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ABSTRACT With the growing use of the internet and social media, data security has become a major
issue. Thus, researchers are focusing on data security techniques such as steganography and steganalysis.
Steganography is the approach of concealing the existence of secret messages in digital media for secure
transmission. Steganalysis techniques aim to detect the existence of concealed messages and extract them.
Digital image steganography and steganalysis techniques are classified into the spatial and transform
domains. In this paper, we provide a detailed survey of the state-of-the-art works that have been performed
in two-dimensional and three-dimensional image steganalysis. We present the most popular datasets and
explain some steganographic methods for embedding hidden data. Steganalysis is a very difficult task
due to the lack of information about the characteristics of the cover media that can be exploited to detect
hidden messages. Therefore, we review studies performed on image steganalysis in the spatial and transform
domains using classical machine learning and deep learning approaches. Additionally, we present open
challenges and discuss some directions for future research.

13 INDEX TERMS Steganography, steganalysis, deep learning, machine learning.

I. INTRODUCTION14

A vast amount of digital media, such as image, video, and15

audio, are published on the internet every day. These digital16

media might contain hidden messages that can be embedded17

in plain sight using a well-knownmethod called ‘‘information18

hiding’’ [1], a technique that allows users to conceal infor-19

mation via digital data with no perceptible effect on the data.20

Thus, people cannot detect whether there is a hidden message21

inside the digital data. The term steganography is formed22

of two Greek terms, ‘‘steganos’’, which means ‘‘covered’’,23

and ‘‘graphein’’, which means ‘‘writing’’ [2]. Therefore,24

steganography is a method that hides specific information25

inside digital data [3]. The input data are called the cover26

object, and the output is the stego object which contains the27

hidden message.28

There are major distinctions between steganography and29

other information-embedding methods. The main differ-30

ence between steganography and cryptography, for example,31

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

is that cryptography hides the message, while steganogra- 32

phy hides the presence of the message. Watermarking is 33

used to protect owners’ property rights, and its aim is to 34

add additional information to the source (cover data). Cur- 35

rently, many steganography techniques exist in the spatial 36

and transform domains [4], [5], [6]. With the increased 37

development and use of steganography techniques, there 38

is a need to detect hidden messages. Steganalysis is an 39

approach that distinguishes whether a message is hidden by 40

steganography inside a certain media [7]; it is categorized 41

into passive and active types [7]. The hidden data in the 42

spatial domain are embedded directly by adjusting the value 43

of the pixels in the cover image. In contrast, the hidden 44

data in the transform domain are embedded in the coeffi- 45

cients of the cover image. Thus, Passive steganalysis detects 46

the existence of hidden messages, while active steganalysis 47

retrieves the hidden messages, and they are further classified 48

into the spatial and transform domains. Image steganaly- 49

sis methods utilize feature-based approaches to extract the 50

discriminative attributes from images, such as local binary 51

patterns (LBP) [8] and the subtractive pixel adjacency model 52
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(SPAM) [9]. Steganalysis methods can be designed to detect53

a specific embedding algorithm, as in [10], [11] and [12];54

they can also act universally to detect the existence of hidden55

data regardless of the embedding algorithm, as in [13], [14]56

and [15]. Many methods have been proposed for steganalysis57

applications based on machine learning and deep learning58

algorithms.59

Classical machine learning consists of two parts: the first60

part is the feature extractor while the second part is the61

trainable classifier. The feature extractor is used to obtain62

distinguishing features from input data that are used by the63

classifier for training. Machine learning includes many tech-64

niques, such as the support vector machine (SVM) [16],65

amachine learning tool introduced byVapnik that can be used66

for classification and regression problems [17]. Other pop-67

ular machine learning techniques include linear regression,68

in which the output is predicted by using a known param-69

eter, principal component analysis (PCA), which reduces70

the dimensionality of a dataset [18], nearest neighbor [19],71

K-mean clustering [20], etc.72

In the last few years, deep learning models have received73

a significant amount of attention in many fields. In 2015,74

the first steganalysis technique was developed using a con-75

volutional neural network (CNN), which is a deep learn-76

ing technique [21]. Deep learning is considered a subset of77

machine learning that can be seen as a black-box framework.78

It integrates the feature extraction and classification steps into79

one process, thus allowing an end-to-end learning process for80

the machine. Deep learning models use forward processes81

to learn feature extractions and perform the classification82

directly from the input data. Then, in the backward direction,83

an updating of the extracted features based on the decision84

of the classifier is performed. This process is automatically85

repeated until the model’s error is decreased. Fig. 1 illustrates86

the difference between the concepts of classical machine87

learning and deep learning. Fig. 1 (a) presents the classical88

machine learning concept. Fig. 1 (b) presents the deep learn-89

ing concept.90

Steganalysis is a very difficult field due to the lack of infor-91

mation about the characteristics of the cover media that can92

be exploited to detect hidden messages. There are many algo-93

rithms for the steganalysis field that use three common cover94

media: image, video, and audio. In this survey paper, we focus95

on steganalysis algorithms for two-dimensional (2D) and96

three-dimensional (3D) images. Themain difference between97

2D and 3D image steganography is in the cover image. For98

steganography in 2D images, the cover is an image where a99

message will be hidden within pixel intensities, while in 3D100

image steganography, the cover is a 3D mesh consisting of101

points or vertices in 3D geometry, and it will be manipulated102

to hide information.103

Studying current methodologies and understanding future104

challenges in digital image steganalysis helps researchers105

achieve better outcomes in steganography and steganalysis.106

Thus, in this survey, we present a summary of the different107

types of algorithms for digital image steganalysis that have108

been developed using classical machine learning and deep 109

learning technologies. We mainly focus on algorithms for 110

images in the spatial and transform domains. Developing and 111

adapting steganalysis techniques begins with a good under- 112

standing of steganography. Therefore, in Section II, we begin 113

the survey by providing an overview of the steganography 114

algorithms used on 2D and 3D images. In Section III, we out- 115

line the most commonly used datasets in steganalysis and 116

categorize them into 2D and 3D datasets. In Section IV, 117

we analyze various steganalysis methods for 2D and 3D 118

images that have been performed using machine learning and 119

deep learning. In Section V, we highlight some open research 120

challenges in the steganalysis field. Finally, we conclude the 121

paper in Section VI. 122

II. STEGANOGRAPHY 123

Any steganography technique can be defeated once its ste- 124

ganalysis technique is determined [22]. This section provides 125

an introduction to digital image steganography and some 126

steganography schemes in the spatial and transform domains. 127

Steganography is the science of communicating secretly 128

by hiding multimedia data inside an appropriate multimedia 129

carrier, such as an image, text, file, or video [23]. These mul- 130

timedia carriers are called cover objects. The first steganog- 131

raphy technique was developed in ancient Greece, and the 132

importance of steganography has increased recently due to 133

the increase in data exchange in social media networks. Image 134

steganography techniques have been developed for informa- 135

tion concealed exclusively in images. The secret message is 136

hidden in a cover image and sent to a receiver in such a way 137

that only the sender and the receiver are aware of its existence. 138

Both the secret message and cover image constitute the input 139

of the steganographic encoder. The stego image is obtained 140

by embedding the secret message in a cover image. In the 141

end, the stego and cover images are very similar and show 142

no visible changes. The receiver must input a stego image 143

into a steganographic decoder to read the secret message. 144

A stego key is used for encoding and decoding the secret 145

message. 146

There have been many steganographic techniques pre- 147

sented in the literature. All these techniques must satisfy at 148

least three requirements to be applied correctly: The max- 149

imum amount of information that can be concealed inside 150

the cover image (embedding capacity) must be considered; 151

the visual quality of the stego image must remain unchanged 152

(imperceptibility), and it must be robust against noise [3]. 153

There are a number of methods to hide information inside 154

a 2D image. These embedding methods can be in either the 155

spatial or transform domain [24]. The idea of spatial domain 156

embedding techniques is to use the actual physical location 157

of a pixel of information in the image. These techniques are 158

considered easy to implement because of the simplicity of 159

their algorithms and mathematical analysis. Spatial domain 160

techniques provide high embedding capacity; however, their 161

robustness is weaker than their counterparts [25]. The most 162

commonly used technique is least significant bit (LSB). 163
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FIGURE 1. Comparison between deep learning and classical machine learning concepts. (a) Classic machine learning method. (b) Deep
learning method.

LSB insertion is a simple data hiding approach that can be164

effortlessly applied in the spatial or transform domain over165

any digital cover media [26]. It is easily understood by users,166

and the data are hidden by replacing the least significant167

bit of each pixel. However, maximization of the hidden data168

capacity into a cover image by using LBS is limited because169

it may lead to more noise and distortion, affecting the reso-170

lution and quality of the image and thus making it easier to171

detect the hidden message. This method is easily detected by172

exposing the data to strong feature-based image steganalysis173

and recovering the least significant bit out of the pixels in the174

image.175

The need to remove noise from embedded data is essential176

to increase its security. Highly undetectable steGO (HUGO)177

was developed in 2010, and it is considered the first adaptive178

schema proposed in the literature [27]. HUGO is a nontra-179

ditional and content-adaptive steganographic technique that180

adaptively changes the embedding locations according to the181

image content. Therefore, this method achieves high security182

in the embedding process by covering the noise with the183

inhered noise.184

Several adaptive steganography algorithms for the spa-185

tial domain have been proposed that follow the same186

embedding model of HUGO, for instance, an embedding187

algorithm for the break our steganography system (BOSS)188

competition [28], spatial-universal wavelet relative distortion189

(S-UNIWARD) [29], wavelet obtained weights (WOW) [30],190

high-pass and two low-pass (HILL) [31], and minimizing191

the power of optimal detector (MiPOD) [32]. WOW is a192

high-security steganography algorithm, as it changes the pix-193

els of texture regions while maintaining the edge of the cover194

image [30]. S-UNIWARD steganography obtains advanced195

security by using the directional high-pass filter [29]. In the196

HILL algorithm [31], the embedding changes mainly in the197

textural areas; the algorithm uses a high-pass filter and two198

average low-pass filters to ensure that all pixels within the199

textural regions have relatively low costs. In contrast to all200

the above discussed adaptive steganography algorithms, the201

MiPOD algorithm minimizes the impact of embedding on202

the cover model in addition to obtaining a superior security 203

level [32]. 204

Transform domain embedding is a method for representing 205

the signal in another form. However, the information con- 206

tent present in the image is not changed. Wavelet transform 207

(WT) is a mathematical procedure used to transform a spatial 208

domain into a frequency domain [33]. The main idea of using 209

WT in image stenographic techniques is based on separating 210

the high-frequency and low-frequency information on a pixel- 211

by-pixel basis. Transformation techniques use JPEG com- 212

pression due to the significant increase in available steganal- 213

ysis tools. Discrete cosine transform (DCT), discrete wavelet 214

transform (DWT), and discrete Fourier transform (DFT) in 215

the embedding process are the utilized transform steganog- 216

raphy techniques. The DCT domain embedding technique 217

is very popular because it is the core of the lossy image 218

compression algorithm known as JPEG, which is the format 219

used for digital cameras [34]. In comparison to DCT, DWT 220

shows high robustness, and the embedded secret image can 221

be extracted with a high visual quality [35]. 222

Another classification for steganographic methods is based 223

on the coded formats of images. Image steganography can be 224

applied in different formats for cover images, such as BMP, 225

JPEG and GIF. High color quality JPEG format images are 226

the most mainstream images in modern communications. The 227

most efficient JPEG steganographic techniques are based on 228

Syndrome Trellis Coding (STC) [36] and Uniform Embed- 229

ding Distortion (UED) [37], which uses only nonzero DCT 230

coefficients of different magnitudes with equal probability. 231

This schema possibly leads to minimal artifacts for the statis- 232

tics of all the DCT coefficients, which makes them naturally 233

content adaptive [38]. 234

Early steganography algorithms focused mainly on 2D 235

images, videos, and audios. However, due to the rapid growth 236

in digital media, the use of 3D images as input media in 237

steganography algorithms has been consistently established 238

in the past decade. A 3D image is a geometric setting that 239

requires three coordinate axes to represent the position of 240

a point. Steganography algorithms hide the secret data bits 241
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FIGURE 2. An example of 2D and 3D images. (a) 2D image of leaves (b) 3D image of sphere mesh.

inside the points of a 3D mesh. Fig. 2 shows the differences242

between 2D and 3D images.243

The advantage of using 3D images is that they have a data244

structure with a high carrying capacity that provides extra245

security for embedding larger amounts of secret information.246

However, there are currently fewer 3D image steganography247

algorithms than 2D image steganography algorithms due to248

some challenges and complexities in 3D images. These algo-249

rithms can also be classified into either the spatial or trans-250

form domain. Due to additional efforts required to transfer251

the image in and out of the frequency domain, most work is252

done in the spatial domain.253

Researchers have used 3D data hiding techniques for254

embedding data into 3D images. These techniques are255

detected by some of the steganalysis methods that will be256

discussed later in this paper. Cayre and Macq proposed257

a substitutive procedure-based steganography algorithm for258

3D images that geometrically quantizes the 3D object into259

a two-state geometric [39]. The main drawbacks of this260

method lie in embedding capacity and distortion. Wang and261

Cheng [40] improved the method in [39] by employing a262

multilevel embedding procedure and using an advance jump263

strategy to increase the embedding capacity to three bits264

per vertex and reduce the distortion. Chao et al. [41] also265

presented an algorithm with a high capacity and a reduced266

distortion algorithm on a multilayer embedding. The problem267

with this method is that the rapidly increasing distortion268

limits the number of embedded layers. To balance the increas-269

ing embedding capacity and reducing distortion, Yang and270

Ivrissimtzis [42] designed an algorithm based on computing271

an appropriate quantization level for the 3D vertices and272

replacing the unused LSB with watermark bits. However,273

the large amount of embedded noise increases the error sig-274

nificantly, which may lead to malicious attacks. Tsai [43]275

proposed an adaptive steganography algorithm that achieved276

a high accuracy of the complexity estimation for each embed- 277

ded vertex and the embedding capacity. A steganography 278

method that combines both the spatial and representation 279

domains is presented in [44]. A number of 3D data hiding 280

schemes have been investigated in steganalysis for example 281

adaptive-steganography [45], 3D wavelet-based high capac- 282

ity and 3D wavelet-based fragile steganography [46], shifting 283

and truncated steganography [47], distortion-free steganog- 284

raphy [48], permutation steganography [49], the maximum 285

expected level tree data-hiding approach [50], and a data 286

hiding approach for polygon meshes [51]. Some researchers 287

have tested their steganalysis techniques using other data 288

hiding techniques, such as watermarking. The Laplacian 289

coordinate-based watermarkingmethod [42], the two variants 290

of robust watermarking [52], frequency-based watermark- 291

ing [53] and steganalysis-resistant 3D watermarking [54] are 292

examples of watermarking algorithms. These techniques are 293

detected by some of the steganalysis methods discussed later 294

in this paper. 295

III. IMAGE STEGANALYSIS DATASETS 296

Steganography can be used on various types of media, such 297

as images, videos, audio, etc. Therefore, researchers need 298

to evaluate their steganalysis techniques on large datasets. 299

We classify datasets into two categories, 2D and 3D datasets, 300

and 2D datasets can be further categorized into grayscale and 301

colored images. This section explains the commonly used 302

datasets in the field of steganalysis. 303

A. TWO DIMENSIONAL DATASETS 304

1) GRAYSCALE DATASETS 305

A challenge called the Breaking Our Watermarking System 306

(BOWS) [55] was created in 2007 by the International Chal- 307

lenges in Information Forensics and Security community to 308

remove watermarks from three images. The second edition 309
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TABLE 1. Commonly used 2D grayscale datasets in steganalysis.

TABLE 2. Commonly used 2D colored datasets in steganalysis.

of the challenge (BOWS-2) was presented in 2008 [56]. This310

challenge was the inspiration behind creating the BOSS chal-311

lenge in 2010 [28]. The BOSSbase dataset, which includes312

10,000 grayscale images, has become one of the most com-313

monly used datasets in the field of steganalysis. Although314

BOSSbase has had a great impact on steganalysis research,315

it has some limitations, especially with the emergence of316

new technologies. In 2017, the BURSTbase dataset was cre-317

ated [57]. It contains 7× 9.310 images in JPEG format taken318

with a camera in burst mode. Table. 1 presents the details of319

the grayscale datasets.320

2) COLORED DATASETS321

In 2018, a new competition began under the name322

Alaska1 [59]. It aimed to provide a large dataset of images323

of different sizes taken by different cameras. Images were324

compressed with different quality factors. As part of the325

Alaska1 challenge, participants were given codes for stegano-326

graphic schemes to build their own training sets without hav-327

ing to worry about cover-source mismatches. Alaska2 [60]328

is a follow-up competition to Alaska1. It contains a total of329

300,000 colored images divided into 75,000 sets of cover,330

stego images (imageswith steganographic schemes applied to331

them such as J-UNIWARD [29], J-MiPOD [61] and Uniform332

Embedding Revisited Distortion (UERD) [62]) and 5,000333

test images. IStego100K is a dataset created in 2019 [63].334

It contains 208,104 colored images of size 1024 × 1024.335

Images were separated into 100,000 images for cover and336

100,000 images for stego, and the remaining 8,104 images337

were used for testing. This dataset takes into consideration338

the mismatch between the training set and test set in a real339

environment. ImageNet is one of the most popular datasets340

used in classification problems [64]. It was created to promote341

research in computer vision. Some researchers use ImageNet342

as a dataset for steganalysis by creating stego images using343

a steganography scheme of their choice; it has been used in344

creating newmodels for steganalysis, as it contains more than345

14 million colored images of various sizes. RAISE is another346

dataset created to support research in the image forensics and 347

image processing fields [65]. Table. 2 illustrates the details of 348

the colored datasets. 349

3) GRAYSCALE AND COLORED DATASETS 350

Few datasets contain both colored and grayscale images. One 351

of the few that does is Steganalysis Real Test Version 1 (STE- 352

GRT1) [67]. STEGRT1 is a new dataset created in 2020 to 353

evaluate steganalysis systems on real-world scenarios. STE- 354

GRT1 contains 8,000 cover and stego images of various 355

sizes and properties. The Large Scale Steganalysis Database 356

(LSSD) is a combination of different datasets [68]. The idea 357

behind combining datasets is to increase the diversity and 358

present real-world scenarios. Table. 3 shows more details of 359

the grayscale and colored datasets. 360

B. THREE DIMENSIONAL DATASETS 361

Currently, with advancements in 3D technology and hard- 362

ware, it has become easy to obtain 3D models for natural 363

objects. These models have become commonly used in differ- 364

ent fields, such asmedical imaging, virtual reality, augmented 365

reality, games, movies, and many more areas. 3D steganogra- 366

phy has become one of these fields due to its high embedding 367

capacity in 3D meshes, which can be excellent data carriers. 368

Table. 4 provides more details on 3D datasets. 369

IV. STEGANALYSIS 370

Most steganalysis techniques have been formulated as a 371

binary classification problem. Rich model-based steganalysis 372

is one of these methods that achieves better detection accu- 373

racy than most other steganalysis algorithms. The method 374

first extracts various handcrafted features from the filtered 375

digital images in the training phase. Then, an ensemble classi- 376

fier is trained to distinguish cover images from stego images. 377

The trained classifier is used in the testing phase to determine 378

whether a new input image includes concealed data. In ste- 379

ganalysis using classical machine learning, the features are 380

extracted by handcrafted methods and are separated from the 381
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TABLE 3. Commonly used 2D grayscale and colored datasets in steganalysis.

TABLE 4. Commonly used 3D datasets in steganalysis.

classification stage. Therefore, the accuracy of the classifier382

relies on the effectiveness of the feature extraction method.383

These extracted features are fed forward to the classification384

stage. In contrast, in deep learning, the feature extraction385

stage is blended with the classification stage, and the decision386

of the classifier is used to update the extracted features.387

Many feature extraction techniques are used in steganalysis388

in machine learning. However, the large number of features389

in images causes the curse of dimensionality (CoD) and time390

complexity, especially when working on universal steganaly-391

sis. Extracting the discriminative features can help to improve392

the steganalysis accuracy. Previous studies suggested some393

algorithms to reduce the dimensionality of the data. Applying394

feature subset selection in the context of steganalysis presents395

many advantages as follows:396

1) The accuracy of image steganalysis methods relies on397

sensitive features that can detect the presence of hidden398

messages in all types of steganography methods, and it399

does not rely on a large dimensional feature set.400

2) By selecting the vital features, the redundant features401

are removed, and the discriminant features are pre-402

served to train the classifier.403

3) The computation time complexity is reduced for the404

feature extraction stage and training of the classifier.405

This will help to detect the hiddenmessages in different406

real-time applications where security is important.407

A new method for processing features in two phases of408

optimization was proposed in [78]. The first optimization409

model is the eigenvalue of the scatter matrix within a class.410

The second phase of optimization is the employment of the411

random subspace Fisher linear discriminant (FLD). Kulkarni412

and Gorkar [79] investigated the presence of hidden malware413

in images. They used PCA based on eigenvalues to reduce the414

number of dimensions and keep all the vital features needed415

for the classifier. A universal image steganalysis technique416

focusing on feature selection was presented by Desai and417

Patel [80]. This method is a feature grouping based on PCA.418

Desai et al. computed the eigenvalue of the covariance matrix419

and then clustered the feature using the K-means method.420

Some techniques can be used to accelerate feature421

extraction. Li et al. [81] found that the cost of the clas-422

sical divide-and-conquer method depends on the updating423

of singular vectors, which includes two matrix multiplica- 424

tions. As a result, they concluded that the singular vec- 425

tor matrices of a broken matrix are Cauchy-like matrices 426

and have off-diagonal and low-rank properties, so they can 427

be estimated by hierarchically semiseparable (HSS) matri- 428

ces. They introduced an accelerated DC algorithm where 429

a structured low-rank estimation method is used. Their 430

study showed that ADC can be three times faster than DC. 431

On the other hand, Liao et al. [82] proposed a parallel struc- 432

tured divide-and-conquer aiming to reduce the computational 433

cost. Their method builds the local matrices by employing 434

Cauchy-like matrix generators without any communication 435

and then reduces the computation costs by utilizing a struc- 436

tured low-rank approximation method. 437

These ADCmethods showed that the computational cost of 438

the methods massively decreased and will help significantly 439

in steganalysis problems. 440

In the following sections, we present the main contribution 441

of this survey, which is to highlight the works that have been 442

performed using classical machine learning and deep learning 443

techniques in the spatial and transform domains in the image 444

steganalysis field. 445

A. TWO DIMENSIONAL IMAGE STEGANALYSIS METHODS 446

BASED ON CLASSICAL MACHINE LEARNING TECHNIQUES 447

Different methods for 2D image steganalysis using machine 448

learning techniques have been proposed. These methods use 449

two phases to solve the steganalysis problem. The first phase 450

is a handcrafted feature extraction, which has the capability 451

of modeling the embedding distortions in the image using 452

any steganographic algorithm. The second phase is the clas- 453

sification process that uses an integrated classifier for feature 454

training. Different classifiers can be used for image steganaly- 455

sis, such as the SVM and ensemble classifiers. The following 456

sections discuss the steganalysis methods in the spatial and 457

transform domains. 458

1) SPATIAL DOMAIN STEGANALYSIS 459

The spatial domain is used for ease of implementation and 460

its high capacity for hidden information. Some methods in 461

the spatial domain include HUGO [27], pixel-pair matching 462
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scheme [83], [84], MiPOD [32], HILL [31], Gibbs construc-463

tion [85], spatial rich models (SRM) [86], and WOW [30].464

A method for detecting steganographic least significant465

bit matching (LSBM) was presented by Pevny et al. [9].466

This method identifies deviations caused by steganographic467

embedding by modeling the differences between adjacent468

pixels in the images. A filter is used in the steganalysis to469

suppress the image content while exposing the stego noise.470

First- and second-order Markov chains are used to model the471

dependencies between the neighboring pixels in the filtered472

image. Then, the sample transition probability matrix is used473

to obtain a feature vector in a machine learning-based ste-474

ganalyzer. Although the presented feature set was designed475

to detect spatial domain steganography, it was also able to476

detect algorithms that are hidden in the block DCT domain.477

The SRM proposed by Fridrich and Kodovsky [86] is478

a widely used, state-of-the-art image steganalyzer. SRM479

extracts residual features by applying nonlinear and linear480

high-pass filters. The model detects stego images by acquir-481

ing the noise pattern’s discontinuity in adjacent pixels in the482

tampered and nontampered areas. The authors proved that a483

medium-dimensional feature fed into a Gaussian SVM and a484

high-dimensional feature fed into an ensemble classifier can485

improve the detection accuracy for all the tested methods.486

Veena and Arivazhagan [87] proposed a universal quan-487

titative steganalyzer using reduced instances and features in488

which both the local and global features are considered for489

feature space. The global features are co-occurrence features490

from the Markov model, while the local features constitute491

the local filter pattern (LFP) [88]. The extracted features are492

concatenated using the greedy randomized adaptive search493

procedure (GRASP) [89]. Then, discretized all condensed494

nearest neighbor (D-AllCNN) is applied for instance reduc-495

tion, and RFE is applied to reduce the feature dimensionality496

based on the divide and conquer principle. The AdaBoost497

estimator with regression trees is used to predict the pay-498

load in the stego image. The proposed blind quantitative499

steganalyzer is suitable for spatial LSB-based methods and500

can be used to improve the existing multimodel steganalytic501

features. As steganography algorithms negatively affect the502

correlations among gradient amplitudes of color channels,503

Kang et al. [90] presented a steganalysis method using chan-504

nel gradient amplitude correlation for color images. The505

extracted features are the cooccurrence matrix from the gra-506

dient amplitude residuals that describe the correlation of the507

different color channels and then these features are combined508

with the existing features as in [91] and [92] for color image509

steganalysis. The proposed method was tested on the BOSS-510

base dataset. The dimension of the features is 5,404, which511

consumes a great deal of space and time when features are512

extracted and saved. Due to the high dimensionality of the ste-513

ganalysis features, the proposed algorithm uses an ensemble514

classifier, which is a common learning technique for image515

steganalysis. To improve the detection of perturbations of the516

local patterns in stego images, features are used in texture517

classification tasks such as LBP. LBP features can character-518

ize local structure changes, and they seem to be promising. 519

LBP can effectively summarize the local structures of an 520

image by comparing pixels with their neighbors. Inspired 521

by this idea, Gui et al. [93] proposed extracting multiscale 522

rotation invariant LBPs from smooth pixels as unique tex- 523

tural features, which are then fed into the linear SVM. The 524

experimental results showed that the method performed well 525

in detecting stego images and had a high accuracy. 526

Liu et al. [94] presented a blind image steganalysis method 527

based on a nature-inspired feature selection method. The fea- 528

tures are extracted for image steganalysis using SPAM. Then, 529

the ideal feature subset is chosen from the original features 530

using the binary bat method (BBM) [95]. The classifiers used 531

to verify the proposedmethod areKNN,RF, AdaBoost, DCA, 532

NB and SVM. The proposed method was tested using the 533

BOSSBase v1.01 dataset, and the accuracy was 68.08% with 534

the SVM classifier. 535

2) TRANSFORM DOMAIN STEGANALYSIS 536

The transform domain embeds the hidden messages in the 537

coefficients of the cover image. Therefore, the transform 538

domain has an advantage over the spatial domain, where the 539

hidden messages in the transform domain are not affected 540

by image processing, compression, or cropping. Methods in 541

the transform domain include UED [37], UERD for JPEG 542

steganography [62], statistical features of contourlet trans- 543

form [96] and block-based image steganalysis based on DCT 544

and Markov features [97]. These steganography methods 545

leave minimal traces of hidden data, so it is necessary to 546

extract independent features from the image to proceed to the 547

next phase. Therefore, efficient features for the steganalysis 548

process include the Markov transition probabilities of pixels, 549

histogram of residuals, cooccurrence matrices, LBP opera- 550

tors, etc. The next phase is the classification process in which 551

integrated classifiers for feature training are used. Classifiers 552

that can be used for image steganalysis include the SVM and 553

ensemble classifiers. 554

Liu et al. [98] presented a new method based on feature 555

mining, the DCT domain and SVM for JPEG image steganal- 556

ysis. They extracted features using both the intr-block and 557

intera-block neighboring joint density from the DCT coeffi- 558

cient; then, they fed these features into SVM for detection. 559

To predict the hidden amount in JPEG steganography, the 560

authors applied a neural-fuzzy inference system. Their exper- 561

imental results showed that their method performed better 562

than the well-known Markov process-based method. 563

Holub and Fridrich proposed a novel feature set for 564

JPEG steganalysis called discrete cosine transform residual 565

(DCTR) [99]. These features are low in complexity and small 566

in dimension, and they are created as histograms of the 567

residuals achieved using 64 DCT bases. The authors used the 568

Fisher Linear Discriminant (FLD) [100] ensemble as a binary 569

classifier. The results show that DCTR achieved competitive 570

detections over many JPEG methods. 571

Song et al. [101] proposed a steganalysis method by apply- 572

ing 2D Gabor filters for the feature extraction phase to detect 573
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the embedded changes constrained in the complicated texture574

regions of the JPEG images. The results showed that the pro-575

posed features for image steganalysis obtained a competitive576

performancewhen compared to the achieved steganalysis fea-577

tures UED [37], J-UNIWARD [29] and SI-UNIWARD [29].578

Shankar and Azhakath [102] proposed a blind feature-579

based image steganalysis for the JPEG file format. A total580

of 274 image features were extracted using a DCT from581

the first-order (dual, global, and individual histograms),582

second-order (co-occurrence, variance, and blockiness), and583

special Markov features. The classifiers were SVM and584

SVM-particle swarm optimizations (SVMPSO). The classi-585

fiers were adapted with 10% embedding and 10-fold cross-586

validation. The kernels used in the classification process were587

linear, multiquadratic, Epanechnikov, radial, polynomial and588

ANOVA. The two image datasets used for the suggested blind589

steganalysis were INIRA holidays [103] and UCID [104].590

It was shown that the PSO classifiers achieved better perfor-591

mance than SVM for all the kernels and samples.592

Liu et al. [105] presented a framework based on fusing593

SVM classifiers; it consists of three stages, training the sub-594

classifier, training the fusing classifier and testing the fusing595

classification. The author used rich model features proposed596

in [106] that are divided into different groups based on the597

correlation features. The fusion classifier is able to learn the598

correlation of the detection results for the subclassifiers, and599

the accuracy is enhanced when the classifiers are increased.600

Lu et al. [107] presented an improvement framework for601

steganalysis based on feature selection and preclassification.602

The features are extracted using a dependency analysis of the603

adjacent image data. The K-means algorithms are applied to604

preclassify the images that have various content and texture605

complexities from the image dataset. Then, the optimal fea-606

tures from each cluster were chosen for a final decision aimed607

at improving the overall performance of the steganalysis.608

Shankar andAzhakath [108] explored four feature extractions609

for the steganalysis, which were first order, extended DCT,610

second order, and Markov features. They used the LSBM611

method [73] and F5 [70] for the spatial domain and transform612

domain, respectively. They employed six different kernels613

and four kinds of SVM samplings with cross-validation.614

Their study concluded that the transform domain provided615

better accuracy of classification than the spatial domain.616

Table. 5 provides more details on the work performed in the617

spatial and transform domains.618

B. THREE DIMENSIONAL IMAGE STEGANALYSIS619

METHODS BASED ON CLASSICAL MACHINE LEARNING620

TECHNIQUES621

In this section, we describe some steganalysis algorithms that622

have been used on 3D images. As the goal of 3D steganalysis623

is to find the concealed data in 3D images, it is a challeng-624

ing problem compared to 2D image steganalysis because625

3D images are 3D complex objects that have an arbitrary626

topology and irregular geometry.627

Yang and Ivrissimtzis [115] presented the first 3D steganal- 628

ysis features (YANG208) for detecting hidden messages in 629

triangle meshes. For each mesh, they calculated the char- 630

acteristic feature vector that captured the geometric infor- 631

mation from its Cartesian and Laplacian coordinates. They 632

then applied a calibration technique on the extracted feature 633

vector by computing the difference between the mesh and 634

the reference mesh to extract the discriminative features. The 635

extracted features were then fed into the supervised learning 636

method based on quadratic discriminant analysis (QDA). The 637

method was tested on six well-known steganographic frame- 638

works and showed satisfactory accuracy rates. 639

Li and Bors in [116] proposed a method (LFS52) that 640

extracted a 52-D local feature vector for the 3D steganalysis 641

problem. The 52-D feature vector combined three compo- 642

nents, a 40-D feature vector consisting of the most effective 643

features in YANG208 [115], a 4-D vertex normal feature 644

vector and an 8-D local shape curvature feature vector. The 645

combined features were used as input to the FLD ensemble 646

and a quadratic classifier to distinguish the 3D stego-objects 647

from the cover objects. The proposed method was tested on 648

the PSB dataset, where stego objects were created using two 649

different steganography techniques that hide messages in the 650

3D objects. The results showed that the method provides 651

better performance for the 3D steganalysis process, where 652

local shape curvature features and vertex normal features 653

have better discriminability. 654

Li and Bors [117] proposed the Robustness and Rele- 655

vance based Feature Selection (RRFS) algorithm as a solution 656

for the cover-source mismatch problem in 3D steganalysis. 657

A feature set (LAY252) is extracted using a combination 658

of LFS52 features [116] and YANG208 features [115]. The 659

proposed selection algorithm selects the features based on 660

their robustness and correlation. The selected features are 661

fed into the FLD ensemble. The proposed algorithm chooses 662

better features than other algorithms. However, this algorithm 663

is limited to a set of transformations in the cover-source 664

mismatch problem. 665

Kim et al. [118] proposed the local feature set (LFS64). 666

They used mean, total curvature, and edge normal in addition 667

to features presented in [115] and [116], and they mapped 668

the features using a homogeneous kernel map to help the 669

FLD ensemble classifier detect setgo meshes. The proposed 670

method outperformed LFS52 [116]. 671

Li and Bors [119] proposed a method (LFS76) extended to 672

LFS52 features [116] to identify the small variances between 673

the cover and stego 3D graphical objects. The proposed 674

method extracts and combines various 3D features, such as 675

vertex normal, local curvature, and a local geometric repre- 676

sentation of the vertex in spherical coordinates. The statistics 677

of the sets of extracted features with the 76-D feature vector 678

are fed into the SVM classifier, FLD ensemble, and QDA. 679

The authors used the PSB dataset that contains 354 3D mesh 680

cover objects. Stego objects were created using three different 681

steganographic methods for information hiding. The experi- 682

mental results showed that the FLD ensemble provided the 683
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TABLE 5. Summary of work performed on 2D images using classical machine learning.

best results for the steganalysis process when the mean-based684

watermarking steganographic method [52] was used to iden-685

tify the information embedded in 3D objects.686

Li et al. [120] proposed a 3D feature extraction technique687

that uses edge vectors to capture the local features, resulting688

in a 124-D feature vector (LFS124). The absolute differences689

between the edge lengths of the 3D components of the vector690

were computed in the Cartesian coordinate system. Then, the691

difference norm between the two vectors was computed, and692

two different features derived from the absolute differences693

and the angle between themwere defined. Finally, six features694

were computed in the same way in the Laplacian coordinate695

system, all of which together formed 12 features. Then, the696

newly extracted feature set was combined with the existing697

feature set of LFS76 to obtain the 124-D feature vector.698

These features were fed into an FLD ensemble. The proposed 699

method was tested on 354 cover 3D mesh objects from the 700

PSB dataset. The 3D stego meshes were produced by six 701

3D information hiding techniques. The experiment showed 702

that the proposed method is efficient in implementation and 703

concluded that the edge vector plays a significant role in 704

steganalysis. 705

Zhou et al. [45] proposed a specific steganalysis method 706

using the PCA transform-targeted feature to differenti- 707

ate between stego and cover 3D mesh objects. The 708

transformation matrix of a stego mesh is close to the iden- 709

tity matrix after a PCA transform, while the transformation 710

matrix of a cover mesh is far from the identity matrix on most 711

occasions. The one-dimensional feature is defined by the 712

norm between the two transformation matrices. This method 713
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was tested on the PMS and PMN datasets. The proposed714

steganalysis method was only efficient for steganographic715

methods based on the PCA transform.716

Zhou et al. [121] presented a 3D steganalytic scheme717

(NVT+) using a tensor voting model that collects the local718

shape context to distinguish a stego 3D mesh object from719

the cover object. First, three normal voting tensors with dif-720

ferent neighbor definitions were performed. Second, three721

eigenvalues were computed from every tensor, where the722

absolute value of the difference between eigenvalues was723

regarded as a feature. Three tensor models that each extract724

three eigenvalue differences produced nine features. Third,725

several statistical moments of features processed by means726

of nonlinear mapping were extracted to form 36 features.727

The 36 obtained features were combined with the features of728

the LFS64 method in [118] to obtain a 100-D feature vector.729

The combined feature set was fed into the FLD ensemble730

for classification. The proposed method was examined on731

the PMS and PMN datasets. The experiment showed that732

the proposed method enhances the detection performance.733

However, the time taken and the complexity of this method734

are very high due to the calculation of each feature for the735

adjacent face.736

Li and Bors [122] proposed WFS228, a novel set of 228-737

D steganalysis features extracted using multiresolution 3D738

wavelet analysis [123]. The features are extracted from trans-739

formations between an input mesh and its corresponding740

higher and lower resolutions. For an input mesh, its corre-741

sponding higher and lower graph resolutions are computed742

using the 3D wavelet algorithm. The method was trained743

using the FLD ensemble, and the experiments showed that744

the 3D wavelet feature provided the best performance for the745

steganalysis task. Table. 6 provides more details about the746

work performed in 3D image steganalysis.747

C. TWO DIMENSIONAL IMAGE STEGANALYSIS METHODS748

BASED ON DEEP LEARNING749

Over the last few years, deep learning has been widely used in750

steganalysis to extract appropriate features for classification.751

Convolutional neural networks (CNNs) have enhanced the752

performance of steganalysis; however, the memory space and753

the computational complexity cost of the models are still754

obstacles due to the large amount of training data. In this755

section, we present deep learning models that aim to reduce756

the learning cost by extracting the key features.757

Ghosh et al. [125] presented an ANN model, a new758

hybrid ANN deep neural network based on eigenvalues (more759

specifically PCA) and Haralick features. They computed the760

co-occurrence matrix of the grayscale input image for four761

pixel pair directions and then computed the average. Then,762

two-dimensional reduction is applied: PCA and Haralick.763

Their method was promising and achieved enhanced accu-764

racy. Zang et al. [126] proposed extracting key texture fea-765

tures by employing a learnable local histogram layer based766

on multiquadratic kernel modeling. The histogram layer used767

two convolutions to learn the center and width of the bin.768

They used an RBF neural network to update the bin center 769

and width of the model, and eigenvalues were used to find 770

the minimum and maximum values of the RBF. The method 771

showed significant improvement in texture classification. 772

Abazar et al. [127] presented a novel framework to reduce 773

the learning cost by using a divide and conquer technique. 774

The dataset is split into five disjoint clusters by employing 775

k-means. Each cluster is fed into a distinct CNN. The net- 776

works are combined leveraging a fast weighting process. The 777

proposed model is able to reduce the size of the training 778

data for each model. The experimental results showed that 779

the proposed framework reduces the time complexity while 780

maintaining the accuracy. 781

The following sections provide a summary of the state- 782

of-the-art works that have been performed in 2D image ste- 783

ganalysis using deep learning techniques in the spatial and 784

transform domains. 785

1) SPATIAL DOMAIN STEGANALYSIS 786

As we mentioned previously, in the spatial domain steganog- 787

raphy, the payload bits are hidden in a cover image by chang- 788

ing the pixel intensity values directly in the spatial domain. 789

Knowing this, researchers have begun to take advantage of 790

applying deep learning for spatial domain steganalysis. The 791

first attempt to use an unsupervised deep learning method for 792

steganalysis was carried out by Tan and Li [128]. The authors 793

used stacked convolutional autoencoders (SCAEs) [129]. The 794

weights of the kernels and filters in the CNN were randomly 795

initialized. The authors believed that a well-trained CNN 796

must perform comparably to the well-known and successful 797

SRM. They used a nine-layer, three-stage CNN based on a 798

blind steganalyzer. 799

Qian et al. [21] were the first to propose using supervised 800

learning with CNNs for steganalysis. Their network consists 801

of three steps, a high-pass filter used as a preprocessing 802

layer, a convolutional layer for feature extraction and then a 803

fully connected layer for classification. The high-pass filter 804

layer is used because the stego has a weaker signal than 805

the content of the image. This model achieved reasonable 806

results compared to traditional models using handcrafted 807

features. Wu et al. [130] proposed a new feature extraction 808

framework that can learn joint features from input images 809

and their corresponding residual images. Their feature fusion 810

process in CNN is completely unsupervised. To minimize 811

data dimensions, the method chooses feature maps from the 812

middle three hidden layers and concatenates them into a 1D 813

vector that is passed into the fully connected layers to obtain 814

the classification result. The aim is to decrease the negative 815

impact of the high-pass filter to guarantee that the network 816

remains convergent. 817

Rezaei et al. [67] tested more than 40 CNN architectures 818

and found that the best shape consists of two convolutional 819

layers followed by three fully connected layers. The input 820

image of the CNN is filtered first by high pass, as is done 821

in the work of Qian et al. [21]. The CNN is evaluated on 822

two scenarios, the first of which is a clairvoyant scenario in 823
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TABLE 6. Summary of works performed in 3D Steganalysis.

which it is assumed that the same embedding key is applied on824

different images. The authors compared this scenario to the825

ensemble classifier with SRM features and found that CNN826

reduced classification errors by three times. In the second827

scenario, a cover-source mismatch was assumed in which828

the source model used in steganography is different from829

the source model assumed for steganalysis. The classification830

errors decreased compared to the rich models and ensemble831

classifier.832

Xu et al. [131] proposed using a CNN with statistical833

modeling to avoid network convergence. They employed a834

high-pass filter as a layer to gain the noise residuals of the835

original images and then fed them into five convolution and836

pooling layers. The 128-dimensional features are fed into the837

fully connected layer and then the softmax layer to classify838

the input. The main contribution of this technique is that it839

uses the absolute layer (ABS) after the convolution layer to840

obtain positive values. The output is then fed into the batch841

normalization layer to guarantee that the network did not842

become stuck in local minima. The hyperbolic tangent (tanH)843

nonlinear activation function was used in the first group of844

convolution layers, and rectified linear units (ReLUs) were845

used in the remaining layers. The authors trained their CNN846

model using minibatch gradient descent, and the results out- 847

performed the traditional SRM ensemble classifier. 848

Ye et al. [132] introduced YeNet, which has a new trun- 849

cated linear unit (TLU), in the CNN steganalysis model. 850

The network contains 10 convolutional layers, and 30 high- 851

pass kernels were initiated using SRM and used as a prepro- 852

cessing layer. In the first convolution layer, the authors used 853

TLU, and in the remainder of the layers, they employed the 854

ReLU activation function. The output from 144-dimensional 855

feature vectors was fed into one fully connected layer, fol- 856

lowed by a softmax layer. YeNet achieved lower detection 857

error rates in comparison with the SRM and maxSRMd2 858

steganalyzers. 859

Yedroudj et al. [133] presented a CNN model by 860

incorporating one preprocessing layer consisting of 30 high- 861

pass layers from SRM kernels followed by five convolutional 862

layers and, finally, one softmax layer in the spatial 863

domain. Their CNN model is similar to Xu’s net [131] 864

and Ye’s Net [132]. YedroudjNet employed batch nor- 865

malization and the ABS layers as Xu net [131], but 866

they used shallower convolution layers compared to Ye’s 867

Net [132]. Finally, Yedroudj et al. used three fully connected 868

layers. 869
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In summary, studies performed in deep learning have870

concluded that taking into account knowledge of the domain871

in steganalysis can improve the performance of CNNs.872

As CNNs adopt a feature extraction step, domain knowledge873

should be taken into account when designing network archi-874

tectures.875

2) TRANSFORM DOMAIN STEGANALYSIS876

Steganography approaches on the JPEG domain work in877

the transform domain by changing the coefficients obtained878

after applying DCT. In the past, most JPEG steganalysis879

techniques extracted features from decompressed images.880

However, researchers are now motivated to study JPEG881

steganographic algorithms using CNNs.882

Xu [134] transformed the input JPEG images into the883

spatial domain and fed them into a set of specified DCTfilters884

of sizes of 2×2, 3×3, 4×4, 5×5, and 8×8 as a preprocessing885

step. The best result is obtained when a 4 × 4 filter is used.886

These features were used in a CNN architecture composed887

of 20 convolution layers with batch normalization and ReLU888

function layers. The output – 384 feature vectors – was fed889

into a fully connected layer followed by a softmax layer.890

The results showed that the proposed CNN network had891

decreasing classification error.892

Chen et al. [135] developed a novel JPEG-phase aware-893

ness feature with two CNN architectures to increase detec-894

tion accuracy. The JPEG phase is a statistical property col-895

lected using an 8 × 8 pixel neighborhood separately by896

obtaining noise residuals. Their CNN model relied on Xu’s897

model [131]; however, they incorporated phase awareness898

into XuNet [134] and disabled the pooling layer from the first899

two layers. Each feature map that gains from the second layer900

is subsampled on 64 sublattices and then used in the phase-901

split layer. Depending on the phase splits, they implemented902

two networks called the PNet and the VNet. In PNet, the903

output feature maps with a size of 16 × 16 are split into904

64 groups, resulting in 16 feature maps. Thus, each group has905

its specific processing layers. The resulting feature maps are906

then concatenated to form an 8,192 D feature vector. (This907

approach is not performed in VNet). The final output vector908

has a dimension of 512. The experiment showed that PNet909

outperformed VNet.910

Zeng et al. [136] employed a hybrid deep learning frame-911

work for state-of-the-art JPEG steganography approaches,912

J-UNIWARD [29], UED [39] and UERD [67], and used913

handcrafted quantization and truncation (Q & T) phases of914

rich models with CNN. The CNN model has two stages.915

In the first stage, a 25, 5× 5 DCT base was used to compute916

25 residual maps from uncompressed and nontruncated JPEG917

images. These maps were then handed over to three Q & T918

phases. In the second stage, the three Q & T phase outputs919

were fed into three independent subCNNs. The output feature920

maps from each subCNN were flattened, and a 512-feature921

vector was obtained for each subCNN. The final output922

feature length of 1,536 was fed into four fully connected923

layers. The CNNmodel was trained using stochastic gradient 924

descent (SGD). 925

Yousfi et al. [137] won the ALASKA steganalysis 926

challenge in 2019 by using SRNet [138] to train differ- 927

ent combinations of three input channels, luminance Y and 928

chrominances Cr and Cb. SRNet used residual skip connec- 929

tions, and the filter size was 3 × 3. All the convolutional 930

layers were followed by a batch normalization and the ReLU 931

activation function. The first eight convolutional layers did 932

not incorporate the pooling layer since average pooling is 933

assumed to be a low-pass filter, while steganalysis is con- 934

cerned with high-pass content where stego data are found. 935

The output of these convolutions was fed to a fully connected 936

layer that produced two outputs and was fed to a binary 937

classifier. 938

Inspired by the idea of using the transfer learning of 939

pretraining neural networks on unrelated tasks and refining 940

steganalysis, Yousfi et al. [139] investigated pretrained deep 941

learning networks such as EfficientNet [140], MixNet [141] 942

and ResNet [142] for steganalysis. They concluded that 943

removing pooling and stride in the first layers allowed for 944

better performance. Xiancheng Wu et al. [143] explored the 945

effects of applying compression in eight-bit calculations and 946

floating-point quantizations to XuNet. The model achieved 947

higher accuracy than Xu’s model. Their results showed that 948

the two CNN models based on quantization schemes are use- 949

ful in steganalysis. Table. 7 provides details of the common 950

techniques developed for the spatial and transform domains 951

in steganalysis. 952

In 2D image steganalysis using classical machine learning, 953

it seems that SVM and SRM are the most popular binary 954

classifiers, while FLD is the most popular ensemble classifier 955

for 3D image steganalysis. In deep learning, 2D CNN archi- 956

tectures are commonly used by researchers to implement ste- 957

ganalysis models for image steganalysis. It is known that 3D 958

meshes have a higher embedding capacity than 2D images. 959

However, many steganalysis studies target 2D images. There- 960

fore, it is important to investigate the possibility of detecting 961

3D mesh steganography using deep learning techniques. 962

V. OPEN CHALLENGES 963

While steganalysis has received considerable attention in the 964

past decade, some challenges remain unsolved. First, the 965

different CNN models presented in this survey are designed 966

to be suitable for specific datasets. To date, there is no 967

generalized CNN model that can detect hidden messages in 968

unseen data. Second, none of the currently available deep 969

learning models take into account the use of generative adver- 970

sarial networks (GANs). It is worth investigating whether 971

the generator of GAN models can learn from stego and 972

cover images and generate reasonable outputs to distinguish 973

between the two. This will help to simplify the task of 974

detecting steganography. Third, as discussed in Section III, 975

many datasets are available with different specifications, such 976

as the data domain. However, the current steganalysis deep 977

learning models use specific datasets. Therefore, there is a 978
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TABLE 7. Summary of work performed on 2D images using deep learning.

need for an explicit steganalysis deep learning model that979

can learn from different datasets with different specifications980

to use the available data efficiently. Fourth, there are some981

fundamental open questions regarding the use of 3D datasets982

in steganalysis with deep learning. Deep learning methods983

have shown promising results in 2D image steganalysis,984

but there are two potentially challenging questions: Do 3D985

steganalytic methods based on deep learning provide better986

performance? Are there enough 3D data that can be used to987

train the steganalysis CNN models? Finally, steganography988

is designed to pass hidden messages through media such as989

the internet, and the data might be exposed to manipulation990

during the transmission process (e.g., by rotation or corrup-991

tion). Thus, an interesting direction of research would be to992

build deep learningmodels that can learn to predict the hidden993

messages correctly. Feature dimensionality is still a problem994

specially when performing real-time steganalysis. Therefore,995

it is necessary to find an appropriate accelerating algorithm to996

speed up the learning process even in deep learning methods997

without compromising the accuracy.998

VI. CONCLUSION999

In this survey, we reviewed the works that have been per-1000

formed in the digital image steganalysis field. We have ana-1001

lyzed the steganalysis methods available for 2D and 3D1002

images. A decade ago, studies on traditional steganalysis1003

methods focused on classical supervised machine learning,1004

such as SVM and SRM. Recently, with the success of CNNs, 1005

different architectures have been developed to detect stegano- 1006

graphic messages in the spatial and transform domains. These 1007

CNNs have achieved prominent performances compared to 1008

the classical machine learning methods in the field of ste- 1009

ganalysis. Detecting stego images from CNN models is still 1010

in the early stages, and the deep learning models need to be 1011

robust against steganographic algorithms. Further research 1012

needs to explore how well the generative adversarial network 1013

architecture helps develop steganalysis algorithms for images 1014

in the wild. 1015
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