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ABSTRACT The Salp Swarm Algorithm (SSA) outperforms well-known algorithms such as particle swarm
optimizers and grey wolf optimizers in complex optimization challenges. However, like most meta-heuristic
algorithms, SSA suffers from slow convergence and stagnation in the best local solution. In this study,
a Salp swarm algorithm (SSA) is combined with a local escaping operator (LEO) to overcome some inherent
limitations of the original SSA. SSALEO is a novel search technique that accounts for population diversity,
the imbalance between exploitation and exploration, and the SSA algorithm’s premature convergence.
By implementing LEO in SSALEO, the search slowdown in SSA is eliminated, and the local search effi-
ciency of swarm agents is improved. The proposed SSALEOmethod is tested using the CEC2017 benchmark
with 50 and 100 decision variables, seven CEC2008lsgo test functions with 200, 500, and 1000 decision
variables, and its performance was compared to other metaheuristic algorithms (MAs) and advanced
algorithms, including seven Salp swarm variants. The comparisons show that SSA greatly benefits from LEO
by enhancing the quality and accelerating its solutions’ convergence rate. The SSALEO was then assessed
using a benchmark set of seven well-known constrained design challenges in various engineering domains
defined in the CEC 2020 conference benchmark. Friedman and Wilcoxon rank-sum statistical tests are also
used to examine the results. According to experimental data and statistical tests, the SSALEO algorithm is
very competitive and often superior to the algorithms used in the studies. Further, the proposed approach
can be viewed as a special LSGO optimizer whose performance exceeds that of specialized state-of-the-art
algorithms like CMA-ES and SHADE.

19

20
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I. INTRODUCTION 21

In real-world applications, challenges such as reducing 22

time, energy, costs, and errors or optimizing efficiency, 23

performance, and quality can be classified as optimization 24
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problems [1]. The complexity of problems necessitates new25

solutions. Metaheuristic algorithms (MAs) are new optimiza-26

tion algorithms that several researchers have talked about27

recently. Many optimizers for hard problems in the real28

world have also been made. Such algorithms explore the29

feature space randomly to find the best solution from various30

possibilities, mostly inspired by nature. In order to solve chal-31

lenges relating to global optimization, traditional mathemati-32

cal methodologies were applied to solve global optimization33

issues in multiple domains before developing meta-heuristic34

algorithms [2], [3]. When it comes to dealing with circum-35

stances that are multimodal, discontinuous, and non-convex,36

these strategies encounter several significant obstacles. As a37

result, meta-heuristic algorithms based on biological evolu-38

tion and insect/bird behavior are being created and used to39

difficult optimization problems [4]. Because meta-heuristics40

are not accurate algorithms, there is no guarantee that the41

optimum solution for an optimization issue will be found.42

However, even though computational resources are restricted,43

they can identify reasonably good answers in a reasonable44

amount of time [5].45

In the literature, metaheuristics are classified as trajectory-46

based or population-based. Trajectory-based algorithms use47

a single solution to optimize the search space. In addition,48

randomization and particular guidance, such as the greedy49

criteria in a limited number of iterations, are typically utilized50

to change and promote the solution. Simulated Annealing51

(SA) [6], Tabu Search (TS) [7], and Iterated Local Search52

(ILS) [4] are the most common algorithms in this area. The53

advantages of algorithms in this category are fast convergence54

speed and minimal computing cost.55

On the other hand, population-based algorithms itera-56

tively build and improve numerous possible solutions within57

the limits of the problem. Knowledge transfer (informa-58

tion sharing), collaboration, and interaction among can-59

didate solutions are all significantly emphasized in60

population-based algorithms. A population-based algorithm61

may fall under several categories: biology-based, social-62

based (swarm-based), chemical-based, physics-based, music-63

based, mathematically-based, sports-based, plant-based, and64

water-based [8]. Classifying their combinations as belonging65

to a hybrid category is also possible. PSO [8], ABC [9],66

Ant Colony Optimization [10], [11], DE [12], GA [13],67

GWO [14], CSO [15], and BAT [16] are all examples of68

biologically based algorithms. The Evolutionary Centers69

Algorithm (ECA) [17] and Electromagnetic Field Optimiza-70

tion (EFO) algorithm [18] are both examples of physics-71

based algorithms. The social group optimization SGO72

algorithm [19] is an example of a socially based algorithm.73

The Artificial Chemical Reaction Optimization algorithm74

ACROA [20] is an example of a chemistry-based algorithm.75

Melody search [21] is an example of a musically based.76

Recent research has led to the development of chaotic league77

championship algorithms for use in sport-based algorithms78

and models [22].79

A population-based algorithm can avoid local solutions 80

and exhibit better exploratory behavior. They are, however, 81

computationally more expensive and necessitate information 82

sharing between numerous solutions. 83

Population-based algorithms employ a variety of ran- 84

dom operations such as crossovers to boost exploration and 85

exploitation abilities [23], mutation [24], and selection [24]. 86

Because of the benefits outlined above, population-based 87

metaheuristics are quite popular and frequently employed 88

today. Several MAs have thus been created for use in 89

biomedicine [25], bioinformatics [26], cheminformatics [27], 90

feature selection [28], engineering issues [29], [30], pattern 91

recognition, text clustering [31], and wireless sensor net- 92

works [32]. On the other hand, all meta-heuristic (MA) algo- 93

rithms need to strike the equilibrium between the exploration 94

and exploitation stages. If they don’t, the solutions either 95

don’t converge or become stuck in local optima [33], [34]. 96

Such issues can arise as a result of randomization during the 97

solution-finding process. 98

In 2017 [35], Mirjalili et al. came up with the idea for 99

a contemporary population-based metaheuristic search algo- 100

rithm and called it the Salp Swarm Algorithm (SSA). This 101

metaheuristic algorithm attempts to simulate the behavior 102

of deep-sea salps, namely their swarming and foraging pat- 103

terns. Even though the mathematics that underpins SSA is 104

rather straightforward, it may be more effective than other 105

contemporary algorithms at solving challenging engineering 106

optimization issues. These include GWO, ABC, CSA, and 107

others [23]. 108

The SSA algorithm has fewer parameters and a simple 109

implementation [23]. The SSA demonstrated solving both 110

large and minor issues [36]. In addition, SSA is distin- 111

guished by its adaptability and stochasticity [23]. However, 112

the SSA, in addition to other optimization methods, has two 113

disadvantages. In the first place, the convergence speed is 114

insufficient to generate accurate solutions. Another drawback 115

is that it lacks the exploratory possibilities of evolutionary 116

algorithms that use crossover operators. This is a significant 117

limitation. These issues frequently arise in most optimization 118

strategies, particularly in complicated and high-dimensional 119

situations [37]. As a result, various attempts have been made 120

to solve the problem [38]. 121

Researchers have devised several different modified SSA 122

versions that improve the standard SSA’s efficiency, eliminate 123

any faults, and expand its possibilities despite any inherent 124

restrictions it may have. This paper presents a modified Salp 125

Optimization (SSALEO) version based on a local escaping 126

operator (LEO). Modifying nature-inspired algorithms is a 127

popular way to address those faults by strengthening the 128

inventive optimizer’s exploitation and exploration capabili- 129

ties. For example, unknown search regions can be visited, and 130

the local optima problem can be avoided using the new math- 131

ematical technique of the ‘‘local escaping operator,’’ which 132

is used in local searches to find an effective solution [39]. 133

The suggested method has been validated using a series of 134
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test functions. Firstly, we demonstrate the implications of135

the proposed improvements on SSA. Next, SSALEO perfor-136

mance is evaluated and validated using the CEC’2017 test137

suite with 50 and 100 dimensions and the CEC2008lsgo138

benchmark test functions with 200, 500, and 1000 dimen-139

sions, respectively. Later, the SSALEO’s applicability was140

validated by tackling seven common engineering design dif-141

ficulties. The results of the experiments show that SSALEO142

has a successful optimization capability. This paper’s key143

contributions are as follows:144

• The problems of population variety, an unbalanced145

relationship between exploitation and exploration, and146

the premature convergence of Salp swarm algorithms147

inspired the development of SSALEO.148

• The CEC’2017 and CEC’2008LSGO benchmarks were149

utilized to verify the suggested strategy’s validity150

(SSALEO).151

• The SSALEO was assessed using the engineering152

benchmark defined in the CEC 2020 conference.153

• SSALEO is a scalable LSGO optimizing technique that154

outperforms its competitors.155

• Friedman and Wilcoxon rank-sum tests determine156

whether the variations in algorithm performance are157

statistically significant.158

• SSALEO outperforms various SSA variants and other159

sophisticated algorithms in Wilcoxon rank-sum and160

Friedman tests.161

The remainder of this work is organized as follows. The162

second section discusses the large-scale global optimization163

problem, while Section 3 focuses on SSALEO’s related work.164

Section 4 contains some preliminary information and theo-165

retical background information. The principles of LEO and166

SSA algorithms are discussed in this section. Section 5 goes167

into great depth about the SSALEO. The algorithm’s results168

are analyzed and explained in Section 6, which uses CEC169

2017 benchmark functions with 50 and 100 decision vari-170

ables and CEC 2008 benchmark functions with 200, 500,171

and 1000 decision variables. Seven well-known engineering172

design challenges were used in Section 7 to evaluate the173

proposed method. Section 8 explores the constraints and174

complexities of the problem. Finally, section 9 concludeswith175

the conclusions.176

II. LARGE-SCALE GLOBAL OPTIMIZATION177

In real-world problems, large-scale global optimization effi-178

ciently handles many decision variables. However, as the179

number of decision variables and the problem’s multimodal-180

ity have increased, finding solutions to this set of challenges181

has become increasingly challenging. In addition, the local182

search space is typically limited, which makes it more diffi-183

cult to identify the optimal answer for the entire global best184

solution. Several population-based meta-heuristics have been185

created in recent decades to address these challenges [40].186

However, the downside to these solutions is that they dra-187

matically increase simulation complexity while degrading188

performance. As a result, various algorithms for dealing with189

LSGO problems have been created. Currently, the solutions 190

can be classified into two types [40]: Non-Decomposition 191

methods and cooperative coevolution (CC) methods based on 192

the dimension decomposition optimization strategy. 193

Potter and De Jong [41] proposed the Cooperative Coevo- 194

lution (CC) approach (1994). While when applying the CC 195

method, the LSGO problem is broken down into a series of 196

low-dimensional problems. The solutions to those problems 197

are combined to form a high-dimensional optimization chal- 198

lenge. Following that, researchers classified CC approaches 199

into two types based on variable grouping strategies for 200

LSGO problems: static and dynamic groupingmethods. First, 201

Potter used static grouping-based CC approaches on the evo- 202

lutionary algorithm to produce a decent solution, the first CC 203

algorithm to address LSGO problems. Then, by mixing the 204

solutions from each subcomponent, the n-dimensional solu- 205

tion is created. Next, Yang et al. [42], [43], [44] solved LSGO 206

issues with 500 and 1000 dimensions using a DE-based coop- 207

erative coevolving (CC) technique dubbedDECC-G, employ- 208

ing random grouping of decision variables. The multilevel 209

CC approach, also known as MLCC, uses decomposers with 210

an adjustable group size depending on their performance. 211

Other similar algorithms in the literature are CCPSO [45] and 212

CC-CMA-ES [46]. 213

Non-Decomposition-based algorithms, on the other hand, 214

avoid the divide-and-conquer strategy in favor of a range 215

of successful methods for improving algorithm performance. 216

The most frequent methodologies are local search-based 217

[47], [48], evolutionary computation-based [49], [50], and 218

swarm intelligence-based approaches [51] are the most com- 219

mon categories. For instance: a modified CSO (MCSO) [52] 220

algorithm with two-thirds of search agents updated by 221

a competitive try criterion is proposed. The MCSO was 222

chosen to address large-scale optimization issues, and 223

the findings revealed that it outperformed state-of-the-art 224

algorithms. 225

This paper presents a modified PSO based on a population- 226

based approach to address the LSGO problem [53]. The 227

whale optimization algorithm (WOA) [54] uses quadratic 228

interpolation to handle large-scale issues, which aids in 229

increasing the algorithm’s exploitation capabilities [55]. 230

Cano and GarciaMartinez [56] tackle 100 million dimension 231

issues in large-scale global optimization using an evolution- 232

ary computation technique and a modern GPU. Cano, Garcia- 233

Martinez, and Ventura [57] also published a MapReduce 234

implementation of the MA-SW-Chains algorithm as a new 235

method version. The approaches solve 10 million dimensions 236

of CEC functions for the first time. 237

In [58], the authors combine theMA-SW-Chains algorithm 238

with the Local search strategy to create a high-performance 239

memetic solution for high-dimensional issues. Furthermore, 240

a modified SCA called DSCA 241

Although it can boost optimizations on a massive scale, 242

CC comes with several main limitations: 243

� Its performance is influenced by the decomposition 244

strategy used. 245
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TABLE 1.AQ:6 Modifications and hybridizations to the SSA.
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TABLE 1. (Continued.) Modifications and hybridizations to the SSA.

� Increasing the number of interrelated components will246

reduce its effectiveness.247

� EA’s evolutionary algorithms decide efficiency for non-248

separable optimization problems.249

� There is a significant amount of computational complex-250

ity involved.251

Since CCEAs can only handle a finite number of large-scale252

optimization problems, researchers are working to create new253

search algorithms for traditional EAs that can better utilize254

the finite number of FEs. Consequently, swarm intelligence,255

a non-decomposition approach, is used in this study to handle256

large-scale difficulties.257

III. RELATED WORK258

Various academic fields have been using natural-inspired259

algorithms to solve multiple problems. However, the No-Free260

Lunch Theorem claims that no single optimization strategy261

can solve all optimization issues [59]. Consequently, it is262

challenging to build novel optimization methods to address263

problems in real-world applications. As a result, combining264

fundamental meta-algorithms to create novel optimization265

algorithms is becoming increasingly popular. Furthermore,266

it’s possible to mix the best features of existing algorithms to267

develop new ones that are more efficient and accurate through268

hybridization.269

Since its initial release in 2017, the SSA method has270

been updated to accommodate many modifications produced271

by researchers to address and solve a wide range of opti- 272

mization challenges. For the purpose of global optimiza- 273

tion, Fan et al. [53] suggested combining two different algo- 274

rithms known as the Whale Optimization Algorithm (WOA) 275

and the Salp Swarm Algorithm (SSA) [60]. Likewise, 276

Qaraad et al. [61] created a new hybrid methodology named 277

SSAGWO by updating Salp followers’ locations using the 278

GWO mechanism. Finally, SSAGWO was applied to deal 279

with the feature selection problem. 280

The Salp Swarm Algorithm based on the Levy Flight 281

and Sine Cosine Operator algorithms were created by 282

Zhang et al. [62]. LSC-SSA performed an outstanding job 283

compared to the work done by the other optimizers. CMSSA 284

was developed by Mirjalili et al. [35] and is an improvement 285

on fundamental SSA exploitative mechanisms. In CMSSA, 286

chaotic exploitative processes are combined with a ‘‘shrink- 287

ing’’ mode to improve basic mechanisms for exploiting 288

SSA. However, the proposed method has high computational 289

complexity due to the fact that the number of function 290

evaluations for a single iteration is equal to the square root 291

of the number of evaluations performed by the initial SSA. 292

In order to make adjustments to the current best and follower 293

positions, Hegazy et al. [63] applied an inertia weight to SSA. 294

The newly developed approach improved the success rate 295

of SSA when applied to the problem of feature selection. 296

Aljarah et al. [64] tried to improve the structure of the 297

initial SSA by dividing the Salp chain into sub-chains and 298
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implementing asynchronous updating rules. In their299

study [23], Faris et al. presented and assessed eight different300

binary SSA variations by employing eight other SSA transfer301

functions.302

In addition, the average operator was replaced with the303

crossover operator so that the algorithm would have a higher304

degree of global searchability. Chen et al. [65] suggested a305

new configuration of the SSA that would have many leaders.306

Finally, it was recommended to include a piecewise equation307

in the method to facilitate the convergence process.308

Nevertheless, similar to other optimization methods, SSA309

is plagued by several problems, the most notable of which are310

local optima and population diversity problems. Therefore,311

significant adjustments were made to the SSA’s algorithm312

(see Table 1). In addition, multiple local search approaches313

have been hybridized with various optimization algorithms314

in the literature to make them relevant for datasets of315

diverse dimensions. This is something that has been done in316

many different ways. As an instance, Houssein et al. [66]317

enhanced the performance of the Archimedes optimization318

process by employing the local escaping operator (LEO)319

operator (AOA). The tunicate swarm algorithm (TSA) was320

enhanced by Houssein et al. [67] by the addition of a local321

escape operator (LEO) operator, which increased the swarm322

agent convergence rate and improved the local search effi-323

ciency. Marine Predators Algorithm (MPA) was enhanced by324

M.Oszust [68] with the help of a Local Escaping Operator325

so that it could achieve global optimization. In Table 1, the326

SSA is modified and hybridized with various metaheuristic327

algorithms in chronological order, beginning with the oldest328

of the changes.329

After considering everything that has been discussed so far,330

one can come to the following conclusions:331

� A substantial amount of literature about the SSA algo-332

rithm has been published.333

� The salp swarm algorithm has previously been shown334

to perform well in various situations. However, even335

though SSA is more effective than other optimizers336

with a long track record, local solutions may still be a337

barrier.338

� Several distinct SSA algorithm versions have been339

produced by altering the SSA mechanism to enhance340

convergence speed, avoid optimal solution, and main-341

tain a balance between exploratory and exploitative342

operations.343

� Complex optimization algorithms often make use of344

diversity approaches to improve search quality. This345

is accomplished by minimizing the harmful effects of346

genetic drift, which is the root cause of diversity loss in347

bio-inspired algorithms.348

These findings suggest that it is in the algorithm’s favor to349

search for many optimal solutions during the earlier stages350

of the process. However, according to the previous discus-351

sion and the recommended changes in Table 1, the essential352

issues with SSA are premature convergence, being locked353

in local optimums, low population variation, and a poor354

balance between exploration and exploitation. Because of 355

this, an improved SSA approach (SSALEO) is proposed 356

in this study to address SSA’s shortcomings. Following the 357

works described above, SSALEO varies from them in the 358

following ways: 359

� With the use of an efficient operator, this study has 360

overcome the shortcomings of the classic SSA, such as 361

(1) not getting stuck in local optima, (2) keeping explo- 362

ration and exploitation in balance, and (3) increasing 363

convergence speed. 364

� A novel mathematical technique called a local escap- 365

ing operator (LEO) is a local search for developing 366

an effective solution that intends to explore unob- 367

served search regions and escape from the local optimal 368

problem. 369

� High-dimensional and engineering design-constrained 370

test functions were used to evaluate the proposed 371

SSALEO algorithm. According to the statistical test 372

analysis, research shows that the proposed method 373

effectively deals with those issues. As a result, the 374

results reveal that the new method is superior in most 375

situations. 376

IV. PRELIMINARIES 377

The local escape operator and fundamental Salp swarm 378

algorithm (SSA), as well as its analogies and mathematical 379

models, are discussed in this section. 380

A. LOCAL ESCAPE OPERATOR (LEO) 381

In Ahmadianfar et al. [39], the LEO is proposed as a local 382

search algorithm that is utilized to improve the ability of 383

an optimization method, especially the Gradient-based Opti- 384

mizer (GBO), to explore new search regions that are required 385

in difficult real-world challenges. LEOs improve the overall 386

quality of solutions by maintaining their positions according 387

to a set of criteria. The behavior of the algorithm’s conver- 388

gence is enhanced as a direct result of this feature, which 389

prevents the algorithm from being trapped in local optima. 390

LEO creates high-quality alternative solutions (XLEO) by 391

combining many different solutions, such as the best position 392

Xbest , two randomly created solutions Xmr1 and Xmr2 two ran- 393

domly selected solutions X1mn and X2mn , and a new randomly 394

generated solution Xmk . This allows LEO to develop solutions 395

that perform exceptionally well. As a consequence of this, 396

the value XLEO may be determined by utilizing Equations (1) 397

and (2), which, in mathematical terms, can be expressed as 398

follows: 399

if r2 < 0.5 400

XmLEO = Xm+1n + f1 ×
(
u1 × Xbest − u2 × Xmk

)
401

+ f2 × ρ1 ×
(
u3 ×

(
X2mn − X1

m
n
)
+ u2 402

×(Xmr1 − X
m
r2)
)
/2 403

×Xm+1n = XmLEO (1) 404

Else XmLEO = Xbest + f1 ×
(
u1 × Xbest − u2 × Xmk

)
405

+, f2 × ρ1 ×
(
u3 × (X2mn − X1

m
n
)
+ u2 406

×(Xmr1 − X
m
r2))/2× 407

Xm+1n = XmLEO (2) 408
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Xmn represents the current salp position,Xbest is the location of409

the food with the highest total score, r2 is a random number410

in the range [0,1], and both f 1 and f 2 are random numbers411

drawn from a uniform distribution in the range [−1, 1].412

Xmr1 andX
m
r2 are two random solutions that were obtained from413

the population of the Salp. X1mn and X2mn are two alternative414

solutions that were generated at random from the current415

population of the Salp, as shown in Equation (3):416

X1mn ,X2
m
n = lb+ rand (0, 1)× (ub− lb) (3)417

where lb and ub signify the lower and upper limits, respec-418

tively. rand is a randomnumber in the range [0,1]. In addition,419

n and m represent the coordinates of the solution, where n can420

range from 1 to N and m can range from 1 to Dim. Addition-421

ally, u1, u2, and u3 are three variables that are generated by422

random processes in the following manner:423

u1 = L1 × 2× rand+ (ub− L1) (4)424

u2 = L1 × rand+ (ub− L1) (5)425

u3 = L1 × rand + (ub− L1) (6)426

L1 represents a binary parameter ( L1 = 1if µ1 < 0.5,427

and 0 therwise), µ1 represents a number in the range 0 and 1.428

In addition, ρ1 is implemented to maintain a healthy equi-429

librium between the searching processes of exploration and430

exploitation, and it can be described as follows:431

ρ1 = α × (2× rand− 1) (7)432

α =

∣∣∣∣β × sin
(
3π
2
+ sin

(
β ×

3π
2

))∣∣∣∣ (8)433

β = βmin (βmax − βmin)×

(
1−

(
T

Tmax

)3
)2

(9)434

The current iteration is denoted by T, while the maximum435

number of iterations is denoted by Tmax. The parameters436

βmin and βmax are configured to have values of 0.2 and 1.2,437

respectively. ρ1 varies as a function of the sine function α to438

maintain a healthy equilibrium between the exploration and439

exploitation processes.440

The following strategy is suggested as a means of locating441

the valueXmk in Equation. (1) and Equation. (2):442

Xmk =

{
Xrand if µ2 < 0.5
Xmp otherwise

(10)443

where µ2 is a number between 0 and 1, Xmp is an illustration444

of a solution chosen randomly from the salps population445

(p ranges from 1 to N). Xrand is a new solution that may be446

found by following the above equation (11).447

Xrand = lb+ rand (0, 1)× (ub− lb) (11)448

Eq. (10) can be written as follows:449

Xmk = L2 × Xmp + (1− L2)× Xrand (12)450

where L2 is a binary parameter with a value of either 0 or 1,451

depending on the context. If the parameterµ2 is less than 0.5,452

then the value of L1 has a value of 1, and if it is greater than453

0.5, then the value of L1 is 0.454

B. SALP SWARM ALGORITHM (SSA) 455

Mirjalili et al. [35] developed the Salp swarm algorithm 456

(SSA), which is one of the most recently published swarm 457

optimization methods. The SSA algorithm’s core idea is to 458

emulate the swarming behavior of salps in the water using 459

the salps chain concept. Salps are barrel-shaped organisms 460

that belong to the Salpidae family. Furthermore, the tissues 461

and movements of salps are similar to jellyfish [84]. During 462

their lives in the water, salps display a peculiar swarming 463

behavior called a ‘‘salp chain’’ activity. This activity, which 464

can be exploited in the salps’ motions as they look for food, 465

can be observed throughout their lives. 466

The members of SSA can be broken down into two cate- 467

gories: leaders and followers. The leader of the Salps chain is 468

responsible for determining movement directions, selecting 469

food places, leading the SSA chain to the food, and regularly 470

updating the sites. The term ‘‘followers’’ is used to refer to 471

the remaining members of the population. Each follows the 472

leader in turn to establish the chain structure. Each salps 473

point in the search space is characterized by n dimensions, 474

where n represents the number of variables involved in the 475

problem. In addition, the food supply denoted by the letter F 476

is a metaphor for the salps’ search aim. The following is one 477

possible representation of this process: 478

x1j =

{
Fj + r1

((
ubj − lbj

)
r2 + lbj

)
r3 ≥ 0.5

Fj − r1
((
ubj − lbj

)
r2 + lbj

)
r3 < 0.5

(13) 479

x1j represents the chain Salps leader position with the jth 480

dimension. Fj stands for the food position with the jth dimen- 481

sion, ubj and lbj stand for the upper and lower bounds of Salps 482

position components, respectively. r2 and r3 are two scalars 483

that have been chosen at random from the range [0,1]. During 484

the iteration process, the most important control parameter to 485

pay attention to is r1, which is what stabilizes the exploration 486

and exploitation phases. The following is the expression for 487

the variable r1: 488

r1 = 2e
−

(
4t
T

)2
(14) 489

where the numbers t and T respectively signify the current 490

number of iterations and the maximum number of possible 491

iterations. The following equation is used to calculate an 492

update to the Salps chain of followers’ positions in such a 493

way that i ≥ 2: 494

x ij =
1
2

(
x ij + x

i−1
j

)
(15) 495

Following Isaac Newton’s theory of motion: 496

x ij =
1
2
k × time2 + s0×time (16) 497

where, x ij is the position of the i-th follower in the j-th dimen- 498

sion, t denotes the time, s0 is the initial speed, and k =
sfinal
s0

499

where 500

s = (x − x0)/time (17) 501
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V. THE PROPOSED ALGORITHM502

When attempting to solve optimization problems, it is some-503

times challenging to prevent the algorithm from getting stuck504

in the value of the local optima. The agent must search the505

solution space thoroughly to avoid local optimization. Con-506

sequently, an original SSA does an excellent job of striking507

a balance between exploration and exploitation. On the other508

side, the SSA has the following problems:509

� The leader’s position update model causes a decrease in510

the effectiveness of the food search throughout repeated511

iterations, which results in a stagnation effect.512

� Within the SSA mathematical paradigm framework,513

there is no logical transition from exploiting to514

discovering.515

� The resolution of low-dimensional optimization issues516

is the primary focus of the great majority of the517

SSA-enhanced approaches now in use. It is not known,518

however, whether or not SSA is capable of effectively519

tackling high-dimensional optimization difficulties.520

Weuse a low-level co-evolutionary heterogeneous hybrid that521

blends SSAwith LEO to evade the problems that SSA causes.522

The suggested algorithm, known as SSALEO, combines SSA523

with LEO. LEO is primarily used to increase the performance524

of the finest original SSA solutions. It is essential, particularly525

in human-aided systems, to combine a great number of the-526

ories and ideas originating from a variety of scientific fields.527

Through hybridization, it is possible to integrate the bene-528

fits of multiple algorithms to build improved versions with529

guaranteed performance and accuracy. According to [85], two530

algorithms can be hybridized in either a homogeneous or531

heterogeneous fashion, either at a high level or a low level,532

using a relay approach or a co-evolutionary strategy. The533

hybrid is low-level because we combine the capabilities of534

both techniques. However, it is co-evolutionary because we535

do not employ both methods sequentially. In other words,536

they run at the same time.537

The SSALEO algorithm uses the LEO operator to stim-538

ulate the visitation of new regions while following the key539

phases of the traditional SSA. In addition, LEO increases540

the algorithm’s search for global optima and its convergence541

rate, dynamically avoiding stagnation in local optima. In the542

next part, we will provide a comprehensive breakdown of the543

SSALEO implementation that has been suggested.544

A. THE PRIMITIVE STEP OF THE SSALEO545

Initialization is the first step in SSALEO, just like it is in546

the majority of optimization methods. This step involves547

establishing an initial population of (N ) search agents. Each548

search agent has a dimension (Dim) in the search space, which549

is bound by the upper and lower limits, as shown in Eq. (18).550

EP = lb+ rand (N ,Dim)× (ub− lb) (18)551

Within the search space, each solution is constrained between552

the upper and lower bounds by a dimension known as Dim.553

EP stands for the initial salps population, and N denotes the554

number of random solutions that can be generated at any 555

time. The lower and upper bounds are indicated by lb and 556

ub, respectively. 557

B. THE DIFFERENT SCENARIOS FOR THE SSALEO UPDATE 558

Two different sets of conditions determine the technique for 559

updating the salp position. First, using equation (13), con- 560

struct an agent solution based on the food position obtained 561

up to this point, and store the results. During this phase, 562

the initial SSA is completed as a matter of course. Then, 563

in the second scenario, the solution is upgraded to improve 564

efficiency by applying the LEO technique. This is done in the 565

second scenario. The conditional nature of the LEO differ- 566

entiation between the two paths is illustrated by Equations 1 567

and 2, respectively. If (rand is less than 0.5), then the first 568

path is selected as the one to take to continue the process 569

of updating the solution, as shown in Eq (1). Otherwise, the 570

second option, Equation (2), will be utilized to locate the new 571

solution. 572

C. THE SSALEO SCENARIOS OF OPTIMIZATION 573

To enhance the overall quality of the succeeding solutions, 574

it is necessary to perform this step at the beginning of each 575

iteration to assess the vector of solutions produced in the 576

preliminary phase. As a direct consequence of this, within the 577

existing population, SSALEO determines the fitness value, 578

denoted by the notation Fitness(EP) of each salp position. 579

The best-scoring solution Xbest is determined, saved, and 580

extracted at the updating stage. 581

D. CRITERIA FOR TERMINATION 582

After finishing all the optimization scenarios and iterating 583

until all the stopping requirements are satisfied, the rec- 584

ommended SSALEO will find the best possible solution. 585

Algorithm 1 provides the SSALEO algorithm’s pseudocode, 586

and Fig. 1 depicts a full flowchart. 587

E. COMPUTATIONAL COMPLEXITY 588

The computing complexity in practice should judge meta- 589

heuristics. The time required to initialize the population for 590

the proposed SSALEO and other algorithms (such as SSA, 591

GWO, PSO, CSO, SCA, and WOA) is O(no × np) time, 592

where no represents the number of objectives and np denotes 593

the size of the population. The time required to initialize 594

the population for the proposed SSALEO. When it comes 595

to search strategies, calculating the fitness of search agents 596

takes O(Maximumiterations×Of ) time, where Of is the objec- 597

tive function for the problem at hand. The entire process 598

requires time denoted by the notation O(N ). The suggested 599

SSALEOalgorithm has a computational complexity ofO(s)+ 600

O(Maximumiterations×(S+S×dim)), whereO(S) is the num- 601

ber of search agents and dim is the dimension of the problem. 602

The overall complexity of O (Maximumiterations × S × Dim) 603

will vary according to this. The suggested SSALEO and 604

several other algorithms are each given their typical execution 605

times in Table 2. 606
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TABLE 2. The length of the execution comparison (in seconds) of the performance of SSALEO and the other options in solving the benchmark functions
for CEC2017, which each have 100 dimensions and are executed 30 times independently.

Algorithm 1 Pseudocode ofSSALEO
Initialize the population matrix (EP) according to upper and lower
bounds (population size, dimensions).
Evaluate the initial Particles
Sort the fitness values and set FoodFitness as the best salp’s fitness and
FoodPosition as the best salp’s position
while (stopping condition is not hold)

Compute r1 by Eq. (14)
for (each Particle in (Particles))

if (i ≤ N/2) then
Update the position of the leading Particle by Eq. (13)

else
Update the followers’ Particles by Eq. (15)

/∗ LEO strategy ∗/
if (u1 < 0.5) then
calculate XmLEO using Eq.(1)
else
calculate XmLEO using Eq.(2)
Evaluate the New XmLEO and record them as fitness
if (Fitness(XmLEO) < Fitness(CurrentSalpPosition)) then
CurrentSalpPosition = XmLEO
CurrentSalpPositionFitness = Fitness(XmLEO)
update the FoodPosition and FoodFitness

end-for

end-while

As seen in Table 2, SSALEO was evaluated with eight 607

other competitors in this subsection to assess their ability 608

to compute time-intensive experiments included in the CEC 609

2017 benchmarks. Due to the time-consuming nature of the 610

calculation method, it is essential that each participant carry 611

out each function a total of thirty times and then report the 612

outcomes in Table 2. In addition, the data in the table demon- 613

strate that the computation of SSALEO takes amore extended 614

time since the integration method, which requires a greater 615

amount of processing resources, is utilized. On the other 616

hand, SSALEO can beat certain algorithms while requiring 617

less time. These algorithms include CSO, BAT, PSO, MFO, 618

SCA, SSA, and GWO. SSALEO has substantial advantages 619

over other algorithms, despite being rather time-consuming. 620

VI. EXPERIMENTAL RESULTS AND ANALYSIS 621

Using benchmark functions with various properties is a com- 622

mon approach while conducting tests on optimization algo- 623

rithms with a stochastic nature. Benchmark functions have 624

known global optima and mimic real-world optimization 625

problems. 626
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FIGURE 1. SSALEO flowchart.

Academics have used many different benchmark functions627

to evaluate algorithms. With the CEC2017 [86] bench-628

mark functions with dimensions of 50 and 100 bench-629

mark functions, and the LSGO issues with CEC2008 [87]630

with dimensions of 200, 500, and 1000, this section com-631

pares SSALEO performance (see Tables 3 and 4 for further632

information). The utilization of such sets aims to deter-633

mine how robust SSALEOs are when resolving a diverse634

selection of benchmark functions. Comparisons are made635

between the performance of SSALEO and that of sev-636

eral innovative swarm intelligence algorithms, such as BAT,637

PSO, CSO, SCA [88], WOA [89], MFO [90], HHO [91],638

and SSA. The performance of SSALEO was then com-639

pared to the performance of other advanced algorithms such640

as RW-GWO [92], HIWOA [93], LJA [94], CPSO [95],641

WFOA [96], LNMRA [97], CLPSO [98], HIWOA [93],642

LJA [94], PPSO [99], PPSO_W [99], andHPSO_TVAC [100]643

as well as the convergence behavior of each. The Wilcoxon644

rank-sum and non-parametric Friedman tests assess the algo-645

rithms’ overall efficacy.646

A. EXPERIMENT SETUP647

Due to the stochastic nature of swarm intelligence algo-648

rithms, they must be reviewed and compared objectively,649

with all experiments being carried out under comparable 650

circumstances. Consequently, every algorithm was written in 651

Python 3 and evaluated on a computer equipped with an Intel 652

Core i3-7100 CPU operating at 3.90 GHz and 4 gigabytes 653

of random access memory. The evaluations were conducted 654

with CEC 2017 benchmark functions with 50 and 100 dimen- 655

sions and CEC2018LSGO benchmark functions with 200, 656

500, and 1000 dimensions. These evaluations covered uni- 657

modal, multimodal, hybrid, and composite tasks. To guaran- 658

tee consistency and fairness across all tests, we perform every 659

experiment thirty times, with each function being treated 660

independently. To produce metrics supported by sound statis- 661

tics for each function, the experiment is carried out thirty 662

times, and the population size (N) and the maximum number 663

of iterations (Max iter) are each set to thirty and two thousand 664

five hundred, respectively. 665

B. PERFORMANCE EVALUATION AND 666

PARAMETER SETUP 667

This research uses the average, the median, and the standard 668

deviation as three different descriptive metrics to evaluate 669

the performance of the suggested algorithm. To calculate an 670

average of the optimization results, the following formula 671
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TABLE 3. CEC 2017 benchmark function.

TABLE 4. CEC 2008lsgo benchmark function.

may be utilized:672

Mean =
1
n

n∑
i=1

Si (19)673

For each optimization, Si represents the final result. It is pos-674

sible to calculate the standard deviation of the optimization675

TABLE 5. Hyperparameter settings.
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TABLE 6. Results from 2500 iterations of the SSALEO vs standard techniques for unimodal functions.

outcomes using the formula below:676

std =

√√√√ 1
n− 1

n∑
i=1

(Si −Mean)2 . . . (20)677

Intuitively, the average number can be interpreted as a reflec-678

tion of the algorithm’s effectiveness in optimizing its perfor-679

mance and its ability to avoid making computational errors.680

Standard deviation is a measure of dispersion, and the lower681

it is, the more durable and strong the algorithm will be.682

Table 5 contains the SSALEO and other algorithms’ parame-683

ter values obtained from their corresponding research articles.684

These parameter selections ensure a fair comparison because685

they maximize the performance of each method. The findings686

shown in bold are the most significant.687

C. PERFORMANCE EVALUATION688

To evaluate the SSALEO method, its results are compared689

to several other cutting-edge metaheuristics techniques. The690

statistical features (mean, standard deviation, and median)691

of 30 runs are presented in Tables 6-9, with bold letters692

denoting the runs that produced the best results. The final693

rows of each of these tables provide additional information694

regarding the number of victories (W), ties (T), and losses (L)695

achieved by each algorithm. When comparing SSALEO’s696

performance to other algorithms, various functions from the697

CEC2017 benchmarkwith 50 and 100 dimensionswere used.698

These functions were used to evaluate how well SSALEO699

explored, exploited, and escaped from local optimums. Last700

but not least, the overall efficacy (OE) of SSALEO is com-701

pared to that of various other methods.702

1) ANALYSIS FOR EXPLOITATION AND EXPLORATION703

Because they are unimodal, the F1 and F2 functions can be704

utilized to calculate the algorithm’s exploitation ability. The705

proposed SSALEO technique is then empirically evaluated706

using these benchmark functions on dimensions 50 and 100.707

To demonstrate the suggested SSALEO’s exploitation capa- 708

bilities, the testing results for both the SSALEO and com- 709

peting algorithms are presented in Table 6, which can be 710

found here. The evaluation of the exploratory capacity of 711

optimization algorithms is a strong suit for F3-F9 in par- 712

ticular. They have multiple local optima that increase in 713

size exponentially as the dimension increases. The proposed 714

SSALEO approach, as indicated in Table 7 , can solve these 715

benchmark functions on dimensions 50 and 100. The results 716

in Table 6 and 7 demonstrate that including an SSA in 717

LEO results in a higher convergence rate for the algorithm, 718

avoiding a standstill in local optima dynamically and greatly 719

enhancing exploration and exploitation. 720

2) ANALYSIS OF ESCAPE ABILITY FROM LOCAL OPTIMA 721

To prevent the algorithm from becoming trapped in a local 722

optimal solution, the hybrid and composite functions are 723

essential in determining how much exploration and exploita- 724

tion should happen hand in hand. For hybrid functions 725

F10–F19, the proposed SSALEO outperforms competition 726

techniques, as shown in Table 8. In addition, the SSALEO 727

strategy outperforms the other competing approaches in 728

the composite optimization benchmark functions F20–F29, 729

as seen in Table 9. Combining an SSA with a LEO, as the 730

findings in Tables 8 and 9, increase the algorithm’s conver- 731

gence rate and ensures that exploration and exploitation are 732

appropriately balanced. 733

3) OVERALL EFFECTIVENESS (OE) 734

We evaluate the overall effectiveness (OE) [101] of the 735

SSALEO compared to that of its competitors in this section 736

by looking at the findings of those competitors in Tables 6–9. 737

Equation (21) shows the OE of the comparison algorithms, 738

where N and L are the total numbers of test functions and 739

losses for each strategy. Table 10 reveals that the SSALEO 740

is the most effective method for all test functions involving 741
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TABLE 7. Results from 2500 iterations of the SSALEO vs standard techniques for multimodal functions.

50 and 100 dimensions, as it achieves an OE of 76.94 percent.742

OE =
(
N − L
N

)
× 100 (21)743

D. CONVERGENCE ANALYSIS744

Fig 2 illustrates the convergence behavior of the exist-745

ing techniques and the suggested SSALEO algorithm when746

applied to CEC2017 with 100 dimensions. According to the747

findings, the SSALEO performs better than other conven- 748

tional algorithms because it aggressively explores the search 749

space during the early iterations before gradually convergent 750

to the global optimum over the future iterations. In addi- 751

tion, as can be observed in Fig 2, the convergent speed of 752

the SSALEO technique is quite close to that of the other 753

strategies. Furthermore, the convergence curves illustrate 754

SSALEO’s ability to balance exploration and exploitation 755

in hybrid and composite functions while avoiding reaching 756
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TABLE 8. Results from 2500 iterations of the SSALEO vs standard techniques for hybrid functions.
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TABLE 8. (Continued.) Results from 2500 iterations of the SSALEO vs standard techniques for hybrid functions.

a local optimum. Additionally, the graph demonstrates that all757

functions are stable under the SSALEO approach. In addition,758

the suggested method is superior to the others in that it can759

obtain the lowest average of the global solutions for the760

CEC benchmark functions in a shorter time after only a few761

evaluations. Finally, because of its rapid convergence, the762

suggested SSALEO algorithm is a candidate for application763

as an optimization strategy in treating problems that call for764

fast computation, such as online optimization.765

E. STATISTICAL RESULTS TEST ANALYSIS766

In the nonparametric statistical analysis, the suggested767

SSALEO is evaluated compared to other tried and true meth-768

ods. On the other hand, because of the stochastic nature of769

the proposed algorithm, we had to employ a statistical test770

to validate the hypothesis that its results are statistically sig-771

nificant [102]. SSALEO’s performance is compared to other772

methodologies using the Wilcoxon rank-sum and Friedman773

tests.774

1) WILCOXON RANK-SUM TEST775

The Wilcoxon rank-sum [103] is a nonparametric statistical776

test utilized to evaluate the SSALEO’s performance com-777

pared to its rivals. Each sample is given a rank, and the sum778

of those ranks is calculated during the rank-sum experiment.779

There is no significant difference in the overall performance780

of the algorithms evaluated while utilizing the benchmark781

functions, according to the null hypothesis (H0), which is782

tested at a significance level of 0.05. The p-values for dimen-783

sions 50 and 100 are shown in Table 11, focusing on the784

p-values that are more than 0.05. As a consequence, the null785

hypothesis is refuted for most functions, and in comparison786

to the other algorithms, SSALEO generates statistically sig-787

nificant results.788

2) NON-PARAMETRIC FRIEDMAN TEST789

The non-parametric Friedman test [104] is utilized to eval-790

uate various algorithms and ascertain whether the proposed791

SSALEO’s findings are considerably distinct from its com-792

petitors. First, each tactic is assessed on its own and then793

graded from best to worst, with 1 and 2 indicating the great-794

est first and second results, respectively, and k predicting795

the worst possible outcomes. After that, the average rank is796

utilized to establish the final rank for each algorithm. The797

Friedman test is then carried out with the equation mentioned798

above (22), in which k represents the number of swarm799

intelligence algorithms, Rj represents the average rank of 800

algorithm j, and n represents the total number of swarm 801

intelligence algorithms. Table 12 displays the results of the 802

Friedman test for various dimensions of 50 and 100. These 803

findings demonstrate that SSALEO beats its competitors and 804

ranks top among other algorithms. 805

Ff =
12n

k (k + 1)

[∑
j
R2j −

k (k + 1)2

4

]
. . . (22) 806

F. RUN-TIME ANALYSIS 807

Although the computational complexity of the proposed algo- 808

rithm has already been discussed in the previous sections, 809

this section will explain how long it takes to complete the 810

CEC2017 benchmark routines. The conclusions of SSALEO 811

were evaluated and contrasted with those of its rival orga- 812

nizations. As part of the labor-intensive computing method, 813

competitors must complete each benchmark thirty times and 814

record their outcomes in Table 2. Regarding performance and 815

timing, SSALEO can outperform and surpass SCA, MFO, 816

SSA, BAT, CSO, WOA, and PSO. In addition, when com- 817

pared to other algorithms, SSALEO has a higher overall 818

efficiency than the others. 819

G. QUALITATIVE METRICS ANALYSIS 820

In this work, a Salp swarm algorithm (SSA) is combined 821

with a local escape operator (LEO) to overcome the inherent 822

limitations of the original SSA. SSALEO is a unique search 823

technique that considers population diversity, the imbalance 824

of exploitation and exploration, and the SSA algorithm’s pre- 825

mature convergence. Implementing LEO in SSALEO elim- 826

inates the search slowness in SSA and improves the local 827

search efficiency of swarm agents. Consequently, the primary 828

focus of this section will be on the impact of the new method 829

on the SSA. We choose five of the 29 functions from CEC 830

2017 as examples since they are more indicative of the whole 831

and have a stronger impact. These examples include both 832

unimodal and multimodal functions. These specific models 833

are designated as the F1,F3,F5,F9, and F21. 834

To intuitively analyze the position and fitness fluctuations 835

of SSALEO while it is foraging, the qualitative analysis that 836

SSALEO performed in handling unimodal and multimodal 837

functions is displayed in Figure 3. The figure consists of 838

three significant indicators: the SSALEO’s first dimension 839

trajectory, the projected exploration and exploitation phases 840

of the SSALEO, and the SSALEO’s average global best 841

95672 VOLUME 10, 2022



M. Qaraad et al.: Comparing SSALEO as a Scalable Large Scale Global Optimization Algorithm

TABLE 9. Results from 2500 iterations of the SSALEO vs standard techniques for composite functions.
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TABLE 9. (Continued.) Results from 2500 iterations of the SSALEO vs standard techniques for composite functions.

TABLE 10. Overall effectiveness OE of the SSALEO with traditional algorithms.

fitness level. The behavior of SSALEO’s position change as842

it pertains to the first dimension is depicted by the SSALEO843

trajectory. The variance trend of the SSALEO’s average fit-844

ness shifts due to the iteration process, as seen by the average845

global best fitness. Finally, a graphical representation of the846

proposed SSALEO’s exploration and exploitation stages is847

displayed during the iteration phase.848

The first-dimensional trajectory of the first SSALEO849

can be utilized to illustrate various components of the850

SSALEO, demonstrating the important exploratory aspect of851

the SSALEO. The SSALEO particle’s ability to search for852

the perfect solution quickly and precisely can be ensured853

by the fast oscillation during the prophase and the moderate854

oscillation that arises during the anaphase [101]. As can be855

observed in figure 3, the location curve for the SSALEO has a856

very significant amplitude in the early iteration process. This857

amplitude can reach up to fifty percent of the exploration858

space (b). If the function is smooth, the amplitude of the859

SSALEO particle’s position will begin to drop later in the860

iteration time. However, if the function’s amplitude changes861

significantly, the position amplitude will also change. This862

exemplifies the adaptability and resiliency of SSALEO in863

several different tasks. The differences can be categorized864

as anything from significant to negligible when seen as a865

whole. Early variations in the SSALEO show a high level,866

indicative of the system’s strong search capability. Later867

modifications, on the other hand, are made more slowly but868

may still be observed. This demonstrates that SSALEO is869

constantly working toward the optimal solution and is the best870

in this regard.871

The SSALEO’s proposed exploration and exploitation872

phases are illustrated in Figure 3 (c) to understand the explo-873

ration and exploitation trend better and search for the best874

solution. Every graphic contains a depiction of two curved875

lines. The process of the algorithm that involves exploration876

is represented by the blue curve, while the orange curve rep-877

resents the process of the algorithm that involves exploitation.878

As shown in Figure 3, the proposed SSALEO starts with879

a high exploration ratio and a low exploitation ratio; however, 880

it quickly transitions into an exploitation technique during 881

the majority of the iterations in the majority of the selected 882

functions. Consequently, the SSALEO that has been devel- 883

oped achieves a healthy equilibrium between exploitation and 884

exploration. 885

The average global fitness curve depicts the variation ten- 886

dency of SSALEO’s fitness during the iterative technique in 887

fig.3(d). If you look closely at SSALEO’s average fitness 888

curve, you’ll notice that it sways a lot. This is because the 889

average fitness value decreases over time, and the frequency 890

of the oscillation is inversely proportional to the number of 891

times it is run. This assures SSALEO will reach a conclusion 892

quickly and conduct an exact search in the anaphase. 893

H. COMPARISON OF SSALEO WITH RECENT 894

OPTIMIZATION ALGORITHMS 895

The suggested SSALEO has a superior search efficiency 896

for determining the optimum solution to the challenges than 897

traditional algorithms such as CSO, SSA, PSO, BAT, HHO, 898

SCA, and MFO. However, these algorithms are examples of 899

conventional search algorithms. Therefore, in the next sec- 900

tions, comparisons are made between the proposed algorithm 901

and a wide variety of modern and sophisticated algorithms. 902

1) COMPARISON OF SSALEO WITH SOME 903

RECENT ALGORITHMS 904

A comparison is made in this subsection between the 905

efficiency of the proposed SSALEO and HIWOA [94], 906

LJA [95], WFOA [97], RW-GWO [93], QSSALEO, and 907

LNMRA [98]. Additionally, SSALEO is evaluated against 908

other optimization methods, such as CPSO [96], PPSO [100], 909

and PPSO_W [100]. In the tests that are detailed in this 910

subsection, the CEC2017 test functions were used. For accu- 911

rate comparisons, the population size (N) and the maximum 912

number of iterations (Max iter) have been set at 30 and 2500, 913

respectively. After running each method 30 times, the mean 914
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FIGURE 2. SSALEO convergence curves and other traditional algorithms during 2500 iterations.

optimization result, standard deviation, and median are com-915

pared in order to determine how well each one performs. The916

critically important parameters for each method are outlined917

in Table 5. Table 13 illustrates that the suggested SSALEO 918

technique is on par with, if not better than, other algorithms 919

already in use. 920
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TABLE 11. Wilcoxon rank-sum (P-value) of the SSALEO versus other standard techniques on CEC2017 with 50,and 100 dimensions.
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TABLE 11. (Continued.) Wilcoxon rank-sum (P-value) of the SSALEO versus other standard techniques on CEC2017 with 50,and 100 dimensions.

TABLE 12. Summary of Freidman test results on CEC2017’s test functions
with dimensions 50 and 100.

It is important to note that the p-value of the Wilcoxon921

rank-sum test is used in this subsection to compare the effec-922

tiveness of the suggested approach to that of other currently923

used strategies. This is done to determine which technique924

is the most efficient. Table 14 presents the p-values, with an925

asterisk indicating more than 0.05 and underlined. As a con-926

sequence, the null hypothesis is rejected for most functions,927

and in comparison to other methodologies, SSALEO gen-928

erates statistically significant results. Table 15 presents the929

findings of the Friedman test, with the SSALEO coming in930

first place for most of the functions. On display in Figure 4 is931

the convergence behavior of the suggested SSALEO and932

that of alternative techniques after a total of 2500 iterations.933

Again, the SSALEO is superior to other contemporary algo-934

rithms and can obtain better solutions in a shorter amount of935

time while maintaining a healthy balance between its explo-936

ration and exploitation capabilities. The findings presented937

in Table 13 demonstrate, in addition, that SSALEO performs938

better than other modern algorithms in more than half of939

the functions when the efficiency of the entire system is940

evaluated (OE).941

2) COMPARISON OF SSALEO WITH SOME SSA’S VARIANTS 942

On the 29 CEC 2017 test functions, the SSALEO method 943

that has been suggested will be evaluated by comparing 944

to seven different enhanced SSA variants, which include 945

ESSA [105], HSSASCA [76], ISSA_OBL [79], IWSSA [79], 946

STS-SSA [78], and TVSSA [80]. These enhanced variations 947

of the SSA highlight their major advantages by providing 948

novel approaches that can be used to improve the standard 949

version of the SSA. The population size of each algorithm 950

is set to 30, and the maximum number of iterations that can 951

occur is 25000. After 30 iterations, the performance of each 952

algorithm is analyzed by comparing the mean optimization 953

result, the standard deviation, and the median of the results. 954

Finally, the statistics are compiled and presented in Table 16. 955

Table 5 provides a review of the important parameters 956

that are involved in each methodology. The outcomes of 957

the Wilcoxon signed-rank test and the Freidman test are 958

presented in Tables 17 and 22, respectively. The conver- 959

gence graphs of the techniques being considered are shown 960

in Figure 4. Table 16 demonstrates that when dealing with 961

unimodal functions F1 and F2, SSALEO performs better than 962

other alternatives. The strategy that has been proposed raises 963

the basic SSA’s exploitation potential in comparison to the 964

potential of different SSA variants. SSALEO provides the 965

lowest solutions, including multimodal functions such as F3, 966

F4, F5, F6, F7, F8, and F9. The results in Table 16 demon- 967

strate that the proposed SSALEO algorithm can solve the 968

benchmark functions. In addition, Table 16 illustrates that 969

implementing the suggestedmethod increases the capabilities 970

of the initial SSA in terms of exploration and exploitation. 971

In addition to being competitive in hybrid functions F10–F19 972

and composite functions F20–F29, the search agents that 973

SSALEO built are also competitive in these areas. According 974

to Table 16, the new search technique has also significantly 975

improved the ability of the original SSA to find an appropriate 976

mix of exploration and exploitation for the algorithm to avoid 977

becoming trapped in a local optima. 978

When the overall efficacy of each improved SSA is com- 979

pared, Table 16 shows that SSALEO performs better than the 980

other enhanced SSAs in more than half of the functions (OE). 981

The SSALEO is the most efficient algorithm for all test func- 982

tions, with an overall effectiveness score of 62.06 percent. 983

Figure 4 from the CEC2017 presents a visual representa- 984

tion of the convergence behavior exhibited by the proposed 985

SSALEO as well as other approaches after 2500 iterations. 986
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FIGURE 3. (a) Illustration of CEC 2017 functions, (b) trajectory of SSALEO in the first dimension, (c) the exploration and exploitation phases (d) average
global best fitness of SSALEO.

According to the findings, the SSALEO is superior to the987

different techniques because it vigorously explores the search988

space in the early iterations before gradually converging to the989

global optimum in the later iterations.990

In addition, as seen in Figure 5, the SSALEO strategies 991

converge on the same solution nearly as soon as the other 992

methods. In a similar vein, the convergence curves for hybrid 993

and composite functions demonstrate that SSALEO has the 994
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TABLE 13. Results from 2500 iterations of the SSALEO vs some recent techniques.

VOLUME 10, 2022 95679



M. Qaraad et al.: Comparing SSALEO as a Scalable Large Scale Global Optimization Algorithm

TABLE 13. (Continued.) Results from 2500 iterations of the SSALEO vs some recent techniques.

potential to strike a balance between exploration and exploita-995

tion while avoiding becoming trapped in a local optima.996

Table 17 presents the p-values, emphasizing the p-values that997

are more than 0.05. As a direct consequence, the null hypoth-998

esis is refuted for most functions, and SSALEO generates999

statistically significant results compared to other methods.1000

In conclusion, the results of the Friedman test are presented1001

in Table 18, which shows that the SSALEO is superior to its1002

rivals and ranks first compared to other algorithms.1003

I. SCALABILITY ANALYSIS OF SOLUTIONS TO1004

HIGH-DIMENSIONAL FUNCTION1005

OPTIMIZATION PROBLEMS1006

When solving optimization issues, it is not uncommon for1007

functions of a high dimension and a huge scale. Because of1008

this, the search space becomes more complicated, making the1009

optimization process more difficult. Consequently, questions1010

pertaining to various dimensions may be utilized to analyze1011

the impact scalability has on the optimization efficiency of1012

the suggested approach. Using SSALEO, it is possible to find1013

solutions to problems with dimensions 200, 500, and 1000.1014

Comparative studies may also use additional algorithms other1015

than PSO and SSA, such as others. Table 19 shows the results 1016

of the calculations and parameter values for methods that 1017

comply with Section 6.2. According to the results presented 1018

in Table 19, SSALEO is the most efficient approach for 1019

performing the majority of functions when compared to other 1020

state-of-the-art algorithms. According to Table 23, the new 1021

integration technique boosted the effectiveness of the previ- 1022

ous method in selecting the optimum combination of explo- 1023

ration and exploitation to avoid becoming entrapped within a 1024

local optima.When the overall performance of the algorithms 1025

is compared, Table 19 shows that SSALEO performs better 1026

than the other algorithms in more than half of the functions 1027

(OE). With an overall efficiency (OE) of 66.66 percent, the 1028

SSALEO methodology is the most successful strategy for all 1029

test functions with 200, 500, and 1000 dimensions. 1030

The findings of the Friedman test are presented in Table 20, 1031

and the SSALEO ranks first for most of its functions. 1032

Table 21 contains the Wilcoxon rank-sum p-values, empha- 1033

sizing the p-values that are more than 0.05 through under- 1034

lining. As a consequence, the null hypothesis is refused for 1035

every function, and in comparison to other methodologies, 1036

the results that SSALEO produces are statistically significant. 1037
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TABLE 14. Wilcoxon rank-sum of the SSALEO vs.other advanced algorithms on CEC2017.

In addition, it can be seen in Figure 6 that the SSALEO1038

algorithm converges almost as quickly as the other algo-1039

rithms do. As a consequence, the enhanced method might1040

demonstrate excellent optimization accuracy and robustness1041

when confronted with challenges of a significant magnitude.1042

In addition, SSALEO has the potential to avoid dimensional1043

catastrophe and has a high optimization efficiency even when1044

tackling problems with high-dimensional functions.1045

1) COMPARISON OF SSALEO WITH SOME ADVANCED1046

ALGORITHMS ON CEC2008LSGO1047

For the purposes of comparative research, this section makes1048

use of CMA-ES [106], LM-CMA [107], SHADE [108],1049

DESAP_ABS [109], large-scale QIWOA [55], large-scale1050

DSCA [110], and various other cutting-edge approaches.1051

As a result of their superior performance in the CEC’20181052

Competition (especially in more complex functions), these1053

algorithms have been designated as the new LSGO stan-1054

dard. In addition, the parameter values of such algorithms1055

are completely in line with the requirements of Section 6.2.1056

The results of the Friedman test are presented in Table 22,1057

demonstrating that the SSALEO ranks top for the majority1058

of functions. The results of the computations are displayed1059

in Table 23. Table 23 contains a collection of statistics that 1060

demonstrate that, in comparison to other advanced algo- 1061

rithms, SSALEO is the method that performs the majority 1062

of functions most effectively. In addition, the Wilcoxon rank- 1063

sum p-values are presented in Table 24, with p-values that are 1064

greater than 0.05 being highlighted. 1065

Consequently, the null hypothesis cannot be accepted for 1066

any functions. Compared to other research approaches, the 1067

outcomes produced by SSALEO are statistically significant. 1068

As a consequence of this, one can conclude that the method 1069

that has been proposed can keep an excellent level of opti- 1070

mization accuracy and robustness even when dealing with 1071

issues that are on a large scale. The experiments’ findings 1072

indicate that SSALEO can avoid dimensional catastrophe 1073

and possesses a high optimization efficiency when solving 1074

problems involving functions with a high dimension. 1075

VII. SSALEO FOR ENGINEERING DESIGN PROBLEMS 1076

Engineering design challenges such as [111], [112], [113], 1077

[114] are frequently solved using optimization approaches. 1078

This section first describes the benchmark set of seven 1079

well-known constrained design challenges in various engi- 1080

neering domains defined in the CEC 2020 conference 1081
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TABLE 15. Friedman test result of the SSALEO vs other advanced algorithms on CEC2017.

benchmark set of real-world problems (CEC2020) [115].1082

Then, This section assesses the applicability of the SSALEO1083

for dealing with engineering difficulties and challenges.1084

A. ENGINEERING DESIGN CHALLENGES BENCHMARK1085

Constraint optimization challenges naturally arise in optimal1086

engineering design, where exact design restrictions must be1087

accounted for in minimizing or maximizing the cost func-1088

tion. The SSALEO algorithm is applied to seven well-known1089

restricted design problems in various engineering domains,1090

benchmarked for real-world optimization by the 2020 Com-1091

petitions on Evolutionary Computation CEC 2020 [115].1092

Table 29 provides a brief explanation of different design1093

problems.1094

B. NUMERICAL PERFORMANCE EVALUATION1095

Because they have various natural limitations, the constrained1096

violation handles these confined engineering design prob-1097

lems. In this regard, the outcomes of multiple metaheuristics1098

in dealing with these design instances were obtained from1099

the literature to make fair assessments. The proposed method1100

was run 30 times in a row. With a population size of 20, the 1101

maximum number of iterations is 2500. This section presents 1102

the numerical results of SSALEO for the previously specified 1103

engineering design challenges. 1104

1) TENSION/COMPRESSION SPRING DESIGN 1105

(CASE 1) PROBLEM 1106

This tension/compression spring design problem aims tomin- 1107

imize the spring’s weight f(x) while considering limitations 1108

such as minimum deflection, shear stress, surge frequency, 1109

outside diameter limits, and design factors. The mean coil 1110

diameter D (x2), the wire diameter d (x1), and the number 1111

of active coils P are the design factors (x3) (see Fig. 7d). This 1112

problem’s mathematical formulation is as follows: 1113

min f (x) = (x3 + 2) x2x21 1114

s.t. g1 (x)= 1−
x32x3

71785x41
≤ 0 1115

g2 (x) =
4x22 − x1x2

12566
(
x2x31 − x41

) + 1

5108x21
−1 ≤ 0 1116
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FIGURE 4. SSALEO Convergence curves and other recent algorithms during 2500 iterations.

g3 (x)= 1−
140.45x1
x22x3

≤ 01117

g4 (x) =
x1 + x2
1.5

−1 ≤ 01118

where 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.1119

A cost-optimal tension/compression spring design problem1120

was solved using SSALEO and other state-of-the-art algo-1121

rithms in Table 30. Based on the findings, the proposed algo-1122

rithm is more efficient and solves hybrid decision variables1123

faster than others.1124

2) PRESSURE VESSEL DESIGN1125

A pressure vessel design problem involves minimizing a1126

pressure vessel’s cost f(x) while accounting formaterials, fab-1127

rication, andwelding costs. The Ts (shell thickness), Th (head1128

thickness), R (inner radius), and L (length) are the four design1129

variables (x4, length of the cylindrical section of the vessel,1130

not including the head) (see Fig. 7b). For example, the possi-1131

ble thickness of rolled steel plates is represented by continu-1132

ous variables by Ts, Th, and R and L. Therefore, the problem1133

of pressure vessel design can be described as follows: 1134

min f (x)= 0.6224x1x3x4 1135

+ 1.7781x2x23+3.1661x
2
1x4+19.84x

2
1x3 1136

Subject to : 1137

g1 (x) = −x1+0.0193x3≤ 0 1138

g2 (x) = −x2+0.00954x3≤ 0 1139

g3 (x)= −5x23x4 −
4
3
5x23+1296000 ≤ 0 1140

g4 (x) = x4−240 ≤ 0 1141

where 1 ≤ x1 ≤ 99, 1 1142

≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200. 1143

A cost-optimal pressure vessel design problem was solved 1144

using SSALEO and other state-of-the-art algorithms in 1145

Table 30. Based on the findings, the proposed algorithm is 1146

more efficient and solves hybrid decision variables faster than 1147

others. 1148
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TABLE 16. Results from 2500 iterations of the SSALEO vs some enhanced SSA’s techniques.
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TABLE 16. (Continued.) Results from 2500 iterations of the SSALEO vs some enhanced SSA’s techniques.

3) THREE-BAR TRUSS DESIGN PROBLEM1149

It is well known that the three-bar truss design problem is1150

used in constrained engineering applications for testing newly1151

discovered optimization techniques. Its primary objective is1152

to reduce the weight of a truss with three stress levels. (see1153

Fig. 7a). The following are the formulae for this optimization1154

problem:1155

Minimize f (x) =
(
2
√
2x1 + x2

)
l1156

Subject to :1157

g1 (x) =

(√
2x1 + x2

)(√
2x21+2x1x2

) P ≤ σ1158

g2 (x) =
x2(√

2x21+2x1x2

) P ≤ σ1159

g3 (x) =
1(

x1 +
√
2x2
)P ≤ σ1160

0≤x1, x2 ≤ 1,1161

where l= 100cm,P = 2kN/cm2, σ= 2kN/cm2
1162

The SSALEO algorithm outperformed most other state-of- 1163

the-art algorithms to solve the three-bar truss problem using 1164

the optimal decision variables to get optimal truss weight, 1165

as shown in Table 27. 1166

4) WELDED BEAM DESIGN 1167

shear stress (τ ), bending stress in the beam (σ ), buckling 1168

load on the bar (Pc), end deflection of the shaft (δ), and 1169

side constraints are all factors that must be considered while 1170

designing a welded beam. h (x1), l (x2), t (x3), and b (x4) are 1171

the four design variables (see Fig. 7c). This problem can be 1172

expressed as follows: 1173

min f (x)= 1.10471x21x2+0.04811x3x4 (14.0+x2) 1174

s.t. g1 (x)= τ (x)− τmax ≤ 0 1175

g2 (x)= σ (x)− σmax≤ 0 1176

g3 (x) = x1 − x4≤ 0 1177

g4 (x)= 0.10471x21+0.04811x3x4 (14.0+x2)−5.0 ≤ 0 1178

g5 (x)= 0.125−x1 ≤ 0 1179

g6 (x)= δ (x)− δmax≤ 0 1180
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TABLE 17. Wilcoxon rank-sum of the SSALEO vs.some improved SSA’s algorithms on CEC2017.

g6 (x)= P−Pc (x) ≤ 01181
1182

where τ (x) =

√(
τ ′2+2τ ′τ ′′

x2
2R
+
(
τ ′′)21183

τ
′

=
P

20.5x1x2
1184

τ
′′

=
MR
J

1185

M = P
(
L+

x2
2

)
1186

R =

√
x22
4
+

(
x1 + x3

2
)21187

J = 2

{
20.5x1x2

[
x22
12
+

(
x1 + x3

2

)(
x1 + x3

2

)]}
1188

σ (x) =
6PL

x4x23
1189

δ (x) =
4PL3

Ex33x4
1190

Pc (x) =
4.013E

√
x23x

6
4

36

L2

(
1−

x3
2L

√
E
4G

)
1191

where P = 6000lb, L = 14 in, E = 30 x 106 psi, G = 12 x 1192

106 psi, τmax =13,600 psi, σmax = 30,000 psi, δmax = 1193

0.25 in, 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 1194

0.1 ≤ x4 ≤ 2. 1195

A cost-optimal welded beam structure design problem was 1196

solved using SSALEO and other state-of-the-art algorithms 1197

in Table 27. Based on the findings, the proposed algorithm 1198

is more efficient and solves hybrid decision variables faster 1199

than others. 1200

5) MULTIPLE DISK CLUTCH BRAKE DESIGN PROBLEM 1201

Multiple disk clutch brake problem is a Constrainedmechani- 1202

cal design problem (see Fig. 7e); this problem’s mathematical 1203

formulation is as follows: 1204

Min f (x) = π
(
r2o − r

2
i

)
t (Z + 1) ρ 1205

Subject to: 1206

g1 (x) = ro − ri −1r ≥ 0, 1207

g2 (x) = lmax − (Z + 1) (t + δ) ≥ 0, 1208

g3 (x) = pmax − prz≥ 0, 1209

g4 (x) = pmaxvsrmax − przvsr≥ 0, 1210

g5 (x) = vsrmax − vsr≥ 0, 1211

95686 VOLUME 10, 2022



M. Qaraad et al.: Comparing SSALEO as a Scalable Large Scale Global Optimization Algorithm

TABLE 18. Friedman test result of the SSALEO vs some improved SSA’s algorithms on CEC2017.

g6 (x) = Tmax − T≥ 0,1212

g7 (x) = Mh − sMs≥ 0,1213

g8 (x) = T ≥ 0,1214

where1215

Mh =
2
3
µFZ

r3o − r
3
i

r2o − r
2
i

,1216

prz =
F

π
(
r2o − r

2
i

) ,1217

vsr =
2πn

(
r3o − r

3
i

)
90
(
r2o − r

2
i

) ,1218

T =
Izπn

30
(
Mh +Mf

) .1219

And 1r= 20 mm, tmax = 3mm, tmax = 1.5 mm, lmax =1220

30 mm, Zmax = 10, vsrmax = 10m/s, µ = 0.5, s = 1.5,1221

Ms = 40Nm, Mf = 3Nm, n = 250 rpm, pmax = 1MPa,1222

Iz = 55Kgmm2, Tmax = 15s, Fmax = 1000N, rimin = 55mm,1223

romax = 110mm.1224

The SSALEO algorithm outperformed most of the other 1225

state-of-the-art algorithms to solve the Multiple disk clutch 1226

brake problem using the optimal decision variables to get 1227

optimal truss weight, as shown in Table 28. 1228

6) WEIGHT MINIMIZATION OF A SPEED REDUCE 1229

The speed reducer design problem for minimizing the 1230

weights of the speed reducer (see Fig. 7f) is subject to 1231

constraints on bending stress of the gear teeth, surface 1232

stress, transverse deflections of the shafts, and stresses in the 1233

beams. The parameters x1, x2, . . . . . . ., x7 represent the face 1234

width (b), the module of the teeth (m), number of the teeth 1235

in the pinion (z), length of the first shaft between bearings 1236

(l1), length of the second shaft between bearings (l2), and 1237

the diameter of the first shaft (d1) and the second shaft (d2), 1238

respectively. 1239

min f (x)= 0.7854x1x22
(
3.3333x23+14.9334x3−43.0934

)
1240

− 1.508x1
(
x26 + x27

)
+7.4777

(
x36 + x37

)
1241
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FIGURE 5. SSALEO Convergence curves and other SSA’s Variants during 2500 iterations.

Subject to :1242

g1 (x) =
27

x1x22x3
−1 ≤ 01243

g2 (x) =
397.5

x1x22x
2
3

−1 ≤ 01244

g3 (x) =
1.93x34
x2x3x46

−1 ≤ 01245

g4 (x) =
1.93x35
x2x3x47

−1 ≤ 01246

g5 (x) =

√(
745x4
x2x3

)2
+16.9X106

110.0x36
− 1 ≤ 01247

g6 (x) =

√(
745x4
x2x3

)2
+157.5X106

85.0x36
−1 ≤ 01248

g7 (x) =
x2x3
40
−1 ≤ 01249

g8 (x) =
5x2
x1
−1 ≤ 0 1250

g9 (x) =
x1

12x2
−1 ≤ 0 1251

g10 (x) =
1.5x6+1.9

x4
−1 ≤ 0 1252

g11 (x) =
1.1x7+1.9

x5
−1 ≤ 0 1253

where 2.6 ≤ x1 ≤3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ 1254

x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5. 1255

The SSALEO algorithm outperformed most of the other 1256

state-of-the-art algorithms to solve the speed reducer design 1257

problem using the optimal decision variables to get opti- 1258

mal minimizing the weights of a speed reader, as shown in 1259

Table 29. 1260

7) PROCESS DESIGN PROBLEM 1261

It is a minimization issue, whichmay be expressed as follows. 1262

min f (x)= 5@period357854x21 + 40792.141 1263

− 37.29329 x4+0.835689x4x3 1264

95688 VOLUME 10, 2022



M. Qaraad et al.: Comparing SSALEO as a Scalable Large Scale Global Optimization Algorithm

TABLE 19. Comparison results of the SSALEO on CEC2008lsgos with traditional algorithms during 2500 iterations.
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TABLE 20. Friedman test result of the SSALEO vs.other traditional
algorithms on CEC2008lsgo.

TABLE 21. Wilcoxon rank sum test result of the SSALEO vs other
traditional algorithms on CEC2008lsgo.

Subject to : g1(x) = −92+ a3x4x2 + a11265

+ a2x4x3 − a4x4x3≤ 01266

g1 (x) = −110+ a7x4x2 + a51267

+ a6x5x3 − a8x21≤ 01268

g1(x) = a9 + a11x4x1 + a10x4x31269

− 25+ a12x1x2 ≤ 01270

TABLE 22. Friedman test result of the SSALEO vs.other advanced
algorithms on CEC2008lsgo.

With bounds: 1271

27 ≤ x1, x2, x3 ≤ 45 1272

x4 ∈ 78, 79, . . . ., 102} 1273

x5 ∈ 78, 79, . . . ., 102} 1274

where a1toa12 and their values are listed in Table 30. 1275

The SSALEO algorithm outperformed most of the other 1276

state-of-the-art algorithms to solve the speed reducer design 1277

problem using the optimal decision variables to get opti- 1278

mal minimizing the weights of process design, as shown 1279

in Table 31. 1280

VIII. SSALEO FOR HIGH DIMENSIONAL DATA 1281

FEATURE SELECTION 1282

Data mining and machine learning work more efficiently 1283

and effectively when dimensions are reduced [123]. Dimen- 1284

sionality reduction includes feature extraction and selection. 1285

Feature extraction creates a new set of attributes. A feature 1286

selection process eliminates superfluous or useless attributes 1287

to enhance learning efficiency [123]. FE approaches are 1288

less popular in machine learning than FS. Dimensionality 1289

reduction is crucial when learning about high-dimensional 1290
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TABLE 23. Comparison results of the SSALEO on CEC2008lsgos with advanced algorithms during 2500 iterations.

data. Filter-based and wrapper-based approaches are used to1291

identify features [124].1292

The filter-based methods pick features that are acceptable1293

based on statistics and data. Wrapper-based techniques use1294

machine learning algorithms to find a near-optimal solu- 1295

tion. They don’t consider relevance when choosing subgroup 1296

attributes.Wrapper-basedmethods, in contrast, determine the 1297

optimum subset depending on classifier accuracy. 1298
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TABLE 23. (Continued.) Comparison results of the SSALEO on CEC2008lsgos with advanced algorithms during 2500 iterations.

TABLE 24. Wilcoxon rank-sum test result of the SSALEO vs other advanced algorithms on CEC2008lsgo.

Numerous studies have compared feature selection meth-1299

ods, such as [125] which evaluated eight typical approaches1300

using three classifiers. Due to data’s growth and complex-1301

ity, problem-solving utilizing feature selection has expanded.1302

Typical optimization approaches require examining all fea-1303

sible subsets, making the application of AI for massive data1304

sets challenging and expensive [126]. Several optimization1305

techniques have already been created to address such difficul-1306

ties, as old methods are inefficient [75]. In addition, several1307

metaheuristic algorithms [72], [79], [125], [127], [128] have1308

been used to solve feature selection problems.1309

This sub-section shows experimental findings on how1310

SSALEO can be applied to problems in the real world, such1311

as selecting features from high-dimensional data (with more1312

than 2000 decision variables).1313

A. METHODOLOGY AND DATASET DESCRIPTION 1314

A variety of meta-heuristic feature selection techniques are 1315

compared and contrasted with TBLSBCL in this section. 1316

In addition, various benchmark high-dimensional datasets are 1317

used to illustrate the effectiveness of algorithms in large fea- 1318

ture spaces, including central nervous system (CNS) [129], 1319

ovarian cancer [130], and Colon cancer [131]. We’ve com- 1320

piled a summary of the datasets we looked at in Table 32. 1321

In addition, for a fair comparison, all procedures use the same 1322

seed data. Table 5 contains the rest of the parameters for 1323

each method. A total of twenty repetitions of each procedure 1324

were performed on a machine equipped with 4 GB of RAM 1325

and an Intel Core i3 processor to eliminate the potential 1326

of chance. We start with a population of 10, then run for 1327

50 iterations. 1328
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FIGURE 6. SSALEO Convergence curves and other traditional algorthms during 2500 iterations on CEC2008lsgo.

TABLE 25. The specifics of the seven real-world engineering design difficulties. D represents the total number of decision variables in the problem, g
represents the number of inequality constraints, h represents the number of equality constraints, and f (x∗) represents the best-known feasible objective
function value.

TABLE 26. An examination of several existing studies in the literature in comparison to the suggested SSALEO method for Tension/compression spring
design and pressure vessel design problems.

B. TRANSFER FUNCTION1329

Optimization strategies for Feature Selection are typically1330

binary. No feature selection problem-solving techniques exist1331

outside the binary range [0,1]. For this reason, it’s impor-1332

tant to develop a binary implementation of the optimization1333

procedure. After investigating the process of transforming a1334

continuous optimization algorithm into a binary one,Mirjalili1335

and Lewis [132] discovered that using a Transfer Function1336

(TF) could be helpful. The probability-based transfer func-1337

tion maps continuous data to binary 0s and 1s. In order to1338

implement the s-shaped transfer function, we use Eq. (23-24).1339

XS2 =
1

1+ e−x
(23) (23)1340

XBinary =

{
0, XS2 < Nrandom
1, XS2 ≥ Nrandom

(24) 1341

The variable denotes the solution to the problem of select- 1342

ing features XBinary while the random number denotes the 1343

threshold Nrandom. 1344

C. OBJECTIVE FUNCTION AND MEASURE 1345

OF PERFORMANCE 1346

The objective function must be well thought out before con- 1347

structing the optimization problem. Wrapper feature selec- 1348

tion approaches, for instance, can be used to reduce the 1349

total amount of features while simultaneously increasing 1350

the precision of a learning process. These two competing 1351
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TABLE 27. An examination of several existing studies in the literature in comparison to the suggested SSALEO method for Three-bar truss design design
and Welded beam design problems.

TABLE 28. An examination of several existing studies in the literature
compared to the suggested SSALEO method for multiple disk clutch break
design problem.

TABLE 29. An examination of several existing studies in the literature in
comparison to the suggested SSALEO method for speed reader design
design

TABLE 30. Process design problem constant.

objectives need to be factored into the objective function. This1352

research employed equation (25) as an objective function1353

since it simultaneously minimizes the selection ratio and the1354

classification error rate (minimization).1355

Fitness = ρErr (D)+ ϕ
|F |
|T |

(25)1356

TABLE 31. An examination of several existing studies in the literature in
comparison to the suggested SSALEO method for process design design.

TABLE 32. Dataset overview.

where ρ and ϕ are constants that adjust the precision of 1357

the classification and the level of feature reduction, respec- 1358

tively. The result was generated using the k-Nearest Neighbor 1359

(k-NN) classifier with K = 5. The error rate, denoted by 1360

Err (D), represents the percentage of incorrect identifications 1361

in the recognized subset. |T | is the total number of features 1362

and, |F | is the size of the subset of features that have been 1363

determined. In this investigation, ρ is set to 0.99 [133], and 1364

ϕ= 1−ρ. Furthermore, Three criteria are utilized to evaluate 1365

the suggested strategy in comparison to existing ones: Accu- 1366

racy in classification is determined by averaging the results 1367

of twenty iterations on the test dataset using the same set of 1368

features, as well as the fitness values and the average number 1369

of features for each of the methods used. 1370

D. EVALUATION AND DISCUSSIONS OF 1371

CALCULATED FINDINGS 1372

The effectiveness and efficiency of the proposed algorithm 1373

are assessed in this part. The results of the comparisons may 1374

be seen in Tables 33 and 34, with the most advantageous 1375
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TABLE 33. Analyzing and contrasting statistical data Calculating the average fitness over 20 iterations.

TABLE 34. Comparison of statistical results Accuracy of Classification,Selection Size over 20 iteration.

TABLE 35. Wilcoxon rank-sum and Freidman test SSALEO vs.other methods.

FIGURE 7. (a) Structure of three-bar truss design problem [134]. (b) Structure of Pressure vessel design
problem [135]. (c) Welded beam design problem [136]. (d) Structure of tension/compression spring design
problem [138]. (e) Multiple disk clutch brake design problem [137]. (f) The speed reducer problem [139].

results highlighted in bold. In table 30, Accu and # Fe stand1376

for the average classification accuracy and the average num-1377

ber of the specified feature, respectively.1378

Table 33 demonstrates that SSALEO is superior to com-1379

peting methods across three different datasets. Accuracy in1380

feature selection is displayed in Table 34 for various methods.1381

Extracted features from datasets employing other optimiz-1382

ers are tallied in Table 34. The following table shows the1383

results of several statistical methods applied to each dataset1384

in numerical form. When it comes to selecting features, 1385

SSALEO has the highest average accuracy. When compared 1386

to alternative methods, SSALEO yields the highest feature 1387

selection accuracy for these datasets. The new approach may 1388

be to blame since it strikes a better balance between discovery 1389

and exploitation. 1390

The effectiveness of the suggested method is compared to 1391

that of other preceding algorithms using the Wilcoxon rank- 1392

sum test. Table 35 presents the p-values, with highlighted 1393
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values denoting p-values larger than 0.05. As a result,1394

SSALEO produces statistically significant results compared1395

to other methods, and the null hypothesis is rejected for most1396

functions. The significance of a difference between two or1397

more sample methods is evaluated using the Friedman test’s1398

findings. The results of the Friedman tests on each dataset are1399

shown in Table 35. They show that SSALEO performs better1400

and achieves higher rankings than other algorithms.1401

IX. CONCLUSION AND FUTURE WORK1402

The Salp swarm algorithm (SSA) and local escape operator1403

(LEO) are combined in this study. The SSALEO proposed1404

is an innovative search strategy that can deal with a wide1405

range of population issues, including an imbalance between1406

exploitation and exploration and premature convergence of1407

the SSA algorithm. The LEO strategy employed in SSALEO1408

helps to reduce search deflation in SSA while also improving1409

the convergence rate of swarm agents and the effectiveness1410

of local search. The method that was suggested was primarily1411

developed for use with large-scale problems involving global1412

optimization. The SSALEO system was initially assessed by1413

completing a series of standard benchmark tasks (29 CEC1414

2017 test suites with 50 and 100 decision variables and seven1415

CEC2008 lsgo test suites with 200, 500, and 1000 decision1416

variables). Following this, the SSALEO was put through1417

its paces by competing against a benchmark set of seven1418

well-known constrained design tasks from the CEC 20201419

conference. These challenges were taken from a variety of1420

engineering specialties.1421

Comparisons were made between the novel method, tra-1422

ditional SSA, and other cutting-edge metaheuristics. The1423

proposed method outperforms the original SSA and several1424

different algorithms in terms of convergence speed and the1425

ability to break free from local optima. In addition, the pro-1426

posed method achieves superior results in terms of solution1427

efficiency in comparison to earlier metaheuristic algorithms.1428

According to the findings, the suggested SSALEO algorithm1429

is superior, and the method can be tested further on other1430

problems that are relevant to the real world in subsequent1431

research.1432
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