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ABSTRACT Cloud Service Providers are speedily becoming the target platform for scientific workflow
computations due to the massive possible and flexible pay-as-you-go pricing model. Workflow allocation
problem in cloud systems is considered NP-hard. A heterogeneous IaaS cloud could be fully effective
if the allocation method provides an efficient mapping between virtual machines (VMs) and workflow
applications demanding execution. First, we model multiple workflow allocation problem in the cloud
environment. Then, we propose a levelizedmultiple workflow allocation strategywith taskmerging (LMWS-
TM) to optimize turnaround time for multiple workflow applications in the Infrastructure as a Service
(IaaS) cloud environment to achieve better performance. The task merging scheme is incorporated into
workflows after partitioning and prior to allocation to reduce inter-task communication share and the
total number of depth levels for improving the overall completion time. Moreover, it considers inter-task
communication and inter-machine distance for estimating communication cost share among tasks on the
schedule generated. Furthermore, the scheme is capable enough to use simple and flexible level attributes
to tackle precedence constraints. Afterward, we conducted an experimental study to evaluate LMWS-TM
by comparative performance analysis with its peers, namely SLBBS, DLS, and HEFT, on quality of service
(QoS) parameters, namely, turnaround time, system utilization, flow time, and response time. The study
reveals the superior performance of LMWS-TM among its considered peers in almost all the cases for almost
all considered parameters under investigation. Finally, we performed statistical testing to test the significance
level using SPSS 20, confirming the hypothesis drawn in the experimental study.

INDEX TERMS Cloud computing, IaaS cloud environment, multiple workflow allocation, task merging,
levelized DAG scheduling, turnaround time.

I. INTRODUCTION
Infrastructure as a Service (IaaS) cloud system consists of
heterogeneous processing resources interconnected via a
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high-speed network, capable of matching the requirements of
industrial and scientific distributed applications on-demand
through collaborative sharing. These systems facilitate shar-
ing of heterogeneous geographically distributed resources
in a dynamic environment and self-aggregation depending
on cost, availability, capability, performance, and customer
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demands [1], [2]. Here, the first and foremost concern
is allocating compute-intensive resources over workflow
applications to optimize the quality of service (QoS) parame-
ters. These facilities are provided on a rental basis and are also
referred to as the pay-per-use model. Cloud Service Providers
(CSP) features for workflow computations include elasticity,
fault tolerance, reliability, and flexible access to virtualized
resources.

Workflow allocation in the cloud system has been con-
sidered the problem of allocation of workflow tasks on vir-
tual resources with matching workflow’s requirements with
the effective allocation of parallel executable portion in the
workflow over the available hardware parallelism [3], [4].
The allocation of workflow applications with precedence
constraints has been considered to be NP-Hard [5]. Over
the past years, the workflow allocation problem has been
extensively studied, focusing on heterogeneous distributed
systems like clusters, cloud, and their successor systems
[6], [7]. The workflow applications consist of cooperative
tasks modeled using Direct Acyclic Graph (DAG). Here,
the terms DAG and workflow are used interchangeably.
These applications include web service workflows, scien-
tific workflows, and big data processing workflows, i.e.,
Map Reduce from Google, Dryad from Microsoft, etc. [8],
[9], [10], [11]. The scientific workflow management systems
manage the deployment of scientific workflows onto virtual-
ized distributed resources. Currently, an example of scientific
workflow technology is the detection of gravitational waves
by the LIGO project [12]. Workflow allocation is required
to consider the heterogeneity of the computing power of
machines and communication edges. An important issue in
workflow allocation is how to rank the tasks in the DAG.
The task rank is used as its priority in the allocation and
computes an order of execution of workflow tasks to preserve
the precedence constraints. Once the tasks are ranked, the
task to resource assignment can be found to minimize the
schedule length or other QoS parameters. On the other hand,
the level attribute (lowest level gets the highest priority) is
also used to assign priorities to tasks in the workflow to man-
age precedence orders in execution [3], [4], [13], [14], [15].
Tasks at the same level are parallel executable portions of
workflow.

The multiple workflows allocation is used to improve the
exploitation of the overall parallelism resulting in optimized
parameters [3], [16]. Multiple workflow allocation aims to
map a batch of merged workflows on suitable heterogeneous
virtual resources with precedence and batch constraints so
that the processing can optimize demanded parameters as
per the workflow user’s specifications. The challenges of
multiple workflow allocation in the cloud environment are
workload heterogeneity, performance variability, QoS diver-
sity, fairness, and priority [17]. Some multiple application
workflows need to be allocated onto the virtual resources.
One of the straightforward methods for this is to merge
multiple workflows and then execute them like a single
workflow allocation. The two allocation policies and four

composition approaches for merging have been presented
in [18]. The merge-based allocation approaches are able to
utilize the static allocation benefits. But multiple workflows
are allocated immediately as per their arrival, and results are
finally combined in the dynamic environment. Other multiple
workflow allocation models use the level attribute to assign
priorities, and managing precedence constraints to optimize
one or more QoS parameters has also been proposed in the lit-
erature [16], [19], [20], [21], [22]. In this case, workflows are
grouped according to the depth level, followed by mapping
onto resources by exploiting the parallel executable tasks at
the same depth level within the batch of DAGs.

This paper proposes a levelized multiple workflow allo-
cation strategy with task merging (LMWS-TM) to optimize
turnaround time for multiple workflows with precedence
constraints represented by a DAG in the IaaS cloud envi-
ronment. The turnaround time of a job submitted to a cloud
environment is a very important QoS parameter that directly
affects customer satisfaction, providers’ reputation, energy
consumption, monetary cost, and overall business. Lower
turnaround time is desirable and results in better performance
on other parameters too. The proposed strategy combines
the benefits of both widely adopted approaches, such as
levelized list-based scheduling and task merging approaches.
LMWS-TM is capable enough to use simple and flexible level
attributes to tackle precedence constraints. Level attribute
provides the order of execution to tasks in the workflows by
assigning them execution priorities (highest priorities are for
the lowest level and vice versa). Levelized list-based allo-
cation approach minimizes the actual execution time of the
workflows submitted for execution. While the task merging
scheme is employed to reduce inter-task communication cost
share and the total number of depth levels to enhance overall
completion time. A task merging scheme is incorporated into
the batch of workflows after partitioning and prior to allo-
cation. LMWS-TM considers the inter-task communication
and the inter-machine distances to estimate communication
costs between any pair of tasks and VMs. The task merging
scheme is incorporated in SLBBS [23], and the allocation
pattern is also modified. An experimental study has been
carried out to measure the effect of the task merging scheme
on SLBBS. A comparative analysis has been done with its
peers, namely SLBBS, DLS, and HEFT, on various cases for
performance evaluation of LMWS-TM on quality of service
(QoS) parameters namely, turnaround time, system utiliza-
tion, flow time, and response time. Further, statistical analysis
has been performed to confirm the results and significance
level of the simulation study. In summary, LMWS-TM has
been proposed for possible improvement on the performance
parameters over SLBBS [23]. The proposed strategy has been
designed with the following advantages and contributions,
listed as follows
• Many methods exploit the parallel executable portion
available only at the workflow level. Due to multiple
workflows and levelized partition, LMWS-TM exploits
parallelism at both workflow and task levels.
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• Many models in the literature used ranking methods for
preserving the precedence constraints. But the proposed
model uses the level attribute for the purpose. The level
attribute is the most convenient and flexible way to
preserve precedence constraints in workflows.

• The proposed strategy divides the workflows into parti-
tions as accordance to depth level. Slicing all workflows
according to depth level minimizes the response time
as all workflows start their execution almost in the first
depth level. So, LMWS-TM is also quite suited for
applications for interactive users.

• The merging phase works as pre-processing on the
workflows, making them quite suitable for allocation for
possible improvement.

• Further, in the task merging phase, tasks from higher
depth levels are shifted and merged with the tasks of
lower depth levels. This process will reduce the total
number of depth levels in the batch. Consequently, the
considered performance parameters are expected to be
improved.

• Merging tasks also minimizes the communication cost
share on the allocation of the workflows because more
tasks are combined into one and allocated on a single
suitable virtual machine resulting in the communication
share among them being zero. Again, improvement is
expected.

• Experimental evaluation and statistical analysis are
conducted to evaluate the proposed LMWS-TM
strategy.

The rest of the paper is as follows: Section II presents
some related work from the domain. Section III explains the
proposed model by presenting various notions used, cloud
framework, mathematical models, problem formulation with
parameter estimation, an algorithm with illustration, motiva-
tions, and time complexity. The experimental study to eval-
uate the comparative performance of LMWS-TM has been
presented in Section IV. Also, in Section IV, a statistical anal-
ysis has been conducted to test the validity of the hypothesis
developed. The paper concludes the work with some future
directions in Section V.

II. RELATED WORK
Workflow allocation problem has been considered an
NP-hard due to the heterogeneity and dynamic nature of
applications, resources, and communication links in an IaaS
cloud environment with the requirement of proper secu-
rity of transferred information and its execution on the dis-
tributed resources [5]. Therefore, many workflow allocation
methods have been developed to solve the problem in the
literature using various approaches. These models can be
categorized into a single workflow and multi-workflow allo-
cationmodels. Further, Singleworkflowmodels are classified
into static workflow allocation models [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47] and dynamic workflow allocation
models [34], [35], [36], [37]. Static workflow allocation is

done at compile time. Here, all information regarding the task
is known in advance, such as data dependencies among the
tasks, execution time, etc. It is beneficial in many research
areas such as simulation studies, post-mortem analyses, and
designing a system. One of the essential advantages of this
approach is that if a schedule is prepared for allocation,
one can ensure that all limits will be guaranteed. Dynamic
workflow allocation takes the decisions at run time. As soon
as new tasks arrive, the scheduler dynamically decides the
possibility of allocating these new tasks without exposing the
assurances provided. The static single workflow allocation
approach can be extended into list scheduling [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [39], clustering [40],
[41], [42], [43], [44], [45], [46], [47], etc.

In a list-based heuristic, a list of all tasks is prepared
from the given DAG according to their priorities. These
heuristics have two phases, namely the task priority phase
and processor selection phase. In the first phase, the tasks
are topologically sorted using rank or level attributes. And
in the second phase, the best processor to reduce the overall
completion time is selected. There are some states of art list
scheduling heuristics Viz. Earliest Time First (ETF) [25],
Levelized Min Time (LMT) [39], Dynamic Level Scheduling
(DLS) [26], Critical Path On Processor (CPOP) [27], Modi-
fied Critical Path (MCP) [25], Heterogeneous Earliest Finish
Time (HEFT) [27]. The DLS [26] algorithm dynamically
changes priorities and schedules across both temporal and
spatial dimensions to avoid shared resource contention. The
merits of this algorithm are broadly targetable, high speed,
flexible, and display better performance. LMT [39] works in
two phases. The initial phase sets the tasks which are executed
in parallel mode level-wise. The second phase is used to
allocate the task to the best-fitted resource. HEFT [27] is
used for a bound number of processors to the heterogeneous
distributed systems having two phases, task priority and pro-
cessor selection phases. In the first phase, tasks are sorted by
descending/ascending order using upward/downward rank.
The second phase selects the best resource to minimize the
actual finish time of the tasks in the list. CPOP [27] uses a
critical path in the given DAG. All tasks on the critical path
are assigned to the single best processor, and the remaining
tasks are allocated with the rank-based allocation same as
HEFT. The authors of [28], proposed a list-based workflow
scheduling method inspired by HEFT for non-preemptive
periodic tasks, reporting better performance. DBEFT has
been proposed [29]. DBEFT is an extended work of HEFT
with the same objective. Security Aware DAG scheduling
using ranking-based ordering and earliest finish time has been
proposed, and superior performance has been reported in the
domain [30]. In another work, level-based task ordering is
used for security-oriented workflow scheduling, minimizing
total number of failures [31]. Multi-objective version of lev-
elized workflow task execution has been presented in to opti-
mize makespan and flow time [32]. Another deadline-aware
multi-objective model is reported considering execution time
and monetary cost [33]. A workflow task allocation model is
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also developed with energy and dependency constraints for
the heterogeneous environment [38].

Clustering workflow heuristics are developed to mini-
mize the transfer time between dependent tasks. Since the
list-based heuristic does not consider communication cost
seriously, consequently generating needless idle gaps on
machines as in EFT [40] and HEFT [27]. A clustering
procedure has been employed as a sequence of clustering
refinements. Clustering-based approaches consist of map-
ping tasks to clusters and ordering tasks within the cluster
[41], [42]. This approach aims to attain an overall minimum
communication time share among tasks by merging them in
the same clusters and assigning them on the same machines
at the cost of the sacrifice of parallelism within the DAG.
Thus, a trade-off between minimizing communication delay
and maximizing parallelism has been observed [43]. There
are some clustering-based algorithms such as Linear Cluster
Method [44], Dominant Sequence Clustering [45], Resource
Aware Clustering (RAC) [46], and Clustering for Minimizing
theWorst Schedule Length (CMWSL) [47]. RAC [46] aims to
achieve relative load balancing and efficiency improvement
for a machine with different capacities. For this, RAC gives
a dynamic score function for all tasks, followed by task clus-
tering and then task allocation per the processors’ computing
capability. CMWSL [47] is a cluster-based task scheduling
algorithm with four phases to minimize the scheduling length
for more heterogeneous processors.

On the other hand, in multiple workflow allocations, all
scheduling decisions are made after a successive activa-
tion period. An estimated number of workflows with sim-
ilar requirements have arrived and form batch results in
an efficient schedule. The work proposed in [13] presents
aggregated DAGs-based multiple workflow allocation mod-
els allocating tasks according to depth level to optimize
throughput. In this work, tasks within the workflow are non-
communicating, and inter-task communications among them
have been considered zero. Author of [48] presents four
approaches, i.e., sequential (one after another), gap search
(next DAG utilizes gaps), interleaving and grouping of DAGs
(merging DAGs into a single one with one entry and exit
node). These approaches evaluate each other by using a
modified Path Clustering Heuristic (PCH) for prioritization
of tasks and selection of machines. Other work [49] proposed
two workflow allocation strategies, viz. MWGS4 (Multiple
Workflow Grid Scheduling 4 stages) and MWGS2 (Multiple
Workflow Grid Scheduling 2 stages). These strategies have
various stages Viz. Labeling, adaptive allocation, prioritiza-
tion, and parallel machine scheduling. In [22], the authors
solve the problem of multiple workflow scheduling with four
policies for DAGs allocation and another two focusing on
fairness optimizing makes pan with good fairness has been
presented. The paper [50] developed a RANK hierarchical
considering communication contention with task dependen-
cies (CCRH) for reliable scientific workflow allocation in
the cloud. CCRH aims to maximize reliability and improve
system fault tolerance. In [51], the authors introduced a novel

dynamic task rearrangement and rescheduling approach to
allocate multiple workflows considering resource efficiency
and robustness. The rearrangement policy improves robust-
ness. In [52], the authors proposed a cluster-based approach
for multiple workflows with soft deadlines to examine the
effect of time restriction on the quality of task allocation
in a heterogeneous environment. In this paper, the authors
consider how to accommodate free time windows by tasks
from workflows to fulfill the user’s requirements on an
urgent basis. In [53] and [54], the authors have proposed an
energy-aware stochastic method for multiple DAGs on het-
erogeneous DVFS-enabled machines to minimize the energy
and time. A model for the batch of DAGs with precedence
constraints maximizing load balancing level for effective
resource usage has been presented in [55]. A level-based
batch scheduling strategy (SLBBS) [23] minimizing the
turnaround time with inter-task communication has been pre-
sented in the literature. Also, its performance evaluation has
been carried out with some other methods in [56]. In [57], the
authors have proposed a multi-objective workflow model for
multi-DAGs optimizing the completion time and monetary
cost.

III. THE PROPOSED MODEL
This Section describes the proposed Levelized Multiple
Workflow Scheduling Strategy with Task Merging (LMWS-
TM) to optimize the turnaround time of the multiple work-
flows submitted for processing on VMs for IaaS cloud
computing. Moreover, this Section presents various things,
e.g., the list of notations used, cloud system framework,
VM model, workflow applications model, problem state-
ment, parameter estimation, the algorithm used with illustra-
tions, motivations of the work, and time complexity of the
algorithm.

A. CLOUD SYSTEM FRAMEWORK
This Section introduces the Infrastructure as Service cloud
system architecture for workflow allocation, as shown in
Figure 1. The various components of the architecture have
been explained as follows:

1) CLOUD USERS
Multiple cloud users have their workflow applications. They
need to submit their requests/applications over the cloud
system for processing on some negotiated rent. Users aim to
fulfill their requirements by satisfying constraints to optimize
QoS parameters.

2) WORKFLOW APPLICATIONS
As shown in Figure 1, a batch of multiple workflows is
submitted frommany users at different locations and grouped
at the arrival queue on the central dispatcher for further
processing. Each workflow comprises many dependent and
cooperative tasks with precedence constraints having parent
and child relationships. Workflows are independent of one
another and represented by using a Direct Acyclic Graph
(DAG), as depicted in Figure 2. The detailed description and
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FIGURE 1. Cloud system framework.

modeling of the batch of multiple workflows are presented in
section III C.

FIGURE 2. A sample multiple workflows.

3) WAITING QUEUE
A waiting queue is maintained at the global scheduler to
accommodate incoming workflow applications there from
different users to form a batch. These workflows are
then dispatched for processing by a global scheduler on
compute-intensive VMs in the cloud. The waiting time of

applications in this queue till mapping is known as queuing
time. We consider this queue follows an M/M/1 model. This
model has infinite queue length with a single server. Also,
workflow arrival and service times are determined by a Pois-
son and exponential distribution, respectively. The arrival rate
and service rates are λ and µ respectively. The queue length
is assumed infinite in this case.

4) GLOBAL SCHEDULER
Global Scheduler is one of the essential components in this
framework. It is responsible for capturing all required infor-
mation about the waiting queue, workflow applications, vir-
tual machines, and associated physical machines. The global
scheduler performs workflow allocation effectively by using
data captured. The main aim of the global scheduler is to
distribute the workflow components over virtual machines
created by the hypervisor to improve system performance.
It plays a crucial role in cloud systems. However, static
centralized workflow allocation has the benefit of generating
an efficient schedule for a batch of workflows onto a set of
VMs due to having prior estimated knowledge of various
application characteristics and resources.

5) PHYSICAL MACHINES
The physical machines comprise clusters, supercomputers,
servers, etc., the fundamental physical computing resources
that make up a cloud infrastructure. Through virtualization,
users can use the virtualized versions of machines of the
physical machine without any management overhead.

6) VM MANAGER/HYPERVISOR
The hypervisor can be viewed as a software layer that pro-
vides flexible management of virtual resources to users in an
application layer. This cannot be used directly by the end-
users. A connection is needed between any two entities like
clients, servers, or applications. VM monitor enables virtual
operating systems (OS) to run simultaneously on a machine.
The hypervisor provides the number of VMs, computing
capacity, bandwidth, storage, etc. The VM manager decides
on allocating tasks, reducing resource cost, time, etc.

7) VIRTUAL MACHINE
A Virtual Machine is an application environment installed
on software that mimics the behavior of a dedicated physical
machine. The cloud service provider provides VM. The users
have the same experience as they would have on the physical
machines. A detailed VM modeling has been presented in
coming to section III B.

8) FINISH QUEUE
The workflow tasks submitted by users are pooled in the
finish queue after their completion. The finish queue acts
as a buffer of results from processing. As depicted in
Figure 1, generally, the relation among the number of physical
machines, VMs, and workflows is r� k <= nWF.
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B. VM MODEL
Now, CSP offers a set of K virtual machines VM = {VM1,
VM2, . . . .,VMk}. The following characteristics regarding
VMs from the IaaS CSP are listed as:
• K number of virtual machines (VMs) for mapping

multiple independent workflows.
• Machines are capable of compute-intensive workflows.
• Computing capacities of VMs (CCk)
• Initial Ready time (RTk) which measures the previous

load on VMk.
• VM distances (Dab) are the distance between VMa and

VMb estimated as the number of links.
• A matrix, E (nWF × nwfi× K), written as Eijk is the

Expected Time to Compute of Tij in the workflow wfi
on VMk.

C. WORKFLOW APPLICATIONS MODEL
A batch of multiple workflows WF = {wfi: 1 ≤ i ≤nWF} has
been considered in which each workflow is modeled by using
a Direct Acyclic Graph (DAG). Each workflow comprises of
a set of tasks τi = {Tij|1 ≤ i ≤nWF, 1 ≤ j ≤nwfi} and set
of links (edges) between the tasks in the workflow. In the
batch of workflow, each workflow consists of various tasks
having depth levels and may need inter-task communication
with predecessor tasks from the same workflow at previous
depth levels. The following characteristics of workflows are
listed as
• A batch of nWF the number of compute-intensive multi-
ple workflows represented by DAG.

• Each task Tij in workflowwfi is associated with a unique
level attribute lij.

• Level attributes have been used to manage precedence
and dependence constraints.

• Li is the depth level of workflow wfi(Li = max(lij:
precedence level of all Tij∈ wfi)).

• Depth level of the whole batch of the workflow (L) is the
maximum of Li, i.e., L= max(Li).

• Inter-task communication (Dataixy) is between tasks Tix
and Tiy has been considered and measured in MIs.

• Multiple workflows have been divided into L partitions
(ρL) as per depth levels.

A batch of multiple workflows is presented in Figure 2,
where tasks in the workflows are sliced into groups as per the
order of precedence. They may require communication with
the other tasks at previous levels in the workflow. Workflows
inWFmay have different depth levels. The same color is used
to represent the tasks at the same depth level in the workflows,
e.g., T11, T12, T21 . . .TN1 has precedence level 1 while T13,
T14, T22. . .TN4 has level 2 and is shown by yellow and light
blue, respectively. Moreover, it is evident from Figure 2 that
T15 is dependent on T13 and T14 to begin its execution.
Tasks at the same depth level e.g., T13, T14, T22. . .TN4 can
be processed simultaneously. Finally, it is supposed that the
workflow pre-processing has been done before mapping the
workflows.

Communication cost (CC l−s,l
ixyab) in the considered scenario

depends on inter-task communication (Dataixy) and machine
distance (Dab) between machines VMa and VMb. CC

l−s,l
ixyab

between two tasks Tiy ∈ ρ
l and Tix ∈ ρ

l−s of workflow wfi
(Tiy is assumed to be dependent on Tix) allocated on machine
VMa and VMb, respectively, as presented in Figure 3 and can
be estimated as follows [23]:

CC l−s,l
ixyab = z

(
Dataixy × Dab

)
(1)

FIGURE 3. Communication cost computation.

Here, s∈ z + s ≥ and x, y=1, 2, 3. . .nwf i . The communi-
cation cost (CC l−s,l

ixyab) is direcly proportional to both Dataixy
and Dab. The z is the constant of proportionality with linear
relationship between them.

Therefore, the value of z is considered unity.

D. PROBLEM FORMULATION
The workflow allocation problem is the mapping ∅ for the
set WF = {wfi: 1 ≤ i ≤nWF} submitted for execution on the
set of virtual machines (VMs) in an IaaS cloud environment
to produce an allocation schedule (AS) with the aim of
optimizing the objective criteria:

∅ : WF → VM (2)

Here, the objective is the turnaround time of the submitted
set of workflows (WF) subject to the constraints as

1.

nwf i∑
j=1

Allocation [i][j][k] = P; 0 ≤ P ≤ nwf i

2.
K∑
k=1

Allocation [i][j][k] = 1

3.
N∑
i=1

nwf i∑
j=1

K∑
k=1

Allocation [i][j][k] =
nWF∑
i=1

nwf i

4. EST (Tijk ) ≥ max
{
AFT

[
pred

(
Tij
)]}
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i.e., the allocation must satisfy precedence constraints for
all Tij.

Allocation starts with merging tasks of the workflows
following the procedure as explained in detail in Section IIIC.
Afterward, the allocation of the tasks of each depth level
has been done based on the allocation method mentioned,
and detailed illustrations have been presented for the same
in sections III C. Level-wise allocation and execution of
the workflows having L depth levels with their execution
time, communication time, and ready time values for various
depth levels have been presented by using different colors in
Figure 4.

FIGURE 4. A sample level-wise execution of workflows.

Execution time at level l on VMk is the sum of Eijk of
assigned tasks on the specified virtual machine and can be
calculated as

ETl
k=

∑
VMk←∀Tij∈ρl

Eijk × Allocation [i][j][k] (3)

Eijk is an expected time to compute of Tij and Alloca-
tion[i][j][k] is allocation vector having binary values and both
can be written by equations as follows

Eijk =
size(T ij)

CCk
(4)

Allocation [i] [j] [k] =

{
1; when VM k ← Tij
0; Otherwise

(5)

The net communication cost (CCl
k) is taken as the max-

imum of the communication cost of the tasks assigned on
VMk with their predecessor tasks. Since the communication
requirements of next-level tasks can be met in parallel after
the execution of previous-level tasks, the CCl

k of assigned

tasks to their predecessor tasks on VMk at depth level l can
be estimated and written as

CC l
k = max

VMk←∀Tij&VMh←pred(Tij)

(
CC l−s,l

ixyab

)
(6)

where 1 ≤ h ≤ k, CTl
k is the total completion time on VMk

and computed as the sum of RTk, CCl
k and ETl

k as per the
equation written as

CT lk =

{
RT lk + ET

l
k if Tij ∈ ρ1

CC l
k + ET

l
k otherwise

(7)

RTl
k is the ready time of VMk, which is the workload

assigned prior to allocation and incorporated at the first depth
level only. The turnaround time (TAT) is estimated as the time
duration between workflows submission to completion and
can be written as:

TAT = QT +
L∑
l=1

max
∀k

(
CT lk

)
(8)

where QT [23] is the average queuing time of workflows in
the central queue and can be expressed as

QT =

{ 1
µ−λ

, B ≤ Qu
1

µ−λ

(
B
Qu

)
, B ≥ Qu

(9)

where queue unit (Qu) of servicing node is the amount, it can
handle in one go, and B is the total number of MIs in the
batch. Flow time can be computed as:

FT =
L∑
l=1

K∑
k=1

CT lk (10)

The average system utilization (Us) of the resources in the
cloud system can be estimated as:

US =

∑L
l=1

∑K
k=1 CT

l
k

K ∗ SUM
(
max
∀k

(
CT lk

) ) (11)

Finally, the Response time (RT) is the time duration
between the workflow’s admission in the system and the
appearance of the first responses of execution of the task
from the system. It is a significant parameter to measure
the interactive-ness of the system towards user’s workflows.
RT for the batch multiple workflows is calculated as

RT =
1

nWF

nWF∑
i=1

min
Tijερ1&∀wfi

EST (Tijk ) (12)

The proposed model always desires the optimum
values of QoS parameters for the resultant allocation
schedule.

E. LEVELIZED MULTIPLE WORKFLOW SCHEDULING
STRATEGY WITH TASK MERGING
The method starts with partitioning the batch of multiple
workflows per the level attribute in the DAG. And then, the
scheduler first merges the tasks of workflows in batch in such
a manner that overall execution time gets reduced. The task
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merging starts with determining the largest tasks as per the
size across the workflows at each depth level, observed from
first to the last. An effort is made to package the tasks of
successive precedence levels for each workflow in such a
way that the resultant size has a size less than or equal to the
chosen largest task in the given depth level. The logic behind
this packaging is that if there is a considerable size difference
between the tasks selected for execution at the given depth
level, the nodes will be idle till the largest task is over with
its execution. The logic behind this task merging is that if
there is a huge difference between the tasks selected for exe-
cution at the given depth level, the VM will be idle until the
largest task is over with its execution. Therefore, the proposed
scheme tries to fill the expected gaps produced due to the size
difference between tasks at the same depth level. This, in turn,
ensures a better total execution time and utilization with the
benefits depending on the various attributes of the workflows
comprising the batch viz. the degree of dependence, number
of tasks at the given depth level, number of depth levels, and
the available hardware parallelism in terms of the number
of VM. Afterward, this batch of workflows gets assigned as
accordance with the depth level on the appropriately selected
VM as decided by the scheduler as per the allocation policy.
This exercise’s overall result is only for effectively exploiting
the parallel portion and managing communication cost share
in the workflows on VM while maintaining the order of
execution of tasks in the workflows. It is also observed that
the performance of this scheme is well suited for heteroge-
neous VM selected for computation are of the comparable
capacities. The procedural steps for the same are presented
as follows: The procedure for the task merging is given from
step 4 to step 14 as in Algorithmic Template. Further, the re-
grouped tasks get allocated level-wise from the workflows on
the appropriately selected VM. The allocation pattern of the
tasks of the batch of workflows has been inherited from the
allocation policy given in our previously proposed work [23].
However, the allocation pattern is modified with the expec-
tation of enhancement in the turnaround time. Here, at each
time largest or smallest tasks from the specified partition get
selected for allocation. After that, the scheduler searches for
a suitable virtual machine to allocate the tasks belonging to
the partition at hand. The algorithm for the allocation of tasks
of the batch of DAGs as per their depth level is given in the
template from step 15 to step 31. With the amalgamation of
task merging (TM), the work intends further to improve the
combined scheme’s performance, namely LMWS-TM. The
scheme is capable enough to be adopted by any other scheme,
which is precedence based on fine-tuning the tasks assigned
to each level. Finally, for each partition, the values of CCl

k and
CTl

k are computed. The algorithmic template for the same has
been presented as follows:

An illustration to explain LMWS-TM, SLBBS, HEFT-1
and HEFT-2 has been presented in this Section with two
workflows consisting of 6 tasks with a precedence/depth level
among themselves, as shown in Figure 5. Let the arrival rate
of the workflows and service rate of the central dispatching

LMWS-TM Input: WF, Tij, VMk , Eijk , Dataixy, Dab, QT, size(Tij),
nWF , nwf i and K
Output: Allocation schedule (i, j), TAT, Us, FT, and RT

1. Divide WF as per depth level in ρl// Divide the batch as per
depth levels

2. Compute Eijk as per equation (4)
3. Sorting all ρl// Sorting partition ascending/ descending order
4. {
5. for all ρl do
6. Get sizelmaxand size

l
min

// first and last task from the sorted ρl

7. Select Tij i.e. size(Tij)=sizelmin
8. do until sizelmin ≤ sizelmax
9. Tij ← Tij⊕succ(Tij)
10. sizelmin = sizelmin+ size(succ(Tij))
11. d_level (Tij⊕succ(Tij))←l
12. end do
13. end for
14. }
15. for l=1 to L do
16. for all Tij ∈ ρl do
17. for all Mk
18. if (l=1)
19. VMk ← Tij// with least ETlk + Eijk +RT

l
k

20. else
21. VMk ← Tij// with least ETlk + Eijk
22. end if
23. end for
24. Alloc(i, j)← k
25. Update Execution Time ETlk //ET

l
k= ET

l
k+Eijk

26. ρl=ρl -Tij// Remove allocated tasks from the partition
27. end for
28. Compute CClk// as per equation (6)
29. Compute CTlk// as per equation (7)
30. end for
31. }
32. Find Allocation Schedule (i, j) and Calculate TAT, FT, Us, and

RT// as per equation (8) −− (12)

virtual machine be 0.03 and 0.05-unit time, respectively. And
queuing unit (Qu) is 10,000 MIs.
We have taken only three VM, but there may be more

in real scenarios. The complete information on heteroge-
neous VM is shown in Figure 6, for example, the computing
capacity (CCk) and initial ready time (RTk) of V1 are 9 and
40 respectively. And VM distance (D12) between V1 and
V2 is 2. In each workflow, information like the number
of instructions, depth level, and inter-task distance between
two tasks of the same workflow is presented in Figure 5.
For example, the size of T11 is 1100 Mis and the inter-task
communication (Data113) between T11 and T13 is 3. Eijk for
tasks of each workflow can then be computed and shown in
Table 1.

Now, partitions of the batch as per depth level are
P1 = {T11, T12,T21, T31} P2 = {T13,T14, T22,T23, T24},
P3 = {T15,T16, T25} and P4 = {T26}. In wf2, the tasks
T21 and T22 of depth level 1 and 2 are combined as per the
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FIGURE 5. Sample of Two Workflows.

FIGURE 6. VM information.

TABLE 1. Eijk of workflows for different VM.

task merging policy mentioned in the algorithmic template.
Similarly, tasks T25 and T26 of depth levels 3 and 4 also are
merged. First workflowwf1 requires nomerging of tasks. The
resultant batch of workflow can be seen in Figure 7. The ETC
matrix also requires updating as per the previous merging,
as shown in Table 2.

The workflows are grouped into partitions according
to precedence level, then sorted in descending order i.e.,

FIGURE 7. Workflows after task merging.

TABLE 2. Eijk after task merging.

L1 = {T12, T11, T21}, L2 = {T14, T13, T24, T22, T23},
L3 = {T15, T16, T25} and L4 = {T26}. Before allocation
of tasks from the first partition, compare the execution time
of T12 and T21 onto each virtual machine. The differences
are 76.11, 68.5, and 85.625 on each virtual machine. So,
check the execution time value of the succeeding task of
T21. Succeeding Task T22 execution time values are 58.33,
52.50, and 65.625 on VM1, VM2, and VM3, respectively.
Thus, tasks T21 and T22 can be merged and executed both
simultaneously. In the second level, task merging cannot be
possible due to T23 and T24 will be fulfilled. Similarly, in the
third level, task merging is possible; tasks T25 and T26 are
combined and executed both simultaneously same as the first
level. After complete task merging, the depth level order as
L1 = {T12, T11, T21+ T22}, L2 = {T14, T13, T24, T23}
and L3 = {T15, T16, T25+ T26}. The merging of tasks level
wised and combined value execution time value is depicted
in Figure 7 and Table 2. All the execution of tasks is shown
in Figure 8.

After task merging, the workflows are assigned on the
selected VM as per the allocation strategy mentioned earlier,
and the respective values of RT1

k, CC
l
k and, ET

1
k as shown in

Figure 8. Further, the performance parameters are computed
as follows:

CT1 = 40+133.33+8+140+0+151.67 = 473, CT2 =

30+110+0+105+6+145 = 396
CT3 = 55+117.50+144.50+147.625 = 464.625.
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FIGURE 8. Allocation of tasks using LMWS-TM.

TAT= Max (473,396, 464.625) = 473, FT = 473+396
+464.625 = 1333.625

Us = 1333.625/3∗473= 0.9398, RT = (30+55)/2= 42.5
Using SLBBS, the allocation of the workflows has been

done level-wise with tasks allocated on VMk. and respective
values of RT1

k, CC
l
k and, ET1

k as shown in the Figure 9.
The detailed illustrations can be seen in [23]. Further, the
performance parameters are computed as follows:

FIGURE 9. Allocation of workflows using SLBBS.

CT1 = 40+133.33+8+140+151.67 = 473, CT2 =

30+110+10+172.20+8+145+15+79.60 = 569.80
CT3 = 55+51.875+125.625+10+48.125 = 290.625
TAT=Max (473, 569.80, 290.625) = 569.8,

FT = 473+569.80+290.625 = 1333.425
Us = 1333.425/3∗569.80= 0.7801, RT = (30+55)/2=

42.5

FIGURE 10. Allocation of tasks using HEFT-2.

FIGURE 11. Allocation of tasks using HEFT-1.

The same workflows are allocated using HEFT [27],
and performance parameters are computed. HEFT is imple-
mented for multiple workflows such as HEFT-1 and HEFT-2
in two different approaches, viz. sequential andmerged-based
approaches are presented in [48] as shown in Figure 10 and
Figure 11. In HEFT-1, workflows are allocated from batch
one after another using HEFT as in [26]. On the other hand,
HEFT-2, one pseudo entry, and one pseudo exit tasks form
a single larger workflow from all, multiple workflows by
joining initial and end tasks to pseudo entry and pseudo exit
task, respectively. After this, HEFT is applied to the resultant
DAG. Now, the values of parameters for HEFT-2 computed
are as

CT1 = 40+116.67+151.67 = 308.34, CT2 = 30+110+
120+126+145 = 531

CT3 = 55+51.875+125.625+10+48.125 = 464.625
TAT=Max (308.34, 531, 464.625) = 531, FT =

308.34+531+464.625 = 1303.965
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Us = 1303.965/3∗531= 0.7801, RT = (30+55)/2= 42.5
Similarly, the values of parameters for HEFT-1 for the

same workflows computed are as
CT1 = 40+116.67+46.11+74.67+161.11 = 438.56,

CT2 = 30+110+120+126+48.4+38.5+79.6 = 552.5,
CT3 = 55+65.625+170.625 = 291.25

TAT= Max (438.56, 552.5, 291.25) = 552.5,
FT = 438.56+552.5+291.25 = 1282.31
Us = 1282.31/3∗552.5= 0.7736, RT = (30+267.67)/2=

148.835

TABLE 3. Computed QoS parameters for the illustration.

The parameter values computed as per the illustration and
shown in Table 3, LMWS-TM,HEFT-2, HEFT-1, and SLBBS
strategies are represented along with the performance met-
rics mentioned in the above example. LMWS-TM is giving
superior values 473 and 0.9398 on TAT and system utiliza-
tion, while the average response time is almost the same as
LMWS-TM and SLBBS. Also, HEFT-1 shows the best value
among all on flow time. HEFT-1 has the worst value among
all on average response time.

F. TIME COMPLEXITY
The time complexity is estimated for the proposed algorithm
as per the steps involved in the algorithmic template in
Section III E. Now, let the user has submitted nWF number
of workflows WF = {wf i : 1 ≤ i ≤ nWF} and wf i has
nwf i the number of the tasks. The average number of tasks
assumed here as n and t in the workflows and partitions,

respectively i.e., n =
∑i=nWF

i=1 nwf i
nWF

and k number of VM. The
depth levels for workflows (wf i) are li, so, the depth level of
WF is L= max (li: where i varies from 1 to nwf i ). And, L can
be estimated as L= log n. The time complexity of LMWS-TM
involved partitioning the batch, sorting partitions, task merg-
ing, and allocation.

1) For dividing the workflows into partitions is
O (L× nWF × n).

2) For sorting the partition is O(L× t× t)
3) For task merging is O(L× t× t)
4) For allocation is O (L× t×M).
Thus, the overall time complexity is O (L× nWF × n) +

O (L× t× t)+O (L× t× t)+O (L× t×M)≈ O
(
L×t2

)
=

O
(
log n×t2

)
.

IV. EXPERIMENTAL STUDY
The experimental study has been conducted to observe and
analyze the effect of task merging of workflow tasks in the
batch of workflows on the set of VM available in the IaaS

cloud system at the time of allocation. Statistical testing has
also been conducted to check the significance level of the
hypothesis derived from the study. The experiments were
conducted using MATLAB 7.60 using Intel (R) Core (TM),
i7-3770 CPU using 2GB RAM, and Sun Fire X4470 Server
with 14 GBRAM. The study is done to evaluate the compara-
tive behavior of the LMWS-TMwith SLBBS, DLS, HEFT-2,
and HEFT-1 for various cases to analyze its effectiveness in
the middleware.

A. SIMULATION RESULTS
The simulation produces a realizing cloud environment and
a batch of random workflows for evaluating the proposed
strategy’s performance. The multiple randomworkflows con-
sist of parameters like workflow number (Batch Size), prece-
dence level, task size, and degree of parallelism within the
batch, amount of inter-task communication within workflow
tasks. Parallelism in the batch of multiple workflows varies
by varying the parallel tasks in the depth levels and vice
versa. Similarly, IaaS cloud system has attributes such as
number, computing capacities, distances of VMs. Accord-
ingly, simulator prototype of the workflows allocator imple-
mented in MATLAB produces associated input parameters
of workflows, and VMs between a specific feasible limit are
randomly generated by using a discrete uniform distribution.
For the experimental results, the common parameter setting
is given in Table 4 for all cases.

TABLE 4. The input parameters for experiments.

Experiments have been done by varying the input parame-
ters related to the cloud system and batch of workflows for
all considered strategies, i.e., batch size, number of VMs,
and parallelism (depth level). The simulation results for each
case are presented in figures and tables in this Section. All
experiments are repeated by 50 times, and the mean of the
corresponding parameters is reported for all the cases for
avoiding the effect of randomness. For example, in vary-
ing batch size (for case 1), the experiments are conducted
50 times for each batch size, such as 4 to 128 and the mean
values of turnaround time, utilization, response time, and flow
time is reported in figure 12 to figure 15 and Table 5. The
same pattern is used for other cases. Further, the response
time of HEFT-1 is very large in comparison to LMWS-TM,
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FIGURE 12. Turnaround time v/s batch size.

FIGURE 13. System utilization v/s batch size.

FIGURE 14. Flow time v/s batch size.

SLBBS, HEFT-2. Therefore, for better presentation, HEFT-1
is omitted in figure 15, figure 19, and figure 23, and only
four methods are presented in these figures. However, the
numerical results are also presented in the tables for better
clarity.

FIGURE 15. Response time v/s batch size.

TABLE 5. QoS parameters of all methods for varying batch size.

1) VARYING BATCH SIZE
This case focuses on the observations of the effect of varying
batch sizes from nWF = 4 to nWF = 128, and the remaining
input parameters are fixed as:

k = 16,RTkl= 0− 1000,CCk = 30 − 1000,Tij = 256,
Dataixy = 1 − 1000,L = 16,Dab = 1 − 100, µ = 0.05,
λ = 0.03, Qu = 200000
For better visibility in comparative analysis, the average

values of TAT, Us, FT and RT have been also presented in
Table 5 for varying workflows and the best values are shown
in Bold.
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Observations:
1) As shown in Figure 12, the trend of turnaround time

keeps increasing as the number of workflows increase
for all the strategies, viz. LMWS-TM, SLBBS, HEFT-
1, HEFT-2, and DLS as expected on keeping all other
input parameters fixed. As can be seen that the rate of
increase in turnaround time by increasing the number
of workflows is the least for LMWS-TM. LMWS-
TM outperforms all other strategies for every batch
size from small to larger. The performance order
for turnaround time is LMWS-TM (best), SLBBS,
HEFT-2, HEFT-1, and DLS (worst). The observed per-
formance gain of LMWS-TM over SLBBS is in the
range of 16% - 50% for 4 to 128 workflows in the
batch. This performance gain is due to the amalgama-
tion of task merging prior to allocation, which reduces
the communication cost-share and the total number of
depth levels resulting in improved TAT.

2) The trend of system utilization is increasing batch
size and keeping other parameters fixed, as shown
in figure 13. The performance order for utilization is
LMWS-TM (best), SLBBS, DLS, HEFT-2, and HEFT-
1 (worst). LMWS-TM outperforms all other strategies
for every batch size in terms of system utilization. This
is because as more workflows accumulate, more tasks
become available at any precedence level, resulting
in the batch exhibiting more parallelism within itself.
LMWS-TM is designed keeping in mind to exploit
parallelism at the workflow level as well as the task
level with uniform allocation on the VMs available.
Further, the proposed scheme tries to fill the expected
gaps produced due to the size difference between tasks
at the same depth level by task merging, ensuring better
utilization. Also, the performance of LMWS-TM has
been improved for batch sizes over SLBBS, which is
significant for smaller batch sizes and tries to be at par
for larger batches.

3) The trend of flow time increases as soon as batch size
is raised for this case, as shown in figure 14. LMWS-
TM outperforms all other strategies for batch sizes 4 to
128 in terms of flow time. LMWS-TM has improved
in the range of 12.5% - 45.92% for batch sizes 4 to 128
SLBBS. The performance order is the same as the in
the case of turnaround time with the reasons explained
earlier.

4) Response time has an increasing trend when the batch
size is increased for this case, as shown in figure 15.
LMWS-TM and SLBBS both perform at pat for all
batch sizes considered in the experiments on account
of response time, and both are far better than other
strategies. Response time is the average start time of
the workflows, and due to level-wise allocation, every
workflow execution starts at the first level at the begin-
ning of execution for SLBBS and LMWS-TM. Task
merging does not affect the first-level tasks. Hence,
it has no effect on response time because it combines

the tasks from the next depth levels and merges them
with the tasks at previous levels. HEFT-2 performs bet-
ter than DLS. HEFT-1 observes the worst performance
because workflows are assigned one after another
in serial exploiting only task level parallelism in
the DAG.

2) VARYING DEPTH LEVELS WITH FIXED BATCH
This case observes the effect of variation in the number of
depth levels in the fixed workflows because the degree of
parallelism is changed at the depth level. Experiments are
conducted here for L = 4 to L = 128, and the remaining
input parameters are as follows:

nWF = 256, k = 32,RTk = 0 − 1000, CCk =
30− 1000,Tij = 128,Dataixy = 1− 3000,Dab = 1− 100,
µ = 0.05, λ = 0.03, Qu = 200000
Again, for better visibility in comparative analysis, the

average values of TAT, Us, FT and RT have been also pre-
sented in Table 6 for depth levels and the best values are
shown in Bold.

TABLE 6. QoS parameters of all methods for varying depth levels.

FIGURE 16. Turnaround time v/s depth level.
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Observations:
1) As presented in Figure 16, turnaround time is grad-

ually increased by increasing the depth levels for a
fixed batch of 256 workflows. Increasing the num-
ber of levels reduces the parallelism in the workflows
resulting in degrading turnaround time. LMWS-TM
still performs best, and SLBBS is the second-best on
turnaround time, followed by HEFT-1 and HEFT-2,
with DLS worst. Performance gain of LMWS-TM over
SLBBS for depth levels 8 to 64 is almost 22%-35%,
respectively.

2) Average utilization is also slightly decreased for all
the methods considered in experiments on varying the
depth levels, as shown in Figure 17. Here, the batch size
is 256. Therefore, LMWS-TM, SLBBS, and DLS are
approximately at par. HEFT-1’s performance is worst.

FIGURE 17. System utilization v/s depth level.

FIGURE 18. Flow time v/s depth level.

3) In this scenario, the flow time is gradually increased,
as shown in Figure 18 for all the methods considered.
The performance gain over SLBBS is almost 9%-19%.

4) In the case of varying depth levels (parallel tasks),
as shown in Figure 19, LMWS-TM and SLLBBS are
at par and significantly perform better than other peers.

FIGURE 19. Response time v/s depth level.

Again, HEFT-1 performs worst for the same reason as
mentioned earlier case in detail.

3) VARYING NUMBER OF VM
This case presents the effect of the variation in hardware
parallelism (number of VMs) from k = 8 to k = 128, with
the remaining input parameters fixed as follows:

nWF = 64,K = 32,RTkl = 0 − 1000, CCk =
30 − 1000,Tij = 512,Dataixy = 1 − 100,L = 16,
Dab = 1− 100, µ = 0.05, λ = 0.03, Qu = 200000

Again, for better visibility in comparative analysis, the
average values of TAT, Us, FT and RT have been also pre-
sented in Table 7 for varying VMs and the best values are
shown in Bold.

TABLE 7. QoS parameters of all methods for varying number of VMs.

Observations:
1) As presented in Figure 20, turnaround time has

decreasing trend on increasing number of VM for
LMWS-TM, SLBBS, HEFT-2, HEFT-1, and DLS
as expected. LMWS-TM performs best for all
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FIGURE 20. Turnaround time v/s number of VM.

configurations of VM among all strategies taken in
experiments. The performance order is the same as
in the first case i.e., LMWS-TM, SLBBS, HEFT-2,
HEFT-1, and DLS. The reason for the superior per-
formance of LMWS-TM has been explained earlier in
detail. The improvement in turnaround time for the case
is reported as almost 15%-30% for the 2 to 128 VM.
Chances of selecting better machines increase with a
larger number of VM. Consequently, the performance
of the strategies is improved as VMs instances are
increased.

FIGURE 21. System utilization v/s number of VMs.

2) As in Figure 21, average utilization also shows a
decreasing trend in increasing the number of VM. The
performance order is LMWS-TM, SLBBS, HEFT-2,
HEFT-1and DLS. Again, the proposed model has
proven best on account of utilization.

3) As presented in Figure 22, flow time also has decreas-
ing trend on increasing number of VM for all the strate-
gies under experiments. LMWS-TM performs best for
all configurations of VM among all strategies taken
in experiments. The performance order is the same as
for turnaround time i.e., LMWS-TM, SLBBS, HEFT-2,

FIGURE 22. Flow time v/s number of VMs.

HEFT-1, and DLS. In this case, performance in the
range is almost 5% to 15%onflow time for LMWS-TM
over SLBBS.

4) Response time follows the same decreasing trend on
varying the VMs from 8 to 128, as presented in
Figure 23. Performance order is the same as in previous
cases with LMWS-TM and SLLBBS at par.

FIGURE 23. Response time v/s number of VMs.

B. STATISTICAL ANALYSIS
This part is devoted to statistical testing for performance
evaluation to test the hypothesis developed from the outcomes
of the simulation study. The analysis has been conducted with
SPSS Statistics 20 for the data sets generated in simulation
experiments and presented from Figure 12 to Figure 23 for
various combinations of input parameters as explained in
Section IV A, in detail. At first, the normality of data samples
was tested in SPSS. Afterward, samples from the simulation
study were analyzed for performance comparison of LMWS-
TM, SLBBS, HEFT-2, HEFT-1, and DLS by using Wilcoxon
Signed Ranks Test. The confidence interval considered in
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the test is 95%. The hypotheses for the normality test and
comparing samples have been considered as follows:

1) Hypothesis 1 (For Normality Test)
Ho1: The sample data are not significantly different
than a normal population.
H11: The sample data are significantly different than a
normal population.

2) Hypothesis 2 (For Comparing samples)
Ho2: There is no significant difference in various mod-
els on X.
H12: There is a significant difference in various models
on X.

where, X is a set of four parameters namely, Turnaround Time
(TAT), FlowTime (FT), AverageUtilization (Us)&Response
Time (RT). Now, we are presenting the simulation samples
in Table 8 generated by experiments for considered peers on
TAT by varying batch size (number of workflows) shown in
Figure 12.

TABLE 8. Simulation samples for models on varying batch size for TAT.

TABLE 9. Normality tests for models for tat on varying batch size.

Table 9 presents the normality test results using the
Kolmogorov-Smirnov and Shapiro-Wilk test for the sample
given in Table 8. Here sample size is taken as 6 for each case.
In the table, we can see that almost all Sig. values are greater
than 0.05. Hence, the normality test null hypothesis (Ho1) is
accepted, and alternate hypothesis H11 is rejected. Thus, the
sample data is normally distributed for all the models for TAT
on varying the batch size.

As verified, the samples are normally distributed. All the
models, namely LMWS-TM, SLBBS, DLS, HEFT-1, and
HEFT-2, are independent. So, the samples generated for the
parameters, i.e., TAT, Us, FT, and RT, are also considered
independent samples. Therefore, one way ANOVA test can
be used to test the significance level between the samples.

Table 10 presents statistics of one-way ANOVA test. Here,
the significant (Sig.) value is 0.014 for TAT on considered

TABLE 10. One way ANOVA test for TAT on varying batch size.

samples from various models. This Sig. value is less than
0.05 at 5% level of significance. Hence, Ho2 is rejected.
Rejecting the null hypothesis proves that the proposed model
i.e., LMWS-TM, significantly differs from SLBBS, DLS,
HEFT-1, and HEFT-2 on TAT. The mean plot presented in
Figure 24 also confirms the considerably better performance
of LMWS-TM on TAT.

FIGURE 24. Mean plot for models on TAT.

The sample data from the remaining experiment varying
batch size, depth levels, and the number of machines for
TAT, Us, FT, and RT as in section IV A has been tested in
a similar pattern as presented above. For all samples under
study on TAT and FT, Ho2 is rejected and accepts H12. This
verifies that the performance of LMWS-TM is significantly
best among all cases on TAT and FT under study. Further, for
the samples on RT, every time Ho2 is accepted. This is due
to the almost equal RT of SLBBS and LMWS-TM for all the
cases. Further, SLBBS samples are removed, and only means
of four models are compared for the same (i.e., LMWS-TM,
HEFT-1, HEFT-2, and DLS). In this scenario, Ho2 is rejected
in all the tests. And acceptance of H12 confirms the sig-
nificantly superior performance of LMWS-TM among all
models excluding SLBBS on RT under study. For the case of
average utilization (Us), the majority of experiments rejected
the Ho2. Still, some samples under study accept the Ho2.
However, the performance of LMWS-TM on Us is almost
better compared to others, with some exceptions. Thus, the
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results of hypothesis testing confirm the conclusions drawn
from the simulation study in section IV A.

V. CONCLUSION AND FUTURE SCOPE
The strategies dealing with the batch of multiple workflows
perform better by considering parallelism at theworkflow and
task levels, satisfying the precedence constraints. This work
presents a levelized multiple workflow allocation strategy
with task merging (LMWS-TM) for multiple workflows hav-
ing precedence constraints to optimize turnaround time. The
task merging scheme is inspired by the clustering approach to
reduce inter-task communication share and the total number
of depth levels. It is incorporated in each workflow after
partitioning, followed by allocation level-wise from first to
last to enhance overall execution time. Moreover, the scheme
is capable enough to use simple and flexible level attributes
to tackle precedence constraints that provide the order of exe-
cution to tasks in the workflows. An experimental study has
been carried out by comparing LMWS-TM with other state-
of-the-art DAG scheduling strategies, viz. SLBBS, DLS, and
HEFT by varying the batch size, the degree of parallelism
in the workflows (depth levels), and the number of available
nodes (hardware parallelism) to evaluate the suitability in the
literature. The experimental study suggests that LMWS-TM
performs best among all its peers significantly in all the cases
under study.
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