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ABSTRACT Accurate wind speed prediction can help the power department to perceive the change rule of
wind power in advance, reduce the impact of wind power grid connection, and then improve the wind power
consumption rate. Therefore, an optimized variational modal decomposition (OVMD) method combined
with optimized depth belief neural network (ODBN) is proposed to predict wind speed. First, the original
wind speed data are processed by OVMD method, then the decomposed data are predicted by ODBN method,
and the predicted component values are superimposed to obtain the wind speed prediction results. Taking the
actual wind speed data of a certain area in Northwest China as an example, the proposed combined model
is compared with common prediction methods such as DBN, long short term memory (LSTM), extreme
learning machine (ELM), BP neural network, etc. The experimental results show that its RMSE decreases
by 0.4494, 0.4778, 0.6217 and 0.6587, and its MAPE decreases by 10.3554%, 11.5484%, 14.6226% and

15.9493% respectively. The results verify the effectiveness of the prediction model.

INDEX TERMS Wind farm, wind speed, prediction accuracy, VMD, DBN.

NOMENCLATURE

VMD
ODBN

DBN
OVMD

ADMM

LSTM
SVM
ELM
BPNN
EMD
EEMD

CEEMD

Variational modal decomposition.
Optimized deep belief neural
network.

Deep belief network.

Optimized variational modal
decomposition.

Alternating direction multiplier
method.

Long short-term memory.
Support vector machine.

Extreme learning machine.

Back propagation neural network.
Empirical mode decomposition.
Ensemble empirical mode
decomposition.

Complementary Ensemble Empirical
Mode Decomposition.
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CEEMDAN

ST
PIP
PDP

ISSA
SSA
GWO
MFO
PSO

IMF

BIMF
ISSA-VMD
ISSA-DBN

OVMD-ODBN

Complete ensemble empirical mode
decomposition with adaptive noise.
Safe threshold.

Proportion of investigator population.
Proportion of discoverer

population.

Improved sparrow search algorithm.
Sparrow search algorithm.

Gray wolf optimization algorithm.
Moth fire optimization algorithm.
Particle swarm optimization
algorithm.

Intrinsic mode function.

Bandwidth intrinsic mode function.
Improved sparrow search algorithm-
variational modal decomposition.
Improved sparrow search algorithm-
deep belief network.

Optimized variational modal
decomposition-optimized deep
belief neural network.
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OVMD-DBN Optimized variational modal
decomposition-deep belief network.

OVMD-LSTM  Optimized variational modal
decomposition-long short-
term memory.

EMD-ODBN Empirical mode decomposition-
optimized deep belief neural network.

GBRBM Gauss-Bernoulli-restricted
Boltzmann machine.

RBM Restricted Boltzmann machine.

RMSE Root mean square error.

MAPE Mean absolute percent error.

MAE Mean absolute error.

R? Coefficient of determination.
RBFNN Radial basis function neural network.
ELMAN Simple recurrent neural network

I. INTRODUCTION

Wind power output has strong random fluctuation and it is
difficult to predict. The prediction deviation of wind power
increases the rotary reserve cost required to maintain the
stability of the power grid, and the excessive error may
even lead to “‘off-grid” and other safety accidents. The
power dispatching department often talks about wind change,
which restricts the development of wind power to a certain
extent [1], [2]. The accurate prediction of wind speed can
effectively reduce the uncertain impact of wind power and
improve the utilization of wind power in the power system.
Therefore, it is necessary to predict the wind speed of wind
farm.

At present, some scholars have carried out a lot of research
on wind speed prediction, which is mainly divided into physi-
cal model method and intelligent prediction method. Physical
model [3], [4] is mainly based on numerical weather forecast
and topographic information, but it is vulnerable to the influ-
ence of the location of wind power plant and inherent physical
characteristics of fans, and the adaptability of the method is
poor. The intelligent method takes all kinds of external factors
affecting load or historical load data as input and makes
prediction based on various artificial intelligence methods,
typical representatives of which are BP neural network and
Support Vector Machine (SVM), etc. [5], [6], [7]. BP neural
network [8] has many adjustable parameters and good oper-
ability, but its generalization ability is limited and it is easy to
fall into local optimum. SVM can solve nonlinear and local
minimum problems well, but the prediction accuracy is low
when dealing with large-scale data. Deep learning algorithm
is an extension of traditional artificial intelligence algorithm.
Because it adopts multi-layer nonlinear transformation, it can
more effectively represent the complex relationship in wind
speed and wind power data. At present, it has become a
research hotspot in new energy output prediction [9], [10].
Literature [11] proposed that the complete set empirical mode
decomposition was used to preprocess data, and the combined
model of long and short-term memory neural network and
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BP network was used to build wind speed prediction model.
Literature [12] proposed a combined model of convolutional
neural network and bidirectional long and short-term memory
neural network, in which convolutional neural network was
used to propose the internal features of time series, and
genetic algorithm was used to optimize the hyperparameters
in the model. Literature [13] proposed a combination model
combining wavelet transform and deep belief network, and
made a comparative analysis with conventional prediction
methods. Literature [14] proposed an adaptive deep learn-
ing model, which can realize automatic data learning and
generate appropriate structure, and can capture the dynamic
characteristics of wind speed data, thus achieving good wind
speed prediction effect. However, the prediction methods in
literature [11], [12], [13], and [14] are characterized by poor
stability.

Due to the strong nonlinear characteristics of wind speed
data, the single prediction method is rough, and it is diffi-
cult to refine the intrinsic law of the analysis data, and the
prediction error is large. Wavelet decomposition, empirical
mode function and other methods are used to decompose
the data signal, and the prediction model of each component
is established separately, which has gradually replaced the
single prediction method. In literature [15] and [16], empir-
ical mode decomposition method was used to decompose
data series and further predict wind speed, but the modal
aliasing problem existing in EMD could not be avoided.
Literature [11] and [17] introduced improved EMD meth-
ods, including set empirical mode decomposition and com-
plete set empirical mode decomposition, but the mode
aliasing problem of EMD was not fundamentally solved.
In literature [18] and [19], variational modal decomposition
is used to decompose data sequence, which can effectively
avoid the occurrence of modal aliasing. However, this method
is not adaptive, and parameters such as decomposition num-
ber and penalty factor need to be determined.

In addition, some literatures discuss the use of swarm
intelligence methods to optimize the parameters of predic-
tion models, such as the optimization of VMD parameters
and DBN parameters. These problems are essentially con-
strained programming mathematical problems, and the accu-
racy of the problem mainly depends on the optimization
performance of intelligent algorithms, so the selection and
optimization of solution methods is very important. Spark
search algorithm [20] is a new intelligent optimization algo-
rithm proposed in 2020. Compared with traditional intelligent
optimization algorithms such as particle swarm optimization
algorithm and gravitational search algorithm, this algorithm
has advantages in search accuracy, convergence speed and
stability. Scholar Li Yali [21] has made a detailed comparative
study of the new swarm intelligent optimization algorithm
that has emerged in recent years. It is concluded that the
performance of sparrow search algorithm in convergence
accuracy and stability is far better than that of bat algorithm,
grey wolf optimization, whale optimization algorithm and
other five optimization algorithms. However, as an algorithm
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with excellent performance, SSA algorithm is rarely used by
researchers to optimize the parameters of VMD and DBN,
and few literatures consider optimizing the parameters of
VMD and DBN at the same time.

Based on the above research, this paper introduces the
improved sparrow algorithm and energy difference tracking
method to adaptively optimize the key parameters of VMD,
selects the depth belief network to establish the prediction
model of each component, and uses the improved sparrow
algorithm to optimize the super parameters of the prediction
model. Finally, a combined wind speed prediction model of
Issa to optimize VMD and DBN is proposed. The actual
wind farm data in Northwest China are selected to verify
the feasibility of this method. The main contributions of this
study include the following:

1) An improved sparrow optimization algorithm based
on reverse learning and cloud model theory is proposed to
enhance the optimization ability of the algorithm.

2) The tracking method of energy difference is introduced,
and an improved SSA algorithm is proposed to optimize the
decomposition number and dependency factor of VMD.

3) An improved sparrow optimization algorithm is pro-
posed and verified to optimize the structural parameters of
DBN model.

4) The validity of the model is evaluated for the dates under
different months.

The remainder of this article is organized as follows.
Section 2 analyzes the improved sparrow intelligence
algorithm and variational mode decomposition theory.
Section 3 introduces deep belief networks and the imple-
mentation process of the ISSA-DBN prediction model.
Section 4 carries on the experiment. The conclusions are
drawn in Section 5.

Il. VARIATIONAL MODAL DECOMPOSITION OPTIMIZED
BY SPARROW ALGORITHM
A. VARIATIONAL MODAL DECOMPOSITION
VMD is a completely non-recursive mode variational
method, which decomposes signal f into multiple mode
functions u; with certain sparse properties, and solves the
problems of mode aliasing and high-frequency signal loss
existing in EMD. The calculation formula of u; bandwidth
is shown in Formula (1) below:

min

J —joxt
(mn 4 0y |:<3 1)+ 7Tt> * Uy (t)]e k
s.L Y () =£0)
k

2

ey

In the formula, {u;} is the modal components and {wy} is
the frequency center of each component.

Solve the above equation with the augmented Lagrange
function, and obtain Equation (2):
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The formula above can be obtained by using the alternating
direction multiplier method (ADMM):

F @) = Y it (@) + () /2
14+ 2a(w— a)k)2
5 i @) do

1
() =

3

In the formula, itZH (w) and a)ZJrl are wiener filtering and

frequency center of each component respectively.

B. THE SPARROW ALGORITHM
Sparrow search algorithm (SSA) is a bionic intelligent algo-
rithm proposed by Xue Jiankai et al. in 2020, which sim-
ulates the foraging and anti-predation behavior of sparrow
population. When foraging, the whole sparrow population
is divided into two fixed proportion of finders and entrants.
According to the foraging rules, the finder guides the popu-
lation search and foraging through location updating. Some
participants chose to follow the finders to get food, while
others chose to constantly monitor the finders and participate
in food competition to increase their own predation rate.
When the sparrow population is aware of the danger, the
sparrows in different positions will choose the correspond-
ing escape strategy. The above is a brief introduction of
SSA algorithm, and the specific content can be found in
literature [20] and [22].
The location of the finder is updated as follows:

—i

xi’j-exp|: j|, Ry, < ST

xl-’j—l—QL

_xt+1:

i o - MaxCycle

&)

where, MaxCycle is the maximum number of iterations
of the algorithm; « is uniform random number within
interval (0, 1]; Q is a standard normal random number; L is
the matrix of 1 x d with an element value of 1; R, and ST are
the set warning value and safety value respectively.

The location of the subscriber is updated as follows:

x!— xt
1 Q.exp|:wl_2 ”] i > NP/2
xth = L (6)
e — gy | ATL, 3

where, xI’Jj is the optimal position of the discoverer in the
¢ iteration; x! . is the global worst position at the ¢ itera-
tion; NP is population number; A represents the matrix of
1 x d whose elements are randomly assigned 1 or —1, and
At = AT (4AT)
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The location of the scouter is updated as follows:

Gl -], sih
xfjH = R 7)
/ ij wj
A L ] N
xu+ fi—fwte S fg

where, xlgj is the global optimal position in the ¢ iteration;
B is the step size control parameter, which follows normal
distribution. K is a random number of [—1, 1]; fi, f, and f,,
are the fitness value, global optimal value and global worst
value of the current sparrow respectively.

C. IMPROVED SSA ALGORITHM

1) CHAOTIC SEQUENCE INITIALIZATION

SSA algorithm, like other intelligent algorithms, tends to
fall into local optimum when solving complex optimization
problems. In order to improve the global search ability of
SSA algorithm, considering the randomness and ergodicity
of chaos operator, the search range of the algorithm can be
appropriately expanded to improve the solution accuracy of
the algorithm. In view of the excellent performance of tent
map in ergodic uniformity and convergence speed, this paper
uses tent map to generate chaotic sequence for population
initialization, and its mathematical model is as follows:

{ Xit1 = Xi/ @,

0 .
<xXi<@ ®)
Xit1 =0 —=x) /(1 —9),
where, when ¢ € (0, 1) and x € [0, 1], the system (8) is in a
chaotic state.

o <xi<l1

2) REVERSE LEARNING STRATEGY

In order to further improve the performance of the algorithm,
a reverse learning strategy is introduced, through which the
reverse solution of the optimal value can be obtained, and the
search domain of the algorithm can be expanded, so that indi-
viduals can better find the optimal solution. Reverse learning
was proposed by Tizhoosh in 2005. Based on the current
solution, it seeks the corresponding reverse solution through
reverse learning mechanism, and retains the superior solution
as the next generation by comparing the original solution with
the reverse solution. Suppose the individual sparrow is x =
(x1,x2 -+, xp), then the reverse point x* = (xi", Xy ,xz;)
corresponding to x is defined as:

*
xj _—

aj +bj —x; )
In the formula, a; and b; are the upper and lower bounds
of the value of the individual first dimension of sparrow

respectively.

3) NORMAL CLOUD MODEL

Cloud model was proposed by the scholar Li Deyi in 1995 by
integrating the theories of probability and statistics and
fuzzy-theory [23]. It can realize the uncertain transformation
between qualitative concepts and quantitative values, and the
digital features of cloud are represented by expectation Ey,
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entropy E, and hyper entropy H,. The cloud model is charac-
terized by stability in uncertainty and change in stability. The
optimal solution of SSA algorithm can be taken as the center
of the cloud model to search and compare the surrounding
points, and then the optimal solution can be found. Normal
cloud model is an important model in cloud theory, which
can reflect the random probability distribution of nature
and has great universality. Let C be a qualitative concept
in the domain U of quantitative theory. If the quantitative
value x is a random realization of the qualitative concept
in the domain U and satisfies x ~~ N (Ex, En’?), En' ~
N (En, He?), then the certainty of C can be expressed as:

(—Ex)?

" (x) =e Z(E;l)z (10)

In the formula, p (x) is a random number at (0,1).

4) ISSA ALGORITHM
Combined with the previous sections, the steps of ISSA algo-
rithm proposed in this paper can be summarized as follows:

Step 1: Initialize the algorithm parameters N, Maxiter,
ST and the proportion of discoverer, joiner and scout in the
sparrow population.

Step 2: The initial population is generated by using
Equation (8).

Step 3: The population is updated by the sparrow algo-
rithm, and the reverse population is generated by using
Equation (9); And calculate the optimal individual.

Step 4: According to Section C, the position of the optimal
solution is improved by using the normal cloud generator, and
the optimal solution at this time is compared and determined.

Step 5: If t < MaxCycle, then t = ¢ + 1, return to step 3,
otherwise the algorithm ends.

D. OPTIMIZATION OF VMD BASED ON ISSA

When VMD is used for signal decomposition, parameters
such as modal decomposition number, penalty factor, fidelity
coefficient and convergence condition need to be preset. The
study shows that the decomposition accuracy of VMD mainly
depends on decomposition number K and penalty factor .
If the value of decomposition number K is set too small,
information will be lost; if the value of decomposition num-
ber K is set too large, excessive decomposition will be caused.
Penalty parameter o affects the bandwidth of each modal
component, and different bandwidth scales affect the signal
extraction results. Due to the complexity and variability of
the actual signals to be decomposed, it is difficult to set the
decomposition number K and penalty factor « artificially, and
it is easy to lead to randomness of decomposition results [24].
Therefore, this paper proposes to optimize VMD parameters
using ISSA algorithm.

The fitness function of ISSA’s optimization of VMD
parameters is based on the energy difference tracking method
proposed in literature [25]. The basic idea is to decom-
pose signal f(#) into K finite Bandwidth Intrinsic Mode
Function (BIMF) u; according to VMD method, as shown in
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TABLE 1. Benchmark functions.

Benchmark functions dimensional range theoretical minimum
f)=2"x 30 [-100,100] 0
L@ =" x|+ 1T x] 30 [-10,10] 0
fi=>" (Z;_1 x,)’ 30 [-100,100] 0
fix) =" [x] —10cos(2mx,) +10] 30 [-5.12,5.12] 0
1 n 30 -32,32 0
2(x) = =20exp(-0.2 /;Zm - 32321
1 n
exp(— Z _,cos(2mx;)) +20 +e
n=—"r9
30 [-600,600] 0

" X,
- 1_[’,:1 cos(—=) +1

no2
2
=171 .
Vi

() = ——
1= o

the following formula.

k
FO=mO+w®+ w0 = w@ 11

If BIMF satisfies orthogonality, then the energy of the
original signal f(¢) (see Equation 12) is equal to the energy
sum of K decomposed signals (see Equation 13).

+00
Ef = f(n)de (12)

+00 +o0
Egie = f (Ot + - + / wndi (13)

—00 —0o0

Ef1 = Epiyr (14)

If the actual decomposition components of the signal are
not all orthogonal, there is an energy error E,,, between Ef|
and E BIMF -

Eerr = |Ef1 — Egyir | (15)

The smaller E,,, is, the better the orthogonality of decom-
posed BIMF component is, and the decomposition result can
better characterize the characteristics of signal f(¢).

The solving steps of the optimal parameter combination
[K, a] of VMD algorithm are as follows:

Step 1: Set the parameters of ISSA algorithm and the initial
population, and take the energy error E,,, as fitness function.

Step 2: VMD decomposition is performed on the signal,
and the fitness value of each sparrow can be obtained by
formula (15).

Step 3: According to the optimization mechanism of the
sparrow algorithm, the individual positions of sparrows are
updated, the corresponding energy error E,,, of each position
is compared, and the minimum fitness value is constantly
updated.

Step 4: Cycle through step 2 ~ step 4 until the global min-
imum fitness value is determined or the maximum number
of iterations is reached, and the optimal sparrow individual
[K, ] is output.
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Step 5: VMD decomposition of the signal is carried out by
using the optimal parameter [K, «].

E. SIMULATION TEST OF ISSA AND OVMD

1) SIMULATION TEST OF ISSA

In order to verify the performance of SSA algorithm, it is
compared and analyzed with common gray Wolf optimization
algorithm (GWO), particle swarm optimization algorithm
(PSO), and moth flame optimization algorithm (MFO). Dif-
ferent single-mode and multi-mode benchmark test function
scenarios are selected, as shown in Table 1. Parameter Set-
tings of each test algorithm are shown in Table 2. The number
of population is set as 30, the number of iterations is set
as 500, and the experimental results are the values of each
method running independently for 30 times.

As can be seen from Table 3, ISSA and PSO, MFO
and GWO algorithms have better optimization accuracy and
stability in both single-mode and multi-mode test environ-
ments, and the single mode function optimization results of
the improved ISSA algorithm are better than those of SSA
algorithm. Except for f5, both of them have obtained theo-
retical values in multi-mode function optimization. From the
time complexity, facing the complexity of the same problem,
algorithm statement within the loop execution time mainly
depends on the deepest level, as a result of the ISSA algo-
rithm is introduced into chaos initialization, reverse learn-
ing optimization strategy as well as the method of normal
cloud generation method into all did not increase the orig-
inal scale, the cycle of SSA algorithm complexity so ISSA
algorithm with SSA algorithm at the same time complexity,
ISSA algorithm does not reduce the optimization timeliness
of the original SSA algorithm. It can be seen intuitively from
Figure 1 that ISSA algorithm has good convergence accuracy
and fast convergence speed. According to the analysis results,
ISSA has excellent performance in solving accuracy and
adaptability.
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TABLE 2. Algorithm parameter settings.

algorithm Parameter Settings

SSA ST=0.6 PIP=0.2 PDP=0.7
ISSA ST=0.6 PIP=0.2 PDP=0.7
PSO =09 w . =02¢=02c=02
GWO /

MFO /

TABLE 3. Test results.

Test functions Algorithm optimal value worst value mean value standard deviation
f PSO 6.9325¢-06 0.0010664 0.00025808 0.00032285
1
GWO 7.3662¢-29 9.2301e-27 2.1171e-27 3.9318¢-27
MFO 2.9179e-15 1.1083e-12 1.5971e-13 2.4164e-13
SSA 0 3.1975¢-44 1.0658¢-45 5.8379¢-45
ISSA 0 0 0 0
f PSO 0.0085095 0.11651 0.04128 0.044252
2 GWO 1.668¢-17 3.0099¢-16 9.3935¢-17 7.2904¢-17
MFO 1.7258¢-10 10 0.66667 2.4944
SSA 0 2.9308e-35 9.7944e-37 5.3505e-36
ISSA 0 0 0 0
f PSO 35.8112 234.7837 95.3043 40.1408
} GWO 5.9561¢-09 6.917¢-05 8.2136¢-06 1.5219¢-05
MFO 0.00060796 5000.2023 333.4123 1247.2258
SSA 0 1.4519¢-55 4.9072e-57 2.6498e-56
ISSA 0 0 0 0
f PSO 26.168 90.662 53.9162 11.4587
4 GWO 0 19.5007 3.3979 3.3209
MFO 7.9597 58.7734 21.0007 11.2341
SSA 0 0 0 0
ISSA 0 0 0 0
f PSO 0.001503 2.0224 0.23155 0.44577
5
GWO 8.6153¢-14 1.4655¢-13 1.1043e-13 1.5047¢-14
MFO 1.2043¢-08 18.2445 0.79687 3.5905
SSA 8.8818¢-16 8.8818e-16 8.8818¢-16 0
ISSA 8.8818e-16 8.8818e-16 8.8818e-16 0
f PSO 1.0615¢-06 0.027074 0.0068264 0.0072929
6
GWO 0 0.036692 0.0039778 0.006954
MFO 0.019678 0.36663 0.16852 0.12987
SSA 0 0 0 0
ISSA 0 0 0 0

2) SIMULATION TEST OF OVMD

To verify the effectiveness of OVMD decomposition signal,
a test signal y(¢) is constructed, as shown in the following
formula.

y(#) = y1(®) + y2(t) + y3() + ya(?)
y1(t) = cos(100rt)

ya(t) = 1.2 cos(2007rt)

y3(¢) = 1.5sin(3007¢)

(16)

In the formula, ys is Gaussian noise with mean value
of 0 and variance of 0.2. The sampling frequency f; is 1kHz
and the sampling point is 512.
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ISSA population number is 20, iteration number is 30, the
optimization range of K is set as [2, 14], the search range
of « is set as [0, 2000], the parameter combination of VMD
optimized by SSA algorithm is [K, «] as [4, 936], and the
minimum energy error is 0.481. The OVMD decomposition
results of y(¢) under this parameter are shown in Figure 2.
The EMD method and OVMD method are compared and
analyzed, and the EMD decomposition results are shown
in Figure 3.

As can be seen from Figure 2, after OVMD decomposition
of noisy signal y(#), various frequency signals and noise
signals can be separated, and the amplitude of component
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FIGURE 1. Fitness curve.

signals uj, up and uz are also close to the original signal.
As can be seen from Figure 4, there is obvious frequency
aliasing in EMD decomposition components and the decom-
position effect is poor. Therefore, OVMD method was used
to decompose the wind speed series.

1Il. DBN NEURAL NETWORK AND OVMD-ODBN
COMBINED PREDICTION MODEL

A. DEEP BELIEF NETWORK

Deep belief network (DBN) was proposed by Goeffrey
Hinton [26], and its structure is shown in Figure 5. It is limited
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50 100 150 200 250 300 350 400 450
The number of iterations

f. Optimization result of function f;

500

by multiple restricted boltzmann machine (RBM) stack of
feedforward neural networks, matter all connections between
model layer, there is no connection in the layer, in which
each matter including hidden layer 4 and visual v, the output
of the previous matter layer as the next matter unit of input
layer, the last of the whole network structure is controlled by a
hidden layer and output layer structure of regression. Through
input vector x and output vector y, the sample set {x, y} of the

prediction model is formed together.

RBM is a model based on the concept of energy, and the
joint configuration energy function of the visible layer and
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In the formula, v; and h; represent the state of visi-
ble layer node and hidden layer node respectively. a; and
b; represent the bias corresponding to visible layer node and
hidden layer node respectively. w;; represents the connection
weight between the visible and hidden layers.

According to the above formula, the joint probability
density of the visible layer and the hidden layer can be
obtained

1
h10) = ———e ECHIO) 18
pv, hl6) 70" (18)
In the formula, Z(0) = ) e~ EO-h9) i5 the normalized factor.
v,h

In unsupervised learning, the purpose of training is to get
parameters 6. For the training set containing N samples, the
maximum likelihood function can be used

N
0* = argmax L(0) = argmaleogp(v" |6) (19)
[4 [4 =1

DBN algorithm greedily pretrains RBM layer by layer, and
then fine-tune and optimize the initial weight obtained by
pre-training layer by layer using supervised back propagation
algorithm, so that the model can obtain the optimal solution,
and thus can characterize the complex nonlinear relationship
in the wind speed data.

B. GAUSS-BERNOULLI CONSTRAINED BOLTZMANN
MACHINE

For the standard deep belief network, the nodes of hidden
layer and visible layer are Bernoulli values when sampling,
while the input variables are continuous data when wind
speed prediction. Therefore, gauss-Bernoulli Constrained
Boltzmann machine (GBRBM) was introduced in this paper
as the first RBM of DBN photovoltaic prediction model.
Gaussian Bernoulli restricted Boltzmann machine introduces
Gaussian function, so that the input vector is no longer lim-
ited to the Bernoulli distribution (binary distribution), which
solves the problem of information loss when RBM processes
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continuous input vectors. Firstly, continuous input data were
converted into binary Bernoulli variables through GBRBM,
and then further processed through standard RBM. This DBN
is capable of processing continuous data and has functional
modeling capabilities. The energy function of GBRBM is

Vi i — ap)*
E(W, h|0)= —Z;wijh,-— ZT — > bk
i i i j

(20)

In the formula, v; and h; represent the states of visible layer
nodes and hidden layer nodes respectively. At this point, v; is
a real-value input vector of wind speed sequence correlation
factors, h; value still conforms to Bernoulli type {0,1} dis-
tribution, and o is the standard deviation of Gaussian distri-
bution. According to equations (21) and (22), the conditional
probability of GBRBM visible layer and hidden layer units
can be obtained.

pWilh) = N(ai + 07 »_ wijhj., o) 1)
J

p(hj = 1|v) = sigmoid(b; + E ;Wij) (22)
. 1
1

In the formula, N (u, 0;) is a Gaussian function with mean
value u and standard deviation .

C. WIND SPEED PREDICTION MODEL BASED ON
ISSA-DBN

Literature [27] points out that for specific sample data and
DBN structure, setting appropriate parameters has an impor-
tant impact on the modeling accuracy of DBN. The factors
such as the number of hidden layers, the number of neurons
in each layer and the learning rate in DBN are analyzed.
It is concluded that the hidden layers of deep neural network
should be set as 2 or 3 layers, and the model accuracy is
high. When the number of hidden layers increases to 4, the
classification or prediction effect of the model decreases and
the generalization performance also decreases. In order to
save the algorithm time, this paper selects the DBN network
structure with 2 hidden layers, and uses the improved SSA
optimization algorithm to optimize the number of neurons
at 2 hidden layers and the learning rate of the whole DBN
network.

For the two hidden layers of DBN, the number of neurons
in each hidden layer is represented as m; and mjy, and the
learning rate is n. When coding the sparrow population in
ISSA algorithm, each individual is a vector X(my, mo, 1),
then the optimization problem of DBN parameter can be
expressed as:

N 2
A i —Y)
Ffitness(ml» my,m) = Zl_l(y+ (23)
1 <m; <100
st.3 1 <my <100 24)
0<n=x1
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In the formula, N is the number of samples, y; and Y; are the
predicted value and true value of the first sample respectively.

See Figure 6 for the flow chart of ISSA optimization DBN,
and the specific steps are as follows:

Step 1: Set the parameters of Issa algorithm and the initial
population, code the individuals in the population, set each
sparrow as a three-dimensional vector X(mp, my, n), select
the population number as 20, set the maximum iteration
number as 100, and set the threshold parameter ¢ as 0.001.

Step 2: The original wind speed data is decomposed by
OVMD, and the generated component data is used as a test
set, and the fitness value of each sparrow is obtained by
formula (23).

Step 3: According to the sparrow algorithm optimization
mechanism, the positions of individual sparrows are updated,
the fitness function values corresponding to each position
are compared, and the minimum fitness value is constantly
updated.

Step 4: When the fitness function value is less than the
threshold value ¢ or reaches the maximum number of iter-
ations, the loop iteration ends, and the global minimum fit-
ness value is determined to complete the optimization of
DBN parameters.

D. OVMD-ODBN COMBINED PREDICTION MODEL
OVMD-ODBN proposed in this paper is shown in Figure 7,
and the specific steps are as follows:

Step 1: Preprocess the wind speed data, query the singular
values and missing data in the data, and fill them with cubic
spline interpolation.

Step 2: OVMD decomposes the original wind speed
sequence and obtains several training and test data sets of the
DBN-network constructed by IMF.

Step 3: Initialize parameters such as the number of hidden
layers and training times of DBN-network and the number of
ISSA population and training times. ISSA algorithm is used
to determine the number of neurons and the learning rate of
each hidden layer in DBN network.

Step 4: Conduct pre-training and reverse fine-tuning on the
determined DBN-network structure, and build DBN models
corresponding to each IMF component.

Step 5: Start from the first moment of prediction, make
multi-step rolling prediction, overlay and get the final wind
speed value.

Step 6: Root mean square error (RMSE), mean absolute
percentage error (MAPE), mean absolute error (MAE) and
coefficient of determination (R2) are selected to evaluate the
performance of the prediction model.

N
1 2
RMSE = | 3~ (s — ) (25)
i=1
1 s — s
_ i S
MAPE = N El 5 x 100% (26)
=
92267
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N
1
MAE = v > Jsi— s 27)
i=1
N 2
> (sh = si)
RE=1-"—— (28)
> Gi—si)?
=1

In the formula, N is the number of samples; 5; is the average
of the true values; s; and s; are the i true value and the
predicted value respectively.

IV. EXPERIMENT AND RESULT ANALYSIS

A. ANALYSIS OF EXPERIMENTAL DATA

The wind speed data in January of a wind farm in northwest
China is taken as the sample, and the resolution of wind speed
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FIGURE 9. Decomposition results of OVMD.

data is 15min. Taking the data from 2588-2976 in January
as the sample population, the input and output data sets are
set by using the method of predicting the data from the first
five moments to the next moment. Among them, data from
2588-2880 are used as training data, and data from 2881-2776
are used as test samples. That is, 96 data are wind speed test
data on January 31. See Figure 8 for wind power data. When
the sample sequence is decomposed by the VMD method,
the penalty parameter « and decomposition quantity value of
VMD are optimized by the method described in section II,
and the default values of other parameters are adopted. The
decomposition results are shown in Figure 9.

As can be seen from Figure 9, the data quantity of IMF1 is
the largest, but its frequency is low. The frequency of the other
three columns increases gradually, but its value decreases
gradually. In the prediction of wind speed data, the IMF1
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component that plays a leading role in prediction accuracy
is used.

B. ANALYSIS OF EXPERIMENTAL RESULTS

The comparison prediction models selected in this paper are
shown in Table 4. The prediction method including ODBN,
wherein the hidden layer value and learning rate of DBN are
optimized according to part I1I of this paper. The conventional
non-optimized DBN model is set with two RBM layers, the
number of hidden layers is 50 and 100, the operation cycle
is 300 generations, and the learning rate is 0.01. Parame-
ter settings of other methods are as follows: The structural
parameter of ELM is 102-35-1, the maximum iteration num-
ber is 500, and the activation function is sig. BP uses a
single hidden layer, the structure parameters are 102-55-1,
the learning rate is 0.01, and the maximum number of iter-
ations is 500. The hidden layer of LSTM is set to 2, the
time step is set to 20, and the learning rate is set to 0.05.The
structural parameter of ELMAN is 15-35-1, the maximum
iteration number is 500.The structural parameter of RBFNN
is 19-30-1, the maximum iteration number is 500.In order to
verify the performance of the proposed method in this paper,
set up the comparison of four different scenarios, to make
the results more convincing, considering the instability of
neural network model to predict the results, the experimental
results of the method are averaged, test times for 15 times,
and the simulation results are shown in table 4, as shown in
Figure 10 and 11, which obtained by OVMD four compo-
nents, See Figure 9. Then, the corresponding ODBN model is

92270
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established to predict the four components, and the prediction
results are shown in Figure 10. The final prediction results are
obtained by superposing the values of each predicted compo-
nent, as shown in Figure 11. As can be seen from Table 4,
compared with LSTM and ELM and BP methods, RMSE
index decreased by 0.0284m/s,0.1723m/s and 0.2093m/s,
MAPE index decreased by 1.193%,4.2672% and 5.5939%,
respectively. The results show that the prediction effect of
DBN is better than that of LSTM, ELM and BP, among
which the prediction effect of BP model is the worst, the
prediction effect of LSTM model is better, but the prediction
speed of LSTM method is the worst. ELM, LSTM and BP
neural networks are not as stable as DBN. Compared with the
ODBN method, the RMSE and MAPE indexes of the pro-
posed OVMD-ODBN method decreased by 0.3731m/s and
8.7223%, respectively. Compared with the ODBN method,
the RMSE and MAPE indexes of EMD-ODBN decreased
by 0.2016m/s and 7.4064%, respectively. Compared with
LSTM method, RMSE and MAPE indexes of OVMD-LSTM
decreased by 0.3229m/s and 5.9793% respectively, indicating
that the combined prediction model can accurately charac-
terize the internal characteristics of each part of the sig-
nal due to the pretreatment and refinement operation of the
prediction signal, and then carry out classification predic-
tion. Therefore, the prediction effect is better than the single
rough prediction method. It can be seen from Table 4 that
compared with LSTM, ELM, BPNN, RBFNN and ELMAN
methods, the RMSE index of DBN decreased by 0.0284m/s,
0.1723m/s, 0.2093m/s, 0.6879m/s and 0.0682m/s, and the
MAPE index decreased by 1.193%, 4.2672%, 5.5939%,
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TABLE 4. Error indicators of different prediction methods.

Prediction method RMSE(m/s) MAPE(%) MAE R?
OVMD-ODBN 0.3621 7.6309 0.2879 0.9414
OVMD-DBN 0.4454 8.4502 0.3479 09113
ODBN 0.7352 16.3532 0.6030 0.7584
DBN 0.8115 17.9863 0.6512 0.7056
OVMD-LSTM 0.5170 0.4366 0.8805
EMD-ODBN 0.5336 8.9468 0.3838 0.8727
EEMD-ODBN 0.5849 11.0008 0.4822 0.8471
CEEMD-ODBN 0.6820 13.6636 0.6012 0.7921
CEEMDAN-ODBN 0.3945 7.6154 0.3278 0.9305
LSTM 0.8399 19.1793 0.6863 0.6847
ELM 0.9838 22.2535 0.7523 0.5674
BPNN 1.0208 23.5802 0.7758 0.5343
RBFNN 1.4994 27.0022 1.0641 -0.0049
ELMAN 0.8797 21.4284 0.7081 0.6541
TABLE 5. Error indicators of the method in this paper under different forecast days.
Forecast date RMSE(m/s) MAPE(%) MAE R2
May 6 0.8702 10.1974 0.6911 0.9141
August 16 0.3814 9.0267 0.3049 0.9247
October 22 0.3637 5.1599 0.2784 0.9707

9.0159% and 3.4421% respectively. The results show that
the prediction effect of DBN is better than other methods,
among which RBFNN model has the worst prediction effect,
LSTM and ELMAN model have better prediction results, but
ELM, LSTM, BPNN and ELMAN are not as stable as DBN.
Compared with OVMD-DBN, RMSE and MAPE indexes
of OVMD-ODBN decreased by 0.0833m/s and 0.8193%,
respectively, indicating that the DBN parameter optimization
model proposed in this paper is better than the simple DBN
parameter random setting method. It can be concluded from
Table 4 and Table 5 that MAE and R? indexes of each method
are consistent with RMSE and MAPE indexes, which verifies
the rationality of the above analysis.

In order to further verify the generalization ability of the
prediction method proposed in this paper, wind speed data
in different months (May 6, August 16 and October 22) are
selected as test objects to establish OVMD-ODBN model
respectively. The final prediction curve is shown in Figure 12,
and the error indicators are shown in Table 5. As can be
seen from the chart, the predicted RMSE indexes for August
16 and October 22 are all less than 0.5m/s, and the distribution
of MAPE indexes is less than 10%. The mean absolute error
is also relatively small, R? index is close to 1. The overall pre-
diction effect is good. Due to the large wind speed mutation
on May 6, the prediction effect is not as good as the prediction
effect of the previous two days, but the error is within 1m/s.
Therefore, the prediction models proposed in this paper can
meet the requirements of accurate prediction.
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V. CONCLUSION

In order to improve the prediction accuracy of wind
speed, OVMD-ODBN prediction model is proposed.
Through experimental analysis, the following conclusions
are drawn:(1) The prediction accuracy and stability of DBN
method are better than that of LSTM, ELM and BP meth-
0ds.(2) Optimization of decomposition number K and penalty
factor a parameters of VMD method by ISSA algorithm
can improve the signal adaptability of VMD method, and
optimization of hidden layer unit number and learning rate
of DBN prediction model by ISSA algorithm can optimize
the performance of DBN prediction model. (3) The com-
bined prediction model of OVMD-ODBN, OVMD-DBN
and EMD-ODBN is better than the single DBN and ODBN
method. From the whole prediction process, VMD variable
IMF1 accounts for the largest proportion, but the predic-
tion error is a little large, so the prediction accuracy of
IMF1 component needs to be further improved. In addition,
the empirical value and default value are used for VMD
parameters in the experiment. In the next step, we will
continue to study the comprehensive prediction effect of
different methods according to different decomposition data
characteristics.
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