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ABSTRACT In this paper, we propose a novel hydraulic actuation system driven in three modes to
improve the response of the existing electrohydrostatic actuation (EHA) system. By using a high-pressure
accumulator, a servo valve, and mode switching valves, the hydraulic circuit can be switched to suit each
mode according to the operational conditions. Each of the three modes consists of the EHAmode, the hybrid
mode, and the charge mode, and the EHA mode operates on the same principle as the existing EHA system.
Particularly, the hybrid mode is activated when high-speed position control is required, and with the help
of an add-on servo valve controller, the control volume of the hydraulic cylinder can be stiffened quickly
while minimizing the use of highly pressurized fluid. The charge mode serves to periodically charge the
accumulator under motionless conditions in applications that allow piston holding. Through simulations and
experiments, it was confirmed that the response of the proposed system is much improved compared to that
of the existing EHA system.

12

13

INDEX TERMS Electrohydrostatic actuation, high-pressure accumulator, hybrid actuation, add-on control,
mode switching.

I. INTRODUCTION14

Still, the hydraulic actuation system has an unrivaled high15

power density compared to other actuation systems. For this16

reason, hydraulic systems have been applied to many robots17

and heavy machinery [1], [2]. In particular, electrohydraulic18

(EH) systems, which use a hydraulic reservoir and servo19

valve, are highly responsive and highly applicable. How-20

ever, applying EH systems in mobile systems is difficult21

due to their heavy and bulky hydraulic components [3], [4].22

To address the limitations, the development of an electrohy-23

drostatic actuation (EHA) system for general industry began24

competitively in the late 1990s, along with miniaturization,25

weight reduction, and improvement of the controllability of26
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the hydraulic components and electric motors [5], [6], [7]. 27

The EHA system, also known as the variable-speed pump- 28

controlled hydraulic servo system, does not require a large 29

reservoir and has the advantage of high efficiency [8]. Nev- 30

ertheless, this system has some systematic limitations. 1) the 31

dynamic response is limited due to the high rotational iner- 32

tia of its servomotor and bidirectional pump [9]; 2) pump 33

nonlinearities, including dead zones and friction, can degrade 34

the system performance; and 3) even pilot-operated check 35

valves (POCVs), which represent compensation of the vol- 36

ume difference between control volumes in a passive way, 37

may slow system actuation due to pressure-based operating 38

conditions [10]. 39

The research of EHA system has focused on achieving 40

higher energy efficiency by modifying it to have a struc- 41

ture for energy storage and energy regeneration [11], [12], 42
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[13], [14], [15]. Nevertheless, systematic limitations of EHA43

apparently still exist: 1) the dynamic response is limited due44

to the high rotational inertia of its servomotor and bidirec-45

tional pump [9]; 2) pump nonlinearities, including dead zones46

and friction, can degrade the system performance; and 3) even47

pilot-operated check valves (POCVs), which passively com-48

pensate for the difference in the control volumes, may slow49

the actuation of the system due to pressure-based operating50

conditions [10]. To address the response limitations, [16]51

and [17] replaced the POCVs with limited throttling compen-52

sating valves to improve the performance of the EHA system53

over the entire operating range. The performance is largely54

dependent on the pump and motor. A novel EHA structure55

associated with a power regulator has been proposed in [18].56

Although high power levels can be obtained instantaneously,57

the proportional valve has difficulty in guaranteeing a high58

control bandwidth.59

In this paper, we newly propose a response-improved60

EHA system with a secondary flow source. To supply an61

additional pressurized flow, the secondary circuit consists62

of a high-pressure accumulator and a servo valve. Because63

the proposed system has three operation modes accord-64

ing to the configurations of the mode-switching valves,65

the operational principles of each mode is analyzed, and a66

multi-input single-output (MISO) nonlinear dynamic model67

of the proposed system is derived. To achieve a higher68

response while minimizing the discharge flow rate from the69

high-pressure accumulator, a reference-based proportional-70

differential (PD) servo-valve controller is added to the exist-71

ing pump controller. Simulation studies and experimental72

evaluations verify that the response in the hybrid actuation73

mode is greatly improved compared to that of the conven-74

tional EHA system. Furthermore, by selecting an appropriate75

accumulator and using the charge mode, the proposed sys-76

tem can be used in applications that allow periodic position77

holding.78

This paper is organized as follows: In Section II, the novel79

hybrid hydraulic actuation systemwith a high response is pro-80

posed and analyzed. In Section III, the design of the add-on81

servo-valve controller is presented. In Section IV, the control82

method is verified through both simulations and experiments.83

The conclusions are presented in Section V.84

II. NOVEL HYBRID ACTUATION SYSTEM WITH85

A HIGH-PRESSURE ACCUMULATOR86

A. PROPOSED SYSTEM CONFIGURATION AND87

OPERATION MODES88

The new concept of the hybrid actuation system with a89

highly pressurized flow source is shown in Fig. 1. The90

pressure-generating structure is divided into a primary control91

part, a safety part, a reservoir part, mode-switching valves92

and a secondary control part. The secondary control part,93

similar to the secondary controlled drive concept [19], [20],94

is composed of a high-pressure accumulator that is appro-95

priately selected according to the application and a servo96

FIGURE 1. Diagram of the proposed hydraulic actuation system with a
high-pressure accumulator.

valve. To minimize the energy loss in a compact struc- 97

ture, an additional passive capacitive element (i.e., a high- 98

pressure accumulator), instead of a large pump and a motor, 99

is chosen. Then, the servo valve supplies the exact amount 100

of pressurized flow in the accumulator. Additionally, the 101

mode-switching valves are solenoid valves used for cylinder 102

holding and accumulator charging. The low-pressure accu- 103

mulator is used as a reservoir and absorbs the surge pressure. 104

Note that the primary control, safety valve, and reservoir are 105

the same as those used in the conventional EHA circuit. 106

The following three modes can be selected by suitably 107

controlling the bidirectional pump, servo valve and mode- 108

switching valves. 109

1) ELECTROHYDROSTATIC ACTUATION (EHA) MODE 110

In the EHA mode in Fig. 2(a), the 2-way/2-position mode- 111

switching valves are opened, and the servo valve is in a neutral 112

position. This mode has almost the same performance as 113

the conventional EHA system in which the discharged flow 114

from the pump produces a pressure change of the two control 115

volumes. This mode is therefore used in situations in which 116

maximizing the efficiency at a low response is desired. 117

2) HYBRID ACTUATION MODE 118

In the hybrid actuation mode in Fig. 2(b), the 2-way/2- 119

position mode-switching valves are opened, and the orifice 120

of the servo valve is continuously controlled. In this mode, 121

the highly pressurized flow of the accumulator is supplied to 122

the required control volume through the orifice of the servo 123

valve, as shown in Fig. 3. Therefore, this mode is used in 124
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FIGURE 2. Operation modes of the proposed system: (a) EHA mode; (b) hybrid actuation mode; (c) charge mode.

FIGURE 3. Schematic diagram of a secondary control part.

situations that require instantaneous rapid movement, such125

as high-frequency reference tracking. Because the perfor-126

mance of the hybrid actuation mode is expected to be highly127

dependent on the performance of the servo valve and charged128

pressure of the high-pressure accumulator, a further analysis129

is provided in Section C.130

3) CHARGE MODE (WITH PISTON HOLDING)131

The charge mode in Fig. 2(c) is required when additional132

flow cannot be supplied during the hybrid actuation mode133

or the accumulator pressure drops. In this mode, the 2-way/ 134

2-position mode-switching valves are closed, and the 3-way/ 135

2-position solenoid valve is fully opened, allowing the dis- 136

charged flow from the pump to accumulate in the accumu- 137

lator. At this time, the cylinder pistons are held against the 138

internal pressure. Although the charging processmay degrade 139

the energy efficiency, we can address this inefficiency by 140

properly selecting the application and effectively using piston 141

holding through high-level control. 142

B. DYNAMIC MODEL OF THE PROPOSED SYSTEM 143

Basic thermal-hydraulic components can be separated into 144

two categories, resistive components and capacitive compo- 145

nents [21]. 146

1) RESISTIVE COMPONENTS 147

In the proposed system in Fig. 1, the pump, relief valves, 148

POCVs, and accumulators are resistive components. 149

First, the discharged flow rates Qp,1 and Qp,2 through the 150

bidirectional hydraulic pump can be described as 151

Qp,1 = Dpθ̇p − ki (P1 − P2)− ke,1 (P1 − Pr ) 152

Qp,2 = −Dpθ̇p + ki (P1 − P2)− ke,2 (P2 − Pr ) , (1) 153

where θ̇p is the angular velocity of the pump, Dp is the pump 154

displacement, P1 and P2 are the pressures at each port, Pr is 155
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the reference pressure, ki is the internal leakage coefficient,156

and ke,1 and ke,2 are external leakage coefficients.157

Additionally, the flow rateQpoc,1 through the POCV,which158

solves the physically nonsensical problem when using a dif-159

ferential cylinder, in the forward direction is derived as160

Qpoc = Cpoc,DApoc

√
2
ρ

P̃poc(
P̃2poc + P2poc,cr

)1/4 , (2)161

where Cpoc,D is the flow discharge coefficient, Ppoc,cr is the162

critical pressure, and P̃poc = PA − PB. Here, the effective163

pressure P̄poc = PA + kpoc,pPX − PB given by the force164

balance in the POCV structure can be defined to calculate165

the orifice area Apoc. The orifice area Apoc is determined by166

the pressure-based condition as follows:167

Apoc168

=


Apoc,l P̄poc < Ppoc,cr
Apoc,l + kpoc

(
P̄poc − Ppoc,cr

)
Ppoc,cr ≤ P̄poc
< Ppoc,max

Apoc,max P̄poc ≥ Ppoc,max

(3)169

where kpoc is the orifice area coefficient, Ppoc,cr and Ppoc,max170

are the cracking pressure for valve opening and the maximum171

pressure for the maximally opened state, respectively, and172

Apoc,l and Apoc,max are the orifice areas in the closed state173

and maximally opened state, respectively.174

Additionally, from Fig. 3, the flow rate Qa through each175

accumulator is simply given as176

Qa =
dVf
dt
, (4)177

Vf is the fluid volume in the accumulator, which can be178

modeled mathematically by179

Ph,0V k
g,0 = Ph

(
Vg,0 −

∫ t

0
Qadt

)k
adiabatic condition180

Ph,0Vg,0 = Ph

(
Vg,0 −

∫ t

0
Qadt

)
isothermal condition181

(5)182

wherePh is the current pressure of the accumulator,Ph,0 is the183

initial pressure of the accumulator, Vg,0 is the initial volume184

of the gas chamber, and k is the polytropic exponent of gas,185

which ranges from 1.0 to 1.4.186

2) CAPACITIVE COMPONENTS187

The capacitive component can be assumed to have a fluid188

volume inside it. In this sense, the proposed system in Fig. 1189

has three capacitive components. For each capacitive com-190

ponent, the basic equations for hydraulic modeling from the191

flow continuity equation for one-dimensional flow are given192

by193

dP
dt
= β

[
1
V

(∑
Qin −

∑
Qout −

dV
dt

)]
, (6)194

where β is the bulk modulus.195

Finally, the dynamic equations for Fig. 1 are obtained as 196

follows by adding the equations for the flow in and out of the 197

servo valve provided in the high-pressure accumulator. 198

mẍ + cẋ = (A1P1 − A2P2)−f + d 199

Ṗ1 =
β

V1,0 + A1x
200

×
[
Qp,1 + Qpoc,1 − Qrv,1 + Qsv,1 − A1ẋ

]
201

Ṗ2 =
β

V2,0 − A2x
202

×
[
Qp,2 + Qpoc,2 − Qrv,2 + Qsv,2 + A2ẋ

]
203

Ṗh =
β

Vh
204

×
[
Qp,1sgn(uc)− Qsv,h {1− sgn(uc)} − Qa

]
205

(7) 206

where uc ≥ 0 is the input of the 3-way/2-position solenoid 207

valve and 208

Qsv,1 =

{
γ1xv
√
Ph − P1 xv ≥ 0

γ1xv
√
P1 − Pr xv < 0

209

Qsv,2 =

{
γ2xv
√
P2 − Pr xv ≥ 0

γ2xv
√
Ph − P2 xv < 0

210

Qsv,h =

{
γ1xv
√
Ph − P1 xv ≥ 0

γ2xv
√
Ph − P2 xv < 0

(8) 211

C. ANALYSIS OF SECONDARY CONTROL PART 212

The secondary control part in Fig. 3 discharges additional 213

fluid in the hybrid actuation mode and charges the fluid 214

from the reservoir in the charge mode. Here, because the 215

high-pressure accumulator is used for energy storage, the 216

pressure of the accumulator, Ph, should always be higher 217

than the maximum operating pressure. For this purpose, the 218

charging time should be as short as possible, and the discharge 219

time should be as long as possible. 220

First, in the charge mode (uc > 0), the accumulator can be 221

rapidly charged from the pump. Weand regard this process as 222

an adiabatic process as in the first equation of (5). 223

However, in the hybrid actuation mode (uc = 0), the 224

secondary control part can be regarded as an isothermal state 225

when it supplies a relatively small amount of pressurized fluid 226

in one accumulator cycle. Therefore, under the assumption 227

that Qsv,h is constant, the current pressure of the accumulator 228

is explicitly obtained by combining the second equation of (5) 229

and the last equation of (7) and usingPh(0) = Ph,0 as follows. 230

Ph =
[
Ph,0
2
−

β

2Vh
Vg,0 −

β

2Vh
Qsv,ht

]
231

+

√[
Ph,0
2
−

β

2Vh
Vg,0 −

β

2Vh
Qsv,ht

]2
+
β

Vh
Ph,0Vg,0, 232

(9) 233

Then, given that the ratio between Ph,0 and the maxi- 234

mum operating pressure is noted with the factor ε, where 235
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FIGURE 4. Mode switching method according to the slope of the
reference.

0 < ε < 1, the discharging time of the accumulator from236

Ph,0 to εPh,0 is derived as237

t =
1− ε
ε

εPh,0Vh + βVg,0
βQsv,h

. (10)238

Based on the above equation, to use the accumulator once239

it has charged for a sufficient period of time, the volume240

of the secondary control part should be increased, and the241

flow rate discharged from the accumulator, Qsv,h, should be242

minimized. To achieve this, we propose an add-on position243

controller design method that gives a higher response while244

minimizing the discharge flow rate in the following section.245

III. ADD-ON CONTROL STRATEGY246

The hybrid actuation circuit and hydraulic actuator proposed247

in Fig. 1 operate with the pump flow controlled by the motor248

and the flow rate of the accumulator controlled by the servo249

valve. Thus, the system with two degrees of freedom has250

one purpose of controlling the position of the piston of the251

hydraulic cylinder using a dual control strategy with two252

inputs. That is, when a high response is needed, the flow input253

of (8) controlled by the servo valve is applied, and when the254

pump motor is controlled, (1) is considered.255

A. BIDIRECTIONAL PUMP CONTROLLER256

The EHAmode involves inherent nonlinear functions, system257

uncertainties, andmismatched disturbances. To address these258

limitations, we combine a disturbance observer and a back-259

stepping pump controller based on the identified nonlinear260

model in (7).261

B. SERVO-VALVE CONTROLLER262

To achieve the long-term use of the accumulator flow263

and to minimize heat generation, we adopt an add-on-type264

hybrid control concept that provides only the additional flow265

required for the flow supplied by the pump.266

Because the servo valve operates only in the hybrid actua-267

tion mode, we design a PD controller that is activated under268

conditions of rapid change in the reference position. Specif-269

ically, when the slope of the reference position value of the270

piston is below the predetermined value M , the system oper-271

ates in the EHA mode, and it switches to the hybrid actuation272

mode when the slope is larger than the predetermined value.273

FIGURE 5. Overall control configuration.

The switching function is defined as follows: 274

f (ẋd ) =
{
|ẋd | |ẋd | ≥ M
0 |ẋd | < M .

(11) 275

The switching function is shown in Fig. 4. The final add-on 276

control input can be expressed as 277

ua = f (ẋd )
(
kp (xd − x)+ kd (ẋd − ẋ)

)
, (12) 278

where kp and kd are control gains. 279

Consequently, the overall control block diagram is shown 280

in Fig. 5. The mode selector determines the position of the 281

mode switching valves to enter the charge mode when main- 282

taining the current position. 283

IV. SIMULATION STUDIES 284

The simulation is performed in the AMESim/MATLAB envi- 285

ronment as shown in Fig. 6. A controller block designed in 286

the MATLAB/simulink environment is applied to the model 287

constructed in theAMESim, a leading commercial simulation 288

software in the field of hydraulic systems. The performance 289

parameters of the pump and servo valve are set at a maximum 290

pressure of 140 bar and a maximum flow of 6 lpm, and the 291

maximum stroke of the hydraulic cylinder piston is set at 292

0.072 m. Additionally, nonlinearities such as friction, dead 293

zones, and hydraulic resistance are considered. Here, the 294

FIGURE 6. Hydraulic simulator for the proposed system in the AMESim
environment.
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process in the N2 gas chamber of the accumulator is assumed295

to be polytropic. In particular, the polytropic index is set to296

1.55. To verify the performance of the proposed approach,297

the following three cases are given.298

• Case 1: The position reference is a step signal, , i.e., ,299

xd = 0.02 · us(t − 2)− 0.02 · us(t − 3)[m].300

• Case 2: The position reference is a chirp signal from301

0.3Hz to 6Hz.302

• Case 3: The position reference is a periodic position303

reference with holding.304

A. CASE 1: STEP POSITION REFERENCE305

The step reference tracking results are shown in Fig. 7. In the306

hybrid actuation mode, the rise time is improved by approx-307

imately 60% compared to the conventional EHA circuit.308

As shown in Fig. 8, a step reference instantaneously causes309

a large flow rate from the servo valve. However, we can see310

that the pump uses less flow, which means that hybrid control311

works.312

FIGURE 7. Step reference tracking performance for each actuation
(Hybrid: proposed actuation) in simulation.((a)Tracking position and
(b)error).

B. CASE 2: CHIRP POSITION REFERENCE313

In the simulation, the pump of the proposed system has the314

ability to follow a position reference signal of approximately315

0.5 Hz. Therefore, in the reference tracking within 0.7 Hz,316

only the EHA mode is operated. Therefore, in Fig. 9 and317

Fig. 10, the operation of the proposed actuation system is318

similar to that of the conventional EHA system.319

However, based on the reference tracking above 0.7 Hz, the320

proposed system has a much higher control bandwidth due to321

the hybrid actuation mode.322

C. CASE 3: PERIODIC POSITION REFERENCE WITH323

HOLDING324

To test the feasibility of the overall operation, including325

the charge mode, a reference position signal with a high326

FIGURE 8. (a)Pump angular velocity and (b)servo-valve input for each
actuation in step reference tracking in simulation.

FIGURE 9. Chirp reference tracking performance for each actuation
(Hybrid: proposed actuation) in simulation.

FIGURE 10. (a)Pump angular velocity and (b)servo-valve input for each
actuation in chirp reference tracking in simulation.

frequency region, a low frequency region, and a holding 327

region is arbitrarily generated. The proposed system has a 328

faster rise time and a higher bandwidth than the conventional 329
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FIGURE 11. Periodic reference tracking performance for each actuation
(Hybrid: proposed actuation) in simulation.((a)Tracking position and
(b)error).

FIGURE 12. (a)Pump angular velocity and (b)servo-valve input for each
actuation in periodic reference tracking in simulation.

FIGURE 13. Pressure of the high-pressure accumulator in periodic
reference tracking in simulation.

EHA system, as shown in Fig. 11. Additionally, Fig. 12 shows330

that the EHA mode is set for the low-frequency reference331

signal, the hybrid actuationmode is set for the high-frequency332

reference signal, and the charge mode is set for holding,333

so mode switching occurs in the entire operation region.334

Remarkably, the pressure of the fluid in the accumulator is335

maintained above a certain level, as shown in Fig. 13.336

V. EXPERIMENTAL EVALUATIONS 337

A. EXPERIMENTAL ENVIRONMENT 338

The test bench includes four manifolds with a hydraulic 339

power pack, a secondary control part, and a reservoir. Addi- 340

tionally, pressure sensors are integrated to measure the pres- 341

sure in the cylinder chamber outside the manifold, and a 342

linear variable differential transformer (LVDT) is connected 343

to the end of the piston so that the position of the cylinder 344

can be measured. In particular, the electrohydraulic two-stage 345

servo valve is used. Note that the volume of the accumulator 346

selected in the experiment is large compared to the volume 347

of fluid discharged during one cycle. However, the accumu- 348

lator does not need to be large because it is controlled to 349

minimize the accumulator usage by the add-on controller 350

concept discussed in Section III. Therefore, although the 351

current test bench is a low-cost version, if all components 352

are replaced with miniature components and the integrated 353

manifold design is used, the addition of four valves and one 354

accumulator may not significantly change the overall weight 355

and volume, and a compact design is still possible with the 356

proper manifold design. The specifications shown in Fig. 14 357

are listed in Table 1. 358

FIGURE 14. Test bench of the proposed system.

To ensure the real-time operation of the control system, 359

the experiments are conducted in a Real-timeWindows Target 360

environment of MATLAB with a 1kHz sampling rate. 361

The experiment is conducted to verify the performance 362

of the proposed hydraulic actuation, and the following two 363

references are given. 364

• Case 1: The position reference is a step signal, , i.e., , 365

xd = 0.01 · us(t)− 0.01 · us(t − 1.5)[m]. 366

• Case 2: The position reference is a 0.8Hz sine signal, , 367

i.e., , xd = 0.01 · sin(2π · 0.8t)[m]. 368

B. CASE 1: STEP POSITION REFERENCE 369

The reference tracking simulation results are shown in 370

Fig. 15. Due to the hybrid actuation mode, the rise time is 371

improved by approximately 28% compared to that of the 372

conventional EHA system. 373

C. CASE 2: SINE POSITION REFERENCE 374

For reference signal tracking above 0.5 Hz, the system peri- 375

odically switches between the EHA mode and the hybrid 376
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FIGURE 15. Simulation results for the step position reference, (a) reference tracking performance of secondary control, (b) control inputs of
controllers (xd = 0.01 · us(t)− 0.01 · us(t − 1.5)[m]).

FIGURE 16. Simulation results for the sine position reference, (a) servo-valve input and accumulator pressure change, (b) reference tracking
performance of secondary control (xd = 0.01 · sin(2π · 0.8t)[m]).

TABLE 1. Specifications of the test bench.

actuationmode, as shown in Fig. 16(a). This switching results377

in a higher frequency behavior and increases the tracking378

frequency and rise time. The results are shown in Fig. 16(b).379

VI. CONCLUSION 380

In this paper, a novel hydraulic actuation system with a pas- 381

sive auxiliary circuit using a high-pressure accumulator has 382

been proposed. Since there are three operation modes (EHA 383

mode, hybrid actuation mode, and charge mode) according to 384

the position of each directional valve, the operational princi- 385

ples of each mode was analyzed. In addition, to maximize 386

the efficiency of the hybrid actuation mode, a reference- 387

based PD add-on controller that provides an additional flow 388

rate has been applied to achieve the required performance. 389

Simulation studies and experimental evaluations verified that 390

the proposed system is capable of providing a higher fre- 391

quency behavior by rapidly stiffening the control volume. 392

Furthermore, mode switching, including the charge mode, 393

has been shown to continuously occur in the entire operation 394

region for the system that performs periodic movement. 395
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