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ABSTRACT The Jaya algorithm and its variants have enjoyed great success in diverse application areas,
but no theoretical analysis of the algorithm, to our knowledge, is available in the literature. In this paper we
build stochastic models for analyzing Jaya and semi-steady-state Jaya algorithms. For these algorithms, the
computational cost depends on how, at each iteration, the new individual fares against the existing individual.
Costs must be incurred for any replacement of individuals and the subsequent update of the population-worst
individual’s (and/or the population-best individual’s) index. We use the following two quantities as the main
metrics for analysis: the expected number of updates in a generation of the worst individual’s index, and the
corresponding expectation for updating the best individual’s index. Clearly, the higher these expectations,
the costlier the algorithm. The analysis shows that for semi-steady-state Jaya (a) the maximum expected
number of worst-index updates per generation is 1.7 regardless of the population size; (b) regardless of the
population size, the expectation of the number of best-index updates per generation decreases monotonically
with generations; (c) upper bounds as well as asymptotics of the expected best-update counts can be obtained
for specific distributions; the upper bound is 0.5 for normal and logistic distributions, ln 2 for the uniform
distribution, and e−γ ln 2 for the exponential distribution, where γ is the Euler-Mascheroni constant; the
asymptotic is e−γ ln 2 for logistic and exponential distributions and ln 2 for the uniform distribution (the
asymptotic cannot be obtained analytically for the normal distribution). The models lead to the derivation of
computational complexities of Jaya and semi-steady-state Jaya. The theoretical analysis is supported with
empirical results on a benchmark suite.
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INDEX TERMS Evolutionary algorithm, Jaya algorithm, machine learning, metaheuristics, optimization,
stochastic model.

I. INTRODUCTION21

The Jaya algorithm (technically, heuristic or meta-22

heuristic) [1], [2] is one of the newest members of the evolu-23

tionary computation family. This algorithm and its variants24

have been highly successful in gradient-free global opti-25

mization, both constrained and unconstrained, of non-convex26

problems in continuous domains and have seen wide appli-27

cability in diverse areas, including engineering [3], [4], [5],28

[6], manufacturing [7], energy [8], fuel cells [9], health-29

care [10] and finance [11]. Discrete (e.g., [12], [13]) and30

multi-objective (e.g., [14]) versions of Jaya have also been31

developed. A recent survey can be found in [15]. Within32

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

the genetic and evolutionary computation family, Jaya is 33

unique in its use of a minimum number of parameters, 34

a fact that doubtless contributes to this algorithm’s popularity 35

among practitioners. The semi-steady-state Jaya (SJaya for 36

short) [16] has been shown to outperform the standard Jaya on 37

benchmark problems, with the improvement in performance 38

attributed primarily to the new update strategies that SJaya 39

employs for the best and worst members of the population. 40

Despite their impressive growth, no theoretical analysis of 41

Jaya or its variants has, to our knowledge, been reported in the 42

literature. Such analysis is fundamental to our understanding 43

of why the method works the way it does and is a necessary 44

prerequisite to designing better, newer methods for tackling 45

hard optimization problems. This paper provides a theoret- 46

ical underpinning of this powerful algorithm, modeling the 47
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algorithm as a stochastic process and deriving bounds and48

asymptotics for important performance metrics. Specifically,49

we show that for semi-steady-state Jaya (a) the maximum50

expected number of worst-index updates per generation is51

1.7 regardless of the population size; (b) regardless of the52

population size, the expectation of the number of best-index53

updates per generation decreases monotonically with gen-54

erations; (c) upper bounds as well as asymptotics of the55

expected best-update counts can be obtained for specific dis-56

tributions; the upper bound is 0.5 for normal and logistic dis-57

tributions, ln 2 for the uniform distribution, and e−γ ln 2 for58

the exponential distribution, where γ is the Euler-Mascheroni59

constant; the asymptotic is e−γ ln 2 for logistic and exponen-60

tial distributions and ln 2 for the uniform distribution. The61

model allows us to investigate the costs of the update strate-62

gies, revealing several interesting facts about the working of63

Jaya and SJaya, leading to the derivation of the computa-64

tional complexities of the algorithms. We also present empir-65

ical results on a five-function test suite and on a real-world66

problem.67

The Jaya pseudocode [9] and SJaya pseudocode [16] are68

presented here as Algorithms 1 and 2, respectively. The pop-69

ulation is initialized randomly or heuristically. The popu-70

lation then evolves over a number of generations, with the71

stopping condition being determined from one of a num-72

ber of strategies, e.g., a pre-determined number of genera-73

tions, a pre-determined number of fitness (objective function)74

evaluations, a pre-determined quantity of CPU time, find-75

ing of a solution of an acceptable quality (this presupposes76

the availability of some information on what constitutes a77

good solution), detection of stagnation or lack of significant78

progress in the search process. As in standard versions of79

evolutionary algorithms, the population size in Jaya/SJaya80

stays the same across generations. Each generation exam-81

ines, in some sequence, each of the population members82

(individuals or chromosomes) for possible replacement by83

a new individual, where the new individual is created, non-84

deterministically, from the current individual and two other85

individuals: the population-best and the population-worst86

individuals.87

The key step in either algorithm involves the creation of88

the new individual (line 6 in Algorithm 1 and also in Algo-89

rithm 2). A new individual xnew ∈ Rd is created from the90

current individual xcurrent ∈ Rd by using the best individual91

xbest ∈ Rd , the worst individual xworst ∈ Rd , and two random92

numbers—each chosen uniformly randomly in (0, 1]—for93

each of the problem parameters:94

xnewi = xcurrenti + rg,i,1(xbesti − |xcurrenti |)95

− rg,i,2(xworsti − |xcurrenti |) (1)96

where xi, i = 1, · · · , d , represent the parameters or vari-97

ables to be optimized, rg,i,1 and rg,i,2 are each a random98

number in (0.0, 1.0], and g indicates the generation number.99

If any component of xnewi falls outside its problem-specified100

lower or upper bound, it is clamped at the appropriate bound.101

A new individual replaces the existing one if the former is 102

at least as good as the latter. A replacement may cause the 103

population-best member or the population-worst member to 104

change. Jaya and SJaya differ in how the post-replacement 105

update, if any, of the best individual (or the worst) is handled 106

and used for the rest of the algorithm. Further details of these 107

two algorithms can be found in [1], [16]. 108

Algorithm 1: Jaya

1 initialize the population;
2 while a pre-determined stopping condition is not

satisfied do
3 find the best and the worst individuals in the

population, and save copies of them;
4 set the parameters, independently of one another,

to random values between 0.0 and 1.0;
5 for each individual in the population do
6 create a new individual using the current

individual, the (saved copy of the) best
individual, the (saved copy of the) worst
individual, and the random parameters;

7 if the new individual is at least as good as the
current individual then

8 replace the current individual with the new
individual;

9 end
10 end
11 end

II. FRAMEWORK FOR THE ANALYSIS 109

We assume, without loss of generality, an indexed repre- 110

sentation (e.g., an array) (Fig. 1) of the members of the 111

population. The best and the worst members (individuals) 112

are determined with respect to the fitness / utility / cost or 113

some objective function. A single run of Jaya or SJaya com- 114

prises a number (G, say) of generations, and each generation 115

consists of n steps or iterations, where n is the population 116

size. 117

FIGURE 1. Indexed representation of population members (population
size = n).

A single iteration involves determining whether or not 118

the member at index i (i = 1, 2, · · · , n) is to be replaced 119

with a new individual. Clearly, it does not matter whether 120

we traverse the population (array) in a top-to-bottom or 121

92918 VOLUME 10, 2022



U. K. Chakraborty: Stochastic Models of Jaya and Semi-Steady-State Jaya Algorithms

Algorithm 2: Semi-Steady-State Jaya

1 initialize the population;
2 find the best and the worst individuals in the population,

and initialize bestIndex to the index of the best
individual and worstIndex to the index of the worst
individual;

3 while a pre-determined stopping condition is not
satisfied do

4 set the parameters, independently of one another,
to random values between 0.0 and 1.0;

5 for each individual in the population starting from
the first index do

6 create a new individual using the current
individual, the individual at bestIndex,
the individual at worstIndex, and the random
parameters;

7 if the new individual is at least as good as the
current individual then

8 replace the current individual with the new
individual;

9 if the current individual is better than the
individual at bestIndex then

10 update bestIndex to set it to the current
index;

11 end
12 if the current individual’s index is the same

as worstIndex then
13 find the worst individual in the

population and set worstIndex to the
index of the worst individual;

14 end
15 end
16 end
17 end

bottom-to-top or any other fashion, as long as no index is122

left out or considered more than once. Suppose, for ease of123

discussion, we traverse the population in Fig. 1 sequentially124

from the top (index n) to the bottom (index 1).125

A. TWO METRICS126

Algorithms 1 and 2 show that a major component of127

the complexity hinges on how, at each iteration, the new128

individual fares against the existing individual (line 7 in129

either algorithm). Clearly, costs must be incurred for any130

replacement of individuals and the subsequent update of131

the worst individual’s (and/or the best individual’s) index.132

Jaya and SJaya being randomized algorithms, occurrences133

of replacements and updates must be studied as stochastic134

processes, which leads us to use the following two quanti-135

ties as the main metrics for analysis: the expected number136

of updates (in a generation) of the worst individual’s index,137

and the corresponding expectation for the best individual’s138

index. Clearly, the higher these expectations, the costlier the139

algorithm.140

III. UPDATING SJaya’s WORST-OF-POPULATION INDEX 141

Because the population changes with time, the index of the 142

population’s worst individual is time-dependent; that is, the 143

worst individual’s index may change after every replacement 144

of the current (most recent) worst individual. Thus it is possi- 145

ble for the (current) worst individual to be encountered more 146

than once during the top-to-bottom scan in a given generation 147

of the population. The present analysis assumes that when 148

the worst individual is encountered, it is replaced with a new 149

(better or identical-fitness) individual with probability p. 150

Let us use the notation findWorst() to indicate the function 151

called to find the index of the worst individual in the pop- 152

ulation, and let worstIndex represent the index of the worst 153

individual at any point in the course of a run. Because a 154

simple linear scan of the population is enough to find the 155

worst fitness, the complexity of findWorst() is 2(n). 156

Let X be the (discrete) random variable representing the 157

total number of calls, in an entire generation, to the function 158

findWorst(). We are interested in finding the expected value 159

of X , because the higher this expectation, the higher the cost 160

of SJaya. 161

Suppose that at the beginning of a new generation, the 162

worst individual in the entire population is at index k , i.e., 163

worstIndex is k , with 1 ≤ k ≤ n. During the course of the 164

generation, when this individual at index k is encountered, 165

it will either stay unaltered or be replaced with a new indi- 166

vidual. If it stays unchanged, worstIndex stays unaltered. If, 167

however, it undergoes replacement, we must find (by using a 168

call to findWorst()) which individual in the population is the 169

new worst (it is possible that the newly arrived individual at 170

index k , while better than the individual just replaced, turns 171

out to be the worst in the population at that point in time). The 172

new worst individual, as identified by the above-mentioned 173

call to findWorst(), must be 174

• either in the already-traversed portion of the population 175

array (at an index between k and n, inclusive, in Fig. 1); 176

• or in the yet-to-be-traversed part of the population (at an 177

index h, with 1 ≤ h ≤ k − 1). 178

In the first case above, no further call to findWorst() is needed 179

for the rest of the generation, while in the second, the story 180

will repeat itself with the new worst individual, necessitating 181

a total of up to h (i.e., at least zero but at most h) further calls 182

to findWorst() for the rest of the current generation. 183

Let W be the discrete random variable representing the 184

index of the worst individual in the population at a particular 185

iteration of a particular generation during the execution of a 186

run. Let us use t to represent the iteration number (not to be 187

confused with the generation number for which we use the 188

notation g). Thus 1 ≤ t ≤ n and 1 ≤ g ≤ G. For the n 189

steps (iterations) in any generation of SJaya, the correspond- 190

ing variables are W (0) (the index of the worst individual at 191

the start of a new generation), W (1) (the worst individual’s 192

index after the first iteration of the generation is over), and 193

so on. ThusW (n) of a given generation is the same asW (0) of 194

the immediately following generation. At the very beginning, 195
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under the assumption that the initial population is randomly196

generated, all slots of the array in Fig. 1 are equally likely to197

hold the worst one (P stands for probability):198

P(W (0)
= k | n) =

1
n

for k = 1, 2, · · · , n. (2)199

Now, for the present analysis, we do not need P(W (t)
= k | n)200

as much as we need the conditional probability P(W (t+1)
=201

j |W (t)
= k; n), which, in the absence of any further informa-202

tion, is assumed to be uniform:203

P(W (t+1)
= j |W (t)

= k; n) =
1
n

204

for any (j, k) pair and any t. (3)205

In the course of a generation, when the worst individual206

is encountered, a new individual is produced and is com-207

pared against the worst individual (what happens to the worst208

individual is no different from what happens to every other209

individual in the population at the given generation). Now,210

if the new individual has a fitness that is better than or equal211

to that of the worst individual, the former replaces the latter,212

thereby necessitating the finding of which individual in the213

post-replacement state is the (new) worst in the population.214

This entails one call to findWorst(). Therefore, in the event215

of the replacement of the worst individual, at least one call216

must be made to findWorst(). Thus for an entire generation,217

we have218

P(X > 0 |W (0)
= k; n) = p, (4)219

P(X = 0 |W (0)
= k; n) = 1− p. (5)220

Given W (0)
= k for a certain generation (recall that one221

generation equals n iterations), the variable X can assume222

one of the following values for that (entire) generation:223

0, 1, 2, · · · , k . Thus equation 4 can be written more specif-224

ically as:225

k∑
m=1

P(X = m |W (0)
= k; n) = p. (6)226

AssumingW (0)
= k , consider the top-to-bottom journey in227

Fig. 1. The index k may be thought of as indicating the point228

of demarcation, splitting the population into a top part of size229

n − k + 1 and a bottom part of size k − 1. Given W (0)
= k ,230

we can describe the result of a call to findWorst() as either an231

‘‘up’’ move (when the index returned by findWorst() is ≥ k)232

or a ‘‘down’’ move (when the returned index is < k). Thus,233

givenW (0)
= k , the event X = 1 takes place when, starting at234

index k , we either move ‘‘up’’ once, never to move anywhere235

else, or move ‘‘down’’ once and do not move further:236

P(X = 1 |W (0)
= k ≥ 1; n)237

= p×
n∑
i=k

1
n
+ p×

k−1∑
i=1

1
n
× (1− p)238

=
p
n
(n+ p−pk) . (7)239

The eventX = 2 occurs in one of the following two scenarios: 240

(a) starting from slot k , the first move is a ‘‘down’’ move to 241

slot i ∈ [1, k − 1], and the second one is a move ‘‘up’’ to 242

any slot ∈ [i, n]; (b) the first two moves are ‘‘down’’ each, 243

followed by no further movement: 244

P(X = 2 |W (0)
= k ≥ 2; n) 245

= p
k−1∑
i=1

1
n
× p

n∑
j=i

1
n

 246

+ p
k−1∑
i=2

1
n
× p

i−1∑
j=1

1
n
× (1− p)

 247

=
p2

n2
(k − 1)

(
n+ p−

pk
2

)
. (8) 248

Similarly, X is 3 when we have either (a) a ‘‘down’’ move 249

from k to any location i ∈ [2, k − 1], followed by a second 250

‘‘down’’ move from i to any location j ∈ [1, i− 1], followed, 251

finally, by an ‘‘up’’ move from j to any location ∈ [j, n]; or 252

(b) three successive ‘‘down’’ moves followed by no further 253

movement: 254

P(X = 3 |W (0)
= k ≥ 3; n) 255

= p
k−1∑
i=2

1
n
× p

i−1∑
j=1

1
n
× p

n∑
h=j

1
n

 256

+ p
k−1∑
i=3

1
n
× p

i−1∑
j=2

1
n
× p

j−1∑
h=1

1
n
× (1− p)

 257

=
p3

2n3
(k − 1)(k − 2)

(
n+ p−

pk
3

)
. (9) 258

A. THE GENERAL CASE 259

For the general case X = m, where m ∈ [1, n], we have 260

the following theorem (the product notation 5 evaluates to 261

1 when the upper bound is less than the lower bound): 262

Theorem 1: For m ≥ 1, 263

P(X = m |W (0)
= k ≥ m; n) 264

=
1

(m− 1)!

(p
n

)m (
n+ p−

pk
m

) m−1∏
j=1

(k − j). (10) 265

Proof:We present a proof by induction. The base cases 266

form= 1, 2 and 3 are already established via equations 7, 8, 9. 267

The proof will be complete when, assuming the theorem is 268

true for m = q ≥ 1, we show that it is true for m = q+ 1. 269

Starting from location k , any (q+ 1)-move sequence com- 270

prises a first ‘‘down’’ move to any location i ∈ [q, k − 1], 271

followed by a sequence of q furthermoves, with the first move 272

of the q-move sequence starting at location i. Thus 273

P(X = q+ 1 |W (0)
= k ≥ q+ 1; n) 274

= p
k−1∑
i=q

(
1
n
× P(X = q |W (0)

= i ≥ q; n)
)
. (11) 275
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Substituting for P(X = q|W (0)
= i ≥ q; n) from the theorem276

(equation 10) into the above equation, we have277

P(X = q+ 1 |W (0)
= k ≥ q+ 1; n)278

=
1

(q− 1)!

(p
n

)q+1 k−1∑
i=q

(n+ p− pi
q

) q−1∏
j=1

(i− j)

279

=
1

(q− 1)!

(p
n

)q+1 [
(n+ p)

k−1∑
i=q

q−1∏
j=1

(i− j)280

−
p
q

k−1∑
i=q

i q−1∏
j=1

(i− j)

]. (12)281

Now, it can be shown (after some algebra) that282

k−1∑
i=q

q−1∏
j=1

(i− j) =
(k − q) (k − 1)!
q (k − q)!

(13)283

and284

k−1∑
i=q

i q−1∏
j=1

(i− j)

 = k(k − 1)(k − 2) · · · (k − q)
q+ 1

. (14)285

Use of the two identities 13 and 14 in equation 12 followed286

by some simplification yields287

P(X = q+ 1 |W (0)
= k ≥ q+ 1; n)288

=
1
q!

(p
n

)q+1 (
n+ p−

pk
q+ 1

) q∏
j=1

(k − j). (15)289

Q.E.D.290

The expectation of X , given a particularW (0) and a partic-291

ular n, is now obtained as292

E(X |W (0)
= k; n)293

= 0× (1− p)+
k∑

m=1

(m× P(X = m |W (0)
= k ≥ m; n))294

=

k∑
m=1

(m× P(X = m |W (0)
= k ≥ m; n)). (16)295

Finally, the expectation of X , given an n, is296

E(X | n) =
n∑

k=1

E(X |W (0)
= k; n)P(W (0)

= k | n)297

=
1
n

n∑
k=1

E(X |W (0)
= k; n). (17)298

The probability P(X = m |W (0)
= k ≥ m; n) and hence299

the expectation E(X | n) are monotone increasing in p, with300

E(X | n) reaching its highest possible value when p = 1.301

A closed-form expression for the maximum value of E(X | n)302

can be obtained using some algebra:303

Max E(X | n)304

TABLE 1. Maximum value (theoretical) of E(X |n).

=
1
n

n∑
k=1

(
k∑

m=1

m
(m− 1)!

1
nm

(
n+ 1−

k
m

)
(k − 1)!
(k − m)!

)
305

=

(
1+

1
n

)n
− 1 (18) 306

Table 1 presents the analytically obtained maximum value 307

of E(X |n) for different values of n. Table 1 shows that the 308

maximum value is almost constant, regardless of the popula- 309

tion size. Given the existing body of research on population 310

sizing in evolutionary computation, we can say that the spread 311

of population sizes in Table 1 is wide enough to include 312

almost all cases of practical interest. Ignoring less-than-50 313

values of n as too small, we arrive at the rather remark- 314

able conclusion that the expected number of worst-index 315

updates per generation is 1.7 for almost any population 316

size. That the upper bound of the maximum of the expecta- 317

tion is 1.7 can be established analytically by using the fact 318

that 319

lim
n→∞

(
1+

1
n

)n
= e, 320

where e ≈ 2.71828 is the Euler number. 321

B. EMPIRICAL RESULTS 322

1) TEST SUITE 323

The test suite (see Table 2), taken from [16], comprises five 324

popular benchmark functions (with well-known global opti- 325

mum) from the literature and one real-world problem for 326

which the global minimum is believed to be mathematically 327

intractable. 328

The five functions include convex and non-convex, and dif- 329

ferentiable and non-differentiable cases, presenting different 330

levels of problem difficulty involving different numbers of 331

local optima. 332

The real-world problem is the task of designing a proton 333

exchange membrane fuel cell (PEMFC) stack [22], [23], and 334

it involves constrained optimization, with the goal of min- 335

imizing the dollar cost of building the stack while meeting 336

specific practical requirements. The objective (cost) function 337

is defined [9], [16], [24], [25] on three variables Np,Ns, 338

Acell and a number of pre-determined constants (we use the 339
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TABLE 3. Bounds of the design variables [24].

notational conventions of [16]):340

Objective function = Kn × Np × Ns341

+Kdiff ×
∣∣Vload,r − Vload,mpp

∣∣342

+Ka × Acell + P, (19)343

where Ns is the number of cells connected in series in each344

group; Np is the number of groups connected in parallel; Acell345

is the cell area; Vload,r is the rated terminal voltage of the346

stack; Vload,mpp represents the output voltage at the maximum347

power point of the stack; Pload,r is the rated output power of348

the stack;Pload,max is themaximum output power of the stack;349

Kn,Kdiff,Ka are pre-determined constants [9], [16] used to350

adjust the relative importance of the different components of351

the cost function; and P represents a penalty term [16] given352

by353

P =
{
0 if Pload,max ≥ Pload,r;
c(Pload,r − Pload,max) otherwise.

(20)354

As in [16], Pload,max and Vload,mpp are obtained numerically355

from the following equation by iterating over the load current356

iload,d, using a step size of iload = 1 mA [16]:357

Vst = Ns

[
ENernst − A ln

(
iload,d/Np + in,d

i0,d

)
358

+B ln
(
1−

iload,d/Np + in,d
ilimit,d

)
359

−

(
iload,d
Np
+ in,d

)
ra

]
, (21)360

where Vst is the stack voltage, ENernst is the Nernst e.m.f.,361

A and B are constants known from electrochemistry, ra is362

the area-specific resistance, and the i’s represent different363

types of currents, or rather current densities (the subscript d364

indicates density) in the cell [22], [26]. The lower and upper365

bounds of Ns, Np and Acell, taken from [24], are shown in366

Table 3, and the numerical values of the constants, taken367

from [16], are given in Table 4.368

2) RESULTS369

We obtain empirical estimates of the probability p and the370

expectation E(X |n) by aggregating (averaging) results from371

multiple, independent runs of SJaya. Table 5 presents the372

empirical average and the theoretical expectation for each of373

the problems in the test-suite in Table 2. Each row in Table 5374

corresponds to 500 runs, with each run executed for 20 gener-375

ations with a specified population size. The theoretical expec-376

tation is obtained by plugging in the average empirical p into377

TABLE 4. PEMFC parameters and constants [16].

TABLE 5. Empirical and theoretical E(X |n) (rounded at the 4th decimal
place).

equation 17. The empirical p value is obtained as the average 378

of 500 probabilities, each probability being calculated as a 379

relative frequency from a single run, the data for a single run 380

having been aggregated from the 20 generations comprising 381

the run. In other words, two levels of aggregating (averaging) 382

were implemented: aggregating over runs and aggregating 383

over generations within a single run. While the runs are inde- 384

pendent of one another, the generations that make up a single 385

run are not absolutely independent, having been created on 386

top of one another, as if in a chain or cascade. The empirical 387

expectation ofX is obtained as the average (per generation per 388

run) number of times the worst individual in the population 389

needs to be found out. 390

While the empirical E agrees with its theoretical coun- 391

terpart in that both increase with increasing population size, 392

Table 5 shows that the empirical E is slightly higher than the 393
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corresponding theoretical value. This is explained by the fact394

that, in practice,395

P(W (t+1)
= j |W (t)

= k; n) >
1
n

for j < k (22)396

where the indexing scheme is as in Figure 1. This non-397

uniform distribution is difficult to obtain analytically. It can,398

of course, be qualitatively argued that in a top-to-bottom pro-399

cessing of the population elements, the top part (comprising400

indices n, n−1, · · · , k; 1 ≤ k ≤ n; see Figure 1) gets updated401

before the bottom part does, and since an update never results402

in a worse fitness, the probability of the worst individual403

being found in the bottom part is higher than in the top part404

at any point during the course of a generation. An empirical405

corroboration of this can be seen in the matrix of P(W (next)
=406

j |W (current)
= k) values in Table 6, which is obtained by407

averaging (in a relative-frequency sense) 5000 independent408

runs of SJaya on the Chung-Reynolds function (Table 2) of409

10 variables, where each run used 10 generations of a popu-410

lation of size 10. The matrix in Table 6, which, clearly, is a411

stochastic matrix (each row-sum is unity, ignoring floating-412

point errors), shows that for each row, the entries to the left413

of the diagonal element are smaller than those to the right of414

the diagonal element.415

As a reference, the very first or initial (before any replace-416

ment has taken place) distribution of the worstIndex, obtained417

from these 5000 runs, is presented in Table 7; the ten values418

follow an approximately uniform distribution, as is only to be419

expected.420

IV. UPDATING SJaya’s BEST-OF-POPULATION INDEX421

We will now obtain the expected best-update count both422

empirically and theoretically.423

A knowledge of the expected number of updates, in a424

generation, of the best-of-population index is required for425

an analysis of SJaya. Of course, to derive this expectation,426

we need the underlying (discrete) probability distribution.427

To compute the probability that a new individual, created in428

line 6 of Algorithm 1 or Algorithm 2, will replace the exist-429

ing individual, we need, among other pieces of information,430

a knowledge of the (typically continuous) distribution of the431

fitness landscape. Now, the fitness distribution is impossi-432

ble to know (in advance), except in trivial cases. A generic433

analysis, however, is possible if we are willing to make an434

assumption about the nature of this distribution.435

An update of the best index is needed whenever the newly436

minted individual has a fitness better than that of the current437

population-best. During the course of a run, the expected438

value of the population-best fitness at the beginning of a439

fresh generation can be modeled as the expectation of the440

best (either maximum or minimum, depending on the appli-441

cation) of n i.i.d. samples drawn from a given fitness distribu-442

tion, with n representing the population size. (The population443

size is assumed not to change from generation to genera-444

tion, of course.) We assume maximization without loss of445

generality.446

Let us use f for probability density function (pdf) and F 447

for cumulative distribution function (cdf). The maximum of 448

n i.i.d. samples x1, · · · , xn of a continuous random variable 449

X is another (continuous) random variable; call it Xmax. Then 450

the expected value of Xmax is given by 451

E(Xmax | n,FX ) =
∫
∞

x=−∞
x · fXmax (x | n,FX ) dx (23) 452

where 453

fXmax (x | n,FX ) = n · (FX (x))n−1fX (x) (24) 454

is the pdf of Xmax, and 455

FXmax (x | n,FX ) = P(Xmax < x) = (FX (x))n (25) 456

is the cdf of Xmax, such that 457

P(x < Xmax < x + dx | n,FX ) = fXmax (x | n,FX ) dx, (26) 458

where 459

FX (x) = P(X < x) =
∫ x

x=−∞
fX (x) dx (27) 460

is the cdf of X , with fX (x) representing its pdf. 461

To derive the expected number of updates, over a com- 462

plete generation, of the population-best member, we begin 463

by defining a discrete (binary) random variable Yi,g;n,F rep- 464

resenting whether or not an update is made at iteration i ∈ 465

{1, · · · , n} of generation g ∈ {1, · · · ,G}: 466

Yi,g;n,F =

{
1 if X > E(Xmax | gn+ i− 1,FX )
0 otherwise,

(28) 467

with the initial generation (g = 0) assumed to have filled the 468

population for the very first time. In other words, Yi,g;n,F is 469

the indicator variable 1X>E(Xmax | gn+i−1,FX ). The expectation 470

of Yi,g;n,F is given by 471

E(Yi,g;n,F ) = P(X > E(Xmax | gn+ i− 1,FX )) (29) 472

If Yg;n,F denotes a random variable representing the total 473

number of updates in a given generation g, we have 474

Yg;n,F =
n∑
i=1

Yi,g;n,F , (30) 475

and the expectation of Yg;n,F is then obtained as 476

E(Yg;n,F ) = E

(
n∑
i=1

Yi,g;n,F

)
477

=

n∑
i=1

E(Yi,g;n,F ) 478

=

n∑
i=1

P(X > E(Xmax | gn+ i− 1,FX )) (31) 479

where linearity of expectation has been used (the linearity 480

is applicable regardless of whether or not the Yi,g;n,F ’s are 481

independent). 482
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TABLE 6. Transition matrix (empirical) of the index of the worst individual.

TABLE 7. Initial empirical distribution of worstIndex (n = 10).

From the definition of Xmax it follows that for n2 > n1,483

E(Xmax | n2,FX ) > E(Xmax | n1,FX ), (32)484

which implies485

P(X > E(Xmax | n2,FX ))<P(X > E(Xmax | n1,FX )). (33)486

Thus we have487

E(Xmax | g2n+ i− 1,FX ) > E(Xmax | g1n+ i− 1,FX )488

for g2 > g1 ≥ 1 (34)489

or equivalently,490

E(Yi,g2;n,F ) < E(Yi,g1;n,F ) for g2 > g1 ≥ 1. (35)491

Again492

E(Xmax | gn+ i2 − 1,FX ) > E(Xmax | gn+ i1 − 1,FX )493

for i2 > i1, (36)494

or equivalently,495

E(Yi2,g;n,F ) < E(Yi1,g;n,F ) for i2 > i1. (37)496

Therefore497

E(Xmax | (g+ 1)n,FX )>E(Xmax | gn+n− 1,FX ) (38)498

which shows that the E(Yi,g;n,F ) value corresponding to the499

last iteration of any generation is strictly greater than that cor-500

responding to the first iteration of the immediately following501

generation. Inequalities 34-38 lead to502

E(Yg2;n,F ) < E(Yg1;n,F ) for g2 > g1 ≥ 1. (39)503

Note that the above inequality holds for any FX (or equiva- 504

lently, for any fX ) and for any n. Thus we have proved the 505

following theorem: 506

Theorem 2: For any problem, in any run, the expected 507

generation-wise best-update count decreases monotonically 508

with generations, regardless of the population size. 509

Let 510

Ȳ =
1
G

G∑
g=1

E(Yg;n,F ) (40) 511

stand for the average (over all the generations in a run) of 512

the expected generation-wise best-update counts. Then The- 513

orem 2 implies that Ȳ can bemade arbitrarily small bymaking 514

the total number of generations G arbitrarily large, a fact 515

that allows us to argue that the number of best-updates per 516

generation (or per run) should not be a concern, so far as 517

computational costs are considered. We now consider four 518

particular distributions for which we establish upper bounds 519

on E(Y1;n,F ); these four cases are potential candidates for 520

approximations to the true (unknown) distributions. 521

A. SPECIAL CASES 522

1) THE UNIFORM RANDOM DISTRIBUTION 523

For the Unif(a, b) distribution, the density is given by 524

fX (x) =
1

b− a
; b > a, x ∈ [a, b] (41) 525

and the corresponding cdf is 526

FX (x) =
x − a
b− a

, (42) 527

which, when used in equation 23, gives 528

E(Xmax | n,UnifX ) =
a+ bn
n+ 1

, (43) 529

from which we get 530

P(X > E(Xmax | n,UnifX )) =
1

n+ 1
. (44) 531

This expression allows us to obtain E(Y1;n,Unif) from equa- 532

tion 31 as 533

E(Y1;n,Unif) =
n−1∑
j=0

1
n+ j+ 1

534

= H2n − Hn (45) 535
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where Hn is the n-th harmonic number [27]:536

Hn = 1+
1
2
+

1
3
+ · · · +

1
n
. (46)537

It is not difficult to prove from equation 45 that E(Y1;n,Unif)538

is monotone increasing in n.539

The case corresponding to an arbitrarily large n can be540

studied by using the fact [27] that541

lim
n→∞

(Hn − ln n) = γ, (47)542

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Luckily,543

an upper bound on E(Y1;n,Unif) can be obtained using the544

following property (easily obtained from equation 47):545

lim
n→∞

(H2n − Hn) = ln 2. (48)546

Thus, for any n, no matter how large, and any a and b547

E(Y1;n,Unif) ≤ ln 2 = 0.6931. (49)548

The minimum value of the expectation is 1/2 and corresponds549

to n = 1 (recall that the mean of the Unif(a.b) distribution is550

(a + b)/2 and that the area under the pdf box to the right of551

(a+ b)/2 is 1/2).552

Theoretical expectations of Y1 values corresponding to dif-553

ferent population sizes are presented in Table 8 where the554

corresponding values for three other distributions are also555

shown.556

2) THE EXPONENTIAL DISTRIBUTION557

For the exponential distribution, the pdf and cdf are given by558

fX (x) = λe−λx; λ > 0, x ∈ [0,+∞) (50)559

and560

FX (x) = 1− e−λx (51)561

which lead to562

E(Xmax | n,ExpX )=
∫
∞

x=0
x · nλe−λx(1− e−λx)n−1 dx563

=
1
λ

∫
∞

v=0
v · ne−v(1− e−v)n−1 dv (52)564

An explicit evaluation of the above integral is rather involved;565

an easier approach is to use, for example, themoment generat-566

ing function of Xmax (as in [28]) and obtain the expectation of567

Xmax from the derivative of the moment generating function568

evaluated at zero. This leads to569

E(Xmax | n,ExpX ) =
1
λ

n∑
k=1

1
k

570

=
1
λ
Hn (53)571

We then have572

P(X > E(Xmax | n,ExpX )) = e−λ×
1
λ
Hn = e−Hn (54)573

from which we obtain (by equation 31) 574

E(Y1;n,Exp) =
n−1∑
j=0

e−Hn+j (55) 575

Now, E(Y1;n,Exp) is monotone non-decreasing in n. Thus the 576

smallest value of this expectation occurs at n = 1, and that 577

value, from equation 55, is 1/e or 0.3679, a value that is 578

corroborated by the fact that the mean of the exponential 579

distribution is 1/λ and that the area under the pdf to the right 580

of the point 1/λ is e−λ×(1/λ) or 1/e. 581

From equation 55, we have 582

lim
n→∞

E(Y1;n,Exp) = lim
n→∞

n−1∑
j=0

e− ln(n+j)−γ
583

=
1
eγ

lim
n→∞

n−1∑
j=0

1
n+ j

584

=
1
eγ

lim
n→∞

(
H2n − Hn +

1
2n

)
585

=
1
eγ

ln 2 by eq. 48 (56) 586

Thus, for any n and any λ, 587

E(Y1;n,Exp) ≤
ln 2
eγ
= 0.3892. (57) 588

Table 8 shows how the theoretical E(Y1;n,Exp) varies with n, 589

reaching the limit as n approaches infinity. 590

3) THE NORMAL DISTRIBUTION 591

The normal distribution N (µ, σ 2), with mean µ and variance 592

σ 2, and density 593

fX (x) =
1

σ
√
2π

e
−

1
2

(
x−µ
σ

)2
; σ > 0, x ∈ (−∞,+∞) 594

(58) 595

admits of no closed-form expression for E(Xmax | n,FX ), 596

and the integration in equation 23 must be evaluated numer- 597

ically. We find E(Y1;n,Norm) numerically, from equation 31 598

(using numerical routines from Python’s scipy [29], [30] 599

and also from Mathematica [31]). The numerically obtained 600

Y1 values corresponding to different population sizes are pre- 601

sented in Table 8. Note that Y1 for the Gaussian is monotone 602

non-increasing with n. Thus the maximum possible value of 603

E(Y1;n,Norm) is obtained at the smallest possible value of n, 604

namely 1, and the corresponding E(Xmax) is clearly the mean, 605

µ, of the distribution, which, because of symmetry (the mean 606

equals the median), causes P(X > E(Xmax | 1,NormX )) to be 607

0.5, leading to E(Y1;1,Norm) = 0.5. Thus, for any n, no matter 608

how large, and any µ and σ , E(Y1;n,Norm) is upper-bounded 609

by 610

E(Y1;n,Norm) ≤ 0.5. (59) 611

The limit of the expectation, as n→∞, cannot be obtained 612

analytically. 613
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4) THE LOGISTIC DISTRIBUTION614

The logistic distribution offers some similarity (e.g., uni-615

modality, symmetry) to the normal. That, coupled with the616

fact that it is amenable to analytical treatment, affords an617

alternative to the normal distribution for modeling purposes.618

For simplicity, let us consider location and scale parameters619

of 0 and 1, respectively. This does not cause any loss of620

generality, because any logistic variableX with location a and621

scale s > 0 can be transformed to another logistic variable Z :622

Z =
X − a
s

. (60)623

The cdf and pdf of the logistic distribution are given by624

FX (x) =
1

1+ e−x
; x ∈ (−∞,+∞) (61)625

and626

fX (x) = FX (x)(1− FX (x)) =
e−x

(1+ e−x)2
. (62)627

Thus628

E(Xmax | n,LogisticX ) =
∫
∞

x=−∞

n · x · e−x

(1+ e−x)n+1
dx (63)629

from which an explicit expression for the expected Xmax can630

be obtained by the moment-generating-function technique631

(see, e.g., [28]):632

E(Xmax | n,LogisticX ) = Hn−1, (64)633

with H0 taken to be zero (recall that n ≥ 1). Then634

P(X > E(Xmax | n,LogisticX )) =
e−Hn−1

1+e−Hn−1
(65)635

and, by equation 31,636

E(Y1;n,Logistic) =
n−1∑
j=0

e−Hn+j−1

1+ e−Hn+j−1
. (66)637

E(Y1;n,Logistic) is monotone non-increasing in n. Thus the638

largest value of the expectation occurs at n = 1, and that639

expectation is obtained from equation 66 as 0.5, a value640

that is corroborated by the symmetric nature of the distri-641

bution. Now, using the large-n approximation to Hn, namely642

limn→∞ Hn = ln n+ γ (recall equation 47), we have643

lim
n→∞

E(Y1;n,Logistic) = lim
n→∞

n−1∑
j=0

e− ln(n+j−1)−γ

1+ e− ln(n+j−1)−γ644

=
1
eγ

lim
n→∞

n−1∑
j=0

1
n+ j− 1+ e−γ

645

=
1
eγ

ln 2646

= 0.3892. (67)647

TABLE 8. Theoretical growth (or decay) of E(Y1;n,F ) with n.

TABLE 9. Eempir(Yg;n) for g = 1, 10, 20 (number of runs = 500).

B. EMPIRICAL RESULTS 648

Empirical values of the average counts of best-updates are 649

obtained by aggregating independent SJaya runs for each of 650

the test problems. For a population size of n, the empirical 651

expectation (average) at a given generation g is produced 652

from an ensemble of r runs as: 653

Eempir(Yg;n) =
1
r

r∑
k=1

Nk (g) (68) 654

where Nk (g) is the number (an integral count≥ 0) of updates 655

of the best-index at generation g in run k . The corresponding 656

average (over all generations) is obtained as 657

Eempir(Yn) =
1
G

G∑
g=1

Eempir(Yg;n). (69) 658

In the above two equations, g ≥ 1 (g = 0 represents the 659

initial population). Table 9 shows, for different population 660

sizes, Eempir(Yn) values as well as how Eempir(Yg;n) changes 661

with generations (r = 500 andG = 20 in this table). The runs 662

used in this table are the same as the ones used in Table 5. 663
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V. COMPUTATIONAL COSTS664

While the Jaya algorithm finds the best-of-population mem-665

ber and the worst-of-population member exactly once per666

generation, SJaya does this on a continuous, as-needed basis.667

The logic for finding the best (or worst) of a given number668

of elements can be implemented as a simple sequential scan669

of the elements, consisting of two basic operations for each670

element: a comparison followed, conditionally, by an assign-671

ment. We now find the costs of these two types of operations.672

A. COMPARISON AND ASSIGNMENT OPERATIONS FOR673

BEST-INDEX UPDATE IN SJaya674

The total number of comparison operations needed for updat-675

ing the best index in an entire generation of SJaya (call this676

number c) is equal to the number of times line 9 in Algo-677

rithm 2 is executed (i.e., the condition in line 9 is tested) per678

generation (this number is the same as the number of times679

the condition in line 7 evaluates to TRUE in a generation).680

We need to find the expected value of c.681

We can model the new individual being at least as good as682

the current individual (line 7) by the event X2 ≥ X1, where683

X1 and X2 are two independent random samples drawn from684

the same distribution.685

Defining a random variable686

Z = 1X2≥X1 , (70)687

we have688

Z =

{
1 with probability P(X2 ≥ X1)

0 with probability 1− P(X2 ≥ X1).
(71)689

Thus690

E(Z ) = P(X2 ≥ X1), (72)691

and the expectation of the number of times the condition in692

line 7 evaluates to TRUE in a generation is given by693

E(c) = E

(
n∑
i=1

Zi

)
694

=

n∑
i=1

E(Zi) (by linearity)695

= n E(Z ) (73)696

where the last step follows from the fact that the events at the697

n slots of the population are governed by the same underlying698

distribution. Thus699

E(c) = n P(X1 ≤ X2), (74)700

which, by the law of total probability, gives701

E(c) = n
∫
∞

x=−∞
P(X1 ≤ X2|X2 = x) fX2 (x) dx702

= n
∫
∞

x=−∞
P(X1 ≤ x) fX2 (x) dx703

= n
∫
∞

x=−∞
FX1 (x) fX2 (x) dx704

= n
∫
∞

x=−∞
FX (x) fX (x) dx 705

=
n
2

(75) 706

Next, the total number of assignment operations (call it a) 707

needed for updating the best index in an entire generation 708

of SJaya is equal to the number of times line 10 is executed 709

per generation in Algorithm 2. The expectation of this count, 710

E(a), was already derived in Section IV; E(a) can be taken to 711

be either the generation-specific E(Yg;n,F ) or the average Ȳ . 712

This expectation is obviously a function of the population size 713

n, and Section IV obtained the maximum value of this expec- 714

tation (corresponding to either n = 1 or n→ ∞, depending 715

on the nature of the distribution) for specific distributions, 716

as follows: 717

Max. of E(a) =



ln 2
eγ

for exponential distribution

ln 2 for uniform distribution

0.5 for normal distribution

0.5 for logistic distribution.

(76) 718

It is difficult to obtain a closed-form analytical expression of 719

this expectation for arbitrary distributions; however, by Theo- 720

rem 2, this expectation, when averaged over a number of gen- 721

erations, goes down as the number of generations increases, 722

regardless of the underlying distribution. 723

B. COMPARISON AND ASSIGNMENT OPERATIONS FOR 724

FINDING THE BEST/WORST IN THE NAIVE APPROACH 725

The naïve approach to sequentially scanning an array for 726

finding the best (or worst) element entails exactly n (or n−1, 727

depending on the implementation) comparisons: 728

cnaive = n. (77) 729

The number of assignments, anaive, however, is not determin- 730

istic. Assuming the array index runs from 1 to n, the number 731

of assignments can go from a minimum of 1 to a maximum 732

of k (or from 1 to n − k + 1, depending on the implementa- 733

tion), inclusive, when the best (or worst) element is located 734

at index k . The average-case analysis can be performed by 735

noting that when the numbers are uniformly distributed in the 736

array, the j-th element is greater (smaller) than the preceding 737

j − 1 elements with probability 1/j, independently for all 738

j = 1, · · · , n. Thus 739

E(anaive) =
n∑
j=1

1
j
= Hn (78) 740

C. COMPLEXITY OF SJaya 741

Given the analyses of the preceding sections, it is now 742

straightforward to obtain the complexity of SJaya. The cost 743

of the initialization step (line 1 in Algorithm 2) is n × φ(d), 744

where φ(d) is the cost of evaluating the fitness (objective 745

function) of a given problem of d dimensions. The cost of 746

finding the best/worst member in the entire population (line 747
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2) is E(cnaive)×Cc+E(anaive)×Ca or n×Cc+Hn×Ca, where748

Cc and Ca are the cost of a single comparison and a single749

assignment, respectively. Setting the random parameters for750

the solution vector (line 4) has a cost of Cp × d , where Cp751

is a constant. Creating a single new individual (line 6) incurs752

a cost of Cop × d + φ(d), where Cop represents the cost per753

dimension of applying the algebraic operations involved in754

the creation of a new individual. Each check for the superior-755

ity of the new individual (line 7) costsCc, and there are n such756

checks in a generation. The replacement at line 8 takes place757

E(c) times in a whole generation (recall that the condition at758

line 7 is true these many times on average in a generation).759

Again, the condition in line 9 is tested E(c) times in a whole760

generation. And, as already shown in Sec. V-A, the update761

in line 10 occurs E(a) times per generation. The condition in762

line 12 is tested E(c) times in a generation, and finding the763

worst individual in line 13 is needed a maximum of 1.7 times764

per generation. The total cost of a single run is thus765

nφ(d)+ 2(nCc + HnCa)+ G
[
Cpd + n(Copd + φ(d))766

+ n Cc + (n/2) Ca + (n/2) Cc + E(a) Ca + (n/2) Cc767

+ 1.7(nCc + HnCa)
]
.768

D. COMPLEXITY OF Jaya769

The complexity of Jaya can now be derived easily. Most of770

the calculations carry over from those of SJaya. Noting that771

the replacement of the existing individual with the new one772

(in line 8 of Algorithm 1) takes place E(c) times in an entire773

generation, the complexity is given by774

nφ(d)+ G
[
2(nCc + HnCa)+ Cpd + n(Copd + φ(d))775

+ n Cc + (n/2) Ca
]
.776

E. COST DIFFERENCE BETWEEN SJaya AND Jaya777

Using c as an upper bound of a, and with E(c) = n/2,778

we obtain the following estimate of an upper bound of the779

additional cost incurred by SJaya over Jaya per generation:780

additional cost ≤
n
2
(Ca + 2Cc)− 0.3(nCc + HnCa)781

≈ (0.5n− 0.3 ln n− 0.17316)Ca + 0.7 nCc782

for large n. (79)783

This additional cost is not significant compared to the total784

cost of evaluating the fitnesses of the n population members785

in a generation. If, in light of the analysis in Sec. IV, a more786

realistic value of E(a) � n is assumed, the additional cost787

becomes even lower.788

VI. CONCLUSION789

Stochastic models were developed for Jaya and its recent790

improvement SJaya, and a detailed theoretical analysis pre-791

sented. An interesting fact revealed by the analysis is that792

the maximum expected number of worst-index updates per793

generation for SJaya is upper-bounded by e − 1, or 1.7,794

for any population size. Furthermore, regardless of the pop-795

ulation size, the expectation of the number of best-index796

updates per generation decreases monotonically with gener- 797

ations. We derived exact upper bounds of the expected num- 798

ber of best-index updates when the underlying distribution 799

is exponential, logistic, normal or uniform. Asymptotics of 800

expected best-update counts were obtained for exponential, 801

logistic and uniform distributions. Limitations of the analyt- 802

ical approach and the need to resort on occasion to numer- 803

ical techniques were pointed out. The model allowed us to 804

obtain computational complexities of the algorithms, which 805

showed that the performance improvement afforded by SJaya 806

over Jaya incurs only a modest additional cost. Empirical 807

results on benchmark test problems were obtained and found 808

to corroborate the general trends of the theoretical findings. 809

To our knowledge, this is the first theoretical analysis of this 810

popular family of heuristics. The analytical approach devel- 811

oped here has the potential to be extended to the analysis of 812

other types of evolutionary algorithms. The insights provided 813

by the models should help design new, improved population- 814

based search / optimization heuristics. 815
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NOMENCLATURE 822

Subscripted and superscripted versions of the same symbol 823

are not included in this list; the symbol itself is listed once. 824

Also excluded are the notations used in the fuel cell problem 825

(Sec. III-B1). 826

Symbol Meaning
a Parameter of the uniform density; also,

number of assignment operations.
b Parameter of the uniform density.
c Number of comparison operations.
C Computational cost associated with a

single application of an operation (dif-
ferent subscripts are used for different
types of cost).

d Problem dimensions.
e The Euler constant.
E Expectation.
f () Fitness (objective) function.
fX () Probability density function of random

variable X .
FX () Cumulative distribution function of ran-

dom variable X .
G Number of generations.
Hn n-th harmonic number.
g, h, i, j, k , m, q Indices.
n Population size.
p Worst-replacement probability.
P Probability.
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r Random coefficients used in
Jaya/SJaya; also, number of runs.

R The real domain.
t Number of iterations.
W Index of the worst individual.
x Problem parameter vector (chromo-

some); also, an instance (observation) of
a random variable.

x∗ Optimal problem parameter vector.
X Random variable (discrete) for the num-

ber of times theworst individual needs to
be found in a generation; also, a generic
random variable (continuous).

Y Random variable (discrete) for the num-
ber of updates of best-index.

Ȳ Average expected generation-wise best-
update count.

Z Random variable (used in different con-
texts).

γ Euler-Mascheroni constant.
2 Asymptotic computational complexity

notation.
λ Parameter of the exponential density.
µ Mean of the normal density.
σ Standard deviation of the normal den-

sity.
φ() Cost of evaluating the objective func-

tion.
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