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ABSTRACT This study develops a mixed-integer linear programming model based on a guaranteed service
approach for an inventory positioning problem in a supply chain under the base stock inventory policy. Our
proposed model aims to determine appropriate inventory positions and amounts and the optimal service
level for the supply chain to minimize the total cost of safety inventory holding and shortage. Two demand
scenarios, based on normal and empirical distributions, are investigated. An extensive numerical experiment
is conducted to illustrate the applicability and effectiveness of our model, especially under empirical
distribution. The experiment features a practical network structure and demand data from an industrial user.
Moreover, to further validate the experimental results from the mathematical model, they are compared with
the result from a simulation model, which is constructed to imitate the operations of the supply chain. The
comparison result indicates that the model solution under the empirical demand distribution is close to the
simulation regarding the difference in the total cost (less than 1%). This solution significantly outperforms
the model solution under the normal demand, which results in a significant difference in total cost (more
than 25%) compared to the simulation.
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INDEX TERMS Base stock policy, empirical demand, guaranteed service approach, inventory positioning,
mixed-integer linear programming, multi-echelon inventory system, multiple cycle service levels, safety
stock placement.

I. INTRODUCTION17

A supply chain is a network of production and storage18

facilities of raw material and part suppliers, component and19

semi-finished item producers, the final product manufac-20

turer, distribution centers, wholesalers, and retailers. These21

facilities are connected by material, information, and finan-22

cial flows [1]. A supply chain’s performance is influenced23

by internal and external factors such as network structure,24

customer demand, replenishment lead time, and inventory25

policy. Among these factors, inventory, in conjunction with26

a service level, is an essential driver of supply chain effi-27

ciency. A recent report released by the Office of the National28

Economic and Social Development Council (NESDC) shows29

that the total inventory value in 2020 is around 46.5%, con-30

stituting the most significant portion of the total logistics cost31

The associate editor coordinating the review of this manuscript and
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structure [2]. Hence, optimizing inventories across the supply 32

chain is motivated by economic reasons. To substantially 33

reduce inventory cost in a supply chain, inventories of all 34

supply chain members are jointly, rather than separately, 35

considered as a target to improve. A supply chain usually 36

experiences demand uncertainty propagated downstream to 37

upstream. This uncertainty and operational constraints may 38

result in inventory shortages at many locations. These short- 39

ages subsequently affect the supply chain’s performance. 40

Therefore, keeping safety stocks at suitable locations is a 41

countermeasure that mitigates the impact of demand variabil- 42

ity and maintains a desired customer service level [3], [4]. 43

Identifying the suitable locations and levels of safety stocks 44

of different materials (parts, components, semi-finished, and 45

finished goods) throughout the supply chain is essential and a 46

challenge for both supply chain practitioners and researchers. 47

This paper involves the problem of choosing the locations 48

and amount of safety stock at each location in a supply 49
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chain, usually referred to as the safety stock placement or50

inventory positioning problem in the research literature. The51

solution to this problem is explored by numerous studies52

using either a stochastic service approach (SSA) or a guar-53

anteed service approach (GSA). These two methods are54

introduced in the pioneering works of Clark and Scarf [4]55

and Simpson [3], respectively. The main difference between56

the two approaches involves how the demand uncertainty57

is handled. For SSA, it is assumed that safety stock is the58

only means to cope with demand uncertainty [4]. There-59

fore, if a shortage occurs, the shortage is backordered and60

fulfilled when inventory is available. Since no other action61

is taken during the shortage, the timing of demand fulfill-62

ment becomes random, resulting in a stochastic service level.63

GSA, on the other hand, divides demand uncertainty into64

two parts, bounded and unbounded. The former is covered65

by safety stock, while the latter is handled by external mea-66

sures, such as expediting shipment and outsourcing. These67

measures result in a consistent fulfillment time and service68

level. Since the model in this study is developed using69

GSA, the literature related to GSA is the primary subject70

of the literature review. An in-depth discussion of SSA and71

its integration with GSA can be found in the studies of72

Wang [5], Simchi-Levi and Zhao [6], Eruguz et al. [7], and73

de Kok et al. [8].74

Even though the GSA model was introduced decades ago,75

most research on this subject has recently been published [7].76

Based on the GSA, originally presented by Kimball in77

1955 and later published in Kimball [9], for a single-stage78

inventory system, Simpson [3] developed a GSA model to79

determine the inventory policy for a serial supply chain.80

The solution to this model is obtained using a dynamic81

programming algorithm developed byGraves [10]. After that,82

Simpson’s model [3] is extended to accommodate various83

practical supply chain settings through the studies of Graves84

and Willems [11], [12], [13], Humair and Willems [14],85

Funaki [15], Moncayo-Martınez and Zhang [16],86

Jiang et al. [17], Aouam and Kumar [18], Ghadimi et al. [19],87

Aouam et al. [20].88

When a safety stock placement problem is modeled using89

GSA, two common inventory policies are usually specified90

for each stocking location in a supply chain. They are the91

(R,Q) policy, where an order of Q is placed when the92

inventory position falls on or below a reorder point R, and93

the base stock policy (or order-up-to policy), in which an94

order is placed every review period to bring the inventory95

position to a pre-specified base stock level. Shenas et al.96

adopted the R, Q policy for a continuous review two-stage97

serial supply chain [21]. The authors propose a model to98

compute the reorder point and determine the upstream stage’s99

inventory. Similarly, Li and Chen [22] consider a variant100

of (R,Q) policy, i.e., echelon (R, nQ) policy for a general101

serial supply chain. A dynamic programming algorithm is102

developed to optimize inventory in the supply chain. The103

solution approach of Li and Chen is adapted by Li et al. [23]104

for an assembly systemwith a(nR,Q) policy. The problems of105

Li and Chen [22] and Li et al. [23] are also explored by Chen 106

and Li [24] under various operating flexibilities. Despite its 107

popularity in research, the (R,Q) policy is not widely applied 108

in practice. The most common policy to handle inventory 109

systems like warehouses and distribution centers is the base 110

stock policy [25]. This policy is often implemented for a peri- 111

odic review system, where ordering costs can be minimized 112

when orders are arranged and consolidated [26]. Therefore, 113

a majority of researchers consider the base stock policy in 114

their safety stock placement problems [11], [15], [16], [18], 115

[19], [20], [27], [28]. 116

In addition to inventory policy, another important assump- 117

tion in the safety stock placement problem is the under- 118

lying assumption of the distribution for customer demand. 119

To simplify the problem characteristic, most studies assume 120

that the demand follows either a theoretical distribution, 121

such as Normal [11], [14], [16], [18], [19], [20], [25], 122

[27], [28], Poisson distribution [22], [23], [24], or a 123

stochastic process, in which the demand still follows a 124

normal distribution with a dynamic variance [12], [15]. 125

Although these demand assumptions are widely applied 126

in inventory management literature, they are well-known 127

for the poor approximation of several real demand patterns, 128

which are uncertain, intermittent, and unpredictable [29]. 129

Given a demand distribution, the total demand during a 130

replenishment cycle of a supply chain is split into two unequal 131

parts. The larger part, referred to as bounded demand, is ful- 132

filled by available inventory, while the smaller one, known 133

as unbounded demand, is handled by operating flexibili- 134

ties, such as accelerated production [19], and subcontracting 135

[18], [20]. Under this demand-splitting scheme, the timing of 136

fulfillment (or lead time) is always guaranteed. In addition, 137

since the bounded demand represents the fraction of total 138

demand in a replenishment cycle that is satisfied by the 139

inventory system, it implicitly determines the cycle service 140

level of the supply chain. Therefore, many GSA studies 141

determine the size of bounded demand by specifying a cycle 142

service level, such as 90% [11], 95% [15], [16], [27], 97.5% 143

[19], [20], or 97.7% [28]. It is conventional wisdom that 144

service level is prescribed by either customers or managers. 145

Therefore, most GSA research studies treat the service level 146

as a given input and focus on minimizing the total inventory 147

cost without considering the impact of handling an additional 148

amount of unbounded demand. However, most managers and 149

customers usually indicate a service level based on experi- 150

ence and preference rather than a comprehensive analysis 151

of trade-offs among factors such as operating flexibility and 152

inventory carrying costs [24]. Indeed, carefully evaluating 153

these factors would provide a better service level that min- 154

imizes the total inventory cost [25]. This approach is demon- 155

strated in the study of Aouam and Kumar [18]. The authors 156

show that optimizing service level in addition to the safety 157

stock placement decision by considering extra measures, 158

including subcontracting and overtime, results in a lower 159

total inventory cost than taking a service level as an input 160

parameter. 161
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TABLE 1. Summary of studies on the safety stock placement problem.

Table 1 presents how the current research expands upon the162

previous studies by concurrently considering various realistic163

aspects of the safety stock placement problem.164

To the best of our knowledge, no studies have explored 165

the inventory placement problem, where the safety stock 166

placement and service level are optimized together while 167

considering the behavior of the stochastic demand that is 168

discrete and intermittent. Therefore, we develop a model to 169

address this research question in our study. The contributions 170

of our paper are summarized as follows. 171

• A mathematical programming model, which integrates 172

safety stock placement and multiple service levels, 173

is developed under the assumption of normal demand. 174

• The assumption of normal demand is then relaxed to 175

accommodate the modeling of the demand using the 176

empirical distribution. 177

• To evaluate the performance of our model under both 178

demand assumptions, a simulation model of the inven- 179

tory system is developed. 180

• The experiment results indicate that the systemmeasures 181

of performance produced by the solution of the opti- 182

mization model with the empirical distribution match 183

those of the simulation model. This result is not the 184

case for the solution of the optimization model with the 185

normal distribution. 186

The remainder of this paper is organized as follows. The 187

description of the safety stock placement problem is pre- 188

sented in Section 2. The mathematical model formulations 189

that consider multiple service levels are provided in Section 3. 190

Then, a simulation model that evaluates the performance of 191

the proposed models is presented in Section 4. A comparison 192

of results between themathematical model and the simulation 193

is given in Section 5. Finally, the conclusions are made in 194

Section 6. 195

II. PROBLEM STATEMENT 196

This paper considers a multi-echelon inventory optimization 197

problem for a production company that coordinates a sup- 198

ply chain network. The network consists of many stages 199

at different locations to manufacture a single product. The 200

final assembly of this product is commenced at the most 201

downstream stage, referred to as Stage 1, in the network. 202

In other words, end-customer orders are received and fulfilled 203

by Stage 1. Upon receiving an order, the end customer is 204

quoted a lead time for delivery. The delivery lead time is 205

also interchangeably referred to as committed service time 206

in the remaining parts of this paper. In the meantime, orders 207

for components and subassemblies required to produce the 208

finished product are sent to upstream stages. These stages 209

also quote different lead times for the received orders. Stage 210

1must wait for all components and subassemblies to be deliv- 211

ered to start its production. Most stages in the network are 212

centrally managed by the company, while some are operated 213

by suppliers and subcontractors. These stages are defined as 214

internal and external stages, respectively. Since the company 215

is uncertain about customer demand, inventories, especially 216

safety inventories, may be required at several stages to protect 217

the supply chain against any demand fluctuation andmaintain 218

a consistent customer service level. These inventories can be 219
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located at and carried by internal stages. The company can220

minimize its total supply chain inventory cost by carefully221

determining the stages to keep inventories and their respective222

amounts. The modeling of the problem uses the following223

parameters and notations:224

A. SETS225

N : set of nodes i, j, that represent supply chain
stages, i, j ∈ N = {1, 2, . . .};

E : set of external stages in the network, E ⊂ N ;
I : set of internal stages in the network, I ⊂ N ;
A: set of arcs connecting a predecessor stage j and

a successor stage i in the network, (j, i) ∈ A;
L: set of options for the length of net replenishment

time, L = {1, 2, . . . , lmax};
K : set of discrete cycle service levels (CSLs),

K = {90%, 91%, . . . , 99%, 99.1%, . . . , 99.9%}
226

B. PARAMETERS227

µD: average customer demand D per period;

σD : standard deviation of demand D per
period;

8−1 (·): the inverse of standard normal cumula-
tive distribution function;

L (k): the standard normal loss function corre-
sponding to a CSL of k;

f (d): probability mass function of demand d
in one period;

f (x|l): the probability mass function of demand
X during a given replenishment time of
l period(s);

F (x|l): the cumulative distribution function of
demand X , given the replenishment time
of l period(s);

G (k|l): the inverse of F (x | l) associated with a
CSL of k .

E [OH]: the expected inventory on-hand.

vi: product value at stage i;

B: the base stock level;

Tj,i: transportation time from stage j to stage
i, if they are at different locations;

Oj: minimum quoted service time of exter-
nal stage j;

Pi: processing time of internal stage i;

R: service time that Stage 1 commits to end
customers;

Ql,k : the known amount of safety stock to
cover demand during a given replenish-
ment time of l at a CSL of k;

ESl,k : the expected amount of shortagewithin a
replenishment cyclewhen holding l days
of inventory to maintain a CSL of k .

228Hi = h× vi: inventory holding cost per unit per year
of the output item of stage i, where h is
a fraction of vi.

CSi = p× vi: shortage cost per unit at stage i, where p
is a fraction of vi. 229

C. DECISION VARIABLES 230

S ini,k : incoming service time of stage i at CSL of k;
Souti,k : outgoing service time of stage i at CSL of k;
xi,k : net replenishment time of an output item at

stage i at CSL k;
yj,i,k : net replenishment time of an output item of

stage j, which is held as an input item in front
of stage i, at CSL k;

ui,l,k : binary variable, which takes a value of 1 if
the net replenishment time of finished part at
stage i is l periods at a CSL of k , or 0 other-
wise. It should be noted that when ui,l,k = 1,
the safety stock of the output itemwill be kept
at stage i.

wj,i,l,k : binary variable, which takes a value of 1 if
the net replenishment time of the finished part
that comes from stage j, which is held as input
material at stage i, is l periods, at a CSL of k
or 0 otherwise;

zk : binary variable, which takes a value of 1 if
a CSL of k is chosen for the whole supply
network, or 0 otherwise;

231

III. MODEL DEVELOPMENT 232

A. MODEL ASSUMPTIONS 233

• The supply chain under study is an assembly network. 234

• Demand is assumed to be either normally or empirically 235

distributed. 236

• All internal stages are under the same ownership such 237

that all stages in the network share and observe the same 238

demand information. 239

• Delivering and processing times are independent of 240

order quantity. 241

• Multiple service levels are considered. 242

• Both production and storage capacities are not 243

considered. 244

• Inventory positioning decisions are for the safety inven- 245

tory, while cycle inventory is managed in a lot-for-lot 246

manner. 247

B. SUPPLY CHAIN NETWORK 248

The supply chain network consists of N stages. Stage 1, 249

which is closest to the end customers, performs the final 250

assembly operation. The other (N − 1) stages are associated 251

with each of the (N − 1) items, i.e., raw materials, compo- 252

nents, or subassemblies, that the final product requires. Each 253

item is either produced by an internal manufacturing stage 254

or procured from an external supplier stage. The network is 255

modeled as a directed graph G (N ,A), where N is the set 256
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FIGURE 1. A typical supply chain network of an assembled product.

of nodes and A is the set of arcs representing the stages257

and material flows from one stage to another. The node set258

N is partitioned into two subsets, I and E , such that N =259

I ∪E , where I consists of internal stages, E contains external260

ones. An illustration of an example network is presented261

in Figure 1.262

Figure 1 represents a supply chain network consisting of263

four internal manufacturing stages, producing component 1264

(Comp. 1), component 2 (Comp. 2), subassembly (S/A), and265

the finished goods (FG), and three external supplier stages,266

where raw materials 1, 2, and 3 (RM 1 to RM 3) are pur-267

chased. The four internal stages are at two locations, i.e.,268

MFG. 1 and MFG. 2. Similarly, the three external supplier269

stages belong to two different suppliers, i.e., SUPPL. 1 and270

SUPPL. 2. Transportation is required between two stages at271

different locations.272

C. SUPPLY CHAIN OPERATIONS273

In the network diagram, each internal stage has potential274

stocking locations: input items from an upstream stage may275

be kept before the internal stages, and output items from276

production may be kept after the stages before being sent to277

the downstream stage. When an internal stage i receives an278

order from its downstream stage (i.e., internal customer), the279

customer is given a quoted lead time, after which the order280

will be fulfilled. This quoted time is defined as the outgoing281

service time Souti of stage i. Every stage i can properly decide282

a quoted lead time to its customer, except for Stage 1, whose283

maximum quoted time to the end customers is subject to284

a given R periods, i.e., Souti ≥ 0 (∀i ∈ I ) and Sout1 ≤ R.285

In addition, upon receiving an order, stage i immediately286

places orders for items required for production to its upstream287

stages j ∈ N , where (j, i) ∈ A, to maintain the base stock288

level. Each upstream stage j then gives a quoted delivery time289

to stage i, similarly defined as the outgoing service time Soutj290

of stage j. If stage j is an external stage, its Soutj is subject to a291

given minimum quoted service time Oj from a supplier j, i.e.,292

Soutj ≥ Oj (∀j ∈ E).293

Since delivery times quoted by upstream stages may differ,294

stage i must wait until all items in which stage i does not295

have safety stocks are delivered before its production is296

commenced. This waiting time is defined as incoming service 297

time S ini of stage i and is equal to the largest total, among all 298

stages j, of outgoing service times, quoted to stage i, including 299

the required transportation time Tj,i, i.e., S ini =
(
Soutj + Tj,i

)
. 300

The production time at stage i is assumed to take Pi > 0 time 301

periods and is assumed to be independent of the production 302

quantity [3]. 303

D. CUSTOMER DEMAND 304

In the inventory positioning problem, the information about 305

the end customer demand is instantaneously passed to the 306

upstream stages of the supply chain through a series of 307

orders. In order words, all internal stages are under single 308

ownership and are assumed to share information so that every 309

stage observes the same demand pattern as Stage 1. If the 310

customer demand for the finished product of Stage 1 in a 311

period follows a probability distribution with a mean of µD 312

and a standard deviation of σD, the demand for the output item 313

of an upstream stage j follows the same distribution. 314

Modelling the demand in a period by using the normal 315

distribution is a common practice in some inventory manage- 316

ment studies [11], [14], [16], [18], [19], [20], [25], [27], [28]. 317

This assumption allows the demand over multiple periods, 318

i.e., replenishment lead time, to be approximated using the 319

normal distribution. However, this may provide a poor esti- 320

mation of the system behavior when the underlying shape 321

of the demand distribution is non-normal. This is especially 322

the case for many medium- and slow-moving items that 323

experience intermittent demand and, for some items, a few 324

outliers. Under this demand pattern, the normal distribution is 325

effective only when the lead time is extremely long such that 326

it can overcome the intermittency and presence of outliers, 327

which is rarely the case in practice. To properly model the 328

demand with such characteristics, empirical distribution is 329

used to obtain a better estimation. Description of the base 330

stock policy under the two demand modeling approaches 331

and a comparison of system performance measures between 332

them are provided in the subsequent section and a numerical 333

experiment. 334

E. BASE STOCK POLICY UNDER NORMAL DEMAND 335

For an internal stage i ∈ I that chooses to keep the safety 336

stock of its output item, a proper base stock level B is 337

determined. To maintain this level, a stage i always generates 338

orders for its input items and sends them to upstream stages 339

immediately after it receives a customer order. Typically, 340

it takes S ini periods for the orders from the upstream stages to 341

arrive and Pi periods to manufacture item i for the customer. 342

Since stage i commits to fulfilling its customer demand after 343

Souti periods, stage i requires a net outgoing replenishment 344

time, l ≥ 0, to fulfill the customer order. In addition to 345

keeping the safety stock of the output item, each internal stage 346

i ∈ I may choose to keep some inventory of the input item 347

from an upstream stage j in storage as a buffer to shorten 348

the supply lead time, i.e., Soutj + Tj,i, ∀ (j, i) ∈ A. The net 349
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replenishment time of these two scenarios is expressed by the350

following Equation.351

l =

{
S ini + Pi − S

out
i if i ∈ I

Soutj +Tj,i − S
in
i if (j, i) ∈ A

(1)352

As stage i faces the demand with a mean of µD and SD of353

σD in every period, the total demand over l periods has the354

mean of µDl and SD of σD
√
l [11].355

In the case that the demand of stage i is assumed to follow356

the normal distribution, the base stock level of an item, either357

output from stage i or input item from stage j, is usually358

specified as,359

B = µDl +8−1 (k) σD
√
l (2)360

where 8−1 (k) is the inverse of the standard normal cumu-361

lative distribution function associated with the cycle service362

level (CSL) of k in a replenishment cycle. Based on the363

specified base stock level, on average, a fraction (1 − k) of364

the demand cannot be fulfilled by the inventory on-hand. This365

amount is assumed to be backlogged, and its expected value366

is estimated as,367

ESl,k = L (k) σD
√
l (3)368

Also, using the base stock level as specified above, the369

expected inventory of an item, which is kept in storage at370

stage i, is determined in (4).371

E [OH] = µDP+8−1(k)σD
√
l (4)372

where the first term represents work-in-process or pipeline373

inventory, and the second term the safety stock. Since the374

pipeline inventory is constant under our problem’s setting, the375

system performance measures only depend on l, which is a376

function of Soutj , S ini , and S
out
i . In other words, optimizing the377

supply chain inventory in our study is equivalent to determin-378

ing the quoted service times, which leads to the safety stock379

location and safety stock amount carried by each internal380

stage in the supply chain.381

F. BASE STOCK POLICY UNDER EMPIRICAL DEMAND382

When Stage 1 observes a demand pattern modeled by an383

empirical distribution, the mean of the demand is measured384

using (5).385

µD =
∑

df (d) (5)386

where f (d) is the probability mass function fitted from using387

the empirical distribution.388

The functions f (x|l) and F(x|l) are derived from f (d) ,389

given l [30], [31]. With these estimations, the base stock390

levels and expected inventories for each internal stage are391

expressed as,392

B = G (k|l) (6)393

E [OH] = µDP+ (B− µDl) (7)394

The safety stock to minimize can be determined by sub-395

tracting (6) with the average demand during l periods, i.e.,396

FIGURE 2. An example of supply chain network.

G (k|l)−µDl. Similar to the case of the normal demand, the 397

expected amount of unsatisfied demand is estimated as, 398

ESl,k =
∑

x>B
(x − B)f (x|l) (8) 399

G. TOTAL SAFETY STOCK COST 400

Generally, an inventory positioning problem aims to mini- 401

mize the total safety stock cost for input and output items 402

for a given service level. Under the normal and the empiri- 403

cal demands, the total safety stock cost can be respectively 404

expressed as, 405

Z =
∑
i∈I

Hi8−1 (k) σD
√
l 406

+

∑
j∈N |(j,i)∈A

Hj8−1 (k) σD
√
l (9) 407

Z =
∑
i∈I

Hi (G (k|l)− µDl) 408

+

∑
j∈N |(j,i)∈A

Hj(G (k|l)− µDl) (10) 409

While Equation (9) contains non-linear terms of decision 410

variables, i.e., l, and Equation (10) contains G (k|l), which 411

is dependent on l. In this research, Equations (9) and (10) 412

are linearized by using binary variables to select values of l 413

among all possible values that result in the minimum total 414

cost. To accommodate this approach, all possible values of 415

l are enumerated in an interval between zero and a prede- 416

termined maximum value. The maximum value is the total 417

time on the longest path in the network, from one of the most 418

upstream stages to Stage 1. This procedure is illustrated in the 419

following example. 420

The example network in Figure 2 has three possible 421

paths to Stage 1 (FG), starting from the most upstream 422

external stages, SUPPL. 1, SUPPL. 2, and SUPPL. 3. The 423

total time of a path can be determined based on Oj, Tj,i, 424

and Pi of all stages on that path. The maximum possi- 425

ble value for l of the network is calculated as, lmax = 426

max
{
OR1 + TR1,C1 + PC1 + PSA + PFG,OR2 + TR2,C2 427

+PC2 + TC2,SA + PSA + PFG,OR1 + TR3,FG + PFG
}

428

= max {2+2+3+6+6, 5+1+5+3+6+6, 4+4+6} 429

= max {19, 26, 14} = 26 430
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That is, for this network, l can be at most 26 periods for431

any event.432

Let L = {0, 1, . . . ,lmax} be the set of possible values of433

l in a supply chain network. The total safety stock cost for434

normal and empirical demand are respectively re-formulated435

as follows.436

TAC =
∑
i∈I

Hi
∑
l∈L

ui,lQl,k +
∑

j∈N |(j,i)∈A

Hj
∑
l∈L

wj,i,lQl,k437

(11)438

where439

Ql,k440

=

{
8−1(k)σD

√
l if demand is normally distributed

G (k|l)− µDl if demand is empirically distributed
441

(12)442

H. TOTAL SHORTAGE COST443

Our study considers CSL as a decision variable rather than444

the input parameter. In other words, the optimal inventory445

positions should provide the service level that minimizes the446

total cost, consisting not only of the safety stock cost but also447

the shortage cost. To accommodate the decision of CSL, a set448

K containing discretized levels of service is included as part449

of the two binary variables u and w. We add the total shortage450

cost to (11) to give the total annual cost (TAC) of the supply451

chain network.452

TAC =
∑
i∈I

Hi
∑
l∈L

∑
k∈K

ui,l,kQl,k453

+

∑
j∈N |(j,i)∈A

Hj
∑
l∈L

∑
k∈K

wj,i,l,kQl,k454

+

∑
i∈I

CSi
∑
l∈L

∑
k∈K

365
l
× ESl,ku

i,l,k
455

+

∑
j∈N |(j,i)∈A

CSj
∑
l∈L

∑
k∈K

365
l
× ESl,kw

j,i,l,k
(13)456

Since the holding cost is charged on an annual basis,457

the shortage cost is computed in the same manner. As the458

shortage is counted within a replenishment cycle, and the459

shortage cost is applied for each unit short, the total number of460

shortages within a year is determined bymultiplying the num-461

ber of units short in a cycle (i.e., ESl,kui,l,k or ESl,kwj,i,l,k ) by462

the number of cycles within a year, i.e., 365
/
l.463

I. MIXED-INTEGER LINEAR PROGRAMMING MODEL464

The mathematical model for the inventory placement prob-465

lem under study is formatted as follows.466

Minimize TAC467

Subject to
∑
k∈K

Soutj,k ≥ Oj ∀j ∈ E (14)468 ∑
k∈K

(
Soutj,k − S

in
i,k

)
+ Tj,i =

∑
k∈K

yj,i,k469

∀(j, i) ∈ A (15)470

∑
k∈K

(
S ini,k − S

out
i,k

)
+ Pi =

∑
k∈K

xi,k 471

∀i ∈ I (16) 472∑
k∈K

Sout1,k ≤ R (17) 473

xi,k =
∑
l∈L

(l × ui,l,k ) ∀i ∈ I ; k ∈ K (18) 474

yj,i,k =
∑
l∈L

(l × wj,i,l,k ) ∀ (j, i) ∈ A; 475

k ∈ K (19) 476∑
l∈L

ui,l,k ≤ zk ∀i ∈ I ; k ∈ K (20) 477∑
l∈L

wj,i,l,k ≤ zk ∀(j, i) ∈ A; k ∈ K (21) 478

S ini,k ≤ lmaxzk ∀i ∈ N ; k ∈ K (22) 479

Souti,k ≤ lmaxzk ∀i ∈ N ; k ∈ K (23) 480∑
k∈K

zk = 1 (24) 481

S ini,k , S
out
i,k , xi,k ≥ 0 ∀i ∈ N k ∈ K 482

yj,i,k ≥ 0 ∀(j, i) ∈ A; k ∈ K 483

ui,l,k ,wj,i,l,k ∈ {0, 1} , ∀ (j, i) ∈ A; 484

l ∈ L; k ∈ K 485

zk ∈ {0, 1} , ∀k ∈ K (25) 486

The objective function is to minimize the total annual cost 487

of the supply chain for both input and output items across 488

all stages. Constraints (14) force the outgoing service time 489

of each external stage in the supply network to be no shorter 490

than its minimum quoted service time. Constraints (15) and 491

(16) determine the net replenishment time for each inventory 492

of input and output items, respectively. Both constraints are 493

derived from Equation (1), which represents the net replen- 494

ishment time. In addition, each constraint chooses a specific 495

cycle service level k among all possible levels and a value 496

of the net replenishment time. Constraint (17) ensures that 497

the outgoing service time at Stage 1 would not exceed the 498

minimum service time committed to the end customers. Con- 499

straints (18) and (19) represent the correspondence between 500

the net replenishment time of either output or input items 501

and the selected net replenishment time. Constraints (20) 502

and (21) imply that not more than one net replenishment 503

time is selected for each inventory position. Constraints (22) 504

and (23) represent the selected incoming and outgoing ser- 505

vice times bounded by lmax . Constraint (24) indicates that 506

only one customer service level is chosen for the entire 507

network. Constraints (25) represent the non-negativity and 508

integer nature of the lead time of different supply chain 509

stages. 510

IV. MODEL EVALUATION USING SIMULATION 511

To evaluate the solution of the proposed MILP model, 512

a simulation model is developed to imitate the operation 513

of every inventory position. The optimal solution from the 514
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optimization model, including safety stock amount Ql,k , the515

net replenishment time xi,k or yj,i,k of each inventory position,516

is used as inputs to the simulation model. Based on the517

safety stock amount, the base stock level B of stage i in the518

simulation model can be computed as follows:519

B =

{
µDxi,k + Ql,k if stage i keeps its output item
µDyj,i,k + Ql,k if stage j keeps its input item.

520

(26)521

The inventory system follows the base stock policy, where522

the inventory position is reviewed, and an order is placed523

every period to bring the inventory position up to the base524

stock level of output (or input) items after xi,k (or yj,i,k ).525

In addition, unmet demand at the end of a period can be526

fulfilled by the arrived order of that period (if any). If the527

unmet demand cannot be satisfied in the current period, it will528

be accumulated and fulfilledwhen there is available inventory529

in the following periods.530

Simulation Notation:531

bOHi,t : Beginning inventory on-hand of stage i in period
t .

OQi,t : Order quantity of stage i in period t .
OAi,t : Order arrival of stage i in period t .
di,t : Demand of stage i in period t .
dmi,t : Amount of satisfied demand at stage i in period

t .
Shi,t : Amount of shortage at stage i in period t .
CShi,t : Cumulative shortage at stage i in period t .
eOHi,t : Ending inventory on-hand of stage i in period t .

532

To simulate the behaviors of safety inventory of output533

items at an internal stage i, the simulation input parameters534

include the net replenishment time xi,k , the base stock level535

B, unit holding cost Hi, and unit shortage cost CSi. At the536

beginning of the simulation when t = 0, bOHi,t , eOHi,t ,537

Shi,t , CShi,t are initialized such that bOHi,t = eOHi,t = B,538

and Shi,t = CShi,t = OAi,t = 0. In every upcoming period539

t = t + 1, the beginning inventory bOHi,t is updated using540

the ending on-hand of the previous period eOHi,t−1. After541

that, the customer demand di,t , randomly generated using the542

underlying demand distribution, arrives and is fulfilled by543

available inventory at that period, i.e., bOHi,t . The amount544

of demand that can be satisfied dmi,t , amount of shortage545

Shi,t , and cumulative shortage CShi,t , are then determined,546

respectively. In addition, an order OQi,t is created and sent547

upstream. This order is delivered to stage i after xi,k periods.548

In the first xi,k periods of the simulation, although there549

is a stream of orders sent upstream from stage i, no order550

arrives at stage i, i.e., the first order is delivered in period551

t = xi,k + 1. From then, there is a stream of arriving orders552

at stage i. In other words, OAi,t = 0 during the first xi,k553

periods, and OAi,t = OQi,t−xi,k starting from period xi,k + 1.554

Since a shortage may occur before an order arrival within555

a period, the shortage amount is either partially or fully556

satisfied by the incoming order OAi,t . After the clearance557

FIGURE 3. The logic of the simulation model.

of shortage, the ending inventory eOHi,t is updated. When 558

the simulation reaches period n, it is terminated, and the 559

statistics for this inventory system of stage i are collected. 560

The total inventory cost of a stage TACi is computed as 561

follows: 562

TACi = EOHi × Hi +
365
l
× ESi × CSi (27) 563

where l = xik (or l = yijk ), EOHi and ESi are the expected 564

inventory on-hand and the expected shortage of stage i over a 565

cycle during n days of simulation, respectively. 566

EOHi =

∑n
t=1 bOHi,t

n
; ESi =

∑n
t=1 Shi,t
n

(28) 567

For an internal stage i keeping input items from stage j in its 568

storage, the simulation of its inventory system is conducted 569

with the same logic. Since all stages in the supply chain 570

network receive the same demand information as it is sent 571

upstream from Stage 1 and the service times between stages 572

are guaranteed, each can be simulated as an independent 573

inventory system based on the same demand dataset and 574

simulation logic. 575

V. NUMERICAL STUDY 576

A. PROBLEM INSTANCE 577

A numerical study features a problem instance adapted from 578

the case study in Simchi-levi et al. (2008). The supply 579
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FIGURE 4. A supply chain network of an assembly product.

chain network is illustrated in this problem as a diagram,580

including vertices and arcs. A vertex (or node) represents581

a manufacturing stage, while an arc represents the flow of 582

materials from one vertex to another (see Figure 4). 583
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TABLE 2. Summary of input data and decision variable values of the network at 98% service level under normal demand.
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TABLE 3. Summary of input data and decision variable values of the network at 98% service level under empirical demand.
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From the figure, the network contains nine external stages584

(Ext.) that provide raw materials (RMs) to the manufacturing585

plants (Mfg.), and 33 internal stages, each of which performs586

a manufacturing operation or assembly operation. Each ver-587

tex presents key information about the manufacturing opera-588

tion at each stage. These include component code (Comp. for589

component and S/A for sub-assembly) and its index number,590

facility location code, process cycle time for internal stages591

or quoted service time for the external stage, and a unit value592

of the component after operation completion.593

The index number of a component (or sub-assembly) indi-594

cates whether it is processed in multiple sequential steps.595

For example, starting at the top left corner, raw material 1596

(RM 1), supplied by external supplier 1 (Ext. 1), is processed597

into Component 1 in four sequential steps. Thus, the com-598

ponents are denoted Comp. (1.1) to Comp. (1.4). When two599

or more components (or sub-assemblies) are assembled, they600

become a sub-assembly (S/A), e.g., Comp. (3) and Comp.601

(4) become S/A 1.602

In each vertex, the 2nd row contains information about603

the facility location, including manufacturing plants 1 to 3,604

denoted Mfg. 1 to Mfg. 3; external suppliers 1 to 5, denoted605

Ext. 1 to Ext. 5. For an internal stage, its process cycle time Pj606

and value of the component (or sub-assembly) Vj are given.607

For example, it takes a process cycle time, PC1.1, of four days608

(waiting time and processing time) to turn RM 1 into Comp.609

(1.1), and the unit value, vC1.1, after completing the stage610

is 30 THB. Fractions of h and p used for calculating the unit611

holding and shortage costs are assumed to be 10% and 30%,612

respectively. For an external stage, the quoted service time613

Oj to its successor stage is given instead of the process cycle614

time. It represents the time (in days) it takes the supplier to615

deliver the RM to the requested stage. For the final assembly616

stage FG, a 30-day response time is quoted to the customers.617

The required transportation time to deliver materials from618

one stage to another stage at different facility locations is619

Tji provided on the arcs. For instance, the transportation time620

between Ext. 2 and Mfg. 1 is three days.621

The internal stages are eligible candidates for the place-622

ment of safety stock. The final stage is an assembly operation623

producing finished goods (FG). The finished goods consist624

of eight components and one sub-assembly, all of which are625

manufactured at the same facility (Mfg. 1). Bins representing626

safety stock positions in the network are also placed on the627

arcs. A bin placed at the beginning of an arc represents the628

safety stock of the finished part (output from the stage) kept at629

an upstream stage before being transported to the downstream630

stage upon request. A bin at the end of an arc indicates safety631

stocks of finished parts from its upstream stage that is kept in632

front of a downstream stage.633

B. OPTIMAL SOLUTIONS634

The proposed MILP model in Section 3-I is validated with635

the problem instance of an assembly product comprising636

components produced in the adapted network. Using CPLEX637

12.9.0 Solver, the optimal solution contains the quoted638

service times of all pairs of upstream and downstream stages. 639

The solution can be obtained in approximately 20 minutes of 640

computational time on a personal computer with a 4.70 GHz 641

Intel Core i7-10710U processor and RAM of 32.0 GB 64-bit. 642

Optimal positions of safety stocks in the network are then 643

derived from the optimal quoted service times from the 644

model. If an outgoing service time exceeds an incoming 645

service time of a stage, then that stage requires a safety stock 646

placement. 647

Stochastic demand for finished goods is based on one-year 648

historical data of an actual product. In addition, it should 649

be noted that the demand data are not normally distributed. 650

Instead, it is intermittent by nature. As previously mentioned, 651

demand and shortage during net replenishment time are usu- 652

ally approximated by a normal distribution in some studies. 653

However, there are situations where the normal distribu- 654

tion provides a poor approximation in practice, specifically 655

for medium- and slow-moving items, when the demand is 656

intermittent, in which case the empirical distribution pro- 657

vides a better estimation. Therefore, the two distributions are 658

experimented with in our numerical study to evaluate their 659

performance in estimating demand and shortage during the 660

net replenishment time under such demand characteristics. 661

The average daily demand, µD, and standard deviation, 662

σD, are computed from the actual demand data for the nor- 663

mal demand scenario. The amount of safety stock and the 664

expected shortage are determined by the second term of Eq. 665

(2) and Eq. (3), respectively. For the empirical distribution, 666

the amount of safety stock and the expected shortage are com- 667

puted by the second term of Eq. (7) and Eq. (8). In addition, 668

the maximum possible quoted service time between any two 669

stages is determined based on the critical path, which is the 670

longest path through the network. This network’s critical path 671

is the path from stages producing the following components, 672

R6→C10.1→C10.2→FG. In other words, lead times can 673

vary between 0 and 86 days in this problem instance. Other 674

model parameters are given in the input data column in 675

Table 2. 676

In the table, stages indexed with the letter R are external 677

stages (R1 to R9), while the others are internal stages. Stages 678

at the beginning of the network have no predecessor, while 679

the other stages may have one or more upstream stages. 680

Each stage has only one downstream stage, except for the 681

final assembly stage, which has no successor. The proposed 682

model aims to determine the safety stock locations and their 683

quantities that minimize the total inventory cost, including 684

inventory holding cost and shortage cost. The holding and 685

shortage costs are computed as 10% and 30% of the unit 686

product values, respectively. The service level is defined 687

in 19 scenarios from 90%, 91%, . . . , 99%, 99.1%, 99.2%, 688

. . . 99.9%. Tables 2 and 3 show the optimal solutions at the 689

service level of 98%, where demand is under normal and 690

empirical distributions, respectively. 691

In this problem instance, the safety factor associated with 692

the service level of 98% is 8−1 (0.98) = 2.0537. From the 693

table, we can identify supply chain stages that should use a 694
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make-to-stock production strategy and keep the safety stock.695

On the contrary, the remaining stages without safety stock696

would operate with a make-to-order strategy. The results697

indicate that four stages keep safety stocks of their output698

component after completion and seven other stages keep699

safety stocks of their input raw materials. The indicator for700

keeping stock is from the optimal net replenishment lead time701

from the MILP model. Specifically, a safety stock placement702

is needed for each stage that does not have enough time to703

fulfill its downstream stage request since its optimal outgoing704

service time is shorter than its optimal incoming service time.705

For example, from Table 2, stage C11.1 is promised to receive706

an item from its upstream stage R7 in S inC11.1,98% =7 days,707

while it commits a service time of 11 days to its downstream708

stage FG. However, C11.1 takes PC11.1 = 16 days to process709

an order. Therefore, 12-day of FG safety stock (S inC11.1,98% +710

PC11.1 − SoutC11.1,98% = 7+ 16− 11 = 12 days) must be kept711

to satisfy the customer demand.712

Similarly, a safety stock placement is needed for an exter-713

nal stage that cannot satisfy the demand from a downstream714

stage because the actual time they can serve their customer715

exceeds their committed service time. The amount of safety716

stock is computed from the outgoing service time of a stage717

and the transportation time from that stage to the downstream718

stage. For example, stage R8 commits a service time of719

S inC14,98% = 24 days to stage C14 with an additional 8 days to720

deliver the order. However, stage C14 expects their orders to721

arrive 12 days after placing the order. Therefore, it is essential722

to keep a safety stock of 20 days between external stage R8723

and internal stage C14 to satisfy the demand on time.724

It should be noted that our proposed MILP model does725

not consider the manufacturing cost or other costs related726

to producing the products. Hence, with the same quantity727

of safety stock, the holding cost of a completed component728

(before shipment) at an upstream stage and the holding cost of729

the incoming shipment of the component at the downstream730

stage have the same value. For example, with the same731

amount of safety stock of 24 days, approximately 120 units,732

the holding cost of this component as an output item at stage733

C12 is the same as the cost of holding the component as734

an input item at stage FG. Tables 2 and 3 show that the735

optimal total safety stock cost at 98% of the service level is736

3,302.27 THB/year and 4,011.52 THB/year for normal and737

empirical distributions, respectively.738

Table 4 shows the total safety stock cost at different service739

levels, ranging from 90% to 99.9%, for the case of using the740

normal distribution to model the demand data. Note that these741

results are obtained by fixing the CSL in our MILP model.742

To accommodate this, Equation (24) is revised to zk = 1 for743

the selected CSL k and set this variable for other service levels744

equal to zero. Then, the MILP model is solved for one CSL at745

a time. The experiment aims to demonstrate that the optimal746

CSL from our proposed MILP matches the best CSL from747

solving the model with different CSLs separately.748

Generally, service level represents the trade-off between749

inventory holding and shortage costs. A low service level750

TABLE 4. The total inventory cost of different service levels – normal
distribution (in THB).

would increase stock-out, which leads to an increase in the 751

shortage cost. On the other hand, a high service level indicates 752

more safety stock to be kept, which reduces shortage but leads 753

to a higher inventory holding cost. The result shows that the 754

minimum total cost is achieved at the service level of 98% 755

from both approaches, i.e., solving k CSLs at once and one at 756

a time. This level of customer service suggests keeping more 757

safety stock rather than experiencing shortage. 758

From Table 5, when the demand is modeled using empir- 759

ical distribution, the total inventory costs are higher than 760

the normal demand for all the CSLs. This result is because 761

empirical distribution can accurately capture the uncertainty 762

of actual demand, while normal distribution fails to capture 763

this skewness. Therefore, if we compute the safety stock 764

using the normal distribution, the estimation of inventory 765

cost may not be accurate. The next section will show the 766

accuracy in estimating the total inventory cost by comparing 767

the results from the MILP model under each of these two 768

demand distributions with results from a simulation model. 769

C. SIMULATION RESULTS 770

The preliminary results during the simulation model valida- 771

tion process give an estimate of the standard error of the 772

key system measure of performance. Based on the standard 773

error, the required number of replications for the simulation 774
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TABLE 5. The total inventory cost of different service levels – empirical
distribution (in THB).

model for a given optimal solution from the MILP model is775

estimated to be 15 replications. The comparison between the776

results from the MILP model and 15-replication simulation777

is shown in Tables 6 and 7 for normal and empirical distribu-778

tions, respectively.779

Computing the amounts of safety inventory using the nor-780

mal distribution when the actual demand data do not follow781

the normal distribution illustrates that the MILP model’s782

result underestimates the total cost by 28.46% compared to783

the simulation results. Of this difference, 3.17% is attributed784

to holding cost and 25.29% to shortage cost. On the other785

hand, when the safety stock amounts are estimated from the786

empirical distribution, the MILP model can give accurate787

estimates of the systemmeasure of performance with a 0.10%788

difference compared to the simulation results. This 0.10%789

results from the 0.84% underestimating of holding cost and790

0.93% overestimating of the shortage cost. The compari-791

son results demonstrate the effectiveness of determining the792

safety stocks based on the empirical distribution that matches793

the characteristic of the demand during replenishment time,794

which is superior to simply assuming the normal distribution.795

In addition, a statistical test is performed to ensure796

that the difference between the solution from the MILP797

under the empirical distribution is not statistically different798

from the simulation results. In addition, a similar test is799

TABLE 6. Comparison of cost components between MILP model and
simulation in the case of normal distribution.

TABLE 7. Comparison of cost components between MILP model and
simulation in the case of the empirical distribution.

TABLE 8. Statistical test results.

applied for the case between the MILP solution under the 800

normal distribution and the simulation results. The test results 801

are presented in Table 8. 802

From the p-values, the solution from the MILP under 803

the empirical distribution and the simulation are not statisti- 804

cally different, whereas the MILP solution under the normal 805
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TABLE 9. Sensitivity analysis results in the case of normal distribution.

TABLE 10. Sensitivity analysis results in the case of the empirical distribution.
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distribution is significantly different from the simulation806

results. The results indicate the effectiveness of the empirical807

distribution over the normal distribution in modelling the808

demand.809

D. SENSITIVITY ANALYSIS810

Sensitivity analysis is performed to examine the effects of811

the model parameters on the objective function value and the812

point at which the optimum is reached [32]. Notably, a sensi-813

tivity analysis of the shortage cost CS is performed to evaluate814

how the solutions react to changes in this cost component.815

Note that varying this cost component alone is sufficient816

since it already represents the trade-off between the two cost817

components. The numerical experiment is re-run with the818

ratio of CS to H varying from 1 to 4.5 with the step size of819

0.5, i.e., CS/H = {1, 2, . . . , 4.5}. The result of the sensitiv-820

ity analysis, including inventory holding costs and shortage821

costs of both finished goods and raw materials, are shown822

in Tables 9-10.823

Tables 9 and 10 indicate the relationship between shortage824

cost and service level. While holding the unit inventory hold-825

ing cost fixed, the optimal service level becomes higher as826

the unit shortage cost increases. The increase in the service827

level prevents the rise in the shortage cost. This trend is also828

observed in the case of the empirical distribution.829

VI. CONCLUSION830

This study introduces a MILP model for positioning safety831

stock in an assembly supply chain network. All the stages832

operate under a base stock inventory policy and face the833

same demand information. Due to the demand uncertainty834

and operational constraints, some stages are required to keep835

safety stock to maintain an acceptable CSL. In addition to836

determining the safety stock locations, the MILP model can837

select the CSL that minimizes the total safety stock holding838

and shortage costs for the whole supply chain. The model is839

tested under two demand distributions, a commonly assumed840

normal and empirical.841

To validate the results from the MILP model, a simu-842

lation model is developed to imitate the behavior of the843

base stock policy for stages that keep safety stocks in the844

supply chain. The net replenishment time of each safety stock845

position obtained from the optimization model is used as846

input to the simulation model. The MILP model results under847

both demand distributions are compared with the simulation848

results in terms of cost components and percentages of their849

contribution to the total cost. The results confirm the accu-850

racy of the MILP model under the empirical demand, with851

slight differences compared to the simulation. However, the852

model under the normal demand underestimates the amount853

of holding and shortage at most inventory positions. This854

behavior demonstrates the effectiveness of empirical over855

normal distributions in capturing the demand uncertainty.856

Our proposed model can be extended in different857

directions. One of them should accommodate the presence858

of multiple products sharing the same facility. In addition, 859

the production capacity of each facility in the supply chain 860

network should be considered. Moreover, uncertainty in pro- 861

duction and transportation time can be included in the model. 862
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