
Received 7 August 2022, accepted 26 August 2022, date of publication 29 August 2022, date of current version 6 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202966

Toward Round-Efficient Verifiable
Re-Encryption Mix-Net
MYUNGSUN KIM
Department of Mathematics, Gachon University, Seongnam 13120, Republic of Korea

e-mail: msunkim@gachon.ac.kr

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education under Grant NRF-2017R1D1A1B04035209 and Grant NRF-2022R1F1A1062806.

ABSTRACT Re-encryption mix-nets (RMNs) provide an efficient cryptographic anonymous channel for
useful applications such as e-voting and web browsing. Many studies have been devoted to achieving
practically efficient RMN protocols, but less attention has been paid to dealing with their round efficiency
than to computation and communication measures. However, in many interactive cryptographic protocols,
network latency governs the overall execution time. Because e-voting systems are particularly interaction
intensive, the design of a round-efficient RMN protocol is of particular interest. We propose a constant-round
RMN protocol in a three-party model that consists of senders, mix servers and some number of receivers.
Here, the main role of the receivers is to jointly decrypt a list of ciphertexts obtained from the mixing stage.
Such an explicit three-party model is most suitable for e-voting applications. We define an ideal three-party
RMN in the universally composable (UC) framework. We then present a constant-round RMN protocol
based on the standard assumptions and prove that it UC-realizes the ideal three-party RMN with respect to
a static adversary that can corrupt a minority of mix servers, disallowing receivers who collude with other
players. We implmented and evaluatd our RMN protocol over a various range in the number of senders and
mix servers. Our evalulation shows that our protocol runs up to 2.5× faster than Universal RMN protocol.
Besides, we provide a detailed theoretical analysis of our protocol in terms of computation, transmission,
and round efficiency.

INDEX TERMS Additive secret sharing, homomorphic encryption, re-encryption mix-nets, round
efficiency.

I. INTRODUCTION
Mix networks (for short, mix-nets) are a cryptographic tool
for establishing private communication channels in a wide
range of applications, for example, secure e-voting sys-
tems [1], anonymous e-mail [2], and location privacy in
mobile networks [3]. The mix-net of Chaum [4] is run among
a set of senders and a set of mix servers, and it works as
follows: each sender provides its input to the mix servers,
which then privately shuffle all inputs and ultimately publish
them in random order.

There are roughly two basic flavors of mix-nets. The first
class is known as a re-encryption mix-net (RMN). In this type

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

of mix-net, both inputs and outputs are ciphertexts under the
public key of some semantically secure cryptosystem with
the homomorphic property that allows re-encryption without
knowing the corresponding private key (e.g., El Gamal [5]
and Paillier [6]). Each mix server re-encrypts the inputs
and then permutes them. Because the output is still in the
ciphertext, other authorities that had generated a public and
private key pair need to decrypt it to produce the set of original
messages. The mix servers can take over this role in some
cases.

The second class is known as decryption mix-nets
(DMNs), which were originally designed by Chaum [4].
The inputs to the mix-net are ciphertexts produced through
interactive encryption under the public keys of individual
servers.When processing inputs, eachmix server decrypts the

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 91397

https://orcid.org/0000-0002-0461-3053
https://orcid.org/0000-0002-5196-8148

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

layer corresponding to its own public key in each ciphertext
and then permutes the resulting ciphertexts. Thus, the final
output is produced in cleartext.

Of the two types of mix-nets, our main interest is the
RMN because of the weaknesses of the DMN, including the
requirements of multiple encryptions by the sender and a
predefined order of decryption. In particular, we primarily
pay attention to the round efficiency of RMN protocols.
Round efficiency is of great importance because network
latency usually has an effect several magnitudes greater
than that of local computation costs. The round complexity
usually dictates the time cost of a cryptographic protocol,
and much research effort has been devoted to finding round-
optimal protocols (e.g., see [7], [8], [9] in the MPC area).
Nevertheless, little attention has been paid to handling the
round efficiency problem in the RMN field. Thus, we focus
on the following simple question (Q1).
Is it possible to construct a constant-round RMN

protocol? (Q1)

A. PREVIOUS WORK ON THIS QUESTION
In the research on RMNs, just a couple of papers have
suggested methods of improving round efficiency in differ-
ent stages of the RMN. The universal RMN protocol by
Golle et al. [10] removes the joint decryption stage from the
classical RMN by sending a pair of two El Gamal ciphertexts,
where one contains a message and the other contains the
public key of the receiver. Relying on Abe’s observation that
an RMN does not require sequential ordered mixing [11],
Golle and Juels [12] proposed a method to perform mixing
in parallel, which is called the parallel mix-net.

While these efficiency techniques clearly contribute to
reducing network latency in mix-nets, their round efficiency
still depends on the number of mix servers. For example,
the universal RMN aims to reduce network latency dur-
ing the group decryption stage. Thus, the round complexity
of the universal RMN is linear in the number of mix servers
nm (i.e., O(nm)). Moreover, the strong point of the universal
RMN can be a weakness in certain circumstances (e.g., when
there are multiple receivers); since the mix server outputs a
list of only message-containing entries, the receiver needs
to exhaustively search every output list received for possible
messages encrypted under its public key. The parallel mix-net
is somewhat complex. Indeed, the parallel mix-net requires
ñm rounds for mixing (see Figure 3 in [12]), where the
parameter ñm is the number of corrupt mix servers. Clearly,
ñm < nm, but additionally, the round complexity depends
on the threat model, which determines the threshold ñm.
Consequently, prevailing cases such as an honest majority
(i.e., ñm < nm

2) still have O(nm) round complexity, while in
some extreme cases (e.g., ñm = nm − 1), almost constant
rounds can be achieved. Of course, their benefits in terms of
latency are very clear.

B. PROBLEM STATEMENT
We refer to the problem of designing an RMN protocol with
constant rounds acrossmix servers as the problem of finding a

round-efficient RMN.More formally, a round-efficient RMN
protocol takes as input a list of ciphertexts and outputs a
list of plaintexts while hiding the correspondence between
the inputs and outputs within a constant number of rounds.
Ensuring efficiency in rounds during the mixing stage makes
the problem a nontrivial one.

We want to solve the problem in a model that consists of
ns senders that each have a plaintext, nm mix servers, and
nr receivers. As usual, a mix server takes as input a list of
ciphertexts from senders or another mix server, re-encrypts
these ciphertexts, and outputs a new list of ciphertexts in
a permuted order. Then, a quorum of receivers that share
the private key decrypts the final list and outputs a set of
plaintexts. In this work, we explicitly separate receivers from
mix servers. This explicit three-party structure for the RMN
is widely accepted in applications such as e-voting systems,
where the tallying authorities can be viewed as the receivers
(e.g., [13]).

C. OUR CONTRIBUTIONS AND KEY IDEAS
Inspired by these challenges, the primary contribution of
this paper is a round-efficient RMN protocol in the three-
party model. We simply call it a three-party RMN (3RMN)
protocol. Specifically, the contributions of this work are sum-
marized below.
• We give the formal 3RMN protocol definition and the
notion of security in the 3RMNand instantiate it bymak-
ing use of several cryptographic tools (more precisely,
they should be universally composable). In particular,
we show that our 3RMN protocol requires only O(1)
round complexity in the number of mix servers.

• To prove the practical effectiveness of our approach,
we implement our RMN protocol. Our experimental
results show that our protocol runs upto 2.5× faster than
our competitor [10].

• We formally prove the correctness and security of our
3RMN protocol in the universally composable (UC)
framework [14], guaranteeing that our 3RMN protocol
is secure when composed with other UC-realized prim-
itives.

1) OVERVIEW OF OUR APPROACH
In the design of an RMN, encryption and secret permuta-
tion are central primitives used to hide the correspondence
between messages and senders. We also begin with a thresh-
old El Gamal encryption [5] owing to its good capabilities,
including distributed key generation, joint decryption, and
multiplicative homomorphism.

Our first attempt at a round-efficient 3RMN protocol is
to have each of the mix servers shuffle the input ciphertexts
from all senders and send the resulting list to the receivers
without re-encrypting the ciphertexts in a cascade manner.
However, after decrypting all lists, the input messages are
duplicated ns times, which is obviously undesirable. Even in
a case in which decrypting one of the ns lists is allowed, it is

91398 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

TABLE 1. Complexity comparison. Here S: sender, M: mix server, R: receiver, E: modular exponentiation, aGq: a elements in Gq, ns: the number of users,
nm: the number of mix servers, ñm: the number of corrupt mix servers, 4: conditionally satified, ×: not satisfied, and©: satisfied.

FIGURE 1. Schematic overview of our RMN protocol. Shaded areas indicate components introduced by our solution and thick arrow
lines indicate a vector of two or more messages are transmitted.

FIGURE 2. Key insight of achieving constant rounds. For a message a,
a

i indicates the i -th additive share of a and means an ElGamal
ciphertext of a. By⇒, we mean that a sender transmits its i -th share to
the i -th mix server.

ambiguous to determine which of the ns lists of ciphertexts
should be chosen for the decryption stage.

Keeping only this structure, our second attempt is to
remove useless duplications. To this end, we introduce secret
sharing and make the sender split the input message into
a set of shares before encrypting it. Then, the mix servers
shuffle the list of ciphertexts as before, but each ciphertext
carries its shares rather than the message itself. However,
after decrypting them, there is no efficient way to restore the
original messages.

To fix this problem, we make use of a unique padding
method. More specifically, the sender concatenates random
padding to every share of its message. This is the prototype
of our round-efficient 3RMN protocol, which is depicted in
Figure 1. In what follows, we give an example to show a key
idea to achieve a constant round RMN protocol.

2) A TOY EXAMPLE
The example considers just three senders and fourmix servers
since the receivers are the same as those of existing RMN
solutions.

First, the senders encrypt additive shares of their message
but not the message itself. For example, the 1st sender begins
with writing her message a into four shares a = ⊕4

i=1
a i

where 4 indicates the number of mix servers. Then for each
i ∈ {1, . . . , 4}, encrypt and send each of shares a i to the
counterpart mix server Mi.

Next, each mix server just mixes a list of encrypted shares
by applying re-randomization and a private permutationwith-
out communicating other mix servers. The remaining steps
are the same as the conventional RMN protocols.

D. LIMITATIONS
As an unavoidable tradeoff between efficiency measures, our
approach increases the overhead of computation and commu-
nication costs. As discussed above, since the senders transmit
ciphertexts as many as the number of mix servers, they have
to invoke the ElGamal encryption algorithm nm times more
than the classical RMN protocol. The computation and com-
munication costs on the side of the mix servers are the same
as before. Moreover, when the number of input ciphertexts
increases by nm times, the overhead of the receivers grows at
the same rate.

Thus, when deploying our RMN protocol in a real-world
application, one needs to identify the main bottleneck of the
application. If the bottleneck is heavy computation such as
modular exponentiation in an algebraic group of large size,
our solution is not a good choice. On the other hand, when
the bottleneck is network latency due to narrow bandwidth

VOLUME 10, 2022 91399

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

and slow transmission time, our solution is expected to have
a better execution time than existing RMN protocols.

E. RELATED WORK ON RMNs
The re-encryption mix-net was first developed by Park et al.
in [15] to fix the drawbacks of the decryption mix-net [4]
and the hybrid mix-net [16]. See [17], [18] for a comprehen-
sive survey of mix-nets. Since Park et al.’s proposal, much
research has focused on RMNs. In a classical RMN, a sender
Si only has to compute a single encryption for all the mix
servers as ElG.E(pk,mi, ri), where ElG.E(·, ·, ·) is the El
Gamal public key cryptosystem under the public key pk used
to encrypt mi with a randomizer ri. In particular, since no
predefined order of mix servers is required for the RMN, any
mix server Mj can compute ElG.E(pk,mi, ri + ρj) on the
Si input, where ρj is a randomizer of Mj for re-encryption
of the Si input. After the list of inputs is re-encrypted and
permuted, a mix server Mj broadcasts the mixed list to the
remaining mix servers for further mixing. The mixing stage
ends at the last mix server Mnm , where nm is the number
of mix servers. Then the group of receivers may perform a
joint decryption stage to output a set of permuted messages.
We would like to emphasize that in the RMN design, the
mix servers do not have to share the private key. Instead, the
public and private keys can be those of the receivers, where
the public key pk is known to the senders and the mix servers.
This type of design is widely used in applications such as
e-voting, where a set of authorities receives the mix-net
output.

One of the weaknesses of the classical RMN is that to sup-
port multiple receivers, an additional stage to share the private
key is needed. This drawback is addressed with an improved
variant, called universal re-encryption mix-net, proposed by
Golle et al. in [10]. In this RMN, the senderSi broadcasts two
El Gamal ciphertexts, one containing the plaintext message
mi and the other containing the public key of the receiver
used to encryptmi, i.e.,ElG.E(pk,mi, ri) ‖ ElG.E(pk, 1, γi).
The remaining nm − 1 mix servers repeat the re-encryption
operation with different randomizers. However, the receiver
should perform an exhaustive search on every output list
from the mix servers received for possible plaintext messages
encrypted under its public key pk.
Despite various optimization techniques (e.g,

see [55], [56]), the basic RMN protocol is inherently inef-
ficient in its operation. For example, Hébant et al. [60] and
Killer et al. [61] most recently proposed a quite efficient mix-
net scheme; still their round complexity is linear to the num-
ber of mix servers. Since Abe observed that unlike the DMN,
sequential ordered mixing is not necessary [11] in the case of
an RMN, Golle and Juels [12] utilized this observation in the
efficient design of an RMN where the mix servers perform
mixing in parallel. Hence, the authors called this a parallel
mix-net. Such a mix-net enjoys considerable improvement
in network latency due to the parallelizing technique. More
specifically, each of the mix servers is assigned a random
subset of the input list; i.e., each subset contains `/nm inputs,

where ` is the size of the list. Then, the mix servers perform
the following steps:

1) Each mix server mixes a given subset of size `/nm.
2) Themix servers perform ñnm rounds of rotations, where

ñnm is a threshold parameter less than nm. Here, each
rotation involves a modulo operation with nm; thus, the
mix server Mj−1 transmits its mixed output list to Mj,
while Mj transfers its mixed output list to Mj+1, and so
on.

3) After completing ñnm − 1 rounds, each mix server
retains a random fraction 1/nm

nm
of its outputs and sends

equal random portions of the remaining outputs to each
of the nm−1 mix servers. Thus, Mj receives `

nm2 inputs
from each of the remaining mix servers, receiving a
total of `nm

nm2 =
`
nm

inputs.
4) Steps 1 and 2 are repeated. Then, the resulting output

from the nm mix servers is the final output.
We note that the parallel mix-net requires a total of

2(ñnm − 1)+ 2 = 2ñnm rounds of mixing. Consequently, the
parallel mix-net has O(ñnm) round complexity.

1) THE OUTLINE OF THIS PAPER
The rest of the paper is organized as follows: We present the
system model, the security assumptions and the adversarial
model of our protocol in Section II. Ideal primitives are
provided in Section III, followed by the full construction
in Section IV. Section V presents a formal analysis. First,
Section V-A provides the asymptotic and concrete perfor-
mance of our proposal, and then the formal security proof
is given in Section V-B. Concluding remarks are given in
Section VII.

II. MODELS, DEFINITIONS, AND TOOLS
This section mainly aims to present cryptographic primitives
and related definitions for the secure design of our RMN pro-
tocol. We begin by introducing notation used throughout the
paper. We also define the system model and the adversarial
model that our construction assumes throughout this paper.
Notation: Let [n] denote the set {1, 2, . . . , n}. Letting v be a

vector with elements v = (v1, v2, . . . , vn), we use the notation
v[i] to index the ith element vi. We use bold uppercase letters
such as V to denote matrices and sometimes identify a matrix
with its ordered set of column vectors. Thus, we mean by
V = (v1, v2, . . . , v`) an ` × n matrix, and similarly, V [i, j]
means the j-th element vi[j] of the i-th vector. For any integer
a, we denote by |a| the length of a in bits. For a finite set R,

we let r
$
←− R be an element that is sampled uniformly at

random from R.
We use κ to denote the computational security parameter

(e.g., κ = 80). A function ν : N → [0, 1] is negligible if
it tends toward zero faster than 1/nκ for every fixed constant
κ . We then use poly(κ) and negl(κ) to denote unspecified
polynomial and negligible functions in κ , respectively. Let
X = {Xκ}κ∈N and Y = {Yκ}κ∈N be ensembles. Two
ensembles X and Y are computationally indistinguishable,
denoted by ≡, if for every probabilistic polynomial-time

91400 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

(PPT) algorithmD and for all κ ∈ N, there exists a negligible
function negl such that∣∣Pr[D(Xκ , 1κ) = 1]− Pr[D(Yκ , 1κ) = 1]

∣∣ < negl(κ).

A. MODELS
In this section, we formally describe the target system model
and the adversary model we consider in this work, as well as
our design goals.

1) SYSTEM MODEL
We follow the three-party system model for the re-encryption
mix-net specified by Haines and Müller [18]. The system
model consists of three participants: senders, mix servers, and
receivers, assuming a publicly append-only bulletin board
(PBB). We note that in [18], the authors refer to receivers
as trustees. Each sender, denoted by Si∈[ns] with ns ≥ 2,
owns an original input message mi. Let nm be the number
of mix servers, and let Mj∈[nm], with nm ≥ 2, denote a mix
server. Receivers are dedicated servers that jointly decrypt a
permuted list of original messages.

A round is a duration during which mix servers locally
perform mix operations without interacting with other mix
servers (or senders). At the end of a round, mix servers may
exchange a list of encryptions. From a PBB, we assume that
there is a broadcast channel whereby users send messages to
all other users in a single round.

2) THREAT MODEL
We need to restrict the adversary, simply because if all parties
in a protocol are corrupted, no protocol is secure. Thus,
we limit the power of the adversary in terms of how many
parties it can corrupt as well as when they are corrupted.

Our work disallows an adversary from corrupting more
than half of the mix servers; i.e., more than half of the
players in the mix server type are honest. We consider static
corruption; i.e., the adversary selects which party to corrupt
before the protocol starts. However, corrupted parties are
active adversaries who may refuse to follow the protocol’s
instructions. Moreover, it is assumed that there is no collu-
sion between receivers and other entities (senders and mix
servers).

Informally, our security guarantee is that the adversary
cannot identify any individual message as being from a cer-
tain sender. Formal security definitions and guarantees are
provided in Sections II-D and V-B, respectively. We prove
that our protocol is secure in the UC framework, ensuring a
safe composition with other UC protocols. However, we note
that a malicious adversary colluding with any receiver can
disrupt the protocol. We do not attempt to prevent malicious
players from causing the protocol to abort.

B. DEFINITIONS
1) HARDNESS ASSUMPTIONS
Our construction relies on the decisional Diffie-Hellman
(DDH) assumptions, which are formalized as follows:

Definition 1: We say that the DDH problem is hard rel-
ative to Gq if, for all PPT algorithms A, there exists a
negligible function negl(·) such that as shown in the equation
at the bottom of the page, where Gq is a group of order q
and the probabilities are taken over the choices of g and
a, b, c ∈ Z∗q.
An additional assumption we use is the discrete logarithm

(DL) problem, formalized as follows:
Definition 2: We say that the DL problem is hard relative

to Gq if, for all PPT algorithms A, there exists a negligible
function negl(·) such that

Pr[A(Gq, q, g, ga) = a] ≤ negl(κ),

whereGq is a group of order q and the probabilities are taken
over the choices of g and a ∈ Z∗q.

C. CRYPTOGRAPHIC TOOLS
Our construction heavily relies on two cryptographic tools:
secret sharing and homomorphic encryption. In addition,
some zero-knowledge proof protocols are used for the pur-
pose of verifiability.

1) SECRET SHARING
In [19], Shamir proposed the first (`1, `2)-threshold secret
sharing scheme, where the (`1, `2)-threshold means that the
original secret m is split into `2 different shares, and with
any `1 shares, the original secret can be reconstructed, while
any `1 − 1 shares reveal nothing about the secret. Thus,
(`, `)-threshold secret sharing technology is suitable for our
system model because mixing ciphertexts can be viewed as
an outsourced protocol with ` ≥ 2.

As a popular variant of this method, Blakley, in [20], con-
structed additive secret sharing, which allows a given secret
m to be decomposed into a sum of ` random numbers. In this
work, we use an additive `-out-of-` secret sharing scheme,
denoted as

(
`
`

)
-sharing, as follows: To share a value m, one

party, as the dealer, chooses ` random values {rj}j∈[`] under
the constraint that m = ⊕`j=1rj and distributes ` − 1 random
shares among them to `−1 parties. Clearly, these `−1 random
shares do not reveal anything about m. This approach is
much more efficient for computation than Shamir’s solution
because it does not require expensive polynomial operations
such as interpolation and multipoint evaluation. Furthermore,
since our construction does not require a series of multiplica-
tion on shares, an

(
`
`

)
-secret sharing scheme is quite suitable

for our purposes.

2) THRESHOLD HOMOMORPHIC ENCRYPTION
A public-key encryption (PKE) scheme is a triple of PPT
algorithms, denoted by (Kg,E,D):
• (pk, sk)← Kg(1κ) takes a security parameter κ ∈ N as
input. It outputs a pair of keys (sk, pk). Here, the public
key pk also defines a plaintext spaceMpk, a randomness
space Rpk , and a ciphertext space Cpk .

• e ← E(pk,m, r) takes pk and a plaintext m ∈ Mpk as
input. It outputs a ciphertext e ∈ Cpk . As usual, this

VOLUME 10, 2022 91401

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

process is randomized using a randomizer r ∈ Rpk ;
however, sometimes we simply write e ← E(pk,m),
omitting the randomness r .

• m← D(sk, e) takes sk and e ∈ Cpk as input. It outputs
the plaintext m ∈ Mpk .

We say that a PKE scheme is correct if for any (pk, sk)←−
Kg(1κ) and any m ∈ Mpk , we have m = D(sk,E(pk,m)).
We say that a PKE scheme is homomorphic for the binary

relations (⊕,⊗) if for all (pk, sk) ← Kg(1κ), (Mpk,⊕)
forms a group and (Cpk,⊗) forms a group and if for all
e1, e2 ∈ Cpk , D(sk, e1 ⊗ e2) = D(sk, e1)⊕D(sk, e2). More-
over, given a ciphertext e, anyone can produce a different
ciphertext e∗ that carries the same plaintext as e. Therefore,
given a homomorphic PKE scheme, we can define the reran-
domization algorithm as Re(pk, e; r) := e⊗ E(pk, 0; r) for
the identity 0 ∈ Mpk and r ∈ Rpk .
Because it is undesirable for only a single party to be

able to control the decryption of ciphertexts, a threshold
version of a homomorphic PKE scheme needs to be used
in a multiparty setting (e.g., [5], [6], [21], [22]). We use a
threshold El Gamal cryptosystem due to its computational
efficiency. A threshold PKE (TPKE) scheme has a different
syntax than the underlying encryption scheme because of
the additional requirement. We present the formal syntax
of a TPKE scheme, which consists of a quadruple of PPT
algorithms.

• (pk, sk) ← TKg(1κ , n) takes as input a security
parameter κ and the number of parties n. It outputs a
pair (pk, sk), where pk is called the public key and
sk = (sk1, . . . , skn) is a vector of n private key shares.
A party Ri is given the private key share ski and later
uses it to compute a decryption share for a given cipher-
text.

• e ← E(pk,m, r). This is the same as the underlying
encryption algorithm.

• ei← TD(pk, ski, e) takes as input the public key pk, the
ciphertext e, and one of the n private key shares ski ∈ sk.
It outputs the decryption share ei of the plaintext or a
special symbol ⊥.

• m← Agg(pk, {ei}i∈[n]) takes as input the public key pk,
the ciphertext e, and n decryption shares {e1, . . . , en}.
It outputs a plaintext m or ⊥.

We next formally define the notion of semantic security
against chosen plaintext attacks (CPAs) [21]. To simplify
the notation, we use a ← AO1,O2,...(b1, b2, . . .) to denote
an algorithm A that takes as inputs b1, b2, . . ., uses oracles
O1,O2, . . . in a black-box manner, and outputs a. For a PPT
adversary A, we define the advantage function

advIND-CPA
PKE (A, κ) :=

∣∣∣∣Pr [b=b′ ∣∣∣b′← AOKg,OE (1κ)
]
−
1
2

∣∣∣∣

where OKg samples (pk, sk) ← Kg(1κ) and b $
←− {0, 1}

and outputs pk, and if |m0| = |m1|, then OE(m0,m1) returns
eb← E(pk,mb). We say that the homomorphic PKE scheme
is semantically secure against a CPA attack (IND-CPA) if for
all PPT adversaries A, the advantage advIND-CPA

PKE (A, κ) is a
negligible function of κ .

a: AN INSTANTIATION OF HOMOMORPHIC TPKE
Let p and q be large primes such that q|(p− 1); let Gq = 〈g〉
be a subgroup of Z∗p of order q for a generator g. Because
any element (1 6=)g ∈ Gq generates the group, the discrete
logarithm of α ∈ Gq with respect to the base g is defined
as usual. All computations in the remainder of this paper are
modulo p unless otherwise noted.

Now, we describe a way to instantiate a threshold El Gamal
PKE scheme.

• (pk, sk)← ElG.TKg(1κ , n) : This produces the public
parameter pp = (Gq, g, p, q), taking κ and n as input.

Each party outputs βi = gαi for a random αi
$
←− Zq

and sets ski to ski = αi. It outputs the public key pk =
(pp, β) and the secret key sk = α, where β =

∏n
i=1 βi

and α =
∑n

i=1 αi.
• e ← ElG.E(pk,m, r). This takes as input a message

m and randomness r
$
←− Zq and outputs the ciphertext

e = (gr ,mβr).
• ui← ElG.TD(pk, ski, e). Given a ciphertext e = (u, v),
a party Ri publishes her decryption share ui = uαi .

• m ← ElG.Agg(pk, v, {ui}i∈[n]). This outputs the plain-
text m = v∏

i∈[n] ui
=

m·βr

gr ·
∑
i∈[n] αi

.

Since the threshold El Gamal PKE scheme is multiplica-
tively homomorphic, it has the re-randomization algorithm
ElG.Re(pk, e, γ) := e ⊗ ElG.E(pk, 1, γ), where e ⊗
ElG.E(pk, 1, γ) = (gr+γ ,mβr+γ) for the identity element
1 ∈ Gq.

3) ZERO-KNOWLEDGE PROOFS
Our construction exploits zero-knowledge proofs (ZKPs) to
ensure correct behavior. In practice, our protocol can be
proven correct by using only so-called 6-protocols, which
only need three rounds of interaction [23], [24]. Unfortu-
nately, 6-protocols are not known to be zero-knowledge,
but they satisfy the weaker property of honest-verifier zero-
knowledge. This suffices for our purposes, as we can use the
Fiat and Shamir heuristic [25] to make these proofs nonin-
teractive.1 As a consequence, the obtained proofs are indeed
zero-knowledge in the random oracle model and consist of

1By a non-interactive proof, we mean that the proof generated by the
prover can be verified without further interaction with the prover.

∣∣∣Pr[A(Gq, q, g, ga, gb, gc) = 1 Pr[A(Gq, q, g,a , gb, gab) = 1]]
∣∣∣ ≤ negl(κ)

91402 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

only a singlemessage.2 For convenience, we report the formal
definitions of ZKP, proof of knowledge and 6-protocols in
Appendix A.

Over the decades, there has been much work on securely
instantiating various ideal ZKP primitives. In particular,
Hazay and Lindell [27], and later Hazay and Nissim [28],
described how to transform any ZKP protocol compiled from
the 6-protocol into an efficient protocol that is secure in
the UC model. In this section, we thus describe only the 6
protocols that are required to achieve verifiability in our RMN
protocol. The detailed specifications of relations and ideal
ZKP functionalities will be given in Section III-C.

a: SENDER’s ZKPs.
When receiving an encryption, the encryption should be
checked to determine whether it has been faithfully gener-
ated. Given an instance of a PKE scheme with public key
pk, a zero-knowledge proof of plaintext knowledge (ZKPT)
allows a prover to prove knowledge of the plaintext m of
ciphertext e ∈ E(pk,m) to a verifier. Known efficient ZKPTs
for El Gamal PKE schemes using the 6-protocol have been
demonstrated (e.g., [29], [30], [31]).

b: RECEIVER’s ZKPs.
On the receiver’s side, two things should be confirmed. First,
each receiver should show that it owns the private key share
ski of the private key sk. However, the key generation process
is not a simple singleton of the ZKP protocol but requires sev-
eral complicated subprotocols. Thus, we describe distributed
key generation (DKG) in terms of the ideal functionality, as
shown later in Section III-B (see Functionality 3). Peder-
sen showed such a DKG protocol for the El Gamal TPKE
scheme [32]. A security flaw in Pedersen’s DKGprotocol was
later corrected by Gennaro et al. in [33].
The second thing to confirm is strongly connected to

the distributed decryption of the El Gamal TPKE scheme.
Each receiver should prove that it correctly runs the thresh-
old decryption algorithm without reconstructing the private
key. Due to the importance of designing verifiable proto-
cols, there have been many ZKP solutions to this problem
(e.g., see [13], [34]).

c: MIX SERVER’s ZKPs.
A shuffle is a permutation of a re-encryption of the input
ciphertexts. By proving that such a shuffle is correct, a prover
can verifiably rearrange a vector of ciphertexts
e = (e1, e2, . . . , e`) into
ê = (ElG.Re(pk, eπ (1)), . . . ,ElG.Re(pk, eπ (`))) without
revealing the applied permutation π over [`]. Groth [35]
proposed a very efficient way of proving the correctness of
a shuffle of El Gamal encryptions in special honest-verifier

2The stronger assumption of a random oracle is only made for efficiency
reasons. Alternatively, we could employ noninteractive ZKPs in the common
random string model [26] to obtain noninteractiveness. In principle, our
security proof also works in the standardmodel by utilizing interactive ZKPs.

zero-knowledge proofs. Indeed, there have been many solu-
tions for this problem [36], [37], [38], [39], [40], [41].

D. THREE-PARTY RE-ENCRYPTION MIX-NET
Here, we present the ideal functionality of mix-net. In the
ideal model, the type of mix-net does not matter; however,
for our purposes, the ideal functionality of mix-net uses three
distinct parties: senders, mix servers and receivers.

By (P : message), we mean that message was
received on a player (e.g., sender) P’s input port via the
environment Z .
Functionality 1 (Three-Party Mix-net): Let ns, nm, nr be

positive integers and t ≤ nr be a threshold value. The ideal
functionality for a three-party mix-net, denoted by F3RMN,
running with sendersS1, . . . ,Sns , mix serversM1, . . . ,Mnm ,
receivers R1, . . . ,Rnr , and a simulator S, proceeds as
follows:

1) Initialize lists L = ∅,Lj = ∅ for j ∈ [nm] and three
index sets IS = IM = IR = ∅. Let there be a table
T = ∅ indexed by integers.

2) Upon receiving (Si : Send,mij) fromZ , if i 6∈ IS, then
set IS = IS ∪ {i}, choose a random value δi, store δi
under index i in table T , and set Lj = Lj ∪ {mij ‖ δi}.
Then, hand (S : Si,Send) to Z .

3) Upon receiving (Mj : Mix) from Z , if j 6∈ IM, then
set IM = IM ∪ {j}. If |IM| ≥ nm/2, sort the list Lj
lexicographically to build a new list L ′j , and hand (S :
Mj,Mix) to Z .

4) Upon receiving (Rk : Recover), if k 6∈ IR, then
set IR = IR ∪ {k}. If |IR| ≥ t , then restore mi by
using δi in the table and (L ′1, . . . ,L

′
nm
). Then, set L =

{m1, . . . ,mnm} and hand (S : Rk ,Output,L), {(Rk :

Output,L)}k∈[nr] to Z .
In the application of electronic voting, mi is the secret

ballot of voter Si. Thus, the secret messagemi is known only
to Si. Whereas in a conventional RMN protocol, |Lj| = 1, our
RMN protocol sets |Lj| = nm and |ei| > 1, as will be seen.

1) SECURITY OF A THREE-PARTY RMN
We define security using the UC framework. The UC frame-
work is quite general and complex, and it is difficult to
describe concisely. For reasons of parsimony, we thus omit
a review of the UC security framework. For an in-depth
discussion, we refer the reader to [14] and [42].

Roughly, the crux of the UC framework consists of the
real (world) model, ideal (world) model, and a set of distinct
hybrid models. The respective adversary in each model may
corrupt a subset of the participants. In the real model, the
parties execute a protocol 5 in a certain environment Z in
which there is an adversary A and ideal interaction. In the
ideal-world model, all parties send their inputs to an ideal
functionality F (i.e., a trusted third party) to implement the
protocol completely and truly. The parties in the ideal model
forward any input toF . A protocol in the ideal model is trivial
and produces any output from F as output. Note that an ideal
functionality is considered secure by definition. Furthermore,

VOLUME 10, 2022 91403

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

for the purpose of a seamless transition from the real model
to the ideal model, various hybrid models are needed. Thus,
a protocol running in the hybrid model has access to two or
more ideal functionalities.

The definition of security relies on the simulation
paradigm. Concretely, a protocol is said to securely realize
an ideal functionality if for all real-world adversaries in the
real model, there is an ideal adversary (i.e., a simulator) in
the ideal model that has the same advantage. In particular,
because the definition of security allows the secure com-
position of protocols, given a protocol that is secure in a
hybrid model and protocols that securely realize all ideal
functionalities in use, we can trivially construct a secure
protocol in the real model.

We will describe in the next section all ideal functionalities
for our construction.

III. IDEAL FUNCTIONALITIES FOR
THREE-PARTY MIX-NETS
In this section, we formally describe ideal functionalities
composed with the main protocol. We inherit some of the
ideal functionalities specified by Wikström [43]. However,
because our construction is different in the type as well as the
system model fromWikstroöm’s mix-net, we need to modify
some ideal functionalities.

We start by defining the ideal PBB functionality with few
modifications.

A. PBB FUNCTIONALITY
A PBB plays a particularly important role in our construction
because our protocol extensively uses an authenticated broad-
cast channel. Assuming the setting of an honest majority
with passive security, where more than half of the parties are
honest, a PBB can be securely instantiated (see [44]).
Functionality 2 (PBB): The ideal PBB functionality,

denoted by FPBB, runs with parties P1, . . . ,Pk and a
simulator S.

1) FPBB creates a table indexed on positive integers and
initializes an index t = 1.

2) On receiving (Pi : Write,mi) from the environment
Z , (Pi,mi) is stored in the table at the index t, (S :
Write, t,Pi,mi) is sent to Z , and t = t + 1 is set.

3) On receiving (Pj : Read, t) from the environ-
ment Z , hand (S : Pj,Read, t,Pi,mi) and (Pj :
Read, t,Pi,mi) to Z if a tuple (Pi,mi) is found in the
table at index t. Otherwise, hand (S : Pj,NoRead, t)
and (Pj : NoRead, t) to Z .

The lemma below states that a PBB can be securely
realized, assuming that more than half of the parties are
honest.
Lemma 1 (Goldwasser and Lindell [44]): There exists a

protocol 5PBB that securely realizes the ideal functionality
FPBB in the setting in which more than half of the parties are
honest.

B. DKG FUNCTIONALITY
We present the ideal functionality for key generation in a
distributed manner for the El Gamal TPKE scheme.
Functionality 3 (DKG): The ideal DKG functionality for

the El Gamal TPKE scheme, denoted by FDKg, running with
senders S1, . . . ,Sns , mix servers M1, . . . ,Mnm , receivers
R1, . . . ,Rnr , and a simulator S, proceeds as follows:

1) Initialize an index set Ik = ∅ for k = {0, 1, . . . , nr}.
2) For each k ∈ [nr], receive (Rk : SKShares, αk , βk)

such that αk ∈ Zq and βk = gαk ∈ Gq, and set
I0 = I0 ∪ {k}.

3) Hand (S : PKShares, β1, . . . , βnr) to Z .
4) Hand {(Si : PKShares, β1, . . . , βnr)}i∈[ns] and {(Mj :

PKShares, β1, . . . , βnr)}j∈[nm] to Z .
5) Hand {(Rk : KeyPair, αk , β1, . . . , βnr)}k∈[nr] to Z .
6) If (Rk ′ : Reconst,Rk) is received from Z , set Ik =

Ik ∪{k ′}. If |Ik | ≥ nr
2 , hand (S : Reconsted,Rk , αk)

and {(Rk ′ : Reconsted,Rk , αk)}k∈[nr] to Z , and
otherwise, hand (S : Rk ′ ,Reconst,Rk) to Z .

As discussed in Section II-C2, for the El Gamal TPKE
cryptosystem, Gennaro et al. [33] suggest a secure multi-
party protocol for realizing this functionality. Conventionally,
we omit the public parameter pp during key generation.

C. ZKP FUNCTIONALITY
As mentioned above, our protocol requires three idealized
ZKP protocols, more precisely, zero-knowledge proof of
knowledge (ZPK) protocols. From now on, we use ZPK in
place of ZKP, unless explicitly stated otherwise. For consis-
tency of representation, we define the ideal functionality for
these ZPK protocols following Canetti et al. [45]. Since this
functionality takes as a parameter a relationR, we present the
ideal ZPK functionality and then present three relations for
the functionalities used in constructing our RMN protocol.
Functionality 4 (ZPK): Let L be a language given by a

relation R. The ideal functionality, denoted by FRL
ZPK, for

a zero-knowledge proof of knowledge of a witness ω to a
statement x ∈ L, running with a prover P and a verifier V ,
proceeds as follows:

1) The functionality has an empty table.
2) On receiving (P : Prove, x, ω) from Z , store ω

in the table under the index (P, x) and send (S :
P,Prove, x,R(x, ω)) to Z . Discard all further mes-
sages from P.

3) On receiving (V : Verify,P, x), read ω by the
tag (P, x) (the empty string if no witness is found),
and hand (S : V ,Accept,P, x,R(x, ω)) and (V :
Accept,P,R(x, ω)) to Z .

The first relation we describe is a ZPK of the plaintext
message m given a ciphertext message e = (u, v), where
u = gr , v = mβr .We formally define the relationRPT below.
As mentioned above, well-known examples of idealized ZPK
protocols of plaintext messages include [29], [46].
Definition 3 (Knowledge of Plaintext): Define a relation

RPT ⊂ (Gq)4 × Z∗q as 〈(g, β, u, v), r〉 ∈ RPT only
if r = logg u.

91404 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

We remark that the pair (β, v) appearing in the definition
is not explicitly used, but we keep it for compatibility with
previous methods.

The second relation for our purposes is a ZPK protocol
of correct decryption, where, given a ciphertext e = (u, v),
a receiver Ri broadcasts di = uαi so that logg βi = logu di.
The formal definition is given below.
Definition 4 (Knowledge of Correct Decryption): Define

a relationRCD ⊂ (Gq)5×Z∗q as 〈(g, βi, u, v, di), αi〉 ∈ RCD
only if αi = logg βi = logu di.

One can view the relation RCD as an ideal counterpart to
the 6 protocol shown by Cramer et al. [31]. In our protocol,
the receiver Ri holds e = (u, v), di and αi such that di = uαi ,
and βi is a public component of pk.
Last, the shuffle relation is defined formally. More specif-

ically, the shuffle relation used in the RMN corresponds
to a correct permutation and re-encryption of a list of El
Gamal ciphertexts. This relation can be treated as an ideal
counterpart to the 6 protocols given by Groth [35], [47].
We continue to define the relationRCS.
Definition 5 (Knowledge of Correct Shuffle): Let 8N be

the set of permutations on [N] for an integer N ≥ 2. Define
a relationRCS ⊂ (Gq)2 × (Gq)2N × (Gq)2N ×8N × (Z∗q)N
by (

〈g, β, {ei}i∈[N], {e′i}i∈[N]〉, (π, {ri}i∈[N])
)
∈ RCS

only if ∀i ∈ [N] : (u′
π−1(i)

, v′
π−1(i)

) = (uigri , viβri), where
ei = (ui, vi), e′i = (u′i, v

′
i) are El Gamal ciphertexts.

In our protocol, each mix server Mj has a permutation

π
$
←− 8N and a set of randomnesses {r1, . . . , rN }

$
←− (Z∗q)N .

We use FRPT
ZPK to denote an ideal primitive of a ZPK

protocol for the relation RPT, i.e., zero-knowledge proof of
plaintext knowledge. With a similar purpose, we will use
two additional pieces of notation FRCD

ZPK and FRCS
ZPK in later

sections.
In what follows, we present our main protocol. Our

description consists of an overview and the main protocol.

IV. OUR CONSTRUCTION
In this section, we develop the main protocol for the three-
party re-encryption mix (3RMN). First, we present our basic
idea to address the round efficiency problem in 3RMN.
We then give all the design details of our 3RMN protocol.

A. OVERVIEW
For clarity, we first present our basic 3RMN protocol, hiding
the details. Similar to existing RMN protocols, our RMN
protocol requires a TPKE with the homomorphic property.
However, the main tool that allows us to improve round
efficiency is secret sharing. As discussed in the introduction,
by encrypting shares of the message rather than a plaintext
message itself, mix servers can avoid mixing in a cascade
manner.

We focus on showing operational differences from existing
RMN protocols on each entity.

1) KEY GENERATION
In this subprotocol, the public key that senders and mix
servers later use is generated as in existing RMN protocols.
The main difference is that we explicitly have receivers
jointly create the key pair. In an e-voting application, the setup
procedure will invoke this protocol.

2) MESSAGE ENCRYPTION
Let mi be a plaintext message of sender Si. Every known
RMN protocol encrypts mi as ei and then sends ei to the mix
servers. In contrast, our RMN protocol first splitsmi into a set
of additive shares { mi j}. Then, each { mi j} is encrypted and
sent to the mix servers. This is one of the main characteristics
that is different from those of known solutions. We remark
that there are additional options for sending the ciphertexts to
a set of mix servers regarding the number of ciphertexts and
the choice of the target mix server.

3) MIXING
Our protocol also performs a shuffle process that consists
of the permutation and re-encryption of ciphertexts given
by senders. The important difference is that our protocol
performs this process locally without interacting with other
mix servers. This is the second main characteristic of our
proposal.

4) MESSAGE DECRYPTION
Receivers jointly decrypt a set of ciphertexts and output a
set of senders’ input messages. Note that since the shares
of the input messages have been encrypted, the receivers
need to reconstruct all original plaintexts before producing
a permuted list of plaintexts. To ensure the reconstruction
is correct, during encryption, each sender should encrypt
mij ‖ δi rather than mij , where δi is a unique randomvalue.

B. THE PROTOCOL
Wenowpresent a 3RMNprotocol in the (FPBB,FDKg,FRPT

ZPK ,

FRCD
ZPK ,F

RCS
ZPK)-hybrid model in which the players utilize an

ideal PBB, ideal distributed El Gamal key generation, and
ideal ZPK systems for three relations RPT,RCD, and RCS.
Our 3RMN is secure as long as a majority of mix servers are
honest. Similar to other RMN systems (e.g., [43]), there are
no limitations on the number of corrupted senders.

Our 3RMN protocol 53RMN consists of senders Si∈[ns],
a mix server Mj∈[nm], and receivers Rk∈[nr]. We assume that
all players agree on the public system parameter pp =
(Gq, g, p, q) and that the public key pk is implicitly regarded
as a tuple (pp, β, {βk}nr). Concretely, our mix-net protocol
runs as follows:

Sender Si. Each sender Si performs the following:
1) Wait for (PKShares, {βk}k∈[nr]) fromFDKg and com-

pute the public key β =
∏

k∈[nr] βk .
2) Wait for an input (Send,mi), where mi ∈ (Gq)nm .

Then, choose a random value δi ∈ {0, 1}poly(κ); for each

VOLUME 10, 2022 91405

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

j ∈ [nm], compute mij such that mi = ⊕j∈[nm] mij
and set mij = mij ‖ δi.

3) Compute eij = (uij, vij) = ElG.E(pk,mij, rij) for each

rij
$
←− Z∗q.

4) Send each of {(Prove, (g, β, uij, vij), rij)}j∈[nm] to
FRPT

ZPK .
5) Send {(Write, (uij, vij))}j∈[nm] to FPBB.
Mix server Mj. Each mix server Mj performs the follow-

ing:
1) Wait for (PKShares, {βk}k∈[nr]) fromFDKg and com-

pute the public key β =
∏

k∈[nr] βk .
2) Form a list Lj = {(uij, vij)}i∈[ns] based on the set
{(ui`, vi`)}i∈[ns],`∈[nm] on FPBB.

3) For each (uij, vij) ∈ Lj, i ∈ [ns], do the following:
a) Send (Verify,Si, (uij, vij)) to FRPT

ZPK .
b) Wait for (Accept,Si, bi) from FRPT

ZPK , where
bi ∈ {0, 1}. If any proof fails to be verified at Mj

(i.e., FRPT
ZPK outputs 0 to Mj), then Mj aborts.

4) Choose γij
$
←− Z∗q for each i ∈ [ns] and πj

$
←− 8ns ,

and compute e′ij = ElG.Re(pk, eij, γij), where eij =
(uij, vij), e′ij = (u′ij, v

′
ij).

5) Build a list L ′j = {(u
′

πj(i)j
, v′πj(i)j)}i∈[ns].

6) Send (Prove,Mj, (g, β,Lj,L ′j), πj, {γij}i∈[ns]) toF
RCS
ZPK .

7) Send (Write,L ′j) to FPBB and output (Mix,Mj).
Receiver Rk . Each receiver Rk performs the following:

1) Choose αk
$
←− Z∗q and send (SKShares, αk , βk) to

FDKg.
2) Wait for (KeyPair, αk , β1, . . . , βnr) from FDKg and

compute β =
∏

k∈[nr] βk .
3) For each j ∈ [nm], form a list Lj = {(uij, vij)}i∈[ns] from

the table of entries on FPBB. For each i ∈ [ns], do the
following:
a) Hand (Verify,Si, (uij, vij)) to FRPT

ZPK .

b) Wait for (Accept,Si, bi) from FRPT
ZPK , where

bi ∈ {0, 1}. If bi = 0 (i.e., the proof of knowledge
of the randomness used in uij fails to be verified
at Rk), then Rk aborts.

Then, if bi = 1 for all i ∈ [ns], set L∗j = Lj; otherwise,
L∗j =⊥, where ⊥ indicates the empty list.

4) Wait until all mix servers have written (Forward,L ′j)
on FPBB and let L ′j = {(u′ij, v

′
ij)}i∈[ns]. For each

j ∈ [nm], do the following:
a) Hand (Verify,Mj, (g, β,L∗j ,L

′
j)) to F

RCS
ZPK .

b) Wait for a response (Accept,Mj, b∗j) from

FRCS
ZPK , where b∗j ∈ {0, 1}.

If ∀j ∈ [nm] : b∗j = 1, then set L•j = L ′j ; otherwise, Rk
aborts.

5) Wait until all receivers Rk∈[nr] have written
(Recover, {L•j }k∈[nr]) on FPBB, and then for each
j ∈ [nm], do the following:
a) Initialize Dj = ∅. For each i ∈ [ns], compute

a partial decryption d•ij = ElG.TD(pk, αi, e•ij),
where e•ij = (u•ij, v

•
ij) ∈ L•j ; hand (Prove,

(g, βk , u•ij, v
•
ij, d
•
ij), αi) to F

RCD
ZPK ; and form the list

Dj = Dj ∪ {(d•ij, e
•
ij)}.

b) Hand (Write,Dj) to FPBB.
6) For all ` ∈ [nr]\{k}, do the following:

a) Hand (Verify,R`, (g, β`, u•i`, v
•

i`, d
•

i`)) toF
RCD
ZPK

and wait for a response (Accept,R`, b•`) from
FRCD

ZPK . If b•` = 1, then read the list D` on a
corresponding index t` fromFPBB; otherwise,Rk
aborts.

7) For each Dj = {(d•ij, e
•
ij)}j∈[nm],i∈[ns], do the following:

a) Compute mij = ElG.Agg(pk, v•ij, {d
•

i`}`∈[nm]).
8) For an ns × nm matrix M = (mij), examining the

padded random values δi for each entry, recover a set
of plaintext messages L = {m1, . . . ,mns} and produce
(Output,L).

Remark: One way to compute a random value used to
recover a message is to use a pseudorandom function (PRF)
parameterized by the message mi and a secret key known
only to Si. For example, consider the advanced encryption
standard (AES) in counter mode to instantiate such a PRF.
In particular, the possibility that two senders will use the same
random value is negligible.

C. FURTHER DISCUSSIONS
We explore possible variants of our 3RMN protocol.
We expect that these variants may not only contribute to
improving transmission costs but also give an additional
option for verifiability.

1) REDUCING TRANSMISSION AND COMPUTATION COSTS
As a trade-off of improving round efficiency, our protocol
increases computation and transmission costs. The detailed
analysis will be discussed in Section V-A below. First, nm El
Gamal ciphertexts are sent to the mix servers. This results in
nm invocations of the El Gamal encryption algorithm. More-
over, the receiver receives a list of ns·nm El Gamal ciphertexts
and thus performs ns · nm rounds of the partial decryption
and aggregation algorithms in total. In some applications, this
computational overhead can be a burden.

One way to reduce such additional overhead in computa-
tion and communication costs is for the sender Si to split mi
into additive shares less than nm, for example, log nm or

√
nm.

Say log nm is used. Then, each sender transmits only log nm
El Gamal ciphertexts, and thus the overhead on the receiver
side reduces to ns log nm with respect to the computation
and communication costs. Because nm � ns, such a design
choice can be useful in improving the practical performance
of our 3RMN protocol.

We have another option for addressing this efficiency prob-
lem. Thus far, every sender has created the same number of
additive shares from its plaintext message. However, there is
an alternative in which each sender can choose a threshold
value of additive shares depending on its circumstances.
Thus, a sender that is restricted in computational resources
can choose a smaller number of additive shares than resource-
rich senders.

91406 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

2) VERSATILITY OF RANDOM PADDING δi
An additional benefit of our approach is that δi, which was
originally padded to recover the plaintext message mi, can
ensure the integrity of mi. Specifically, after each receiver
restores a permutation of plaintext messages, {m1, . . . ,mns},
it can record {(m1, δ1), . . . , (mns , δns)} on the PBBs. Then,
each sender may later check whether her random padding is
correctly posted on the PBB. Basically, since the El Gamal
encryption scheme is not nonmalleable [48], malicious mix
servers can modify the plaintexts embedded in El Gamal
ciphertexts.3 The uniqueness of δi, which is only known to the
sender Si, makes it infeasible for mix servers, given a cipher-
text, to create another ciphertext with a related plaintext. This
does not mean that our protocol can single out misbehav-
ing mix servers. Instead, our technique can be considered a
lightweight solution to prevent mix servers from maliciously
performing homomorphic operations on ciphertexts.

V. THEORETICAL EVALUATION
We provide a theoretical analysis of our 3RMN protocol to
evaluate its computation, communication, and, more impor-
tantly, round efficiency. Then, we analyze the security of our
solution.

A. COMPLEXITY ANALYSIS
We first recall the parameters below. Let ns be the number of
senders, nm be the number of mix servers, and nr be the num-
ber of receivers. In the computation and communication anal-
ysis, we focus on the most expensive operations (i.e., modular
exponentiation in Gq) in each procedure. In addition, |Z∗q|
represents the bit length of an element in Z∗q, and |Gq| is the
bit length of an element in Gq.

1) ROUND COMPLEXITY
It is quite clear that our 3RMN protocol achieves constant
rounds in the number of players. More specifically, each
sender broadcasts its El Gamal ciphertexts to mix servers
through a PBB. The mix servers output a list of permuted
and re-encrypted El Gamal ciphertexts in a broadcast manner
to receivers. The group decryption on the receivers’ side is
somewhat involved. Suppose that receiver Rk has a list of El
Gamal ciphertextsE = (e1, . . . , enm), where each component
ej∈[nm] is also a vector of El Gamal ciphertexts. To decrypt E,
first,Rk partially decryptsE intoD under its private key share
αk and broadcasts D to the set of receivers through the PBB.
At the same time, Rk reads the other receivers’ broadcasted
El Gamal lists. Then, Rk recovers a list of plaintext messages
M = (m1, . . . ,mnm) by simply aggregating counterpart El
Gamal ciphertexts. Even if, due to transmission delay among
the receivers, some receivers may have to wait to read lists
of ciphertexts, the group decryption by the receivers incurs
only a constant number of rounds (for details, see [49]).
Consequently, our protocol has O(1) round complexity in

3Tsiounis and Yung [46, §7] studied a nonmalleable extension of the El
Gamal encryption scheme.

the number of players. We note that all defined idealized
primitives work in a noninteractive manner, so the round
numbers consumed in these protocols are also constant. From
our explanation thus far, we therefore obtain the following:
Proposition 1: The three-party RMNprotocol53RMN pre-

sented in Section IV-B requires O(1) round complexity in the
number of players, assuming a broadcast channel.
Remark: We should note that allowing a broadcast channel

does not imply that we can obtain all nm re-encryptions for
a ciphertext at one time. The reason is that each mix server
needs to wait for a re-encryption of nm − 1 ciphertexts from
all other mix servers before it can broadcast its re-encryption
on the PBB. In conclusion, this type of re-encryption requires
O(nm) rounds. See the definition of ‘round’ in Section II-A.

2) COMPUTATIONAL COMPLEXITY
We next calculate the amounts of computation needed to
complete our 3RMN protocol and represent them in terms
of asymptotic complexity. We count only the number of
modular exponentiations used in themain protocol. In fact, all
exponentiations for ZPK subprocedures are asymptotically
dominated by those of receivers, as analyzed below.
Each sender Si first generates a set of additive shares and

encrypts each of them. Let nm be the number of additive
shares for the message mi. Then, since nm El Gamal cipher-
texts are computed, in total, 2nm exponentiations in Gq are
required. The computational cost for executing

(nm
nm

)
-secret

sharing is quite small and is omitted. As the mix server per-
forms only the El Gamal re-encryption algorithm, it computes
two exponentiations in Gq. Each mix server has an El Gamal
ciphertext list of size ns. The total number of exponentiations
in Gq is 2ns. Similarly, each receiver processes a ciphertext
list of size nmns; thus, the total number of exponentiations
is nmns.
As a consequence, the total computation amount is

2nsnm + 2nsnm + nr(nmns) = nsnm(nr + 4), and thus our
protocol requires in total O(nsnmnr) computations, omitting
the computational costs of computing all idealized primitives,
which contribute to only a constant factor in big-O notation.

3) COMMUNICATION COMPLEXITY
We measure the communication costs for our protocol by
counting the number of El Gamal ciphertexts communicated
among players. We do not count the transmission costs
involved in all subprotocols for the same reason as above.

The sender Si broadcasts nm El Gamal ciphertexts; thus,
the total number of transmissions is 2nm elements in Gq
(i.e., 2nm|Gq| bits). Each mix server Mj sends ns El Gamal
ciphertexts. The total number of transmissions is therefore
2ns|Gq| bits. Last, each receiver broadcasts nsnm tuples
consisting of an El Gamal ciphertext together with the cor-
responding partial decryption d•ij . Hence, it sends 3nsnm
elements in Gq and thus 3nsnm|Gq| bits in total.
The total communication costs of our protocol amount to

ns · (2nm)+ nm · (2ns)+ nr(3nsnm) elements in Gq. In con-
clusion, our protocol requires a communication complexity

VOLUME 10, 2022 91407

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

of 4nsnm + 3nsnmnr = nsnm(3nr + 4) = O(nsnmnr) in the
number of players.

B. SECURITY ANALYSIS
We continue to formally prove the security of our protocol.
To do this, we show that for each adversary A in the real
model, there is a simulator (i.e., an ideal adversary) S such
that if the environment cannot distinguish between the two
different interactions the protocol is secure. That is, the
information learned by adversary A in the real interaction
and the information obtained by the simulator in the ideal
interaction are indistinguishable. As a proof, it is only nec-
essary to check whether the developed simulator has the
ability to generate messages that are indistinguishable from
the real-world interaction messages. Our work depends on
the ideal functionalities described in Section III and thus is
secure under the simulation paradigm.
Proposition 2 (Correctness): Let m = (m1, . . . ,mns) be a

list of messages from senders. Suppose that all players par-
ticipate honestly in the protocol. Then, the protocol 53RMN
given in Section IV-B correctly outputs a permutation ofm at
the end.
Proof: Let mi be the message of sender Si for each

i ∈ [ns]. Assume that δi is padding chosen bySi. As specified
in the protocol, Si computes eij = ElG.E(pk,mij) so that
mi = ⊕j∈[nm] mij and mij = mij ‖ δi. Each mix server
Mj outputs a shuffled list L ′j = (eπj(1)j, . . . , eπj(ns)j) from
the senders’ ciphertexts, where πj is a private permutation
of Mj. Here, an El Gamal ciphertext eπj(i)j carries a plaintext

mπj(i)j = mπj(i)j ‖ δπj(i). During the group decryption, each
receiver begins with a list of ciphertext lists L ′j from Mj. Say
the list is (L ′1, . . . ,L

′
nm
). This list can bewritten inmatrix form

at the end of group decryption as follows:
mπ1(1)1 ‖ δπ1(1) · · · mπnm (1)nm ‖ δπnm (1)
mπ1(2)1 ‖ δπ1(2) · · · mπnm (2)nm ‖ δπnm (2)

...
. . .

...

mπ1(ns)1 ‖ δπ1(ns) · · · mπnm (ns)nm ‖ δπnm (ns)


By assumption, because all players behave honestly, receivers
can find all shares with the same padding and thus can recover
the set of original messages {m1, . . . ,mns}. This completes
the proof. �
Proposition 3 (Security): Our protocol 53RMN UC-

realizes the ideal functionality F3RMN in the (FPBB,FDKg,

FRPT
ZPK ,F

RCS
ZPK ,F

RCD
ZPK)-hybrid model with respect to an adver-

sary that statically corrupts fewer than nm
2 mix servers and

fewer than nr
2 receivers, assuming that the DDH assumption

in Gq holds.
Because our proof is in a hybrid model that assumes the

existence of the ideal functionalities used in the protocol
description (see Section IV-B), we provide a descrip-
tion of possible protocols to implement the functionali-
ties used by our 3RMN protocol (see Section III). For all
ideal functionalities, we assume that the public parameter

pp = (Gq, g, p, q) used throughout the protocol is publicly
known.

We begin with the idealized primitives for the function-
ality FRPT

ZPK . Recall that Goldwasser and Lindell suggest
a protocol to realize the ideal functionality for PBB (see
Lemma 1). Furthermore, our proof heavily relies on trans-
former ZPK protocols compiled from 6-protocols into UC-
secure ideal functionalities in the common reference string
model, as given by Hazay and Nissim [28]. Thus, because
the proofs of Lemmas 2, 3, 4, and 5 can be easily obtained
from [28], we omit the details. For notational convenience,
we use ElG.(Kg,E,D,Agg) instead of (ElG.Kg, . . .).
Lemma 2: Assume that ElG.(Kg,E,D,Agg) is the

semantically secure El Gamal TPKE scheme. The Schnorr
protocol in [29] securely realizes the ideal functionality
FRPT

ZPK in the FPBB hybrid model under the hardness assump-
tion of the DDH problem in Gq.

We proceed to describe two other ZPK protocols to
prove correct decryption and correct re-encryption shuf-
fles. To begin with, Chaum and Pedersen presented a
6-protocol to prove knowledge of the equality of discrete
logs; accordingly, [28] allows us to have Lemma 3, ensuring
a protocol that UC-realizes the ideal functionality for the
relationRCD.
Lemma 3: Assume that ElG.(Kg,E,D,Agg) is the

semantically secure El Gamal TPKE scheme. The Chaum–
Pedersen protocol in [50] securely realizes the ideal
functionalityFRCD

ZPK in theFPBB-hybrid model, assuming that
the DDH problem is hard in Gq.
The second is the idealization of the re-encryption shuffle

ZKP protocol. Similar to Lemma 3, there is a securely real-
ized protocol of the ideal functionality FRCS

ZPK for the relation
RCS. For the same reason as above, we have Lemma 4.
Lemma 4: Assume that ElG.(Kg,E,D,Agg) is the

semantically secure El Gamal TPKE scheme. The proto-
col [35] securely realizes the ideal functionality FRCS

ZPK for
the correct shuffle relation RCS in the FPBB-hybrid model
under the assumption that the El Gamal TPKE scheme is
semantically secure.

Finally, we need the lemma below for an idealized
El Gamal distributed key generation protocol. Exam-
ples using such a UC-secure DKG protocol include
Wikström [43].
Lemma 5: Assume that the DL problem is hard in Gq.

Then, the protocol in [33] securely realizes the ideal func-
tionality FDKg in the FPBB-hybrid model with respect to the
honest majority of receivers.
Proving Proposition 3 correct: For better understanding,

we first describe a brief overview of the proof and then
provide a formal proof by developing a simulator.

Since all messages communicated among players are
encrypted by the El Gamal TPKE scheme, which is semanti-
cally secure, the adversary cannot distinguish an encryption
of 0 by a simulator from a real encryption by an honest
player in the real model. Thus, we can simulate the mes-
sages of honest players. Furthermore, all messages from

91408 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

corrupt players can be extracted from the counterpart ideal
functionality by the simulator; thus, the simulator learns all
input messages of corrupt senders, all private keys of corrupt
receivers, and all shuffle information of corrupt mix servers.
As a result, we can simulate the messages of corrupt players.
Therefore, it is easy to show that the protocol 53RMN UC-
realizes the ideal functionalityF3RMN by combining all these
lemmas.

Now, we are ready to formally prove Proposition 3. Recall
that all players are assumed to agree on the publicly known
protocol parameters pp = (Gq, g, p, q).
Proof:We define the simulator S. We fix the PPT environ-

ment Z and assume a dummy adversary A. S runs a copy of
A and simulates the other players forA’s benefit, forwarding
messages from Z to its simulated A and back. We note that
S has access to the randomness used for every ciphertext of
the senders and receivers as it is provided to a proper ZPK
functionality (e.g., FRPT

ZPK). Similarly, S knows the private
keys for each receiver, as it generates the keys for the honest
receivers and the corrupt ones send the private keys to FDKg.
Let I be the index set of honest senders, J be the index

set of honest mix servers, and K be the index set of honest
receivers. By assumption, |J | ≥ nm

2 and |K | ≥ nr
2 .

We describe S by dividing it into two submodules.
Roughly, S first extracts information for the corrupt players
from the corresponding ideal functionalities and then per-
forms simulated computations for the honest players.
Extraction.
1) S instructs every ZPK functionality to respond to any

proof attempt by honest players with b∗ = 1, which
indicates that the proof was correct.

2) During key generation, for each receiver Rk , if k ∈ K ,
then S generates the private key for Rk ; otherwise,
it recovers the private key for the corrupt receiver using
its submission to FDKg.

3) S runs simulated honest senders Si∈I honestly, but
since they are not connected to the environment Z ,
they cannot receive Send commands and so take as
input mi = 0. Si∈I submits a list of distinct nm El
Gamal ciphertexts of 0. If any sender is corrupted, S
submits plaintext messages toF3RMN as follows: After
the adversary has aggregated the corrupted senders’
submissions, as it hands them to FRPT

ZPK , S learns all
plaintext shares mij for all i ∈ [ns]\I and sends them to
F3RMN.
Then, it sends (Si,Send) to F3RMN on behalf of the
honest senders.

4) When S receives (Mj : Mix) commands for honest mix
servers Mj∈J , Mj proceeds as if it had received Mix
commands from Z . Mj∈J forms and submits a list by
multiplying each ciphertext of the received list by an
encryption of 0. If Mj is corrupt, S submits a list to
F3RMN as follows: For corrupt mix servers, from their
submissions FRCS

ZPK , S learns the permuted plaintext
messages by extracting the permutation πj(j ∈ [nm]\J)
and the randomness and sends them to F3RMN. Then,

it sends (Mix,Mj) to F3RMN on behalf of the honest
mix servers.

5) S simulates honest receivers Rk∈K by making them
act as if they had received Recover commands from
Z . Since S has already extracted the private keys of
corrupt receivers in Step 2 and so can decrypt {L ′j},
it recovers a set of plaintexts and sends the set to
F3RMN. Then, it submits the Output command on
behalf of the honest receivers.

We continue to describe the computation activities of
the simulator. S waits for F3RMN to output its result
m = {m1, . . . ,mns}, recovers it, and delays any messages
from F3RMN to other players. Then, the simulator deviates
from running the honest players and ideal functionalities
honestly in the following ways:
Computations.

6) For honest senders, instead of Si∈I presenting a list
of El Gamal encryptions of additive shares to mi,
it presents a list of El Gamal encryptions of 0.

7) For honest mix servers, instead of Mj∈J presenting a
permutation and a re-encryption of El Gamal cipher-
texts, it presents an equal-sized list of El Gamal cipher-
texts of 0 in lexicographical order.

8) For honest receivers Rk∈K , it generates a faked list as
follows: For each mi∈I recovered from m, it generates
a random padding δ∗i and finds mij such that mi =
⊕j mij and mij = mij ‖ δ∗i ; it combines these
messages with those extracted from corrupt receivers
into a matrix M∗, each column of which is sorted
lexicographically. Then, we present M∗ on behalf of
the honest receivers.

It is quite clear that S runs in polynomial time with
respect to the input size. We need to show that Z cannot
distinguish with non-negligible probability between the inter-
action with A in the (FPBB,FDKg,FRPT

ZPK ,F
RCS
ZPK ,F

RCD
ZPK)-

hybrid execution and the interaction with S in the ideal
execution where S has access to only F3RMN. At this point,
the remaining work is to define sequences of hybrid games
that each run Z and produce the output of Z , as well as to
prove that there is no PPT algorithm Z that can distinguish
between each adjacent pair of hybrid games with nonnegligi-
ble probability. We omit this part of the proof since complet-
ing hybrid games is extremely tedious and not particularly
enlightening. �

VI. EXPERIMENTAL EVALUATION
The main goal of this section is to empirically validate
the efficiency of our proposal. For this purpose, we have
implemented it in C++ together with Golle et al. proto-
col [10] (see §I-E). We herein refer to our implementation
as ‘‘ ’’ and to our implementation of Golle et al.’s
protocol as ‘‘ ’’, where the box colors refer-
ence the corresponding plot colors in Figures 3 and 4.

Our micro-benchmark tests show that our RMN protocol
runs approximately 2.3× faster than our competitor.

VOLUME 10, 2022 91409

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

FIGURE 3. Overrall execution times in milli-seconds. Here we excluded
the key generation time in counting the total execution. The number of
players in sender and mix server types is taken the same as
n ∈ {5, 6, . . . , 14} but with the prefixed number of receivers (nr = 5 for
our protocol and nr = 1 for universal RMN protocol).

A. EXPERIMENTAL SETUP
We used MacBook Pro running macOS Big Sur (11.5.1),
equipped with 16GB of 2667MHz DDR4 RAM and 2.6GHz
6-core Intel Core i7, Turbo Boost up to 4.5GHz, with
12MB shared L3 cache. Our code was compiled using
Clang-12.0.1 with options-std = c++17 -fPIC -O3
enabled. Our implementations leverage the OpenSSL library
(1.1.1m) [57]. All experiments use a random prime p of 2048-
bit length such that p = 2q + 1 for a prime q. All network
operations are implemented using the Boost Asio library [58],
which is a cross platform C++ library for network and low-
level I/O programming.

Each of our experiments measures the wall-clock running
times for senders, mix servers, and receivers on a single CPU
core. We repeated all experiments for 10 trials, and report the
average execution timings across the 10 trials for each type of
entities, varying the number of participating players. We set
the number of players in senders and mix servers entity types
to be the same in the range between 5 to 14 but for simplicity
of discussion, we fix nr = 5 for our protocol and nr = 1 for
Universal RMN protocol. In practice, the number of senders
will be much greater than the number of mix servers, but it
is sufficient for the purpose of examining how much the total
execution time is improved. Furthermore, because Universal
RMN protocol does not consider verifiability in their mix-
net, for a fair comparison, we also exclude the ZPK protocols
discussed in Sections II-C3 and III.

B. OUR RMN VS. UNIVERSAL RMN
Our first collection of experiments measures the running time
for key generation. As mentioned earlier on, the number of
receivers in both experiments is fixed by nr = 5 which takes
an average of 4.72msec. This means that we run the key
generation for each experiment and use the newly generated
system parameters to execute our and Universal RMN proto-

cols. However, we do not consider the key generation time in
counting the total execution time.

Our next set of experiments evaluates the execution time
as the number of players increases in the range from 5 to 14.
When the total number of senders and mix servers is greater
than about 30, our testbed suffered from thermal throttling4

and thus, we set a maximum of senders and mix servers
ns = nm = 14.
The plot of our findings is located in Figure 3. We decom-

pose the total execution time into the running time of each
type of entities. We present running time plots for respective
entity in Figures 4(a), 4(b), and 4(c). The detailed evaluation
about their performance will be provided in the next section.
Our finding is consistent with our expectation: Our RMN
is faster than Universal RMN protocol for improved round
complexity. Our RMN and Universal RMN protocol show
comparable performance in the execution time until increas-
ing to ns = nm = 9 (i.e., the performance difference is
less than 2×), whereafter our RMN protocol reigns supreme
considerably.More concretely, Our RMN protocol runs about
2× faster than Universal RMN protocol.

C. IMPACT OF ROUND EFFICIENCY
In order to highlight the impact of network delay in Universal
RMN protocol which requires the linear round complexity,
we now decompose the total execution time into the running
times of each type of entities (i.e., sender, mix server, and
receiver) and compare to our RMN protocol with respect to
each sub-total running time.

1) SENDERS’ PERFORMANCE
We graphically compare our RMN and Universal RMN pro-
tocols in Figure 4(a). As you will see, our protocol shows a
trend that the running time of the senders increasingly grows
whereas Universal RMN protocol keeps almost constant in
the running time. Specifically, in Universal RMN protocol
each sender just generates a pair of ElGamal ciphertexts.
Thus increasing the number of senders (and mix servers)
does not affect their running time. On the other hand, our
protocol requires that each sender generates a list of nm
ElGmal ciphertexts and thus as the number of mix servers
nm increases, the running time of senders also increases. It is
worthwhile to note that the running time of senders in our
protocol may look like to rely on the number of senders, but
as mentioned above, in fact, relies on that of mix servers. This
is caused by taking the number of senders as the same as that
of mix servers.

One thing to give an attention to, in interpreting the plot
in Figure 4(a), is that the maximum value of the y-axis is
a quite small quantity compared to the total execution time.

4 We used the app known as Macs fan control (1.5.12) to measure the
CPU temperature and during the experiments, used a UNIX command
to detect MacBook Pro overheating, pmset -g thermlog. Indeed in
setting ns = 20 = nm, we observed that the CPU temperature drastically
soared to 90 Cellcius degree.

91410 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

FIGURE 4. Comparisons of execution times for each entity type. In (c), our protocol fixes nr to 5 while universal RMN protocol sets nr
to 1.

This means that the running time of senders has little effect
on the total running time of both RMN protocols.

In what follows, we compare the performance between our
mix servers and our competitor’s mix servers.

2) MIX SERVERS’ PERFORMANCE
This is the heart of our experimental benchmarking test.
As shown in Figure 4(b), we can find that the running time
of mix servers in both protocol is reversed, viz., the blue
line (our plot) is quite below the red line (Univeral RMN’s
plot). We can see from this that regarding the performance of
mix servers, the running time of our protocol is much faster
than that of Universal RMN protocol. In both protocols, the
most expensive computation of mix servers is re-encrypting a
list of ElGamal ciphertexts. Mix servers in our protocol only
need to locally re-encrypt ns ElGamal ciphertexts without
any interaction with other mix servers; while in Universal
RMN protocol, each of mix servers needs to wait for its all
predecessors in a certain order to complete their computation.
This is the primary reason that our protocol outperforms
Universal RMN protocol.

In particular, the maximum value of the y-axis in
Figure 4(b) is much larger than those of Figures 4(b) and 4(c).
Therefore, we can conclude that the running time saved by
removing the interactions between mix servers is obviously
meaningful. In conclusion, although senders and receivers
in our protocol run slower than those of Universal RMN
protocol, gains by reducing network delay by improving
round efficiency make up the losses in their running time.

3) RECEIVERS’ PERFORMANCE
Receivers in our protocol need to jointly decrypt nm times
as many ElGamal ciphertexts as Universal RMN protocol.
More precisely, receivers in our protocol get nm lists of ns
ciphertexts while those in Universal RMN protocol just get
a list of ns ElGamal ciphertexts. Recall that in our protocol
a message mi is split into nm shares and then nm ElGamal
ciphertexts are given to each mix server. This makes the
performance gap between ours and Universal RMN protocol,
which is depicted in Figure 4(c).

As discussed above, Figure 3 shows that improving round
efficiency can compensate for even these additional compu-
tation overhead caused by receivers in our protocol.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a UC-secure round-efficient re-
encryption mix-net in a three-party setting. Our main tool
for achieving UC security is a set of idealized primitives,
such as well-studied ZPK toolkits. We applied additive secret
sharing to the existing RMN to improve round complexity in
an asymptotic sense. Furthermore, we performed a theoretical
analysis in terms of computation, communication, and round
costs. Finally, we provided a detailed security proof in the UC
security model.

Future work. In our future work, we will construct and
implement a concrete e-voting system based on our 3RMN
protocol. Towards this end, we aim to provide a proof-of-
concept implementation of our solution in a modern PC
environment.

On the theoretical side, we aim to revise our current
protocol so that its computation and communication costs
are reduced to at least quasi-linear in the number of parties
without sacrificing the round efficiency gain. To achieve this
goal, we consider two different approaches: one is a batch
technique widely used in the design of efficient cryptographic
protocols (e.g., [51], [52]). The other is a round compression
compiler. Most recently, Ananth et al. [53] introduced the
notion of efficiency-preserving round compression compil-
ers.

APPENDIX A
OMITTED DEFINITIONS
We formally define zero-knowledge and knowledge extrac-
tion by following [54]. We proceed to provide a definition
of a 6-protocol that constitutes a zero-knowledge proof of a
special type.

Zero-knowledge proof of knowledge is a proof system
〈P,V 〉 for a language L defined over relation R i.e.,
L = {x

∣∣∃ω : (x, ω) ∈ R}, by which a prover P, knowing
witness ω, can prove the validity of a statement, i.e., x ∈ L,

VOLUME 10, 2022 91411

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

to a verifier V . Let (P(ω),V (z, r))(x) be the output of V in
interacting with P on the common public statement x. The
verifier holds the auxiliary input z and the random tape r ,
whereas P owns the private witness ω.
Definition 6 (Interactive proof system): A pair of PPT

interactive machines (P,V) is called an interactive proof
system for a language L if there exists a negligible function
negl(·) such that the following two conditions hold:
• (Completeness) An honest prover can always convince
the honest verifier of a valid statement x ∈ L. Formally,
for every (x, ω) ∈ R,

Pr[(P(ω),V)(x) = 1] ≥ 1− negl(|x|).

• (Soundness) A dishonest prover is unable to make a
valid proof for an invalid statement x 6∈ L with a high
probability. That is, for all (x, ω) 6∈ R and for all
dishonest PPT prover P∗,

Pr[(P∗(ω),V)(x) = 1] ≤ negl(|x|).

Definition 7 (Zero-knowledge): Let (P,V) be an interac-
tive proof system for a language L. We say that (P,V) is
computational zero-knowledge if for every PPT interactive
machine V ∗, there exists a PPT algorithm S such that

{(P(ω),V ∗(z, r))(x)}x∈L ≡ {S(x)}x∈L,

where the left term denotes the output of V ∗ after it interacts
with P on the common input x and the right term denotes the
output of S on x.
Definition 8 (Knowledge extraction): Let R be a binary

relation and τ : N → [0, 1]. We say that an interactive
function V is a knowledge verifier for the relation R with
knowledge error τ if the following two conditions hold:
• (Nontriviality) There exists an interactive machine P
such that for every (x, ω) ∈ R, all possible interactions
of V with P on the common input x and auxiliary input
ω are accepted.

• (Validity with error τ) There exists a polynomial φ(·)
and a probabilistic oracle machine M such that for
every interactive function P, every x ∈ LR and every
ω, γ ∈ {0, 1}∗, every machineM satisfies the following
condition:
Denote by δ(x, ω, γ) the probability that the interactive
machine V accepts on input x when interacting with the
prover specified by Px,ω,γ . If δ(x, ω, γ) >M(|x|), then,
on input x and with access to oracle Px,ω,γ , machineM
outputs a solution w ∈ R(x) within an expected number
of steps bounded by

φ(|x|)
δ(x, ω, γ)− τ (|x|)

.

The oracle machineM is called a universal knowledge
extractor.

Definition 9 (6-protocol): A protocol 5 is a 6-protocol
for relation R if it is a 3-round public-coin protocol and the
following requirements hold:

• (Completeness) If P and V follow the protocol on input
x and private input ω to P, where (x, ω) ∈ R, then V
always accepts.

• (Special soundness) There exists a polynomial-time
algorithmA that, given any x and any pair of accepting
transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′,
outputs ω such that (x, ω) ∈ R.

• (Special honest-verifier zero knowledge) There exists a
PPT algorithmM∗ such that

{(P(x, ω),V (x, e))}x∈LR ≡ {M(x, e)}x∈LR ,

whereM(x, e) denotes the output ofM for input x and e
and (P(x, ω),V (x, e)) denotes the output transcript of an
execution between P and V , where P has input (x, ω), V
has input x, and V ’s random tape (determining its query)
equals e.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive and
detailed feedback.

REFERENCES
[1] M. Jakobsson, A. Juels, and R. Rivest, ‘‘Making mix nets robust for

electronic voting by randomized partial checking,’’ inProc. USENIX Secur.
Symp., Aug. 2002, pp. 339–353.

[2] G. Danezis, R. Dingledine, and N. Mathewson, ‘‘Mixminion: Design of a
type III anonymous remailer protocol,’’ in Proc. 19th Int. Conf. Data Eng.,
2003, pp. 2–15.

[3] M. Reed, P. Syverson, and D. Goldschlag, ‘‘Protocols using anonymous
connections: Mobile applications,’’ in Security Protocols (Lecture Notes
in Computer Science). Berlin, Germany: Springer, 1997, pp. 13–23.

[4] D. Chaum, ‘‘Untraceable electronic mail, return addresses, and digital
pseudonyms,’’ Commun. ACM, vol. 24, no. 2, pp. 84–88, 1981.

[5] T. El Gamal, ‘‘A public key cryptosystem and a signature scheme based
on discrete logarithms,’’ in Advances in Cryptology—CRYPTO (Lecture
Notes in Computer Science). Santa Barbara, CA, USA: Springer, 1984,
pp. 10–18.

[6] P. Paillier, ‘‘Public-key cryptosystems based on composite degree residu-
osity classes,’’ in Proc. Int. Conf. Theory Appl. Cryptograph. Techn., 1999,
pp. 223–238.

[7] D. Beaver, S. Micali, and P. Rogaway, ‘‘The round complexity of secure
protocols,’’ in Proc. 22nd Annu. ACM Symp. Theory Comput. (STOC),
1990, pp. 503–513.

[8] J. Katz, R. Ostrovsky, and A. Smith, ‘‘Round efficiency of multi-party
computation with a dishonest majority,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science). Berlin, Germany:
Springer, May 2003, pp. 578–595.

[9] F. Benhamouda and H. Lin, ‘‘k-round multiparty computation from k-
round oblivious transfer via garbled interactive circuits,’’ in Advances in
Cryptology—EUROCRYPT (Lecture Notes in Computer Science). Cham,
Switzerland: Springer, 2018, pp. 500–532.

[10] P. Golle,M. Jakobsson, A. Juels, and P. Syverson, ‘‘Universal re-encryption
for mixnets,’’ in Topics in Cryptology—CT-RSA (Lecture Notes in Com-
puter Science). Berlin, Germany: Springer, 2004, pp. 163–178.

[11] M. Abe, ‘‘Mix-networks on permutation networks,’’ in Advances in
Cryptology—ASIACRYPT (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 1999, pp. 258–273.

[12] P. Golle and A. Juels, ‘‘Parallel mixing,’’ in Proc. 11th ACMConf. Comput.
Commun. Secur., 2004, pp. 220–226.

[13] R. Cramer, R. Gennaro, and B. Schoenmakers, ‘‘A secure and optimally
efficient multi-authority election scheme,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 1997, pp. 103–118.

[14] R. Canetti, ‘‘Universally composable security: A new paradigm for cryp-
tographic protocols,’’ in Proc. 42nd IEEE Symp. Found. Comput. Sci.,
Oct. 2001, pp. 136–145.

[15] C. Park, K. Itoh, and K. Kurosawa, ‘‘Efficient anonymous channel and
all/nothing election scheme,’’ in Advances in Cryptology—EUROCRYPT
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 1993,
pp. 248–259.

91412 VOLUME 10, 2022

M. Kim: Toward Round-Efficient Verifiable Re-Encryption Mix-Net

[16] D. Goldschlag, M. Reed, and P. Syverson, ‘‘Hiding routing information,’’
in Information Hiding (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 1996, pp. 137–150.

[17] K. Sampigethaya and R. Poovendran, ‘‘A survey on mix networks and
their secure applications,’’ Proc. IEEE, vol. 94, no. 12, pp. 2142–2181,
Dec. 2006.

[18] T. Haines and J. Müller, ‘‘SoK: Techniques for verifiable mix nets,’’
in Proc. IEEE 33rd Comput. Secur. Found. Symp. (CSF), Jun. 2020,
pp. 49–64.

[19] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[20] G. R. Blakley, ‘‘Safeguarding cryptographic keys,’’ in Proc. Int. Workshop
Manag. Requirements Knowl. (MARK), Jun. 1979, pp. 313–318.

[21] S. Goldwasser and S. Micali, ‘‘Probabilistic encryption,’’ J. Comput. Syst.
Sci., vol. 28, no. 2, pp. 270–299, 1984.

[22] P.-A. Fouque, G. Poupard, and J. Stern, ‘‘Sharing decryption in the con-
text of voting of lotteries,’’ in Financial Cryptography (Lecture Notes in
Computer Science). Berlin, Germany: Springer, 2000, pp. 90–104.

[23] I. Damgård, ‘‘On6-protocols,’’ Dept. Comput. Sci., Univ. Aarhus, Aarhus,
Denmark, Tech. Rep., 2002.

[24] R. Cramer, I. Damgård, and B. Schoenmakers, ‘‘Proofs of partial knowl-
edge and simplified design of witness hiding protocols,’’ in Advances
in Cryptology—CRYPTO (Lecture Notes in Computer Science). Berlin,
Germany: Springer, Jan. 1994, pp. 174–187.

[25] A. Fiat and A. Shamir, ‘‘How to prove yourself: Practical solutions to iden-
tification and signature problems,’’ in Advances in Cryptology—CRYPTO
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 1986,
pp. 186–194.

[26] A. De Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai,
‘‘Robust non-interactive zero knowledge,’’ in Advances in Cryptology—
CRYPTO (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2001, pp. 566–598.

[27] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols: Techniques
and Constructions. Berlin, Germany: Springer, 2010.

[28] C. Hazay and K. Nissim, ‘‘Efficient set operations in the presence of
malicious adversaries,’’ J. Cryptol., vol. 25, no. 3, pp. 383–433, Jul. 2012.

[29] C. P. Schnorr, ‘‘Efficient signature generation by smart cards,’’ J. Cryptol.,
vol. 4, no. 3, pp. 161–174, 1991.

[30] C. Schnorr and M. Jakobsson, ‘‘Security of signed ElGamal encryption,’’
in Advances in Cryptology—ASIACRYPT (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2000, pp. 73–89.

[31] R. Cramer, I. Damgård, and J. B. Nielsen, ‘‘Multiparty computation
from threshold homomorphic encryption,’’ in Advances in Cryptology—
EUROCRYPT (Lecture Notes in Computer Science). Berlin, Germany:
Springer, 2001, pp. 280–299.

[32] T. Pedersen, ‘‘A threshold cryptosystem without a trusted party (extended
abstract),’’ in Advances in Cryptology—EUROCRYPT (Lecture Notes in
Computer Science). Berlin, Germany: Springer, 1991, pp. 522–526.

[33] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, ‘‘Secure distributed
key generation for discrete-log based cryptosystems,’’ J. Cryptol., vol. 20,
no. 1, pp. 51–83, 2007.

[34] T. Pedersen, ‘‘Distributed provers and verfiable secret sharing based on
the discrete logarithm problem,’’ Ph.D. dissertation, Dept. Comput. Sci.,
Aarhus Univ., Aarhus, Denmark, 1992.

[35] J. Groth, ‘‘A verifiable secret shuffle of homomorphic encryptions,’’
in Public Key Cryptography. Berlin, Germany: Springer, Jan. 2003,
pp. 145–160.

[36] C. A. Neff, ‘‘A verifiable secret shuffle and its application to e-voting,’’ in
Proc. 8th ACMConf. Comput. Commun. Secur. (CCS), 2001, pp. 116–125.

[37] J. Furukawa and K. Sako, ‘‘An efficient scheme for proving a shuffle,’’ in
Advances in Cryptology—CRYPTO (Lecture Notes in Computer Science).
Berlin, Germany: Springer, 2001, pp. 368–387.

[38] D. Wikström, ‘‘A sender verifiable mix-net and a new proof of a shuffle,’’
in Advances in Cryptology—ASIACRYPT (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2005, pp. 273–292.

[39] S. Bayer and J. Groth, ‘‘Efficient zero-knowledge argument for correctness
of a shuffle,’’ in Advances in Cryptology—EUROCRYPT (Lecture Notes
in Computer Science). Berlin, Germany: Springer, 2012, pp. 263–280.

[40] P. Fauzi and H. Lipmaa, ‘‘Efficient culpably sound NIZK shuffle argu-
ment without random oracles,’’ in Topics in Cryptology—CT-RSA (Lecture
Notes in Computer Science). Cham, Switzerland: Springer, Feb. 2016,
pp. 200–216.

[41] P. Fauzi, H. Lipmaa, J. Siim, and M. Zajac, ‘‘An efficient pairing-
based shuffle argument,’’ in Advances in Cryptology—ASIACRYPT (Lec-
ture Notes in Computer Science). Cham, Switzerland: Springer, 2017,
pp. 97–127.

[42] R. Canetti, ‘‘Security and composition of multiparty cryptographic proto-
cols,’’ J. Cryptol., vol. 13, no. 1, pp. 143–202, Jan. 2000.

[43] D. Wikström, ‘‘A universally composable mix-net,’’ in Proc. Theory Cryp-
togr. Conf. (TCC), 2004, pp. 317–335.

[44] S. Goldwasser and Y. Lindell, ‘‘Secure computation without agreement,’’
in Distributed Computing (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 2002, pp. 17–32.

[45] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, ‘‘Universally compos-
able two-party and multi-party secure computation,’’ in Proc. 34th Annu.
ACM Symp. Theory Comput. (STOC), 2002, pp. 494–503.

[46] Y. Tsiounis and M. Yung, ‘‘On the security of ElGamal based encryption,’’
in Public Key Cryptography (Lecture Notes in Computer Science). Berlin,
Germany: Springer, 1998, pp. 117–134.

[47] J. Groth, ‘‘Non-interactive zero-knowledge arguments for voting,’’ in
Applied Cryptography and Network Security (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2005, pp. 467–482.

[48] D.Dolev, C. Dwork, andM.Naor, ‘‘Non-malleable cryptography,’’ inProc.
23rd Annu. ACM Symp. Theory Comput. (STOC), 1991, pp. 542–552.

[49] F. Brandt, ‘‘Efficient cryptographic protocol design based on distributed
El Gamal encryption,’’ in Information Security and Cryptology—(ICISC)
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2005,
pp. 32–47.

[50] D. Chaum and T. Pedersen, ‘‘Wallet databases with observers,’’ in
Advances in Cryptology—CRYPTO (Lecture Notes in Computer Science).
Berlin, Germany: Springer, 1992, pp. 89–105.

[51] J. Camenisch, S. Hohenberger, and M. O. Pedersen, ‘‘Batch verifica-
tion of short signatures,’’ in Advances in Cryptology—EUROCRYPT
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2007,
pp. 246–263.

[52] I. Kaslasi, R. D. Rothblum, and P. N. Vasudevan, ‘‘Public-coin statis-
tical zero-knowledge batch verification against malicious verifiers,’’ in
Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer Sci-
ence). Cham, Switzerland: Springer, 2021, pp. 219–246.

[53] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain, ‘‘Towards efficiency-
preserving round compression in MPC—Do fewer rounds mean more
computation?’’ in Advances in Cryptology—ASIACRYPT (Lecture Notes
in Computer Science). Cham, Switzerland: Springer, 2020, pp. 181–212.

[54] O. Goldreich, The Foundations of Cryptography: Volume 1—Basic Tools.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[55] A. Kumar and S. K. Gupta, ‘‘Synchronization-aware task allocation tech-
niques for preemption control to reduce blocking time in multiprocessor
real-time system,’’ Int. J. Embedded Real-Time Commun. Syst., vol. 11,
no. 4, pp. 60–79, Oct. 2020.

[56] A. Kumar and S. K. Gupta, ‘‘Reliable energy-aware scheduling algorithm
with multi-level budget for real-time embedded system,’’ Int. J. Embedded
Real-Time Commun. Syst., vol. 12, no. 4, pp. 55–76, Oct. 2021.

[57] The OpenSSL Project. OpenSSL: The Open Source Toolkit for SSL/TLS.
Accessed: Aug. 1, 2022. [Online]. Available: https://www.openssl.org

[58] C. Kohlhoff. Boost.asio—1.53. Accessed: Aug. 1, 2022. [Online]. Avail-
able: http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio.html

[59] N. Borisov, ‘‘An analysis of parallel mixing with attacker-controlled
inputs,’’ in Privacy Enhancing Technologies (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 2005, pp. 12–25.

[60] C. Hébant, D. H. Phan, andD. Pointcheval, ‘‘Linearly-homomorphic signa-
tures and scalable mix-nets,’’ in Public-Key Cryptography (Lecture Notes
in Computer Science). Cham, Switzerland: Springer, 2020, pp. 597–627.

[61] C. Killer, M. Eck, B. Rodrigues, J. Von Der Assen, R. Staubli, and
B. Stiller, ‘‘ProvotuMN: Decentralized, mix-net-based, and receipt-free
voting system,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency
(ICBC), May 2022, pp. 1–9.

MYUNGSUN KIM received the B.S. degree in
computer science and engineering from Sogang
University, Seoul, South Korea, in 1994, the
M.S. degree in computer science and engineering
from Information and Communications University
(ICU), Daejeon, in 2002, and the Ph.D. degree
in mathematics from Seoul National University
(SNU), Seoul, in 2012. He was worked with the
Department of Information Security, University of
Suwon. He is currently an Assistant Professor with

the Department of Mathematics, Gachon University. His research interests
include efficient constructions of cryptographic algorithms and their practi-
cal applications to real-world solutions.

VOLUME 10, 2022 91413

