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ABSTRACT The magnetic levitation system of the maglev vertical axis wind turbine is presented in
this paper. The design and implementation of the magnetic levitation controller are discussed, and the
nonlinear mathematical model of the magnetic levitation system is established. However, the magnetic
levitation system is extremely susceptible to disturbance. To suppress the external disturbance and parameter
perturbations, a sliding mode adaptive neural network predictive control method is presented, which is
composed of the sliding mode control, an adaptive neural network and a model predictive control. The
sufficient simulation and experimental results show that the proposed suspension method reduces the impact
of the external disturbance and improves the dynamic response speed.

INDEX TERMS Maglev vertical axis wind turbine, magnetic levitation system, adaptive neural network,
model predictive control.

I. INTRODUCTION
The wind power generation in low-wind-speed areas is
increasingly on the agenda with the development of energy
strategies, and low-wind-speed wind power is gradually
attracting attention [1], [2], [3]. Unfortunately, low-wind-
speed areas often have the disadvantage of frequent changes
in wind speed and wind direction; thus the application of
vertical axis wind turbines (VAWTs) has received exten-
sive attention. Meanwhile, the unavoidable friction during
the rotation of VAWTs essentially reduces the wind energy
utilization coefficient. For this reason, it is a good method
to introduce a magnetic levitation system (MS) into VAWT
[4], [5]. However, the MS is a fragile and weakly damped
system, while the VAWT needs some damping to main-
tain stable operation during the rotation process. Therefore,
how to effectively reduce the power consumption, adjust
the damping reasonably, and ensure the stability of the sys-
tem require additional research. For this reason, we propose
a novel maglev vertical axis wind turbine (MVAWT) that
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adopts the maglev disc motor as the MS and reduces the
suspension air gap to 1-2mm, which can effectively control
suspension and damping. Therefore, the stable operation of
MS is fundamental in MVAWT research.

Nevertheless, due to the characteristics of high nonlin-
earity, strong coupling, and inherent instability of the MS
[6], [7], [8], [9], [10], it is a challenge to achieve stable
suspension, especially as the strong disturbance in low-wind-
speed areas will bring great challenges to MS. At present,
the traditional suspension strategy employs the linear control
theory to construct the control law [11], [12], [13], [14],
[15], [16]. However, as the operating point often changes and
deviates from the operating point, effective control cannot
be obtained for this MS. Hence, some intelligent nonlin-
ear control strategies, such as sliding mode control [17],
[18], neural network control [19], [20], and fuzzy logic
control [21], [22] were introduced into the suspension strat-
egy and achieved corresponding performance improvements.
Sun et al. [18] proposed an adaptive sliding mode control for
MS based on the RBF neural network, but the chattering
problem was not well solved. Wai and Lee [19] presented
an adaptive neuro-fuzzy control scheme based on the state
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FIGURE 1. Structure sketch of the MVAWT. 1-Permanent Magnet
Synchronous Generator, 2-Disc Stator, 3-Disk Rotor, 4-Pressure Sensor,
5- magnetic levitation converter. (a) Structure diagram of maglev vertical
axis wind turbine, (b) maglev converter, and (c) the equivalent magnetic
circuit model of the hybrid excitation magnet.

observer, but the system convergence speed was not dis-
cussed. Su et al. [22] presented a fuzzy control scheme with
the Takagi-Sugeno model for MS, but the nonlinear model of
theMSwas simplified and the experiments were not provided
to certify it. Although the above-mentioned control methods
have better control performance, they are not conducive to
engineering implementation because they require large calcu-
lation time. In addition, they have no constraints on the input
and output states, which makes the robustness of the MS poor
and threatens the overall safe operation when the suspension
air gap is small. For the MVAWT studied in this paper,
reliability, robustness and rapidity are the most important
performance indicators. Therefore, model predictive control
(MPC) with constraint optimization, simple structure, and
multi-objective optimization becomes an ideal suspension
strategy, especially as it has been widely employed in the
field of power electronics in recent years [23], [24], [25],
[26], [27], [28], [29]. In [27], the MPC based on two-level
state feedback was designed to ensure the safe and reli-
able operation of MS. The simulation results showed that
this method has better air-gap control ability. In [28], the
generalized MPC method based on input and output data
was proposed to adjust the parameters of the controller and
ensure the system stability while suppressing the vibration
caused by the elastic track. In [29], the application of MPC
based on a linear parameter-varying model was presented to
control the active magnetic bearing subject to input and state
constraints. The simulation analysis verified the effectiveness
of the proposed control method, but the application of this
method required linearization of the magnetic levitation sys-
tem. However, the suspension strategies based on the MPC
in the above studies were all linearized, and the nonlinear
characteristic of the MS was ignored, while most of them
adopt one-stepMPC,which greatly restricts the application of
MPC in MS.

To address the above problems and reduce the influence
of external disturbance and chattering on the MS, a slid-
ing mode adaptive neural network predictive control method

(SMANNPC) composed of cascade control strategy and
an additional auxiliary control is proposed. In the cascade
control method, the adaptive neural network predictive con-
trol (ANNPC) is applied to the outer loop of suspension
pressure and the PID controller is applied in the inner loop
of suspension current. The adaptive neural network (ANN) is
utilized to approximate the nonlinear MS, which can estab-
lish the suspension neural network (SNN) model. Next, the
MPC is designed to obtain the optimal control output in
the finite time domain, which significantly improved the
control performance and realize multi-step prediction. Its
global stability with the tracking error converges to zero is
proven using the Lyapunov method. Moreover, the auxiliary
controller is constructed to compensate for the performance
degradation due to model mismatch. Sufficient simulation
and experimental results are exhibited to demonstrate better
practical performance and anti-disturbance performance. The
contribution of this paper lies in three aspects. First, the
MVAWT with suspension pressure as suspension objective
utilizes the hybrid excitation method and smaller suspension
air gap to drastically reduce power consumption. Second,
a new suspension control method is proposed, which can
ensure that the control system can still obtain satisfactory
control performance under harsh conditions. Third, the exper-
imental results show that the proposed method can achieve
better control performance than existing methods and show
superior robustness.

The remainder of this paper is organized as follows: the
dynamic model is established in Section II. In Section III,
the suspension control method is presented. Section IV and
Section V provide the simulation and experimental results to
demonstrate the control performance of the proposed mag-
netic levitation system. Lastly, the conclusion is presented in
Section VI.

II. THE DYNAMIC MODEL OF MS
As shown in Fig. 1(a), the MVAWTmainly contains a perma-
nent magnet synchronous generator, MS, magnetic levitation
converter, pressure sensor, etc. The MS consists of a maglev
disc motor made up of disc stator and rotor. The disc stator is
a hybrid excitation magnet that contains a permanent magnet
and electromagnet. As shown in Fig. 1(b), the suspension
force can be regulated by adjusting the excitation current of
the electromagnet via the magnetic levitation converter based
on a four-quadrant H-bridge chopper circuit. The equivalent
magnetic circuit model of the hybrid excitation magnet is
shown in Fig. 1(c).

The equivalent magnetic circuit model of the hybrid
excitation magnet is shown in Fig. 1(c), where R0 and
R2 denote the air gap reluctance, R1 and R3 denote the
internal reluctance of the permanent magnet, Hc and Lp
are the coercive force and thickness of the permanent mag-
net, respectively, N is the number of turns of the elec-
tromagnet coil, mg is the weight of the rotating body of
MVAWT, F is the suspension force generated by the hybrid
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excitation magnet, fd (t) is the external disturbance exerted on
the MS.

The total magnetic flux can be expressed as follows

8 =
2HcLp + 2Ni(t)

R0 + R1 + R2 + R3
(1)

where i(t) is the excitation current of the electromagnet (or
called suspension current).

As shown in Fig. 1(c), the structure of the hybrid excitation
magnet is symmetric at both ends; thus, R0 = R2 = δ/(µ0S),
R1 = R3 = Lp/(µrµ0S), in which, µ0 is the vacuum
permeability,µr is the relative permeability, S is the magnetic
pole area, and δ is the air gap length, i.e. the distance between
the disk stator and rotor of the maglev disk motor.

According to the energy balance method, and by substitut-
ing (1) into, the suspension force can be obtained as follows

F =
dW
dδ
=

d
dδ

∫
v
BHdV =

(
8

2S

)2 S
µ0

=
µ0N 2S

4

(
HcLp/N + i(t)
Lp/µr + δ

)2

(2)

where, W is the magnetic field energy in volume V , B is
the air gap flux density, and H is the air gap magnetic field
intensity.

The mechanical equation of MS in the vertical direction is

P = mg−
µ0N 2S

4

(
HcLp/N + i(t)
Lp/µr + δ

)2

+ fd (t) (3)

where, P is the resultant force exerted on the MS in the
vertical direction, i.e. the pressure exerted on the pressure
sensor by the rotating body of the MVAWT.

The excitation voltage u(t) of the electromagnet is

u(t) = Ri(t)+
d9(t)
dt
= Ri(t)+

d
dt
(N8)

= Ri(t)+
µ0N 2S

Lp/µr + δ
·
di(t)
dt

(4)

where, R and 9(t) are the resistance and flux linkage of the
electromagnet coil, respectively.

According to (2) - (4), the dynamic model of MS can be
obtained as follows

P = mg−
µ0N 2S

4
·

(
HcLp/N + i(t)
Lp/µr + δ

)2

+ fd (t)

u(t) = Ri(t)+
µ0N 2S

Lp/µr + δ
·
di(t)
dt

(5)

III. DESIGN OF SUSPENSION CONTROL STRATEGY
The traditional linear control method cannot suppress exter-
nal disturbance satisfactorily; hence the MS cannot obtain
satisfactory control performance. Therefore, to solve this
problem, a suspension control strategy shown in Fig. 2 is
designed in this section. The ANNPC is applied to the outer
loop of suspension pressure, and the PID controller is applied
to the inner loop of suspension current. The output signal
of the outer loop of suspension pressure is the input current

FIGURE 2. Control block of the suspension method of the MS.

reference of the inner loop of suspension current. Moreover,
the auxiliary controller is constructed to compensate for per-
formance degradation due to model mismatch.

A. THE AUXILIARY CONTROLLER
The suspension performance can be deteriorated due to
model mismatch and uncertain model parameters. Therefore,
an auxiliary controller is designed to compensate for the
performance degradation problem of ANNPC caused by the
model mismatch. According to the dynamic mathematical
model of the MS, the derivation of the pressure P can be
obtained as follows:

Ṗ = −
µ0N 2S

2(Lp/µr + δ)
(HcLp/N + i)i̇+ ḟd

= −
µ0N 2S(HcLp/N + i)

2(Lp/µr + δ)
·

(
Lp/µr + δ
µ0N 2S

(up − Ri)
)
+ ḟd

=
(HcLp/N + i)Ri

2
−
HcLp/N + i

2
up + ḟd (6)

Then, the sliding mode surface is designed as S , c1em,
where c1 ∈ R+ is the positive gain, and em = P∗ − P is the
tracking error, P∗ is the expected suspension pressure value
of P, and em is ensured to converges 0 when MS is on the
sliding mode surface (i. e., S = 0).

The derivation of the sliding mode surface S can be calcu-
lated as follows:

Ṡ = Ṗ∗ − Ṗ

= Ṗ∗ −
(HcLp/N + i)Ri

2
+
HcLp/N + i

2
up − ḟd (7)

The exponential reaching law is selected as Ṡ = −νS −
$ tanh(s), then, the sliding mode variable structure control
law is

up =
2

HcLp/N + i
(−Ṗ∗ + ḟd − νs−$ tanh(s))+ Ri (8)

where ν and $ ∈ R+ represent the constant reaching
coefficient and exponential reaching coefficient, respectively.
tanh(s) = eιs−e−ιs

eιs+e−ιs is hyperbolic tangent function that is
employed instead of sgn(s) to reduce chattering, and ι ∈ R+

is the positive gain.
In order for the auxiliary controller monitor the system

state and make up the system deviation in time, the evaluation
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function is selected as 3 = em + ėm. Then, the auxiliary
control law is designed as follows:

u1 = γ up (9)

where γ̇ = −a3, a and γ ∈ R+ is the positive control gain.
The auxiliary controller can adaptively detect the system

state and make up for system errors caused by model mis-
match or large external disturbances in time.

B. THE SNN MODEL
In order to improve the control performance of the MS
and avoid linearization when MPC is used as the optimized
controller, the ANN is employed to establish the SNN
model.

1) CONSTRUCTING THE SNN MODEL
The inputs of the input layer is xi(k) = [x1(k), x2(k)]T =
[P(k), i(k)]T , i = 1, 2.

The hidden layer comprises eight neurons; its input sj(k)
and the output yj(k) of the j-th neuron are

sj(k) =
2∑
i=1

ωij(k)xi(k)− θj, j = 1, 2, · · · , 8

yj(k) = f1(sj(k)) = f1(
2∑
i=1

ωij(k)xi(k)− θj)

(10)

where ωij(k) is the connection weight between the ith input
vector and the jth neuron, θj is the bias vector of the jth
neuron, and f1(·) = tanh(·) is the activation function of the
output layer.

The output layer involves one neuron; its input s(k) and
output y(k) are

s(k) =
8∑
j=1

ωj(k)yj(k)− ξ

y(k) = f2(s(k)) =
8∑
j=1

ωj(k)yj(k)− ξ = Pm(k + 1)

(11)

where ωj(k) and ξ denote the connection weight and bias
vector of the output layer, respectively, f2(·) is the activation
function of the hidden layer, and Pm(k + 1) is the response
output value of SNN model.

2) TRAINING THE SNN
The specific steps of using the ANN algorithm to establish
the SNN model are as follows:

i) Initialize the connection weights ωij(k) and ωj(k), and
pass the input vector xi(k) to the input layer successively.

ii) Calculate the output yj(k) and y(k) by going forward, and
compute the error as e(k) = y(k)−yr (k) = Pm(k+1)−P(k),
where yr (k) is the reference value to y(k).
iii) Adjust the connection weights to ωj(k) = ωj(k − 1)+

1ωj(k) and ωij(k) = ωij(k − 1)+1ωij(k),
and return to Step ii) for iterative calculation.

3) CONSTRUCTING THE UPDATE LAW OF CONNECTION
WEIGHTS
For the given input xi(k), the weight vectors ωj(k) and ωij(k)
of the ANN are updated as follows:
1ωij(k) = −ωij(k − 1)+

1
2xi(k)

(
θj + g1(q(k))

)
1ωj(k) =

1
8yj(k)

yr (k)+ ξ − 8∑
j=1

ωj(k − 1)yj(k)


(12)

where q(k) = yr (k)/(8ωj(k)), and g1(·) = f −11 (·).
The discrete Lyapunov function is defined as V (k) = e2(k)

to validate that this update law can build the SNNmodel. The
change in the Lyapunov function 1V is

1V (k) = V (k)− V (k − 1)

= (y(k)− yr (k))2 − e2(k)

=

 8∑
j=1

ωj(k)yj(k)− ξ − yr (k)

2

− e2(k − 1)

=

 8∑
j=1

(ωj(k − 1)+1ωj(k))yj(k)− ξ − yr (k)

2

− e2(k − 1)

=

 8∑
j=1

ωj(k − 1)yj(k)

+1ωj(k)yj(k)− ξ − yr (k)

2

− e2(k − 1)

(13)

Then,

e(k) = y(k)− yr (k)

=

8∑
j=1

ωj(k)yj(k)− yr (k)

=

8∑
j=1

ωj(k)f1

(
2∑
i=1

(ωij(k − 1)+1ωij(k))xi(k)− θj

)
− yr (k)

=

8∑
j=1

f1

(
2∑
i=1

(ωij(k − 1)xi(k)+1ωij(k)xi(k))− θj

)
·ωj(k)− yr (k) (14)

Substituting (12) into (14), the error e can be obtained as

e(k) =
8∑
j=1

ωj(k) ·

= f1

(
2∑
i=1

(ωij(k − 1)xi(k)+1ωij(k)xi(k))− θj

)
− yr (k)
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=

8∑
j=1

ωj(k)f1

(
2∑
i=1

1
2
(θj + g1(q1(k)))− θj

)
− yr (k)

= 0 (15)

From (15) and (13), there is 1V (k) = −e2(k − 1) < 0.
Remark 1:By constructing the above updated law, the error

between reference output yr (k) and actual output y(k) can
quickly converge to 0.

To prevent the singularities caused by the zero value of
the qj(k), xi(k) and ωj(k), the weight update laws1ωj(k) and
1ωij(k) can be modified as follows

1ωj(k) =
1

8(yj(k)+ ϑ1)

yr (k)+ ξ − 8∑
j=1

ωj(k − 1)yj(k)


1ωij(k) = −ωij(k − 1)+

1
2(xi(k)+ ϑ2)

(θj + g1(q(k)))

where

q(k) =
1

8(ωj(k)+ ϑ3)
yr (k)

The values ofϑ1,ϑ2, andϑ3 are the small positive numbers.

C. THE ADAPTIVE NEURAL NETWORK PREDICTIVE
CONTROLLER
The role of the optimizer is to obtain the optimal control
output, i.e. the reference suspension current iopt , through the
rolling optimization of suspension cost function J (k) with the
following constrained finite-horizon optimization, which is
selected as follows:

J (k) = α
Np∑
l=1

(P∗(k + l)− Pm(k + l))2 + λ
Nu∑
l=1

(i(k + l − 1)

− i(k + l − 2))2 (16)

subject to

imin ≤ i(k) ≤ imax
Pmin ≤ Pm(k) ≤ Pmax
1imin ≤ 1i(k) ≤ 1imax

P∗(k + Np + j)− Pm(k + Np + j) = 0, j ≥ 1

where P∗(k) = [P∗(k + 1),P∗(k + 1), . . . ,P∗(k + Np)]T is
the vector of reference trajectory of MS, Pm(k) = [Pm(k +
1),Pm(k + 1), . . . ,Pm(k + Np)]T is the vector of response
output of SNN model, and 1i(k) = i(k) − i(k − 1) =
[1i(k),1i(k+1), . . . ,1i(k+Nu−1)]T is the future control
increment. α and λ are the pressure weighting factor and the
current weighting factor, respectively; Np is the prediction
horizon, Nu is the control horizon (Np = Nu = d), and d
means the prediction steps.

To obtain and maintain the actual optimal control and
reduce the number of iterations required to achieve the opti-
mum, the Newton-Raphson method is utilized as the opti-
mized controller, and the predictive value of the suspension
current at the (k + 1)-th moment is

i(k + 1) = i(k)− [4(k)]−10(k) (17)

where 0(k) and 4(k) are the Jacobian matrix and Hessian
matrix, respectively, and i(k+1) is just the suspension current
reference iopt (k).
By calculating the current deviation ei = iopt − i, the

control law of suspension current inner loop can be obtained
as follows:

u2 = Kpei + Ki

∫
ei + Kd ėi (18)

where,Kp,Ki andKd are the proportional coefficient, integral
coefficient and differential coefficient, respectively.

By taking the first-order and second-order derivatives of
(11), respectively, 0(k) and 4(k) can be obtained as follows:

0(k) = [
∂J
∂i(k)

,
∂J

∂i(k + 1)
, · · · ,

∂J
∂i(k + d − 1)

]T (19)

4(k) =


∂2J
∂i(k)2

. . . ∂2J
∂i(k)∂i(k+d−1)

∂2J
∂i(k+1)∂i(k) . . . ∂2J

∂i(k+1)∂i(k+d−1)
...

. . .
...

∂2J
∂i(k+d−1)∂i(k) . . .

∂2J
∂i(k+d−1)2

 (20)

The proposed SMANNPC consisted of an auxiliary con-
troller and an ANNPC. Hence, according to Equations (9)
and (18), the control law of SMANNPC can be obtained as
follows:

u = u1 + u2

= γ (
2(Lp/µr + δ)
HcLp/N + i

(−Ṗ∗ + ḟd − νs−$ tanh(s))+ Ri)

+Kpei + Ki

∫
ei + Kd ėi

D. STABILITY ANALYSIS
The stability performance is essential to the successful appli-
cation of SMANNPC [30-31]. In this section, the stability of
SMANNPC is intensively investigated by employing termi-
nal constraints of MPC.
Theorem: Consider the constrained finite-horizon optimal

control problem represented by Equation(16), and the control
law designed as Equation(17); then, the asymptotic stability
of the proposed SMANNPC can be guaranteed.

Proof: If i(0) is feasible for P∗(0), then i(0) is feasible at
all time-steps k ≥ 0 (recursive feasibility).
1) By taking Th. 3 into account [32], it is easy to see that

if i(k − 1) satisfies Equations(16) and (17) for P∗(k − 1),
then i(k) satisfies Equations(16) and (17) for P∗(k). As i(0)
is feasible at k = 0, it can be proven recursively that i(k) is
feasible for all time steps k ≥ 0.
2) The i(k) = [i(k), i(k + 1), . . . , i(k + Nu − 1))]T is

postulated as the optimal control found by the optimization
procedure at the k-th moment. Now, let us present the subop-
timal control is(k + 1) assumed at the (k + 1)-th moment.

is(k + 1) = [i(k + 1), . . . , i(k + Nu − 1),︸ ︷︷ ︸
Nu−1

i(k + Nu − 1)]T

(21)
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TABLE 1. Simulation parameters of MS.

The control sequence is(k+1) is obtained on the basis of the
control at time k . Hence, for the suboptimal control is(k+1),
the cost function can be defined as follows:

Js(k + 1) = α
Np+1∑
l=2

(P∗(k + l)− Pm(k + l))2

+ λ

Nu∑
l=2

1i(k + l − 1)2 (22)

Then, the difference in cost function Js(k+1) and J (k) can
be calculated as follows

Js(k + 1)− J (k)

= α[(P∗(k + Np + 1)− Pm(k + Np + 1))2 − (P∗(k + 1)

−Pm(k + 1)]2 − λ1i(k)2

Additionally, if i(k+1) is the optimal solution at time (k+
1), then, when is(k+1) is the suboptimal, J (k+1) ≤ Js(k+1),
we have

J (k + 1)− J (k) ≤ Js(k + 1)− Js(k) ≤ 0 (23)

Therefore, by taking (23), Theorem can be proven.
Remark 2: As the proposed SMANNPC requires solving a

constrained nonlinear optimization problem, the problems of
feasibility and stability are extremely important. The feasibil-
ity and stability of the SMANNPC are proven by Theorem.
The tracking performance and control accuracy of MS will
be improved as the number of prediction steps of SMANNPC
increases. However, it will increase the time consumption of
MS and cause the dynamic response performance to deterio-
rate. Therefore, in order to ensure the overall performance of
MS, two prediction steps are selected and compared with the
traditional one-step prediction.

IV. SIMULATION ANALYSIS
A simulation platform was built to verify the control per-
formance of the proposed control method. The ANNPC and
PID controller were applied to the outer loop of suspension
pressure and the inner loop of suspension current of the
SMANNPC-PID, respectively, while the auxiliary controller
output was superimposed on the cascade control output.
The SMANNPC-PID was compared with ANNPC2-PID,
ANNPC1-PID, and PID-PID in this simulation experiment.
The parameters of the MS are listed in Table 1; among them
the mass m of the rotating body of MVAWT is 130kg, the
suspension force generated by the permanent magnet of the
hybrid excitation magnet is 1014N, and the initial pressure is
about 260N. The expected suspension pressure of the MS is
set to 50N. The switching frequency of the MS is 10kHz.

FIGURE 3. Suspension pressure under non-disturbance condition.

FIGURE 4. Suspension current under non-disturbance condition.

FIGURE 5. Suspension pressure under disturbance fd (t).

The control parameters of the proposed method can be
divided into two, one is the parameters for the ANNPC and
PID control, and the other is the parameters for auxiliary
controller. After sufficient tuning, the parameters of ANNPC
and PID are obtained:
ωij=[0.90, 0.88; 0.56, 0.60; 0.48, 0.06; 0.59, 0.32; 0.23, 0.79;
0.52, 0.71; 0.65, 0.05; 0.11, 1.1], θj=[-0.2; 0.23; 0.75; 0.97;
0.3; -0.72; -1.1; 0.22]; ωj=[-0.02, 0.31, 0.28, -0.11, 0.26,
-0.68, 0.44, 0.19], ξ=-1.06; ϑ=0.0001; α=λ=1; Kp=1000,
Ki=10, Kd=5.
The other are auxiliary control parameters, which are selected
as:
c1=10, ν=5,$=10, ι=1, a=0.5.

A. SIMULATION FOR DYNAMIC RESPONSE
PERFORMANCE
The control effects of SMANNPC-PID, ANNPC2-PID,
ANNPC1-PID, and PID-PID were compared to examine the
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FIGURE 6. Suspension current under disturbance fd (t).

FIGURE 7. The experimental platform of MVAWT.

dynamic response performance of the proposed suspension
strategy.

It is shown in Fig. 3 that the system with the PID-PID
had a settling time of more than 3s. The system with the
ANNPC1-PID needed more than 2s and showed vibrations in
the results. The system with the ANNPC2-PID had a settling
time of more than 1.3s, and the system with the proposed
SMANNPC-PID had a settling time of less than 0.6s. The
static error in the SMANNPC-PIDwas smaller than that in the
ANNPC2-PID. Furthermore, compared with ANNPC1-PID,
ANNPC2-PID, and PID-PID, the dynamic response speed of
SMANNPC-PID was increased and the suspension current
was much smoother. This shows that the proposed control
method has stronger control capability and faster tracking
performance.

B. SIMULATION FOR ANTI-DISTURBANCE PERFORMANCE
In order to verify the robustness and anti-disturbance capabil-
ity of the proposed suspension strategy, the nonlinear periodic
disturbance fd (t) = 100sin(2t − 100) + 50sin(4t − 50) was
added to MS at 4s and removed at 17s. The simulation results
under this disturbance fd (t) are shown in Figs. 5-6.
As shown in Fig. 5, the suspension pressure of PID-PID

changed constantly with the variation of external distur-
bance, which had a maximum static error of more than
8N. The suspension pressure fluctuation of ANNPC1-PID
exceeded 5N and that of ANNPC2-PID was more than
3N. Meanwhile, the suspension pressure fluctuation of
SMANNPC-PIDwas less than 1N.Moreover, when the exter-
nal disturbance was removed, the static error of PID-PID
still existed, and ANNPC1-PID had a suspension pressure

FIGURE 8. Suspension pressure under non-disturbance condition.

FIGURE 9. Suspension current under non-disturbance condition.

fluctuation of more than 5N. The suspension pressure fluc-
tuation of ANNPC2-PID was more than 3N, while that
of ANNPC2-PID was less than 1N and could be restored
to its steady state within 0.2s. As shown in Fig. 6, the
SMANNPC-PID had the maximum suspension current fluc-
tuation of 10A, while the PID-PID had the minimum sus-
pension current fluctuation of 9.5A. Therefore, when MS is
subjected to external disturbance, the SMANNPC-PID can
better restrain the disturbance and improve the robustness of
the MS.

V. EXPERIMENTAL RESULTS
In order to further examine the practical performance of
the proposed control method, a physical prototype of the
1kWMVAWTwas developed, and the experimental platform
shown in Fig. 7 was built. On this basis, this paper adopted
dSPACE 1202 and the maglev converter as the suspension
controller. The expected suspension pressure was set to 180N
with an initial value of 240N, the control frequency was
10kHz, and the supply voltage was 36V. Two sets of experi-
ments were carried out to validate the tracking performance
and the anti-disturbance capability.

For the experiments, the control gains and parameters are
carefully determined as follows:
ωij = [0.90, 0.88; 0.56, 0.60; 0.48, 0.06; 0.59, 0.32; 0.23,
0.79; 0.52, 0.71; 0.65, 0.05; 0.11, 1.1], θj = [-0.2; 0.23; 0.75;
0.97; 0.3; -0.72; -1.1; 0.22]; ωj = [-0.02, 0.31, 0.28, -0.11,
0.26, -0.68, 0.44, 0.19], ξ = -1.06; ϑ = 0.0001; α = λ = 1;
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FIGURE 10. Suspension pressure under disturbance fd (t) condition.

c1 = 10, ν = 5,$ = 10, ι= 1, a= 0.5; Kp = 1000, Ki = 10,
Kd = 5.

A. EXPERIMENT FOR DYNAMIC RESPONSE
PERFORMANCE
An experiment was employed to examine the dynamic
response performance of the SMANNPC-PID, ANNPC2-
PID, and PID-PID. The initial position of the suspension
pressure was 240N, and, from the time t = 2s, the corre-
sponding control laws were utilized to drive the MS to the
reference position of 180N. In the PID-PID, the PID control
parameters of outer loop of the suspension pressure were 100,
50, and 100, respectively. And the PID control parameters
of inner loop of the suspension current were 14, 5, and 10,
respectively. The experiment results are shown in Figs. 8-9.

It can be seen from Fig. 8 that the system with the
SMANNPC-PID method had a settling time of less than 0.5s
without obvious suspension pressure fluctuation. The system
with the ANNPC2-PID method had a settling time of more
than 7s and the suspension pressure fluctuation is less than
7N, while, for that with PID-PID, the settling time was more
than 4s and the suspension pressure fluctuation was more
than 10N. Compared with PID-PID and ANNPC2-PID, the
SMANNPC-PID could reach a stable state in the shortest
time and suppress overshoot well due to the synergy between
the auxiliary controller and ANNPC. Moreover, it is shown
in Fig. 9 that the system with the PID-PID method had a
suspension current fluctuation of more than 1.5A and a cur-
rent ripple of more than 1A. Although the suspension current
fluctuation ofANNPC2-PIDwas less than 1A, it had a current
ripple of more than 2A. In contrast, the system with the
SMANNPC-PID had no obvious suspension current fluctua-
tion and had a current ripple of less than 0.7A. Comparedwith
ANNPC2-PID, the SMANNPC-PID can effectively reduce
the suspension current fluctuation of the MS while quickly
reaching the desired position, which can improve the working
efficiency of the system. These experimental results demon-
strate that the proposed control method had faster dynamic
response capability and better tracking performance.

B. EXPERIMENT FOR ANTI-DISTURBANCE PERFORMANCE
An experiment was utilized to examine the anti-disturbance
performance of the three control methods. A nonlinear

FIGURE 11. Suspension current under disturbance fd (t) condition.

TABLE 2. Simulation parameters of MS.

external disturbance with amplitude of 30N was added at 14s
and removed at 21s. The experimental results are shown in
Figs. 10-11.

As shown in Fig. 10, when external disturbance was added,
the system with the SMANNPC-PID method had a suspen-
sion pressure fluctuation of less than 6N, and the settling
time was less than 2s. The suspension pressure fluctuation
of the ANNPC2-PID method exceeded 8N with a settling
time of more than 3s. In contrast, the PID-PID method had
a suspension pressure fluctuation of more than 10N and
required a settling time of more than 5s. Although PID-PID
can suppress the external disturbance, it had large suspension
pressure fluctuation and takes more time to restore the orig-
inal equilibrium position. In addition, both ANNPC2-PID
and SMANNPC-PID could restore the equilibrium state
in a shorter time, but SMANNPC-PID had stronger anti-
disturbance ability and faster settling time. It is clear in
Fig. 11 that, compared with ANNPC2-PID and PID-PID, the
suspension current of SMANNPC-PID could react quickly in
a short time when external disturbance was applied to theMS.

The ANNPC2-PID could use the ANN to establish an
accurate SNN model, when the system deviated from the
equilibrium position, it could reach the new equilibrium posi-
tion quickly. However, the fast response of the system leaded
to a large suspension current ripple, which may cause chat-
tering in the system and will degrade system performance.
While in SMANNPC-PID, due to the additional compen-
sation effect of the auxiliary controller, the system could
reach the steady state in a shorter time without obvious
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suspension pressure fluctuation and suspension current rip-
ple. Since the integral term was added and the continuous
hyperbolic tangent function was used instead of the sign func-
tion as the switching control law in the auxiliary controller of
SMANNPC-PID, when the external disturbance was added
to this system, the proposed SMANNPC-PID could quickly
suppress the external disturbance and reduce the suspension
current ripple.

The numerical values are summarized in a statistical table
in Table 2. By summarizing the numerical values in Table 2,
it can be seen that the presented suspension control method
can achieve better control performance and better disturbance
rejection capability under the condition of smooth control
current and external disturbance.

VI. CONCLUSION
This paper studied the MS in MVAWT. To improve the
suspension control performance of MS, the SMANNPC was
presented using an auxiliary controller, an adaptive neural
network, and a model predictive control to handle exter-
nal disturbance and unmatched uncertainties in the system.
The stability of the proposed control method was proven
by the Lyapunov theorem. Compared with the PID con-
troller and ANNPC, the simulation and experimental results
show that the proposed nonlinear robust controller had a
non-overshooting, robust, fast dynamic response and could
effectively reduce the impact of external disturbance on the
system. Furthermore, it could solve the problems of external
disturbance and parameter perturbation with a faster adjust-
ment speed while meeting the control quality requirements
of MVAWT.

In the nonlinear systems with external disturbance and
parameter perturbation, the SMANNPC can adaptively adjust
the system parameters, showing better control performance.
However, when this control method is applied to other non-
linear systems, the control parameters need to be readjusted
according to the actual working conditions, which will take
more time and reduce work efficiency. Next, we will study
SMANNPC further, so that it can be easily generalized to
other nonlinear systems.
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