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ABSTRACT With the growing use of the internet and social media, data security has become a major
issue. Thus, researchers are focusing on data security techniques such as steganography and steganalysis.
Steganography is the approach of concealing the existence of secret messages in digital media for secure
transmission. Steganalysis techniques aim to detect the existence of concealed messages and extract them.
Digital image steganography and steganalysis techniques are classified into the spatial and transform
domains. In this paper, we provide a detailed survey of the state-of-the-art works that have been performed
in two-dimensional and three-dimensional image steganalysis. We present the most popular datasets and
explain some steganographic methods for embedding hidden data. Steganalysis is a very difficult task
due to the lack of information about the characteristics of the cover media that can be exploited to detect
hidden messages. Therefore, we review studies performed on image steganalysis in the spatial and transform
domains using classical machine learning and deep learning approaches. Additionally, we present open

challenges and discuss some directions for future research.

INDEX TERMS Steganography, steganalysis, deep learning, machine learning.

I. INTRODUCTION
A vast amount of digital media, such as image, video, and
audio, are published on the internet every day. These digital
media might contain hidden messages that can be embedded
in plain sight using a well-known method called ““‘information
hiding” [1], a technique that allows users to conceal infor-
mation via digital data with no perceptible effect on the data.
Thus, people cannot detect whether there is a hidden message
inside the digital data. The term steganography is formed
of two Greek terms, ‘“‘steganos”, which means ‘““‘covered”,
and ‘“‘graphein”, which means “writing” [2]. Therefore,
steganography is a method that hides specific information
inside digital data [3]. The input data are called the cover
object, and the output is the stego object which contains the
hidden message.

There are major distinctions between steganography and
other information-embedding methods. The main differ-
ence between steganography and cryptography, for example,
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is that cryptography hides the message, while steganogra-
phy hides the presence of the message. Watermarking is
used to protect owners’ property rights, and its aim is to
add additional information to the source (cover data). Cur-
rently, many steganography techniques exist in the spatial
and transform domains [4], [5], [6]. With the increased
development and use of steganography techniques, there
is a need to detect hidden messages. Steganalysis is an
approach that distinguishes whether a message is hidden by
steganography inside a certain media [7]; it is categorized
into passive and active types [7]. The hidden data in the
spatial domain are embedded directly by adjusting the value
of the pixels in the cover image. In contrast, the hidden
data in the transform domain are embedded in the coeffi-
cients of the cover image. Thus, Passive steganalysis detects
the existence of hidden messages, while active steganalysis
retrieves the hidden messages, and they are further classified
into the spatial and transform domains. Image steganaly-
sis methods utilize feature-based approaches to extract the
discriminative attributes from images, such as local binary
patterns (LBP) [8] and the subtractive pixel adjacency model
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(SPAM) [9]. Steganalysis methods can be designed to detect
a specific embedding algorithm, as in [10], [11] and [12];
they can also act universally to detect the existence of hidden
data regardless of the embedding algorithm, as in [13], [14]
and [15]. Many methods have been proposed for steganalysis
applications based on machine learning and deep learning
algorithms.

Classical machine learning consists of two parts: the first
part is the feature extractor while the second part is the
trainable classifier. The feature extractor is used to obtain
distinguishing features from input data that are used by the
classifier for training. Machine learning includes many tech-
niques, such as the support vector machine (SVM) [16],
amachine learning tool introduced by Vapnik that can be used
for classification and regression problems [17]. Other pop-
ular machine learning techniques include linear regression,
in which the output is predicted by using a known param-
eter, principal component analysis (PCA), which reduces
the dimensionality of a dataset [18], nearest neighbor [19],
K-mean clustering [20], etc.

In the last few years, deep learning models have received
a significant amount of attention in many fields. In 2015,
the first steganalysis technique was developed using a con-
volutional neural network (CNN), which is a deep learn-
ing technique [21]. Deep learning is considered a subset of
machine learning that can be seen as a black-box framework.
It integrates the feature extraction and classification steps into
one process, thus allowing an end-to-end learning process for
the machine. Deep learning models use forward processes
to learn feature extractions and perform the classification
directly from the input data. Then, in the backward direction,
an updating of the extracted features based on the decision
of the classifier is performed. This process is automatically
repeated until the model’s error is decreased. Fig. 1 illustrates
the difference between the concepts of classical machine
learning and deep learning. Fig. 1 (a) presents the classical
machine learning concept. Fig. 1 (b) presents the deep learn-
ing concept.

Steganalysis is a very difficult field due to the lack of infor-
mation about the characteristics of the cover media that can
be exploited to detect hidden messages. There are many algo-
rithms for the steganalysis field that use three common cover
media: image, video, and audio. In this survey paper, we focus
on steganalysis algorithms for two-dimensional (2D) and
three-dimensional (3D) images. The main difference between
2D and 3D image steganography is in the cover image. For
steganography in 2D images, the cover is an image where a
message will be hidden within pixel intensities, while in 3D
image steganography, the cover is a 3D mesh consisting of
points or vertices in 3D geometry, and it will be manipulated
to hide information.

Studying current methodologies and understanding future
challenges in digital image steganalysis helps researchers
achieve better outcomes in steganography and steganalysis.
Thus, in this survey, we present a summary of the different
types of algorithms for digital image steganalysis that have
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been developed using classical machine learning and deep
learning technologies. We mainly focus on algorithms for
images in the spatial and transform domains. Developing and
adapting steganalysis techniques begins with a good under-
standing of steganography. Therefore, in Section II, we begin
the survey by providing an overview of the steganography
algorithms used on 2D and 3D images. In Section III, we out-
line the most commonly used datasets in steganalysis and
categorize them into 2D and 3D datasets. In Section IV,
we analyze various steganalysis methods for 2D and 3D
images that have been performed using machine learning and
deep learning. In Section V, we highlight some open research
challenges in the steganalysis field. Finally, we conclude the
paper in Section VL.

Il. STEGANOGRAPHY

Any steganography technique can be defeated once its ste-
ganalysis technique is determined [22]. This section provides
an introduction to digital image steganography and some
steganography schemes in the spatial and transform domains.

Steganography is the science of communicating secretly
by hiding multimedia data inside an appropriate multimedia
carrier, such as an image, text, file, or video [23]. These mul-
timedia carriers are called cover objects. The first steganog-
raphy technique was developed in ancient Greece, and the
importance of steganography has increased recently due to
the increase in data exchange in social media networks. Image
steganography techniques have been developed for informa-
tion concealed exclusively in images. The secret message is
hidden in a cover image and sent to a receiver in such a way
that only the sender and the receiver are aware of its existence.
Both the secret message and cover image constitute the input
of the steganographic encoder. The stego image is obtained
by embedding the secret message in a cover image. In the
end, the stego and cover images are very similar and show
no visible changes. The receiver must input a stego image
into a steganographic decoder to read the secret message.
A stego key is used for encoding and decoding the secret
message.

There have been many steganographic techniques pre-
sented in the literature. All these techniques must satisfy at
least three requirements to be applied correctly: The max-
imum amount of information that can be concealed inside
the cover image (embedding capacity) must be considered;
the visual quality of the stego image must remain unchanged
(imperceptibility), and it must be robust against noise [3].
There are a number of methods to hide information inside
a 2D image. These embedding methods can be in either the
spatial or transform domain [24]. The idea of spatial domain
embedding techniques is to use the actual physical location
of a pixel of information in the image. These techniques are
considered easy to implement because of the simplicity of
their algorithms and mathematical analysis. Spatial domain
techniques provide high embedding capacity; however, their
robustness is weaker than their counterparts [25]. The most
commonly used technique is least significant bit (LSB).
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FIGURE 1. Comparison between deep learning and classical machine learning concepts. (a) Classic machine learning method. (b) Deep

learning method.

LSB insertion is a simple data hiding approach that can be
effortlessly applied in the spatial or transform domain over
any digital cover media [26]. It is easily understood by users,
and the data are hidden by replacing the least significant
bit of each pixel. However, maximization of the hidden data
capacity into a cover image by using LBS is limited because
it may lead to more noise and distortion, affecting the reso-
lution and quality of the image and thus making it easier to
detect the hidden message. This method is easily detected by
exposing the data to strong feature-based image steganalysis
and recovering the least significant bit out of the pixels in the
image.

The need to remove noise from embedded data is essential
to increase its security. Highly undetectable steGO (HUGO)
was developed in 2010, and it is considered the first adaptive
schema proposed in the literature [27]. HUGO is a nontra-
ditional and content-adaptive steganographic technique that
adaptively changes the embedding locations according to the
image content. Therefore, this method achieves high security
in the embedding process by covering the noise with the
inhered noise.

Several adaptive steganography algorithms for the spa-
tial domain have been proposed that follow the same
embedding model of HUGO, for instance, an embedding
algorithm for the break our steganography system (BOSS)
competition [28], spatial-universal wavelet relative distortion
(S-UNIWARD) [29], wavelet obtained weights (WOW) [30],
high-pass and two low-pass (HILL) [31], and minimizing
the power of optimal detector (MiPOD) [32]. WOW is a
high-security steganography algorithm, as it changes the pix-
els of texture regions while maintaining the edge of the cover
image [30]. S-UNIWARD steganography obtains advanced
security by using the directional high-pass filter [29]. In the
HILL algorithm [31], the embedding changes mainly in the
textural areas; the algorithm uses a high-pass filter and two
average low-pass filters to ensure that all pixels within the
textural regions have relatively low costs. In contrast to all
the above discussed adaptive steganography algorithms, the
MiPOD algorithm minimizes the impact of embedding on
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the cover model in addition to obtaining a superior security
level [32].

Transform domain embedding is a method for representing
the signal in another form. However, the information con-
tent present in the image is not changed. Wavelet transform
(WT) is a mathematical procedure used to transform a spatial
domain into a frequency domain [33]. The main idea of using
WT in image stenographic techniques is based on separating
the high-frequency and low-frequency information on a pixel-
by-pixel basis. Transformation techniques use JPEG com-
pression due to the significant increase in available steganal-
ysis tools. Discrete cosine transform (DCT), discrete wavelet
transform (DWT), and discrete Fourier transform (DFT) in
the embedding process are the utilized transform steganog-
raphy techniques. The DCT domain embedding technique
is very popular because it is the core of the lossy image
compression algorithm known as JPEG, which is the format
used for digital cameras [34]. In comparison to DCT, DWT
shows high robustness, and the embedded secret image can
be extracted with a high visual quality [35].

Another classification for steganographic methods is based
on the coded formats of images. Image steganography can be
applied in different formats for cover images, such as BMP,
JPEG and GIF. High color quality JPEG format images are
the most mainstream images in modern communications. The
most efficient JPEG steganographic techniques are based on
Syndrome Trellis Coding (STC) [36] and Uniform Embed-
ding Distortion (UED) [37], which uses only nonzero DCT
coefficients of different magnitudes with equal probability.
This schema possibly leads to minimal artifacts for the statis-
tics of all the DCT coefficients, which makes them naturally
content adaptive [38].

Early steganography algorithms focused mainly on 2D
images, videos, and audios. However, due to the rapid growth
in digital media, the use of 3D images as input media in
steganography algorithms has been consistently established
in the past decade. A 3D image is a geometric setting that
requires three coordinate axes to represent the position of
a point. Steganography algorithms hide the secret data bits
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FIGURE 2. An example of 2D and 3D images. (a) 2D image of leaves (b) 3D image of sphere mesh.

inside the points of a 3D mesh. Fig. 2 shows the differences
between 2D and 3D images.

The advantage of using 3D images is that they have a data
structure with a high carrying capacity that provides extra
security for embedding larger amounts of secret information.
However, there are currently fewer 3D image steganography
algorithms than 2D image steganography algorithms due to
some challenges and complexities in 3D images. These algo-
rithms can also be classified into either the spatial or trans-
form domain. Due to additional efforts required to transfer
the image in and out of the frequency domain, most work is
done in the spatial domain.

Researchers have used 3D data hiding techniques for
embedding data into 3D images. These techniques are
detected by some of the steganalysis methods that will be
discussed later in this paper. Cayre and Macq proposed
a substitutive procedure-based steganography algorithm for
3D images that geometrically quantizes the 3D object into
a two-state geometric [39]. The main drawbacks of this
method lie in embedding capacity and distortion. Wang and
Cheng [40] improved the method in [39] by employing a
multilevel embedding procedure and using an advance jump
strategy to increase the embedding capacity to three bits
per vertex and reduce the distortion. Chao et al. [41] also
presented an algorithm with a high capacity and a reduced
distortion algorithm on a multilayer embedding. The problem
with this method is that the rapidly increasing distortion
limits the number of embedded layers. To balance the increas-
ing embedding capacity and reducing distortion, Yang and
Ivrissimtzis [42] designed an algorithm based on computing
an appropriate quantization level for the 3D vertices and
replacing the unused LSB with watermark bits. However,
the large amount of embedded noise increases the error sig-
nificantly, which may lead to malicious attacks. Tsai [43]
proposed an adaptive steganography algorithm that achieved
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a high accuracy of the complexity estimation for each embed-
ded vertex and the embedding capacity. A steganography
method that combines both the spatial and representation
domains is presented in [44]. A number of 3D data hiding
schemes have been investigated in steganalysis for example
adaptive-steganography [45], 3D wavelet-based high capac-
ity and 3D wavelet-based fragile steganography [46], shifting
and truncated steganography [47], distortion-free steganog-
raphy [48], permutation steganography [49], the maximum
expected level tree data-hiding approach [50], and a data
hiding approach for polygon meshes [51]. Some researchers
have tested their steganalysis techniques using other data
hiding techniques, such as watermarking. The Laplacian
coordinate-based watermarking method [42], the two variants
of robust watermarking [52], frequency-based watermark-
ing [53] and steganalysis-resistant 3D watermarking [54] are
examples of watermarking algorithms. These techniques are
detected by some of the steganalysis methods discussed later
in this paper.

lIl. IMAGE STEGANALYSIS DATASETS

Steganography can be used on various types of media, such
as images, videos, audio, etc. Therefore, researchers need
to evaluate their steganalysis techniques on large datasets.
We classify datasets into two categories, 2D and 3D datasets,
and 2D datasets can be further categorized into grayscale and
colored images. This section explains the commonly used
datasets in the field of steganalysis.

A. TWO DIMENSIONAL DATASETS

1) GRAYSCALE DATASETS

A challenge called the Breaking Our Watermarking System
(BOWS) [55] was created in 2007 by the International Chal-
lenges in Information Forensics and Security community to
remove watermarks from three images. The second edition
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TABLE 1. Commonly used 2D grayscale datasets in steganalysis.

Dataset Number of Images | Format | Image Size Steganographic Scheme Year

BOWS-2 [56] 10,000 PGM | 512 x 512 N/A 2008

BOSSbase v1 [28] 10,000 PGM | 512 x 512 HUGO [27] 2010

BURSTDbase [57] 7 % 9,310 JPEG | 512 x 512 | JF-UNIWARD [29], J2-UNIWARD [57], and SI-UNIWARD [29] | 2017

LIRMMBase 256 X256 [58] 1,008 PGM | 256 x 256 N/A 2015

LIRMMBase 512x 512 [58] 15,245 PGM | 512 x 512 N/A 2015

TABLE 2. Commonly used 2D colored datasets in steganalysis.

Dataset Number of Images Format Image Size Steganographic Scheme Year
Istego100K [63] 208,109 JPEG 1024 x 1024 J-UNIWARD [29], nsF5 [66], and UERD [62] 2019
Alaska 2 [60] 300,000 JPEG 512 x512 J-UNIWARD [29], UERD [62], and J-MiPOD [61] | 2020
ImageNet [64] More than 15 million | JPEG Different sizes | N/A 2009
RAISE [65] 8,156 Raw Different sizes | N/A 2015
LIRMMBaseColor [58] | 15,320 Raw Not specified | N/A 2015
Alaska 1 [59] 80,000 Raw, JPEG | Different sizes | nsF5 [66], UED-JC, EBS, and J- UNIWARD [29] | 2018

of the challenge (BOWS-2) was presented in 2008 [56]. This
challenge was the inspiration behind creating the BOSS chal-
lenge in 2010 [28]. The BOSSbase dataset, which includes
10,000 grayscale images, has become one of the most com-
monly used datasets in the field of steganalysis. Although
BOSSbase has had a great impact on steganalysis research,
it has some limitations, especially with the emergence of
new technologies. In 2017, the BURSTbase dataset was cre-
ated [57]. It contains 7 x 9.310 images in JPEG format taken
with a camera in burst mode. Table. 1 presents the details of
the grayscale datasets.

2) COLORED DATASETS

In 2018, a new competition began under the name
Alaskal [59]. It aimed to provide a large dataset of images
of different sizes taken by different cameras. Images were
compressed with different quality factors. As part of the
Alaskal challenge, participants were given codes for stegano-
graphic schemes to build their own training sets without hav-
ing to worry about cover-source mismatches. Alaska2 [60]
is a follow-up competition to Alaskal. It contains a total of
300,000 colored images divided into 75,000 sets of cover,
stego images (images with steganographic schemes applied to
them such as J-UNIWARD [29], J-MiPOD [61] and Uniform
Embedding Revisited Distortion (UERD) [62]) and 5,000
test images. IStegol100K is a dataset created in 2019 [63].
It contains 208,104 colored images of size 1024 x 1024.
Images were separated into 100,000 images for cover and
100,000 images for stego, and the remaining 8,104 images
were used for testing. This dataset takes into consideration
the mismatch between the training set and test set in a real
environment. ImageNet is one of the most popular datasets
used in classification problems [64]. It was created to promote
research in computer vision. Some researchers use ImageNet
as a dataset for steganalysis by creating stego images using
a steganography scheme of their choice; it has been used in
creating new models for steganalysis, as it contains more than
14 million colored images of various sizes. RAISE is another
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dataset created to support research in the image forensics and
image processing fields [65]. Table. 2 illustrates the details of
the colored datasets.

3) GRAYSCALE AND COLORED DATASETS

Few datasets contain both colored and grayscale images. One
of the few that does is Steganalysis Real Test Version 1 (STE-
GRT1) [67]. STEGRTI is a new dataset created in 2020 to
evaluate steganalysis systems on real-world scenarios. STE-
GRT1 contains 8,000 cover and stego images of various
sizes and properties. The Large Scale Steganalysis Database
(LSSD) is a combination of different datasets [68]. The idea
behind combining datasets is to increase the diversity and
present real-world scenarios. Table. 3 shows more details of
the grayscale and colored datasets.

B. THREE DIMENSIONAL DATASETS

Currently, with advancements in 3D technology and hard-
ware, it has become easy to obtain 3D models for natural
objects. These models have become commonly used in differ-
ent fields, such as medical imaging, virtual reality, augmented
reality, games, movies, and many more areas. 3D steganogra-
phy has become one of these fields due to its high embedding
capacity in 3D meshes, which can be excellent data carriers.
Table. 4 provides more details on 3D datasets.

IV. STEGANALYSIS

Most steganalysis techniques have been formulated as a
binary classification problem. Rich model-based steganalysis
is one of these methods that achieves better detection accu-
racy than most other steganalysis algorithms. The method
first extracts various handcrafted features from the filtered
digital images in the training phase. Then, an ensemble classi-
fier is trained to distinguish cover images from stego images.
The trained classifier is used in the testing phase to determine
whether a new input image includes concealed data. In ste-
ganalysis using classical machine learning, the features are
extracted by handcrafted methods and are separated from the
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TABLE 3. Commonly used 2D grayscale and colored datasets in steganalysis.

Dataset Number of Images | Format Image Size Steganographic Scheme Year

For JPEG: RLSBR [69], F5 [70], CE [71],
OutGuess 0.2 [72], nsF5 [66], J-UNIWARD
[29], and SI-UNIWARD [29] For BITMAP:

STEGRT1 [67] | 8,000 BITMAP, JPEG | Different sizes RLSBR [69], LSBM [73], PVD [74], HUGO 2020
[27], WOW [30], HILL [31], S-UNIWARD
[29], and MiPOD [32]

LSSD [68] 2 million JPEG 256 x 256 J-UNIWARD [29] 2020

TABLE 4. Commonly used 3D datasets in steganalysis.

Dataset Number of Objects | Website

Princeton Segmentation Benchmark (PSB) [75] 354

http://segeval.cs.princeton.edu/

Princeton ModelNet (PMN) [76] 12,311

http://modelnet.cs.princeton.edu/

The Stanford 3D Scanning Repository [77] 9

http://graphics.stanford.edu/data/3Dscanrep/

classification stage. Therefore, the accuracy of the classifier
relies on the effectiveness of the feature extraction method.
These extracted features are fed forward to the classification
stage. In contrast, in deep learning, the feature extraction
stage is blended with the classification stage, and the decision
of the classifier is used to update the extracted features.
Many feature extraction techniques are used in steganalysis
in machine learning. However, the large number of features
in images causes the curse of dimensionality (CoD) and time
complexity, especially when working on universal steganaly-
sis. Extracting the discriminative features can help to improve
the steganalysis accuracy. Previous studies suggested some
algorithms to reduce the dimensionality of the data. Applying
feature subset selection in the context of steganalysis presents
many advantages as follows:

1) The accuracy of image steganalysis methods relies on
sensitive features that can detect the presence of hidden
messages in all types of steganography methods, and it
does not rely on a large dimensional feature set.

2) By selecting the vital features, the redundant features
are removed, and the discriminant features are pre-
served to train the classifier.

3) The computation time complexity is reduced for the
feature extraction stage and training of the classifier.
This will help to detect the hidden messages in different
real-time applications where security is important.

A new method for processing features in two phases of
optimization was proposed in [78]. The first optimization
model is the eigenvalue of the scatter matrix within a class.
The second phase of optimization is the employment of the
random subspace Fisher linear discriminant (FLD). Kulkarni
and Gorkar [79] investigated the presence of hidden malware
in images. They used PCA based on eigenvalues to reduce the
number of dimensions and keep all the vital features needed
for the classifier. A universal image steganalysis technique
focusing on feature selection was presented by Desai and
Patel [80]. This method is a feature grouping based on PCA.
Desai et al. computed the eigenvalue of the covariance matrix
and then clustered the feature using the K-means method.
Some techniques can be used to accelerate feature
extraction. Li et al. [81] found that the cost of the clas-
sical divide-and-conquer method depends on the updating
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of singular vectors, which includes two matrix multiplica-
tions. As a result, they concluded that the singular vec-
tor matrices of a broken matrix are Cauchy-like matrices
and have off-diagonal and low-rank properties, so they can
be estimated by hierarchically semiseparable (HSS) matri-
ces. They introduced an accelerated DC algorithm where
a structured low-rank estimation method is used. Their
study showed that ADC can be three times faster than DC.
On the other hand, Liao et al. [82] proposed a parallel struc-
tured divide-and-conquer aiming to reduce the computational
cost. Their method builds the local matrices by employing
Cauchy-like matrix generators without any communication
and then reduces the computation costs by utilizing a struc-
tured low-rank approximation method.

These ADC methods showed that the computational cost of
the methods massively decreased and will help significantly
in steganalysis problems.

In the following sections, we present the main contribution
of this survey, which is to highlight the works that have been
performed using classical machine learning and deep learning
techniques in the spatial and transform domains in the image
steganalysis field.

A. TWO DIMENSIONAL IMAGE STEGANALYSIS METHODS

BASED ON CLASSICAL MACHINE LEARNING TECHNIQUES
Different methods for 2D image steganalysis using machine
learning techniques have been proposed. These methods use
two phases to solve the steganalysis problem. The first phase
is a handcrafted feature extraction, which has the capability
of modeling the embedding distortions in the image using
any steganographic algorithm. The second phase is the clas-
sification process that uses an integrated classifier for feature
training. Different classifiers can be used for image steganaly-
sis, such as the SVM and ensemble classifiers. The following
sections discuss the steganalysis methods in the spatial and
transform domains.

1) SPATIAL DOMAIN STEGANALYSIS

The spatial domain is used for ease of implementation and
its high capacity for hidden information. Some methods in
the spatial domain include HUGO [27], pixel-pair matching
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scheme [83], [84], MiPOD [32], HILL [31], Gibbs construc-
tion [85], spatial rich models (SRM) [86], and WOW [30].
A method for detecting steganographic least significant
bit matching (LSBM) was presented by Pevny er al. [9].
This method identifies deviations caused by steganographic
embedding by modeling the differences between adjacent
pixels in the images. A filter is used in the steganalysis to
suppress the image content while exposing the stego noise.
First- and second-order Markov chains are used to model the
dependencies between the neighboring pixels in the filtered
image. Then, the sample transition probability matrix is used
to obtain a feature vector in a machine learning-based ste-
ganalyzer. Although the presented feature set was designed
to detect spatial domain steganography, it was also able to
detect algorithms that are hidden in the block DCT domain.
The SRM proposed by Fridrich and Kodovsky [86] is
a widely used, state-of-the-art image steganalyzer. SRM
extracts residual features by applying nonlinear and linear
high-pass filters. The model detects stego images by acquir-
ing the noise pattern’s discontinuity in adjacent pixels in the
tampered and nontampered areas. The authors proved that a
medium-dimensional feature fed into a Gaussian SVM and a
high-dimensional feature fed into an ensemble classifier can
improve the detection accuracy for all the tested methods.
Veena and Arivazhagan [87] proposed a universal quan-
titative steganalyzer using reduced instances and features in
which both the local and global features are considered for
feature space. The global features are co-occurrence features
from the Markov model, while the local features constitute
the local filter pattern (LFP) [88]. The extracted features are
concatenated using the greedy randomized adaptive search
procedure (GRASP) [89]. Then, discretized all condensed
nearest neighbor (D-AIICNN) is applied for instance reduc-
tion, and RFE is applied to reduce the feature dimensionality
based on the divide and conquer principle. The AdaBoost
estimator with regression trees is used to predict the pay-
load in the stego image. The proposed blind quantitative
steganalyzer is suitable for spatial LSB-based methods and
can be used to improve the existing multimodel steganalytic
features. As steganography algorithms negatively affect the
correlations among gradient amplitudes of color channels,
Kang et al. [90] presented a steganalysis method using chan-
nel gradient amplitude correlation for color images. The
extracted features are the cooccurrence matrix from the gra-
dient amplitude residuals that describe the correlation of the
different color channels and then these features are combined
with the existing features as in [91] and [92] for color image
steganalysis. The proposed method was tested on the BOSS-
base dataset. The dimension of the features is 5,404, which
consumes a great deal of space and time when features are
extracted and saved. Due to the high dimensionality of the ste-
ganalysis features, the proposed algorithm uses an ensemble
classifier, which is a common learning technique for image
steganalysis. To improve the detection of perturbations of the
local patterns in stego images, features are used in texture
classification tasks such as LBP. LBP features can character-
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ize local structure changes, and they seem to be promising.
LBP can effectively summarize the local structures of an
image by comparing pixels with their neighbors. Inspired
by this idea, Gui et al. [93] proposed extracting multiscale
rotation invariant LBPs from smooth pixels as unique tex-
tural features, which are then fed into the linear SVM. The
experimental results showed that the method performed well
in detecting stego images and had a high accuracy.

Liu et al. [94] presented a blind image steganalysis method
based on a nature-inspired feature selection method. The fea-
tures are extracted for image steganalysis using SPAM. Then,
the ideal feature subset is chosen from the original features
using the binary bat method (BBM) [95]. The classifiers used
to verify the proposed method are KNN, RF, AdaBoost, DCA,
NB and SVM. The proposed method was tested using the
BOSSBase v1.01 dataset, and the accuracy was 68.08% with
the SVM classifier.

2) TRANSFORM DOMAIN STEGANALYSIS

The transform domain embeds the hidden messages in the
coefficients of the cover image. Therefore, the transform
domain has an advantage over the spatial domain, where the
hidden messages in the transform domain are not affected
by image processing, compression, or cropping. Methods in
the transform domain include UED [37], UERD for JPEG
steganography [62], statistical features of contourlet trans-
form [96] and block-based image steganalysis based on DCT
and Markov features [97]. These steganography methods
leave minimal traces of hidden data, so it is necessary to
extract independent features from the image to proceed to the
next phase. Therefore, efficient features for the steganalysis
process include the Markov transition probabilities of pixels,
histogram of residuals, cooccurrence matrices, LBP opera-
tors, etc. The next phase is the classification process in which
integrated classifiers for feature training are used. Classifiers
that can be used for image steganalysis include the SVM and
ensemble classifiers.

Liu et al. [98] presented a new method based on feature
mining, the DCT domain and SVM for JPEG image steganal-
ysis. They extracted features using both the intr-block and
intera-block neighboring joint density from the DCT coefti-
cient; then, they fed these features into SVM for detection.
To predict the hidden amount in JPEG steganography, the
authors applied a neural-fuzzy inference system. Their exper-
imental results showed that their method performed better
than the well-known Markov process-based method.

Holub and Fridrich proposed a novel feature set for
JPEG steganalysis called discrete cosine transform residual
(DCTR) [99]. These features are low in complexity and small
in dimension, and they are created as histograms of the
residuals achieved using 64 DCT bases. The authors used the
Fisher Linear Discriminant (FLD) [100] ensemble as a binary
classifier. The results show that DCTR achieved competitive
detections over many JPEG methods.

Song et al. [101] proposed a steganalysis method by apply-
ing 2D Gabor filters for the feature extraction phase to detect
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the embedded changes constrained in the complicated texture
regions of the JPEG images. The results showed that the pro-
posed features for image steganalysis obtained a competitive
performance when compared to the achieved steganalysis fea-
tures UED [37], J-UNIWARD [29] and SI-UNIWARD [29].

Shankar and Azhakath [102] proposed a blind feature-
based image steganalysis for the JPEG file format. A total
of 274 image features were extracted using a DCT from
the first-order (dual, global, and individual histograms),
second-order (co-occurrence, variance, and blockiness), and
special Markov features. The classifiers were SVM and
SVM-particle swarm optimizations (SVMPSO). The classi-
fiers were adapted with 10% embedding and 10-fold cross-
validation. The kernels used in the classification process were
linear, multiquadratic, Epanechnikov, radial, polynomial and
ANOVA. The two image datasets used for the suggested blind
steganalysis were INIRA holidays [103] and UCID [104].
It was shown that the PSO classifiers achieved better perfor-
mance than SVM for all the kernels and samples.

Liu et al. [105] presented a framework based on fusing
SVM classifiers; it consists of three stages, training the sub-
classifier, training the fusing classifier and testing the fusing
classification. The author used rich model features proposed
in [106] that are divided into different groups based on the
correlation features. The fusion classifier is able to learn the
correlation of the detection results for the subclassifiers, and
the accuracy is enhanced when the classifiers are increased.
Lu et al. [107] presented an improvement framework for
steganalysis based on feature selection and preclassification.
The features are extracted using a dependency analysis of the
adjacent image data. The K-means algorithms are applied to
preclassify the images that have various content and texture
complexities from the image dataset. Then, the optimal fea-
tures from each cluster were chosen for a final decision aimed
at improving the overall performance of the steganalysis.
Shankar and Azhakath [108] explored four feature extractions
for the steganalysis, which were first order, extended DCT,
second order, and Markov features. They used the LSBM
method [73] and F5 [70] for the spatial domain and transform
domain, respectively. They employed six different kernels
and four kinds of SVM samplings with cross-validation.
Their study concluded that the transform domain provided
better accuracy of classification than the spatial domain.
Table. 5 provides more details on the work performed in the
spatial and transform domains.

B. THREE DIMENSIONAL IMAGE STEGANALYSIS
METHODS BASED ON CLASSICAL MACHINE LEARNING
TECHNIQUES

In this section, we describe some steganalysis algorithms that
have been used on 3D images. As the goal of 3D steganalysis
is to find the concealed data in 3D images, it is a challeng-
ing problem compared to 2D image steganalysis because
3D images are 3D complex objects that have an arbitrary
topology and irregular geometry.
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Yang and Ivrissimtzis [115] presented the first 3D steganal-
ysis features (YANG208) for detecting hidden messages in
triangle meshes. For each mesh, they calculated the char-
acteristic feature vector that captured the geometric infor-
mation from its Cartesian and Laplacian coordinates. They
then applied a calibration technique on the extracted feature
vector by computing the difference between the mesh and
the reference mesh to extract the discriminative features. The
extracted features were then fed into the supervised learning
method based on quadratic discriminant analysis (QDA). The
method was tested on six well-known steganographic frame-
works and showed satisfactory accuracy rates.

Li and Bors in [116] proposed a method (LFS52) that
extracted a 52-D local feature vector for the 3D steganalysis
problem. The 52-D feature vector combined three compo-
nents, a 40-D feature vector consisting of the most effective
features in YANG208 [115], a 4-D vertex normal feature
vector and an 8-D local shape curvature feature vector. The
combined features were used as input to the FLD ensemble
and a quadratic classifier to distinguish the 3D stego-objects
from the cover objects. The proposed method was tested on
the PSB dataset, where stego objects were created using two
different steganography techniques that hide messages in the
3D objects. The results showed that the method provides
better performance for the 3D steganalysis process, where
local shape curvature features and vertex normal features
have better discriminability.

Li and Bors [117] proposed the Robustness and Rele-
vance based Feature Selection (RRFS) algorithm as a solution
for the cover-source mismatch problem in 3D steganalysis.
A feature set (LAY252) is extracted using a combination
of LFS52 features [116] and YANG?208 features [115]. The
proposed selection algorithm selects the features based on
their robustness and correlation. The selected features are
fed into the FLD ensemble. The proposed algorithm chooses
better features than other algorithms. However, this algorithm
is limited to a set of transformations in the cover-source
mismatch problem.

Kim et al. [118] proposed the local feature set (LFS64).
They used mean, total curvature, and edge normal in addition
to features presented in [115] and [116], and they mapped
the features using a homogeneous kernel map to help the
FLD ensemble classifier detect setgo meshes. The proposed
method outperformed LFS52 [116].

Li and Bors [119] proposed a method (LFS76) extended to
LFS52 features [116] to identify the small variances between
the cover and stego 3D graphical objects. The proposed
method extracts and combines various 3D features, such as
vertex normal, local curvature, and a local geometric repre-
sentation of the vertex in spherical coordinates. The statistics
of the sets of extracted features with the 76-D feature vector
are fed into the SVM classifier, FLD ensemble, and QDA.
The authors used the PSB dataset that contains 354 3D mesh
cover objects. Stego objects were created using three different
steganographic methods for information hiding. The experi-
mental results showed that the FLD ensemble provided the
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TABLE 5. Summary of work performed on 2D images using classical machine learning.

Paper Method Domain Steganography Algorithm Dataset
SRM extracts residual features. Medium -
Lo dimensional feature fed into a Gaussian SVM . HUGO [27], edge-adaptive [109], and
Fridrich et al. [86] | \pite 3 high-dimensional feature fed into the | SP2a! LSBM [73] BOSSbase 0.92
ensemble classifier.
First and second order Markov chains are used.
Then, the sample transition probability matrix .
Pevny et al. [9] is used for the feature vector and it is fed into Spatial LSBM [73] BOWS2, NRCS,
SVM and JOINT
Global and local features are combined using
GRASP. D-AIICNN is applied for instance re- LSBR, LSBMR [110], LSBM
. . . . . [73], Modulo LSB (LSBRmod5)
Veena et al. [87] duction while RFE is applied to reduce fea- | Spatial . BOSSbase 1.01
. . . . . [111], and two bit LSBR (LSBR2)
tures dimensionality. AdaBoost estimator with [112]
regression trees is used for classification.
The extracted features are the cooccurrence
Kang et al. [90] matrix from the gradient amplitude residuals. | Spatial WOW [30], and S-UNIWARD [29] | BOSSbase 1.01
The features are fed into ensemble classifier.
Extracting multiscale rotation invariant LBPs
Gui [93] as unique textural features that are fed into | Spatial LSBM [73] BOSSbase 1.01
SVM.
The features are extracted using SPAM. Then,
. the ideal feature subset is chosen using BBM. | .. . )
Liu et al. [94] The classifiers used are KNN, RE. AdaBoost, Spatial gl;iL [31], WOW [30], and HUGO | BOSSbase 1.01
DCA, NB and SVM.
The features are extracted using both intr-block
. and intera-block neighboring joint density from N CryptoBola, JPHS, Steghide [113], .
Liu et al. [98] the DCT coefficient. The features are fed into Transform F5 [70], MBI [114], and MB2 [114] Their raw data
SVM.
Features are created as histograms of residuals
Holub et al. [99] achieved using 64 DCT bases. FLD ensemble | Transform J-UNIWARD [29] BOSSbase 1.01
is used for classification.
Song etal. [101] | 20 Gabor filters are applied to extract features | .\ crory J-UNIWARD [29] BOSSBase 1.01
and fed into ensemble classifier.
Shankar and Srejtttiresse;irg f))r((tir;‘m:gdust;ltg s]zirfalfr;/lllzllrﬁgs\f Transf LSBM [73], PVD [74], and LSBR I[\{IS;]A and h(l)}icdlag
Azhakath [102] feature. The classifiers were SVM and SVM- | - onstorm o »an [104]
PSO.
The rich model features are divided into dif-
. ferent groups based on the correlation features. . LSBR, J-UNIWARD [29], and LS-
Liu et al. [105] Fusing SVM classifiers are used for classifica- Transform BRmod5 [111] BOSSBase 1.01
tion.
K-means were applied to preclassify the im- J-UNIWARD [29], UED [37] , nsf5
Lu et al. [107] ages that have various content and texture com- | Transform and Spatial | [66], S-UNIWARD [29], and MiPOD | BOSSbase 1.01
plexities. [32]
The four extracted features are: first order, ex- .
’ NRIA holiday
Shankar and tended DCT, second order, and Markov fea- .
Azhakath [108] tures. Six different kernels and four kinds of Transform and Spatial | LSBM [73], and F5 [70] Hgﬂ and UCID
samplings of SVM are used for classification.

best results for the steganalysis process when the mean-based
watermarking steganographic method [52] was used to iden-
tify the information embedded in 3D objects.

Li et al. [120] proposed a 3D feature extraction technique
that uses edge vectors to capture the local features, resulting
in a 124-D feature vector (LFS124). The absolute differences
between the edge lengths of the 3D components of the vector
were computed in the Cartesian coordinate system. Then, the
difference norm between the two vectors was computed, and
two different features derived from the absolute differences
and the angle between them were defined. Finally, six features
were computed in the same way in the Laplacian coordinate
system, all of which together formed 12 features. Then, the
newly extracted feature set was combined with the existing
feature set of LFS76 to obtain the 124-D feature vector.
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These features were fed into an FLD ensemble. The proposed
method was tested on 354 cover 3D mesh objects from the
PSB dataset. The 3D stego meshes were produced by six
3D information hiding techniques. The experiment showed
that the proposed method is efficient in implementation and
concluded that the edge vector plays a significant role in
steganalysis.

Zhou et al. [45] proposed a specific steganalysis method
using the PCA transform-targeted feature to differenti-
ate between stego and cover 3D mesh objects. The
transformation matrix of a stego mesh is close to the iden-
tity matrix after a PCA transform, while the transformation
matrix of a cover mesh is far from the identity matrix on most
occasions. The one-dimensional feature is defined by the
norm between the two transformation matrices. This method
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was tested on the PMS and PMN datasets. The proposed
steganalysis method was only efficient for steganographic
methods based on the PCA transform.

Zhou et al. [121] presented a 3D steganalytic scheme
(NVT+) using a tensor voting model that collects the local
shape context to distinguish a stego 3D mesh object from
the cover object. First, three normal voting tensors with dif-
ferent neighbor definitions were performed. Second, three
eigenvalues were computed from every tensor, where the
absolute value of the difference between eigenvalues was
regarded as a feature. Three tensor models that each extract
three eigenvalue differences produced nine features. Third,
several statistical moments of features processed by means
of nonlinear mapping were extracted to form 36 features.
The 36 obtained features were combined with the features of
the LFS64 method in [118] to obtain a 100-D feature vector.
The combined feature set was fed into the FLD ensemble
for classification. The proposed method was examined on
the PMS and PMN datasets. The experiment showed that
the proposed method enhances the detection performance.
However, the time taken and the complexity of this method
are very high due to the calculation of each feature for the
adjacent face.

Li and Bors [122] proposed WFS228, a novel set of 228-
D steganalysis features extracted using multiresolution 3D
wavelet analysis [123]. The features are extracted from trans-
formations between an input mesh and its corresponding
higher and lower resolutions. For an input mesh, its corre-
sponding higher and lower graph resolutions are computed
using the 3D wavelet algorithm. The method was trained
using the FLD ensemble, and the experiments showed that
the 3D wavelet feature provided the best performance for the
steganalysis task. Table. 6 provides more details about the
work performed in 3D image steganalysis.

C. TWO DIMENSIONAL IMAGE STEGANALYSIS METHODS
BASED ON DEEP LEARNING

Over the last few years, deep learning has been widely used in
steganalysis to extract appropriate features for classification.
Convolutional neural networks (CNNs) have enhanced the
performance of steganalysis; however, the memory space and
the computational complexity cost of the models are still
obstacles due to the large amount of training data. In this
section, we present deep learning models that aim to reduce
the learning cost by extracting the key features.

Ghosh et al. [125] presented an ANN model, a new
hybrid ANN deep neural network based on eigenvalues (more
specifically PCA) and Haralick features. They computed the
co-occurrence matrix of the grayscale input image for four
pixel pair directions and then computed the average. Then,
two-dimensional reduction is applied: PCA and Haralick.
Their method was promising and achieved enhanced accu-
racy. Zang et al. [126] proposed extracting key texture fea-
tures by employing a learnable local histogram layer based
on multiquadratic kernel modeling. The histogram layer used
two convolutions to learn the center and width of the bin.
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They used an RBF neural network to update the bin center
and width of the model, and eigenvalues were used to find
the minimum and maximum values of the RBF. The method
showed significant improvement in texture classification.
Abazar et al. [127] presented a novel framework to reduce
the learning cost by using a divide and conquer technique.
The dataset is split into five disjoint clusters by employing
k-means. Each cluster is fed into a distinct CNN. The net-
works are combined leveraging a fast weighting process. The
proposed model is able to reduce the size of the training
data for each model. The experimental results showed that
the proposed framework reduces the time complexity while
maintaining the accuracy.

The following sections provide a summary of the state-
of-the-art works that have been performed in 2D image ste-
ganalysis using deep learning techniques in the spatial and
transform domains.

1) SPATIAL DOMAIN STEGANALYSIS

As we mentioned previously, in the spatial domain steganog-
raphy, the payload bits are hidden in a cover image by chang-
ing the pixel intensity values directly in the spatial domain.
Knowing this, researchers have begun to take advantage of
applying deep learning for spatial domain steganalysis. The
first attempt to use an unsupervised deep learning method for
steganalysis was carried out by Tan and Li [128]. The authors
used stacked convolutional autoencoders (SCAEs) [129]. The
weights of the kernels and filters in the CNN were randomly
initialized. The authors believed that a well-trained CNN
must perform comparably to the well-known and successful
SRM. They used a nine-layer, three-stage CNN based on a
blind steganalyzer.

Qian et al. [21] were the first to propose using supervised
learning with CNNss for steganalysis. Their network consists
of three steps, a high-pass filter used as a preprocessing
layer, a convolutional layer for feature extraction and then a
fully connected layer for classification. The high-pass filter
layer is used because the stego has a weaker signal than
the content of the image. This model achieved reasonable
results compared to traditional models using handcrafted
features. Wu et al. [130] proposed a new feature extraction
framework that can learn joint features from input images
and their corresponding residual images. Their feature fusion
process in CNN is completely unsupervised. To minimize
data dimensions, the method chooses feature maps from the
middle three hidden layers and concatenates them into a 1D
vector that is passed into the fully connected layers to obtain
the classification result. The aim is to decrease the negative
impact of the high-pass filter to guarantee that the network
remains convergent.

Rezaei et al. [67] tested more than 40 CNN architectures
and found that the best shape consists of two convolutional
layers followed by three fully connected layers. The input
image of the CNN is filtered first by high pass, as is done
in the work of Qian et al. [21]. The CNN is evaluated on
two scenarios, the first of which is a clairvoyant scenario in
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TABLE 6. Summary of works performed in 3D Steganalysis.

Paper Method Data Hiding Algorithm Dataset
High-capacity  steganography [41], the
Extracted characteristic feature vector captures | Laplacian ~ coordinate-based ~ watermarking
Yang and Tvrissimtzis [115] geometric information, then calibration tech- | method [42], mean-based watermarking [52], PSB
’ nique was applied on the extracted features, | the variance-based watermarking [52], the
and fed into QDA. frequency-based watermarking [53], and LSB
modification [124]
The feature vector combined three compo-
nents: a 40-D feature vector that consists of
the most effective features in YANG208 [115], . .
Li and Bors [116] a 4-D vertex normal feature vector, and an h{[eanrbased 'wate}rm}? rklfg [52], and high- PSB
8D local shape curvature feature vector. FLD capacity steganography [41]
ensemble and quadratic classifier were used for
classification purposes.
RRFS selects discriminated features from
Li and Bors [117] LAY252 features set and the selected features | High-capacity steganography [41] PSB
are fed into the FLD ensembles classifier.
LFS52 feature set is combined with edge nor-
Kim et al. [118] mal vector, mean, and total curvature. A ho- | High-capacity steganography [41], and mean- PSB
: mogeneous kernel map is used with the FLD | based watermarking [52]
ensembles classifier.
Features using the spherical coordinates are | High-capacity steganography [41], mean-based
Li and Bors [119] combined with LFS52 features and fed into the | watermarking [52], and steganalysis-resistant | PSB
SVM classifier, FLD ensemble, and QDA. watermarking [54]
High-capacity ~ steganography [41], 3D
. . wavelet-based fragile watermarking [46], 3D
Features using edge vectors were combined let-based high capacit atermarkin
Li et al. [120] with LES76 features and fed into the FLD | \a'oiet-0as gh capacily w S| psB
ensembles classifier. [46], mean-based waterma'lrkmg [52], the
variance-based ~ watermarking [52], and
steganalysis-resistant watermarking [54].
Zhou et al. [45] PCA transform-targeted feature. Adaptive-steganography-based method [45] PSB, and PMN
Features based on tensor voting model were High-capacity steganography [41], adaptive-
Zhou et al. [121] combined with LFS64 features and fed into the steganography-ba:eed me thod [45], and PSB and PMN
FLD ensembles classifier. steganography using a shifting strategy and a
truncated space [47]
High-capacity  steganography [41], 3D
WEFS228 features extracted using multiresolu- wave}et—gaseg f;ggl&e waterT arkm% [46]’1(.3])
Li and Bors [122] tion 3D wavelet analysis and fed into the FLD VZ%VG e ?se . '8 ’capafl Y walermarking | pgp
ensemble. [ _], mean-based waterma.rkmg [52], The
variance-based  watermarking [52], and
steganalysis-resistant watermarking [54]

which itis assumed that the same embedding key is applied on
different images. The authors compared this scenario to the
ensemble classifier with SRM features and found that CNN
reduced classification errors by three times. In the second
scenario, a cover-source mismatch was assumed in which
the source model used in steganography is different from
the source model assumed for steganalysis. The classification
errors decreased compared to the rich models and ensemble
classifier.

Xu et al. [131] proposed using a CNN with statistical
modeling to avoid network convergence. They employed a
high-pass filter as a layer to gain the noise residuals of the
original images and then fed them into five convolution and
pooling layers. The 128-dimensional features are fed into the
fully connected layer and then the softmax layer to classify
the input. The main contribution of this technique is that it
uses the absolute layer (ABS) after the convolution layer to
obtain positive values. The output is then fed into the batch
normalization layer to guarantee that the network did not
become stuck in local minima. The hyperbolic tangent (tanH)
nonlinear activation function was used in the first group of
convolution layers, and rectified linear units (ReLUs) were
used in the remaining layers. The authors trained their CNN
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model using minibatch gradient descent, and the results out-
performed the traditional SRM ensemble classifier.

Ye et al. [132] introduced YeNet, which has a new trun-
cated linear unit (TLU), in the CNN steganalysis model.
The network contains 10 convolutional layers, and 30 high-
pass kernels were initiated using SRM and used as a prepro-
cessing layer. In the first convolution layer, the authors used
TLU, and in the remainder of the layers, they employed the
ReLU activation function. The output from 144-dimensional
feature vectors was fed into one fully connected layer, fol-
lowed by a softmax layer. YeNet achieved lower detection
error rates in comparison with the SRM and maxSRMd2
steganalyzers.

Yedroudj et al. [133] presented a CNN model by
incorporating one preprocessing layer consisting of 30 high-
pass layers from SRM kernels followed by five convolutional
layers and, finally, one softmax layer in the spatial
domain. Their CNN model is similar to Xu’s net [131]
and Ye’s Net [132]. YedroudjNet employed batch nor-
malization and the ABS layers as Xu net [131], but
they used shallower convolution layers compared to Ye’s
Net [132]. Finally, Yedroudj et al. used three fully connected
layers.
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In summary, studies performed in deep learning have
concluded that taking into account knowledge of the domain
in steganalysis can improve the performance of CNNs.
As CNNs adopt a feature extraction step, domain knowledge
should be taken into account when designing network archi-
tectures.

2) TRANSFORM DOMAIN STEGANALYSIS

Steganography approaches on the JPEG domain work in
the transform domain by changing the coefficients obtained
after applying DCT. In the past, most JPEG steganalysis
techniques extracted features from decompressed images.
However, researchers are now motivated to study JPEG
steganographic algorithms using CNNs.

Xu [134] transformed the input JPEG images into the
spatial domain and fed them into a set of specified DCT filters
of sizesof 2x2,3x3,4x4,5x5,and 8 x 8 as a preprocessing
step. The best result is obtained when a 4 x 4 filter is used.
These features were used in a CNN architecture composed
of 20 convolution layers with batch normalization and ReLU
function layers. The output — 384 feature vectors — was fed
into a fully connected layer followed by a softmax layer.
The results showed that the proposed CNN network had
decreasing classification error.

Chen et al. [135] developed a novel JPEG-phase aware-
ness feature with two CNN architectures to increase detec-
tion accuracy. The JPEG phase is a statistical property col-
lected using an 8 x 8 pixel neighborhood separately by
obtaining noise residuals. Their CNN model relied on Xu’s
model [131]; however, they incorporated phase awareness
into XuNet [134] and disabled the pooling layer from the first
two layers. Each feature map that gains from the second layer
is subsampled on 64 sublattices and then used in the phase-
split layer. Depending on the phase splits, they implemented
two networks called the PNet and the VNet. In PNet, the
output feature maps with a size of 16 x 16 are split into
64 groups, resulting in 16 feature maps. Thus, each group has
its specific processing layers. The resulting feature maps are
then concatenated to form an 8,192 D feature vector. (This
approach is not performed in VNet). The final output vector
has a dimension of 512. The experiment showed that PNet
outperformed VNet.

Zeng et al. [136] employed a hybrid deep learning frame-
work for state-of-the-art JPEG steganography approaches,
J-UNIWARD [29], UED [39] and UERD [67], and used
handcrafted quantization and truncation (Q & T) phases of
rich models with CNN. The CNN model has two stages.
In the first stage, a 25, 5 x 5 DCT base was used to compute
25 residual maps from uncompressed and nontruncated JPEG
images. These maps were then handed over to three Q & T
phases. In the second stage, the three Q & T phase outputs
were fed into three independent subCNNs. The output feature
maps from each subCNN were flattened, and a 512-feature
vector was obtained for each subCNN. The final output
feature length of 1,536 was fed into four fully connected

92332

layers. The CNN model was trained using stochastic gradient
descent (SGD).

Yousfi et al. [137] won the ALASKA steganalysis
challenge in 2019 by using SRNet [138] to train differ-
ent combinations of three input channels, luminance Y and
chrominances Cr and Cb. SRNet used residual skip connec-
tions, and the filter size was 3 x 3. All the convolutional
layers were followed by a batch normalization and the ReLU
activation function. The first eight convolutional layers did
not incorporate the pooling layer since average pooling is
assumed to be a low-pass filter, while steganalysis is con-
cerned with high-pass content where stego data are found.
The output of these convolutions was fed to a fully connected
layer that produced two outputs and was fed to a binary
classifier.

Inspired by the idea of using the transfer learning of
pretraining neural networks on unrelated tasks and refining
steganalysis, Yousfi et al. [139] investigated pretrained deep
learning networks such as EfficientNet [140], MixNet [141]
and ResNet [142] for steganalysis. They concluded that
removing pooling and stride in the first layers allowed for
better performance. Xiancheng Wu et al. [143] explored the
effects of applying compression in eight-bit calculations and
floating-point quantizations to XuNet. The model achieved
higher accuracy than Xu’s model. Their results showed that
the two CNN models based on quantization schemes are use-
ful in steganalysis. Table. 7 provides details of the common
techniques developed for the spatial and transform domains
in steganalysis.

In 2D image steganalysis using classical machine learning,
it seems that SVM and SRM are the most popular binary
classifiers, while FLD is the most popular ensemble classifier
for 3D image steganalysis. In deep learning, 2D CNN archi-
tectures are commonly used by researchers to implement ste-
ganalysis models for image steganalysis. It is known that 3D
meshes have a higher embedding capacity than 2D images.
However, many steganalysis studies target 2D images. There-
fore, it is important to investigate the possibility of detecting
3D mesh steganography using deep learning techniques.

V. OPEN CHALLENGES

While steganalysis has received considerable attention in the
past decade, some challenges remain unsolved. First, the
different CNN models presented in this survey are designed
to be suitable for specific datasets. To date, there is no
generalized CNN model that can detect hidden messages in
unseen data. Second, none of the currently available deep
learning models take into account the use of generative adver-
sarial networks (GANs). It is worth investigating whether
the generator of GAN models can learn from stego and
cover images and generate reasonable outputs to distinguish
between the two. This will help to simplify the task of
detecting steganography. Third, as discussed in Section III,
many datasets are available with different specifications, such
as the data domain. However, the current steganalysis deep
learning models use specific datasets. Therefore, there is a
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TABLE 7. Summary of work performed on 2D images using deep learning.

Paper Method Domain | Steganography Algorithm Dataset
Tan and Li [128] 2 Conv, 3 max pooling, 2 FC, FC(softmax). Spatial HUGO [27] BOSSbase 1.01
ian et al. [21] Preprocessing HPF, 5 conv, 3 avg-pooling, 2 FC, | ¢ w1 | HUGO [27], WOW [30], and S-|BOSSbase 1.01
FC(softmax) P
. UNIWARD [29]
Wu et al. [130] Preprocessing (HPF), 3 conv, 2 FC, FC (softmax). | Spatial S-UNIWARD [29] BOSSbase 1.01
Pibre ef al. [62] Preprocessing (HPF), 2 conv, 3 FC, FC (softmax). | Spatial S-UNIWARD [29] BOSSbase, and LIRMMBase 1.01
Preprocessing (HPF),5 Conv with ABS, BN, pool-
Xu et al. [131] ing, (tanH) the first group of convs and ReLU in | Spatial S-UNIWARD [29] and HILL [31] BOSSbase 1.01
the remaining layers,1 FC, FC (softmax).
Preprocessing (30 HPF), 1 conv with TLU, 2 conv
Ye et al. [132] with ReLU,7 conv with ReLU and avg pooling, | Spatial S-UNIWARD [29], WOW [30] and | BOSSbase, and LIRMMBase 1.01
one FC, FC (softmax). HILL [31]
Yedroudj [133] Erce‘z;gﬁfr;s;:f (HPE), 5 conv, 5 ABS, BN, 2FC, | ¢ il | SSUNIWARD [29] and WOW [30] | BOSSbase 1.01
Preprocessing (HPF), 1 conv with ABS, BN,
TanH,avg pooling; 1 Conv with BN, TanH, avg
Guanshuo Xu [134] pooling; 3 Conv with BN, ReLU,avg pooling; 1 Transform | J-UNIWARD [29] BOSSbase 1.01
FC, FC (softmax).
PNet: Conv with ABS, BN, TanH; conv with BN,
TanH, 8 x8 phase split. 6 Conv with BN, ReLU,
Cheneral [135] | SEPopine 1 EC IC Sﬁggﬁ%ﬁﬁetgig%ﬁg Transform | J-UNIWARD [29] and UED-JC | BOWS2
split; FC with BN, ReLU, avg pooling; FC with
BN, ReLU, avg pooling, 1 FC, FC (softmax).
Stage 1: 25 DCT basis of size 5x5 and the output
is 25 residual maps followed by three Q
Zeng et al. [136] T phases. Stage 2: three independent subCNNs, | Transform | JF-UNIWARD [29], UED [37] and | ImageNet
the output of which the three subCNN is flatten; UERD [62]
4 FCs with softmax.
Yousfi ef al. [137] sz [ﬁfégag“:meeggzlﬁ ITZITN“ (141], Efficient- | - form | UERD [62] and J-UNIWARD [29] | ALASKA I
SRNet [138] with residual skip connections and
Yousfi eral, [139] | e filters size of 3x3. All conv layers followed |y, g0y | ) UNIWARD (291, UED [37], and | ALASKA
by BN, then ReLU. The first eight conv layers EBS [144]
without pooling, 1 FC, FC (softmax).
W et al. [143] ?{E;\; ecla]culatlon and floating-point quantization to Transform | J-UNIWARD [29] ImageNet

need for an explicit steganalysis deep learning model that
can learn from different datasets with different specifications
to use the available data efficiently. Fourth, there are some
fundamental open questions regarding the use of 3D datasets
in steganalysis with deep learning. Deep learning methods
have shown promising results in 2D image steganalysis,
but there are two potentially challenging questions: Do 3D
steganalytic methods based on deep learning provide better
performance? Are there enough 3D data that can be used to
train the steganalysis CNN models? Finally, steganography
is designed to pass hidden messages through media such as
the internet, and the data might be exposed to manipulation
during the transmission process (e.g., by rotation or corrup-
tion). Thus, an interesting direction of research would be to
build deep learning models that can learn to predict the hidden
messages correctly. Feature dimensionality is still a problem
specially when performing real-time steganalysis. Therefore,
it is necessary to find an appropriate accelerating algorithm to
speed up the learning process even in deep learning methods
without compromising the accuracy.

VI. CONCLUSION

In this survey, we reviewed the works that have been per-
formed in the digital image steganalysis field. We have ana-
lyzed the steganalysis methods available for 2D and 3D
images. A decade ago, studies on traditional steganalysis
methods focused on classical supervised machine learning,
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such as SVM and SRM. Recently, with the success of CNNss,
different architectures have been developed to detect stegano-
graphic messages in the spatial and transform domains. These
CNNSs have achieved prominent performances compared to
the classical machine learning methods in the field of ste-
ganalysis. Detecting stego images from CNN models is still
in the early stages, and the deep learning models need to be
robust against steganographic algorithms. Further research
needs to explore how well the generative adversarial network
architecture helps develop steganalysis algorithms for images
in the wild.
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