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ABSTRACT The Jaya algorithm and its variants have enjoyed great success in diverse application areas,
but no theoretical analysis of the algorithm, to our knowledge, is available in the literature. In this paper we
build stochastic models for analyzing Jaya and semi-steady-state Jaya algorithms. For these algorithms, the
computational cost depends on how, at each iteration, the new individual fares against the existing individual.
Costs must be incurred for any replacement of individuals and the subsequent update of the population-worst
individual’s (and/or the population-best individual’s) index. We use the following two quantities as the main
metrics for analysis: the expected number of updates in a generation of the worst individual’s index, and the
corresponding expectation for updating the best individual’s index. Clearly, the higher these expectations,
the costlier the algorithm. The analysis shows that for semi-steady-state Jaya (a) the maximum expected
number of worst-index updates per generation is 1.7 regardless of the population size; (b) regardless of the
population size, the expectation of the number of best-index updates per generation decreases monotonically
with generations; (c) upper bounds as well as asymptotics of the expected best-update counts can be obtained
for specific distributions; the upper bound is 0.5 for normal and logistic distributions, In?2 for the uniform
distribution, and e~" In2 for the exponential distribution, where y is the Euler-Mascheroni constant; the
asymptotic is e~ In2 for logistic and exponential distributions and In?2 for the uniform distribution (the
asymptotic cannot be obtained analytically for the normal distribution). The models lead to the derivation of
computational complexities of Jaya and semi-steady-state Jaya. The theoretical analysis is supported with
empirical results on a benchmark suite.

INDEX TERMS Evolutionary algorithm, Jaya algorithm, machine learning, metaheuristics, optimization,
stochastic model.

I. INTRODUCTION

The Jaya algorithm (technically, heuristic or meta-
heuristic) [1], [2] is one of the newest members of the evolu-
tionary computation family. This algorithm and its variants
have been highly successful in gradient-free global opti-
mization, both constrained and unconstrained, of non-convex
problems in continuous domains and have seen wide appli-
cability in diverse areas, including engineering [3], [4], [5],
[6], manufacturing [7], energy [8], fuel cells [9], health-
care [10] and finance [11]. Discrete (e.g., [12], [13]) and
multi-objective (e.g., [14]) versions of Jaya have also been
developed. A recent survey can be found in [15]. Within
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the genetic and evolutionary computation family, Jaya is
unique in its use of a minimum number of parameters,
a fact that doubtless contributes to this algorithm’s popularity
among practitioners. The semi-steady-state Jaya (SJaya for
short) [16] has been shown to outperform the standard Jaya on
benchmark problems, with the improvement in performance
attributed primarily to the new update strategies that SJaya
employs for the best and worst members of the population.
Despite their impressive growth, no theoretical analysis of
Jaya or its variants has, to our knowledge, been reported in the
literature. Such analysis is fundamental to our understanding
of why the method works the way it does and is a necessary
prerequisite to designing better, newer methods for tackling
hard optimization problems. This paper provides a theoret-
ical underpinning of this powerful algorithm, modeling the
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algorithm as a stochastic process and deriving bounds and
asymptotics for important performance metrics. Specifically,
we show that for semi-steady-state Jaya (a) the maximum
expected number of worst-index updates per generation is
1.7 regardless of the population size; (b) regardless of the
population size, the expectation of the number of best-index
updates per generation decreases monotonically with gen-
erations; (c) upper bounds as well as asymptotics of the
expected best-update counts can be obtained for specific dis-
tributions; the upper bound is 0.5 for normal and logistic dis-
tributions, In 2 for the uniform distribution, and e~" In2 for
the exponential distribution, where y is the Euler-Mascheroni
constant; the asymptotic is e~ " In 2 for logistic and exponen-
tial distributions and In2 for the uniform distribution. The
model allows us to investigate the costs of the update strate-
gies, revealing several interesting facts about the working of
Jaya and Slaya, leading to the derivation of the computa-
tional complexities of the algorithms. We also present empir-
ical results on a five-function test suite and on a real-world
problem.

The Jaya pseudocode [9] and SJaya pseudocode [16] are
presented here as Algorithms 1 and 2, respectively. The pop-
ulation is initialized randomly or heuristically. The popu-
lation then evolves over a number of generations, with the
stopping condition being determined from one of a num-
ber of strategies, e.g., a pre-determined number of genera-
tions, a pre-determined number of fitness (objective function)
evaluations, a pre-determined quantity of CPU time, find-
ing of a solution of an acceptable quality (this presupposes
the availability of some information on what constitutes a
good solution), detection of stagnation or lack of significant
progress in the search process. As in standard versions of
evolutionary algorithms, the population size in Jaya/SJaya
stays the same across generations. Each generation exam-
ines, in some sequence, each of the population members
(individuals or chromosomes) for possible replacement by
a new individual, where the new individual is created, non-
deterministically, from the current individual and two other
individuals: the population-best and the population-worst
individuals.

The key step in either algorithm involves the creation of
the new individual (line 6 in Algorithm 1 and also in Algo-
rithm 2). A new individual x"% e R? is created from the
current individual x*U"™™ ¢ R by using the best individual
xSt ¢ RY, the worst individual xV°'st € R?, and two random
numbers—each chosen uniformly randomly in (0, 1]—for
each of the problem parameters:

new current best current
X; =X; + rg‘i,l(x,' - |xl' D
worst current
—rgi20x T — X D D
where x;, i = 1,---,d, represent the parameters or vari-

ables to be optimized, 7, ;1 and 7, ;> are each a random
number in (0.0, 1.0], and g indicates the generation number.
If any component of x;**¥ falls outside its problem-specified
lower or upper bound, it is clamped at the appropriate bound.
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A new individual replaces the existing one if the former is
at least as good as the latter. A replacement may cause the
population-best member or the population-worst member to
change. Jaya and SJaya differ in how the post-replacement
update, if any, of the best individual (or the worst) is handled
and used for the rest of the algorithm. Further details of these
two algorithms can be found in [1], [16].

Algorithm 1: Jaya

1 initialize the population;
2 while a pre-determined stopping condition is not

satisfied do
3 find the best and the worst individuals in the
population, and save copies of them;
4 set the parameters, independently of one another,
to random values between 0.0 and 1.0;
5 for each individual in the population do
6 create a new individual using the current

individual, the (saved copy of the) best
individual, the (saved copy of the) worst
individual, and the random parameters;

7 if the new individual is at least as good as the
current individual then
8 replace the current individual with the new
individual;
9 end
10 end
11 end

Il. FRAMEWORK FOR THE ANALYSIS

We assume, without loss of generality, an indexed repre-
sentation (e.g., an array) (Fig. 1) of the members of the
population. The best and the worst members (individuals)
are determined with respect to the fitness / utility / cost or
some objective function. A single run of Jaya or SJaya com-
prises a number (G, say) of generations, and each generation
consists of n steps or iterations, where n is the population
size.

FIGURE 1. Indexed representation of population members (population
size = n).

A single iteration involves determining whether or not
the member at index { = 1,2,---,n) is to be replaced
with a new individual. Clearly, it does not matter whether
we traverse the population (array) in a top-to-bottom or
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Algorithm 2: Semi-Steady-State Jaya

1 initialize the population;

2 find the best and the worst individuals in the population,
and initialize bestIndex to the index of the best
individual and worstIndex to the index of the worst

individual;
3 while a pre-determined stopping condition is not
satisfied do
4 set the parameters, independently of one another,
to random values between 0.0 and 1.0;
5 for each individual in the population starting from
the first index do
6 create a new individual using the current
individual, the individual at bestIndex,
the individual at worstIndex, and the random
parameters;
7 if the new individual is at least as good as the
current individual then
8 replace the current individual with the new
individual;
9 if the current individual is better than the
individual at bestIndex then
10 update bestIndex to set it to the current
index;
11 end
12 if the current individual’s index is the same
as worstindex then
13 find the worst individual in the
population and set worstIndex to the
index of the worst individual;
14 end
15 end
16 end
17 end

bottom-to-top or any other fashion, as long as no index is
left out or considered more than once. Suppose, for ease of
discussion, we traverse the population in Fig. 1 sequentially
from the top (index #n) to the bottom (index 1).

A. TWO METRICS

Algorithms 1 and 2 show that a major component of
the complexity hinges on how, at each iteration, the new
individual fares against the existing individual (line 7 in
either algorithm). Clearly, costs must be incurred for any
replacement of individuals and the subsequent update of
the worst individual’s (and/or the best individual’s) index.
Jaya and SJaya being randomized algorithms, occurrences
of replacements and updates must be studied as stochastic
processes, which leads us to use the following two quanti-
ties as the main metrics for analysis: the expected number
of updates (in a generation) of the worst individual’s index,
and the corresponding expectation for the best individual’s
index. Clearly, the higher these expectations, the costlier the
algorithm.
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Ill. UPDATING SJaya’s WORST-OF-POPULATION INDEX
Because the population changes with time, the index of the
population’s worst individual is time-dependent; that is, the
worst individual’s index may change after every replacement
of the current (most recent) worst individual. Thus it is possi-
ble for the (current) worst individual to be encountered more
than once during the top-to-bottom scan in a given generation
of the population. The present analysis assumes that when
the worst individual is encountered, it is replaced with a new
(better or identical-fitness) individual with probability p.

Let us use the notation findWorst() to indicate the function
called to find the index of the worst individual in the pop-
ulation, and let worstIndex represent the index of the worst
individual at any point in the course of a run. Because a
simple linear scan of the population is enough to find the
worst fitness, the complexity of findWorst() is ©(n).

Let X be the (discrete) random variable representing the
total number of calls, in an entire generation, to the function
findWorst(). We are interested in finding the expected value
of X, because the higher this expectation, the higher the cost
of SJaya.

Suppose that at the beginning of a new generation, the
worst individual in the entire population is at index k, i.e.,
worstIndex is k, with 1 < k < n. During the course of the
generation, when this individual at index k is encountered,
it will either stay unaltered or be replaced with a new indi-
vidual. If it stays unchanged, worstIndex stays unaltered. If,
however, it undergoes replacement, we must find (by using a
call to findWorst()) which individual in the population is the
new worst (it is possible that the newly arrived individual at
index k, while better than the individual just replaced, turns
out to be the worst in the population at that point in time). The
new worst individual, as identified by the above-mentioned
call to findWorst(), must be

« cither in the already-traversed portion of the population
array (at an index between k and n, inclusive, in Fig. 1);

« orin the yet-to-be-traversed part of the population (at an
index h, with1 <h <k —1).

In the first case above, no further call to findWorst() is needed
for the rest of the generation, while in the second, the story
will repeat itself with the new worst individual, necessitating
a total of up to £ (i.e., at least zero but at most /) further calls
to findWorst() for the rest of the current generation.

Let W be the discrete random variable representing the
index of the worst individual in the population at a particular
iteration of a particular generation during the execution of a
run. Let us use ¢ to represent the iteration number (not to be
confused with the generation number for which we use the
notation g). Thus 1 < ¢t < nmand 1 < g < G. For the n
steps (iterations) in any generation of SJaya, the correspond-
ing variables are W(© (the index of the worst individual at
the start of a new generation), WD (the worst individual’s
index after the first iteration of the generation is over), and
so on. Thus W of a given generation is the same as W® of
the immediately following generation. At the very beginning,
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under the assumption that the initial population is randomly
generated, all slots of the array in Fig. 1 are equally likely to

hold the worst one (P stands for probability):
©) !
PWY =k|n)=- fork=1,2,---,n. 2)

n

Now, for the present analysis, we do not need P(W(’) =k|n)
as much as we need the conditional probability P(W{+D =

Jl wO = k; n), which, in the absence of any further informa-
tion, is assumed to be uniform:

1
PWD =j|w® =k;n) = -
n

for any (j, k) pair and any .  (3)

In the course of a generation, when the worst individual
is encountered, a new individual is produced and is com-
pared against the worst individual (what happens to the worst
individual is no different from what happens to every other
individual in the population at the given generation). Now,
if the new individual has a fitness that is better than or equal
to that of the worst individual, the former replaces the latter,
thereby necessitating the finding of which individual in the
post-replacement state is the (new) worst in the population.
This entails one call to findWorst(). Therefore, in the event
of the replacement of the worst individual, at least one call
must be made to findWorst(). Thus for an entire generation,
we have

PX >0|W? =kin) =p, )
PX=0WO=k;n)=1-p. (5)
Given W© = k for a certain generation (recall that one

generation equals n iterations), the variable X can assume
one of the following values for that (entire) generation:

0,1,2,---, k. Thus equation 4 can be written more specif-
ically as:
k
Y PX=m| WO =kin)=p. (6)
m=1

Assuming W(© = k, consider the top-to-bottom journey in
Fig. 1. The index k may be thought of as indicating the point
of demarcation, splitting the population into a top part of size
n — k + 1 and a bottom part of size k — 1. Given wO — g,
we can describe the result of a call to findWorst() as either an
“up” move (when the index returned by findWorst() is > k)
or a “down” move (when the returned index is < k). Thus,
given W© =k, the event X = I takes place when, starting at
index k, we either move ““up’ once, never to move anywhere
else, or move “down” once and do not move further:

PX =1WO =k >1;n)
n 1 k—l1
=pXZZ+pXZZX(1_p)
i=k i=1
p
=;(n+p—pk)- @)
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The event X = 2 occurs in one of the following two scenarios:
(a) starting from slot &, the first move is a “down’” move to
slot i € [1,k — 1], and the second one is a move ‘“up” to
any slot € [i, n]; (b) the first two moves are “down” each,
followed by no further movement:

PX =2|WO =k >2:n)
k—1 n

2

=%<k—1>(n+p—pz—k>. @®)
Similarly, X is 3 when we have either (a) a “‘down” move
from k to any location i € [2, k — 1], followed by a second
“down”” move from i to any location j € [1, i — 1], followed,
finally, by an “‘up” move from j to any location € [}, n]; or
(b) three successive “down’ moves followed by no further

movement:

PX =3|WO =k >3;:n)

=10y i-1 "
ZPZ —XPZ - Xp -
5 n ‘ n n
i=2 Jj=1 h=j
=10 i-1 [ j=1
+p —XPZ ;XPZ—X(I—P)
i=3 Jj=2 h=1
3
P pk
= —k-Dk -2 - —. 9
53k = 1 )(n+p 3> ©)

A. THE GENERAL CASE

For the general case X = m, where m € [1, n], we have

the following theorem (the product notation IT evaluates to

1 when the upper bound is less than the lower bound):
Theorem 1: Form > 1,

m—1
1 m A
T m—1) (5) <”+P_%> [1&-p. a0
' j=1

Proof: We present a proof by induction. The base cases
form =1, 2 and 3 are already established via equations 7, 8, 9.
The proof will be complete when, assuming the theorem is
true for m = g > 1, we show that it is true form = g + 1.

Starting from location &, any (g + 1)-move sequence com-
prises a first “down” move to any location i € [g, k — 1],
followed by a sequence of g further moves, with the first move
of the g-move sequence starting at location i. Thus

PX =q+1IW? =k=>q+1:n)

k—1
1
:pz<; xP(X=q|W(°>=izq;n)>. (an
i=q
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Substituting for P(X = q|W(0) =i > g; n) from the theorem
(equation 10) into the above equation, we have

PX=qg+1|WO=k>g+1;n)

= (’—’)q“ki <n+p—’ii)q]:[l<i—j>
G-\ & q) 1

k—1g—1

_ 1 p\at! .
= h (%) [(n+p>gﬂ(z—1)
k 1 q—1
]"[(z—ﬁ } (12)
q, =\ i
Now, it can be shown (after some algebra) that
k—1g—1
k—q) (k—1)!
S Ti-i= (‘;’3—(,) (13)
el qk—q)!
and
Ly kk = Dk =2)--(k = q)
[ i—) | = . (14
IZ; zE(z ) = (14)

Use of the two identities 13 and 14 in equation 12 followed
by some simplification yields

PX=q+1 WO =k>qg+1;n)

1 +1 k O\
= (S)q <n+ —’zrl)]_[(k —j). (19
. B
QE.D.

The expectation of X, given a particular W(® and a partic-
ular n, is now obtained as

EX|WO =k;n)

k
=Ox(l—p)+2(me(X=m|W(O)=kzm;n))

m=1

k
= Z(me(X =m| WY =k > m; n)). (16)

m=1

Finally, the expectation of X, given an n, is

E(X |n)

n
Z EX|WO =k; n)PW® =k |n)
k=1

1 n
- ZE(X [WO = k; n). (17)
"=

The probability P(X = m | WO =k > m; n) and hence
the expectation E(X | n) are monotone increasing in p, with
E(X | n) reaching its highest possible value when p = 1.
A closed-form expression for the maximum value of E(X | n)
can be obtained using some algebra:

Max E(X | n)
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TABLE 1. Maximum value (theoretical) of E(X|n).

n  E(X]n)
10 1.593742
50 1.691588

100 1.704813
500 1.715568

1500  1.717376
2500  1.717738
3500 1.717893
4500  1.717979
10000  1.718145

20000 1.718213
30000 1.718236
40000  1.718247

n k
1 kY (k=1
_212(2 — 1! nm< ! )(k m)')

<1 + 1) -1 (18)
n

Table 1 presents the analytically obtained maximum value
of E(X|n) for different values of n. Table 1 shows that the
maximum value is almost constant, regardless of the popula-
tion size. Given the existing body of research on population
sizing in evolutionary computation, we can say that the spread
of population sizes in Table 1 is wide enough to include
almost all cases of practical interest. Ignoring less-than-50
values of n as too small, we arrive at the rather remark-
able conclusion that the expected number of worst-index
updates per generation is 1.7 for almost any population
size. That the upper bound of the maximum of the expecta-
tion is 1.7 can be established analytically by using the fact

that
1 n
lim (1 + —) =e,
n—00 n

where e ~ 2.71828 is the Euler number.

B. EMPIRICAL RESULTS

1) TEST SUITE

The test suite (see Table 2), taken from [16], comprises five
popular benchmark functions (with well-known global opti-
mum) from the literature and one real-world problem for
which the global minimum is believed to be mathematically
intractable.

The five functions include convex and non-convex, and dif-
ferentiable and non-differentiable cases, presenting different
levels of problem difficulty involving different numbers of
local optima.

The real-world problem is the task of designing a proton
exchange membrane fuel cell (PEMFC) stack [22], [23], and
it involves constrained optimization, with the goal of min-
imizing the dollar cost of building the stack while meeting
specific practical requirements. The objective (cost) function
is defined [9], [16], [24], [25] on three variables Np, N,
Acenl and a number of pre-determined constants (we use the
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TABLE 3. Bounds of the design variables [24].

Variable Lower Bound Upper Bound
N 1 50

Np 1 50

Agenp (em?) 10 400

notational conventions of [16]):

Objective function = K X Np X Ns
+ Kaifr X ‘Vload,r - V]oad,mpp|
+Ka X Acenn + P, (19)

where N is the number of cells connected in series in each
group; N, is the number of groups connected in parallel; Acey
is the cell area; Vipad,r is the rated terminal voltage of the
stack; Vioad, mpp rEpresents the output voltage at the maximum
power point of the stack; Pjoad r is the rated output power of
the stack; Pload, max 1S the maximum output power of the stack;
K, Kaifr, Ko are pre-determined constants [9], [16] used to
adjust the relative importance of the different components of
the cost function; and P represents a penalty term [16] given
by

P 0 if Pload,max > Pload,r§ (20)

C(Pload,r - Pload,max) otherwise.

As in [16], Pioad,max and Vipad,mpp are obtained numerically
from the following equation by iterating over the load current
iload,d» Using a step size of ijpag¢ = 1 mA [16]:

i Np +i
Vst = Ns |:ENemst —Aln <—load,d/. P n,d>

10,d
+Bln (1 B iload,d./Np + in,d>
Limit,d
- (—”‘”‘"d +z‘n,d> ra], @)
NP

where Vy; is the stack voltage, ENemst 1S the Nernst e.m.f.,
A and B are constants known from electrochemistry, r; is
the area-specific resistance, and the i’s represent different
types of currents, or rather current densities (the subscript d
indicates density) in the cell [22], [26]. The lower and upper
bounds of Ns, Np and Ay, taken from [24], are shown in
Table 3, and the numerical values of the constants, taken
from [16], are given in Table 4.

2) RESULTS

We obtain empirical estimates of the probability p and the
expectation E(X|n) by aggregating (averaging) results from
multiple, independent runs of SJaya. Table 5 presents the
empirical average and the theoretical expectation for each of
the problems in the test-suite in Table 2. Each row in Table 5
corresponds to 500 runs, with each run executed for 20 gener-
ations with a specified population size. The theoretical expec-
tation is obtained by plugging in the average empirical p into

VOLUME 10, 2022

TABLE 4. PEMFC parameters and constants [16].

Parameter Value
‘/ioad,r 12V

Pload,r 200 W

Ky 0.5

Kaim 10

Ka 0.001

c 200

Ta 98.0x10~% KQ cm?
Uimit,d 129 mA/cm?
10,d 0.21 mA/cm?
in,d 1.26 mA/cm?
A 0.05V

B 0.08 V
ENernst 1.04 vV

TABLE 5. Empirical and theoretical E(X |n) (rounded at the 4th decimal
place).

Function n p Empirical £ Theoretical &/
Ackley 10 0.9230 1.701 1.4178
50 09977 2.0547 1.6855
100 0.9985 2.0786 1.7008
1000 0.9996 2.1632 1.7158
Rosenbrock 10 0.8740 1.5262 1.3115
50 09911 1.9779 1.6682
100 0.9956 2.0029 1.6931
1000 0.9988 2.0514 1.7137
Chung-Reynolds 10 09335 1.7408 1.4411
50  0.9987 2.0366 1.6882
100 0.9994 2.0508 1.7032
1000 1.0000 2.0984 1.7169
Step 10 0.9590 1.8392 1.4986
50  0.9994 2.0908 1.6900
100 0.9998 2.1297 1.7043
1000  1.0000 2.2024 1.7169
Goldstein-Price 10 0.5059 0.6554 0.6381
50  0.6286 0.9442 0.8677
100 0.6806 1.1151 0.9705
1000  0.7805 1.6763 1.1819
PEMFC 10 0.8950 1.6828 1.3565
50 0.8712 1.9334 1.3719
100 0.8611 2.0014 1.3571
1000  0.8709 2.2516 1.3881

equation 17. The empirical p value is obtained as the average
of 500 probabilities, each probability being calculated as a
relative frequency from a single run, the data for a single run
having been aggregated from the 20 generations comprising
the run. In other words, two levels of aggregating (averaging)
were implemented: aggregating over runs and aggregating
over generations within a single run. While the runs are inde-
pendent of one another, the generations that make up a single
run are not absolutely independent, having been created on
top of one another, as if in a chain or cascade. The empirical
expectation of X is obtained as the average (per generation per
run) number of times the worst individual in the population
needs to be found out.

While the empirical E agrees with its theoretical coun-
terpart in that both increase with increasing population size,
Table 5 shows that the empirical E is slightly higher than the
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corresponding theoretical value. This is explained by the fact
that, in practice,

1
POWD =j WO =kin)> — forj<k  (22)
n

where the indexing scheme is as in Figure 1. This non-
uniform distribution is difficult to obtain analytically. It can,
of course, be qualitatively argued that in a top-to-bottom pro-
cessing of the population elements, the top part (comprising
indicesn,n—1,--- , k; 1 < k < n; see Figure 1) gets updated
before the bottom part does, and since an update never results
in a worse fitness, the probability of the worst individual
being found in the bottom part is higher than in the top part
at any point during the course of a generation. An empirical
corroboration of this can be seen in the matrix of P(W X0 —
jlweuren — k) values in Table 6, which is obtained by
averaging (in a relative-frequency sense) 5000 independent
runs of SJaya on the Chung-Reynolds function (Table 2) of
10 variables, where each run used 10 generations of a popu-
lation of size 10. The matrix in Table 6, which, clearly, is a
stochastic matrix (each row-sum is unity, ignoring floating-
point errors), shows that for each row, the entries to the left
of the diagonal element are smaller than those to the right of
the diagonal element.

As a reference, the very first or initial (before any replace-
ment has taken place) distribution of the worstIndex, obtained
from these 5000 runs, is presented in Table 7; the ten values
follow an approximately uniform distribution, as is only to be
expected.

IV. UPDATING Slaya’s BEST-OF-POPULATION INDEX
We will now obtain the expected best-update count both
empirically and theoretically.

A knowledge of the expected number of updates, in a
generation, of the best-of-population index is required for
an analysis of SJaya. Of course, to derive this expectation,
we need the underlying (discrete) probability distribution.
To compute the probability that a new individual, created in
line 6 of Algorithm 1 or Algorithm 2, will replace the exist-
ing individual, we need, among other pieces of information,
a knowledge of the (typically continuous) distribution of the
fitness landscape. Now, the fitness distribution is impossi-
ble to know (in advance), except in trivial cases. A generic
analysis, however, is possible if we are willing to make an
assumption about the nature of this distribution.

An update of the best index is needed whenever the newly
minted individual has a fitness better than that of the current
population-best. During the course of a run, the expected
value of the population-best fitness at the beginning of a
fresh generation can be modeled as the expectation of the
best (either maximum or minimum, depending on the appli-
cation) of n i.i.d. samples drawn from a given fitness distribu-
tion, with n representing the population size. (The population
size is assumed not to change from generation to genera-
tion, of course.) We assume maximization without loss of
generality.
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Let us use f for probability density function (pdf) and F
for cumulative distribution function (cdf). The maximum of
n ii.d. samples xi, - - - , x, of a continuous random variable
X is another (continuous) random variable; call it Xy,,x. Then
the expected value of X« is given by

o0

EXmax | n, Fx) = /

X=—00

X e @ | 1, Fx) dx - (23)

where
Sman @& | 1, Fx) =1 (Fx ()" fx(x) (24)
is the pdf of Xpax, and
Fxpe (X | 1, Fx) = P(Xmax < X) = (Fx(x))"  (25)
is the cdf of Xynax, such that
P(x < Xmax <x+dx | n, Fx) = fx,..(x | n, Fx) dx, (26)

where
X

Fx(x) =PX <x) = / Jx(x) dx 27)

X=—00
is the cdf of X, with fx(x) representing its pdf.

To derive the expected number of updates, over a com-
plete generation, of the population-best member, we begin
by defining a discrete (binary) random variable Y; ¢., r rep-
resenting whether or not an update is made at iteration i €

{1,---, n} of generation g € {1, --- , G}:
1 if X > E(X, i — 1, F
Vo = { i > EQus [ 9141 = 1. F). )
0 otherwise,

with the initial generation (g = 0) assumed to have filled the
population for the very first time. In other words, Y; ¢.  is
the indicator variable 1x - £ (X, | gn+i—1,Fx)- The expectation
of Y; ., F is given by

E(Yi,g;n,F) =PX >EXmax | gn+i—1,Fx)) (29

If Y, r denotes a random variable representing the total
number of updates in a given generation g, we have

n
Yonr =Y YignF, (30)
i=1

and the expectation of Y., r is then obtained as

n
E(Yg;n,F) =E (Z Yi,g;n,F)
i=1
n
= ZE(Yi,g;n,F)
i=1

n
=D PX > EQmax | gn+i—1.Fx)) (1)
i=1
where linearity of expectation has been used (the linearity

is applicable regardless of whether or not the Y; ., r’s are
independent).
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TABLE 6. Transition matrix (empirical) of the index of the worst individual.

Next —
10 9 8 7

Current 10 0.042 0.112  0.123  0.108
1 9 0.089 0.047 0.118 0.113
8 0.098 0.084 0.042 0.125

7 0.099 0.095 0.096 0.045

6 0.102 0.096 0.092 0.092

5 0.1 0.099  0.097 0.09

4 0.11 0.103  0.105 0.098

3 0.101 0.112  0.104 0.097

2 0.113 0.108 0.105 0.102

1 0.114 0.116 0.108 0.106

TABLE 7. Initial empirical distribution of worstindex (n = 10).

Index  Probability
10 0.1024
9 0.0954
8 0.1012
7 0.0970
6 0.0976
5 0.0984
4 0.0972
3 0.1030
2 0.1040
1 0.1038

From the definition of Xy, it follows that for n, > nq,

E(Xmax | n2, Fx) > E(Xmax | m1, Fx), (32)
which implies
P(X > E(Xmax | n2, Fx)) <P(X > EXmax | m1, Fx)). (33)

Thus we have

EXmax | gon+i—1,Fx) > EXmax | g1in+1i— 1, Fx)

forgr > g1 >1 (34)
or equivalently,
E(Y;gy:nr) < E(Yjg;nr)forgs > g1 > 1. (35)
Again
EXmax | gn+i2 — 1, Fx) > E(Xmax | gn+ i1 — 1, Fx)
forip; > i1, (36)
or equivalently,
E(Yiy g:nF) < E(Yj) g:nF) forip > iy. 37
Therefore
EXmax | (¢ + Dn, Fx) > E(Xmax | gn+n—1,Fx)  (38)

which shows that the E(Y; g, ) value corresponding to the
last iteration of any generation is strictly greater than that cor-
responding to the first iteration of the immediately following

generation. Inequalities 34-38 lead to
E(Ygz;n,F) < E(Ygl;n,F) for g > 81 = 1. (39)
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6 5 4 3 2 1
0.111  0.106 0.101  0.096 0.102 0.098
0.117 0.105 0.105 0.104 0.103  0.099
0.116 0.113 0.108  0.11 0.104 0.1
0.113  0.121  0.118 0.104 0.105 0.105
0.048 0.123 0.111 0.119 0.11  0.109
0.092 0.041 0.128 0.119 0.121 0.114
0.096 0.093 0.04 0.125 0.112 0.119
0.102 0.101 0.093 0.048 0.126 0.115
0.108 0.095 0.096 0.098 0.046 0.129
0.106  0.105 0.101  0.099 0.099 0.046

Note that the above inequality holds for any Fy (or equiva-
lently, for any fx) and for any n. Thus we have proved the
following theorem:

Theorem 2: For any problem, in any run, the expected
generation-wise best-update count decreases monotonically
with generations, regardless of the population size.

Let

G
Y = é > EXgnr) (40)
g=1

stand for the average (over all the generations in a run) of
the expected generation-wise best-update counts. Then The-
orem 2 implies that ¥ can be made arbitrarily small by making
the total number of generations G arbitrarily large, a fact
that allows us to argue that the number of best-updates per
generation (or per run) should not be a concern, so far as
computational costs are considered. We now consider four
particular distributions for which we establish upper bounds
on E(Y1.,,F); these four cases are potential candidates for
approximations to the true (unknown) distributions.

A. SPECIAL CASES
1) THE UNIFORM RANDOM DISTRIBUTION
For the Unif(a, b) distribution, the density is given by

1
fxx)=—— b>a, xc¢€la,b] 41
b—a
and the corresponding cdf is
xX—a
Fx(x) = ) (42)
b—a
which, when used in equation 23, gives
. a—+ bn
E(Xmax | n, Unify) = ———, (43)
n+1
from which we get
1
P(X > E(Xmax | n, Unify)) = ——. (44)
n+1

This expression allows us to obtain E(Y1;, unit) from equa-
tion 31 as

n—1
1
E(Y1;,unif) = Z w1
j=0
= H2n - Hn (45)
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where H,, is the n-th harmonic number [27]:

Hn=1+1+l+"'+l- (46)
2 3 n
It is not difficult to prove from equation 45 that E(Y1.,, unif)
is monotone increasing in .
The case corresponding to an arbitrarily large n can be
studied by using the fact [27] that

lim (H, —Inn) =y, 47
n—oo

where y &~ 0.5772 is the Euler-Mascheroni constant. Luckily,
an upper bound on E(Y1., unif) can be obtained using the
following property (easily obtained from equation 47):

lim (Hy, — Hy) = In2. (48)
n—oo
Thus, for any n, no matter how large, and any a and b
E(Y1:n,unit) < In2 = 0.6931. (49)

The minimum value of the expectation is 1/2 and corresponds
to n = 1 (recall that the mean of the Unif(a.b) distribution is
(a + b)/2 and that the area under the pdf box to the right of
(a+b)/2is 1/2).

Theoretical expectations of Y] values corresponding to dif-
ferent population sizes are presented in Table 8 where the
corresponding values for three other distributions are also
shown.

2) THE EXPONENTIAL DISTRIBUTION
For the exponential distribution, the pdf and cdf are given by

fx(x) =1 A >0, x € [0, +00) (50)

and
Fx(x)=1—¢ ™ (51)

which lead to

o0

E(Xmax | n, Expy) :/ x - nhe (1 — eyl gy

x=0

1 © —v —vyn—1
= v-ne (1 —e™") dv (52)
A v=0

An explicit evaluation of the above integral is rather involved;
an easier approach is to use, for example, the moment generat-
ing function of X« (as in [28]) and obtain the expectation of
Xmax from the derivative of the moment generating function
evaluated at zero. This leads to

EXmax | 1, EXPX)

= —-H, (53)
We then have
P(X > E(Xmax | n, Bxpy)) = e ¥ iHn — ¢=Hi (54
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from which we obtain (by equation 31)
n—1
E(Yingp) = Y e (55)
j=0

Now, E(Y1.,,Exp) is monotone non-decreasing in n. Thus the
smallest value of this expectation occurs at n = 1, and that
value, from equation 55, is 1/e or 0.3679, a value that is
corroborated by the fact that the mean of the exponential
distribution is 1/A and that the area under the pdf to the right
of the point 1/ is e >/ or 1/e.

From equation 55, we have

n—1

lim E(Y1.Exp) = lim § e~ IntntD—y
n—00 n—00 4 0
]:

1 =
= — lim -
eY n—oo —y n+j

1 1
LI <H2n S Hy 4 _)
2n

eV n—oo
1
= —1In2 byeq.48 (56)
ey
Thus, for any #n and any A,
In2
E(Yy., Exp) < — =10.3892. 57
in, o

Table 8 shows how the theoretical E(Y1;, gxp) varies with n,
reaching the limit as n approaches infinity.

3) THE NORMAL DISTRIBUTION
The normal distribution N (1, o'2), with mean x and variance
o2, and density

12 e_%(%)z; o >0,
o~2m

fxx) =

x € (—o00, +00)
(58)

admits of no closed-form expression for E(Xmax | 1, Fx),
and the integration in equation 23 must be evaluated numer-
ically. We find E(Y1.n Norm) numerically, from equation 31
(using numerical routines from Python’s scipy [29], [30]
and also from Mathematica [31]). The numerically obtained
Y1 values corresponding to different population sizes are pre-
sented in Table 8. Note that Y; for the Gaussian is monotone
non-increasing with n. Thus the maximum possible value of
E(Y1.n,Norm) 1s obtained at the smallest possible value of n,
namely 1, and the corresponding E (Xmax) is clearly the mean,
1, of the distribution, which, because of symmetry (the mean
equals the median), causes P(X > E(Xmax | 1, Normy)) to be
0.5, leading to E(Y1:1 Norm) = 0.5. Thus, for any n, no matter
how large, and any u and o, E(Y1.5 Norm) 1S upper-bounded
by

E(Yl;n,Norm) =< 0.5. (59)

The limit of the expectation, as n — 00, cannot be obtained
analytically.
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4) THE LOGISTIC DISTRIBUTION

The logistic distribution offers some similarity (e.g., uni-
modality, symmetry) to the normal. That, coupled with the
fact that it is amenable to analytical treatment, affords an
alternative to the normal distribution for modeling purposes.
For simplicity, let us consider location and scale parameters
of 0 and 1, respectively. This does not cause any loss of
generality, because any logistic variable X with location a and
scale s > 0 can be transformed to another logistic variable Z:

z=2"¢ (60)
s
The cdf and pdf of the logistic distribution are given by
Fx(x) = 1+7; X € (—o0, +00) (61)
and
%
Jx () = Fx(x)(1 — Fx(x)) = A2 (62)
Thus
E(Xmax | 1, Logisticy) = / - T e (63)
oo (1 4 e X t]

from which an explicit expression for the expected Xpax can
be obtained by the moment-generating-function technique
(see, e.g., [28]):

E(Xmax | n, Logisticy) = H,_1, (64)
with H( taken to be zero (recall that n > 1). Then
P(X > E(Xmax | n, Logisticy)) = 1_‘:1—';,;1_1 (65)

and, by equation 31,

n—1

E(Yl ;n,Logistic) = Z

j=0

e Hntj-1
T (66)

E(Y1.,Logistic) is monotone non-increasing in n. Thus the
largest value of the expectation occurs at n = 1, and that
expectation is obtained from equation 66 as 0.5, a value
that is corroborated by the symmetric nature of the distri-
bution. Now, using the large-n approximation to H,, namely
lim;,—, oo H;, = Inn + y (recall equation 47), we have

nml L —In(j——y
lim E(Yl;n,Logistic) = lim

n—>00 n—00 1 + ¢~ In(r+j—D—y
=0
1 = 1
= — lim _—
eY n—oo 4 n—|—]—1+e—)’
j=0
= —1In2
ev
= 0.3892. (67)

VOLUME 10, 2022

TABLE 8. Theoretical growth (or decay) of E(Yy,, ¢) with n.

n E(Y1n,r)
F=Exp(\) F =Loghtc(0) F=N(uo?) F=Uni(a,b)
1 0.3679 0.5 0.5 0.5

10 0.3889 0.4016 0.4451 0.6688
50 0.3892 0.3916 0.4261 0.6882
100 0.3892 0.3904 0.4212 0.6907
500 0.3892 0.3894 0.4136 0.6926
5000 0.3892 0.3892 0.4074 0.6931
10000 0.3892 0.3892 0.4061 0.6931
[e'S) 0.3892 0.3892 — 0.6931

TABLE 9. Eempir(Yg;n) for g = 1,10, 20 (number of runs = 500).

Function " GenT Ee&“}i‘ﬁ%’n)Gen 20— Hempir(Yn)
Ackley 0 0016 048% 0452 05276
50 0488 0278  0.184 0.2882
100 0352 0216  0.182 0.2261
1000 0130 0156  0.122 0.1495
Rosenbrock 10 0650 0396  0.404 0.445
50 0254 0230  0.186 0.2275
100 0206 0.168  0.112 0.1763
1000 0.052  0.104  0.090 0.0868
Chung-Reynolds 10 0854 046 049 0.5353
50 0418 0232 0.192 0.2852
100 0300 0.174  0.124 0.2148
1000 0.084  0.146  0.148 0.1386
Step 10 0904 0506 0516 0.5858
50 0468 0276 0236 03116
100 0400 0222  0.154 0.2614
1000 0.148 0204  0.106 0.1836
Goldstein-Price 10 0600 0170 0076 0.208
50 0610 0.038 0058 0.196
100 0620 0.142  0.009 0.1942
1000 0588 0150  0.074 0.1802
PEMFC 10 1132 0724 0680 0.7421
50 1.608 0436 0428 0.5897
100 1572 0390  0.240 0.5548
1000 1566  0.152  0.164 0.4539

B. EMPIRICAL RESULTS

Empirical values of the average counts of best-updates are
obtained by aggregating independent SJaya runs for each of
the test problems. For a population size of n, the empirical
expectation (average) at a given generation g is produced
from an ensemble of r runs as:

1 r
Eempir(Ygn) = — ) Ne(g) (68)
k=1

where N (g) is the number (an integral count > 0) of updates
of the best-index at generation g in run k. The corresponding
average (over all generations) is obtained as

G
Eempir(Yn) = é ZEempir(Y ;n)- (69)

g=1
In the above two equations, g > 1 (g = O represents the
initial population). Table 9 shows, for different population
sizes, Eempir(Yy,) values as well as how Eeppir(Ye:,) changes
with generations (r = 500 and G = 20 in this table). The runs

used in this table are the same as the ones used in Table 5.
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V. COMPUTATIONAL COSTS

While the Jaya algorithm finds the best-of-population mem-
ber and the worst-of-population member exactly once per
generation, SJaya does this on a continuous, as-needed basis.
The logic for finding the best (or worst) of a given number
of elements can be implemented as a simple sequential scan
of the elements, consisting of two basic operations for each
element: a comparison followed, conditionally, by an assign-
ment. We now find the costs of these two types of operations.

A. COMPARISON AND ASSIGNMENT OPERATIONS FOR
BEST-INDEX UPDATE IN Slaya

The total number of comparison operations needed for updat-
ing the best index in an entire generation of SJaya (call this
number ¢) is equal to the number of times line 9 in Algo-
rithm 2 is executed (i.e., the condition in line 9 is tested) per
generation (this number is the same as the number of times
the condition in line 7 evaluates to TRUE in a generation).
We need to find the expected value of c.

We can model the new individual being at least as good as
the current individual (line 7) by the event X, > X|, where
X1 and X are two independent random samples drawn from
the same distribution.

Defining a random variable

Z = lyox,, (70)
we have
5 {1 with probability P(X» > X)) an
0  with probability 1 — P(X; > X1).
Thus
E(Z) = PX2 = X)), (72)

and the expectation of the number of times the condition in
line 7 evaluates to TRUE in a generation is given by

E(c) = E (Z z,-)
i=1

> EZ) (by linearity)
i=1
= nEQ2) (73)

where the last step follows from the fact that the events at the
n slots of the population are governed by the same underlying
distribution. Thus

E(c) =nP(X) = X2), (74)

which, by the law of total probability, gives

E(c)=n /7 PX1 = X31Xa = x) fx, (x) dx

o
=n /
xX=—00

=0 [ Fwmwd

P(X1 < x)fx,(x) dx
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=n /_ Fx (x) fx(x) dx

n
=3 (75)

Next, the total number of assignment operations (call it a)
needed for updating the best index in an entire generation
of SJaya is equal to the number of times line 10 is executed
per generation in Algorithm 2. The expectation of this count,
E(a), was already derived in Section IV; E(a) can be taken to
be either the generation-specific E(Yy., ) or the average Y.
This expectation is obviously a function of the population size
n, and Section I'V obtained the maximum value of this expec-
tation (corresponding to either n = 1 or n — oo, depending
on the nature of the distribution) for specific distributions,
as follows:

In2 s
o for exponential distribution
Max. of E(a) = In2  for uniform distribution (76)
0.5 for normal distribution

0.5 for logistic distribution.

It is difficult to obtain a closed-form analytical expression of
this expectation for arbitrary distributions; however, by Theo-
rem 2, this expectation, when averaged over a number of gen-
erations, goes down as the number of generations increases,
regardless of the underlying distribution.

B. COMPARISON AND ASSIGNMENT OPERATIONS FOR
FINDING THE BEST/WORST IN THE NAIVE APPROACH
The naive approach to sequentially scanning an array for
finding the best (or worst) element entails exactly n (orn— 1,
depending on the implementation) comparisons:

Cnaive = N. )

The number of assignments, apaive, hOwever, is not determin-
istic. Assuming the array index runs from 1 to n, the number
of assignments can go from a minimum of 1 to a maximum
of k (or from 1 to n — k + 1, depending on the implementa-
tion), inclusive, when the best (or worst) element is located
at index k. The average-case analysis can be performed by
noting that when the numbers are uniformly distributed in the
array, the j-th element is greater (smaller) than the preceding
j — 1 elements with probability 1/j, independently for all
j=1,---,n Thus
|
E(anaive) = Z - =H, (78)

=1

C. COMPLEXITY OF Slaya

Given the analyses of the preceding sections, it is now
straightforward to obtain the complexity of SJaya. The cost
of the initialization step (line 1 in Algorithm 2) is n x ¢(d),
where ¢(d) is the cost of evaluating the fitness (objective
function) of a given problem of d dimensions. The cost of
finding the best/worst member in the entire population (line
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2) 18 E(cpaive) X Ce+E (anaive) X C, or n x Co+H,, x C,, where
C. and C, are the cost of a single comparison and a single
assignment, respectively. Setting the random parameters for
the solution vector (line 4) has a cost of C, x d, where C,
is a constant. Creating a single new individual (line 6) incurs
a cost of Cop x d + ¢(d), where C,p represents the cost per
dimension of applying the algebraic operations involved in
the creation of a new individual. Each check for the superior-
ity of the new individual (line 7) costs C,, and there are n such
checks in a generation. The replacement at line 8 takes place
E(c) times in a whole generation (recall that the condition at
line 7 is true these many times on average in a generation).
Again, the condition in line 9 is tested E(c) times in a whole
generation. And, as already shown in Sec. V-A, the update
in line 10 occurs E(a) times per generation. The condition in
line 12 is tested E(c) times in a generation, and finding the
worst individual in line 13 is needed a maximum of 1.7 times
per generation. The total cost of a single run is thus

n(d) +201Cc + HyCa) + G| Cpd + n(Copd + $(d)
+1 Cet (1/2) Ca+ (0/2) Ce+ E(@ Ca + (n/2) Ce
+1.7(C, + ana)].

D. COMPLEXITY OF Jaya

The complexity of Jaya can now be derived easily. Most of
the calculations carry over from those of SJaya. Noting that
the replacement of the existing individual with the new one
(in line 8 of Algorithm 1) takes place E(c) times in an entire
generation, the complexity is given by

n9(d) + G| 201C + HyCo) + Cypd + n(Copd + $(d))

+nCo+(n)2) ca].

E. COST DIFFERENCE BETWEEN SJaya AND Jaya

Using ¢ as an upper bound of a, and with E(c) = n/2,
we obtain the following estimate of an upper bound of the
additional cost incurred by SJaya over Jaya per generation:

additional cost < g(ca +2C,.) — 0.3(nC,. + H,C,)
~ (0.5n — 0.31nn — 0.17316)C, + 0.7 nC,
for large n. 79)

This additional cost is not significant compared to the total
cost of evaluating the fitnesses of the n population members
in a generation. If, in light of the analysis in Sec. IV, a more
realistic value of E(a) < n is assumed, the additional cost
becomes even lower.

VI. CONCLUSION

Stochastic models were developed for Jaya and its recent
improvement SJaya, and a detailed theoretical analysis pre-
sented. An interesting fact revealed by the analysis is that
the maximum expected number of worst-index updates per
generation for SJaya is upper-bounded by e — 1, or 1.7,
for any population size. Furthermore, regardless of the pop-
ulation size, the expectation of the number of best-index
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updates per generation decreases monotonically with gener-
ations. We derived exact upper bounds of the expected num-
ber of best-index updates when the underlying distribution
is exponential, logistic, normal or uniform. Asymptotics of
expected best-update counts were obtained for exponential,
logistic and uniform distributions. Limitations of the analyt-
ical approach and the need to resort on occasion to numer-
ical techniques were pointed out. The model allowed us to
obtain computational complexities of the algorithms, which
showed that the performance improvement afforded by SJaya
over Jaya incurs only a modest additional cost. Empirical
results on benchmark test problems were obtained and found
to corroborate the general trends of the theoretical findings.
To our knowledge, this is the first theoretical analysis of this
popular family of heuristics. The analytical approach devel-
oped here has the potential to be extended to the analysis of
other types of evolutionary algorithms. The insights provided
by the models should help design new, improved population-
based search / optimization heuristics.
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NOMENCLATURE
Subscripted and superscripted versions of the same symbol
are not included in this list; the symbol itself is listed once.

Also excluded are the notations used in the fuel cell problem
(Sec. I1I-B1).

Symbol Meaning

a Parameter of the uniform density; also,
number of assignment operations.

b Parameter of the uniform density.

c Number of comparison operations.

C Computational cost associated with a
single application of an operation (dif-
ferent subscripts are used for different
types of cost).

d Problem dimensions.

e The Euler constant.

E Expectation.

fO Fitness (objective) function.

x0O Probability density function of random
variable X.

Fx( Cumulative distribution function of ran-
dom variable X.

G Number of generations.

H, n-th harmonic number.

g h,i,j,k,m,q Indices.

n Population size.

p Worst-replacement probability.

P Probability.
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Q=

Q=

¢0

Random coefficients used in
Jaya/SJaya; also, number of runs.

The real domain.

Number of iterations.

Index of the worst individual.

Problem parameter vector (chromo-
some); also, an instance (observation) of
a random variable.

Optimal problem parameter vector.
Random variable (discrete) for the num-
ber of times the worst individual needs to
be found in a generation; also, a generic
random variable (continuous).

Random variable (discrete) for the num-
ber of updates of best-index.

Average expected generation-wise best-
update count.

Random variable (used in different con-
texts).

Euler-Mascheroni constant.

Asymptotic computational complexity
notation.

Parameter of the exponential density.
Mean of the normal density.

Standard deviation of the normal den-
sity.

Cost of evaluating the objective func-
tion.
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