task in establishing cloud-based services is to secure 892

data. Confidentiality, integrity, authorization, data availabil- 893

ity, and privacy are among the features that a cloud service 894

should maintain. Data breaches, data loss, integrity viola- 895

tions, and unauthorized access are all possible consequences 896

of a cloud’s improper data handling. If an attack occurs while 897

transmitting data over the cloud network, it can be considered 898

as an attack on the network layer; however, an attack is against 899

the application layer if this layer is compromised to target the 900

cloud. 901

5) USERNAME ENUMERATION AND DISCLOSURE 902

To control an IIoT service, many applications use login pages 903

that can be targeted with brute-force attacks in order to find 904

out the user names listed on an application or a device. 905

These attacks will lead to either username enumeration or 906

user lockout due to failed trials [60], [74]. Username leakage 907

can damage the privacy of users and help to initiate other 908

attacks. The same attack can occur against cloud services 909

as well. The authentication process and procedures used for 910

cloud-based services are often extremely susceptible and fre- 911

quently attacked. Numerous cloud services continue to rely 912

on single-factor authentication and straightforward username 913

and password specifications. Thus, attackers can utilize this 914

vulnerability to their advantage while attempting to interrupt 915

services or steal information from a company that utilizes 916

cloud computing services. 917

6) ATTACKS USING VIRUSES AND MALWARE 918

Viruses and Worms can be injected into IIoT applications 919

using, for instance, backdoor methods, which essentially 920

bypass the main authorization system, embedded for devel- 921

opers or maintenance intentions. Primarily, default passwords 922

and out-of-date interfaces lead to backdoor exposures [75]. 923

In contrast to computer viruses, which need a host in order 924

to thrive, computer worms are able to thrive on their own 925

and propagate more quickly. A viruse can replicate itself and 926
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spread from one IIoT device to another. It infects each system927

by embedding itself in a variety of applications and running928

the code when a user starts utilizing the infected software.929

With the aid of this malicious application, the adversary may930

steal information, create botnets, and harm the host machine.931

A worm, however, spreads over a network by looking for932

a vulnerable operating system. It operates on the system to933

cause damage to their host networks by, for instance, over-934

loading web servers and occupying the bandwidth [76].935

7) REVERSE ENGINEERING936

Attackers can gain sensitive information about a system by937

reverse engineering its source codes. Using this strategy,938

attackers can identify sensitive information left by software939

programmers, such as hard-coded credentials and defects,940

and exploit it to launch attacks. Extracted information can be941

used to plan future assaults against the devices or to develop942

and employ malicious malware for them [77].943

8) FDIAs AGAINST APPLICATION LAYER944

FDIAs on the application layer differ from the same type of945

attack against the perception layer, whichwas discussed in the946

previous subsection. FDIAs in the previous subsection occur947

in the perception layer, whereas in this case false information948

is injected into the data or the controllers/applications that949

utilize the data [78]. For instance, applications such as control950

of renewable energy resources require a continuous authenti-951

cated flow of data in order to make accurate decisions. There-952

fore, an FDIA could prove fatal as it can mislead the operator953

into making inefficient and cost-ineffective decisions.954

9) FIRMWARE MODIFICATION ATTACKS955

Taking advantage of this vulnerability, an attacker can956

identify the weaknesses through firmware analysis and957

re-program an IIoT device’s firmware in order to take its958

control [63]. The attacker can also rewrite the internal mem-959

ories in the firmware [79]. By taking the control of the device960

successfully, an attacker can infiltrate the system and perform961

malicious activities. Several major factors influence the secu-962

rity of IIoT firmware upgrades, including (i) unauthorized963

access to code-signing keys or firmware signing processes,964

which can allow attackers to spoof trust and distribute mali-965

cious upgrades to seemingly trustworthy devices; (ii) cod-966

ing weaknesses and vulnerabilities, which enable attackers967

to cause unpredictable program behavior or crashes, and968

can result in security breaches; and (iii) the lack of pro-969

cesses to safeguard the supply chain and prevent unsecured970

open-source components with embedded vulnerabilities in971

IIoT devices [80].972

C. NETWORK LAYER ATTACKS973

Attackers can also target an IIoT system from its network974

layer to gain important information about the system or975

manipulate the data. Such attacks become much easier if976

the data is unencrypted. Additionally, similar to applica-977

tion and perception layers, inadequate authentication and978

insufficient access control are important vulnerabilities of 979

the network layer which can be exploited by attackers for 980

malicious purposes.Moreover, networking protocols that per- 981

form packet routing and transmission at this layer are also 982

breeding grounds for security problems. Therefore, these 983

vulnerabilities attract attackers to the network layer. Major 984

attacks against this layer are summarized as follows. 985

1) MAN IN THE MIDDLE (MITM) ATTACK 986

The communication between two victim IIoT devices may be 987

intercepted by a third agent or device that privately hands over 988

messages between the victimswithout letting them know they 989

are actually conversing with the agent. This way the agent can 990

either eavesdrop on the conversation or inject malicious infor- 991

mation [81]. This type of intrusion may occur mostly when 992

there is no or a poor encryption mechanism in place [60]. 993

2) DoS AND DDoS ON NETWORK LAYER 994

As described in previous sections, the compromised nodes 995

or devices can send large unwanted data traffic, so that the 996

gateways or routers become unreachable and critical services 997

become disabled [82]. Due to the wide deployment of net- 998

working protocols, DoS and DDoS attacks are very common 999

on the IIoT network layer. Another reason for abundance 1000

of DoS and DDoS attacks against this layer is that IIoT 1001

systems may use the networking protocols and media—for 1002

communication and data sharing—that are already used in 1003

other networks, so the same vulnerabilities threaten IIoT 1004

ecosystems as well. 1005

3) SPOOFING 1006

Spoofing occurs when an attacker succeeds to pretend itself 1007

as a legitimate source and gains control over a data stream, 1008

such as GPS and network time protocol (NTP) [64]. This 1009

attack is carried out by disguising the attacker’s identity and 1010

pretending as a trusted source instead. This type of attack 1011

often leads to data leakage, and can be leveraged to design 1012

more sophisticated attacks. 1013

4) FDIA THROUGH THE NETWORK LAYER 1014

Insertion, manipulation, and replay are different types of 1015

FDIA in the network layer [58]. An attacker can insert mali- 1016

cious packets into the network such that they appear authentic 1017

and be hard to detect. Additionally, using an FDIA in the 1018

network layer, an attacker can manipulate existing packets by 1019

changing their header and data. In more sophisticated FDIAs, 1020

an attacker can replace the packets previously recorded dur- 1021

ing an event with the actual ones, so faking the event when it 1022

is not actually happening [57], [58]. It should be mentioned 1023

that since IIoT networks do not often enjoy sophisticated 1024

authentication protocols, FDIAs in these networks are easier 1025

to perform. 1026

5) SINKHOLE ATTACKS 1027

This type of threat is the most destructive routing attack in 1028

an IIoT paradigm, in which messages/communications in a 1029
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system are routed to anywhere the attacker pleases [83]. In a1030

sinkhole attack, false information is sent to surrounding nodes1031

by a malicious node. This malicious node can successfully1032

connect and blend into the network, due to poor authentica-1033

tion, and announces that it is the shortest path for messages1034

to reach the destination. Thus, the attacker can gain the full1035

control of communications [84].1036

VI. SECURITY ENHANCEMENT OF IIoT SYSTEMS IN EPSs1037

A. PREVENTING CYBER-ATTACKS IN IIoT SYSTEMS1038

This subsection elaborates on the techniques that can prevent1039

cyber-attacks in IoT systems in general, and in IIoT networks1040

in particular.1041

1) EDGE PROTECTION1042

As seen in the vulnerabilities section earlier, there are various1043

weaknesses that can be potentially exploited when it comes1044

to edge nodes/devices that are responsible for interacting1045

with the physical environment and the system [57], [85]. The1046

first step to prevent cyber-attacks in the perception layer is1047

to design the IIoT systems physically secure. For instance,1048

IIoT devices need to have secure chips, chip connections,1049

radio-frequency circuits, data acquisition, and antennas [86].1050

Additionally, IIoT devices can be further protected in various1051

ways, such as by trojan activation, circuit modification, and1052

securing their firmware.1053

• Trojan activation: Trojans are malware that disguise1054

themselves as legitimate. They are known to change the heat1055

distribution of a system. Hence, a trojan activation is an1056

approach that continuously compares the heat distribution in1057

the current system with the recorded heat distribution of a1058

trojan-/malware-free system [87]. Similarly, when an edge1059

node is under brute force/DoS attack, it would be utilizing1060

a lot more power, which can be detected when the system is1061

regularly monitored and its power consumption is compared1062

with normal operation [88].1063

• Circuit modification: Modifying the circuit of edge1064

devices, e.g., installing sleep/kill or self-destruction mecha-1065

nisms, can protect edge devices against cyber-attacks. When1066

there is unauthorized access to or tampering with a device, the1067

sleep/kill or self-destruction mechanism would automatically1068

kill or destroy the device, so it cannot work anymore and be1069

controlled by an attacker. Additionally, it could put the node1070

to turn inactive for a duration of time or until a security team1071

looks into it. Circuit modification could also include adding1072

randomized delay [69] or intentionally generated noise [89]1073

during normal operation of a device so an attacker cannot find1074

out what the process or device is, so preventing side-channel1075

attacks.1076

• Secure firmware update: Securely updating firmware1077

is a way to avoid malicious firmware modification to IIoT1078

devices. To securely update a firmware, the server can issue1079

a command to broadcast that there is a new version of1080

firmware available. A node with the new firmware already1081

installed would announce an advertisement which would alert1082

its neighboring nodes that an update is available. The nodes 1083

that received the advertisement would then proceed to check 1084

whether they have the new version or not; if not, they would 1085

broadcast a request to receive the updates from the server. The 1086

nodes need to authenticate that the received update packets 1087

are from a legitimate source [57]. 1088

2) PATCH MANAGEMENT TECHNIQUES 1089

Manufacturers of the majority of IIoT devices do not often 1090

supply security fixes for customers, or even the customers do 1091

not put in enough efforts to install the security updates. As a 1092

result, a huge number of IIoT devices have been deployed 1093

with known vulnerabilities [90]. Patching all devices in a 1094

timely manner is essential for securing the IIoT system, 1095

since it removes vulnerabilities and therefore reduces the risk 1096

of attacks against industrial processes [91]. Thus, internal 1097

mechanisms for patching vulnerabilities, without waiting for 1098

the next scheduled maintenance time, must be reinforced in 1099

many firms [92]. Manufacturers must also provide security 1100

fixes for all their devices on a regular basis throughout the 1101

prolonged lifespan of such devices. Automated patch instal- 1102

lation may make this procedure easier for a large number 1103

of IIoT devices. Patching industrial systems, on the other 1104

hand, usually involves a thorough testing step prior to instal- 1105

lation to ensure that the patch is compatible with the present 1106

configuration. To enhance safety and limit the possibility of 1107

process downtime, the National Institute of Standards and 1108

Technology (NIST) advises regression testing as a part of 1109

a systematic patch management approach [93]. Addition- 1110

ally, the Internet Engineering Task Force (IETF) on software 1111

updates for IoT offers an automatic firmware upgrademethod 1112

for resource-constrained devices in the context of the IoT and 1113

IIoT [94], [95]. This approach ensures a consistent descrip- 1114

tion of the relevant entities, security threats, and assumptions 1115

for each update, as well as secure end-to-end transfer of new 1116

firmware to devices. 1117

There are alsomethods for actively detecting security prob- 1118

lems and vulnerabilities in IIoT installations, such as eval- 1119

uating IIoT devices during their idle moments or assessing 1120

vulnerabilities using an IIoT network graph [96], [97]. Idle 1121

intervals have little effect on industrial operations, making 1122

them especially helpful for safety- and mission-critical activ- 1123

ities [96]. These methods form the first step in identifying 1124

existing security defects and their consequences for the sys- 1125

tems, as well as taking appropriate actions, such as isolating 1126

susceptible devices. 1127

3) ACCESS CONTROL AND PROVISION OF TRUSTED 1128

EXECUTION ENVIRONMENTS 1129

Even if IIoT devices are patched regularly, the existence of 1130

vulnerabilities cannot be totally ruled out, since manufac- 1131

turers may not be aware of some security defects in their 1132

products, known as zero-day vulnerabilities. Furthermore, 1133

manufacturers may terminate support for outdated equip- 1134

ment. Thus, additional protection techniques are required 1135

to avoid attacks on IIoT devices and subsequent assaults 1136
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on other linked devices. To this aim, NIST recommends a1137

defense-in-depth design, which uses internal firewalls and1138

demilitarized zones to reduce the effects of assaults. Fur-1139

thermore, fine-grained security policies that restrict access1140

to computing and networking resources for each device, and1141

even inside a device for particular applications and tasks, can1142

minimize the risk of attacks.1143

Various techniques have recently been developed to par-1144

ticularly address the implementation of hardware-security1145

technologies, such as trusted execution environments,1146

in industrial cases [98], [99]. The ability to serve time-critical1147

applications is a key barrier when considering such technolo-1148

gies in the context of IIoT. First prototype assessments indi-1149

cate that with the support of trusted execution environments,1150

even resource-constrained devicesmay safely conduct safety-1151

and mission-critical activities. However, such methods are1152

only relevant to future device generations if the necessary1153

hardware is available. Enforcing security policies within1154

the network is a possible approach for outdated and non-1155

patchable systems. This is an appropriate approach to prevent1156

follow-up attacks from infected devices to other portions of1157

the network, in addition to providing extra security against1158

unauthorized access to such devices.1159

The IETF has also suggestedManufacturer Usage Descrip-1160

tion (MUD) [100], inwhich themanufacturers of IIoT devices1161

establish networking rules based on device functionalities,1162

i.e., most IIoT devices have a very defined purpose and hence1163

do not require full network access to complete their functions.1164

All connections that do not conform with the set of MUD1165

rules are subsequently blocked by a central enforcer within1166

the local network, limiting the potential for assaults. It is1167

also demonstrated that automated techniques may be used to1168

construct MUD rules, and thus this approach supports pre-1169

viously deployed devices, even when manufacturers do not1170

offer the necessary rules [101]. Software DefinedNetworking1171

(SDN) approach can be also used to implement regulations in1172

industrial networks [102], [103].1173

4) CRYPTOGRAPHY AND AUTHENTICATION MECHANISMS1174

Encryption is a critical tool for ensuring data secrecy and1175

may also be used to provide authentication. However, a large1176

number of IIoT devices are resource-constrained, neces-1177

sitating the usage of lightweight symmetric-key encryp-1178

tion techniques rather than computationally more-costly1179

public-key cryptographic methods. However, symmetric-1180

key cryptography often lacks a secure and scalable man-1181

agement infrastructure, making the secrecy of participants1182

difficult [104]. Furthermore, both public-key and symmetric-1183

key cryptographic approaches often produce unacceptable1184

delays for safety- and mission-critical procedures, preventing1185

factory operators from using encryption and authentication1186

at all. Additionally, the increasing data transmission between1187

devices in IIoT systems, as well as the rising reliance of such1188

systems on cloud services, necessitate robust data security1189

against unwanted access. As a result, new encryption and1190

authentication technologies that are specially adapted to the 1191

IIoT paradigm are necessary. 1192

The first group of studies concentrates on resource- 1193

constrained devices and suggests techniques to mini- 1194

mize latency and hence allow lightweight authentication 1195

and encryption in industrial communication settings. For 1196

instance, to allow authentication of resource-constrained 1197

devices, the authors of [105] use a lightweight authentica- 1198

tion technique based on only hash and XOR operations. 1199

In this method, smart sensors with secure elements and 1200

routers with trusted platform module are taken into account. 1201

The proposed authentication mechanism is performed in two 1202

steps: (a) the registration phase, in which each smart sen- 1203

sor registers with an authentication server and the routers 1204

are given secure pre-shared keys issued by the server; and 1205

(b) the mutual authentication phase, in which the sensor 1206

and the router establish mutual authentication. The second 1207

group of studies concentrates on protecting IIoT commu- 1208

nications with other entities, such as cloud services [106], 1209

[107], [108], [109]. These methods use certificateless search- 1210

able public-key encryption, which allows for easy key man- 1211

agement across a wide number of IIoT devices. The core 1212

concept is that data is encrypted before being sent to a 1213

cloud service, and the encrypted data is searchable, such 1214

that data is only decrypted after being retrieved from the 1215

cloud. Such techniques, however, might endanger the con- 1216

fidentiality and integrity of the information, since secrecy 1217

and authenticity of outsourced data cannot be guaranteed 1218

when dealing with an expanding number of devices and 1219

connections [110]. Finally, the last group of studies focuses 1220

on user authentication, and develops techniques for authoriz- 1221

ing users to access IIoT devices. For instance, researchers 1222

have proposed an anonymous lightweight user authentica- 1223

tion approach for IIoT paradigms [111]. This approach per- 1224

forms authentication using personal biometrics, passwords, 1225

and smart cards with the fuzzy extractor to confirm the 1226

user’s biometrics. It also includes phases for smart card 1227

revocation, password/biometric update, and IIoT device addi- 1228

tion. Additionally, the authors of [112] have developed a 1229

privacy-preserving biometric-based authentication protocol 1230

using elliptic curve cryptography. In this method, when a user 1231

desires to access a node’s sensory data, their authentication 1232

should be approved by a gateway and agree on a session 1233

key that will encrypt future interactions. Similarly, a Context 1234

Sensitive seamless Identity Provisioning (CSIP) architecture 1235

is developed in [113] for IIoT devices to validate users. The 1236

CSIP presents a two-part mutual authentication technique 1237

based on hashes and mutual authentication values. 1238

5) SECURING COMMUNICATION 1239

Secure and reliable communication is necessary for transmit- 1240

ting vital information across all the layers of an IIoT system, 1241

and also for operating it safely and smoothly [57]. In addi- 1242

tion to cryptographic strategies and IDSs, there are several 1243

other techniques to secure the communication of informa- 1244

tion in IIoT-based systems, which include • Role-based 1245
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authorization: A role-based authorization mechanism needs1246

to be implemented in order to verify requests and messages1247

being sent from various sources. Only legitimate sources,1248

such as those devices that are part of the system, must be1249

allowed to interact with each other, and other outside sources1250

should be prohibited. This barricades attackers, since no mes-1251

sage/packet will be passed without authorization [114].1252

• Security routing protocol Routing is a process in which1253

the best path between a data source and its destination is deter-1254

mined. The routing information, however, is often accessible1255

to attackers, since it is not encrypted. This problem can be1256

addressed by implementing an authentication process based1257

on lightweight cryptographic algorithms to secure routing1258

protocols [115].1259

6) TRAINING AND ASSESSING OF EMPLOYEES1260

Successful attack protection does not rely solely on tech-1261

nology; it also relies heavily on people, such as workers1262

and managers, as well as implementing security policies1263

and procedures within corporations. Enhancing the aware-1264

ness of employees, as well as training and assessing them1265

are more difficult in IIoT paradigms than in consumer IoT1266

contexts, since a higher number of employees are involved.1267

Thus, improving employees’ cyber situational awareness—1268

i.e., making them aware of possible security threats and haz-1269

ards, and the need for security measures—is a necessary step1270

toward securing corporations against cyber-attacks [116]. For1271

instance, Open Web Application Security Project (OWASP)1272

foundation presents generic security principles to improve1273

the awareness of manufacturers, developers, and users in the1274

context of IIoT [117]. Additionally, as demonstrated in [118],1275

merely transferring information is insufficient to enhance1276

users’ behaviors. Yet, practical awareness via direct contact1277

and hands-on experience through security testbeds can make1278

the employees aware of security challenges and counter-1279

measures in IIoT systems, and can change their long-term1280

behaviors more effectively [119], [120]. Finally, a periodical1281

security review of the current system is required to deter-1282

mine whether the security measures are appropriate. There1283

are a number of tools, such as the cyber-security evaluation1284

tool [94] and the IIoT analysis framework [121] to make it1285

easier to examine the security of bigger installations, and are1286

therefore particularly useful for strengthening and evaluating1287

the security of IIoT systems.1288

B. INTRUSION DETECTION IN IIoT NETWORKS1289

Detecting attacks against IIoT systems requires broad net-1290

work, data, and equipment inspections for identifying the1291

signs of abnormal behaviors or malfunctions based on the1292

network behavior. IDSs are critical for identifying malicious1293

activities in a timely manner, and for preventing their subse-1294

quent damage to IIoT systems. They are especially impor-1295

tant when preventative security measures are not properly1296

deployed. In most cases, existing IDSs for traditional IT1297

networks cannot be used in IIoT paradigms, due to reasons1298

such as lack of interoperability [122]. For instance, ICSs are1299

dominated by real-time processes and resource-constrained 1300

devices, which are less frequent in traditional IT networks. 1301

Additionally, since not all the data traffic flows via a single 1302

central point, IIoT networks generally require numerous van- 1303

tage points for IDSs. Apart from these complications, there 1304

are some privileges for deploying IDSs in IIoT systems. For 1305

example, in contrast to random communication in IT net- 1306

works, predictable industrial operations enjoy more regular 1307

network traffic patterns, making identification of anomalies 1308

easier [123]. The following subsections elaborate on available 1309

IDSs for IIoT-based applications in EPSs. 1310

1) TRADITIONAL IDSs 1311

Traditionally, IDSs observe and analyze the network for 1312

attacks mainly by looking for attack signatures and traffic, 1313

anomalous activities, or system specifications. Signatures are 1314

patterns that under-attack networks display, and specifica- 1315

tions are the rules for valid and correct operation of the 1316

system [124], [125]. Traditional IDSs can be signature-based, 1317

anomaly-based, or specification-based. 1318

Signature-based IDSs attempt to model the malicious 1319

behavior of an attack, i.e., its signature, for detecting them. 1320

Therefore, signature-based IDSs can only detect attacks 1321

whose signatures are known, since they lack the ability 1322

of generalization. Additionally, modeling the signature of 1323

attacks might be challenging in some cases. Anomaly-based 1324

IDSs, on the other hand, detect attacks by probing the behav- 1325

iors of nodes, such as their usual message emanations, and 1326

comparing them with previously known valid behaviors. 1327

In fact, an anomaly-based IDS learns the natural behavior 1328

of a system, and detects attacks when the system behavior 1329

deviates from natural. An anomaly-based IDS can be either 1330

model-based—if the attack-free operation can be accurately 1331

modeled by physical equations—or learning-based, if the nat- 1332

ural behavior is modeled by using Artificial Intelligence (AI). 1333

It should be noted that only the former type is categorized 1334

as traditional anomaly-based IDS [126]. The system model 1335

used for traditional model-based methods can be (i) differ- 1336

ential, algebraic, or a combination of both, (ii) linear or non- 1337

linear, and (iii) parameter-varying or -invariant. A model- 1338

based anomaly detection method can be used in conjunction 1339

with the traffic information anomaly detection techniques to 1340

improve the attack detection accuracy [127]. Even though 1341

anomaly-based IDSs are able to identify previously unknown 1342

attacks, they have relatively high false alarm rates, since 1343

previously unseen behaviors might be confused with attacks. 1344

A specification-based method is a type of traditional IDS, 1345

which reduces the false alarm rates of anomaly-based detec- 1346

tion techniques by distinguishing natural unknown behaviors 1347

of the system from attacks. System specifications, which sig- 1348

nify the system’s expected behaviors, are key components of 1349

specifications-based IDSs. In this type of methods, abnormal 1350

behaviors of a system are detected as a breach of security. 1351

When sufficient information about a system’s behaviors is not 1352

available, a specification source is developed by simulation. 1353

This source is then used to identify intrusions by monitoring 1354
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the deviation of system behaviors from simulated attack-free1355

specifications [128].1356

2) MACHINE-LEARNING-BASED IDSs1357

Attack detection has experienced a great evolution with1358

recent advancements in Machine Learning (ML) and AI.1359

ML-based techniques can address the shortcomings of1360

anomaly- and signature-based IDSs by exploiting an intel-1361

ligent model trained based on the data collected from IIoT1362

systems in attack-free conditions and during attacks. Thus,1363

ML IDSs are able to detect both previously seen and unseen1364

cyber-attacks [129], [130]. In general, ML-based IDSs for1365

IIoT systems can be categorized into supervised, unsuper-1366

vised, semi-supervised, and Reinforcement Learning (RL)1367

methods [131], [132].1368

a: SUPERVISED ML METHODS1369

Supervised learning happens when a large amount of labeled1370

data is used to train a model for either classification or1371

regression. Classification can determine whether or not an1372

attack has occurred, whereas regression gives the probability1373

of attacks. Classification models include, but are not limited1374

to, Neural Network (NN), Support Vector Machine (SVM),1375

and K-Nearest Neighbor (KNN) methods. These algorithms1376

can be employed to analyze IIoT network data or nodes, and1377

find out malign ones using a model that is trained based on1378

the previously seen instances of attack and attack-free opera-1379

tion [133]. More information about supervised ML methods1380

can be found in [134].1381

• NNs: This ML-based technique comprises several layers1382

of neurons, and can be trained to estimate a function that maps1383

the set of input features (or data) to attack/normal classifi-1384

cations [135]. Multi-Layer Perceptron (MLP) networks are1385

a category of NNs that can be augmented with some layers,1386

such as convolutional layers to form the Convolutional NN1387

(CNN) [136]. Recurrent NN (RNN) [137], Long Short Term1388

Memory (LSTM) [138], and gated recurrent units [139] are1389

other types of NNs that can be used for detecting attacks in1390

IIoT systems. Additionally, thanks to technological advance-1391

ments in parallel processing, deep learning—which is a1392

term used for both CNNs and MLPs with a relatively large1393

number of layers—has received great attention for detecting1394

cyber-attacks against IoT and IIoT systems [136].1395

• SVM: This supervised ML technique detects intrusions1396

against IIoT networks by classifying data into two categories,1397

i.e., attack and attack-free. SVM-based IDSs are efficient,1398

since they are (i) suitable for low-power devices, such as1399

those used in the IIoT systems, and (ii) extremely scalable,1400

due to their simplicity and the ability of intrusion detection in1401

real-time. The challenge of using SVM is in finding support1402

vectors, which are used to classify unknown traffics as either1403

attack-free or malicious [140].1404

•KNN:This supervisedML algorithm can be used for both1405

classification and regression. In this method, new data points1406

are assigned a value and classified depending on how closely1407

they resemble the data of the training set. One criterion for1408

measuring resemblance between a new data point and the 1409

ones in the training set is the Euclidean distance between 1410

them. This method can identify suspicious activities in IIoT 1411

systems in EPSs [141]. 1412

b: UNSUPERVISED ML METHODS 1413

These ML models extract information and hidden patterns 1414

from the raw data without requiring the label of data. Unsu- 1415

pervised models that are able to cluster the input data include, 1416

but are not limited to, Principal Component Analysis (PCA) 1417

and K-means Clustering [133]. More information about 1418

semi-supervised ML methods can be found in [134]. 1419

• PCA: This unsupervised ML method computes the prin- 1420

cipal components of a dataset and usees them to reduce the 1421

dimension of the data. In fact, PCA generates uncorrelated 1422

features from the initial correlated ones to lower the feature 1423

space. Thus, due to its dimension reduction capability, PCA 1424

is appropriate for IIoT systems with massive data. Integrat- 1425

ing PCA with other ML techniques can result in stronger 1426

IDSs [142]. 1427

• K-means clustering: This approach divides the data into 1428

k clusters and assigns each observation to a cluster whose 1429

mean is nearest to the observation. Hyper-parameter K is 1430

usually selected manually to control the learning process, and 1431

the centroids are found iteratively using some initial random 1432

points. The fact that K-means clustering method does not 1433

require data labels makes it suitable for IIoT dataset, which 1434

is often unlabeled [143]. 1435

c: SEMI-SUPERVISED ML METHODS 1436

This family of ML techniques trains the model using a small 1437

amount of labeled data and a large quantity of unlabeled data. 1438

In fact, semi-supervised ML is a special instance of weak 1439

supervision. Semi-supervised techniques are useful when the 1440

costs of labeling are relatively high, and a good learning 1441

accuracy is required. One example of semi-supervised learn- 1442

ing is to combine clustering and classification algorithms. 1443

The former method categorizes the most relevant samples 1444

of the and into several clusters, and the latter approach labels 1445

the unlabeled data based on the clusters and uses it to train 1446

the model. Self-training, co-training, multi-view learning, 1447

and generative adversarial network, are other examples of 1448

semi-supervised ML techniques that can be used for devel- 1449

oping IDSs [144]. More information about semi-supervised 1450

ML methods can be found in [145]. 1451

d: RL TECHNIQUES 1452

RL is a mixture of both supervised and unsupervised learning 1453

methods, where the output is improved in every iteration 1454

based on trial and error [146]. AnRLmodel learns the optimal 1455

actions in an environment, e.g., in an IIoT system, which is 1456

usually modeled by aMarkovDecision Process (MDP) [147]. 1457

In this process, the environment is described with a num- 1458

ber of states and a set of actions for each state. Therefore, 1459

in each state, the RL model has a number of actions to take, 1460

and is rewarded or penalized based on its state and chosen 1461
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action. States also change according to actions, usually prob-1462

abilistically and according to a transition matrix that shows1463

the probability of going from one state to another under1464

each of actions. RL is useful when the classification bound-1465

ary between attack-free and malicious traffic may change1466

depending on attack parameters and strategies. In such situa-1467

tions, RL continuously updates the classification boundaries,1468

allowing the model to adapt to new intrusions [148].1469

C. INTEGRATION OF BLOCKCHAIN FOR SECURING IIoT1470

SYSTEMS IN EPSs1471

Blockchain is an emerging technology that can benefit1472

IIoT systems in EPSs by enhancing their security require-1473

ments for interconnection, permission control, and data1474

exchange [12]. In Blockchain systems, data is protected1475

by cryptographic encryption, and devices in the network are1476

protected by their unique identifiers [149]. The architecture,1477

challenges, and applications of Blockchain in the energy1478

industry are reviewed in [150]. Additionally, implementation1479

of Blockchain in smart grids has been investigated in [151],1480

[152], and [153]. The authors of [151] discuss the need1481

for security in smart grids, and use Rainbowchain, which1482

employs seven authentication methods, to provide enhanced1483

performance and security than the conventional Blockchain1484

architectures. This approach, however, can reveal the personal1485

information of consumers. To address this problem, a privacy-1486

preserving and efficient data aggregation technique that splits1487

users into groups is developed in [152]. In this method, each1488

group has its own private Blockchain to record the data of its1489

members.1490

Blockchain is also proposed for IIoT-based peer-to-peer1491

energy trading in smart grids and microgrids, since the lack1492

of trust and transparency in the energy market raises con-1493

cerns regarding the safety and privacy of users. The authors1494

of [153] have developed a safe and secure energy trading1495

system, known as the energy Blockchain, using the Con-1496

sortium Blockchain technology. They have also devised a1497

credit-based payment system to eliminate transaction delays1498

and facilitate fast payment and frequent energy trading. In this1499

technique, energy transactions are signed and audited by1500

other parties, making them verifiable and secure. In another1501

study, researchers have developed an efficient and secure1502

decentralized keyless signing technique based on the Consor-1503

tium Blockchain [154].In this technique service providers are1504

able to monitor each other on a Blockchain without the need1505

for a Trusted Third Party (TTP). Similarly, a peer-to-peer1506

electricity trading system with Consortium Blockchain has1507

been developed in [155] to strengthen the transactions’ secu-1508

rity without relying on a TTP. In this method, local aggrega-1509

tors use the Blockchain to publicly audit and share transaction1510

records without relying on a TTP. Additionally, electricity1511

pricing and the amount of traded electricity are solved via1512

an iterative double auction process that iterates over time.1513

In another study, a new Blockchain-based algorithm, known1514

as Hyper Delegation Proof of Randomness (HDPoR), has1515

been proposed in [156]. This study also develops an efficient1516

and secure peer-to-peer transaction service model for renew- 1517

able energy sources. 1518

VII. CONCLUSION 1519

IIoT deployment has brought about various opportunities 1520

for EPSs, such as enhancing asset visibility, energy man- 1521

agement, and control of distributed generation, as well as 1522

reducing energy losses. However, the security challenges of 1523

IIoT systems have barricaded large-scale deployment of IIoT- 1524

based applications in EPSs. This paper, first elaborated on 1525

IIoT-based applications in EPSs, and discussed themost com- 1526

mon IIoT architectures for implementing these applications. 1527

It also highlighted the major security requirements of IIoT- 1528

based systems. Afterwards, the vulnerabilities of IIoT sys- 1529

tems were explained, and the attacks that can take advantage 1530

of such vulnerabilities were classified based on their entry 1531

layer. Additionally, the paper examined various prevention 1532

and detection strategies for addressing the vulnerabilities 1533

of IIoT systems in EPSs and mitigating intrusions before 1534

they damage the system. Finally, to improve the security 1535

of IIoT-based applications in EPSs, possibilities for imple- 1536

menting technologies such as Blockchain, ML, and AI were 1537

discussed. 1538

The presented work in this paper can be extended in several 1539

directions. Developing cyber-security solutions for each IIoT- 1540

based application in EPSs requires an in-depth analysis of 1541

that application and identifying its cyber-security specifica- 1542

tions. Therefor, it is more effective if security enhancement 1543

measures are designed for each IIoT application based on 1544

the features and specifications of that application, rather than 1545

developing generic solutions. Additionally, a suitable solu- 1546

tion for securing large scale systems, such as EPSs, is employ- 1547

ing the Blockchain. Thus, another potential direction for 1548

future research includes tailoring the Blockchain technology 1549

for IIoT-based applications in EPSs. 1550
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